xref: /linux/net/core/net-sysfs.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_lock.h>
27 #include <net/netdev_rx_queue.h>
28 #include <net/rps.h>
29 
30 #include "dev.h"
31 #include "net-sysfs.h"
32 
33 #ifdef CONFIG_SYSFS
34 static const char fmt_hex[] = "%#x\n";
35 static const char fmt_dec[] = "%d\n";
36 static const char fmt_uint[] = "%u\n";
37 static const char fmt_ulong[] = "%lu\n";
38 static const char fmt_u64[] = "%llu\n";
39 
40 /* Caller holds RTNL, netdev->lock or RCU */
dev_isalive(const struct net_device * dev)41 static inline int dev_isalive(const struct net_device *dev)
42 {
43 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
44 }
45 
46 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
47  * when unregistering a net device and accessing associated sysfs files. The
48  * potential deadlock is as follow:
49  *
50  *         CPU 0                                         CPU 1
51  *
52  *    rtnl_lock                                   vfs_read
53  *    unregister_netdevice_many                   kernfs_seq_start
54  *    device_del / kobject_put                      kernfs_get_active (kn->active++)
55  *    kernfs_drain                                sysfs_kf_seq_show
56  *    wait_event(                                 rtnl_lock
57  *       kn->active == KN_DEACTIVATED_BIAS)       -> waits on CPU 0 to release
58  *    -> waits on CPU 1 to decrease kn->active       the rtnl lock.
59  *
60  * The historical fix was to use rtnl_trylock with restart_syscall to bail out
61  * of sysfs operations when the lock couldn't be taken. This fixed the above
62  * issue as it allowed CPU 1 to bail out of the ABBA situation.
63  *
64  * But it came with performances issues, as syscalls are being restarted in
65  * loops when there was contention on the rtnl lock, with huge slow downs in
66  * specific scenarios (e.g. lots of virtual interfaces created and userspace
67  * daemons querying their attributes).
68  *
69  * The idea below is to bail out of the active kernfs_node protection
70  * (kn->active) while trying to take the rtnl lock.
71  *
72  * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
73  * net device is guaranteed to be alive if this returns successfully.
74  */
sysfs_rtnl_lock(struct kobject * kobj,struct attribute * attr,struct net_device * ndev)75 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
76 			   struct net_device *ndev)
77 {
78 	struct kernfs_node *kn;
79 	int ret = 0;
80 
81 	/* First, we hold a reference to the net device as the unregistration
82 	 * path might run in parallel. This will ensure the net device and the
83 	 * associated sysfs objects won't be freed while we try to take the rtnl
84 	 * lock.
85 	 */
86 	dev_hold(ndev);
87 	/* sysfs_break_active_protection was introduced to allow self-removal of
88 	 * devices and their associated sysfs files by bailing out of the
89 	 * sysfs/kernfs protection. We do this here to allow the unregistration
90 	 * path to complete in parallel. The following takes a reference on the
91 	 * kobject and the kernfs_node being accessed.
92 	 *
93 	 * This works because we hold a reference onto the net device and the
94 	 * unregistration path will wait for us eventually in netdev_run_todo
95 	 * (outside an rtnl lock section).
96 	 */
97 	kn = sysfs_break_active_protection(kobj, attr);
98 	/* We can now try to take the rtnl lock. This can't deadlock us as the
99 	 * unregistration path is able to drain sysfs files (kernfs_node) thanks
100 	 * to the above dance.
101 	 */
102 	if (rtnl_lock_interruptible()) {
103 		ret = -ERESTARTSYS;
104 		goto unbreak;
105 	}
106 	/* Check dismantle on the device hasn't started, otherwise deny the
107 	 * operation.
108 	 */
109 	if (!dev_isalive(ndev)) {
110 		rtnl_unlock();
111 		ret = -ENODEV;
112 		goto unbreak;
113 	}
114 	/* We are now sure the device dismantle hasn't started nor that it can
115 	 * start before we exit the locking section as we hold the rtnl lock.
116 	 * There's no need to keep unbreaking the sysfs protection nor to hold
117 	 * a net device reference from that point; that was only needed to take
118 	 * the rtnl lock.
119 	 */
120 unbreak:
121 	sysfs_unbreak_active_protection(kn);
122 	dev_put(ndev);
123 
124 	return ret;
125 }
126 
127 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))128 static ssize_t netdev_show(const struct device *dev,
129 			   struct device_attribute *attr, char *buf,
130 			   ssize_t (*format)(const struct net_device *, char *))
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	rcu_read_lock();
136 	if (dev_isalive(ndev))
137 		ret = (*format)(ndev, buf);
138 	rcu_read_unlock();
139 
140 	return ret;
141 }
142 
143 /* generate a show function for simple field */
144 #define NETDEVICE_SHOW(field, format_string)				\
145 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
146 {									\
147 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
148 }									\
149 static ssize_t field##_show(struct device *dev,				\
150 			    struct device_attribute *attr, char *buf)	\
151 {									\
152 	return netdev_show(dev, attr, buf, format_##field);		\
153 }									\
154 
155 #define NETDEVICE_SHOW_RO(field, format_string)				\
156 NETDEVICE_SHOW(field, format_string);					\
157 static DEVICE_ATTR_RO(field)
158 
159 #define NETDEVICE_SHOW_RW(field, format_string)				\
160 NETDEVICE_SHOW(field, format_string);					\
161 static DEVICE_ATTR_RW(field)
162 
163 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))164 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
165 			    const char *buf, size_t len,
166 			    int (*set)(struct net_device *, unsigned long))
167 {
168 	struct net_device *netdev = to_net_dev(dev);
169 	struct net *net = dev_net(netdev);
170 	unsigned long new;
171 	int ret;
172 
173 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
174 		return -EPERM;
175 
176 	ret = kstrtoul(buf, 0, &new);
177 	if (ret)
178 		goto err;
179 
180 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
181 	if (ret)
182 		goto err;
183 
184 	ret = (*set)(netdev, new);
185 	if (ret == 0)
186 		ret = len;
187 
188 	rtnl_unlock();
189  err:
190 	return ret;
191 }
192 
193 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
194 static ssize_t
netdev_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))195 netdev_lock_store(struct device *dev, struct device_attribute *attr,
196 		  const char *buf, size_t len,
197 		  int (*set)(struct net_device *, unsigned long))
198 {
199 	struct net_device *netdev = to_net_dev(dev);
200 	struct net *net = dev_net(netdev);
201 	unsigned long new;
202 	int ret;
203 
204 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
205 		return -EPERM;
206 
207 	ret = kstrtoul(buf, 0, &new);
208 	if (ret)
209 		return ret;
210 
211 	netdev_lock(netdev);
212 
213 	if (dev_isalive(netdev)) {
214 		ret = (*set)(netdev, new);
215 		if (ret == 0)
216 			ret = len;
217 	}
218 	netdev_unlock(netdev);
219 
220 	return ret;
221 }
222 
223 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
224 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
226 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
227 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
228 NETDEVICE_SHOW_RO(type, fmt_dec);
229 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
230 
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)231 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
232 			   char *buf)
233 {
234 	struct net_device *ndev = to_net_dev(dev);
235 
236 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
237 }
238 static DEVICE_ATTR_RO(iflink);
239 
format_name_assign_type(const struct net_device * dev,char * buf)240 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
241 {
242 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
243 }
244 
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)245 static ssize_t name_assign_type_show(struct device *dev,
246 				     struct device_attribute *attr,
247 				     char *buf)
248 {
249 	struct net_device *ndev = to_net_dev(dev);
250 	ssize_t ret = -EINVAL;
251 
252 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
253 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
254 
255 	return ret;
256 }
257 static DEVICE_ATTR_RO(name_assign_type);
258 
259 /* use same locking rules as GIFHWADDR ioctl's (netif_get_mac_address()) */
address_show(struct device * dev,struct device_attribute * attr,char * buf)260 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
261 			    char *buf)
262 {
263 	struct net_device *ndev = to_net_dev(dev);
264 	ssize_t ret = -EINVAL;
265 
266 	down_read(&dev_addr_sem);
267 
268 	rcu_read_lock();
269 	if (dev_isalive(ndev))
270 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
271 	rcu_read_unlock();
272 
273 	up_read(&dev_addr_sem);
274 	return ret;
275 }
276 static DEVICE_ATTR_RO(address);
277 
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t broadcast_show(struct device *dev,
279 			      struct device_attribute *attr, char *buf)
280 {
281 	struct net_device *ndev = to_net_dev(dev);
282 	int ret = -EINVAL;
283 
284 	rcu_read_lock();
285 	if (dev_isalive(ndev))
286 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
287 	rcu_read_unlock();
288 	return ret;
289 }
290 static DEVICE_ATTR_RO(broadcast);
291 
change_carrier(struct net_device * dev,unsigned long new_carrier)292 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
293 {
294 	if (!netif_running(dev))
295 		return -EINVAL;
296 	return dev_change_carrier(dev, (bool)new_carrier);
297 }
298 
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)299 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
300 			     const char *buf, size_t len)
301 {
302 	struct net_device *netdev = to_net_dev(dev);
303 
304 	/* The check is also done in change_carrier; this helps returning early
305 	 * without hitting the locking section in netdev_store.
306 	 */
307 	if (!netdev->netdev_ops->ndo_change_carrier)
308 		return -EOPNOTSUPP;
309 
310 	return netdev_store(dev, attr, buf, len, change_carrier);
311 }
312 
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)313 static ssize_t carrier_show(struct device *dev,
314 			    struct device_attribute *attr, char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 	int ret;
318 
319 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
320 	if (ret)
321 		return ret;
322 
323 	ret = -EINVAL;
324 	if (netif_running(netdev)) {
325 		/* Synchronize carrier state with link watch,
326 		 * see also rtnl_getlink().
327 		 */
328 		linkwatch_sync_dev(netdev);
329 
330 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
331 	}
332 
333 	rtnl_unlock();
334 	return ret;
335 }
336 static DEVICE_ATTR_RW(carrier);
337 
speed_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t speed_show(struct device *dev,
339 			  struct device_attribute *attr, char *buf)
340 {
341 	struct net_device *netdev = to_net_dev(dev);
342 	int ret = -EINVAL;
343 
344 	/* The check is also done in __ethtool_get_link_ksettings; this helps
345 	 * returning early without hitting the locking section below.
346 	 */
347 	if (!netdev->ethtool_ops->get_link_ksettings)
348 		return ret;
349 
350 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
351 	if (ret)
352 		return ret;
353 
354 	ret = -EINVAL;
355 	if (netif_running(netdev)) {
356 		struct ethtool_link_ksettings cmd;
357 
358 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
359 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
360 	}
361 	rtnl_unlock();
362 	return ret;
363 }
364 static DEVICE_ATTR_RO(speed);
365 
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t duplex_show(struct device *dev,
367 			   struct device_attribute *attr, char *buf)
368 {
369 	struct net_device *netdev = to_net_dev(dev);
370 	int ret = -EINVAL;
371 
372 	/* The check is also done in __ethtool_get_link_ksettings; this helps
373 	 * returning early without hitting the locking section below.
374 	 */
375 	if (!netdev->ethtool_ops->get_link_ksettings)
376 		return ret;
377 
378 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
379 	if (ret)
380 		return ret;
381 
382 	ret = -EINVAL;
383 	if (netif_running(netdev)) {
384 		struct ethtool_link_ksettings cmd;
385 
386 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
387 			const char *duplex;
388 
389 			switch (cmd.base.duplex) {
390 			case DUPLEX_HALF:
391 				duplex = "half";
392 				break;
393 			case DUPLEX_FULL:
394 				duplex = "full";
395 				break;
396 			default:
397 				duplex = "unknown";
398 				break;
399 			}
400 			ret = sysfs_emit(buf, "%s\n", duplex);
401 		}
402 	}
403 	rtnl_unlock();
404 	return ret;
405 }
406 static DEVICE_ATTR_RO(duplex);
407 
testing_show(struct device * dev,struct device_attribute * attr,char * buf)408 static ssize_t testing_show(struct device *dev,
409 			    struct device_attribute *attr, char *buf)
410 {
411 	struct net_device *netdev = to_net_dev(dev);
412 
413 	if (netif_running(netdev))
414 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
415 
416 	return -EINVAL;
417 }
418 static DEVICE_ATTR_RO(testing);
419 
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t dormant_show(struct device *dev,
421 			    struct device_attribute *attr, char *buf)
422 {
423 	struct net_device *netdev = to_net_dev(dev);
424 
425 	if (netif_running(netdev))
426 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
427 
428 	return -EINVAL;
429 }
430 static DEVICE_ATTR_RO(dormant);
431 
432 static const char *const operstates[] = {
433 	"unknown",
434 	"notpresent", /* currently unused */
435 	"down",
436 	"lowerlayerdown",
437 	"testing",
438 	"dormant",
439 	"up"
440 };
441 
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)442 static ssize_t operstate_show(struct device *dev,
443 			      struct device_attribute *attr, char *buf)
444 {
445 	const struct net_device *netdev = to_net_dev(dev);
446 	unsigned char operstate;
447 
448 	operstate = READ_ONCE(netdev->operstate);
449 	if (!netif_running(netdev))
450 		operstate = IF_OPER_DOWN;
451 
452 	if (operstate >= ARRAY_SIZE(operstates))
453 		return -EINVAL; /* should not happen */
454 
455 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
456 }
457 static DEVICE_ATTR_RO(operstate);
458 
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t carrier_changes_show(struct device *dev,
460 				    struct device_attribute *attr,
461 				    char *buf)
462 {
463 	struct net_device *netdev = to_net_dev(dev);
464 
465 	return sysfs_emit(buf, fmt_dec,
466 			  atomic_read(&netdev->carrier_up_count) +
467 			  atomic_read(&netdev->carrier_down_count));
468 }
469 static DEVICE_ATTR_RO(carrier_changes);
470 
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)471 static ssize_t carrier_up_count_show(struct device *dev,
472 				     struct device_attribute *attr,
473 				     char *buf)
474 {
475 	struct net_device *netdev = to_net_dev(dev);
476 
477 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
478 }
479 static DEVICE_ATTR_RO(carrier_up_count);
480 
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)481 static ssize_t carrier_down_count_show(struct device *dev,
482 				       struct device_attribute *attr,
483 				       char *buf)
484 {
485 	struct net_device *netdev = to_net_dev(dev);
486 
487 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
488 }
489 static DEVICE_ATTR_RO(carrier_down_count);
490 
491 /* read-write attributes */
492 
change_mtu(struct net_device * dev,unsigned long new_mtu)493 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
494 {
495 	return dev_set_mtu(dev, (int)new_mtu);
496 }
497 
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)498 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
499 			 const char *buf, size_t len)
500 {
501 	return netdev_store(dev, attr, buf, len, change_mtu);
502 }
503 NETDEVICE_SHOW_RW(mtu, fmt_dec);
504 
change_flags(struct net_device * dev,unsigned long new_flags)505 static int change_flags(struct net_device *dev, unsigned long new_flags)
506 {
507 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
508 }
509 
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)510 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
511 			   const char *buf, size_t len)
512 {
513 	return netdev_store(dev, attr, buf, len, change_flags);
514 }
515 NETDEVICE_SHOW_RW(flags, fmt_hex);
516 
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)517 static ssize_t tx_queue_len_store(struct device *dev,
518 				  struct device_attribute *attr,
519 				  const char *buf, size_t len)
520 {
521 	if (!capable(CAP_NET_ADMIN))
522 		return -EPERM;
523 
524 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
525 }
526 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
527 
change_gro_flush_timeout(struct net_device * dev,unsigned long val)528 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
529 {
530 	netdev_set_gro_flush_timeout(dev, val);
531 	return 0;
532 }
533 
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)534 static ssize_t gro_flush_timeout_store(struct device *dev,
535 				       struct device_attribute *attr,
536 				       const char *buf, size_t len)
537 {
538 	if (!capable(CAP_NET_ADMIN))
539 		return -EPERM;
540 
541 	return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
542 }
543 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
544 
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)545 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
546 {
547 	if (val > S32_MAX)
548 		return -ERANGE;
549 
550 	netdev_set_defer_hard_irqs(dev, (u32)val);
551 	return 0;
552 }
553 
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)554 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
555 					  struct device_attribute *attr,
556 					  const char *buf, size_t len)
557 {
558 	if (!capable(CAP_NET_ADMIN))
559 		return -EPERM;
560 
561 	return netdev_lock_store(dev, attr, buf, len,
562 				 change_napi_defer_hard_irqs);
563 }
564 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
565 
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)566 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
567 			     const char *buf, size_t len)
568 {
569 	struct net_device *netdev = to_net_dev(dev);
570 	struct net *net = dev_net(netdev);
571 	size_t count = len;
572 	ssize_t ret;
573 
574 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
575 		return -EPERM;
576 
577 	/* ignore trailing newline */
578 	if (len >  0 && buf[len - 1] == '\n')
579 		--count;
580 
581 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
582 	if (ret)
583 		return ret;
584 
585 	ret = dev_set_alias(netdev, buf, count);
586 	if (ret < 0)
587 		goto err;
588 	ret = len;
589 	netdev_state_change(netdev);
590 err:
591 	rtnl_unlock();
592 
593 	return ret;
594 }
595 
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t ifalias_show(struct device *dev,
597 			    struct device_attribute *attr, char *buf)
598 {
599 	const struct net_device *netdev = to_net_dev(dev);
600 	char tmp[IFALIASZ];
601 	ssize_t ret;
602 
603 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
604 	if (ret > 0)
605 		ret = sysfs_emit(buf, "%s\n", tmp);
606 	return ret;
607 }
608 static DEVICE_ATTR_RW(ifalias);
609 
change_group(struct net_device * dev,unsigned long new_group)610 static int change_group(struct net_device *dev, unsigned long new_group)
611 {
612 	dev_set_group(dev, (int)new_group);
613 	return 0;
614 }
615 
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)616 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
617 			   const char *buf, size_t len)
618 {
619 	return netdev_store(dev, attr, buf, len, change_group);
620 }
621 NETDEVICE_SHOW(group, fmt_dec);
622 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
623 
change_proto_down(struct net_device * dev,unsigned long proto_down)624 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
625 {
626 	return dev_change_proto_down(dev, (bool)proto_down);
627 }
628 
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)629 static ssize_t proto_down_store(struct device *dev,
630 				struct device_attribute *attr,
631 				const char *buf, size_t len)
632 {
633 	return netdev_store(dev, attr, buf, len, change_proto_down);
634 }
635 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
636 
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t phys_port_id_show(struct device *dev,
638 				 struct device_attribute *attr, char *buf)
639 {
640 	struct net_device *netdev = to_net_dev(dev);
641 	struct netdev_phys_item_id ppid;
642 	ssize_t ret;
643 
644 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
645 	if (ret)
646 		return ret;
647 
648 	ret = dev_get_phys_port_id(netdev, &ppid);
649 	if (!ret)
650 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
651 
652 	rtnl_unlock();
653 
654 	return ret;
655 }
656 static DEVICE_ATTR_RO(phys_port_id);
657 
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)658 static ssize_t phys_port_name_show(struct device *dev,
659 				   struct device_attribute *attr, char *buf)
660 {
661 	struct net_device *netdev = to_net_dev(dev);
662 	char name[IFNAMSIZ];
663 	ssize_t ret;
664 
665 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
666 	if (ret)
667 		return ret;
668 
669 	ret = dev_get_phys_port_name(netdev, name, sizeof(name));
670 	if (!ret)
671 		ret = sysfs_emit(buf, "%s\n", name);
672 
673 	rtnl_unlock();
674 
675 	return ret;
676 }
677 static DEVICE_ATTR_RO(phys_port_name);
678 
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)679 static ssize_t phys_switch_id_show(struct device *dev,
680 				   struct device_attribute *attr, char *buf)
681 {
682 	struct net_device *netdev = to_net_dev(dev);
683 	struct netdev_phys_item_id ppid = { };
684 	ssize_t ret;
685 
686 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
687 	if (ret)
688 		return ret;
689 
690 	ret = netif_get_port_parent_id(netdev, &ppid, false);
691 	if (!ret)
692 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
693 
694 	rtnl_unlock();
695 
696 	return ret;
697 }
698 static DEVICE_ATTR_RO(phys_switch_id);
699 
700 static struct attribute *netdev_phys_attrs[] __ro_after_init = {
701 	&dev_attr_phys_port_id.attr,
702 	&dev_attr_phys_port_name.attr,
703 	&dev_attr_phys_switch_id.attr,
704 	NULL,
705 };
706 
netdev_phys_is_visible(struct kobject * kobj,struct attribute * attr,int index)707 static umode_t netdev_phys_is_visible(struct kobject *kobj,
708 				      struct attribute *attr, int index)
709 {
710 	struct device *dev = kobj_to_dev(kobj);
711 	struct net_device *netdev = to_net_dev(dev);
712 
713 	if (attr == &dev_attr_phys_port_id.attr) {
714 		if (!netdev->netdev_ops->ndo_get_phys_port_id)
715 			return 0;
716 	} else if (attr == &dev_attr_phys_port_name.attr) {
717 		if (!netdev->netdev_ops->ndo_get_phys_port_name &&
718 		    !netdev->devlink_port)
719 			return 0;
720 	} else if (attr == &dev_attr_phys_switch_id.attr) {
721 		if (!netdev->netdev_ops->ndo_get_port_parent_id &&
722 		    !netdev->devlink_port)
723 			return 0;
724 	}
725 
726 	return attr->mode;
727 }
728 
729 static const struct attribute_group netdev_phys_group = {
730 	.attrs = netdev_phys_attrs,
731 	.is_visible = netdev_phys_is_visible,
732 };
733 
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)734 static ssize_t threaded_show(struct device *dev,
735 			     struct device_attribute *attr, char *buf)
736 {
737 	struct net_device *netdev = to_net_dev(dev);
738 	ssize_t ret = -EINVAL;
739 
740 	rcu_read_lock();
741 
742 	if (dev_isalive(netdev))
743 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
744 
745 	rcu_read_unlock();
746 
747 	return ret;
748 }
749 
modify_napi_threaded(struct net_device * dev,unsigned long val)750 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
751 {
752 	int ret;
753 
754 	if (list_empty(&dev->napi_list))
755 		return -EOPNOTSUPP;
756 
757 	if (val != 0 && val != 1)
758 		return -EOPNOTSUPP;
759 
760 	ret = netif_set_threaded(dev, val);
761 
762 	return ret;
763 }
764 
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)765 static ssize_t threaded_store(struct device *dev,
766 			      struct device_attribute *attr,
767 			      const char *buf, size_t len)
768 {
769 	return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
770 }
771 static DEVICE_ATTR_RW(threaded);
772 
773 static struct attribute *net_class_attrs[] __ro_after_init = {
774 	&dev_attr_netdev_group.attr,
775 	&dev_attr_type.attr,
776 	&dev_attr_dev_id.attr,
777 	&dev_attr_dev_port.attr,
778 	&dev_attr_iflink.attr,
779 	&dev_attr_ifindex.attr,
780 	&dev_attr_name_assign_type.attr,
781 	&dev_attr_addr_assign_type.attr,
782 	&dev_attr_addr_len.attr,
783 	&dev_attr_link_mode.attr,
784 	&dev_attr_address.attr,
785 	&dev_attr_broadcast.attr,
786 	&dev_attr_speed.attr,
787 	&dev_attr_duplex.attr,
788 	&dev_attr_dormant.attr,
789 	&dev_attr_testing.attr,
790 	&dev_attr_operstate.attr,
791 	&dev_attr_carrier_changes.attr,
792 	&dev_attr_ifalias.attr,
793 	&dev_attr_carrier.attr,
794 	&dev_attr_mtu.attr,
795 	&dev_attr_flags.attr,
796 	&dev_attr_tx_queue_len.attr,
797 	&dev_attr_gro_flush_timeout.attr,
798 	&dev_attr_napi_defer_hard_irqs.attr,
799 	&dev_attr_proto_down.attr,
800 	&dev_attr_carrier_up_count.attr,
801 	&dev_attr_carrier_down_count.attr,
802 	&dev_attr_threaded.attr,
803 	NULL,
804 };
805 ATTRIBUTE_GROUPS(net_class);
806 
807 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)808 static ssize_t netstat_show(const struct device *d,
809 			    struct device_attribute *attr, char *buf,
810 			    unsigned long offset)
811 {
812 	struct net_device *dev = to_net_dev(d);
813 	ssize_t ret = -EINVAL;
814 
815 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
816 		offset % sizeof(u64) != 0);
817 
818 	rcu_read_lock();
819 	if (dev_isalive(dev)) {
820 		struct rtnl_link_stats64 temp;
821 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
822 
823 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
824 	}
825 	rcu_read_unlock();
826 	return ret;
827 }
828 
829 /* generate a read-only statistics attribute */
830 #define NETSTAT_ENTRY(name)						\
831 static ssize_t name##_show(struct device *d,				\
832 			   struct device_attribute *attr, char *buf)	\
833 {									\
834 	return netstat_show(d, attr, buf,				\
835 			    offsetof(struct rtnl_link_stats64, name));	\
836 }									\
837 static DEVICE_ATTR_RO(name)
838 
839 NETSTAT_ENTRY(rx_packets);
840 NETSTAT_ENTRY(tx_packets);
841 NETSTAT_ENTRY(rx_bytes);
842 NETSTAT_ENTRY(tx_bytes);
843 NETSTAT_ENTRY(rx_errors);
844 NETSTAT_ENTRY(tx_errors);
845 NETSTAT_ENTRY(rx_dropped);
846 NETSTAT_ENTRY(tx_dropped);
847 NETSTAT_ENTRY(multicast);
848 NETSTAT_ENTRY(collisions);
849 NETSTAT_ENTRY(rx_length_errors);
850 NETSTAT_ENTRY(rx_over_errors);
851 NETSTAT_ENTRY(rx_crc_errors);
852 NETSTAT_ENTRY(rx_frame_errors);
853 NETSTAT_ENTRY(rx_fifo_errors);
854 NETSTAT_ENTRY(rx_missed_errors);
855 NETSTAT_ENTRY(tx_aborted_errors);
856 NETSTAT_ENTRY(tx_carrier_errors);
857 NETSTAT_ENTRY(tx_fifo_errors);
858 NETSTAT_ENTRY(tx_heartbeat_errors);
859 NETSTAT_ENTRY(tx_window_errors);
860 NETSTAT_ENTRY(rx_compressed);
861 NETSTAT_ENTRY(tx_compressed);
862 NETSTAT_ENTRY(rx_nohandler);
863 
864 static struct attribute *netstat_attrs[] __ro_after_init = {
865 	&dev_attr_rx_packets.attr,
866 	&dev_attr_tx_packets.attr,
867 	&dev_attr_rx_bytes.attr,
868 	&dev_attr_tx_bytes.attr,
869 	&dev_attr_rx_errors.attr,
870 	&dev_attr_tx_errors.attr,
871 	&dev_attr_rx_dropped.attr,
872 	&dev_attr_tx_dropped.attr,
873 	&dev_attr_multicast.attr,
874 	&dev_attr_collisions.attr,
875 	&dev_attr_rx_length_errors.attr,
876 	&dev_attr_rx_over_errors.attr,
877 	&dev_attr_rx_crc_errors.attr,
878 	&dev_attr_rx_frame_errors.attr,
879 	&dev_attr_rx_fifo_errors.attr,
880 	&dev_attr_rx_missed_errors.attr,
881 	&dev_attr_tx_aborted_errors.attr,
882 	&dev_attr_tx_carrier_errors.attr,
883 	&dev_attr_tx_fifo_errors.attr,
884 	&dev_attr_tx_heartbeat_errors.attr,
885 	&dev_attr_tx_window_errors.attr,
886 	&dev_attr_rx_compressed.attr,
887 	&dev_attr_tx_compressed.attr,
888 	&dev_attr_rx_nohandler.attr,
889 	NULL
890 };
891 
892 static const struct attribute_group netstat_group = {
893 	.name  = "statistics",
894 	.attrs  = netstat_attrs,
895 };
896 
897 static struct attribute *wireless_attrs[] = {
898 	NULL
899 };
900 
901 static const struct attribute_group wireless_group = {
902 	.name = "wireless",
903 	.attrs = wireless_attrs,
904 };
905 
wireless_group_needed(struct net_device * ndev)906 static bool wireless_group_needed(struct net_device *ndev)
907 {
908 #if IS_ENABLED(CONFIG_CFG80211)
909 	if (ndev->ieee80211_ptr)
910 		return true;
911 #endif
912 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
913 	if (ndev->wireless_handlers)
914 		return true;
915 #endif
916 	return false;
917 }
918 
919 #else /* CONFIG_SYSFS */
920 #define net_class_groups	NULL
921 #endif /* CONFIG_SYSFS */
922 
923 #ifdef CONFIG_SYSFS
924 #define to_rx_queue_attr(_attr) \
925 	container_of(_attr, struct rx_queue_attribute, attr)
926 
927 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
928 
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)929 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
930 				  char *buf)
931 {
932 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
933 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
934 
935 	if (!attribute->show)
936 		return -EIO;
937 
938 	return attribute->show(queue, buf);
939 }
940 
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)941 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
942 				   const char *buf, size_t count)
943 {
944 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
945 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
946 
947 	if (!attribute->store)
948 		return -EIO;
949 
950 	return attribute->store(queue, buf, count);
951 }
952 
953 static const struct sysfs_ops rx_queue_sysfs_ops = {
954 	.show = rx_queue_attr_show,
955 	.store = rx_queue_attr_store,
956 };
957 
958 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)959 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
960 {
961 	struct rps_map *map;
962 	cpumask_var_t mask;
963 	int i, len;
964 
965 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
966 		return -ENOMEM;
967 
968 	rcu_read_lock();
969 	map = rcu_dereference(queue->rps_map);
970 	if (map)
971 		for (i = 0; i < map->len; i++)
972 			cpumask_set_cpu(map->cpus[i], mask);
973 
974 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
975 	rcu_read_unlock();
976 	free_cpumask_var(mask);
977 
978 	return len < PAGE_SIZE ? len : -EINVAL;
979 }
980 
netdev_rx_queue_set_rps_mask(struct netdev_rx_queue * queue,cpumask_var_t mask)981 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
982 					cpumask_var_t mask)
983 {
984 	static DEFINE_MUTEX(rps_map_mutex);
985 	struct rps_map *old_map, *map;
986 	int cpu, i;
987 
988 	map = kzalloc(max_t(unsigned int,
989 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
990 		      GFP_KERNEL);
991 	if (!map)
992 		return -ENOMEM;
993 
994 	i = 0;
995 	for_each_cpu_and(cpu, mask, cpu_online_mask)
996 		map->cpus[i++] = cpu;
997 
998 	if (i) {
999 		map->len = i;
1000 	} else {
1001 		kfree(map);
1002 		map = NULL;
1003 	}
1004 
1005 	mutex_lock(&rps_map_mutex);
1006 	old_map = rcu_dereference_protected(queue->rps_map,
1007 					    mutex_is_locked(&rps_map_mutex));
1008 	rcu_assign_pointer(queue->rps_map, map);
1009 
1010 	if (map)
1011 		static_branch_inc(&rps_needed);
1012 	if (old_map)
1013 		static_branch_dec(&rps_needed);
1014 
1015 	mutex_unlock(&rps_map_mutex);
1016 
1017 	if (old_map)
1018 		kfree_rcu(old_map, rcu);
1019 	return 0;
1020 }
1021 
rps_cpumask_housekeeping(struct cpumask * mask)1022 int rps_cpumask_housekeeping(struct cpumask *mask)
1023 {
1024 	if (!cpumask_empty(mask)) {
1025 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1026 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1027 		if (cpumask_empty(mask))
1028 			return -EINVAL;
1029 	}
1030 	return 0;
1031 }
1032 
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)1033 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1034 			     const char *buf, size_t len)
1035 {
1036 	cpumask_var_t mask;
1037 	int err;
1038 
1039 	if (!capable(CAP_NET_ADMIN))
1040 		return -EPERM;
1041 
1042 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1043 		return -ENOMEM;
1044 
1045 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1046 	if (err)
1047 		goto out;
1048 
1049 	err = rps_cpumask_housekeeping(mask);
1050 	if (err)
1051 		goto out;
1052 
1053 	err = netdev_rx_queue_set_rps_mask(queue, mask);
1054 
1055 out:
1056 	free_cpumask_var(mask);
1057 	return err ? : len;
1058 }
1059 
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)1060 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1061 					   char *buf)
1062 {
1063 	struct rps_dev_flow_table *flow_table;
1064 	unsigned long val = 0;
1065 
1066 	rcu_read_lock();
1067 	flow_table = rcu_dereference(queue->rps_flow_table);
1068 	if (flow_table)
1069 		val = 1UL << flow_table->log;
1070 	rcu_read_unlock();
1071 
1072 	return sysfs_emit(buf, "%lu\n", val);
1073 }
1074 
rps_dev_flow_table_release(struct rcu_head * rcu)1075 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1076 {
1077 	struct rps_dev_flow_table *table = container_of(rcu,
1078 	    struct rps_dev_flow_table, rcu);
1079 	vfree(table);
1080 }
1081 
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)1082 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1083 					    const char *buf, size_t len)
1084 {
1085 	unsigned long mask, count;
1086 	struct rps_dev_flow_table *table, *old_table;
1087 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
1088 	int rc;
1089 
1090 	if (!capable(CAP_NET_ADMIN))
1091 		return -EPERM;
1092 
1093 	rc = kstrtoul(buf, 0, &count);
1094 	if (rc < 0)
1095 		return rc;
1096 
1097 	if (count) {
1098 		mask = count - 1;
1099 		/* mask = roundup_pow_of_two(count) - 1;
1100 		 * without overflows...
1101 		 */
1102 		while ((mask | (mask >> 1)) != mask)
1103 			mask |= (mask >> 1);
1104 		/* On 64 bit arches, must check mask fits in table->mask (u32),
1105 		 * and on 32bit arches, must check
1106 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1107 		 */
1108 #if BITS_PER_LONG > 32
1109 		if (mask > (unsigned long)(u32)mask)
1110 			return -EINVAL;
1111 #else
1112 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1113 				/ sizeof(struct rps_dev_flow)) {
1114 			/* Enforce a limit to prevent overflow */
1115 			return -EINVAL;
1116 		}
1117 #endif
1118 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1119 		if (!table)
1120 			return -ENOMEM;
1121 
1122 		table->log = ilog2(mask) + 1;
1123 		for (count = 0; count <= mask; count++)
1124 			table->flows[count].cpu = RPS_NO_CPU;
1125 	} else {
1126 		table = NULL;
1127 	}
1128 
1129 	spin_lock(&rps_dev_flow_lock);
1130 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1131 					      lockdep_is_held(&rps_dev_flow_lock));
1132 	rcu_assign_pointer(queue->rps_flow_table, table);
1133 	spin_unlock(&rps_dev_flow_lock);
1134 
1135 	if (old_table)
1136 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1137 
1138 	return len;
1139 }
1140 
1141 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1142 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1143 
1144 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1145 	= __ATTR(rps_flow_cnt, 0644,
1146 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1147 #endif /* CONFIG_RPS */
1148 
1149 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1150 #ifdef CONFIG_RPS
1151 	&rps_cpus_attribute.attr,
1152 	&rps_dev_flow_table_cnt_attribute.attr,
1153 #endif
1154 	NULL
1155 };
1156 ATTRIBUTE_GROUPS(rx_queue_default);
1157 
rx_queue_release(struct kobject * kobj)1158 static void rx_queue_release(struct kobject *kobj)
1159 {
1160 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1161 #ifdef CONFIG_RPS
1162 	struct rps_map *map;
1163 	struct rps_dev_flow_table *flow_table;
1164 
1165 	map = rcu_dereference_protected(queue->rps_map, 1);
1166 	if (map) {
1167 		RCU_INIT_POINTER(queue->rps_map, NULL);
1168 		kfree_rcu(map, rcu);
1169 	}
1170 
1171 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1172 	if (flow_table) {
1173 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1174 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1175 	}
1176 #endif
1177 
1178 	memset(kobj, 0, sizeof(*kobj));
1179 	netdev_put(queue->dev, &queue->dev_tracker);
1180 }
1181 
rx_queue_namespace(const struct kobject * kobj)1182 static const void *rx_queue_namespace(const struct kobject *kobj)
1183 {
1184 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1185 	struct device *dev = &queue->dev->dev;
1186 	const void *ns = NULL;
1187 
1188 	if (dev->class && dev->class->namespace)
1189 		ns = dev->class->namespace(dev);
1190 
1191 	return ns;
1192 }
1193 
rx_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1194 static void rx_queue_get_ownership(const struct kobject *kobj,
1195 				   kuid_t *uid, kgid_t *gid)
1196 {
1197 	const struct net *net = rx_queue_namespace(kobj);
1198 
1199 	net_ns_get_ownership(net, uid, gid);
1200 }
1201 
1202 static const struct kobj_type rx_queue_ktype = {
1203 	.sysfs_ops = &rx_queue_sysfs_ops,
1204 	.release = rx_queue_release,
1205 	.namespace = rx_queue_namespace,
1206 	.get_ownership = rx_queue_get_ownership,
1207 };
1208 
rx_queue_default_mask(struct net_device * dev,struct netdev_rx_queue * queue)1209 static int rx_queue_default_mask(struct net_device *dev,
1210 				 struct netdev_rx_queue *queue)
1211 {
1212 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1213 	struct cpumask *rps_default_mask;
1214 	int res = 0;
1215 
1216 	mutex_lock(&rps_default_mask_mutex);
1217 
1218 	rps_default_mask = dev_net(dev)->core.rps_default_mask;
1219 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1220 		res = netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1221 
1222 	mutex_unlock(&rps_default_mask_mutex);
1223 
1224 	return res;
1225 #else
1226 	return 0;
1227 #endif
1228 }
1229 
rx_queue_add_kobject(struct net_device * dev,int index)1230 static int rx_queue_add_kobject(struct net_device *dev, int index)
1231 {
1232 	struct netdev_rx_queue *queue = dev->_rx + index;
1233 	struct kobject *kobj = &queue->kobj;
1234 	int error = 0;
1235 
1236 	/* Rx queues are cleared in rx_queue_release to allow later
1237 	 * re-registration. This is triggered when their kobj refcount is
1238 	 * dropped.
1239 	 *
1240 	 * If a queue is removed while both a read (or write) operation and a
1241 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1242 	 * it might happen that the re-addition will execute before the read,
1243 	 * making the initial removal to never happen (queue's kobj refcount
1244 	 * won't drop enough because of the pending read). In such rare case,
1245 	 * return to allow the removal operation to complete.
1246 	 */
1247 	if (unlikely(kobj->state_initialized)) {
1248 		netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1249 		return -EAGAIN;
1250 	}
1251 
1252 	/* Kobject_put later will trigger rx_queue_release call which
1253 	 * decreases dev refcount: Take that reference here
1254 	 */
1255 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1256 
1257 	kobj->kset = dev->queues_kset;
1258 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1259 				     "rx-%u", index);
1260 	if (error)
1261 		goto err;
1262 
1263 	queue->groups = rx_queue_default_groups;
1264 	error = sysfs_create_groups(kobj, queue->groups);
1265 	if (error)
1266 		goto err;
1267 
1268 	if (dev->sysfs_rx_queue_group) {
1269 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1270 		if (error)
1271 			goto err_default_groups;
1272 	}
1273 
1274 	error = rx_queue_default_mask(dev, queue);
1275 	if (error)
1276 		goto err_default_groups;
1277 
1278 	kobject_uevent(kobj, KOBJ_ADD);
1279 
1280 	return error;
1281 
1282 err_default_groups:
1283 	sysfs_remove_groups(kobj, queue->groups);
1284 err:
1285 	kobject_put(kobj);
1286 	return error;
1287 }
1288 
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1289 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1290 				 kgid_t kgid)
1291 {
1292 	struct netdev_rx_queue *queue = dev->_rx + index;
1293 	struct kobject *kobj = &queue->kobj;
1294 	int error;
1295 
1296 	error = sysfs_change_owner(kobj, kuid, kgid);
1297 	if (error)
1298 		return error;
1299 
1300 	if (dev->sysfs_rx_queue_group)
1301 		error = sysfs_group_change_owner(
1302 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1303 
1304 	return error;
1305 }
1306 #endif /* CONFIG_SYSFS */
1307 
1308 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1309 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1310 {
1311 #ifdef CONFIG_SYSFS
1312 	int i;
1313 	int error = 0;
1314 
1315 #ifndef CONFIG_RPS
1316 	if (!dev->sysfs_rx_queue_group)
1317 		return 0;
1318 #endif
1319 	for (i = old_num; i < new_num; i++) {
1320 		error = rx_queue_add_kobject(dev, i);
1321 		if (error) {
1322 			new_num = old_num;
1323 			break;
1324 		}
1325 	}
1326 
1327 	while (--i >= new_num) {
1328 		struct netdev_rx_queue *queue = &dev->_rx[i];
1329 		struct kobject *kobj = &queue->kobj;
1330 
1331 		if (!refcount_read(&dev_net(dev)->ns.count))
1332 			kobj->uevent_suppress = 1;
1333 		if (dev->sysfs_rx_queue_group)
1334 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1335 		sysfs_remove_groups(kobj, queue->groups);
1336 		kobject_put(kobj);
1337 	}
1338 
1339 	return error;
1340 #else
1341 	return 0;
1342 #endif
1343 }
1344 
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1345 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1346 				     kuid_t kuid, kgid_t kgid)
1347 {
1348 #ifdef CONFIG_SYSFS
1349 	int error = 0;
1350 	int i;
1351 
1352 #ifndef CONFIG_RPS
1353 	if (!dev->sysfs_rx_queue_group)
1354 		return 0;
1355 #endif
1356 	for (i = 0; i < num; i++) {
1357 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1358 		if (error)
1359 			break;
1360 	}
1361 
1362 	return error;
1363 #else
1364 	return 0;
1365 #endif
1366 }
1367 
1368 #ifdef CONFIG_SYSFS
1369 /*
1370  * netdev_queue sysfs structures and functions.
1371  */
1372 struct netdev_queue_attribute {
1373 	struct attribute attr;
1374 	ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1375 			struct netdev_queue *queue, char *buf);
1376 	ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1377 			 struct netdev_queue *queue, const char *buf,
1378 			 size_t len);
1379 };
1380 #define to_netdev_queue_attr(_attr) \
1381 	container_of(_attr, struct netdev_queue_attribute, attr)
1382 
1383 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1384 
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1385 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1386 				      struct attribute *attr, char *buf)
1387 {
1388 	const struct netdev_queue_attribute *attribute
1389 		= to_netdev_queue_attr(attr);
1390 	struct netdev_queue *queue = to_netdev_queue(kobj);
1391 
1392 	if (!attribute->show)
1393 		return -EIO;
1394 
1395 	return attribute->show(kobj, attr, queue, buf);
1396 }
1397 
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1398 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1399 				       struct attribute *attr,
1400 				       const char *buf, size_t count)
1401 {
1402 	const struct netdev_queue_attribute *attribute
1403 		= to_netdev_queue_attr(attr);
1404 	struct netdev_queue *queue = to_netdev_queue(kobj);
1405 
1406 	if (!attribute->store)
1407 		return -EIO;
1408 
1409 	return attribute->store(kobj, attr, queue, buf, count);
1410 }
1411 
1412 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1413 	.show = netdev_queue_attr_show,
1414 	.store = netdev_queue_attr_store,
1415 };
1416 
tx_timeout_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1417 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1418 			       struct netdev_queue *queue, char *buf)
1419 {
1420 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1421 
1422 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1423 }
1424 
get_netdev_queue_index(struct netdev_queue * queue)1425 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1426 {
1427 	struct net_device *dev = queue->dev;
1428 	unsigned int i;
1429 
1430 	i = queue - dev->_tx;
1431 	BUG_ON(i >= dev->num_tx_queues);
1432 
1433 	return i;
1434 }
1435 
traffic_class_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1436 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1437 				  struct netdev_queue *queue, char *buf)
1438 {
1439 	struct net_device *dev = queue->dev;
1440 	int num_tc, tc, index, ret;
1441 
1442 	if (!netif_is_multiqueue(dev))
1443 		return -ENOENT;
1444 
1445 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1446 	if (ret)
1447 		return ret;
1448 
1449 	index = get_netdev_queue_index(queue);
1450 
1451 	/* If queue belongs to subordinate dev use its TC mapping */
1452 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1453 
1454 	num_tc = dev->num_tc;
1455 	tc = netdev_txq_to_tc(dev, index);
1456 
1457 	rtnl_unlock();
1458 
1459 	if (tc < 0)
1460 		return -EINVAL;
1461 
1462 	/* We can report the traffic class one of two ways:
1463 	 * Subordinate device traffic classes are reported with the traffic
1464 	 * class first, and then the subordinate class so for example TC0 on
1465 	 * subordinate device 2 will be reported as "0-2". If the queue
1466 	 * belongs to the root device it will be reported with just the
1467 	 * traffic class, so just "0" for TC 0 for example.
1468 	 */
1469 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1470 			    sysfs_emit(buf, "%d\n", tc);
1471 }
1472 
1473 #ifdef CONFIG_XPS
tx_maxrate_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1474 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1475 			       struct netdev_queue *queue, char *buf)
1476 {
1477 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1478 }
1479 
tx_maxrate_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1480 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1481 				struct netdev_queue *queue, const char *buf,
1482 				size_t len)
1483 {
1484 	int err, index = get_netdev_queue_index(queue);
1485 	struct net_device *dev = queue->dev;
1486 	u32 rate = 0;
1487 
1488 	if (!capable(CAP_NET_ADMIN))
1489 		return -EPERM;
1490 
1491 	/* The check is also done later; this helps returning early without
1492 	 * hitting the locking section below.
1493 	 */
1494 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1495 		return -EOPNOTSUPP;
1496 
1497 	err = kstrtou32(buf, 10, &rate);
1498 	if (err < 0)
1499 		return err;
1500 
1501 	err = sysfs_rtnl_lock(kobj, attr, dev);
1502 	if (err)
1503 		return err;
1504 
1505 	err = -EOPNOTSUPP;
1506 	netdev_lock_ops(dev);
1507 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1508 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1509 	netdev_unlock_ops(dev);
1510 
1511 	if (!err) {
1512 		queue->tx_maxrate = rate;
1513 		rtnl_unlock();
1514 		return len;
1515 	}
1516 
1517 	rtnl_unlock();
1518 	return err;
1519 }
1520 
1521 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1522 	= __ATTR_RW(tx_maxrate);
1523 #endif
1524 
1525 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1526 	= __ATTR_RO(tx_timeout);
1527 
1528 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1529 	= __ATTR_RO(traffic_class);
1530 
1531 #ifdef CONFIG_BQL
1532 /*
1533  * Byte queue limits sysfs structures and functions.
1534  */
bql_show(char * buf,unsigned int value)1535 static ssize_t bql_show(char *buf, unsigned int value)
1536 {
1537 	return sysfs_emit(buf, "%u\n", value);
1538 }
1539 
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1540 static ssize_t bql_set(const char *buf, const size_t count,
1541 		       unsigned int *pvalue)
1542 {
1543 	unsigned int value;
1544 	int err;
1545 
1546 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1547 		value = DQL_MAX_LIMIT;
1548 	} else {
1549 		err = kstrtouint(buf, 10, &value);
1550 		if (err < 0)
1551 			return err;
1552 		if (value > DQL_MAX_LIMIT)
1553 			return -EINVAL;
1554 	}
1555 
1556 	*pvalue = value;
1557 
1558 	return count;
1559 }
1560 
bql_show_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1561 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1562 				  struct netdev_queue *queue, char *buf)
1563 {
1564 	struct dql *dql = &queue->dql;
1565 
1566 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1567 }
1568 
bql_set_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1569 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1570 				 struct netdev_queue *queue, const char *buf,
1571 				 size_t len)
1572 {
1573 	struct dql *dql = &queue->dql;
1574 	unsigned int value;
1575 	int err;
1576 
1577 	err = kstrtouint(buf, 10, &value);
1578 	if (err < 0)
1579 		return err;
1580 
1581 	dql->slack_hold_time = msecs_to_jiffies(value);
1582 
1583 	return len;
1584 }
1585 
1586 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1587 	= __ATTR(hold_time, 0644,
1588 		 bql_show_hold_time, bql_set_hold_time);
1589 
bql_show_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1590 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1591 				   struct netdev_queue *queue, char *buf)
1592 {
1593 	struct dql *dql = &queue->dql;
1594 
1595 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1596 }
1597 
bql_set_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1598 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1599 				  struct netdev_queue *queue, const char *buf,
1600 				  size_t len)
1601 {
1602 	struct dql *dql = &queue->dql;
1603 	unsigned int value;
1604 	int err;
1605 
1606 	err = kstrtouint(buf, 10, &value);
1607 	if (err < 0)
1608 		return err;
1609 
1610 	value = msecs_to_jiffies(value);
1611 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1612 		return -ERANGE;
1613 
1614 	if (!dql->stall_thrs && value)
1615 		dql->last_reap = jiffies;
1616 	/* Force last_reap to be live */
1617 	smp_wmb();
1618 	dql->stall_thrs = value;
1619 
1620 	return len;
1621 }
1622 
1623 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1624 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1625 
bql_show_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1626 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1627 				  struct netdev_queue *queue, char *buf)
1628 {
1629 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1630 }
1631 
bql_set_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1632 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1633 				 struct netdev_queue *queue, const char *buf,
1634 				 size_t len)
1635 {
1636 	WRITE_ONCE(queue->dql.stall_max, 0);
1637 	return len;
1638 }
1639 
1640 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1641 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1642 
bql_show_stall_cnt(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1643 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1644 				  struct netdev_queue *queue, char *buf)
1645 {
1646 	struct dql *dql = &queue->dql;
1647 
1648 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1649 }
1650 
1651 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1652 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1653 
bql_show_inflight(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1654 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1655 				 struct netdev_queue *queue, char *buf)
1656 {
1657 	struct dql *dql = &queue->dql;
1658 
1659 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1660 }
1661 
1662 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1663 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1664 
1665 #define BQL_ATTR(NAME, FIELD)						\
1666 static ssize_t bql_show_ ## NAME(struct kobject *kobj,			\
1667 				 struct attribute *attr,		\
1668 				 struct netdev_queue *queue, char *buf)	\
1669 {									\
1670 	return bql_show(buf, queue->dql.FIELD);				\
1671 }									\
1672 									\
1673 static ssize_t bql_set_ ## NAME(struct kobject *kobj,			\
1674 				struct attribute *attr,			\
1675 				struct netdev_queue *queue,		\
1676 				const char *buf, size_t len)		\
1677 {									\
1678 	return bql_set(buf, len, &queue->dql.FIELD);			\
1679 }									\
1680 									\
1681 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1682 	= __ATTR(NAME, 0644,				\
1683 		 bql_show_ ## NAME, bql_set_ ## NAME)
1684 
1685 BQL_ATTR(limit, limit);
1686 BQL_ATTR(limit_max, max_limit);
1687 BQL_ATTR(limit_min, min_limit);
1688 
1689 static struct attribute *dql_attrs[] __ro_after_init = {
1690 	&bql_limit_attribute.attr,
1691 	&bql_limit_max_attribute.attr,
1692 	&bql_limit_min_attribute.attr,
1693 	&bql_hold_time_attribute.attr,
1694 	&bql_inflight_attribute.attr,
1695 	&bql_stall_thrs_attribute.attr,
1696 	&bql_stall_cnt_attribute.attr,
1697 	&bql_stall_max_attribute.attr,
1698 	NULL
1699 };
1700 
1701 static const struct attribute_group dql_group = {
1702 	.name  = "byte_queue_limits",
1703 	.attrs  = dql_attrs,
1704 };
1705 #else
1706 /* Fake declaration, all the code using it should be dead */
1707 static const struct attribute_group dql_group = {};
1708 #endif /* CONFIG_BQL */
1709 
1710 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1711 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1712 			      int tc, char *buf, enum xps_map_type type)
1713 {
1714 	struct xps_dev_maps *dev_maps;
1715 	unsigned long *mask;
1716 	unsigned int nr_ids;
1717 	int j, len;
1718 
1719 	rcu_read_lock();
1720 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1721 
1722 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1723 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1724 	 */
1725 	nr_ids = dev_maps ? dev_maps->nr_ids :
1726 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1727 
1728 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1729 	if (!mask) {
1730 		rcu_read_unlock();
1731 		return -ENOMEM;
1732 	}
1733 
1734 	if (!dev_maps || tc >= dev_maps->num_tc)
1735 		goto out_no_maps;
1736 
1737 	for (j = 0; j < nr_ids; j++) {
1738 		int i, tci = j * dev_maps->num_tc + tc;
1739 		struct xps_map *map;
1740 
1741 		map = rcu_dereference(dev_maps->attr_map[tci]);
1742 		if (!map)
1743 			continue;
1744 
1745 		for (i = map->len; i--;) {
1746 			if (map->queues[i] == index) {
1747 				__set_bit(j, mask);
1748 				break;
1749 			}
1750 		}
1751 	}
1752 out_no_maps:
1753 	rcu_read_unlock();
1754 
1755 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1756 	bitmap_free(mask);
1757 
1758 	return len < PAGE_SIZE ? len : -EINVAL;
1759 }
1760 
xps_cpus_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1761 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1762 			     struct netdev_queue *queue, char *buf)
1763 {
1764 	struct net_device *dev = queue->dev;
1765 	unsigned int index;
1766 	int len, tc, ret;
1767 
1768 	if (!netif_is_multiqueue(dev))
1769 		return -ENOENT;
1770 
1771 	index = get_netdev_queue_index(queue);
1772 
1773 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1774 	if (ret)
1775 		return ret;
1776 
1777 	/* If queue belongs to subordinate dev use its map */
1778 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1779 
1780 	tc = netdev_txq_to_tc(dev, index);
1781 	if (tc < 0) {
1782 		rtnl_unlock();
1783 		return -EINVAL;
1784 	}
1785 
1786 	/* Increase the net device refcnt to make sure it won't be freed while
1787 	 * xps_queue_show is running.
1788 	 */
1789 	dev_hold(dev);
1790 	rtnl_unlock();
1791 
1792 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1793 
1794 	dev_put(dev);
1795 	return len;
1796 }
1797 
xps_cpus_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1798 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1799 			      struct netdev_queue *queue, const char *buf,
1800 			      size_t len)
1801 {
1802 	struct net_device *dev = queue->dev;
1803 	unsigned int index;
1804 	cpumask_var_t mask;
1805 	int err;
1806 
1807 	if (!netif_is_multiqueue(dev))
1808 		return -ENOENT;
1809 
1810 	if (!capable(CAP_NET_ADMIN))
1811 		return -EPERM;
1812 
1813 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1814 		return -ENOMEM;
1815 
1816 	index = get_netdev_queue_index(queue);
1817 
1818 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1819 	if (err) {
1820 		free_cpumask_var(mask);
1821 		return err;
1822 	}
1823 
1824 	err = sysfs_rtnl_lock(kobj, attr, dev);
1825 	if (err) {
1826 		free_cpumask_var(mask);
1827 		return err;
1828 	}
1829 
1830 	err = netif_set_xps_queue(dev, mask, index);
1831 	rtnl_unlock();
1832 
1833 	free_cpumask_var(mask);
1834 
1835 	return err ? : len;
1836 }
1837 
1838 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1839 	= __ATTR_RW(xps_cpus);
1840 
xps_rxqs_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1841 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1842 			     struct netdev_queue *queue, char *buf)
1843 {
1844 	struct net_device *dev = queue->dev;
1845 	unsigned int index;
1846 	int tc, ret;
1847 
1848 	index = get_netdev_queue_index(queue);
1849 
1850 	ret = sysfs_rtnl_lock(kobj, attr, dev);
1851 	if (ret)
1852 		return ret;
1853 
1854 	tc = netdev_txq_to_tc(dev, index);
1855 
1856 	/* Increase the net device refcnt to make sure it won't be freed while
1857 	 * xps_queue_show is running.
1858 	 */
1859 	dev_hold(dev);
1860 	rtnl_unlock();
1861 
1862 	ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1863 	dev_put(dev);
1864 	return ret;
1865 }
1866 
xps_rxqs_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1867 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1868 			      struct netdev_queue *queue, const char *buf,
1869 			      size_t len)
1870 {
1871 	struct net_device *dev = queue->dev;
1872 	struct net *net = dev_net(dev);
1873 	unsigned long *mask;
1874 	unsigned int index;
1875 	int err;
1876 
1877 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1878 		return -EPERM;
1879 
1880 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1881 	if (!mask)
1882 		return -ENOMEM;
1883 
1884 	index = get_netdev_queue_index(queue);
1885 
1886 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1887 	if (err) {
1888 		bitmap_free(mask);
1889 		return err;
1890 	}
1891 
1892 	err = sysfs_rtnl_lock(kobj, attr, dev);
1893 	if (err) {
1894 		bitmap_free(mask);
1895 		return err;
1896 	}
1897 
1898 	cpus_read_lock();
1899 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1900 	cpus_read_unlock();
1901 
1902 	rtnl_unlock();
1903 
1904 	bitmap_free(mask);
1905 	return err ? : len;
1906 }
1907 
1908 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1909 	= __ATTR_RW(xps_rxqs);
1910 #endif /* CONFIG_XPS */
1911 
1912 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1913 	&queue_trans_timeout.attr,
1914 	&queue_traffic_class.attr,
1915 #ifdef CONFIG_XPS
1916 	&xps_cpus_attribute.attr,
1917 	&xps_rxqs_attribute.attr,
1918 	&queue_tx_maxrate.attr,
1919 #endif
1920 	NULL
1921 };
1922 ATTRIBUTE_GROUPS(netdev_queue_default);
1923 
netdev_queue_release(struct kobject * kobj)1924 static void netdev_queue_release(struct kobject *kobj)
1925 {
1926 	struct netdev_queue *queue = to_netdev_queue(kobj);
1927 
1928 	memset(kobj, 0, sizeof(*kobj));
1929 	netdev_put(queue->dev, &queue->dev_tracker);
1930 }
1931 
netdev_queue_namespace(const struct kobject * kobj)1932 static const void *netdev_queue_namespace(const struct kobject *kobj)
1933 {
1934 	struct netdev_queue *queue = to_netdev_queue(kobj);
1935 	struct device *dev = &queue->dev->dev;
1936 	const void *ns = NULL;
1937 
1938 	if (dev->class && dev->class->namespace)
1939 		ns = dev->class->namespace(dev);
1940 
1941 	return ns;
1942 }
1943 
netdev_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1944 static void netdev_queue_get_ownership(const struct kobject *kobj,
1945 				       kuid_t *uid, kgid_t *gid)
1946 {
1947 	const struct net *net = netdev_queue_namespace(kobj);
1948 
1949 	net_ns_get_ownership(net, uid, gid);
1950 }
1951 
1952 static const struct kobj_type netdev_queue_ktype = {
1953 	.sysfs_ops = &netdev_queue_sysfs_ops,
1954 	.release = netdev_queue_release,
1955 	.namespace = netdev_queue_namespace,
1956 	.get_ownership = netdev_queue_get_ownership,
1957 };
1958 
netdev_uses_bql(const struct net_device * dev)1959 static bool netdev_uses_bql(const struct net_device *dev)
1960 {
1961 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1962 		return false;
1963 
1964 	return IS_ENABLED(CONFIG_BQL);
1965 }
1966 
netdev_queue_add_kobject(struct net_device * dev,int index)1967 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1968 {
1969 	struct netdev_queue *queue = dev->_tx + index;
1970 	struct kobject *kobj = &queue->kobj;
1971 	int error = 0;
1972 
1973 	/* Tx queues are cleared in netdev_queue_release to allow later
1974 	 * re-registration. This is triggered when their kobj refcount is
1975 	 * dropped.
1976 	 *
1977 	 * If a queue is removed while both a read (or write) operation and a
1978 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1979 	 * it might happen that the re-addition will execute before the read,
1980 	 * making the initial removal to never happen (queue's kobj refcount
1981 	 * won't drop enough because of the pending read). In such rare case,
1982 	 * return to allow the removal operation to complete.
1983 	 */
1984 	if (unlikely(kobj->state_initialized)) {
1985 		netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1986 		return -EAGAIN;
1987 	}
1988 
1989 	/* Kobject_put later will trigger netdev_queue_release call
1990 	 * which decreases dev refcount: Take that reference here
1991 	 */
1992 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1993 
1994 	kobj->kset = dev->queues_kset;
1995 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1996 				     "tx-%u", index);
1997 	if (error)
1998 		goto err;
1999 
2000 	queue->groups = netdev_queue_default_groups;
2001 	error = sysfs_create_groups(kobj, queue->groups);
2002 	if (error)
2003 		goto err;
2004 
2005 	if (netdev_uses_bql(dev)) {
2006 		error = sysfs_create_group(kobj, &dql_group);
2007 		if (error)
2008 			goto err_default_groups;
2009 	}
2010 
2011 	kobject_uevent(kobj, KOBJ_ADD);
2012 	return 0;
2013 
2014 err_default_groups:
2015 	sysfs_remove_groups(kobj, queue->groups);
2016 err:
2017 	kobject_put(kobj);
2018 	return error;
2019 }
2020 
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)2021 static int tx_queue_change_owner(struct net_device *ndev, int index,
2022 				 kuid_t kuid, kgid_t kgid)
2023 {
2024 	struct netdev_queue *queue = ndev->_tx + index;
2025 	struct kobject *kobj = &queue->kobj;
2026 	int error;
2027 
2028 	error = sysfs_change_owner(kobj, kuid, kgid);
2029 	if (error)
2030 		return error;
2031 
2032 	if (netdev_uses_bql(ndev))
2033 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2034 
2035 	return error;
2036 }
2037 #endif /* CONFIG_SYSFS */
2038 
2039 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)2040 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2041 {
2042 #ifdef CONFIG_SYSFS
2043 	int i;
2044 	int error = 0;
2045 
2046 	/* Tx queue kobjects are allowed to be updated when a device is being
2047 	 * unregistered, but solely to remove queues from qdiscs. Any path
2048 	 * adding queues should be fixed.
2049 	 */
2050 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2051 	     "New queues can't be registered after device unregistration.");
2052 
2053 	for (i = old_num; i < new_num; i++) {
2054 		error = netdev_queue_add_kobject(dev, i);
2055 		if (error) {
2056 			new_num = old_num;
2057 			break;
2058 		}
2059 	}
2060 
2061 	while (--i >= new_num) {
2062 		struct netdev_queue *queue = dev->_tx + i;
2063 
2064 		if (!refcount_read(&dev_net(dev)->ns.count))
2065 			queue->kobj.uevent_suppress = 1;
2066 
2067 		if (netdev_uses_bql(dev))
2068 			sysfs_remove_group(&queue->kobj, &dql_group);
2069 
2070 		sysfs_remove_groups(&queue->kobj, queue->groups);
2071 		kobject_put(&queue->kobj);
2072 	}
2073 
2074 	return error;
2075 #else
2076 	return 0;
2077 #endif /* CONFIG_SYSFS */
2078 }
2079 
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)2080 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2081 				     kuid_t kuid, kgid_t kgid)
2082 {
2083 #ifdef CONFIG_SYSFS
2084 	int error = 0;
2085 	int i;
2086 
2087 	for (i = 0; i < num; i++) {
2088 		error = tx_queue_change_owner(dev, i, kuid, kgid);
2089 		if (error)
2090 			break;
2091 	}
2092 
2093 	return error;
2094 #else
2095 	return 0;
2096 #endif /* CONFIG_SYSFS */
2097 }
2098 
register_queue_kobjects(struct net_device * dev)2099 static int register_queue_kobjects(struct net_device *dev)
2100 {
2101 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2102 
2103 #ifdef CONFIG_SYSFS
2104 	dev->queues_kset = kset_create_and_add("queues",
2105 					       NULL, &dev->dev.kobj);
2106 	if (!dev->queues_kset)
2107 		return -ENOMEM;
2108 	real_rx = dev->real_num_rx_queues;
2109 #endif
2110 	real_tx = dev->real_num_tx_queues;
2111 
2112 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2113 	if (error)
2114 		goto error;
2115 	rxq = real_rx;
2116 
2117 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
2118 	if (error)
2119 		goto error;
2120 	txq = real_tx;
2121 
2122 	return 0;
2123 
2124 error:
2125 	netdev_queue_update_kobjects(dev, txq, 0);
2126 	net_rx_queue_update_kobjects(dev, rxq, 0);
2127 #ifdef CONFIG_SYSFS
2128 	kset_unregister(dev->queues_kset);
2129 #endif
2130 	return error;
2131 }
2132 
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)2133 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2134 {
2135 	int error = 0, real_rx = 0, real_tx = 0;
2136 
2137 #ifdef CONFIG_SYSFS
2138 	if (ndev->queues_kset) {
2139 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2140 		if (error)
2141 			return error;
2142 	}
2143 	real_rx = ndev->real_num_rx_queues;
2144 #endif
2145 	real_tx = ndev->real_num_tx_queues;
2146 
2147 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2148 	if (error)
2149 		return error;
2150 
2151 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2152 	if (error)
2153 		return error;
2154 
2155 	return 0;
2156 }
2157 
remove_queue_kobjects(struct net_device * dev)2158 static void remove_queue_kobjects(struct net_device *dev)
2159 {
2160 	int real_rx = 0, real_tx = 0;
2161 
2162 #ifdef CONFIG_SYSFS
2163 	real_rx = dev->real_num_rx_queues;
2164 #endif
2165 	real_tx = dev->real_num_tx_queues;
2166 
2167 	net_rx_queue_update_kobjects(dev, real_rx, 0);
2168 	netdev_queue_update_kobjects(dev, real_tx, 0);
2169 
2170 	netdev_lock_ops(dev);
2171 	dev->real_num_rx_queues = 0;
2172 	dev->real_num_tx_queues = 0;
2173 	netdev_unlock_ops(dev);
2174 #ifdef CONFIG_SYSFS
2175 	kset_unregister(dev->queues_kset);
2176 #endif
2177 }
2178 
net_current_may_mount(void)2179 static bool net_current_may_mount(void)
2180 {
2181 	struct net *net = current->nsproxy->net_ns;
2182 
2183 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2184 }
2185 
net_grab_current_ns(void)2186 static void *net_grab_current_ns(void)
2187 {
2188 	struct net *ns = current->nsproxy->net_ns;
2189 #ifdef CONFIG_NET_NS
2190 	if (ns)
2191 		refcount_inc(&ns->passive);
2192 #endif
2193 	return ns;
2194 }
2195 
net_initial_ns(void)2196 static const void *net_initial_ns(void)
2197 {
2198 	return &init_net;
2199 }
2200 
net_netlink_ns(struct sock * sk)2201 static const void *net_netlink_ns(struct sock *sk)
2202 {
2203 	return sock_net(sk);
2204 }
2205 
2206 const struct kobj_ns_type_operations net_ns_type_operations = {
2207 	.type = KOBJ_NS_TYPE_NET,
2208 	.current_may_mount = net_current_may_mount,
2209 	.grab_current_ns = net_grab_current_ns,
2210 	.netlink_ns = net_netlink_ns,
2211 	.initial_ns = net_initial_ns,
2212 	.drop_ns = net_drop_ns,
2213 };
2214 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2215 
netdev_uevent(const struct device * d,struct kobj_uevent_env * env)2216 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2217 {
2218 	const struct net_device *dev = to_net_dev(d);
2219 	int retval;
2220 
2221 	/* pass interface to uevent. */
2222 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2223 	if (retval)
2224 		goto exit;
2225 
2226 	/* pass ifindex to uevent.
2227 	 * ifindex is useful as it won't change (interface name may change)
2228 	 * and is what RtNetlink uses natively.
2229 	 */
2230 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2231 
2232 exit:
2233 	return retval;
2234 }
2235 
2236 /*
2237  *	netdev_release -- destroy and free a dead device.
2238  *	Called when last reference to device kobject is gone.
2239  */
netdev_release(struct device * d)2240 static void netdev_release(struct device *d)
2241 {
2242 	struct net_device *dev = to_net_dev(d);
2243 
2244 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2245 
2246 	/* no need to wait for rcu grace period:
2247 	 * device is dead and about to be freed.
2248 	 */
2249 	kfree(rcu_access_pointer(dev->ifalias));
2250 	kvfree(dev);
2251 }
2252 
net_namespace(const struct device * d)2253 static const void *net_namespace(const struct device *d)
2254 {
2255 	const struct net_device *dev = to_net_dev(d);
2256 
2257 	return dev_net(dev);
2258 }
2259 
net_get_ownership(const struct device * d,kuid_t * uid,kgid_t * gid)2260 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2261 {
2262 	const struct net_device *dev = to_net_dev(d);
2263 	const struct net *net = dev_net(dev);
2264 
2265 	net_ns_get_ownership(net, uid, gid);
2266 }
2267 
2268 static const struct class net_class = {
2269 	.name = "net",
2270 	.dev_release = netdev_release,
2271 	.dev_groups = net_class_groups,
2272 	.dev_uevent = netdev_uevent,
2273 	.ns_type = &net_ns_type_operations,
2274 	.namespace = net_namespace,
2275 	.get_ownership = net_get_ownership,
2276 };
2277 
2278 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)2279 static int of_dev_node_match(struct device *dev, const void *data)
2280 {
2281 	for (; dev; dev = dev->parent) {
2282 		if (dev->of_node == data)
2283 			return 1;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * of_find_net_device_by_node - lookup the net device for the device node
2291  * @np: OF device node
2292  *
2293  * Looks up the net_device structure corresponding with the device node.
2294  * If successful, returns a pointer to the net_device with the embedded
2295  * struct device refcount incremented by one, or NULL on failure. The
2296  * refcount must be dropped when done with the net_device.
2297  */
of_find_net_device_by_node(struct device_node * np)2298 struct net_device *of_find_net_device_by_node(struct device_node *np)
2299 {
2300 	struct device *dev;
2301 
2302 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2303 	if (!dev)
2304 		return NULL;
2305 
2306 	return to_net_dev(dev);
2307 }
2308 EXPORT_SYMBOL(of_find_net_device_by_node);
2309 #endif
2310 
2311 /* Delete sysfs entries but hold kobject reference until after all
2312  * netdev references are gone.
2313  */
netdev_unregister_kobject(struct net_device * ndev)2314 void netdev_unregister_kobject(struct net_device *ndev)
2315 {
2316 	struct device *dev = &ndev->dev;
2317 
2318 	if (!refcount_read(&dev_net(ndev)->ns.count))
2319 		dev_set_uevent_suppress(dev, 1);
2320 
2321 	kobject_get(&dev->kobj);
2322 
2323 	remove_queue_kobjects(ndev);
2324 
2325 	pm_runtime_set_memalloc_noio(dev, false);
2326 
2327 	device_del(dev);
2328 }
2329 
2330 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)2331 int netdev_register_kobject(struct net_device *ndev)
2332 {
2333 	struct device *dev = &ndev->dev;
2334 	const struct attribute_group **groups = ndev->sysfs_groups;
2335 	int error = 0;
2336 
2337 	device_initialize(dev);
2338 	dev->class = &net_class;
2339 	dev->platform_data = ndev;
2340 	dev->groups = groups;
2341 
2342 	dev_set_name(dev, "%s", ndev->name);
2343 
2344 #ifdef CONFIG_SYSFS
2345 	/* Allow for a device specific group */
2346 	if (*groups)
2347 		groups++;
2348 
2349 	*groups++ = &netstat_group;
2350 	*groups++ = &netdev_phys_group;
2351 
2352 	if (wireless_group_needed(ndev))
2353 		*groups++ = &wireless_group;
2354 #endif /* CONFIG_SYSFS */
2355 
2356 	error = device_add(dev);
2357 	if (error)
2358 		return error;
2359 
2360 	error = register_queue_kobjects(ndev);
2361 	if (error) {
2362 		device_del(dev);
2363 		return error;
2364 	}
2365 
2366 	pm_runtime_set_memalloc_noio(dev, true);
2367 
2368 	return error;
2369 }
2370 
2371 /* Change owner for sysfs entries when moving network devices across network
2372  * namespaces owned by different user namespaces.
2373  */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2374 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2375 			const struct net *net_new)
2376 {
2377 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2378 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2379 	struct device *dev = &ndev->dev;
2380 	int error;
2381 
2382 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2383 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2384 
2385 	/* The network namespace was changed but the owning user namespace is
2386 	 * identical so there's no need to change the owner of sysfs entries.
2387 	 */
2388 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2389 		return 0;
2390 
2391 	error = device_change_owner(dev, new_uid, new_gid);
2392 	if (error)
2393 		return error;
2394 
2395 	error = queue_change_owner(ndev, new_uid, new_gid);
2396 	if (error)
2397 		return error;
2398 
2399 	return 0;
2400 }
2401 
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2402 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2403 				const void *ns)
2404 {
2405 	return class_create_file_ns(&net_class, class_attr, ns);
2406 }
2407 EXPORT_SYMBOL(netdev_class_create_file_ns);
2408 
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2409 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2410 				 const void *ns)
2411 {
2412 	class_remove_file_ns(&net_class, class_attr, ns);
2413 }
2414 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2415 
netdev_kobject_init(void)2416 int __init netdev_kobject_init(void)
2417 {
2418 	kobj_ns_type_register(&net_ns_type_operations);
2419 	return class_register(&net_class);
2420 }
2421