1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net-sysfs.c - network device class and attributes
4 *
5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6 */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_lock.h>
27 #include <net/netdev_rx_queue.h>
28 #include <net/rps.h>
29
30 #include "dev.h"
31 #include "net-sysfs.h"
32
33 #ifdef CONFIG_SYSFS
34 static const char fmt_hex[] = "%#x\n";
35 static const char fmt_dec[] = "%d\n";
36 static const char fmt_uint[] = "%u\n";
37 static const char fmt_ulong[] = "%lu\n";
38 static const char fmt_u64[] = "%llu\n";
39
40 /* Caller holds RTNL, netdev->lock or RCU */
dev_isalive(const struct net_device * dev)41 static inline int dev_isalive(const struct net_device *dev)
42 {
43 return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
44 }
45
46 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
47 * when unregistering a net device and accessing associated sysfs files. The
48 * potential deadlock is as follow:
49 *
50 * CPU 0 CPU 1
51 *
52 * rtnl_lock vfs_read
53 * unregister_netdevice_many kernfs_seq_start
54 * device_del / kobject_put kernfs_get_active (kn->active++)
55 * kernfs_drain sysfs_kf_seq_show
56 * wait_event( rtnl_lock
57 * kn->active == KN_DEACTIVATED_BIAS) -> waits on CPU 0 to release
58 * -> waits on CPU 1 to decrease kn->active the rtnl lock.
59 *
60 * The historical fix was to use rtnl_trylock with restart_syscall to bail out
61 * of sysfs operations when the lock couldn't be taken. This fixed the above
62 * issue as it allowed CPU 1 to bail out of the ABBA situation.
63 *
64 * But it came with performances issues, as syscalls are being restarted in
65 * loops when there was contention on the rtnl lock, with huge slow downs in
66 * specific scenarios (e.g. lots of virtual interfaces created and userspace
67 * daemons querying their attributes).
68 *
69 * The idea below is to bail out of the active kernfs_node protection
70 * (kn->active) while trying to take the rtnl lock.
71 *
72 * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
73 * net device is guaranteed to be alive if this returns successfully.
74 */
sysfs_rtnl_lock(struct kobject * kobj,struct attribute * attr,struct net_device * ndev)75 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
76 struct net_device *ndev)
77 {
78 struct kernfs_node *kn;
79 int ret = 0;
80
81 /* First, we hold a reference to the net device as the unregistration
82 * path might run in parallel. This will ensure the net device and the
83 * associated sysfs objects won't be freed while we try to take the rtnl
84 * lock.
85 */
86 dev_hold(ndev);
87 /* sysfs_break_active_protection was introduced to allow self-removal of
88 * devices and their associated sysfs files by bailing out of the
89 * sysfs/kernfs protection. We do this here to allow the unregistration
90 * path to complete in parallel. The following takes a reference on the
91 * kobject and the kernfs_node being accessed.
92 *
93 * This works because we hold a reference onto the net device and the
94 * unregistration path will wait for us eventually in netdev_run_todo
95 * (outside an rtnl lock section).
96 */
97 kn = sysfs_break_active_protection(kobj, attr);
98 /* We can now try to take the rtnl lock. This can't deadlock us as the
99 * unregistration path is able to drain sysfs files (kernfs_node) thanks
100 * to the above dance.
101 */
102 if (rtnl_lock_interruptible()) {
103 ret = -ERESTARTSYS;
104 goto unbreak;
105 }
106 /* Check dismantle on the device hasn't started, otherwise deny the
107 * operation.
108 */
109 if (!dev_isalive(ndev)) {
110 rtnl_unlock();
111 ret = -ENODEV;
112 goto unbreak;
113 }
114 /* We are now sure the device dismantle hasn't started nor that it can
115 * start before we exit the locking section as we hold the rtnl lock.
116 * There's no need to keep unbreaking the sysfs protection nor to hold
117 * a net device reference from that point; that was only needed to take
118 * the rtnl lock.
119 */
120 unbreak:
121 sysfs_unbreak_active_protection(kn);
122 dev_put(ndev);
123
124 return ret;
125 }
126
127 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))128 static ssize_t netdev_show(const struct device *dev,
129 struct device_attribute *attr, char *buf,
130 ssize_t (*format)(const struct net_device *, char *))
131 {
132 struct net_device *ndev = to_net_dev(dev);
133 ssize_t ret = -EINVAL;
134
135 rcu_read_lock();
136 if (dev_isalive(ndev))
137 ret = (*format)(ndev, buf);
138 rcu_read_unlock();
139
140 return ret;
141 }
142
143 /* generate a show function for simple field */
144 #define NETDEVICE_SHOW(field, format_string) \
145 static ssize_t format_##field(const struct net_device *dev, char *buf) \
146 { \
147 return sysfs_emit(buf, format_string, READ_ONCE(dev->field)); \
148 } \
149 static ssize_t field##_show(struct device *dev, \
150 struct device_attribute *attr, char *buf) \
151 { \
152 return netdev_show(dev, attr, buf, format_##field); \
153 } \
154
155 #define NETDEVICE_SHOW_RO(field, format_string) \
156 NETDEVICE_SHOW(field, format_string); \
157 static DEVICE_ATTR_RO(field)
158
159 #define NETDEVICE_SHOW_RW(field, format_string) \
160 NETDEVICE_SHOW(field, format_string); \
161 static DEVICE_ATTR_RW(field)
162
163 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))164 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
165 const char *buf, size_t len,
166 int (*set)(struct net_device *, unsigned long))
167 {
168 struct net_device *netdev = to_net_dev(dev);
169 struct net *net = dev_net(netdev);
170 unsigned long new;
171 int ret;
172
173 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
174 return -EPERM;
175
176 ret = kstrtoul(buf, 0, &new);
177 if (ret)
178 goto err;
179
180 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
181 if (ret)
182 goto err;
183
184 ret = (*set)(netdev, new);
185 if (ret == 0)
186 ret = len;
187
188 rtnl_unlock();
189 err:
190 return ret;
191 }
192
193 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
194 static ssize_t
netdev_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))195 netdev_lock_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t len,
197 int (*set)(struct net_device *, unsigned long))
198 {
199 struct net_device *netdev = to_net_dev(dev);
200 struct net *net = dev_net(netdev);
201 unsigned long new;
202 int ret;
203
204 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
205 return -EPERM;
206
207 ret = kstrtoul(buf, 0, &new);
208 if (ret)
209 return ret;
210
211 netdev_lock(netdev);
212
213 if (dev_isalive(netdev)) {
214 ret = (*set)(netdev, new);
215 if (ret == 0)
216 ret = len;
217 }
218 netdev_unlock(netdev);
219
220 return ret;
221 }
222
223 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
224 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
226 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
227 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
228 NETDEVICE_SHOW_RO(type, fmt_dec);
229 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
230
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)231 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
232 char *buf)
233 {
234 struct net_device *ndev = to_net_dev(dev);
235
236 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
237 }
238 static DEVICE_ATTR_RO(iflink);
239
format_name_assign_type(const struct net_device * dev,char * buf)240 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
241 {
242 return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
243 }
244
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)245 static ssize_t name_assign_type_show(struct device *dev,
246 struct device_attribute *attr,
247 char *buf)
248 {
249 struct net_device *ndev = to_net_dev(dev);
250 ssize_t ret = -EINVAL;
251
252 if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
253 ret = netdev_show(dev, attr, buf, format_name_assign_type);
254
255 return ret;
256 }
257 static DEVICE_ATTR_RO(name_assign_type);
258
259 /* use same locking rules as GIFHWADDR ioctl's (netif_get_mac_address()) */
address_show(struct device * dev,struct device_attribute * attr,char * buf)260 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
261 char *buf)
262 {
263 struct net_device *ndev = to_net_dev(dev);
264 ssize_t ret = -EINVAL;
265
266 down_read(&dev_addr_sem);
267
268 rcu_read_lock();
269 if (dev_isalive(ndev))
270 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
271 rcu_read_unlock();
272
273 up_read(&dev_addr_sem);
274 return ret;
275 }
276 static DEVICE_ATTR_RO(address);
277
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t broadcast_show(struct device *dev,
279 struct device_attribute *attr, char *buf)
280 {
281 struct net_device *ndev = to_net_dev(dev);
282 int ret = -EINVAL;
283
284 rcu_read_lock();
285 if (dev_isalive(ndev))
286 ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
287 rcu_read_unlock();
288 return ret;
289 }
290 static DEVICE_ATTR_RO(broadcast);
291
change_carrier(struct net_device * dev,unsigned long new_carrier)292 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
293 {
294 if (!netif_running(dev))
295 return -EINVAL;
296 return dev_change_carrier(dev, (bool)new_carrier);
297 }
298
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)299 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
300 const char *buf, size_t len)
301 {
302 struct net_device *netdev = to_net_dev(dev);
303
304 /* The check is also done in change_carrier; this helps returning early
305 * without hitting the locking section in netdev_store.
306 */
307 if (!netdev->netdev_ops->ndo_change_carrier)
308 return -EOPNOTSUPP;
309
310 return netdev_store(dev, attr, buf, len, change_carrier);
311 }
312
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)313 static ssize_t carrier_show(struct device *dev,
314 struct device_attribute *attr, char *buf)
315 {
316 struct net_device *netdev = to_net_dev(dev);
317 int ret;
318
319 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
320 if (ret)
321 return ret;
322
323 ret = -EINVAL;
324 if (netif_running(netdev)) {
325 /* Synchronize carrier state with link watch,
326 * see also rtnl_getlink().
327 */
328 linkwatch_sync_dev(netdev);
329
330 ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
331 }
332
333 rtnl_unlock();
334 return ret;
335 }
336 static DEVICE_ATTR_RW(carrier);
337
speed_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t speed_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
340 {
341 struct net_device *netdev = to_net_dev(dev);
342 int ret = -EINVAL;
343
344 /* The check is also done in __ethtool_get_link_ksettings; this helps
345 * returning early without hitting the locking section below.
346 */
347 if (!netdev->ethtool_ops->get_link_ksettings)
348 return ret;
349
350 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
351 if (ret)
352 return ret;
353
354 ret = -EINVAL;
355 if (netif_running(netdev)) {
356 struct ethtool_link_ksettings cmd;
357
358 if (!__ethtool_get_link_ksettings(netdev, &cmd))
359 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
360 }
361 rtnl_unlock();
362 return ret;
363 }
364 static DEVICE_ATTR_RO(speed);
365
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t duplex_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368 {
369 struct net_device *netdev = to_net_dev(dev);
370 int ret = -EINVAL;
371
372 /* The check is also done in __ethtool_get_link_ksettings; this helps
373 * returning early without hitting the locking section below.
374 */
375 if (!netdev->ethtool_ops->get_link_ksettings)
376 return ret;
377
378 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
379 if (ret)
380 return ret;
381
382 ret = -EINVAL;
383 if (netif_running(netdev)) {
384 struct ethtool_link_ksettings cmd;
385
386 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
387 const char *duplex;
388
389 switch (cmd.base.duplex) {
390 case DUPLEX_HALF:
391 duplex = "half";
392 break;
393 case DUPLEX_FULL:
394 duplex = "full";
395 break;
396 default:
397 duplex = "unknown";
398 break;
399 }
400 ret = sysfs_emit(buf, "%s\n", duplex);
401 }
402 }
403 rtnl_unlock();
404 return ret;
405 }
406 static DEVICE_ATTR_RO(duplex);
407
testing_show(struct device * dev,struct device_attribute * attr,char * buf)408 static ssize_t testing_show(struct device *dev,
409 struct device_attribute *attr, char *buf)
410 {
411 struct net_device *netdev = to_net_dev(dev);
412
413 if (netif_running(netdev))
414 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
415
416 return -EINVAL;
417 }
418 static DEVICE_ATTR_RO(testing);
419
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t dormant_show(struct device *dev,
421 struct device_attribute *attr, char *buf)
422 {
423 struct net_device *netdev = to_net_dev(dev);
424
425 if (netif_running(netdev))
426 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
427
428 return -EINVAL;
429 }
430 static DEVICE_ATTR_RO(dormant);
431
432 static const char *const operstates[] = {
433 "unknown",
434 "notpresent", /* currently unused */
435 "down",
436 "lowerlayerdown",
437 "testing",
438 "dormant",
439 "up"
440 };
441
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)442 static ssize_t operstate_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444 {
445 const struct net_device *netdev = to_net_dev(dev);
446 unsigned char operstate;
447
448 operstate = READ_ONCE(netdev->operstate);
449 if (!netif_running(netdev))
450 operstate = IF_OPER_DOWN;
451
452 if (operstate >= ARRAY_SIZE(operstates))
453 return -EINVAL; /* should not happen */
454
455 return sysfs_emit(buf, "%s\n", operstates[operstate]);
456 }
457 static DEVICE_ATTR_RO(operstate);
458
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t carrier_changes_show(struct device *dev,
460 struct device_attribute *attr,
461 char *buf)
462 {
463 struct net_device *netdev = to_net_dev(dev);
464
465 return sysfs_emit(buf, fmt_dec,
466 atomic_read(&netdev->carrier_up_count) +
467 atomic_read(&netdev->carrier_down_count));
468 }
469 static DEVICE_ATTR_RO(carrier_changes);
470
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)471 static ssize_t carrier_up_count_show(struct device *dev,
472 struct device_attribute *attr,
473 char *buf)
474 {
475 struct net_device *netdev = to_net_dev(dev);
476
477 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
478 }
479 static DEVICE_ATTR_RO(carrier_up_count);
480
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)481 static ssize_t carrier_down_count_show(struct device *dev,
482 struct device_attribute *attr,
483 char *buf)
484 {
485 struct net_device *netdev = to_net_dev(dev);
486
487 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
488 }
489 static DEVICE_ATTR_RO(carrier_down_count);
490
491 /* read-write attributes */
492
change_mtu(struct net_device * dev,unsigned long new_mtu)493 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
494 {
495 return dev_set_mtu(dev, (int)new_mtu);
496 }
497
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)498 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t len)
500 {
501 return netdev_store(dev, attr, buf, len, change_mtu);
502 }
503 NETDEVICE_SHOW_RW(mtu, fmt_dec);
504
change_flags(struct net_device * dev,unsigned long new_flags)505 static int change_flags(struct net_device *dev, unsigned long new_flags)
506 {
507 return dev_change_flags(dev, (unsigned int)new_flags, NULL);
508 }
509
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)510 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
511 const char *buf, size_t len)
512 {
513 return netdev_store(dev, attr, buf, len, change_flags);
514 }
515 NETDEVICE_SHOW_RW(flags, fmt_hex);
516
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)517 static ssize_t tx_queue_len_store(struct device *dev,
518 struct device_attribute *attr,
519 const char *buf, size_t len)
520 {
521 if (!capable(CAP_NET_ADMIN))
522 return -EPERM;
523
524 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
525 }
526 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
527
change_gro_flush_timeout(struct net_device * dev,unsigned long val)528 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
529 {
530 netdev_set_gro_flush_timeout(dev, val);
531 return 0;
532 }
533
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)534 static ssize_t gro_flush_timeout_store(struct device *dev,
535 struct device_attribute *attr,
536 const char *buf, size_t len)
537 {
538 if (!capable(CAP_NET_ADMIN))
539 return -EPERM;
540
541 return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
542 }
543 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
544
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)545 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
546 {
547 if (val > S32_MAX)
548 return -ERANGE;
549
550 netdev_set_defer_hard_irqs(dev, (u32)val);
551 return 0;
552 }
553
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)554 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
555 struct device_attribute *attr,
556 const char *buf, size_t len)
557 {
558 if (!capable(CAP_NET_ADMIN))
559 return -EPERM;
560
561 return netdev_lock_store(dev, attr, buf, len,
562 change_napi_defer_hard_irqs);
563 }
564 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
565
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)566 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
567 const char *buf, size_t len)
568 {
569 struct net_device *netdev = to_net_dev(dev);
570 struct net *net = dev_net(netdev);
571 size_t count = len;
572 ssize_t ret;
573
574 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
575 return -EPERM;
576
577 /* ignore trailing newline */
578 if (len > 0 && buf[len - 1] == '\n')
579 --count;
580
581 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
582 if (ret)
583 return ret;
584
585 ret = dev_set_alias(netdev, buf, count);
586 if (ret < 0)
587 goto err;
588 ret = len;
589 netdev_state_change(netdev);
590 err:
591 rtnl_unlock();
592
593 return ret;
594 }
595
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t ifalias_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 const struct net_device *netdev = to_net_dev(dev);
600 char tmp[IFALIASZ];
601 ssize_t ret;
602
603 ret = dev_get_alias(netdev, tmp, sizeof(tmp));
604 if (ret > 0)
605 ret = sysfs_emit(buf, "%s\n", tmp);
606 return ret;
607 }
608 static DEVICE_ATTR_RW(ifalias);
609
change_group(struct net_device * dev,unsigned long new_group)610 static int change_group(struct net_device *dev, unsigned long new_group)
611 {
612 dev_set_group(dev, (int)new_group);
613 return 0;
614 }
615
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)616 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
617 const char *buf, size_t len)
618 {
619 return netdev_store(dev, attr, buf, len, change_group);
620 }
621 NETDEVICE_SHOW(group, fmt_dec);
622 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
623
change_proto_down(struct net_device * dev,unsigned long proto_down)624 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
625 {
626 return dev_change_proto_down(dev, (bool)proto_down);
627 }
628
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)629 static ssize_t proto_down_store(struct device *dev,
630 struct device_attribute *attr,
631 const char *buf, size_t len)
632 {
633 return netdev_store(dev, attr, buf, len, change_proto_down);
634 }
635 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
636
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t phys_port_id_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 struct net_device *netdev = to_net_dev(dev);
641 struct netdev_phys_item_id ppid;
642 ssize_t ret;
643
644 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
645 if (ret)
646 return ret;
647
648 ret = dev_get_phys_port_id(netdev, &ppid);
649 if (!ret)
650 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
651
652 rtnl_unlock();
653
654 return ret;
655 }
656 static DEVICE_ATTR_RO(phys_port_id);
657
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)658 static ssize_t phys_port_name_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660 {
661 struct net_device *netdev = to_net_dev(dev);
662 char name[IFNAMSIZ];
663 ssize_t ret;
664
665 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
666 if (ret)
667 return ret;
668
669 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
670 if (!ret)
671 ret = sysfs_emit(buf, "%s\n", name);
672
673 rtnl_unlock();
674
675 return ret;
676 }
677 static DEVICE_ATTR_RO(phys_port_name);
678
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)679 static ssize_t phys_switch_id_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
681 {
682 struct net_device *netdev = to_net_dev(dev);
683 struct netdev_phys_item_id ppid = { };
684 ssize_t ret;
685
686 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
687 if (ret)
688 return ret;
689
690 ret = netif_get_port_parent_id(netdev, &ppid, false);
691 if (!ret)
692 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
693
694 rtnl_unlock();
695
696 return ret;
697 }
698 static DEVICE_ATTR_RO(phys_switch_id);
699
700 static struct attribute *netdev_phys_attrs[] __ro_after_init = {
701 &dev_attr_phys_port_id.attr,
702 &dev_attr_phys_port_name.attr,
703 &dev_attr_phys_switch_id.attr,
704 NULL,
705 };
706
netdev_phys_is_visible(struct kobject * kobj,struct attribute * attr,int index)707 static umode_t netdev_phys_is_visible(struct kobject *kobj,
708 struct attribute *attr, int index)
709 {
710 struct device *dev = kobj_to_dev(kobj);
711 struct net_device *netdev = to_net_dev(dev);
712
713 if (attr == &dev_attr_phys_port_id.attr) {
714 if (!netdev->netdev_ops->ndo_get_phys_port_id)
715 return 0;
716 } else if (attr == &dev_attr_phys_port_name.attr) {
717 if (!netdev->netdev_ops->ndo_get_phys_port_name &&
718 !netdev->devlink_port)
719 return 0;
720 } else if (attr == &dev_attr_phys_switch_id.attr) {
721 if (!netdev->netdev_ops->ndo_get_port_parent_id &&
722 !netdev->devlink_port)
723 return 0;
724 }
725
726 return attr->mode;
727 }
728
729 static const struct attribute_group netdev_phys_group = {
730 .attrs = netdev_phys_attrs,
731 .is_visible = netdev_phys_is_visible,
732 };
733
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)734 static ssize_t threaded_show(struct device *dev,
735 struct device_attribute *attr, char *buf)
736 {
737 struct net_device *netdev = to_net_dev(dev);
738 ssize_t ret = -EINVAL;
739
740 rcu_read_lock();
741
742 if (dev_isalive(netdev))
743 ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
744
745 rcu_read_unlock();
746
747 return ret;
748 }
749
modify_napi_threaded(struct net_device * dev,unsigned long val)750 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
751 {
752 int ret;
753
754 if (list_empty(&dev->napi_list))
755 return -EOPNOTSUPP;
756
757 if (val != 0 && val != 1)
758 return -EOPNOTSUPP;
759
760 ret = netif_set_threaded(dev, val);
761
762 return ret;
763 }
764
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)765 static ssize_t threaded_store(struct device *dev,
766 struct device_attribute *attr,
767 const char *buf, size_t len)
768 {
769 return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
770 }
771 static DEVICE_ATTR_RW(threaded);
772
773 static struct attribute *net_class_attrs[] __ro_after_init = {
774 &dev_attr_netdev_group.attr,
775 &dev_attr_type.attr,
776 &dev_attr_dev_id.attr,
777 &dev_attr_dev_port.attr,
778 &dev_attr_iflink.attr,
779 &dev_attr_ifindex.attr,
780 &dev_attr_name_assign_type.attr,
781 &dev_attr_addr_assign_type.attr,
782 &dev_attr_addr_len.attr,
783 &dev_attr_link_mode.attr,
784 &dev_attr_address.attr,
785 &dev_attr_broadcast.attr,
786 &dev_attr_speed.attr,
787 &dev_attr_duplex.attr,
788 &dev_attr_dormant.attr,
789 &dev_attr_testing.attr,
790 &dev_attr_operstate.attr,
791 &dev_attr_carrier_changes.attr,
792 &dev_attr_ifalias.attr,
793 &dev_attr_carrier.attr,
794 &dev_attr_mtu.attr,
795 &dev_attr_flags.attr,
796 &dev_attr_tx_queue_len.attr,
797 &dev_attr_gro_flush_timeout.attr,
798 &dev_attr_napi_defer_hard_irqs.attr,
799 &dev_attr_proto_down.attr,
800 &dev_attr_carrier_up_count.attr,
801 &dev_attr_carrier_down_count.attr,
802 &dev_attr_threaded.attr,
803 NULL,
804 };
805 ATTRIBUTE_GROUPS(net_class);
806
807 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)808 static ssize_t netstat_show(const struct device *d,
809 struct device_attribute *attr, char *buf,
810 unsigned long offset)
811 {
812 struct net_device *dev = to_net_dev(d);
813 ssize_t ret = -EINVAL;
814
815 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
816 offset % sizeof(u64) != 0);
817
818 rcu_read_lock();
819 if (dev_isalive(dev)) {
820 struct rtnl_link_stats64 temp;
821 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
822
823 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
824 }
825 rcu_read_unlock();
826 return ret;
827 }
828
829 /* generate a read-only statistics attribute */
830 #define NETSTAT_ENTRY(name) \
831 static ssize_t name##_show(struct device *d, \
832 struct device_attribute *attr, char *buf) \
833 { \
834 return netstat_show(d, attr, buf, \
835 offsetof(struct rtnl_link_stats64, name)); \
836 } \
837 static DEVICE_ATTR_RO(name)
838
839 NETSTAT_ENTRY(rx_packets);
840 NETSTAT_ENTRY(tx_packets);
841 NETSTAT_ENTRY(rx_bytes);
842 NETSTAT_ENTRY(tx_bytes);
843 NETSTAT_ENTRY(rx_errors);
844 NETSTAT_ENTRY(tx_errors);
845 NETSTAT_ENTRY(rx_dropped);
846 NETSTAT_ENTRY(tx_dropped);
847 NETSTAT_ENTRY(multicast);
848 NETSTAT_ENTRY(collisions);
849 NETSTAT_ENTRY(rx_length_errors);
850 NETSTAT_ENTRY(rx_over_errors);
851 NETSTAT_ENTRY(rx_crc_errors);
852 NETSTAT_ENTRY(rx_frame_errors);
853 NETSTAT_ENTRY(rx_fifo_errors);
854 NETSTAT_ENTRY(rx_missed_errors);
855 NETSTAT_ENTRY(tx_aborted_errors);
856 NETSTAT_ENTRY(tx_carrier_errors);
857 NETSTAT_ENTRY(tx_fifo_errors);
858 NETSTAT_ENTRY(tx_heartbeat_errors);
859 NETSTAT_ENTRY(tx_window_errors);
860 NETSTAT_ENTRY(rx_compressed);
861 NETSTAT_ENTRY(tx_compressed);
862 NETSTAT_ENTRY(rx_nohandler);
863
864 static struct attribute *netstat_attrs[] __ro_after_init = {
865 &dev_attr_rx_packets.attr,
866 &dev_attr_tx_packets.attr,
867 &dev_attr_rx_bytes.attr,
868 &dev_attr_tx_bytes.attr,
869 &dev_attr_rx_errors.attr,
870 &dev_attr_tx_errors.attr,
871 &dev_attr_rx_dropped.attr,
872 &dev_attr_tx_dropped.attr,
873 &dev_attr_multicast.attr,
874 &dev_attr_collisions.attr,
875 &dev_attr_rx_length_errors.attr,
876 &dev_attr_rx_over_errors.attr,
877 &dev_attr_rx_crc_errors.attr,
878 &dev_attr_rx_frame_errors.attr,
879 &dev_attr_rx_fifo_errors.attr,
880 &dev_attr_rx_missed_errors.attr,
881 &dev_attr_tx_aborted_errors.attr,
882 &dev_attr_tx_carrier_errors.attr,
883 &dev_attr_tx_fifo_errors.attr,
884 &dev_attr_tx_heartbeat_errors.attr,
885 &dev_attr_tx_window_errors.attr,
886 &dev_attr_rx_compressed.attr,
887 &dev_attr_tx_compressed.attr,
888 &dev_attr_rx_nohandler.attr,
889 NULL
890 };
891
892 static const struct attribute_group netstat_group = {
893 .name = "statistics",
894 .attrs = netstat_attrs,
895 };
896
897 static struct attribute *wireless_attrs[] = {
898 NULL
899 };
900
901 static const struct attribute_group wireless_group = {
902 .name = "wireless",
903 .attrs = wireless_attrs,
904 };
905
wireless_group_needed(struct net_device * ndev)906 static bool wireless_group_needed(struct net_device *ndev)
907 {
908 #if IS_ENABLED(CONFIG_CFG80211)
909 if (ndev->ieee80211_ptr)
910 return true;
911 #endif
912 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
913 if (ndev->wireless_handlers)
914 return true;
915 #endif
916 return false;
917 }
918
919 #else /* CONFIG_SYSFS */
920 #define net_class_groups NULL
921 #endif /* CONFIG_SYSFS */
922
923 #ifdef CONFIG_SYSFS
924 #define to_rx_queue_attr(_attr) \
925 container_of(_attr, struct rx_queue_attribute, attr)
926
927 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
928
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)929 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
930 char *buf)
931 {
932 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
933 struct netdev_rx_queue *queue = to_rx_queue(kobj);
934
935 if (!attribute->show)
936 return -EIO;
937
938 return attribute->show(queue, buf);
939 }
940
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)941 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
942 const char *buf, size_t count)
943 {
944 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
945 struct netdev_rx_queue *queue = to_rx_queue(kobj);
946
947 if (!attribute->store)
948 return -EIO;
949
950 return attribute->store(queue, buf, count);
951 }
952
953 static const struct sysfs_ops rx_queue_sysfs_ops = {
954 .show = rx_queue_attr_show,
955 .store = rx_queue_attr_store,
956 };
957
958 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)959 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
960 {
961 struct rps_map *map;
962 cpumask_var_t mask;
963 int i, len;
964
965 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
966 return -ENOMEM;
967
968 rcu_read_lock();
969 map = rcu_dereference(queue->rps_map);
970 if (map)
971 for (i = 0; i < map->len; i++)
972 cpumask_set_cpu(map->cpus[i], mask);
973
974 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
975 rcu_read_unlock();
976 free_cpumask_var(mask);
977
978 return len < PAGE_SIZE ? len : -EINVAL;
979 }
980
netdev_rx_queue_set_rps_mask(struct netdev_rx_queue * queue,cpumask_var_t mask)981 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
982 cpumask_var_t mask)
983 {
984 static DEFINE_MUTEX(rps_map_mutex);
985 struct rps_map *old_map, *map;
986 int cpu, i;
987
988 map = kzalloc(max_t(unsigned int,
989 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
990 GFP_KERNEL);
991 if (!map)
992 return -ENOMEM;
993
994 i = 0;
995 for_each_cpu_and(cpu, mask, cpu_online_mask)
996 map->cpus[i++] = cpu;
997
998 if (i) {
999 map->len = i;
1000 } else {
1001 kfree(map);
1002 map = NULL;
1003 }
1004
1005 mutex_lock(&rps_map_mutex);
1006 old_map = rcu_dereference_protected(queue->rps_map,
1007 mutex_is_locked(&rps_map_mutex));
1008 rcu_assign_pointer(queue->rps_map, map);
1009
1010 if (map)
1011 static_branch_inc(&rps_needed);
1012 if (old_map)
1013 static_branch_dec(&rps_needed);
1014
1015 mutex_unlock(&rps_map_mutex);
1016
1017 if (old_map)
1018 kfree_rcu(old_map, rcu);
1019 return 0;
1020 }
1021
rps_cpumask_housekeeping(struct cpumask * mask)1022 int rps_cpumask_housekeeping(struct cpumask *mask)
1023 {
1024 if (!cpumask_empty(mask)) {
1025 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1026 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1027 if (cpumask_empty(mask))
1028 return -EINVAL;
1029 }
1030 return 0;
1031 }
1032
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)1033 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1034 const char *buf, size_t len)
1035 {
1036 cpumask_var_t mask;
1037 int err;
1038
1039 if (!capable(CAP_NET_ADMIN))
1040 return -EPERM;
1041
1042 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1043 return -ENOMEM;
1044
1045 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1046 if (err)
1047 goto out;
1048
1049 err = rps_cpumask_housekeeping(mask);
1050 if (err)
1051 goto out;
1052
1053 err = netdev_rx_queue_set_rps_mask(queue, mask);
1054
1055 out:
1056 free_cpumask_var(mask);
1057 return err ? : len;
1058 }
1059
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)1060 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1061 char *buf)
1062 {
1063 struct rps_dev_flow_table *flow_table;
1064 unsigned long val = 0;
1065
1066 rcu_read_lock();
1067 flow_table = rcu_dereference(queue->rps_flow_table);
1068 if (flow_table)
1069 val = 1UL << flow_table->log;
1070 rcu_read_unlock();
1071
1072 return sysfs_emit(buf, "%lu\n", val);
1073 }
1074
rps_dev_flow_table_release(struct rcu_head * rcu)1075 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1076 {
1077 struct rps_dev_flow_table *table = container_of(rcu,
1078 struct rps_dev_flow_table, rcu);
1079 vfree(table);
1080 }
1081
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)1082 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1083 const char *buf, size_t len)
1084 {
1085 unsigned long mask, count;
1086 struct rps_dev_flow_table *table, *old_table;
1087 static DEFINE_SPINLOCK(rps_dev_flow_lock);
1088 int rc;
1089
1090 if (!capable(CAP_NET_ADMIN))
1091 return -EPERM;
1092
1093 rc = kstrtoul(buf, 0, &count);
1094 if (rc < 0)
1095 return rc;
1096
1097 if (count) {
1098 mask = count - 1;
1099 /* mask = roundup_pow_of_two(count) - 1;
1100 * without overflows...
1101 */
1102 while ((mask | (mask >> 1)) != mask)
1103 mask |= (mask >> 1);
1104 /* On 64 bit arches, must check mask fits in table->mask (u32),
1105 * and on 32bit arches, must check
1106 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1107 */
1108 #if BITS_PER_LONG > 32
1109 if (mask > (unsigned long)(u32)mask)
1110 return -EINVAL;
1111 #else
1112 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1113 / sizeof(struct rps_dev_flow)) {
1114 /* Enforce a limit to prevent overflow */
1115 return -EINVAL;
1116 }
1117 #endif
1118 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1119 if (!table)
1120 return -ENOMEM;
1121
1122 table->log = ilog2(mask) + 1;
1123 for (count = 0; count <= mask; count++)
1124 table->flows[count].cpu = RPS_NO_CPU;
1125 } else {
1126 table = NULL;
1127 }
1128
1129 spin_lock(&rps_dev_flow_lock);
1130 old_table = rcu_dereference_protected(queue->rps_flow_table,
1131 lockdep_is_held(&rps_dev_flow_lock));
1132 rcu_assign_pointer(queue->rps_flow_table, table);
1133 spin_unlock(&rps_dev_flow_lock);
1134
1135 if (old_table)
1136 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1137
1138 return len;
1139 }
1140
1141 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1142 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1143
1144 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1145 = __ATTR(rps_flow_cnt, 0644,
1146 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1147 #endif /* CONFIG_RPS */
1148
1149 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1150 #ifdef CONFIG_RPS
1151 &rps_cpus_attribute.attr,
1152 &rps_dev_flow_table_cnt_attribute.attr,
1153 #endif
1154 NULL
1155 };
1156 ATTRIBUTE_GROUPS(rx_queue_default);
1157
rx_queue_release(struct kobject * kobj)1158 static void rx_queue_release(struct kobject *kobj)
1159 {
1160 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1161 #ifdef CONFIG_RPS
1162 struct rps_map *map;
1163 struct rps_dev_flow_table *flow_table;
1164
1165 map = rcu_dereference_protected(queue->rps_map, 1);
1166 if (map) {
1167 RCU_INIT_POINTER(queue->rps_map, NULL);
1168 kfree_rcu(map, rcu);
1169 }
1170
1171 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1172 if (flow_table) {
1173 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1174 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1175 }
1176 #endif
1177
1178 memset(kobj, 0, sizeof(*kobj));
1179 netdev_put(queue->dev, &queue->dev_tracker);
1180 }
1181
rx_queue_namespace(const struct kobject * kobj)1182 static const void *rx_queue_namespace(const struct kobject *kobj)
1183 {
1184 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1185 struct device *dev = &queue->dev->dev;
1186 const void *ns = NULL;
1187
1188 if (dev->class && dev->class->namespace)
1189 ns = dev->class->namespace(dev);
1190
1191 return ns;
1192 }
1193
rx_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1194 static void rx_queue_get_ownership(const struct kobject *kobj,
1195 kuid_t *uid, kgid_t *gid)
1196 {
1197 const struct net *net = rx_queue_namespace(kobj);
1198
1199 net_ns_get_ownership(net, uid, gid);
1200 }
1201
1202 static const struct kobj_type rx_queue_ktype = {
1203 .sysfs_ops = &rx_queue_sysfs_ops,
1204 .release = rx_queue_release,
1205 .namespace = rx_queue_namespace,
1206 .get_ownership = rx_queue_get_ownership,
1207 };
1208
rx_queue_default_mask(struct net_device * dev,struct netdev_rx_queue * queue)1209 static int rx_queue_default_mask(struct net_device *dev,
1210 struct netdev_rx_queue *queue)
1211 {
1212 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1213 struct cpumask *rps_default_mask;
1214 int res = 0;
1215
1216 mutex_lock(&rps_default_mask_mutex);
1217
1218 rps_default_mask = dev_net(dev)->core.rps_default_mask;
1219 if (rps_default_mask && !cpumask_empty(rps_default_mask))
1220 res = netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1221
1222 mutex_unlock(&rps_default_mask_mutex);
1223
1224 return res;
1225 #else
1226 return 0;
1227 #endif
1228 }
1229
rx_queue_add_kobject(struct net_device * dev,int index)1230 static int rx_queue_add_kobject(struct net_device *dev, int index)
1231 {
1232 struct netdev_rx_queue *queue = dev->_rx + index;
1233 struct kobject *kobj = &queue->kobj;
1234 int error = 0;
1235
1236 /* Rx queues are cleared in rx_queue_release to allow later
1237 * re-registration. This is triggered when their kobj refcount is
1238 * dropped.
1239 *
1240 * If a queue is removed while both a read (or write) operation and a
1241 * the re-addition of the same queue are pending (waiting on rntl_lock)
1242 * it might happen that the re-addition will execute before the read,
1243 * making the initial removal to never happen (queue's kobj refcount
1244 * won't drop enough because of the pending read). In such rare case,
1245 * return to allow the removal operation to complete.
1246 */
1247 if (unlikely(kobj->state_initialized)) {
1248 netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1249 return -EAGAIN;
1250 }
1251
1252 /* Kobject_put later will trigger rx_queue_release call which
1253 * decreases dev refcount: Take that reference here
1254 */
1255 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1256
1257 kobj->kset = dev->queues_kset;
1258 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1259 "rx-%u", index);
1260 if (error)
1261 goto err;
1262
1263 queue->groups = rx_queue_default_groups;
1264 error = sysfs_create_groups(kobj, queue->groups);
1265 if (error)
1266 goto err;
1267
1268 if (dev->sysfs_rx_queue_group) {
1269 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1270 if (error)
1271 goto err_default_groups;
1272 }
1273
1274 error = rx_queue_default_mask(dev, queue);
1275 if (error)
1276 goto err_default_groups;
1277
1278 kobject_uevent(kobj, KOBJ_ADD);
1279
1280 return error;
1281
1282 err_default_groups:
1283 sysfs_remove_groups(kobj, queue->groups);
1284 err:
1285 kobject_put(kobj);
1286 return error;
1287 }
1288
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1289 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1290 kgid_t kgid)
1291 {
1292 struct netdev_rx_queue *queue = dev->_rx + index;
1293 struct kobject *kobj = &queue->kobj;
1294 int error;
1295
1296 error = sysfs_change_owner(kobj, kuid, kgid);
1297 if (error)
1298 return error;
1299
1300 if (dev->sysfs_rx_queue_group)
1301 error = sysfs_group_change_owner(
1302 kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1303
1304 return error;
1305 }
1306 #endif /* CONFIG_SYSFS */
1307
1308 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1309 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1310 {
1311 #ifdef CONFIG_SYSFS
1312 int i;
1313 int error = 0;
1314
1315 #ifndef CONFIG_RPS
1316 if (!dev->sysfs_rx_queue_group)
1317 return 0;
1318 #endif
1319 for (i = old_num; i < new_num; i++) {
1320 error = rx_queue_add_kobject(dev, i);
1321 if (error) {
1322 new_num = old_num;
1323 break;
1324 }
1325 }
1326
1327 while (--i >= new_num) {
1328 struct netdev_rx_queue *queue = &dev->_rx[i];
1329 struct kobject *kobj = &queue->kobj;
1330
1331 if (!refcount_read(&dev_net(dev)->ns.count))
1332 kobj->uevent_suppress = 1;
1333 if (dev->sysfs_rx_queue_group)
1334 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1335 sysfs_remove_groups(kobj, queue->groups);
1336 kobject_put(kobj);
1337 }
1338
1339 return error;
1340 #else
1341 return 0;
1342 #endif
1343 }
1344
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1345 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1346 kuid_t kuid, kgid_t kgid)
1347 {
1348 #ifdef CONFIG_SYSFS
1349 int error = 0;
1350 int i;
1351
1352 #ifndef CONFIG_RPS
1353 if (!dev->sysfs_rx_queue_group)
1354 return 0;
1355 #endif
1356 for (i = 0; i < num; i++) {
1357 error = rx_queue_change_owner(dev, i, kuid, kgid);
1358 if (error)
1359 break;
1360 }
1361
1362 return error;
1363 #else
1364 return 0;
1365 #endif
1366 }
1367
1368 #ifdef CONFIG_SYSFS
1369 /*
1370 * netdev_queue sysfs structures and functions.
1371 */
1372 struct netdev_queue_attribute {
1373 struct attribute attr;
1374 ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1375 struct netdev_queue *queue, char *buf);
1376 ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1377 struct netdev_queue *queue, const char *buf,
1378 size_t len);
1379 };
1380 #define to_netdev_queue_attr(_attr) \
1381 container_of(_attr, struct netdev_queue_attribute, attr)
1382
1383 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1384
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1385 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1386 struct attribute *attr, char *buf)
1387 {
1388 const struct netdev_queue_attribute *attribute
1389 = to_netdev_queue_attr(attr);
1390 struct netdev_queue *queue = to_netdev_queue(kobj);
1391
1392 if (!attribute->show)
1393 return -EIO;
1394
1395 return attribute->show(kobj, attr, queue, buf);
1396 }
1397
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1398 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1399 struct attribute *attr,
1400 const char *buf, size_t count)
1401 {
1402 const struct netdev_queue_attribute *attribute
1403 = to_netdev_queue_attr(attr);
1404 struct netdev_queue *queue = to_netdev_queue(kobj);
1405
1406 if (!attribute->store)
1407 return -EIO;
1408
1409 return attribute->store(kobj, attr, queue, buf, count);
1410 }
1411
1412 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1413 .show = netdev_queue_attr_show,
1414 .store = netdev_queue_attr_store,
1415 };
1416
tx_timeout_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1417 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1418 struct netdev_queue *queue, char *buf)
1419 {
1420 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1421
1422 return sysfs_emit(buf, fmt_ulong, trans_timeout);
1423 }
1424
get_netdev_queue_index(struct netdev_queue * queue)1425 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1426 {
1427 struct net_device *dev = queue->dev;
1428 unsigned int i;
1429
1430 i = queue - dev->_tx;
1431 BUG_ON(i >= dev->num_tx_queues);
1432
1433 return i;
1434 }
1435
traffic_class_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1436 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1437 struct netdev_queue *queue, char *buf)
1438 {
1439 struct net_device *dev = queue->dev;
1440 int num_tc, tc, index, ret;
1441
1442 if (!netif_is_multiqueue(dev))
1443 return -ENOENT;
1444
1445 ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1446 if (ret)
1447 return ret;
1448
1449 index = get_netdev_queue_index(queue);
1450
1451 /* If queue belongs to subordinate dev use its TC mapping */
1452 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1453
1454 num_tc = dev->num_tc;
1455 tc = netdev_txq_to_tc(dev, index);
1456
1457 rtnl_unlock();
1458
1459 if (tc < 0)
1460 return -EINVAL;
1461
1462 /* We can report the traffic class one of two ways:
1463 * Subordinate device traffic classes are reported with the traffic
1464 * class first, and then the subordinate class so for example TC0 on
1465 * subordinate device 2 will be reported as "0-2". If the queue
1466 * belongs to the root device it will be reported with just the
1467 * traffic class, so just "0" for TC 0 for example.
1468 */
1469 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1470 sysfs_emit(buf, "%d\n", tc);
1471 }
1472
1473 #ifdef CONFIG_XPS
tx_maxrate_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1474 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1475 struct netdev_queue *queue, char *buf)
1476 {
1477 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1478 }
1479
tx_maxrate_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1480 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1481 struct netdev_queue *queue, const char *buf,
1482 size_t len)
1483 {
1484 int err, index = get_netdev_queue_index(queue);
1485 struct net_device *dev = queue->dev;
1486 u32 rate = 0;
1487
1488 if (!capable(CAP_NET_ADMIN))
1489 return -EPERM;
1490
1491 /* The check is also done later; this helps returning early without
1492 * hitting the locking section below.
1493 */
1494 if (!dev->netdev_ops->ndo_set_tx_maxrate)
1495 return -EOPNOTSUPP;
1496
1497 err = kstrtou32(buf, 10, &rate);
1498 if (err < 0)
1499 return err;
1500
1501 err = sysfs_rtnl_lock(kobj, attr, dev);
1502 if (err)
1503 return err;
1504
1505 err = -EOPNOTSUPP;
1506 netdev_lock_ops(dev);
1507 if (dev->netdev_ops->ndo_set_tx_maxrate)
1508 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1509 netdev_unlock_ops(dev);
1510
1511 if (!err) {
1512 queue->tx_maxrate = rate;
1513 rtnl_unlock();
1514 return len;
1515 }
1516
1517 rtnl_unlock();
1518 return err;
1519 }
1520
1521 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1522 = __ATTR_RW(tx_maxrate);
1523 #endif
1524
1525 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1526 = __ATTR_RO(tx_timeout);
1527
1528 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1529 = __ATTR_RO(traffic_class);
1530
1531 #ifdef CONFIG_BQL
1532 /*
1533 * Byte queue limits sysfs structures and functions.
1534 */
bql_show(char * buf,unsigned int value)1535 static ssize_t bql_show(char *buf, unsigned int value)
1536 {
1537 return sysfs_emit(buf, "%u\n", value);
1538 }
1539
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1540 static ssize_t bql_set(const char *buf, const size_t count,
1541 unsigned int *pvalue)
1542 {
1543 unsigned int value;
1544 int err;
1545
1546 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1547 value = DQL_MAX_LIMIT;
1548 } else {
1549 err = kstrtouint(buf, 10, &value);
1550 if (err < 0)
1551 return err;
1552 if (value > DQL_MAX_LIMIT)
1553 return -EINVAL;
1554 }
1555
1556 *pvalue = value;
1557
1558 return count;
1559 }
1560
bql_show_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1561 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1562 struct netdev_queue *queue, char *buf)
1563 {
1564 struct dql *dql = &queue->dql;
1565
1566 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1567 }
1568
bql_set_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1569 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1570 struct netdev_queue *queue, const char *buf,
1571 size_t len)
1572 {
1573 struct dql *dql = &queue->dql;
1574 unsigned int value;
1575 int err;
1576
1577 err = kstrtouint(buf, 10, &value);
1578 if (err < 0)
1579 return err;
1580
1581 dql->slack_hold_time = msecs_to_jiffies(value);
1582
1583 return len;
1584 }
1585
1586 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1587 = __ATTR(hold_time, 0644,
1588 bql_show_hold_time, bql_set_hold_time);
1589
bql_show_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1590 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1591 struct netdev_queue *queue, char *buf)
1592 {
1593 struct dql *dql = &queue->dql;
1594
1595 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1596 }
1597
bql_set_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1598 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1599 struct netdev_queue *queue, const char *buf,
1600 size_t len)
1601 {
1602 struct dql *dql = &queue->dql;
1603 unsigned int value;
1604 int err;
1605
1606 err = kstrtouint(buf, 10, &value);
1607 if (err < 0)
1608 return err;
1609
1610 value = msecs_to_jiffies(value);
1611 if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1612 return -ERANGE;
1613
1614 if (!dql->stall_thrs && value)
1615 dql->last_reap = jiffies;
1616 /* Force last_reap to be live */
1617 smp_wmb();
1618 dql->stall_thrs = value;
1619
1620 return len;
1621 }
1622
1623 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1624 __ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1625
bql_show_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1626 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1627 struct netdev_queue *queue, char *buf)
1628 {
1629 return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1630 }
1631
bql_set_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1632 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1633 struct netdev_queue *queue, const char *buf,
1634 size_t len)
1635 {
1636 WRITE_ONCE(queue->dql.stall_max, 0);
1637 return len;
1638 }
1639
1640 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1641 __ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1642
bql_show_stall_cnt(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1643 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1644 struct netdev_queue *queue, char *buf)
1645 {
1646 struct dql *dql = &queue->dql;
1647
1648 return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1649 }
1650
1651 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1652 __ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1653
bql_show_inflight(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1654 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1655 struct netdev_queue *queue, char *buf)
1656 {
1657 struct dql *dql = &queue->dql;
1658
1659 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1660 }
1661
1662 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1663 __ATTR(inflight, 0444, bql_show_inflight, NULL);
1664
1665 #define BQL_ATTR(NAME, FIELD) \
1666 static ssize_t bql_show_ ## NAME(struct kobject *kobj, \
1667 struct attribute *attr, \
1668 struct netdev_queue *queue, char *buf) \
1669 { \
1670 return bql_show(buf, queue->dql.FIELD); \
1671 } \
1672 \
1673 static ssize_t bql_set_ ## NAME(struct kobject *kobj, \
1674 struct attribute *attr, \
1675 struct netdev_queue *queue, \
1676 const char *buf, size_t len) \
1677 { \
1678 return bql_set(buf, len, &queue->dql.FIELD); \
1679 } \
1680 \
1681 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1682 = __ATTR(NAME, 0644, \
1683 bql_show_ ## NAME, bql_set_ ## NAME)
1684
1685 BQL_ATTR(limit, limit);
1686 BQL_ATTR(limit_max, max_limit);
1687 BQL_ATTR(limit_min, min_limit);
1688
1689 static struct attribute *dql_attrs[] __ro_after_init = {
1690 &bql_limit_attribute.attr,
1691 &bql_limit_max_attribute.attr,
1692 &bql_limit_min_attribute.attr,
1693 &bql_hold_time_attribute.attr,
1694 &bql_inflight_attribute.attr,
1695 &bql_stall_thrs_attribute.attr,
1696 &bql_stall_cnt_attribute.attr,
1697 &bql_stall_max_attribute.attr,
1698 NULL
1699 };
1700
1701 static const struct attribute_group dql_group = {
1702 .name = "byte_queue_limits",
1703 .attrs = dql_attrs,
1704 };
1705 #else
1706 /* Fake declaration, all the code using it should be dead */
1707 static const struct attribute_group dql_group = {};
1708 #endif /* CONFIG_BQL */
1709
1710 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1711 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1712 int tc, char *buf, enum xps_map_type type)
1713 {
1714 struct xps_dev_maps *dev_maps;
1715 unsigned long *mask;
1716 unsigned int nr_ids;
1717 int j, len;
1718
1719 rcu_read_lock();
1720 dev_maps = rcu_dereference(dev->xps_maps[type]);
1721
1722 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1723 * when dev_maps hasn't been allocated yet, to be backward compatible.
1724 */
1725 nr_ids = dev_maps ? dev_maps->nr_ids :
1726 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1727
1728 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1729 if (!mask) {
1730 rcu_read_unlock();
1731 return -ENOMEM;
1732 }
1733
1734 if (!dev_maps || tc >= dev_maps->num_tc)
1735 goto out_no_maps;
1736
1737 for (j = 0; j < nr_ids; j++) {
1738 int i, tci = j * dev_maps->num_tc + tc;
1739 struct xps_map *map;
1740
1741 map = rcu_dereference(dev_maps->attr_map[tci]);
1742 if (!map)
1743 continue;
1744
1745 for (i = map->len; i--;) {
1746 if (map->queues[i] == index) {
1747 __set_bit(j, mask);
1748 break;
1749 }
1750 }
1751 }
1752 out_no_maps:
1753 rcu_read_unlock();
1754
1755 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1756 bitmap_free(mask);
1757
1758 return len < PAGE_SIZE ? len : -EINVAL;
1759 }
1760
xps_cpus_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1761 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1762 struct netdev_queue *queue, char *buf)
1763 {
1764 struct net_device *dev = queue->dev;
1765 unsigned int index;
1766 int len, tc, ret;
1767
1768 if (!netif_is_multiqueue(dev))
1769 return -ENOENT;
1770
1771 index = get_netdev_queue_index(queue);
1772
1773 ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1774 if (ret)
1775 return ret;
1776
1777 /* If queue belongs to subordinate dev use its map */
1778 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1779
1780 tc = netdev_txq_to_tc(dev, index);
1781 if (tc < 0) {
1782 rtnl_unlock();
1783 return -EINVAL;
1784 }
1785
1786 /* Increase the net device refcnt to make sure it won't be freed while
1787 * xps_queue_show is running.
1788 */
1789 dev_hold(dev);
1790 rtnl_unlock();
1791
1792 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1793
1794 dev_put(dev);
1795 return len;
1796 }
1797
xps_cpus_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1798 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1799 struct netdev_queue *queue, const char *buf,
1800 size_t len)
1801 {
1802 struct net_device *dev = queue->dev;
1803 unsigned int index;
1804 cpumask_var_t mask;
1805 int err;
1806
1807 if (!netif_is_multiqueue(dev))
1808 return -ENOENT;
1809
1810 if (!capable(CAP_NET_ADMIN))
1811 return -EPERM;
1812
1813 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1814 return -ENOMEM;
1815
1816 index = get_netdev_queue_index(queue);
1817
1818 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1819 if (err) {
1820 free_cpumask_var(mask);
1821 return err;
1822 }
1823
1824 err = sysfs_rtnl_lock(kobj, attr, dev);
1825 if (err) {
1826 free_cpumask_var(mask);
1827 return err;
1828 }
1829
1830 err = netif_set_xps_queue(dev, mask, index);
1831 rtnl_unlock();
1832
1833 free_cpumask_var(mask);
1834
1835 return err ? : len;
1836 }
1837
1838 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1839 = __ATTR_RW(xps_cpus);
1840
xps_rxqs_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1841 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1842 struct netdev_queue *queue, char *buf)
1843 {
1844 struct net_device *dev = queue->dev;
1845 unsigned int index;
1846 int tc, ret;
1847
1848 index = get_netdev_queue_index(queue);
1849
1850 ret = sysfs_rtnl_lock(kobj, attr, dev);
1851 if (ret)
1852 return ret;
1853
1854 tc = netdev_txq_to_tc(dev, index);
1855
1856 /* Increase the net device refcnt to make sure it won't be freed while
1857 * xps_queue_show is running.
1858 */
1859 dev_hold(dev);
1860 rtnl_unlock();
1861
1862 ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1863 dev_put(dev);
1864 return ret;
1865 }
1866
xps_rxqs_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1867 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1868 struct netdev_queue *queue, const char *buf,
1869 size_t len)
1870 {
1871 struct net_device *dev = queue->dev;
1872 struct net *net = dev_net(dev);
1873 unsigned long *mask;
1874 unsigned int index;
1875 int err;
1876
1877 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1878 return -EPERM;
1879
1880 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1881 if (!mask)
1882 return -ENOMEM;
1883
1884 index = get_netdev_queue_index(queue);
1885
1886 err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1887 if (err) {
1888 bitmap_free(mask);
1889 return err;
1890 }
1891
1892 err = sysfs_rtnl_lock(kobj, attr, dev);
1893 if (err) {
1894 bitmap_free(mask);
1895 return err;
1896 }
1897
1898 cpus_read_lock();
1899 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1900 cpus_read_unlock();
1901
1902 rtnl_unlock();
1903
1904 bitmap_free(mask);
1905 return err ? : len;
1906 }
1907
1908 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1909 = __ATTR_RW(xps_rxqs);
1910 #endif /* CONFIG_XPS */
1911
1912 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1913 &queue_trans_timeout.attr,
1914 &queue_traffic_class.attr,
1915 #ifdef CONFIG_XPS
1916 &xps_cpus_attribute.attr,
1917 &xps_rxqs_attribute.attr,
1918 &queue_tx_maxrate.attr,
1919 #endif
1920 NULL
1921 };
1922 ATTRIBUTE_GROUPS(netdev_queue_default);
1923
netdev_queue_release(struct kobject * kobj)1924 static void netdev_queue_release(struct kobject *kobj)
1925 {
1926 struct netdev_queue *queue = to_netdev_queue(kobj);
1927
1928 memset(kobj, 0, sizeof(*kobj));
1929 netdev_put(queue->dev, &queue->dev_tracker);
1930 }
1931
netdev_queue_namespace(const struct kobject * kobj)1932 static const void *netdev_queue_namespace(const struct kobject *kobj)
1933 {
1934 struct netdev_queue *queue = to_netdev_queue(kobj);
1935 struct device *dev = &queue->dev->dev;
1936 const void *ns = NULL;
1937
1938 if (dev->class && dev->class->namespace)
1939 ns = dev->class->namespace(dev);
1940
1941 return ns;
1942 }
1943
netdev_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1944 static void netdev_queue_get_ownership(const struct kobject *kobj,
1945 kuid_t *uid, kgid_t *gid)
1946 {
1947 const struct net *net = netdev_queue_namespace(kobj);
1948
1949 net_ns_get_ownership(net, uid, gid);
1950 }
1951
1952 static const struct kobj_type netdev_queue_ktype = {
1953 .sysfs_ops = &netdev_queue_sysfs_ops,
1954 .release = netdev_queue_release,
1955 .namespace = netdev_queue_namespace,
1956 .get_ownership = netdev_queue_get_ownership,
1957 };
1958
netdev_uses_bql(const struct net_device * dev)1959 static bool netdev_uses_bql(const struct net_device *dev)
1960 {
1961 if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1962 return false;
1963
1964 return IS_ENABLED(CONFIG_BQL);
1965 }
1966
netdev_queue_add_kobject(struct net_device * dev,int index)1967 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1968 {
1969 struct netdev_queue *queue = dev->_tx + index;
1970 struct kobject *kobj = &queue->kobj;
1971 int error = 0;
1972
1973 /* Tx queues are cleared in netdev_queue_release to allow later
1974 * re-registration. This is triggered when their kobj refcount is
1975 * dropped.
1976 *
1977 * If a queue is removed while both a read (or write) operation and a
1978 * the re-addition of the same queue are pending (waiting on rntl_lock)
1979 * it might happen that the re-addition will execute before the read,
1980 * making the initial removal to never happen (queue's kobj refcount
1981 * won't drop enough because of the pending read). In such rare case,
1982 * return to allow the removal operation to complete.
1983 */
1984 if (unlikely(kobj->state_initialized)) {
1985 netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1986 return -EAGAIN;
1987 }
1988
1989 /* Kobject_put later will trigger netdev_queue_release call
1990 * which decreases dev refcount: Take that reference here
1991 */
1992 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1993
1994 kobj->kset = dev->queues_kset;
1995 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1996 "tx-%u", index);
1997 if (error)
1998 goto err;
1999
2000 queue->groups = netdev_queue_default_groups;
2001 error = sysfs_create_groups(kobj, queue->groups);
2002 if (error)
2003 goto err;
2004
2005 if (netdev_uses_bql(dev)) {
2006 error = sysfs_create_group(kobj, &dql_group);
2007 if (error)
2008 goto err_default_groups;
2009 }
2010
2011 kobject_uevent(kobj, KOBJ_ADD);
2012 return 0;
2013
2014 err_default_groups:
2015 sysfs_remove_groups(kobj, queue->groups);
2016 err:
2017 kobject_put(kobj);
2018 return error;
2019 }
2020
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)2021 static int tx_queue_change_owner(struct net_device *ndev, int index,
2022 kuid_t kuid, kgid_t kgid)
2023 {
2024 struct netdev_queue *queue = ndev->_tx + index;
2025 struct kobject *kobj = &queue->kobj;
2026 int error;
2027
2028 error = sysfs_change_owner(kobj, kuid, kgid);
2029 if (error)
2030 return error;
2031
2032 if (netdev_uses_bql(ndev))
2033 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2034
2035 return error;
2036 }
2037 #endif /* CONFIG_SYSFS */
2038
2039 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)2040 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2041 {
2042 #ifdef CONFIG_SYSFS
2043 int i;
2044 int error = 0;
2045
2046 /* Tx queue kobjects are allowed to be updated when a device is being
2047 * unregistered, but solely to remove queues from qdiscs. Any path
2048 * adding queues should be fixed.
2049 */
2050 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2051 "New queues can't be registered after device unregistration.");
2052
2053 for (i = old_num; i < new_num; i++) {
2054 error = netdev_queue_add_kobject(dev, i);
2055 if (error) {
2056 new_num = old_num;
2057 break;
2058 }
2059 }
2060
2061 while (--i >= new_num) {
2062 struct netdev_queue *queue = dev->_tx + i;
2063
2064 if (!refcount_read(&dev_net(dev)->ns.count))
2065 queue->kobj.uevent_suppress = 1;
2066
2067 if (netdev_uses_bql(dev))
2068 sysfs_remove_group(&queue->kobj, &dql_group);
2069
2070 sysfs_remove_groups(&queue->kobj, queue->groups);
2071 kobject_put(&queue->kobj);
2072 }
2073
2074 return error;
2075 #else
2076 return 0;
2077 #endif /* CONFIG_SYSFS */
2078 }
2079
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)2080 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2081 kuid_t kuid, kgid_t kgid)
2082 {
2083 #ifdef CONFIG_SYSFS
2084 int error = 0;
2085 int i;
2086
2087 for (i = 0; i < num; i++) {
2088 error = tx_queue_change_owner(dev, i, kuid, kgid);
2089 if (error)
2090 break;
2091 }
2092
2093 return error;
2094 #else
2095 return 0;
2096 #endif /* CONFIG_SYSFS */
2097 }
2098
register_queue_kobjects(struct net_device * dev)2099 static int register_queue_kobjects(struct net_device *dev)
2100 {
2101 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2102
2103 #ifdef CONFIG_SYSFS
2104 dev->queues_kset = kset_create_and_add("queues",
2105 NULL, &dev->dev.kobj);
2106 if (!dev->queues_kset)
2107 return -ENOMEM;
2108 real_rx = dev->real_num_rx_queues;
2109 #endif
2110 real_tx = dev->real_num_tx_queues;
2111
2112 error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2113 if (error)
2114 goto error;
2115 rxq = real_rx;
2116
2117 error = netdev_queue_update_kobjects(dev, 0, real_tx);
2118 if (error)
2119 goto error;
2120 txq = real_tx;
2121
2122 return 0;
2123
2124 error:
2125 netdev_queue_update_kobjects(dev, txq, 0);
2126 net_rx_queue_update_kobjects(dev, rxq, 0);
2127 #ifdef CONFIG_SYSFS
2128 kset_unregister(dev->queues_kset);
2129 #endif
2130 return error;
2131 }
2132
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)2133 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2134 {
2135 int error = 0, real_rx = 0, real_tx = 0;
2136
2137 #ifdef CONFIG_SYSFS
2138 if (ndev->queues_kset) {
2139 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2140 if (error)
2141 return error;
2142 }
2143 real_rx = ndev->real_num_rx_queues;
2144 #endif
2145 real_tx = ndev->real_num_tx_queues;
2146
2147 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2148 if (error)
2149 return error;
2150
2151 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2152 if (error)
2153 return error;
2154
2155 return 0;
2156 }
2157
remove_queue_kobjects(struct net_device * dev)2158 static void remove_queue_kobjects(struct net_device *dev)
2159 {
2160 int real_rx = 0, real_tx = 0;
2161
2162 #ifdef CONFIG_SYSFS
2163 real_rx = dev->real_num_rx_queues;
2164 #endif
2165 real_tx = dev->real_num_tx_queues;
2166
2167 net_rx_queue_update_kobjects(dev, real_rx, 0);
2168 netdev_queue_update_kobjects(dev, real_tx, 0);
2169
2170 netdev_lock_ops(dev);
2171 dev->real_num_rx_queues = 0;
2172 dev->real_num_tx_queues = 0;
2173 netdev_unlock_ops(dev);
2174 #ifdef CONFIG_SYSFS
2175 kset_unregister(dev->queues_kset);
2176 #endif
2177 }
2178
net_current_may_mount(void)2179 static bool net_current_may_mount(void)
2180 {
2181 struct net *net = current->nsproxy->net_ns;
2182
2183 return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2184 }
2185
net_grab_current_ns(void)2186 static void *net_grab_current_ns(void)
2187 {
2188 struct net *ns = current->nsproxy->net_ns;
2189 #ifdef CONFIG_NET_NS
2190 if (ns)
2191 refcount_inc(&ns->passive);
2192 #endif
2193 return ns;
2194 }
2195
net_initial_ns(void)2196 static const void *net_initial_ns(void)
2197 {
2198 return &init_net;
2199 }
2200
net_netlink_ns(struct sock * sk)2201 static const void *net_netlink_ns(struct sock *sk)
2202 {
2203 return sock_net(sk);
2204 }
2205
2206 const struct kobj_ns_type_operations net_ns_type_operations = {
2207 .type = KOBJ_NS_TYPE_NET,
2208 .current_may_mount = net_current_may_mount,
2209 .grab_current_ns = net_grab_current_ns,
2210 .netlink_ns = net_netlink_ns,
2211 .initial_ns = net_initial_ns,
2212 .drop_ns = net_drop_ns,
2213 };
2214 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2215
netdev_uevent(const struct device * d,struct kobj_uevent_env * env)2216 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2217 {
2218 const struct net_device *dev = to_net_dev(d);
2219 int retval;
2220
2221 /* pass interface to uevent. */
2222 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2223 if (retval)
2224 goto exit;
2225
2226 /* pass ifindex to uevent.
2227 * ifindex is useful as it won't change (interface name may change)
2228 * and is what RtNetlink uses natively.
2229 */
2230 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2231
2232 exit:
2233 return retval;
2234 }
2235
2236 /*
2237 * netdev_release -- destroy and free a dead device.
2238 * Called when last reference to device kobject is gone.
2239 */
netdev_release(struct device * d)2240 static void netdev_release(struct device *d)
2241 {
2242 struct net_device *dev = to_net_dev(d);
2243
2244 BUG_ON(dev->reg_state != NETREG_RELEASED);
2245
2246 /* no need to wait for rcu grace period:
2247 * device is dead and about to be freed.
2248 */
2249 kfree(rcu_access_pointer(dev->ifalias));
2250 kvfree(dev);
2251 }
2252
net_namespace(const struct device * d)2253 static const void *net_namespace(const struct device *d)
2254 {
2255 const struct net_device *dev = to_net_dev(d);
2256
2257 return dev_net(dev);
2258 }
2259
net_get_ownership(const struct device * d,kuid_t * uid,kgid_t * gid)2260 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2261 {
2262 const struct net_device *dev = to_net_dev(d);
2263 const struct net *net = dev_net(dev);
2264
2265 net_ns_get_ownership(net, uid, gid);
2266 }
2267
2268 static const struct class net_class = {
2269 .name = "net",
2270 .dev_release = netdev_release,
2271 .dev_groups = net_class_groups,
2272 .dev_uevent = netdev_uevent,
2273 .ns_type = &net_ns_type_operations,
2274 .namespace = net_namespace,
2275 .get_ownership = net_get_ownership,
2276 };
2277
2278 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)2279 static int of_dev_node_match(struct device *dev, const void *data)
2280 {
2281 for (; dev; dev = dev->parent) {
2282 if (dev->of_node == data)
2283 return 1;
2284 }
2285
2286 return 0;
2287 }
2288
2289 /*
2290 * of_find_net_device_by_node - lookup the net device for the device node
2291 * @np: OF device node
2292 *
2293 * Looks up the net_device structure corresponding with the device node.
2294 * If successful, returns a pointer to the net_device with the embedded
2295 * struct device refcount incremented by one, or NULL on failure. The
2296 * refcount must be dropped when done with the net_device.
2297 */
of_find_net_device_by_node(struct device_node * np)2298 struct net_device *of_find_net_device_by_node(struct device_node *np)
2299 {
2300 struct device *dev;
2301
2302 dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2303 if (!dev)
2304 return NULL;
2305
2306 return to_net_dev(dev);
2307 }
2308 EXPORT_SYMBOL(of_find_net_device_by_node);
2309 #endif
2310
2311 /* Delete sysfs entries but hold kobject reference until after all
2312 * netdev references are gone.
2313 */
netdev_unregister_kobject(struct net_device * ndev)2314 void netdev_unregister_kobject(struct net_device *ndev)
2315 {
2316 struct device *dev = &ndev->dev;
2317
2318 if (!refcount_read(&dev_net(ndev)->ns.count))
2319 dev_set_uevent_suppress(dev, 1);
2320
2321 kobject_get(&dev->kobj);
2322
2323 remove_queue_kobjects(ndev);
2324
2325 pm_runtime_set_memalloc_noio(dev, false);
2326
2327 device_del(dev);
2328 }
2329
2330 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)2331 int netdev_register_kobject(struct net_device *ndev)
2332 {
2333 struct device *dev = &ndev->dev;
2334 const struct attribute_group **groups = ndev->sysfs_groups;
2335 int error = 0;
2336
2337 device_initialize(dev);
2338 dev->class = &net_class;
2339 dev->platform_data = ndev;
2340 dev->groups = groups;
2341
2342 dev_set_name(dev, "%s", ndev->name);
2343
2344 #ifdef CONFIG_SYSFS
2345 /* Allow for a device specific group */
2346 if (*groups)
2347 groups++;
2348
2349 *groups++ = &netstat_group;
2350 *groups++ = &netdev_phys_group;
2351
2352 if (wireless_group_needed(ndev))
2353 *groups++ = &wireless_group;
2354 #endif /* CONFIG_SYSFS */
2355
2356 error = device_add(dev);
2357 if (error)
2358 return error;
2359
2360 error = register_queue_kobjects(ndev);
2361 if (error) {
2362 device_del(dev);
2363 return error;
2364 }
2365
2366 pm_runtime_set_memalloc_noio(dev, true);
2367
2368 return error;
2369 }
2370
2371 /* Change owner for sysfs entries when moving network devices across network
2372 * namespaces owned by different user namespaces.
2373 */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2374 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2375 const struct net *net_new)
2376 {
2377 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2378 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2379 struct device *dev = &ndev->dev;
2380 int error;
2381
2382 net_ns_get_ownership(net_old, &old_uid, &old_gid);
2383 net_ns_get_ownership(net_new, &new_uid, &new_gid);
2384
2385 /* The network namespace was changed but the owning user namespace is
2386 * identical so there's no need to change the owner of sysfs entries.
2387 */
2388 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2389 return 0;
2390
2391 error = device_change_owner(dev, new_uid, new_gid);
2392 if (error)
2393 return error;
2394
2395 error = queue_change_owner(ndev, new_uid, new_gid);
2396 if (error)
2397 return error;
2398
2399 return 0;
2400 }
2401
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2402 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2403 const void *ns)
2404 {
2405 return class_create_file_ns(&net_class, class_attr, ns);
2406 }
2407 EXPORT_SYMBOL(netdev_class_create_file_ns);
2408
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2409 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2410 const void *ns)
2411 {
2412 class_remove_file_ns(&net_class, class_attr, ns);
2413 }
2414 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2415
netdev_kobject_init(void)2416 int __init netdev_kobject_init(void)
2417 {
2418 kobj_ns_type_register(&net_ns_type_operations);
2419 return class_register(&net_class);
2420 }
2421