1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13
14 #include <net/netdev_lock.h>
15 #include <net/netdev_rx_queue.h>
16 #include <net/page_pool/helpers.h>
17 #include <net/page_pool/memory_provider.h>
18 #include <net/xdp.h>
19
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/page-flags.h>
23 #include <linux/mm.h> /* for put_page() */
24 #include <linux/poison.h>
25 #include <linux/ethtool.h>
26 #include <linux/netdevice.h>
27
28 #include <trace/events/page_pool.h>
29
30 #include "dev.h"
31 #include "mp_dmabuf_devmem.h"
32 #include "netmem_priv.h"
33 #include "page_pool_priv.h"
34
35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36
37 #define DEFER_TIME (msecs_to_jiffies(1000))
38 #define DEFER_WARN_INTERVAL (60 * HZ)
39
40 #define BIAS_MAX (LONG_MAX >> 1)
41
42 #ifdef CONFIG_PAGE_POOL_STATS
43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44
45 /* alloc_stat_inc is intended to be used in softirq context */
46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
47 /* recycle_stat_inc is safe to use when preemption is possible. */
48 #define recycle_stat_inc(pool, __stat) \
49 do { \
50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
51 this_cpu_inc(s->__stat); \
52 } while (0)
53
54 #define recycle_stat_add(pool, __stat, val) \
55 do { \
56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
57 this_cpu_add(s->__stat, val); \
58 } while (0)
59
60 static const char pp_stats[][ETH_GSTRING_LEN] = {
61 "rx_pp_alloc_fast",
62 "rx_pp_alloc_slow",
63 "rx_pp_alloc_slow_ho",
64 "rx_pp_alloc_empty",
65 "rx_pp_alloc_refill",
66 "rx_pp_alloc_waive",
67 "rx_pp_recycle_cached",
68 "rx_pp_recycle_cache_full",
69 "rx_pp_recycle_ring",
70 "rx_pp_recycle_ring_full",
71 "rx_pp_recycle_released_ref",
72 };
73
74 /**
75 * page_pool_get_stats() - fetch page pool stats
76 * @pool: pool from which page was allocated
77 * @stats: struct page_pool_stats to fill in
78 *
79 * Retrieve statistics about the page_pool. This API is only available
80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81 * A pointer to a caller allocated struct page_pool_stats structure
82 * is passed to this API which is filled in. The caller can then report
83 * those stats to the user (perhaps via ethtool, debugfs, etc.).
84 */
page_pool_get_stats(const struct page_pool * pool,struct page_pool_stats * stats)85 bool page_pool_get_stats(const struct page_pool *pool,
86 struct page_pool_stats *stats)
87 {
88 int cpu = 0;
89
90 if (!stats)
91 return false;
92
93 /* The caller is responsible to initialize stats. */
94 stats->alloc_stats.fast += pool->alloc_stats.fast;
95 stats->alloc_stats.slow += pool->alloc_stats.slow;
96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 stats->alloc_stats.empty += pool->alloc_stats.empty;
98 stats->alloc_stats.refill += pool->alloc_stats.refill;
99 stats->alloc_stats.waive += pool->alloc_stats.waive;
100
101 for_each_possible_cpu(cpu) {
102 const struct page_pool_recycle_stats *pcpu =
103 per_cpu_ptr(pool->recycle_stats, cpu);
104
105 stats->recycle_stats.cached += pcpu->cached;
106 stats->recycle_stats.cache_full += pcpu->cache_full;
107 stats->recycle_stats.ring += pcpu->ring;
108 stats->recycle_stats.ring_full += pcpu->ring_full;
109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 }
111
112 return true;
113 }
114 EXPORT_SYMBOL(page_pool_get_stats);
115
page_pool_ethtool_stats_get_strings(u8 * data)116 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117 {
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 data += ETH_GSTRING_LEN;
123 }
124
125 return data;
126 }
127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128
page_pool_ethtool_stats_get_count(void)129 int page_pool_ethtool_stats_get_count(void)
130 {
131 return ARRAY_SIZE(pp_stats);
132 }
133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134
page_pool_ethtool_stats_get(u64 * data,const void * stats)135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136 {
137 const struct page_pool_stats *pool_stats = stats;
138
139 *data++ = pool_stats->alloc_stats.fast;
140 *data++ = pool_stats->alloc_stats.slow;
141 *data++ = pool_stats->alloc_stats.slow_high_order;
142 *data++ = pool_stats->alloc_stats.empty;
143 *data++ = pool_stats->alloc_stats.refill;
144 *data++ = pool_stats->alloc_stats.waive;
145 *data++ = pool_stats->recycle_stats.cached;
146 *data++ = pool_stats->recycle_stats.cache_full;
147 *data++ = pool_stats->recycle_stats.ring;
148 *data++ = pool_stats->recycle_stats.ring_full;
149 *data++ = pool_stats->recycle_stats.released_refcnt;
150
151 return data;
152 }
153 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154
155 #else
156 #define alloc_stat_inc(...) do { } while (0)
157 #define recycle_stat_inc(...) do { } while (0)
158 #define recycle_stat_add(...) do { } while (0)
159 #endif
160
page_pool_producer_lock(struct page_pool * pool)161 static bool page_pool_producer_lock(struct page_pool *pool)
162 __acquires(&pool->ring.producer_lock)
163 {
164 bool in_softirq = in_softirq();
165
166 if (in_softirq)
167 spin_lock(&pool->ring.producer_lock);
168 else
169 spin_lock_bh(&pool->ring.producer_lock);
170
171 return in_softirq;
172 }
173
page_pool_producer_unlock(struct page_pool * pool,bool in_softirq)174 static void page_pool_producer_unlock(struct page_pool *pool,
175 bool in_softirq)
176 __releases(&pool->ring.producer_lock)
177 {
178 if (in_softirq)
179 spin_unlock(&pool->ring.producer_lock);
180 else
181 spin_unlock_bh(&pool->ring.producer_lock);
182 }
183
page_pool_struct_check(void)184 static void page_pool_struct_check(void)
185 {
186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 PAGE_POOL_FRAG_GROUP_ALIGN);
191 }
192
page_pool_init(struct page_pool * pool,const struct page_pool_params * params,int cpuid)193 static int page_pool_init(struct page_pool *pool,
194 const struct page_pool_params *params,
195 int cpuid)
196 {
197 unsigned int ring_qsize = 1024; /* Default */
198 struct netdev_rx_queue *rxq;
199 int err;
200
201 page_pool_struct_check();
202
203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p));
204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow));
205
206 pool->cpuid = cpuid;
207 pool->dma_sync_for_cpu = true;
208
209 /* Validate only known flags were used */
210 if (pool->slow.flags & ~PP_FLAG_ALL)
211 return -EINVAL;
212
213 if (pool->p.pool_size)
214 ring_qsize = pool->p.pool_size;
215
216 /* Sanity limit mem that can be pinned down */
217 if (ring_qsize > 32768)
218 return -E2BIG;
219
220 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
221 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
222 * which is the XDP_TX use-case.
223 */
224 if (pool->slow.flags & PP_FLAG_DMA_MAP) {
225 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
226 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
227 return -EINVAL;
228
229 pool->dma_map = true;
230 }
231
232 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
233 /* In order to request DMA-sync-for-device the page
234 * needs to be mapped
235 */
236 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
237 return -EINVAL;
238
239 if (!pool->p.max_len)
240 return -EINVAL;
241
242 pool->dma_sync = true;
243
244 /* pool->p.offset has to be set according to the address
245 * offset used by the DMA engine to start copying rx data
246 */
247 }
248
249 pool->has_init_callback = !!pool->slow.init_callback;
250
251 #ifdef CONFIG_PAGE_POOL_STATS
252 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
253 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
254 if (!pool->recycle_stats)
255 return -ENOMEM;
256 } else {
257 /* For system page pool instance we use a singular stats object
258 * instead of allocating a separate percpu variable for each
259 * (also percpu) page pool instance.
260 */
261 pool->recycle_stats = &pp_system_recycle_stats;
262 pool->system = true;
263 }
264 #endif
265
266 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
267 #ifdef CONFIG_PAGE_POOL_STATS
268 if (!pool->system)
269 free_percpu(pool->recycle_stats);
270 #endif
271 return -ENOMEM;
272 }
273
274 atomic_set(&pool->pages_state_release_cnt, 0);
275
276 /* Driver calling page_pool_create() also call page_pool_destroy() */
277 refcount_set(&pool->user_cnt, 1);
278
279 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
280
281 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
282 netdev_assert_locked(pool->slow.netdev);
283 rxq = __netif_get_rx_queue(pool->slow.netdev,
284 pool->slow.queue_idx);
285 pool->mp_priv = rxq->mp_params.mp_priv;
286 pool->mp_ops = rxq->mp_params.mp_ops;
287 }
288
289 if (pool->mp_ops) {
290 if (!pool->dma_map || !pool->dma_sync) {
291 err = -EOPNOTSUPP;
292 goto free_ptr_ring;
293 }
294
295 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
296 err = -EFAULT;
297 goto free_ptr_ring;
298 }
299
300 err = pool->mp_ops->init(pool);
301 if (err) {
302 pr_warn("%s() mem-provider init failed %d\n", __func__,
303 err);
304 goto free_ptr_ring;
305 }
306
307 static_branch_inc(&page_pool_mem_providers);
308 }
309
310 return 0;
311
312 free_ptr_ring:
313 ptr_ring_cleanup(&pool->ring, NULL);
314 #ifdef CONFIG_PAGE_POOL_STATS
315 if (!pool->system)
316 free_percpu(pool->recycle_stats);
317 #endif
318 return err;
319 }
320
page_pool_uninit(struct page_pool * pool)321 static void page_pool_uninit(struct page_pool *pool)
322 {
323 ptr_ring_cleanup(&pool->ring, NULL);
324 xa_destroy(&pool->dma_mapped);
325
326 #ifdef CONFIG_PAGE_POOL_STATS
327 if (!pool->system)
328 free_percpu(pool->recycle_stats);
329 #endif
330 }
331
332 /**
333 * page_pool_create_percpu() - create a page pool for a given cpu.
334 * @params: parameters, see struct page_pool_params
335 * @cpuid: cpu identifier
336 */
337 struct page_pool *
page_pool_create_percpu(const struct page_pool_params * params,int cpuid)338 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
339 {
340 struct page_pool *pool;
341 int err;
342
343 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
344 if (!pool)
345 return ERR_PTR(-ENOMEM);
346
347 err = page_pool_init(pool, params, cpuid);
348 if (err < 0)
349 goto err_free;
350
351 err = page_pool_list(pool);
352 if (err)
353 goto err_uninit;
354
355 return pool;
356
357 err_uninit:
358 page_pool_uninit(pool);
359 err_free:
360 pr_warn("%s() gave up with errno %d\n", __func__, err);
361 kfree(pool);
362 return ERR_PTR(err);
363 }
364 EXPORT_SYMBOL(page_pool_create_percpu);
365
366 /**
367 * page_pool_create() - create a page pool
368 * @params: parameters, see struct page_pool_params
369 */
page_pool_create(const struct page_pool_params * params)370 struct page_pool *page_pool_create(const struct page_pool_params *params)
371 {
372 return page_pool_create_percpu(params, -1);
373 }
374 EXPORT_SYMBOL(page_pool_create);
375
376 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem);
377
page_pool_refill_alloc_cache(struct page_pool * pool)378 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
379 {
380 struct ptr_ring *r = &pool->ring;
381 netmem_ref netmem;
382 int pref_nid; /* preferred NUMA node */
383
384 /* Quicker fallback, avoid locks when ring is empty */
385 if (__ptr_ring_empty(r)) {
386 alloc_stat_inc(pool, empty);
387 return 0;
388 }
389
390 /* Softirq guarantee CPU and thus NUMA node is stable. This,
391 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
392 */
393 #ifdef CONFIG_NUMA
394 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
395 #else
396 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
397 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
398 #endif
399
400 /* Refill alloc array, but only if NUMA match */
401 do {
402 netmem = (__force netmem_ref)__ptr_ring_consume(r);
403 if (unlikely(!netmem))
404 break;
405
406 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
407 pool->alloc.cache[pool->alloc.count++] = netmem;
408 } else {
409 /* NUMA mismatch;
410 * (1) release 1 page to page-allocator and
411 * (2) break out to fallthrough to alloc_pages_node.
412 * This limit stress on page buddy alloactor.
413 */
414 page_pool_return_netmem(pool, netmem);
415 alloc_stat_inc(pool, waive);
416 netmem = 0;
417 break;
418 }
419 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
420
421 /* Return last page */
422 if (likely(pool->alloc.count > 0)) {
423 netmem = pool->alloc.cache[--pool->alloc.count];
424 alloc_stat_inc(pool, refill);
425 }
426
427 return netmem;
428 }
429
430 /* fast path */
__page_pool_get_cached(struct page_pool * pool)431 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
432 {
433 netmem_ref netmem;
434
435 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
436 if (likely(pool->alloc.count)) {
437 /* Fast-path */
438 netmem = pool->alloc.cache[--pool->alloc.count];
439 alloc_stat_inc(pool, fast);
440 } else {
441 netmem = page_pool_refill_alloc_cache(pool);
442 }
443
444 return netmem;
445 }
446
__page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)447 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
448 netmem_ref netmem,
449 u32 dma_sync_size)
450 {
451 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
452 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
453
454 dma_sync_size = min(dma_sync_size, pool->p.max_len);
455 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
456 dma_sync_size, pool->p.dma_dir);
457 #endif
458 }
459
460 static __always_inline void
page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)461 page_pool_dma_sync_for_device(const struct page_pool *pool,
462 netmem_ref netmem,
463 u32 dma_sync_size)
464 {
465 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
466 rcu_read_lock();
467 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */
468 if (pool->dma_sync)
469 __page_pool_dma_sync_for_device(pool, netmem,
470 dma_sync_size);
471 rcu_read_unlock();
472 }
473 }
474
page_pool_dma_map(struct page_pool * pool,netmem_ref netmem,gfp_t gfp)475 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
476 {
477 dma_addr_t dma;
478 int err;
479 u32 id;
480
481 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
482 * since dma_addr_t can be either 32 or 64 bits and does not always fit
483 * into page private data (i.e 32bit cpu with 64bit DMA caps)
484 * This mapping is kept for lifetime of page, until leaving pool.
485 */
486 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
487 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
488 DMA_ATTR_SKIP_CPU_SYNC |
489 DMA_ATTR_WEAK_ORDERING);
490 if (dma_mapping_error(pool->p.dev, dma))
491 return false;
492
493 if (page_pool_set_dma_addr_netmem(netmem, dma)) {
494 WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
495 goto unmap_failed;
496 }
497
498 if (in_softirq())
499 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
500 PP_DMA_INDEX_LIMIT, gfp);
501 else
502 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
503 PP_DMA_INDEX_LIMIT, gfp);
504 if (err) {
505 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
506 goto unset_failed;
507 }
508
509 netmem_set_dma_index(netmem, id);
510 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
511
512 return true;
513
514 unset_failed:
515 page_pool_set_dma_addr_netmem(netmem, 0);
516 unmap_failed:
517 dma_unmap_page_attrs(pool->p.dev, dma,
518 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
519 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
520 return false;
521 }
522
__page_pool_alloc_page_order(struct page_pool * pool,gfp_t gfp)523 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
524 gfp_t gfp)
525 {
526 struct page *page;
527
528 gfp |= __GFP_COMP;
529 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
530 if (unlikely(!page))
531 return NULL;
532
533 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
534 put_page(page);
535 return NULL;
536 }
537
538 alloc_stat_inc(pool, slow_high_order);
539 page_pool_set_pp_info(pool, page_to_netmem(page));
540
541 /* Track how many pages are held 'in-flight' */
542 pool->pages_state_hold_cnt++;
543 trace_page_pool_state_hold(pool, page_to_netmem(page),
544 pool->pages_state_hold_cnt);
545 return page;
546 }
547
548 /* slow path */
__page_pool_alloc_netmems_slow(struct page_pool * pool,gfp_t gfp)549 static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool,
550 gfp_t gfp)
551 {
552 const int bulk = PP_ALLOC_CACHE_REFILL;
553 unsigned int pp_order = pool->p.order;
554 bool dma_map = pool->dma_map;
555 netmem_ref netmem;
556 int i, nr_pages;
557
558 /* Don't support bulk alloc for high-order pages */
559 if (unlikely(pp_order))
560 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
561
562 /* Unnecessary as alloc cache is empty, but guarantees zero count */
563 if (unlikely(pool->alloc.count > 0))
564 return pool->alloc.cache[--pool->alloc.count];
565
566 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
567 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
568
569 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
570 (struct page **)pool->alloc.cache);
571 if (unlikely(!nr_pages))
572 return 0;
573
574 /* Pages have been filled into alloc.cache array, but count is zero and
575 * page element have not been (possibly) DMA mapped.
576 */
577 for (i = 0; i < nr_pages; i++) {
578 netmem = pool->alloc.cache[i];
579 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
580 put_page(netmem_to_page(netmem));
581 continue;
582 }
583
584 page_pool_set_pp_info(pool, netmem);
585 pool->alloc.cache[pool->alloc.count++] = netmem;
586 /* Track how many pages are held 'in-flight' */
587 pool->pages_state_hold_cnt++;
588 trace_page_pool_state_hold(pool, netmem,
589 pool->pages_state_hold_cnt);
590 }
591
592 /* Return last page */
593 if (likely(pool->alloc.count > 0)) {
594 netmem = pool->alloc.cache[--pool->alloc.count];
595 alloc_stat_inc(pool, slow);
596 } else {
597 netmem = 0;
598 }
599
600 /* When page just alloc'ed is should/must have refcnt 1. */
601 return netmem;
602 }
603
604 /* For using page_pool replace: alloc_pages() API calls, but provide
605 * synchronization guarantee for allocation side.
606 */
page_pool_alloc_netmems(struct page_pool * pool,gfp_t gfp)607 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
608 {
609 netmem_ref netmem;
610
611 /* Fast-path: Get a page from cache */
612 netmem = __page_pool_get_cached(pool);
613 if (netmem)
614 return netmem;
615
616 /* Slow-path: cache empty, do real allocation */
617 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
618 netmem = pool->mp_ops->alloc_netmems(pool, gfp);
619 else
620 netmem = __page_pool_alloc_netmems_slow(pool, gfp);
621 return netmem;
622 }
623 EXPORT_SYMBOL(page_pool_alloc_netmems);
624 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
625
page_pool_alloc_pages(struct page_pool * pool,gfp_t gfp)626 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
627 {
628 return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
629 }
630 EXPORT_SYMBOL(page_pool_alloc_pages);
631
632 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
633 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
634 */
635 #define _distance(a, b) (s32)((a) - (b))
636
page_pool_inflight(const struct page_pool * pool,bool strict)637 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
638 {
639 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
640 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
641 s32 inflight;
642
643 inflight = _distance(hold_cnt, release_cnt);
644
645 if (strict) {
646 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
647 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
648 inflight);
649 } else {
650 inflight = max(0, inflight);
651 }
652
653 return inflight;
654 }
655
page_pool_set_pp_info(struct page_pool * pool,netmem_ref netmem)656 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
657 {
658 netmem_set_pp(netmem, pool);
659 netmem_or_pp_magic(netmem, PP_SIGNATURE);
660
661 /* Ensuring all pages have been split into one fragment initially:
662 * page_pool_set_pp_info() is only called once for every page when it
663 * is allocated from the page allocator and page_pool_fragment_page()
664 * is dirtying the same cache line as the page->pp_magic above, so
665 * the overhead is negligible.
666 */
667 page_pool_fragment_netmem(netmem, 1);
668 if (pool->has_init_callback)
669 pool->slow.init_callback(netmem, pool->slow.init_arg);
670 }
671
page_pool_clear_pp_info(netmem_ref netmem)672 void page_pool_clear_pp_info(netmem_ref netmem)
673 {
674 netmem_clear_pp_magic(netmem);
675 netmem_set_pp(netmem, NULL);
676 }
677
__page_pool_release_netmem_dma(struct page_pool * pool,netmem_ref netmem)678 static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool,
679 netmem_ref netmem)
680 {
681 struct page *old, *page = netmem_to_page(netmem);
682 unsigned long id;
683 dma_addr_t dma;
684
685 if (!pool->dma_map)
686 /* Always account for inflight pages, even if we didn't
687 * map them
688 */
689 return;
690
691 id = netmem_get_dma_index(netmem);
692 if (!id)
693 return;
694
695 if (in_softirq())
696 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
697 else
698 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
699 if (old != page)
700 return;
701
702 dma = page_pool_get_dma_addr_netmem(netmem);
703
704 /* When page is unmapped, it cannot be returned to our pool */
705 dma_unmap_page_attrs(pool->p.dev, dma,
706 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
707 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
708 page_pool_set_dma_addr_netmem(netmem, 0);
709 netmem_set_dma_index(netmem, 0);
710 }
711
712 /* Disconnects a page (from a page_pool). API users can have a need
713 * to disconnect a page (from a page_pool), to allow it to be used as
714 * a regular page (that will eventually be returned to the normal
715 * page-allocator via put_page).
716 */
page_pool_return_netmem(struct page_pool * pool,netmem_ref netmem)717 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem)
718 {
719 int count;
720 bool put;
721
722 put = true;
723 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
724 put = pool->mp_ops->release_netmem(pool, netmem);
725 else
726 __page_pool_release_netmem_dma(pool, netmem);
727
728 /* This may be the last page returned, releasing the pool, so
729 * it is not safe to reference pool afterwards.
730 */
731 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
732 trace_page_pool_state_release(pool, netmem, count);
733
734 if (put) {
735 page_pool_clear_pp_info(netmem);
736 put_page(netmem_to_page(netmem));
737 }
738 /* An optimization would be to call __free_pages(page, pool->p.order)
739 * knowing page is not part of page-cache (thus avoiding a
740 * __page_cache_release() call).
741 */
742 }
743
page_pool_recycle_in_ring(struct page_pool * pool,netmem_ref netmem)744 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
745 {
746 bool in_softirq, ret;
747
748 /* BH protection not needed if current is softirq */
749 in_softirq = page_pool_producer_lock(pool);
750 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
751 if (ret)
752 recycle_stat_inc(pool, ring);
753 page_pool_producer_unlock(pool, in_softirq);
754
755 return ret;
756 }
757
758 /* Only allow direct recycling in special circumstances, into the
759 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
760 *
761 * Caller must provide appropriate safe context.
762 */
page_pool_recycle_in_cache(netmem_ref netmem,struct page_pool * pool)763 static bool page_pool_recycle_in_cache(netmem_ref netmem,
764 struct page_pool *pool)
765 {
766 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
767 recycle_stat_inc(pool, cache_full);
768 return false;
769 }
770
771 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
772 pool->alloc.cache[pool->alloc.count++] = netmem;
773 recycle_stat_inc(pool, cached);
774 return true;
775 }
776
__page_pool_page_can_be_recycled(netmem_ref netmem)777 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
778 {
779 return netmem_is_net_iov(netmem) ||
780 (page_ref_count(netmem_to_page(netmem)) == 1 &&
781 !page_is_pfmemalloc(netmem_to_page(netmem)));
782 }
783
784 /* If the page refcnt == 1, this will try to recycle the page.
785 * If pool->dma_sync is set, we'll try to sync the DMA area for
786 * the configured size min(dma_sync_size, pool->max_len).
787 * If the page refcnt != 1, then the page will be returned to memory
788 * subsystem.
789 */
790 static __always_inline netmem_ref
__page_pool_put_page(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)791 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
792 unsigned int dma_sync_size, bool allow_direct)
793 {
794 lockdep_assert_no_hardirq();
795
796 /* This allocator is optimized for the XDP mode that uses
797 * one-frame-per-page, but have fallbacks that act like the
798 * regular page allocator APIs.
799 *
800 * refcnt == 1 means page_pool owns page, and can recycle it.
801 *
802 * page is NOT reusable when allocated when system is under
803 * some pressure. (page_is_pfmemalloc)
804 */
805 if (likely(__page_pool_page_can_be_recycled(netmem))) {
806 /* Read barrier done in page_ref_count / READ_ONCE */
807
808 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
809
810 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
811 return 0;
812
813 /* Page found as candidate for recycling */
814 return netmem;
815 }
816
817 /* Fallback/non-XDP mode: API user have elevated refcnt.
818 *
819 * Many drivers split up the page into fragments, and some
820 * want to keep doing this to save memory and do refcnt based
821 * recycling. Support this use case too, to ease drivers
822 * switching between XDP/non-XDP.
823 *
824 * In-case page_pool maintains the DMA mapping, API user must
825 * call page_pool_put_page once. In this elevated refcnt
826 * case, the DMA is unmapped/released, as driver is likely
827 * doing refcnt based recycle tricks, meaning another process
828 * will be invoking put_page.
829 */
830 recycle_stat_inc(pool, released_refcnt);
831 page_pool_return_netmem(pool, netmem);
832
833 return 0;
834 }
835
page_pool_napi_local(const struct page_pool * pool)836 static bool page_pool_napi_local(const struct page_pool *pool)
837 {
838 const struct napi_struct *napi;
839 u32 cpuid;
840
841 /* On PREEMPT_RT the softirq can be preempted by the consumer */
842 if (IS_ENABLED(CONFIG_PREEMPT_RT))
843 return false;
844
845 if (unlikely(!in_softirq()))
846 return false;
847
848 /* Allow direct recycle if we have reasons to believe that we are
849 * in the same context as the consumer would run, so there's
850 * no possible race.
851 * __page_pool_put_page() makes sure we're not in hardirq context
852 * and interrupts are enabled prior to accessing the cache.
853 */
854 cpuid = smp_processor_id();
855 if (READ_ONCE(pool->cpuid) == cpuid)
856 return true;
857
858 napi = READ_ONCE(pool->p.napi);
859
860 return napi && READ_ONCE(napi->list_owner) == cpuid;
861 }
862
page_pool_put_unrefed_netmem(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)863 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
864 unsigned int dma_sync_size, bool allow_direct)
865 {
866 if (!allow_direct)
867 allow_direct = page_pool_napi_local(pool);
868
869 netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
870 allow_direct);
871 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
872 /* Cache full, fallback to free pages */
873 recycle_stat_inc(pool, ring_full);
874 page_pool_return_netmem(pool, netmem);
875 }
876 }
877 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
878
page_pool_put_unrefed_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)879 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
880 unsigned int dma_sync_size, bool allow_direct)
881 {
882 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
883 allow_direct);
884 }
885 EXPORT_SYMBOL(page_pool_put_unrefed_page);
886
page_pool_recycle_ring_bulk(struct page_pool * pool,netmem_ref * bulk,u32 bulk_len)887 static void page_pool_recycle_ring_bulk(struct page_pool *pool,
888 netmem_ref *bulk,
889 u32 bulk_len)
890 {
891 bool in_softirq;
892 u32 i;
893
894 /* Bulk produce into ptr_ring page_pool cache */
895 in_softirq = page_pool_producer_lock(pool);
896
897 for (i = 0; i < bulk_len; i++) {
898 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
899 /* ring full */
900 recycle_stat_inc(pool, ring_full);
901 break;
902 }
903 }
904
905 page_pool_producer_unlock(pool, in_softirq);
906 recycle_stat_add(pool, ring, i);
907
908 /* Hopefully all pages were returned into ptr_ring */
909 if (likely(i == bulk_len))
910 return;
911
912 /*
913 * ptr_ring cache is full, free remaining pages outside producer lock
914 * since put_page() with refcnt == 1 can be an expensive operation.
915 */
916 for (; i < bulk_len; i++)
917 page_pool_return_netmem(pool, bulk[i]);
918 }
919
920 /**
921 * page_pool_put_netmem_bulk() - release references on multiple netmems
922 * @data: array holding netmem references
923 * @count: number of entries in @data
924 *
925 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
926 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
927 * will release leftover netmems to the memory provider.
928 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
929 * completion loop for the XDP_REDIRECT use case.
930 *
931 * Please note the caller must not use data area after running
932 * page_pool_put_netmem_bulk(), as this function overwrites it.
933 */
page_pool_put_netmem_bulk(netmem_ref * data,u32 count)934 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
935 {
936 u32 bulk_len = 0;
937
938 for (u32 i = 0; i < count; i++) {
939 netmem_ref netmem = netmem_compound_head(data[i]);
940
941 if (page_pool_unref_and_test(netmem))
942 data[bulk_len++] = netmem;
943 }
944
945 count = bulk_len;
946 while (count) {
947 netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
948 struct page_pool *pool = NULL;
949 bool allow_direct;
950 u32 foreign = 0;
951
952 bulk_len = 0;
953
954 for (u32 i = 0; i < count; i++) {
955 struct page_pool *netmem_pp;
956 netmem_ref netmem = data[i];
957
958 netmem_pp = netmem_get_pp(netmem);
959 if (unlikely(!pool)) {
960 pool = netmem_pp;
961 allow_direct = page_pool_napi_local(pool);
962 } else if (netmem_pp != pool) {
963 /*
964 * If the netmem belongs to a different
965 * page_pool, save it for another round.
966 */
967 data[foreign++] = netmem;
968 continue;
969 }
970
971 netmem = __page_pool_put_page(pool, netmem, -1,
972 allow_direct);
973 /* Approved for bulk recycling in ptr_ring cache */
974 if (netmem)
975 bulk[bulk_len++] = netmem;
976 }
977
978 if (bulk_len)
979 page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
980
981 count = foreign;
982 }
983 }
984 EXPORT_SYMBOL(page_pool_put_netmem_bulk);
985
page_pool_drain_frag(struct page_pool * pool,netmem_ref netmem)986 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
987 netmem_ref netmem)
988 {
989 long drain_count = BIAS_MAX - pool->frag_users;
990
991 /* Some user is still using the page frag */
992 if (likely(page_pool_unref_netmem(netmem, drain_count)))
993 return 0;
994
995 if (__page_pool_page_can_be_recycled(netmem)) {
996 page_pool_dma_sync_for_device(pool, netmem, -1);
997 return netmem;
998 }
999
1000 page_pool_return_netmem(pool, netmem);
1001 return 0;
1002 }
1003
page_pool_free_frag(struct page_pool * pool)1004 static void page_pool_free_frag(struct page_pool *pool)
1005 {
1006 long drain_count = BIAS_MAX - pool->frag_users;
1007 netmem_ref netmem = pool->frag_page;
1008
1009 pool->frag_page = 0;
1010
1011 if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1012 return;
1013
1014 page_pool_return_netmem(pool, netmem);
1015 }
1016
page_pool_alloc_frag_netmem(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1017 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1018 unsigned int *offset, unsigned int size,
1019 gfp_t gfp)
1020 {
1021 unsigned int max_size = PAGE_SIZE << pool->p.order;
1022 netmem_ref netmem = pool->frag_page;
1023
1024 if (WARN_ON(size > max_size))
1025 return 0;
1026
1027 size = ALIGN(size, dma_get_cache_alignment());
1028 *offset = pool->frag_offset;
1029
1030 if (netmem && *offset + size > max_size) {
1031 netmem = page_pool_drain_frag(pool, netmem);
1032 if (netmem) {
1033 recycle_stat_inc(pool, cached);
1034 alloc_stat_inc(pool, fast);
1035 goto frag_reset;
1036 }
1037 }
1038
1039 if (!netmem) {
1040 netmem = page_pool_alloc_netmems(pool, gfp);
1041 if (unlikely(!netmem)) {
1042 pool->frag_page = 0;
1043 return 0;
1044 }
1045
1046 pool->frag_page = netmem;
1047
1048 frag_reset:
1049 pool->frag_users = 1;
1050 *offset = 0;
1051 pool->frag_offset = size;
1052 page_pool_fragment_netmem(netmem, BIAS_MAX);
1053 return netmem;
1054 }
1055
1056 pool->frag_users++;
1057 pool->frag_offset = *offset + size;
1058 return netmem;
1059 }
1060 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1061
page_pool_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1062 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1063 unsigned int size, gfp_t gfp)
1064 {
1065 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1066 gfp));
1067 }
1068 EXPORT_SYMBOL(page_pool_alloc_frag);
1069
page_pool_empty_ring(struct page_pool * pool)1070 static void page_pool_empty_ring(struct page_pool *pool)
1071 {
1072 netmem_ref netmem;
1073
1074 /* Empty recycle ring */
1075 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1076 /* Verify the refcnt invariant of cached pages */
1077 if (!(netmem_ref_count(netmem) == 1))
1078 pr_crit("%s() page_pool refcnt %d violation\n",
1079 __func__, netmem_ref_count(netmem));
1080
1081 page_pool_return_netmem(pool, netmem);
1082 }
1083 }
1084
__page_pool_destroy(struct page_pool * pool)1085 static void __page_pool_destroy(struct page_pool *pool)
1086 {
1087 if (pool->disconnect)
1088 pool->disconnect(pool);
1089
1090 page_pool_unlist(pool);
1091 page_pool_uninit(pool);
1092
1093 if (pool->mp_ops) {
1094 pool->mp_ops->destroy(pool);
1095 static_branch_dec(&page_pool_mem_providers);
1096 }
1097
1098 kfree(pool);
1099 }
1100
page_pool_empty_alloc_cache_once(struct page_pool * pool)1101 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1102 {
1103 netmem_ref netmem;
1104
1105 if (pool->destroy_cnt)
1106 return;
1107
1108 /* Empty alloc cache, assume caller made sure this is
1109 * no-longer in use, and page_pool_alloc_pages() cannot be
1110 * call concurrently.
1111 */
1112 while (pool->alloc.count) {
1113 netmem = pool->alloc.cache[--pool->alloc.count];
1114 page_pool_return_netmem(pool, netmem);
1115 }
1116 }
1117
page_pool_scrub(struct page_pool * pool)1118 static void page_pool_scrub(struct page_pool *pool)
1119 {
1120 unsigned long id;
1121 void *ptr;
1122
1123 page_pool_empty_alloc_cache_once(pool);
1124 if (!pool->destroy_cnt++ && pool->dma_map) {
1125 if (pool->dma_sync) {
1126 /* Disable page_pool_dma_sync_for_device() */
1127 pool->dma_sync = false;
1128
1129 /* Make sure all concurrent returns that may see the old
1130 * value of dma_sync (and thus perform a sync) have
1131 * finished before doing the unmapping below. Skip the
1132 * wait if the device doesn't actually need syncing, or
1133 * if there are no outstanding mapped pages.
1134 */
1135 if (dma_dev_need_sync(pool->p.dev) &&
1136 !xa_empty(&pool->dma_mapped))
1137 synchronize_net();
1138 }
1139
1140 xa_for_each(&pool->dma_mapped, id, ptr)
1141 __page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr));
1142 }
1143
1144 /* No more consumers should exist, but producers could still
1145 * be in-flight.
1146 */
1147 page_pool_empty_ring(pool);
1148 }
1149
page_pool_release(struct page_pool * pool)1150 static int page_pool_release(struct page_pool *pool)
1151 {
1152 bool in_softirq;
1153 int inflight;
1154
1155 page_pool_scrub(pool);
1156 inflight = page_pool_inflight(pool, true);
1157 /* Acquire producer lock to make sure producers have exited. */
1158 in_softirq = page_pool_producer_lock(pool);
1159 page_pool_producer_unlock(pool, in_softirq);
1160 if (!inflight)
1161 __page_pool_destroy(pool);
1162
1163 return inflight;
1164 }
1165
page_pool_release_retry(struct work_struct * wq)1166 static void page_pool_release_retry(struct work_struct *wq)
1167 {
1168 struct delayed_work *dwq = to_delayed_work(wq);
1169 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1170 void *netdev;
1171 int inflight;
1172
1173 inflight = page_pool_release(pool);
1174 /* In rare cases, a driver bug may cause inflight to go negative.
1175 * Don't reschedule release if inflight is 0 or negative.
1176 * - If 0, the page_pool has been destroyed
1177 * - if negative, we will never recover
1178 * in both cases no reschedule is necessary.
1179 */
1180 if (inflight <= 0)
1181 return;
1182
1183 /* Periodic warning for page pools the user can't see */
1184 netdev = READ_ONCE(pool->slow.netdev);
1185 if (time_after_eq(jiffies, pool->defer_warn) &&
1186 (!netdev || netdev == NET_PTR_POISON)) {
1187 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1188
1189 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1190 __func__, pool->user.id, inflight, sec);
1191 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1192 }
1193
1194 /* Still not ready to be disconnected, retry later */
1195 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1196 }
1197
page_pool_use_xdp_mem(struct page_pool * pool,void (* disconnect)(void *),const struct xdp_mem_info * mem)1198 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1199 const struct xdp_mem_info *mem)
1200 {
1201 refcount_inc(&pool->user_cnt);
1202 pool->disconnect = disconnect;
1203 pool->xdp_mem_id = mem->id;
1204 }
1205
1206 /**
1207 * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI
1208 * @pool: page pool to modify
1209 * @napi: NAPI instance to associate the page pool with
1210 *
1211 * Associate a page pool with a NAPI instance for lockless page recycling.
1212 * This is useful when a new page pool has to be added to a NAPI instance
1213 * without disabling that NAPI instance, to mark the point at which control
1214 * path "hands over" the page pool to the NAPI instance. In most cases driver
1215 * can simply set the @napi field in struct page_pool_params, and does not
1216 * have to call this helper.
1217 *
1218 * The function is idempotent, but does not implement any refcounting.
1219 * Single page_pool_disable_direct_recycling() will disable recycling,
1220 * no matter how many times enable was called.
1221 */
page_pool_enable_direct_recycling(struct page_pool * pool,struct napi_struct * napi)1222 void page_pool_enable_direct_recycling(struct page_pool *pool,
1223 struct napi_struct *napi)
1224 {
1225 if (READ_ONCE(pool->p.napi) == napi)
1226 return;
1227 WARN_ON(!napi || pool->p.napi);
1228
1229 mutex_lock(&page_pools_lock);
1230 WRITE_ONCE(pool->p.napi, napi);
1231 mutex_unlock(&page_pools_lock);
1232 }
1233 EXPORT_SYMBOL(page_pool_enable_direct_recycling);
1234
page_pool_disable_direct_recycling(struct page_pool * pool)1235 void page_pool_disable_direct_recycling(struct page_pool *pool)
1236 {
1237 /* Disable direct recycling based on pool->cpuid.
1238 * Paired with READ_ONCE() in page_pool_napi_local().
1239 */
1240 WRITE_ONCE(pool->cpuid, -1);
1241
1242 if (!pool->p.napi)
1243 return;
1244
1245 napi_assert_will_not_race(pool->p.napi);
1246
1247 mutex_lock(&page_pools_lock);
1248 WRITE_ONCE(pool->p.napi, NULL);
1249 mutex_unlock(&page_pools_lock);
1250 }
1251 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1252
page_pool_destroy(struct page_pool * pool)1253 void page_pool_destroy(struct page_pool *pool)
1254 {
1255 if (!pool)
1256 return;
1257
1258 if (!page_pool_put(pool))
1259 return;
1260
1261 page_pool_disable_direct_recycling(pool);
1262 page_pool_free_frag(pool);
1263
1264 if (!page_pool_release(pool))
1265 return;
1266
1267 page_pool_detached(pool);
1268 pool->defer_start = jiffies;
1269 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1270
1271 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1272 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1273 }
1274 EXPORT_SYMBOL(page_pool_destroy);
1275
1276 /* Caller must provide appropriate safe context, e.g. NAPI. */
page_pool_update_nid(struct page_pool * pool,int new_nid)1277 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1278 {
1279 netmem_ref netmem;
1280
1281 trace_page_pool_update_nid(pool, new_nid);
1282 pool->p.nid = new_nid;
1283
1284 /* Flush pool alloc cache, as refill will check NUMA node */
1285 while (pool->alloc.count) {
1286 netmem = pool->alloc.cache[--pool->alloc.count];
1287 page_pool_return_netmem(pool, netmem);
1288 }
1289 }
1290 EXPORT_SYMBOL(page_pool_update_nid);
1291
net_mp_niov_set_dma_addr(struct net_iov * niov,dma_addr_t addr)1292 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1293 {
1294 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1295 }
1296
1297 /* Associate a niov with a page pool. Should follow with a matching
1298 * net_mp_niov_clear_page_pool()
1299 */
net_mp_niov_set_page_pool(struct page_pool * pool,struct net_iov * niov)1300 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1301 {
1302 netmem_ref netmem = net_iov_to_netmem(niov);
1303
1304 page_pool_set_pp_info(pool, netmem);
1305
1306 pool->pages_state_hold_cnt++;
1307 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1308 }
1309
1310 /* Disassociate a niov from a page pool. Should only be used in the
1311 * ->release_netmem() path.
1312 */
net_mp_niov_clear_page_pool(struct net_iov * niov)1313 void net_mp_niov_clear_page_pool(struct net_iov *niov)
1314 {
1315 netmem_ref netmem = net_iov_to_netmem(niov);
1316
1317 page_pool_clear_pp_info(netmem);
1318 }
1319