1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/falloc.h>
8 #include <linux/fs.h>
9 #include <linux/file.h>
10 #include <linux/sort.h>
11 #include <linux/mount.h>
12 #include <linux/xattr.h>
13 #include <linux/posix_acl_xattr.h>
14 #include <linux/radix-tree.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/compat.h>
18 #include <linux/crc32c.h>
19 #include <linux/fsverity.h>
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35
36 /*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42 #define SEND_MAX_EXTENT_REFS 1024
43
44 /*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51 struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * an allocation later during send.
66 */
67 char pad[256];
68 };
69 };
70 #define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74 /* reused for each extent */
75 struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81 };
82
83 #define SEND_MAX_NAME_CACHE_SIZE 256
84
85 /*
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
93 */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
95
96 /*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
100 */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103 /*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109 struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
113 int num_roots;
114 };
115
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118
119 /*
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124 */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
126
127 /*
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132 */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
134
135 struct send_ctx {
136 struct file *send_filp;
137 loff_t send_off;
138 char *send_buf;
139 u32 send_size;
140 u32 send_max_size;
141 /*
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
144 */
145 bool put_data;
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
149 u32 proto;
150
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
154 int clone_roots_cnt;
155
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
160
161 /*
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
167 */
168 u64 last_reloc_trans;
169
170 /*
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
173 */
174 u64 cur_ino;
175 u64 cur_inode_gen;
176 u64 cur_inode_size;
177 u64 cur_inode_mode;
178 u64 cur_inode_rdev;
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
181 struct fs_path cur_inode_path;
182 bool cur_inode_new;
183 bool cur_inode_new_gen;
184 bool cur_inode_deleted;
185 bool ignore_cur_inode;
186 bool cur_inode_needs_verity;
187 void *verity_descriptor;
188
189 u64 send_progress;
190
191 struct list_head new_refs;
192 struct list_head deleted_refs;
193
194 struct btrfs_lru_cache name_cache;
195
196 /*
197 * The inode we are currently processing. It's not NULL only when we
198 * need to issue write commands for data extents from this inode.
199 */
200 struct inode *cur_inode;
201 struct file_ra_state ra;
202 u64 page_cache_clear_start;
203 bool clean_page_cache;
204
205 /*
206 * We process inodes by their increasing order, so if before an
207 * incremental send we reverse the parent/child relationship of
208 * directories such that a directory with a lower inode number was
209 * the parent of a directory with a higher inode number, and the one
210 * becoming the new parent got renamed too, we can't rename/move the
211 * directory with lower inode number when we finish processing it - we
212 * must process the directory with higher inode number first, then
213 * rename/move it and then rename/move the directory with lower inode
214 * number. Example follows.
215 *
216 * Tree state when the first send was performed:
217 *
218 * .
219 * |-- a (ino 257)
220 * |-- b (ino 258)
221 * |
222 * |
223 * |-- c (ino 259)
224 * | |-- d (ino 260)
225 * |
226 * |-- c2 (ino 261)
227 *
228 * Tree state when the second (incremental) send is performed:
229 *
230 * .
231 * |-- a (ino 257)
232 * |-- b (ino 258)
233 * |-- c2 (ino 261)
234 * |-- d2 (ino 260)
235 * |-- cc (ino 259)
236 *
237 * The sequence of steps that lead to the second state was:
238 *
239 * mv /a/b/c/d /a/b/c2/d2
240 * mv /a/b/c /a/b/c2/d2/cc
241 *
242 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 * before we move "d", which has higher inode number.
244 *
245 * So we just memorize which move/rename operations must be performed
246 * later when their respective parent is processed and moved/renamed.
247 */
248
249 /* Indexed by parent directory inode number. */
250 struct rb_root pending_dir_moves;
251
252 /*
253 * Reverse index, indexed by the inode number of a directory that
254 * is waiting for the move/rename of its immediate parent before its
255 * own move/rename can be performed.
256 */
257 struct rb_root waiting_dir_moves;
258
259 /*
260 * A directory that is going to be rm'ed might have a child directory
261 * which is in the pending directory moves index above. In this case,
262 * the directory can only be removed after the move/rename of its child
263 * is performed. Example:
264 *
265 * Parent snapshot:
266 *
267 * . (ino 256)
268 * |-- a/ (ino 257)
269 * |-- b/ (ino 258)
270 * |-- c/ (ino 259)
271 * | |-- x/ (ino 260)
272 * |
273 * |-- y/ (ino 261)
274 *
275 * Send snapshot:
276 *
277 * . (ino 256)
278 * |-- a/ (ino 257)
279 * |-- b/ (ino 258)
280 * |-- YY/ (ino 261)
281 * |-- x/ (ino 260)
282 *
283 * Sequence of steps that lead to the send snapshot:
284 * rm -f /a/b/c/foo.txt
285 * mv /a/b/y /a/b/YY
286 * mv /a/b/c/x /a/b/YY
287 * rmdir /a/b/c
288 *
289 * When the child is processed, its move/rename is delayed until its
290 * parent is processed (as explained above), but all other operations
291 * like update utimes, chown, chgrp, etc, are performed and the paths
292 * that it uses for those operations must use the orphanized name of
293 * its parent (the directory we're going to rm later), so we need to
294 * memorize that name.
295 *
296 * Indexed by the inode number of the directory to be deleted.
297 */
298 struct rb_root orphan_dirs;
299
300 struct rb_root rbtree_new_refs;
301 struct rb_root rbtree_deleted_refs;
302
303 struct btrfs_lru_cache backref_cache;
304 u64 backref_cache_last_reloc_trans;
305
306 struct btrfs_lru_cache dir_created_cache;
307 struct btrfs_lru_cache dir_utimes_cache;
308 };
309
310 struct pending_dir_move {
311 struct rb_node node;
312 struct list_head list;
313 u64 parent_ino;
314 u64 ino;
315 u64 gen;
316 struct list_head update_refs;
317 };
318
319 struct waiting_dir_move {
320 struct rb_node node;
321 u64 ino;
322 /*
323 * There might be some directory that could not be removed because it
324 * was waiting for this directory inode to be moved first. Therefore
325 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 */
327 u64 rmdir_ino;
328 u64 rmdir_gen;
329 bool orphanized;
330 };
331
332 struct orphan_dir_info {
333 struct rb_node node;
334 u64 ino;
335 u64 gen;
336 u64 last_dir_index_offset;
337 u64 dir_high_seq_ino;
338 };
339
340 struct name_cache_entry {
341 /*
342 * The key in the entry is an inode number, and the generation matches
343 * the inode's generation.
344 */
345 struct btrfs_lru_cache_entry entry;
346 u64 parent_ino;
347 u64 parent_gen;
348 int ret;
349 int need_later_update;
350 /* Name length without NUL terminator. */
351 int name_len;
352 /* Not NUL terminated. */
353 char name[] __counted_by(name_len) __nonstring;
354 };
355
356 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
357 static_assert(offsetof(struct name_cache_entry, entry) == 0);
358
359 #define ADVANCE 1
360 #define ADVANCE_ONLY_NEXT -1
361
362 enum btrfs_compare_tree_result {
363 BTRFS_COMPARE_TREE_NEW,
364 BTRFS_COMPARE_TREE_DELETED,
365 BTRFS_COMPARE_TREE_CHANGED,
366 BTRFS_COMPARE_TREE_SAME,
367 };
368
369 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)370 static void inconsistent_snapshot_error(struct send_ctx *sctx,
371 enum btrfs_compare_tree_result result,
372 const char *what)
373 {
374 const char *result_string;
375
376 switch (result) {
377 case BTRFS_COMPARE_TREE_NEW:
378 result_string = "new";
379 break;
380 case BTRFS_COMPARE_TREE_DELETED:
381 result_string = "deleted";
382 break;
383 case BTRFS_COMPARE_TREE_CHANGED:
384 result_string = "updated";
385 break;
386 case BTRFS_COMPARE_TREE_SAME:
387 DEBUG_WARN("no change between trees");
388 result_string = "unchanged";
389 break;
390 default:
391 DEBUG_WARN("unexpected comparison result %d", result);
392 result_string = "unexpected";
393 }
394
395 btrfs_err(sctx->send_root->fs_info,
396 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
397 result_string, what, sctx->cmp_key->objectid,
398 btrfs_root_id(sctx->send_root),
399 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
400 }
401
402 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)403 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
404 {
405 switch (sctx->proto) {
406 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
407 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
408 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
409 default: return false;
410 }
411 }
412
413 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
414
415 static struct waiting_dir_move *
416 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
417
418 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
419
need_send_hole(struct send_ctx * sctx)420 static int need_send_hole(struct send_ctx *sctx)
421 {
422 return (sctx->parent_root && !sctx->cur_inode_new &&
423 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
424 S_ISREG(sctx->cur_inode_mode));
425 }
426
fs_path_reset(struct fs_path * p)427 static void fs_path_reset(struct fs_path *p)
428 {
429 if (p->reversed)
430 p->start = p->buf + p->buf_len - 1;
431 else
432 p->start = p->buf;
433
434 p->end = p->start;
435 *p->start = 0;
436 }
437
init_path(struct fs_path * p)438 static void init_path(struct fs_path *p)
439 {
440 p->reversed = 0;
441 p->buf = p->inline_buf;
442 p->buf_len = FS_PATH_INLINE_SIZE;
443 fs_path_reset(p);
444 }
445
fs_path_alloc(void)446 static struct fs_path *fs_path_alloc(void)
447 {
448 struct fs_path *p;
449
450 p = kmalloc(sizeof(*p), GFP_KERNEL);
451 if (!p)
452 return NULL;
453 init_path(p);
454 return p;
455 }
456
fs_path_alloc_reversed(void)457 static struct fs_path *fs_path_alloc_reversed(void)
458 {
459 struct fs_path *p;
460
461 p = fs_path_alloc();
462 if (!p)
463 return NULL;
464 p->reversed = 1;
465 fs_path_reset(p);
466 return p;
467 }
468
fs_path_free(struct fs_path * p)469 static void fs_path_free(struct fs_path *p)
470 {
471 if (!p)
472 return;
473 if (p->buf != p->inline_buf)
474 kfree(p->buf);
475 kfree(p);
476 }
477
fs_path_len(const struct fs_path * p)478 static inline int fs_path_len(const struct fs_path *p)
479 {
480 return p->end - p->start;
481 }
482
fs_path_ensure_buf(struct fs_path * p,int len)483 static int fs_path_ensure_buf(struct fs_path *p, int len)
484 {
485 char *tmp_buf;
486 int path_len;
487 int old_buf_len;
488
489 len++;
490
491 if (p->buf_len >= len)
492 return 0;
493
494 if (WARN_ON(len > PATH_MAX))
495 return -ENAMETOOLONG;
496
497 path_len = fs_path_len(p);
498 old_buf_len = p->buf_len;
499
500 /*
501 * Allocate to the next largest kmalloc bucket size, to let
502 * the fast path happen most of the time.
503 */
504 len = kmalloc_size_roundup(len);
505 /*
506 * First time the inline_buf does not suffice
507 */
508 if (p->buf == p->inline_buf) {
509 tmp_buf = kmalloc(len, GFP_KERNEL);
510 if (tmp_buf)
511 memcpy(tmp_buf, p->buf, old_buf_len);
512 } else {
513 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
514 }
515 if (!tmp_buf)
516 return -ENOMEM;
517 p->buf = tmp_buf;
518 p->buf_len = len;
519
520 if (p->reversed) {
521 tmp_buf = p->buf + old_buf_len - path_len - 1;
522 p->end = p->buf + p->buf_len - 1;
523 p->start = p->end - path_len;
524 memmove(p->start, tmp_buf, path_len + 1);
525 } else {
526 p->start = p->buf;
527 p->end = p->start + path_len;
528 }
529 return 0;
530 }
531
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)532 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
533 char **prepared)
534 {
535 int ret;
536 int new_len;
537
538 new_len = fs_path_len(p) + name_len;
539 if (p->start != p->end)
540 new_len++;
541 ret = fs_path_ensure_buf(p, new_len);
542 if (ret < 0)
543 return ret;
544
545 if (p->reversed) {
546 if (p->start != p->end)
547 *--p->start = '/';
548 p->start -= name_len;
549 *prepared = p->start;
550 } else {
551 if (p->start != p->end)
552 *p->end++ = '/';
553 *prepared = p->end;
554 p->end += name_len;
555 *p->end = 0;
556 }
557
558 return 0;
559 }
560
fs_path_add(struct fs_path * p,const char * name,int name_len)561 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
562 {
563 int ret;
564 char *prepared;
565
566 ret = fs_path_prepare_for_add(p, name_len, &prepared);
567 if (ret < 0)
568 return ret;
569 memcpy(prepared, name, name_len);
570
571 return 0;
572 }
573
fs_path_add_path(struct fs_path * p,const struct fs_path * p2)574 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2)
575 {
576 return fs_path_add(p, p2->start, fs_path_len(p2));
577 }
578
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)579 static int fs_path_add_from_extent_buffer(struct fs_path *p,
580 struct extent_buffer *eb,
581 unsigned long off, int len)
582 {
583 int ret;
584 char *prepared;
585
586 ret = fs_path_prepare_for_add(p, len, &prepared);
587 if (ret < 0)
588 return ret;
589
590 read_extent_buffer(eb, prepared, off, len);
591
592 return 0;
593 }
594
fs_path_copy(struct fs_path * p,struct fs_path * from)595 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
596 {
597 p->reversed = from->reversed;
598 fs_path_reset(p);
599
600 return fs_path_add_path(p, from);
601 }
602
fs_path_unreverse(struct fs_path * p)603 static void fs_path_unreverse(struct fs_path *p)
604 {
605 char *tmp;
606 int len;
607
608 if (!p->reversed)
609 return;
610
611 tmp = p->start;
612 len = fs_path_len(p);
613 p->start = p->buf;
614 p->end = p->start + len;
615 memmove(p->start, tmp, len + 1);
616 p->reversed = 0;
617 }
618
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)619 static inline bool is_current_inode_path(const struct send_ctx *sctx,
620 const struct fs_path *path)
621 {
622 const struct fs_path *cur = &sctx->cur_inode_path;
623
624 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
625 }
626
alloc_path_for_send(void)627 static struct btrfs_path *alloc_path_for_send(void)
628 {
629 struct btrfs_path *path;
630
631 path = btrfs_alloc_path();
632 if (!path)
633 return NULL;
634 path->search_commit_root = 1;
635 path->skip_locking = 1;
636 path->need_commit_sem = 1;
637 return path;
638 }
639
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
641 {
642 int ret;
643 u32 pos = 0;
644
645 while (pos < len) {
646 ret = kernel_write(filp, buf + pos, len - pos, off);
647 if (ret < 0)
648 return ret;
649 if (ret == 0)
650 return -EIO;
651 pos += ret;
652 }
653
654 return 0;
655 }
656
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
658 {
659 struct btrfs_tlv_header *hdr;
660 int total_len = sizeof(*hdr) + len;
661 int left = sctx->send_max_size - sctx->send_size;
662
663 if (WARN_ON_ONCE(sctx->put_data))
664 return -EINVAL;
665
666 if (unlikely(left < total_len))
667 return -EOVERFLOW;
668
669 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
670 put_unaligned_le16(attr, &hdr->tlv_type);
671 put_unaligned_le16(len, &hdr->tlv_len);
672 memcpy(hdr + 1, data, len);
673 sctx->send_size += total_len;
674
675 return 0;
676 }
677
678 #define TLV_PUT_DEFINE_INT(bits) \
679 static int tlv_put_u##bits(struct send_ctx *sctx, \
680 u##bits attr, u##bits value) \
681 { \
682 __le##bits __tmp = cpu_to_le##bits(value); \
683 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
684 }
685
686 TLV_PUT_DEFINE_INT(8)
687 TLV_PUT_DEFINE_INT(32)
688 TLV_PUT_DEFINE_INT(64)
689
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)690 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
691 const char *str, int len)
692 {
693 if (len == -1)
694 len = strlen(str);
695 return tlv_put(sctx, attr, str, len);
696 }
697
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
699 const u8 *uuid)
700 {
701 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
702 }
703
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
705 struct extent_buffer *eb,
706 struct btrfs_timespec *ts)
707 {
708 struct btrfs_timespec bts;
709 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
710 return tlv_put(sctx, attr, &bts, sizeof(bts));
711 }
712
713
714 #define TLV_PUT(sctx, attrtype, data, attrlen) \
715 do { \
716 ret = tlv_put(sctx, attrtype, data, attrlen); \
717 if (ret < 0) \
718 goto tlv_put_failure; \
719 } while (0)
720
721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
722 do { \
723 ret = tlv_put_u##bits(sctx, attrtype, value); \
724 if (ret < 0) \
725 goto tlv_put_failure; \
726 } while (0)
727
728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
733 do { \
734 ret = tlv_put_string(sctx, attrtype, str, len); \
735 if (ret < 0) \
736 goto tlv_put_failure; \
737 } while (0)
738 #define TLV_PUT_PATH(sctx, attrtype, p) \
739 do { \
740 ret = tlv_put_string(sctx, attrtype, p->start, \
741 fs_path_len((p))); \
742 if (ret < 0) \
743 goto tlv_put_failure; \
744 } while(0)
745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
746 do { \
747 ret = tlv_put_uuid(sctx, attrtype, uuid); \
748 if (ret < 0) \
749 goto tlv_put_failure; \
750 } while (0)
751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
752 do { \
753 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
754 if (ret < 0) \
755 goto tlv_put_failure; \
756 } while (0)
757
send_header(struct send_ctx * sctx)758 static int send_header(struct send_ctx *sctx)
759 {
760 struct btrfs_stream_header hdr;
761
762 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
763 hdr.version = cpu_to_le32(sctx->proto);
764 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
765 &sctx->send_off);
766 }
767
768 /*
769 * For each command/item we want to send to userspace, we call this function.
770 */
begin_cmd(struct send_ctx * sctx,int cmd)771 static int begin_cmd(struct send_ctx *sctx, int cmd)
772 {
773 struct btrfs_cmd_header *hdr;
774
775 if (WARN_ON(!sctx->send_buf))
776 return -EINVAL;
777
778 if (unlikely(sctx->send_size != 0)) {
779 btrfs_err(sctx->send_root->fs_info,
780 "send: command header buffer not empty cmd %d offset %llu",
781 cmd, sctx->send_off);
782 return -EINVAL;
783 }
784
785 sctx->send_size += sizeof(*hdr);
786 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
787 put_unaligned_le16(cmd, &hdr->cmd);
788
789 return 0;
790 }
791
send_cmd(struct send_ctx * sctx)792 static int send_cmd(struct send_ctx *sctx)
793 {
794 int ret;
795 struct btrfs_cmd_header *hdr;
796 u32 crc;
797
798 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
799 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
800 put_unaligned_le32(0, &hdr->crc);
801
802 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
803 put_unaligned_le32(crc, &hdr->crc);
804
805 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
806 &sctx->send_off);
807
808 sctx->send_size = 0;
809 sctx->put_data = false;
810
811 return ret;
812 }
813
814 /*
815 * Sends a move instruction to user space
816 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)817 static int send_rename(struct send_ctx *sctx,
818 struct fs_path *from, struct fs_path *to)
819 {
820 int ret;
821
822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
823 if (ret < 0)
824 return ret;
825
826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
828
829 ret = send_cmd(sctx);
830
831 tlv_put_failure:
832 return ret;
833 }
834
835 /*
836 * Sends a link instruction to user space
837 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)838 static int send_link(struct send_ctx *sctx,
839 struct fs_path *path, struct fs_path *lnk)
840 {
841 int ret;
842
843 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
844 if (ret < 0)
845 return ret;
846
847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
848 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
849
850 ret = send_cmd(sctx);
851
852 tlv_put_failure:
853 return ret;
854 }
855
856 /*
857 * Sends an unlink instruction to user space
858 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)859 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
860 {
861 int ret;
862
863 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
864 if (ret < 0)
865 return ret;
866
867 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
868
869 ret = send_cmd(sctx);
870
871 tlv_put_failure:
872 return ret;
873 }
874
875 /*
876 * Sends a rmdir instruction to user space
877 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)878 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
879 {
880 int ret;
881
882 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
883 if (ret < 0)
884 return ret;
885
886 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
887
888 ret = send_cmd(sctx);
889
890 tlv_put_failure:
891 return ret;
892 }
893
894 struct btrfs_inode_info {
895 u64 size;
896 u64 gen;
897 u64 mode;
898 u64 uid;
899 u64 gid;
900 u64 rdev;
901 u64 fileattr;
902 u64 nlink;
903 };
904
905 /*
906 * Helper function to retrieve some fields from an inode item.
907 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)908 static int get_inode_info(struct btrfs_root *root, u64 ino,
909 struct btrfs_inode_info *info)
910 {
911 int ret;
912 struct btrfs_path *path;
913 struct btrfs_inode_item *ii;
914 struct btrfs_key key;
915
916 path = alloc_path_for_send();
917 if (!path)
918 return -ENOMEM;
919
920 key.objectid = ino;
921 key.type = BTRFS_INODE_ITEM_KEY;
922 key.offset = 0;
923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
924 if (ret) {
925 if (ret > 0)
926 ret = -ENOENT;
927 goto out;
928 }
929
930 if (!info)
931 goto out;
932
933 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
934 struct btrfs_inode_item);
935 info->size = btrfs_inode_size(path->nodes[0], ii);
936 info->gen = btrfs_inode_generation(path->nodes[0], ii);
937 info->mode = btrfs_inode_mode(path->nodes[0], ii);
938 info->uid = btrfs_inode_uid(path->nodes[0], ii);
939 info->gid = btrfs_inode_gid(path->nodes[0], ii);
940 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
941 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
942 /*
943 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
944 * otherwise logically split to 32/32 parts.
945 */
946 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
947
948 out:
949 btrfs_free_path(path);
950 return ret;
951 }
952
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)953 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
954 {
955 int ret;
956 struct btrfs_inode_info info = { 0 };
957
958 ASSERT(gen);
959
960 ret = get_inode_info(root, ino, &info);
961 *gen = info.gen;
962 return ret;
963 }
964
965 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
966
967 /*
968 * Helper function to iterate the entries in ONE btrfs_inode_ref or
969 * btrfs_inode_extref.
970 * The iterate callback may return a non zero value to stop iteration. This can
971 * be a negative value for error codes or 1 to simply stop it.
972 *
973 * path must point to the INODE_REF or INODE_EXTREF when called.
974 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)975 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
976 struct btrfs_key *found_key, int resolve,
977 iterate_inode_ref_t iterate, void *ctx)
978 {
979 struct extent_buffer *eb = path->nodes[0];
980 struct btrfs_inode_ref *iref;
981 struct btrfs_inode_extref *extref;
982 struct btrfs_path *tmp_path;
983 struct fs_path *p;
984 u32 cur = 0;
985 u32 total;
986 int slot = path->slots[0];
987 u32 name_len;
988 char *start;
989 int ret = 0;
990 u64 dir;
991 unsigned long name_off;
992 unsigned long elem_size;
993 unsigned long ptr;
994
995 p = fs_path_alloc_reversed();
996 if (!p)
997 return -ENOMEM;
998
999 tmp_path = alloc_path_for_send();
1000 if (!tmp_path) {
1001 fs_path_free(p);
1002 return -ENOMEM;
1003 }
1004
1005
1006 if (found_key->type == BTRFS_INODE_REF_KEY) {
1007 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1008 struct btrfs_inode_ref);
1009 total = btrfs_item_size(eb, slot);
1010 elem_size = sizeof(*iref);
1011 } else {
1012 ptr = btrfs_item_ptr_offset(eb, slot);
1013 total = btrfs_item_size(eb, slot);
1014 elem_size = sizeof(*extref);
1015 }
1016
1017 while (cur < total) {
1018 fs_path_reset(p);
1019
1020 if (found_key->type == BTRFS_INODE_REF_KEY) {
1021 iref = (struct btrfs_inode_ref *)(ptr + cur);
1022 name_len = btrfs_inode_ref_name_len(eb, iref);
1023 name_off = (unsigned long)(iref + 1);
1024 dir = found_key->offset;
1025 } else {
1026 extref = (struct btrfs_inode_extref *)(ptr + cur);
1027 name_len = btrfs_inode_extref_name_len(eb, extref);
1028 name_off = (unsigned long)&extref->name;
1029 dir = btrfs_inode_extref_parent(eb, extref);
1030 }
1031
1032 if (resolve) {
1033 start = btrfs_ref_to_path(root, tmp_path, name_len,
1034 name_off, eb, dir,
1035 p->buf, p->buf_len);
1036 if (IS_ERR(start)) {
1037 ret = PTR_ERR(start);
1038 goto out;
1039 }
1040 if (start < p->buf) {
1041 /* overflow , try again with larger buffer */
1042 ret = fs_path_ensure_buf(p,
1043 p->buf_len + p->buf - start);
1044 if (ret < 0)
1045 goto out;
1046 start = btrfs_ref_to_path(root, tmp_path,
1047 name_len, name_off,
1048 eb, dir,
1049 p->buf, p->buf_len);
1050 if (IS_ERR(start)) {
1051 ret = PTR_ERR(start);
1052 goto out;
1053 }
1054 if (unlikely(start < p->buf)) {
1055 btrfs_err(root->fs_info,
1056 "send: path ref buffer underflow for key (%llu %u %llu)",
1057 found_key->objectid,
1058 found_key->type,
1059 found_key->offset);
1060 ret = -EINVAL;
1061 goto out;
1062 }
1063 }
1064 p->start = start;
1065 } else {
1066 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1067 name_len);
1068 if (ret < 0)
1069 goto out;
1070 }
1071
1072 cur += elem_size + name_len;
1073 ret = iterate(dir, p, ctx);
1074 if (ret)
1075 goto out;
1076 }
1077
1078 out:
1079 btrfs_free_path(tmp_path);
1080 fs_path_free(p);
1081 return ret;
1082 }
1083
1084 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1085 const char *name, int name_len,
1086 const char *data, int data_len,
1087 void *ctx);
1088
1089 /*
1090 * Helper function to iterate the entries in ONE btrfs_dir_item.
1091 * The iterate callback may return a non zero value to stop iteration. This can
1092 * be a negative value for error codes or 1 to simply stop it.
1093 *
1094 * path must point to the dir item when called.
1095 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1096 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1097 iterate_dir_item_t iterate, void *ctx)
1098 {
1099 int ret = 0;
1100 struct extent_buffer *eb;
1101 struct btrfs_dir_item *di;
1102 struct btrfs_key di_key;
1103 char *buf = NULL;
1104 int buf_len;
1105 u32 name_len;
1106 u32 data_len;
1107 u32 cur;
1108 u32 len;
1109 u32 total;
1110 int slot;
1111 int num;
1112
1113 /*
1114 * Start with a small buffer (1 page). If later we end up needing more
1115 * space, which can happen for xattrs on a fs with a leaf size greater
1116 * than the page size, attempt to increase the buffer. Typically xattr
1117 * values are small.
1118 */
1119 buf_len = PATH_MAX;
1120 buf = kmalloc(buf_len, GFP_KERNEL);
1121 if (!buf) {
1122 ret = -ENOMEM;
1123 goto out;
1124 }
1125
1126 eb = path->nodes[0];
1127 slot = path->slots[0];
1128 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1129 cur = 0;
1130 len = 0;
1131 total = btrfs_item_size(eb, slot);
1132
1133 num = 0;
1134 while (cur < total) {
1135 name_len = btrfs_dir_name_len(eb, di);
1136 data_len = btrfs_dir_data_len(eb, di);
1137 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1138
1139 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1140 if (name_len > XATTR_NAME_MAX) {
1141 ret = -ENAMETOOLONG;
1142 goto out;
1143 }
1144 if (name_len + data_len >
1145 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1146 ret = -E2BIG;
1147 goto out;
1148 }
1149 } else {
1150 /*
1151 * Path too long
1152 */
1153 if (name_len + data_len > PATH_MAX) {
1154 ret = -ENAMETOOLONG;
1155 goto out;
1156 }
1157 }
1158
1159 if (name_len + data_len > buf_len) {
1160 buf_len = name_len + data_len;
1161 if (is_vmalloc_addr(buf)) {
1162 vfree(buf);
1163 buf = NULL;
1164 } else {
1165 char *tmp = krealloc(buf, buf_len,
1166 GFP_KERNEL | __GFP_NOWARN);
1167
1168 if (!tmp)
1169 kfree(buf);
1170 buf = tmp;
1171 }
1172 if (!buf) {
1173 buf = kvmalloc(buf_len, GFP_KERNEL);
1174 if (!buf) {
1175 ret = -ENOMEM;
1176 goto out;
1177 }
1178 }
1179 }
1180
1181 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1182 name_len + data_len);
1183
1184 len = sizeof(*di) + name_len + data_len;
1185 di = (struct btrfs_dir_item *)((char *)di + len);
1186 cur += len;
1187
1188 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1189 data_len, ctx);
1190 if (ret < 0)
1191 goto out;
1192 if (ret) {
1193 ret = 0;
1194 goto out;
1195 }
1196
1197 num++;
1198 }
1199
1200 out:
1201 kvfree(buf);
1202 return ret;
1203 }
1204
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1205 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1206 {
1207 int ret;
1208 struct fs_path *pt = ctx;
1209
1210 ret = fs_path_copy(pt, p);
1211 if (ret < 0)
1212 return ret;
1213
1214 /* we want the first only */
1215 return 1;
1216 }
1217
1218 /*
1219 * Retrieve the first path of an inode. If an inode has more then one
1220 * ref/hardlink, this is ignored.
1221 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1222 static int get_inode_path(struct btrfs_root *root,
1223 u64 ino, struct fs_path *path)
1224 {
1225 int ret;
1226 struct btrfs_key key, found_key;
1227 struct btrfs_path *p;
1228
1229 p = alloc_path_for_send();
1230 if (!p)
1231 return -ENOMEM;
1232
1233 fs_path_reset(path);
1234
1235 key.objectid = ino;
1236 key.type = BTRFS_INODE_REF_KEY;
1237 key.offset = 0;
1238
1239 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1240 if (ret < 0)
1241 goto out;
1242 if (ret) {
1243 ret = 1;
1244 goto out;
1245 }
1246 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1247 if (found_key.objectid != ino ||
1248 (found_key.type != BTRFS_INODE_REF_KEY &&
1249 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1250 ret = -ENOENT;
1251 goto out;
1252 }
1253
1254 ret = iterate_inode_ref(root, p, &found_key, 1,
1255 __copy_first_ref, path);
1256 if (ret < 0)
1257 goto out;
1258 ret = 0;
1259
1260 out:
1261 btrfs_free_path(p);
1262 return ret;
1263 }
1264
1265 struct backref_ctx {
1266 struct send_ctx *sctx;
1267
1268 /* number of total found references */
1269 u64 found;
1270
1271 /*
1272 * used for clones found in send_root. clones found behind cur_objectid
1273 * and cur_offset are not considered as allowed clones.
1274 */
1275 u64 cur_objectid;
1276 u64 cur_offset;
1277
1278 /* may be truncated in case it's the last extent in a file */
1279 u64 extent_len;
1280
1281 /* The bytenr the file extent item we are processing refers to. */
1282 u64 bytenr;
1283 /* The owner (root id) of the data backref for the current extent. */
1284 u64 backref_owner;
1285 /* The offset of the data backref for the current extent. */
1286 u64 backref_offset;
1287 };
1288
__clone_root_cmp_bsearch(const void * key,const void * elt)1289 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1290 {
1291 u64 root = (u64)(uintptr_t)key;
1292 const struct clone_root *cr = elt;
1293
1294 if (root < btrfs_root_id(cr->root))
1295 return -1;
1296 if (root > btrfs_root_id(cr->root))
1297 return 1;
1298 return 0;
1299 }
1300
__clone_root_cmp_sort(const void * e1,const void * e2)1301 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1302 {
1303 const struct clone_root *cr1 = e1;
1304 const struct clone_root *cr2 = e2;
1305
1306 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1307 return -1;
1308 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1309 return 1;
1310 return 0;
1311 }
1312
1313 /*
1314 * Called for every backref that is found for the current extent.
1315 * Results are collected in sctx->clone_roots->ino/offset.
1316 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1317 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1318 void *ctx_)
1319 {
1320 struct backref_ctx *bctx = ctx_;
1321 struct clone_root *clone_root;
1322
1323 /* First check if the root is in the list of accepted clone sources */
1324 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1325 bctx->sctx->clone_roots_cnt,
1326 sizeof(struct clone_root),
1327 __clone_root_cmp_bsearch);
1328 if (!clone_root)
1329 return 0;
1330
1331 /* This is our own reference, bail out as we can't clone from it. */
1332 if (clone_root->root == bctx->sctx->send_root &&
1333 ino == bctx->cur_objectid &&
1334 offset == bctx->cur_offset)
1335 return 0;
1336
1337 /*
1338 * Make sure we don't consider clones from send_root that are
1339 * behind the current inode/offset.
1340 */
1341 if (clone_root->root == bctx->sctx->send_root) {
1342 /*
1343 * If the source inode was not yet processed we can't issue a
1344 * clone operation, as the source extent does not exist yet at
1345 * the destination of the stream.
1346 */
1347 if (ino > bctx->cur_objectid)
1348 return 0;
1349 /*
1350 * We clone from the inode currently being sent as long as the
1351 * source extent is already processed, otherwise we could try
1352 * to clone from an extent that does not exist yet at the
1353 * destination of the stream.
1354 */
1355 if (ino == bctx->cur_objectid &&
1356 offset + bctx->extent_len >
1357 bctx->sctx->cur_inode_next_write_offset)
1358 return 0;
1359 }
1360
1361 bctx->found++;
1362 clone_root->found_ref = true;
1363
1364 /*
1365 * If the given backref refers to a file extent item with a larger
1366 * number of bytes than what we found before, use the new one so that
1367 * we clone more optimally and end up doing less writes and getting
1368 * less exclusive, non-shared extents at the destination.
1369 */
1370 if (num_bytes > clone_root->num_bytes) {
1371 clone_root->ino = ino;
1372 clone_root->offset = offset;
1373 clone_root->num_bytes = num_bytes;
1374
1375 /*
1376 * Found a perfect candidate, so there's no need to continue
1377 * backref walking.
1378 */
1379 if (num_bytes >= bctx->extent_len)
1380 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1381 }
1382
1383 return 0;
1384 }
1385
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1386 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1387 const u64 **root_ids_ret, int *root_count_ret)
1388 {
1389 struct backref_ctx *bctx = ctx;
1390 struct send_ctx *sctx = bctx->sctx;
1391 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1392 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1393 struct btrfs_lru_cache_entry *raw_entry;
1394 struct backref_cache_entry *entry;
1395
1396 if (sctx->backref_cache.size == 0)
1397 return false;
1398
1399 /*
1400 * If relocation happened since we first filled the cache, then we must
1401 * empty the cache and can not use it, because even though we operate on
1402 * read-only roots, their leaves and nodes may have been reallocated and
1403 * now be used for different nodes/leaves of the same tree or some other
1404 * tree.
1405 *
1406 * We are called from iterate_extent_inodes() while either holding a
1407 * transaction handle or holding fs_info->commit_root_sem, so no need
1408 * to take any lock here.
1409 */
1410 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1411 btrfs_lru_cache_clear(&sctx->backref_cache);
1412 return false;
1413 }
1414
1415 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1416 if (!raw_entry)
1417 return false;
1418
1419 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1420 *root_ids_ret = entry->root_ids;
1421 *root_count_ret = entry->num_roots;
1422
1423 return true;
1424 }
1425
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1426 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1427 void *ctx)
1428 {
1429 struct backref_ctx *bctx = ctx;
1430 struct send_ctx *sctx = bctx->sctx;
1431 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1432 struct backref_cache_entry *new_entry;
1433 struct ulist_iterator uiter;
1434 struct ulist_node *node;
1435 int ret;
1436
1437 /*
1438 * We're called while holding a transaction handle or while holding
1439 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1440 * NOFS allocation.
1441 */
1442 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1443 /* No worries, cache is optional. */
1444 if (!new_entry)
1445 return;
1446
1447 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1448 new_entry->entry.gen = 0;
1449 new_entry->num_roots = 0;
1450 ULIST_ITER_INIT(&uiter);
1451 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1452 const u64 root_id = node->val;
1453 struct clone_root *root;
1454
1455 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1456 sctx->clone_roots_cnt, sizeof(struct clone_root),
1457 __clone_root_cmp_bsearch);
1458 if (!root)
1459 continue;
1460
1461 /* Too many roots, just exit, no worries as caching is optional. */
1462 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1463 kfree(new_entry);
1464 return;
1465 }
1466
1467 new_entry->root_ids[new_entry->num_roots] = root_id;
1468 new_entry->num_roots++;
1469 }
1470
1471 /*
1472 * We may have not added any roots to the new cache entry, which means
1473 * none of the roots is part of the list of roots from which we are
1474 * allowed to clone. Cache the new entry as it's still useful to avoid
1475 * backref walking to determine which roots have a path to the leaf.
1476 *
1477 * Also use GFP_NOFS because we're called while holding a transaction
1478 * handle or while holding fs_info->commit_root_sem.
1479 */
1480 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1481 GFP_NOFS);
1482 ASSERT(ret == 0 || ret == -ENOMEM);
1483 if (ret) {
1484 /* Caching is optional, no worries. */
1485 kfree(new_entry);
1486 return;
1487 }
1488
1489 /*
1490 * We are called from iterate_extent_inodes() while either holding a
1491 * transaction handle or holding fs_info->commit_root_sem, so no need
1492 * to take any lock here.
1493 */
1494 if (sctx->backref_cache.size == 1)
1495 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1496 }
1497
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1498 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1499 const struct extent_buffer *leaf, void *ctx)
1500 {
1501 const u64 refs = btrfs_extent_refs(leaf, ei);
1502 const struct backref_ctx *bctx = ctx;
1503 const struct send_ctx *sctx = bctx->sctx;
1504
1505 if (bytenr == bctx->bytenr) {
1506 const u64 flags = btrfs_extent_flags(leaf, ei);
1507
1508 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1509 return -EUCLEAN;
1510
1511 /*
1512 * If we have only one reference and only the send root as a
1513 * clone source - meaning no clone roots were given in the
1514 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1515 * it's our reference and there's no point in doing backref
1516 * walking which is expensive, so exit early.
1517 */
1518 if (refs == 1 && sctx->clone_roots_cnt == 1)
1519 return -ENOENT;
1520 }
1521
1522 /*
1523 * Backreference walking (iterate_extent_inodes() below) is currently
1524 * too expensive when an extent has a large number of references, both
1525 * in time spent and used memory. So for now just fallback to write
1526 * operations instead of clone operations when an extent has more than
1527 * a certain amount of references.
1528 */
1529 if (refs > SEND_MAX_EXTENT_REFS)
1530 return -ENOENT;
1531
1532 return 0;
1533 }
1534
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1535 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1536 {
1537 const struct backref_ctx *bctx = ctx;
1538
1539 if (ino == bctx->cur_objectid &&
1540 root == bctx->backref_owner &&
1541 offset == bctx->backref_offset)
1542 return true;
1543
1544 return false;
1545 }
1546
1547 /*
1548 * Given an inode, offset and extent item, it finds a good clone for a clone
1549 * instruction. Returns -ENOENT when none could be found. The function makes
1550 * sure that the returned clone is usable at the point where sending is at the
1551 * moment. This means, that no clones are accepted which lie behind the current
1552 * inode+offset.
1553 *
1554 * path must point to the extent item when called.
1555 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1556 static int find_extent_clone(struct send_ctx *sctx,
1557 struct btrfs_path *path,
1558 u64 ino, u64 data_offset,
1559 u64 ino_size,
1560 struct clone_root **found)
1561 {
1562 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1563 int ret;
1564 int extent_type;
1565 u64 disk_byte;
1566 u64 num_bytes;
1567 struct btrfs_file_extent_item *fi;
1568 struct extent_buffer *eb = path->nodes[0];
1569 struct backref_ctx backref_ctx = { 0 };
1570 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1571 struct clone_root *cur_clone_root;
1572 int compressed;
1573 u32 i;
1574
1575 /*
1576 * With fallocate we can get prealloc extents beyond the inode's i_size,
1577 * so we don't do anything here because clone operations can not clone
1578 * to a range beyond i_size without increasing the i_size of the
1579 * destination inode.
1580 */
1581 if (data_offset >= ino_size)
1582 return 0;
1583
1584 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1585 extent_type = btrfs_file_extent_type(eb, fi);
1586 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1587 return -ENOENT;
1588
1589 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1590 if (disk_byte == 0)
1591 return -ENOENT;
1592
1593 compressed = btrfs_file_extent_compression(eb, fi);
1594 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1595
1596 /*
1597 * Setup the clone roots.
1598 */
1599 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1600 cur_clone_root = sctx->clone_roots + i;
1601 cur_clone_root->ino = (u64)-1;
1602 cur_clone_root->offset = 0;
1603 cur_clone_root->num_bytes = 0;
1604 cur_clone_root->found_ref = false;
1605 }
1606
1607 backref_ctx.sctx = sctx;
1608 backref_ctx.cur_objectid = ino;
1609 backref_ctx.cur_offset = data_offset;
1610 backref_ctx.bytenr = disk_byte;
1611 /*
1612 * Use the header owner and not the send root's id, because in case of a
1613 * snapshot we can have shared subtrees.
1614 */
1615 backref_ctx.backref_owner = btrfs_header_owner(eb);
1616 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1617
1618 /*
1619 * The last extent of a file may be too large due to page alignment.
1620 * We need to adjust extent_len in this case so that the checks in
1621 * iterate_backrefs() work.
1622 */
1623 if (data_offset + num_bytes >= ino_size)
1624 backref_ctx.extent_len = ino_size - data_offset;
1625 else
1626 backref_ctx.extent_len = num_bytes;
1627
1628 /*
1629 * Now collect all backrefs.
1630 */
1631 backref_walk_ctx.bytenr = disk_byte;
1632 if (compressed == BTRFS_COMPRESS_NONE)
1633 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1634 backref_walk_ctx.fs_info = fs_info;
1635 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1636 backref_walk_ctx.cache_store = store_backref_cache;
1637 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1638 backref_walk_ctx.check_extent_item = check_extent_item;
1639 backref_walk_ctx.user_ctx = &backref_ctx;
1640
1641 /*
1642 * If have a single clone root, then it's the send root and we can tell
1643 * the backref walking code to skip our own backref and not resolve it,
1644 * since we can not use it for cloning - the source and destination
1645 * ranges can't overlap and in case the leaf is shared through a subtree
1646 * due to snapshots, we can't use those other roots since they are not
1647 * in the list of clone roots.
1648 */
1649 if (sctx->clone_roots_cnt == 1)
1650 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1651
1652 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1653 &backref_ctx);
1654 if (ret < 0)
1655 return ret;
1656
1657 down_read(&fs_info->commit_root_sem);
1658 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1659 /*
1660 * A transaction commit for a transaction in which block group
1661 * relocation was done just happened.
1662 * The disk_bytenr of the file extent item we processed is
1663 * possibly stale, referring to the extent's location before
1664 * relocation. So act as if we haven't found any clone sources
1665 * and fallback to write commands, which will read the correct
1666 * data from the new extent location. Otherwise we will fail
1667 * below because we haven't found our own back reference or we
1668 * could be getting incorrect sources in case the old extent
1669 * was already reallocated after the relocation.
1670 */
1671 up_read(&fs_info->commit_root_sem);
1672 return -ENOENT;
1673 }
1674 up_read(&fs_info->commit_root_sem);
1675
1676 if (!backref_ctx.found)
1677 return -ENOENT;
1678
1679 cur_clone_root = NULL;
1680 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1681 struct clone_root *clone_root = &sctx->clone_roots[i];
1682
1683 if (!clone_root->found_ref)
1684 continue;
1685
1686 /*
1687 * Choose the root from which we can clone more bytes, to
1688 * minimize write operations and therefore have more extent
1689 * sharing at the destination (the same as in the source).
1690 */
1691 if (!cur_clone_root ||
1692 clone_root->num_bytes > cur_clone_root->num_bytes) {
1693 cur_clone_root = clone_root;
1694
1695 /*
1696 * We found an optimal clone candidate (any inode from
1697 * any root is fine), so we're done.
1698 */
1699 if (clone_root->num_bytes >= backref_ctx.extent_len)
1700 break;
1701 }
1702 }
1703
1704 if (cur_clone_root) {
1705 *found = cur_clone_root;
1706 ret = 0;
1707 } else {
1708 ret = -ENOENT;
1709 }
1710
1711 return ret;
1712 }
1713
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1714 static int read_symlink(struct btrfs_root *root,
1715 u64 ino,
1716 struct fs_path *dest)
1717 {
1718 int ret;
1719 struct btrfs_path *path;
1720 struct btrfs_key key;
1721 struct btrfs_file_extent_item *ei;
1722 u8 type;
1723 u8 compression;
1724 unsigned long off;
1725 int len;
1726
1727 path = alloc_path_for_send();
1728 if (!path)
1729 return -ENOMEM;
1730
1731 key.objectid = ino;
1732 key.type = BTRFS_EXTENT_DATA_KEY;
1733 key.offset = 0;
1734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1735 if (ret < 0)
1736 goto out;
1737 if (ret) {
1738 /*
1739 * An empty symlink inode. Can happen in rare error paths when
1740 * creating a symlink (transaction committed before the inode
1741 * eviction handler removed the symlink inode items and a crash
1742 * happened in between or the subvol was snapshoted in between).
1743 * Print an informative message to dmesg/syslog so that the user
1744 * can delete the symlink.
1745 */
1746 btrfs_err(root->fs_info,
1747 "Found empty symlink inode %llu at root %llu",
1748 ino, btrfs_root_id(root));
1749 ret = -EIO;
1750 goto out;
1751 }
1752
1753 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1754 struct btrfs_file_extent_item);
1755 type = btrfs_file_extent_type(path->nodes[0], ei);
1756 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1757 ret = -EUCLEAN;
1758 btrfs_crit(root->fs_info,
1759 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1760 ino, btrfs_root_id(root), type);
1761 goto out;
1762 }
1763 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1764 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1765 ret = -EUCLEAN;
1766 btrfs_crit(root->fs_info,
1767 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1768 ino, btrfs_root_id(root), compression);
1769 goto out;
1770 }
1771
1772 off = btrfs_file_extent_inline_start(ei);
1773 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1774
1775 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1776
1777 out:
1778 btrfs_free_path(path);
1779 return ret;
1780 }
1781
1782 /*
1783 * Helper function to generate a file name that is unique in the root of
1784 * send_root and parent_root. This is used to generate names for orphan inodes.
1785 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1786 static int gen_unique_name(struct send_ctx *sctx,
1787 u64 ino, u64 gen,
1788 struct fs_path *dest)
1789 {
1790 int ret = 0;
1791 struct btrfs_path *path;
1792 struct btrfs_dir_item *di;
1793 char tmp[64];
1794 int len;
1795 u64 idx = 0;
1796
1797 path = alloc_path_for_send();
1798 if (!path)
1799 return -ENOMEM;
1800
1801 while (1) {
1802 struct fscrypt_str tmp_name;
1803
1804 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1805 ino, gen, idx);
1806 ASSERT(len < sizeof(tmp));
1807 tmp_name.name = tmp;
1808 tmp_name.len = len;
1809
1810 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1811 path, BTRFS_FIRST_FREE_OBJECTID,
1812 &tmp_name, 0);
1813 btrfs_release_path(path);
1814 if (IS_ERR(di)) {
1815 ret = PTR_ERR(di);
1816 goto out;
1817 }
1818 if (di) {
1819 /* not unique, try again */
1820 idx++;
1821 continue;
1822 }
1823
1824 if (!sctx->parent_root) {
1825 /* unique */
1826 ret = 0;
1827 break;
1828 }
1829
1830 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1831 path, BTRFS_FIRST_FREE_OBJECTID,
1832 &tmp_name, 0);
1833 btrfs_release_path(path);
1834 if (IS_ERR(di)) {
1835 ret = PTR_ERR(di);
1836 goto out;
1837 }
1838 if (di) {
1839 /* not unique, try again */
1840 idx++;
1841 continue;
1842 }
1843 /* unique */
1844 break;
1845 }
1846
1847 ret = fs_path_add(dest, tmp, len);
1848
1849 out:
1850 btrfs_free_path(path);
1851 return ret;
1852 }
1853
1854 enum inode_state {
1855 inode_state_no_change,
1856 inode_state_will_create,
1857 inode_state_did_create,
1858 inode_state_will_delete,
1859 inode_state_did_delete,
1860 };
1861
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1862 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1863 u64 *send_gen, u64 *parent_gen)
1864 {
1865 int ret;
1866 int left_ret;
1867 int right_ret;
1868 u64 left_gen;
1869 u64 right_gen = 0;
1870 struct btrfs_inode_info info;
1871
1872 ret = get_inode_info(sctx->send_root, ino, &info);
1873 if (ret < 0 && ret != -ENOENT)
1874 return ret;
1875 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1876 left_gen = info.gen;
1877 if (send_gen)
1878 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1879
1880 if (!sctx->parent_root) {
1881 right_ret = -ENOENT;
1882 } else {
1883 ret = get_inode_info(sctx->parent_root, ino, &info);
1884 if (ret < 0 && ret != -ENOENT)
1885 return ret;
1886 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1887 right_gen = info.gen;
1888 if (parent_gen)
1889 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1890 }
1891
1892 if (!left_ret && !right_ret) {
1893 if (left_gen == gen && right_gen == gen) {
1894 ret = inode_state_no_change;
1895 } else if (left_gen == gen) {
1896 if (ino < sctx->send_progress)
1897 ret = inode_state_did_create;
1898 else
1899 ret = inode_state_will_create;
1900 } else if (right_gen == gen) {
1901 if (ino < sctx->send_progress)
1902 ret = inode_state_did_delete;
1903 else
1904 ret = inode_state_will_delete;
1905 } else {
1906 ret = -ENOENT;
1907 }
1908 } else if (!left_ret) {
1909 if (left_gen == gen) {
1910 if (ino < sctx->send_progress)
1911 ret = inode_state_did_create;
1912 else
1913 ret = inode_state_will_create;
1914 } else {
1915 ret = -ENOENT;
1916 }
1917 } else if (!right_ret) {
1918 if (right_gen == gen) {
1919 if (ino < sctx->send_progress)
1920 ret = inode_state_did_delete;
1921 else
1922 ret = inode_state_will_delete;
1923 } else {
1924 ret = -ENOENT;
1925 }
1926 } else {
1927 ret = -ENOENT;
1928 }
1929
1930 return ret;
1931 }
1932
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1933 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1934 u64 *send_gen, u64 *parent_gen)
1935 {
1936 int ret;
1937
1938 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1939 return 1;
1940
1941 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1942 if (ret < 0)
1943 return ret;
1944
1945 if (ret == inode_state_no_change ||
1946 ret == inode_state_did_create ||
1947 ret == inode_state_will_delete)
1948 return 1;
1949
1950 return 0;
1951 }
1952
1953 /*
1954 * Helper function to lookup a dir item in a dir.
1955 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1956 static int lookup_dir_item_inode(struct btrfs_root *root,
1957 u64 dir, const char *name, int name_len,
1958 u64 *found_inode)
1959 {
1960 int ret = 0;
1961 struct btrfs_dir_item *di;
1962 struct btrfs_key key;
1963 struct btrfs_path *path;
1964 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1965
1966 path = alloc_path_for_send();
1967 if (!path)
1968 return -ENOMEM;
1969
1970 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1971 if (IS_ERR_OR_NULL(di)) {
1972 ret = di ? PTR_ERR(di) : -ENOENT;
1973 goto out;
1974 }
1975 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1976 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1977 ret = -ENOENT;
1978 goto out;
1979 }
1980 *found_inode = key.objectid;
1981
1982 out:
1983 btrfs_free_path(path);
1984 return ret;
1985 }
1986
1987 /*
1988 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1989 * generation of the parent dir and the name of the dir entry.
1990 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1991 static int get_first_ref(struct btrfs_root *root, u64 ino,
1992 u64 *dir, u64 *dir_gen, struct fs_path *name)
1993 {
1994 int ret;
1995 struct btrfs_key key;
1996 struct btrfs_key found_key;
1997 struct btrfs_path *path;
1998 int len;
1999 u64 parent_dir;
2000
2001 path = alloc_path_for_send();
2002 if (!path)
2003 return -ENOMEM;
2004
2005 key.objectid = ino;
2006 key.type = BTRFS_INODE_REF_KEY;
2007 key.offset = 0;
2008
2009 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2010 if (ret < 0)
2011 goto out;
2012 if (!ret)
2013 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2014 path->slots[0]);
2015 if (ret || found_key.objectid != ino ||
2016 (found_key.type != BTRFS_INODE_REF_KEY &&
2017 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2018 ret = -ENOENT;
2019 goto out;
2020 }
2021
2022 if (found_key.type == BTRFS_INODE_REF_KEY) {
2023 struct btrfs_inode_ref *iref;
2024 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2025 struct btrfs_inode_ref);
2026 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2027 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2028 (unsigned long)(iref + 1),
2029 len);
2030 parent_dir = found_key.offset;
2031 } else {
2032 struct btrfs_inode_extref *extref;
2033 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2034 struct btrfs_inode_extref);
2035 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2036 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2037 (unsigned long)&extref->name, len);
2038 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2039 }
2040 if (ret < 0)
2041 goto out;
2042 btrfs_release_path(path);
2043
2044 if (dir_gen) {
2045 ret = get_inode_gen(root, parent_dir, dir_gen);
2046 if (ret < 0)
2047 goto out;
2048 }
2049
2050 *dir = parent_dir;
2051
2052 out:
2053 btrfs_free_path(path);
2054 return ret;
2055 }
2056
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2057 static int is_first_ref(struct btrfs_root *root,
2058 u64 ino, u64 dir,
2059 const char *name, int name_len)
2060 {
2061 int ret;
2062 struct fs_path *tmp_name;
2063 u64 tmp_dir;
2064
2065 tmp_name = fs_path_alloc();
2066 if (!tmp_name)
2067 return -ENOMEM;
2068
2069 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2070 if (ret < 0)
2071 goto out;
2072
2073 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2074 ret = 0;
2075 goto out;
2076 }
2077
2078 ret = !memcmp(tmp_name->start, name, name_len);
2079
2080 out:
2081 fs_path_free(tmp_name);
2082 return ret;
2083 }
2084
2085 /*
2086 * Used by process_recorded_refs to determine if a new ref would overwrite an
2087 * already existing ref. In case it detects an overwrite, it returns the
2088 * inode/gen in who_ino/who_gen.
2089 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2090 * to make sure later references to the overwritten inode are possible.
2091 * Orphanizing is however only required for the first ref of an inode.
2092 * process_recorded_refs does an additional is_first_ref check to see if
2093 * orphanizing is really required.
2094 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2095 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2096 const char *name, int name_len,
2097 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2098 {
2099 int ret;
2100 u64 parent_root_dir_gen;
2101 u64 other_inode = 0;
2102 struct btrfs_inode_info info;
2103
2104 if (!sctx->parent_root)
2105 return 0;
2106
2107 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2108 if (ret <= 0)
2109 return 0;
2110
2111 /*
2112 * If we have a parent root we need to verify that the parent dir was
2113 * not deleted and then re-created, if it was then we have no overwrite
2114 * and we can just unlink this entry.
2115 *
2116 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2117 * parent root.
2118 */
2119 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2120 parent_root_dir_gen != dir_gen)
2121 return 0;
2122
2123 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2124 &other_inode);
2125 if (ret == -ENOENT)
2126 return 0;
2127 else if (ret < 0)
2128 return ret;
2129
2130 /*
2131 * Check if the overwritten ref was already processed. If yes, the ref
2132 * was already unlinked/moved, so we can safely assume that we will not
2133 * overwrite anything at this point in time.
2134 */
2135 if (other_inode > sctx->send_progress ||
2136 is_waiting_for_move(sctx, other_inode)) {
2137 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2138 if (ret < 0)
2139 return ret;
2140
2141 *who_ino = other_inode;
2142 *who_gen = info.gen;
2143 *who_mode = info.mode;
2144 return 1;
2145 }
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Checks if the ref was overwritten by an already processed inode. This is
2152 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2153 * thus the orphan name needs be used.
2154 * process_recorded_refs also uses it to avoid unlinking of refs that were
2155 * overwritten.
2156 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2157 static int did_overwrite_ref(struct send_ctx *sctx,
2158 u64 dir, u64 dir_gen,
2159 u64 ino, u64 ino_gen,
2160 const char *name, int name_len)
2161 {
2162 int ret;
2163 u64 ow_inode;
2164 u64 ow_gen = 0;
2165 u64 send_root_dir_gen;
2166
2167 if (!sctx->parent_root)
2168 return 0;
2169
2170 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2171 if (ret <= 0)
2172 return ret;
2173
2174 /*
2175 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2176 * send root.
2177 */
2178 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2179 return 0;
2180
2181 /* check if the ref was overwritten by another ref */
2182 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2183 &ow_inode);
2184 if (ret == -ENOENT) {
2185 /* was never and will never be overwritten */
2186 return 0;
2187 } else if (ret < 0) {
2188 return ret;
2189 }
2190
2191 if (ow_inode == ino) {
2192 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2193 if (ret < 0)
2194 return ret;
2195
2196 /* It's the same inode, so no overwrite happened. */
2197 if (ow_gen == ino_gen)
2198 return 0;
2199 }
2200
2201 /*
2202 * We know that it is or will be overwritten. Check this now.
2203 * The current inode being processed might have been the one that caused
2204 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2205 * the current inode being processed.
2206 */
2207 if (ow_inode < sctx->send_progress)
2208 return 1;
2209
2210 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2211 if (ow_gen == 0) {
2212 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2213 if (ret < 0)
2214 return ret;
2215 }
2216 if (ow_gen == sctx->cur_inode_gen)
2217 return 1;
2218 }
2219
2220 return 0;
2221 }
2222
2223 /*
2224 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2225 * that got overwritten. This is used by process_recorded_refs to determine
2226 * if it has to use the path as returned by get_cur_path or the orphan name.
2227 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2228 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2229 {
2230 int ret = 0;
2231 struct fs_path *name = NULL;
2232 u64 dir;
2233 u64 dir_gen;
2234
2235 if (!sctx->parent_root)
2236 goto out;
2237
2238 name = fs_path_alloc();
2239 if (!name)
2240 return -ENOMEM;
2241
2242 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2243 if (ret < 0)
2244 goto out;
2245
2246 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2247 name->start, fs_path_len(name));
2248
2249 out:
2250 fs_path_free(name);
2251 return ret;
2252 }
2253
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2254 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2255 u64 ino, u64 gen)
2256 {
2257 struct btrfs_lru_cache_entry *entry;
2258
2259 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2260 if (!entry)
2261 return NULL;
2262
2263 return container_of(entry, struct name_cache_entry, entry);
2264 }
2265
2266 /*
2267 * Used by get_cur_path for each ref up to the root.
2268 * Returns 0 if it succeeded.
2269 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2270 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2271 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2272 * Returns <0 in case of error.
2273 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2274 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2275 u64 ino, u64 gen,
2276 u64 *parent_ino,
2277 u64 *parent_gen,
2278 struct fs_path *dest)
2279 {
2280 int ret;
2281 int nce_ret;
2282 struct name_cache_entry *nce;
2283
2284 /*
2285 * First check if we already did a call to this function with the same
2286 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2287 * return the cached result.
2288 */
2289 nce = name_cache_search(sctx, ino, gen);
2290 if (nce) {
2291 if (ino < sctx->send_progress && nce->need_later_update) {
2292 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2293 nce = NULL;
2294 } else {
2295 *parent_ino = nce->parent_ino;
2296 *parent_gen = nce->parent_gen;
2297 ret = fs_path_add(dest, nce->name, nce->name_len);
2298 if (ret < 0)
2299 return ret;
2300 return nce->ret;
2301 }
2302 }
2303
2304 /*
2305 * If the inode is not existent yet, add the orphan name and return 1.
2306 * This should only happen for the parent dir that we determine in
2307 * record_new_ref_if_needed().
2308 */
2309 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2310 if (ret < 0)
2311 return ret;
2312
2313 if (!ret) {
2314 ret = gen_unique_name(sctx, ino, gen, dest);
2315 if (ret < 0)
2316 return ret;
2317 ret = 1;
2318 goto out_cache;
2319 }
2320
2321 /*
2322 * Depending on whether the inode was already processed or not, use
2323 * send_root or parent_root for ref lookup.
2324 */
2325 if (ino < sctx->send_progress)
2326 ret = get_first_ref(sctx->send_root, ino,
2327 parent_ino, parent_gen, dest);
2328 else
2329 ret = get_first_ref(sctx->parent_root, ino,
2330 parent_ino, parent_gen, dest);
2331 if (ret < 0)
2332 return ret;
2333
2334 /*
2335 * Check if the ref was overwritten by an inode's ref that was processed
2336 * earlier. If yes, treat as orphan and return 1.
2337 */
2338 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2339 dest->start, fs_path_len(dest));
2340 if (ret < 0)
2341 return ret;
2342 if (ret) {
2343 fs_path_reset(dest);
2344 ret = gen_unique_name(sctx, ino, gen, dest);
2345 if (ret < 0)
2346 return ret;
2347 ret = 1;
2348 }
2349
2350 out_cache:
2351 /*
2352 * Store the result of the lookup in the name cache.
2353 */
2354 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2355 if (!nce)
2356 return -ENOMEM;
2357
2358 nce->entry.key = ino;
2359 nce->entry.gen = gen;
2360 nce->parent_ino = *parent_ino;
2361 nce->parent_gen = *parent_gen;
2362 nce->name_len = fs_path_len(dest);
2363 nce->ret = ret;
2364 memcpy(nce->name, dest->start, nce->name_len);
2365
2366 if (ino < sctx->send_progress)
2367 nce->need_later_update = 0;
2368 else
2369 nce->need_later_update = 1;
2370
2371 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2372 if (nce_ret < 0) {
2373 kfree(nce);
2374 return nce_ret;
2375 }
2376
2377 return ret;
2378 }
2379
2380 /*
2381 * Magic happens here. This function returns the first ref to an inode as it
2382 * would look like while receiving the stream at this point in time.
2383 * We walk the path up to the root. For every inode in between, we check if it
2384 * was already processed/sent. If yes, we continue with the parent as found
2385 * in send_root. If not, we continue with the parent as found in parent_root.
2386 * If we encounter an inode that was deleted at this point in time, we use the
2387 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2388 * that were not created yet and overwritten inodes/refs.
2389 *
2390 * When do we have orphan inodes:
2391 * 1. When an inode is freshly created and thus no valid refs are available yet
2392 * 2. When a directory lost all it's refs (deleted) but still has dir items
2393 * inside which were not processed yet (pending for move/delete). If anyone
2394 * tried to get the path to the dir items, it would get a path inside that
2395 * orphan directory.
2396 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2397 * of an unprocessed inode. If in that case the first ref would be
2398 * overwritten, the overwritten inode gets "orphanized". Later when we
2399 * process this overwritten inode, it is restored at a new place by moving
2400 * the orphan inode.
2401 *
2402 * sctx->send_progress tells this function at which point in time receiving
2403 * would be.
2404 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2405 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2406 struct fs_path *dest)
2407 {
2408 int ret = 0;
2409 struct fs_path *name = NULL;
2410 u64 parent_inode = 0;
2411 u64 parent_gen = 0;
2412 int stop = 0;
2413 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2414
2415 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2416 if (dest != &sctx->cur_inode_path)
2417 return fs_path_copy(dest, &sctx->cur_inode_path);
2418
2419 return 0;
2420 }
2421
2422 name = fs_path_alloc();
2423 if (!name) {
2424 ret = -ENOMEM;
2425 goto out;
2426 }
2427
2428 dest->reversed = 1;
2429 fs_path_reset(dest);
2430
2431 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2432 struct waiting_dir_move *wdm;
2433
2434 fs_path_reset(name);
2435
2436 if (is_waiting_for_rm(sctx, ino, gen)) {
2437 ret = gen_unique_name(sctx, ino, gen, name);
2438 if (ret < 0)
2439 goto out;
2440 ret = fs_path_add_path(dest, name);
2441 break;
2442 }
2443
2444 wdm = get_waiting_dir_move(sctx, ino);
2445 if (wdm && wdm->orphanized) {
2446 ret = gen_unique_name(sctx, ino, gen, name);
2447 stop = 1;
2448 } else if (wdm) {
2449 ret = get_first_ref(sctx->parent_root, ino,
2450 &parent_inode, &parent_gen, name);
2451 } else {
2452 ret = __get_cur_name_and_parent(sctx, ino, gen,
2453 &parent_inode,
2454 &parent_gen, name);
2455 if (ret)
2456 stop = 1;
2457 }
2458
2459 if (ret < 0)
2460 goto out;
2461
2462 ret = fs_path_add_path(dest, name);
2463 if (ret < 0)
2464 goto out;
2465
2466 ino = parent_inode;
2467 gen = parent_gen;
2468 }
2469
2470 out:
2471 fs_path_free(name);
2472 if (!ret) {
2473 fs_path_unreverse(dest);
2474 if (is_cur_inode && dest != &sctx->cur_inode_path)
2475 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2476 }
2477
2478 return ret;
2479 }
2480
2481 /*
2482 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2483 */
send_subvol_begin(struct send_ctx * sctx)2484 static int send_subvol_begin(struct send_ctx *sctx)
2485 {
2486 int ret;
2487 struct btrfs_root *send_root = sctx->send_root;
2488 struct btrfs_root *parent_root = sctx->parent_root;
2489 struct btrfs_path *path;
2490 struct btrfs_key key;
2491 struct btrfs_root_ref *ref;
2492 struct extent_buffer *leaf;
2493 char *name = NULL;
2494 int namelen;
2495
2496 path = btrfs_alloc_path();
2497 if (!path)
2498 return -ENOMEM;
2499
2500 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2501 if (!name) {
2502 btrfs_free_path(path);
2503 return -ENOMEM;
2504 }
2505
2506 key.objectid = btrfs_root_id(send_root);
2507 key.type = BTRFS_ROOT_BACKREF_KEY;
2508 key.offset = 0;
2509
2510 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2511 &key, path, 1, 0);
2512 if (ret < 0)
2513 goto out;
2514 if (ret) {
2515 ret = -ENOENT;
2516 goto out;
2517 }
2518
2519 leaf = path->nodes[0];
2520 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2521 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2522 key.objectid != btrfs_root_id(send_root)) {
2523 ret = -ENOENT;
2524 goto out;
2525 }
2526 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2527 namelen = btrfs_root_ref_name_len(leaf, ref);
2528 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2529 btrfs_release_path(path);
2530
2531 if (parent_root) {
2532 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2533 if (ret < 0)
2534 goto out;
2535 } else {
2536 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2537 if (ret < 0)
2538 goto out;
2539 }
2540
2541 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2542
2543 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2544 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2545 sctx->send_root->root_item.received_uuid);
2546 else
2547 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2548 sctx->send_root->root_item.uuid);
2549
2550 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2551 btrfs_root_ctransid(&sctx->send_root->root_item));
2552 if (parent_root) {
2553 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2554 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2555 parent_root->root_item.received_uuid);
2556 else
2557 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2558 parent_root->root_item.uuid);
2559 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2560 btrfs_root_ctransid(&sctx->parent_root->root_item));
2561 }
2562
2563 ret = send_cmd(sctx);
2564
2565 tlv_put_failure:
2566 out:
2567 btrfs_free_path(path);
2568 kfree(name);
2569 return ret;
2570 }
2571
get_cur_inode_path(struct send_ctx * sctx)2572 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2573 {
2574 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2575 int ret;
2576
2577 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2578 &sctx->cur_inode_path);
2579 if (ret < 0)
2580 return ERR_PTR(ret);
2581 }
2582
2583 return &sctx->cur_inode_path;
2584 }
2585
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2586 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2587 {
2588 struct fs_path *path;
2589 int ret;
2590
2591 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2592 return get_cur_inode_path(sctx);
2593
2594 path = fs_path_alloc();
2595 if (!path)
2596 return ERR_PTR(-ENOMEM);
2597
2598 ret = get_cur_path(sctx, ino, gen, path);
2599 if (ret < 0) {
2600 fs_path_free(path);
2601 return ERR_PTR(ret);
2602 }
2603
2604 return path;
2605 }
2606
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2607 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2608 {
2609 if (path != &sctx->cur_inode_path)
2610 fs_path_free(path);
2611 }
2612
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2613 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2614 {
2615 int ret = 0;
2616 struct fs_path *p;
2617
2618 p = get_path_for_command(sctx, ino, gen);
2619 if (IS_ERR(p))
2620 return PTR_ERR(p);
2621
2622 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2623 if (ret < 0)
2624 goto out;
2625
2626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2627 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2628
2629 ret = send_cmd(sctx);
2630
2631 tlv_put_failure:
2632 out:
2633 free_path_for_command(sctx, p);
2634 return ret;
2635 }
2636
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2637 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2638 {
2639 int ret = 0;
2640 struct fs_path *p;
2641
2642 p = get_path_for_command(sctx, ino, gen);
2643 if (IS_ERR(p))
2644 return PTR_ERR(p);
2645
2646 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2647 if (ret < 0)
2648 goto out;
2649
2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2652
2653 ret = send_cmd(sctx);
2654
2655 tlv_put_failure:
2656 out:
2657 free_path_for_command(sctx, p);
2658 return ret;
2659 }
2660
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2661 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2662 {
2663 int ret = 0;
2664 struct fs_path *p;
2665
2666 if (sctx->proto < 2)
2667 return 0;
2668
2669 p = get_path_for_command(sctx, ino, gen);
2670 if (IS_ERR(p))
2671 return PTR_ERR(p);
2672
2673 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2674 if (ret < 0)
2675 goto out;
2676
2677 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2678 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2679
2680 ret = send_cmd(sctx);
2681
2682 tlv_put_failure:
2683 out:
2684 free_path_for_command(sctx, p);
2685 return ret;
2686 }
2687
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2688 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2689 {
2690 int ret = 0;
2691 struct fs_path *p;
2692
2693 p = get_path_for_command(sctx, ino, gen);
2694 if (IS_ERR(p))
2695 return PTR_ERR(p);
2696
2697 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2698 if (ret < 0)
2699 goto out;
2700
2701 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2702 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2703 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2704
2705 ret = send_cmd(sctx);
2706
2707 tlv_put_failure:
2708 out:
2709 free_path_for_command(sctx, p);
2710 return ret;
2711 }
2712
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2713 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2714 {
2715 int ret = 0;
2716 struct fs_path *p = NULL;
2717 struct btrfs_inode_item *ii;
2718 struct btrfs_path *path = NULL;
2719 struct extent_buffer *eb;
2720 struct btrfs_key key;
2721 int slot;
2722
2723 p = get_path_for_command(sctx, ino, gen);
2724 if (IS_ERR(p))
2725 return PTR_ERR(p);
2726
2727 path = alloc_path_for_send();
2728 if (!path) {
2729 ret = -ENOMEM;
2730 goto out;
2731 }
2732
2733 key.objectid = ino;
2734 key.type = BTRFS_INODE_ITEM_KEY;
2735 key.offset = 0;
2736 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2737 if (ret > 0)
2738 ret = -ENOENT;
2739 if (ret < 0)
2740 goto out;
2741
2742 eb = path->nodes[0];
2743 slot = path->slots[0];
2744 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2745
2746 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2747 if (ret < 0)
2748 goto out;
2749
2750 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2751 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2752 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2753 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2754 if (sctx->proto >= 2)
2755 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2756
2757 ret = send_cmd(sctx);
2758
2759 tlv_put_failure:
2760 out:
2761 free_path_for_command(sctx, p);
2762 btrfs_free_path(path);
2763 return ret;
2764 }
2765
2766 /*
2767 * If the cache is full, we can't remove entries from it and do a call to
2768 * send_utimes() for each respective inode, because we might be finishing
2769 * processing an inode that is a directory and it just got renamed, and existing
2770 * entries in the cache may refer to inodes that have the directory in their
2771 * full path - in which case we would generate outdated paths (pre-rename)
2772 * for the inodes that the cache entries point to. Instead of prunning the
2773 * cache when inserting, do it after we finish processing each inode at
2774 * finish_inode_if_needed().
2775 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2776 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2777 {
2778 struct btrfs_lru_cache_entry *entry;
2779 int ret;
2780
2781 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2782 if (entry != NULL)
2783 return 0;
2784
2785 /* Caching is optional, don't fail if we can't allocate memory. */
2786 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2787 if (!entry)
2788 return send_utimes(sctx, dir, gen);
2789
2790 entry->key = dir;
2791 entry->gen = gen;
2792
2793 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2794 ASSERT(ret != -EEXIST);
2795 if (ret) {
2796 kfree(entry);
2797 return send_utimes(sctx, dir, gen);
2798 }
2799
2800 return 0;
2801 }
2802
trim_dir_utimes_cache(struct send_ctx * sctx)2803 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2804 {
2805 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2806 struct btrfs_lru_cache_entry *lru;
2807 int ret;
2808
2809 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2810 ASSERT(lru != NULL);
2811
2812 ret = send_utimes(sctx, lru->key, lru->gen);
2813 if (ret)
2814 return ret;
2815
2816 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2817 }
2818
2819 return 0;
2820 }
2821
2822 /*
2823 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2824 * a valid path yet because we did not process the refs yet. So, the inode
2825 * is created as orphan.
2826 */
send_create_inode(struct send_ctx * sctx,u64 ino)2827 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2828 {
2829 int ret = 0;
2830 struct fs_path *p;
2831 int cmd;
2832 struct btrfs_inode_info info;
2833 u64 gen;
2834 u64 mode;
2835 u64 rdev;
2836
2837 p = fs_path_alloc();
2838 if (!p)
2839 return -ENOMEM;
2840
2841 if (ino != sctx->cur_ino) {
2842 ret = get_inode_info(sctx->send_root, ino, &info);
2843 if (ret < 0)
2844 goto out;
2845 gen = info.gen;
2846 mode = info.mode;
2847 rdev = info.rdev;
2848 } else {
2849 gen = sctx->cur_inode_gen;
2850 mode = sctx->cur_inode_mode;
2851 rdev = sctx->cur_inode_rdev;
2852 }
2853
2854 if (S_ISREG(mode)) {
2855 cmd = BTRFS_SEND_C_MKFILE;
2856 } else if (S_ISDIR(mode)) {
2857 cmd = BTRFS_SEND_C_MKDIR;
2858 } else if (S_ISLNK(mode)) {
2859 cmd = BTRFS_SEND_C_SYMLINK;
2860 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2861 cmd = BTRFS_SEND_C_MKNOD;
2862 } else if (S_ISFIFO(mode)) {
2863 cmd = BTRFS_SEND_C_MKFIFO;
2864 } else if (S_ISSOCK(mode)) {
2865 cmd = BTRFS_SEND_C_MKSOCK;
2866 } else {
2867 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2868 (int)(mode & S_IFMT));
2869 ret = -EOPNOTSUPP;
2870 goto out;
2871 }
2872
2873 ret = begin_cmd(sctx, cmd);
2874 if (ret < 0)
2875 goto out;
2876
2877 ret = gen_unique_name(sctx, ino, gen, p);
2878 if (ret < 0)
2879 goto out;
2880
2881 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2882 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2883
2884 if (S_ISLNK(mode)) {
2885 fs_path_reset(p);
2886 ret = read_symlink(sctx->send_root, ino, p);
2887 if (ret < 0)
2888 goto out;
2889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2890 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2891 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2892 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2893 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2894 }
2895
2896 ret = send_cmd(sctx);
2897 if (ret < 0)
2898 goto out;
2899
2900
2901 tlv_put_failure:
2902 out:
2903 fs_path_free(p);
2904 return ret;
2905 }
2906
cache_dir_created(struct send_ctx * sctx,u64 dir)2907 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2908 {
2909 struct btrfs_lru_cache_entry *entry;
2910 int ret;
2911
2912 /* Caching is optional, ignore any failures. */
2913 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2914 if (!entry)
2915 return;
2916
2917 entry->key = dir;
2918 entry->gen = 0;
2919 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2920 if (ret < 0)
2921 kfree(entry);
2922 }
2923
2924 /*
2925 * We need some special handling for inodes that get processed before the parent
2926 * directory got created. See process_recorded_refs for details.
2927 * This function does the check if we already created the dir out of order.
2928 */
did_create_dir(struct send_ctx * sctx,u64 dir)2929 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2930 {
2931 int ret = 0;
2932 int iter_ret = 0;
2933 struct btrfs_path *path = NULL;
2934 struct btrfs_key key;
2935 struct btrfs_key found_key;
2936 struct btrfs_key di_key;
2937 struct btrfs_dir_item *di;
2938
2939 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2940 return 1;
2941
2942 path = alloc_path_for_send();
2943 if (!path)
2944 return -ENOMEM;
2945
2946 key.objectid = dir;
2947 key.type = BTRFS_DIR_INDEX_KEY;
2948 key.offset = 0;
2949
2950 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2951 struct extent_buffer *eb = path->nodes[0];
2952
2953 if (found_key.objectid != key.objectid ||
2954 found_key.type != key.type) {
2955 ret = 0;
2956 break;
2957 }
2958
2959 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2960 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2961
2962 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2963 di_key.objectid < sctx->send_progress) {
2964 ret = 1;
2965 cache_dir_created(sctx, dir);
2966 break;
2967 }
2968 }
2969 /* Catch error found during iteration */
2970 if (iter_ret < 0)
2971 ret = iter_ret;
2972
2973 btrfs_free_path(path);
2974 return ret;
2975 }
2976
2977 /*
2978 * Only creates the inode if it is:
2979 * 1. Not a directory
2980 * 2. Or a directory which was not created already due to out of order
2981 * directories. See did_create_dir and process_recorded_refs for details.
2982 */
send_create_inode_if_needed(struct send_ctx * sctx)2983 static int send_create_inode_if_needed(struct send_ctx *sctx)
2984 {
2985 int ret;
2986
2987 if (S_ISDIR(sctx->cur_inode_mode)) {
2988 ret = did_create_dir(sctx, sctx->cur_ino);
2989 if (ret < 0)
2990 return ret;
2991 else if (ret > 0)
2992 return 0;
2993 }
2994
2995 ret = send_create_inode(sctx, sctx->cur_ino);
2996
2997 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2998 cache_dir_created(sctx, sctx->cur_ino);
2999
3000 return ret;
3001 }
3002
3003 struct recorded_ref {
3004 struct list_head list;
3005 char *name;
3006 struct fs_path *full_path;
3007 u64 dir;
3008 u64 dir_gen;
3009 int name_len;
3010 struct rb_node node;
3011 struct rb_root *root;
3012 };
3013
recorded_ref_alloc(void)3014 static struct recorded_ref *recorded_ref_alloc(void)
3015 {
3016 struct recorded_ref *ref;
3017
3018 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3019 if (!ref)
3020 return NULL;
3021 RB_CLEAR_NODE(&ref->node);
3022 INIT_LIST_HEAD(&ref->list);
3023 return ref;
3024 }
3025
recorded_ref_free(struct recorded_ref * ref)3026 static void recorded_ref_free(struct recorded_ref *ref)
3027 {
3028 if (!ref)
3029 return;
3030 if (!RB_EMPTY_NODE(&ref->node))
3031 rb_erase(&ref->node, ref->root);
3032 list_del(&ref->list);
3033 fs_path_free(ref->full_path);
3034 kfree(ref);
3035 }
3036
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3037 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3038 {
3039 ref->full_path = path;
3040 ref->name = (char *)kbasename(ref->full_path->start);
3041 ref->name_len = ref->full_path->end - ref->name;
3042 }
3043
dup_ref(struct recorded_ref * ref,struct list_head * list)3044 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3045 {
3046 struct recorded_ref *new;
3047
3048 new = recorded_ref_alloc();
3049 if (!new)
3050 return -ENOMEM;
3051
3052 new->dir = ref->dir;
3053 new->dir_gen = ref->dir_gen;
3054 list_add_tail(&new->list, list);
3055 return 0;
3056 }
3057
__free_recorded_refs(struct list_head * head)3058 static void __free_recorded_refs(struct list_head *head)
3059 {
3060 struct recorded_ref *cur;
3061
3062 while (!list_empty(head)) {
3063 cur = list_first_entry(head, struct recorded_ref, list);
3064 recorded_ref_free(cur);
3065 }
3066 }
3067
free_recorded_refs(struct send_ctx * sctx)3068 static void free_recorded_refs(struct send_ctx *sctx)
3069 {
3070 __free_recorded_refs(&sctx->new_refs);
3071 __free_recorded_refs(&sctx->deleted_refs);
3072 }
3073
3074 /*
3075 * Renames/moves a file/dir to its orphan name. Used when the first
3076 * ref of an unprocessed inode gets overwritten and for all non empty
3077 * directories.
3078 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3079 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3080 struct fs_path *path)
3081 {
3082 int ret;
3083 struct fs_path *orphan;
3084
3085 orphan = fs_path_alloc();
3086 if (!orphan)
3087 return -ENOMEM;
3088
3089 ret = gen_unique_name(sctx, ino, gen, orphan);
3090 if (ret < 0)
3091 goto out;
3092
3093 ret = send_rename(sctx, path, orphan);
3094 if (ret < 0)
3095 goto out;
3096
3097 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3098 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3099
3100 out:
3101 fs_path_free(orphan);
3102 return ret;
3103 }
3104
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3105 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3106 u64 dir_ino, u64 dir_gen)
3107 {
3108 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3109 struct rb_node *parent = NULL;
3110 struct orphan_dir_info *entry, *odi;
3111
3112 while (*p) {
3113 parent = *p;
3114 entry = rb_entry(parent, struct orphan_dir_info, node);
3115 if (dir_ino < entry->ino)
3116 p = &(*p)->rb_left;
3117 else if (dir_ino > entry->ino)
3118 p = &(*p)->rb_right;
3119 else if (dir_gen < entry->gen)
3120 p = &(*p)->rb_left;
3121 else if (dir_gen > entry->gen)
3122 p = &(*p)->rb_right;
3123 else
3124 return entry;
3125 }
3126
3127 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3128 if (!odi)
3129 return ERR_PTR(-ENOMEM);
3130 odi->ino = dir_ino;
3131 odi->gen = dir_gen;
3132 odi->last_dir_index_offset = 0;
3133 odi->dir_high_seq_ino = 0;
3134
3135 rb_link_node(&odi->node, parent, p);
3136 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3137 return odi;
3138 }
3139
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3140 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3141 u64 dir_ino, u64 gen)
3142 {
3143 struct rb_node *n = sctx->orphan_dirs.rb_node;
3144 struct orphan_dir_info *entry;
3145
3146 while (n) {
3147 entry = rb_entry(n, struct orphan_dir_info, node);
3148 if (dir_ino < entry->ino)
3149 n = n->rb_left;
3150 else if (dir_ino > entry->ino)
3151 n = n->rb_right;
3152 else if (gen < entry->gen)
3153 n = n->rb_left;
3154 else if (gen > entry->gen)
3155 n = n->rb_right;
3156 else
3157 return entry;
3158 }
3159 return NULL;
3160 }
3161
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3162 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3163 {
3164 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3165
3166 return odi != NULL;
3167 }
3168
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3169 static void free_orphan_dir_info(struct send_ctx *sctx,
3170 struct orphan_dir_info *odi)
3171 {
3172 if (!odi)
3173 return;
3174 rb_erase(&odi->node, &sctx->orphan_dirs);
3175 kfree(odi);
3176 }
3177
3178 /*
3179 * Returns 1 if a directory can be removed at this point in time.
3180 * We check this by iterating all dir items and checking if the inode behind
3181 * the dir item was already processed.
3182 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3183 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3184 {
3185 int ret = 0;
3186 int iter_ret = 0;
3187 struct btrfs_root *root = sctx->parent_root;
3188 struct btrfs_path *path;
3189 struct btrfs_key key;
3190 struct btrfs_key found_key;
3191 struct btrfs_key loc;
3192 struct btrfs_dir_item *di;
3193 struct orphan_dir_info *odi = NULL;
3194 u64 dir_high_seq_ino = 0;
3195 u64 last_dir_index_offset = 0;
3196
3197 /*
3198 * Don't try to rmdir the top/root subvolume dir.
3199 */
3200 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3201 return 0;
3202
3203 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3204 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3205 return 0;
3206
3207 path = alloc_path_for_send();
3208 if (!path)
3209 return -ENOMEM;
3210
3211 if (!odi) {
3212 /*
3213 * Find the inode number associated with the last dir index
3214 * entry. This is very likely the inode with the highest number
3215 * of all inodes that have an entry in the directory. We can
3216 * then use it to avoid future calls to can_rmdir(), when
3217 * processing inodes with a lower number, from having to search
3218 * the parent root b+tree for dir index keys.
3219 */
3220 key.objectid = dir;
3221 key.type = BTRFS_DIR_INDEX_KEY;
3222 key.offset = (u64)-1;
3223
3224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3225 if (ret < 0) {
3226 goto out;
3227 } else if (ret > 0) {
3228 /* Can't happen, the root is never empty. */
3229 ASSERT(path->slots[0] > 0);
3230 if (WARN_ON(path->slots[0] == 0)) {
3231 ret = -EUCLEAN;
3232 goto out;
3233 }
3234 path->slots[0]--;
3235 }
3236
3237 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3238 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3239 /* No index keys, dir can be removed. */
3240 ret = 1;
3241 goto out;
3242 }
3243
3244 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3245 struct btrfs_dir_item);
3246 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3247 dir_high_seq_ino = loc.objectid;
3248 if (sctx->cur_ino < dir_high_seq_ino) {
3249 ret = 0;
3250 goto out;
3251 }
3252
3253 btrfs_release_path(path);
3254 }
3255
3256 key.objectid = dir;
3257 key.type = BTRFS_DIR_INDEX_KEY;
3258 key.offset = (odi ? odi->last_dir_index_offset : 0);
3259
3260 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3261 struct waiting_dir_move *dm;
3262
3263 if (found_key.objectid != key.objectid ||
3264 found_key.type != key.type)
3265 break;
3266
3267 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3268 struct btrfs_dir_item);
3269 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3270
3271 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3272 last_dir_index_offset = found_key.offset;
3273
3274 dm = get_waiting_dir_move(sctx, loc.objectid);
3275 if (dm) {
3276 dm->rmdir_ino = dir;
3277 dm->rmdir_gen = dir_gen;
3278 ret = 0;
3279 goto out;
3280 }
3281
3282 if (loc.objectid > sctx->cur_ino) {
3283 ret = 0;
3284 goto out;
3285 }
3286 }
3287 if (iter_ret < 0) {
3288 ret = iter_ret;
3289 goto out;
3290 }
3291 free_orphan_dir_info(sctx, odi);
3292
3293 ret = 1;
3294
3295 out:
3296 btrfs_free_path(path);
3297
3298 if (ret)
3299 return ret;
3300
3301 if (!odi) {
3302 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3303 if (IS_ERR(odi))
3304 return PTR_ERR(odi);
3305
3306 odi->gen = dir_gen;
3307 }
3308
3309 odi->last_dir_index_offset = last_dir_index_offset;
3310 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3311
3312 return 0;
3313 }
3314
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3316 {
3317 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3318
3319 return entry != NULL;
3320 }
3321
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3322 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3323 {
3324 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3325 struct rb_node *parent = NULL;
3326 struct waiting_dir_move *entry, *dm;
3327
3328 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3329 if (!dm)
3330 return -ENOMEM;
3331 dm->ino = ino;
3332 dm->rmdir_ino = 0;
3333 dm->rmdir_gen = 0;
3334 dm->orphanized = orphanized;
3335
3336 while (*p) {
3337 parent = *p;
3338 entry = rb_entry(parent, struct waiting_dir_move, node);
3339 if (ino < entry->ino) {
3340 p = &(*p)->rb_left;
3341 } else if (ino > entry->ino) {
3342 p = &(*p)->rb_right;
3343 } else {
3344 kfree(dm);
3345 return -EEXIST;
3346 }
3347 }
3348
3349 rb_link_node(&dm->node, parent, p);
3350 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3351 return 0;
3352 }
3353
3354 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3355 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3356 {
3357 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3358 struct waiting_dir_move *entry;
3359
3360 while (n) {
3361 entry = rb_entry(n, struct waiting_dir_move, node);
3362 if (ino < entry->ino)
3363 n = n->rb_left;
3364 else if (ino > entry->ino)
3365 n = n->rb_right;
3366 else
3367 return entry;
3368 }
3369 return NULL;
3370 }
3371
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3372 static void free_waiting_dir_move(struct send_ctx *sctx,
3373 struct waiting_dir_move *dm)
3374 {
3375 if (!dm)
3376 return;
3377 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3378 kfree(dm);
3379 }
3380
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3381 static int add_pending_dir_move(struct send_ctx *sctx,
3382 u64 ino,
3383 u64 ino_gen,
3384 u64 parent_ino,
3385 struct list_head *new_refs,
3386 struct list_head *deleted_refs,
3387 const bool is_orphan)
3388 {
3389 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3390 struct rb_node *parent = NULL;
3391 struct pending_dir_move *entry = NULL, *pm;
3392 struct recorded_ref *cur;
3393 int exists = 0;
3394 int ret;
3395
3396 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3397 if (!pm)
3398 return -ENOMEM;
3399 pm->parent_ino = parent_ino;
3400 pm->ino = ino;
3401 pm->gen = ino_gen;
3402 INIT_LIST_HEAD(&pm->list);
3403 INIT_LIST_HEAD(&pm->update_refs);
3404 RB_CLEAR_NODE(&pm->node);
3405
3406 while (*p) {
3407 parent = *p;
3408 entry = rb_entry(parent, struct pending_dir_move, node);
3409 if (parent_ino < entry->parent_ino) {
3410 p = &(*p)->rb_left;
3411 } else if (parent_ino > entry->parent_ino) {
3412 p = &(*p)->rb_right;
3413 } else {
3414 exists = 1;
3415 break;
3416 }
3417 }
3418
3419 list_for_each_entry(cur, deleted_refs, list) {
3420 ret = dup_ref(cur, &pm->update_refs);
3421 if (ret < 0)
3422 goto out;
3423 }
3424 list_for_each_entry(cur, new_refs, list) {
3425 ret = dup_ref(cur, &pm->update_refs);
3426 if (ret < 0)
3427 goto out;
3428 }
3429
3430 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3431 if (ret)
3432 goto out;
3433
3434 if (exists) {
3435 list_add_tail(&pm->list, &entry->list);
3436 } else {
3437 rb_link_node(&pm->node, parent, p);
3438 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3439 }
3440 ret = 0;
3441 out:
3442 if (ret) {
3443 __free_recorded_refs(&pm->update_refs);
3444 kfree(pm);
3445 }
3446 return ret;
3447 }
3448
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3449 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3450 u64 parent_ino)
3451 {
3452 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3453 struct pending_dir_move *entry;
3454
3455 while (n) {
3456 entry = rb_entry(n, struct pending_dir_move, node);
3457 if (parent_ino < entry->parent_ino)
3458 n = n->rb_left;
3459 else if (parent_ino > entry->parent_ino)
3460 n = n->rb_right;
3461 else
3462 return entry;
3463 }
3464 return NULL;
3465 }
3466
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3467 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3468 u64 ino, u64 gen, u64 *ancestor_ino)
3469 {
3470 int ret = 0;
3471 u64 parent_inode = 0;
3472 u64 parent_gen = 0;
3473 u64 start_ino = ino;
3474
3475 *ancestor_ino = 0;
3476 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3477 fs_path_reset(name);
3478
3479 if (is_waiting_for_rm(sctx, ino, gen))
3480 break;
3481 if (is_waiting_for_move(sctx, ino)) {
3482 if (*ancestor_ino == 0)
3483 *ancestor_ino = ino;
3484 ret = get_first_ref(sctx->parent_root, ino,
3485 &parent_inode, &parent_gen, name);
3486 } else {
3487 ret = __get_cur_name_and_parent(sctx, ino, gen,
3488 &parent_inode,
3489 &parent_gen, name);
3490 if (ret > 0) {
3491 ret = 0;
3492 break;
3493 }
3494 }
3495 if (ret < 0)
3496 break;
3497 if (parent_inode == start_ino) {
3498 ret = 1;
3499 if (*ancestor_ino == 0)
3500 *ancestor_ino = ino;
3501 break;
3502 }
3503 ino = parent_inode;
3504 gen = parent_gen;
3505 }
3506 return ret;
3507 }
3508
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3509 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3510 {
3511 struct fs_path *from_path = NULL;
3512 struct fs_path *to_path = NULL;
3513 struct fs_path *name = NULL;
3514 u64 orig_progress = sctx->send_progress;
3515 struct recorded_ref *cur;
3516 u64 parent_ino, parent_gen;
3517 struct waiting_dir_move *dm = NULL;
3518 u64 rmdir_ino = 0;
3519 u64 rmdir_gen;
3520 u64 ancestor;
3521 bool is_orphan;
3522 int ret;
3523
3524 name = fs_path_alloc();
3525 from_path = fs_path_alloc();
3526 if (!name || !from_path) {
3527 ret = -ENOMEM;
3528 goto out;
3529 }
3530
3531 dm = get_waiting_dir_move(sctx, pm->ino);
3532 ASSERT(dm);
3533 rmdir_ino = dm->rmdir_ino;
3534 rmdir_gen = dm->rmdir_gen;
3535 is_orphan = dm->orphanized;
3536 free_waiting_dir_move(sctx, dm);
3537
3538 if (is_orphan) {
3539 ret = gen_unique_name(sctx, pm->ino,
3540 pm->gen, from_path);
3541 } else {
3542 ret = get_first_ref(sctx->parent_root, pm->ino,
3543 &parent_ino, &parent_gen, name);
3544 if (ret < 0)
3545 goto out;
3546 ret = get_cur_path(sctx, parent_ino, parent_gen,
3547 from_path);
3548 if (ret < 0)
3549 goto out;
3550 ret = fs_path_add_path(from_path, name);
3551 }
3552 if (ret < 0)
3553 goto out;
3554
3555 sctx->send_progress = sctx->cur_ino + 1;
3556 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3557 if (ret < 0)
3558 goto out;
3559 if (ret) {
3560 LIST_HEAD(deleted_refs);
3561 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3562 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3563 &pm->update_refs, &deleted_refs,
3564 is_orphan);
3565 if (ret < 0)
3566 goto out;
3567 if (rmdir_ino) {
3568 dm = get_waiting_dir_move(sctx, pm->ino);
3569 ASSERT(dm);
3570 dm->rmdir_ino = rmdir_ino;
3571 dm->rmdir_gen = rmdir_gen;
3572 }
3573 goto out;
3574 }
3575 fs_path_reset(name);
3576 to_path = name;
3577 name = NULL;
3578 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3579 if (ret < 0)
3580 goto out;
3581
3582 ret = send_rename(sctx, from_path, to_path);
3583 if (ret < 0)
3584 goto out;
3585
3586 if (rmdir_ino) {
3587 struct orphan_dir_info *odi;
3588 u64 gen;
3589
3590 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3591 if (!odi) {
3592 /* already deleted */
3593 goto finish;
3594 }
3595 gen = odi->gen;
3596
3597 ret = can_rmdir(sctx, rmdir_ino, gen);
3598 if (ret < 0)
3599 goto out;
3600 if (!ret)
3601 goto finish;
3602
3603 name = fs_path_alloc();
3604 if (!name) {
3605 ret = -ENOMEM;
3606 goto out;
3607 }
3608 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3609 if (ret < 0)
3610 goto out;
3611 ret = send_rmdir(sctx, name);
3612 if (ret < 0)
3613 goto out;
3614 }
3615
3616 finish:
3617 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3618 if (ret < 0)
3619 goto out;
3620
3621 /*
3622 * After rename/move, need to update the utimes of both new parent(s)
3623 * and old parent(s).
3624 */
3625 list_for_each_entry(cur, &pm->update_refs, list) {
3626 /*
3627 * The parent inode might have been deleted in the send snapshot
3628 */
3629 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3630 if (ret == -ENOENT) {
3631 ret = 0;
3632 continue;
3633 }
3634 if (ret < 0)
3635 goto out;
3636
3637 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3638 if (ret < 0)
3639 goto out;
3640 }
3641
3642 out:
3643 fs_path_free(name);
3644 fs_path_free(from_path);
3645 fs_path_free(to_path);
3646 sctx->send_progress = orig_progress;
3647
3648 return ret;
3649 }
3650
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3651 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3652 {
3653 if (!list_empty(&m->list))
3654 list_del(&m->list);
3655 if (!RB_EMPTY_NODE(&m->node))
3656 rb_erase(&m->node, &sctx->pending_dir_moves);
3657 __free_recorded_refs(&m->update_refs);
3658 kfree(m);
3659 }
3660
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3661 static void tail_append_pending_moves(struct send_ctx *sctx,
3662 struct pending_dir_move *moves,
3663 struct list_head *stack)
3664 {
3665 if (list_empty(&moves->list)) {
3666 list_add_tail(&moves->list, stack);
3667 } else {
3668 LIST_HEAD(list);
3669 list_splice_init(&moves->list, &list);
3670 list_add_tail(&moves->list, stack);
3671 list_splice_tail(&list, stack);
3672 }
3673 if (!RB_EMPTY_NODE(&moves->node)) {
3674 rb_erase(&moves->node, &sctx->pending_dir_moves);
3675 RB_CLEAR_NODE(&moves->node);
3676 }
3677 }
3678
apply_children_dir_moves(struct send_ctx * sctx)3679 static int apply_children_dir_moves(struct send_ctx *sctx)
3680 {
3681 struct pending_dir_move *pm;
3682 LIST_HEAD(stack);
3683 u64 parent_ino = sctx->cur_ino;
3684 int ret = 0;
3685
3686 pm = get_pending_dir_moves(sctx, parent_ino);
3687 if (!pm)
3688 return 0;
3689
3690 tail_append_pending_moves(sctx, pm, &stack);
3691
3692 while (!list_empty(&stack)) {
3693 pm = list_first_entry(&stack, struct pending_dir_move, list);
3694 parent_ino = pm->ino;
3695 ret = apply_dir_move(sctx, pm);
3696 free_pending_move(sctx, pm);
3697 if (ret)
3698 goto out;
3699 pm = get_pending_dir_moves(sctx, parent_ino);
3700 if (pm)
3701 tail_append_pending_moves(sctx, pm, &stack);
3702 }
3703 return 0;
3704
3705 out:
3706 while (!list_empty(&stack)) {
3707 pm = list_first_entry(&stack, struct pending_dir_move, list);
3708 free_pending_move(sctx, pm);
3709 }
3710 return ret;
3711 }
3712
3713 /*
3714 * We might need to delay a directory rename even when no ancestor directory
3715 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3716 * renamed. This happens when we rename a directory to the old name (the name
3717 * in the parent root) of some other unrelated directory that got its rename
3718 * delayed due to some ancestor with higher number that got renamed.
3719 *
3720 * Example:
3721 *
3722 * Parent snapshot:
3723 * . (ino 256)
3724 * |---- a/ (ino 257)
3725 * | |---- file (ino 260)
3726 * |
3727 * |---- b/ (ino 258)
3728 * |---- c/ (ino 259)
3729 *
3730 * Send snapshot:
3731 * . (ino 256)
3732 * |---- a/ (ino 258)
3733 * |---- x/ (ino 259)
3734 * |---- y/ (ino 257)
3735 * |----- file (ino 260)
3736 *
3737 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3738 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3739 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3740 * must issue is:
3741 *
3742 * 1 - rename 259 from 'c' to 'x'
3743 * 2 - rename 257 from 'a' to 'x/y'
3744 * 3 - rename 258 from 'b' to 'a'
3745 *
3746 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3747 * be done right away and < 0 on error.
3748 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3749 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3750 struct recorded_ref *parent_ref,
3751 const bool is_orphan)
3752 {
3753 struct btrfs_path *path;
3754 struct btrfs_key key;
3755 struct btrfs_key di_key;
3756 struct btrfs_dir_item *di;
3757 u64 left_gen;
3758 u64 right_gen;
3759 int ret = 0;
3760 struct waiting_dir_move *wdm;
3761
3762 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3763 return 0;
3764
3765 path = alloc_path_for_send();
3766 if (!path)
3767 return -ENOMEM;
3768
3769 key.objectid = parent_ref->dir;
3770 key.type = BTRFS_DIR_ITEM_KEY;
3771 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3772
3773 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3774 if (ret < 0) {
3775 goto out;
3776 } else if (ret > 0) {
3777 ret = 0;
3778 goto out;
3779 }
3780
3781 di = btrfs_match_dir_item_name(path, parent_ref->name,
3782 parent_ref->name_len);
3783 if (!di) {
3784 ret = 0;
3785 goto out;
3786 }
3787 /*
3788 * di_key.objectid has the number of the inode that has a dentry in the
3789 * parent directory with the same name that sctx->cur_ino is being
3790 * renamed to. We need to check if that inode is in the send root as
3791 * well and if it is currently marked as an inode with a pending rename,
3792 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3793 * that it happens after that other inode is renamed.
3794 */
3795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3796 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3797 ret = 0;
3798 goto out;
3799 }
3800
3801 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3802 if (ret < 0)
3803 goto out;
3804 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3805 if (ret < 0) {
3806 if (ret == -ENOENT)
3807 ret = 0;
3808 goto out;
3809 }
3810
3811 /* Different inode, no need to delay the rename of sctx->cur_ino */
3812 if (right_gen != left_gen) {
3813 ret = 0;
3814 goto out;
3815 }
3816
3817 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3818 if (wdm && !wdm->orphanized) {
3819 ret = add_pending_dir_move(sctx,
3820 sctx->cur_ino,
3821 sctx->cur_inode_gen,
3822 di_key.objectid,
3823 &sctx->new_refs,
3824 &sctx->deleted_refs,
3825 is_orphan);
3826 if (!ret)
3827 ret = 1;
3828 }
3829 out:
3830 btrfs_free_path(path);
3831 return ret;
3832 }
3833
3834 /*
3835 * Check if inode ino2, or any of its ancestors, is inode ino1.
3836 * Return 1 if true, 0 if false and < 0 on error.
3837 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3838 static int check_ino_in_path(struct btrfs_root *root,
3839 const u64 ino1,
3840 const u64 ino1_gen,
3841 const u64 ino2,
3842 const u64 ino2_gen,
3843 struct fs_path *fs_path)
3844 {
3845 u64 ino = ino2;
3846
3847 if (ino1 == ino2)
3848 return ino1_gen == ino2_gen;
3849
3850 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3851 u64 parent;
3852 u64 parent_gen;
3853 int ret;
3854
3855 fs_path_reset(fs_path);
3856 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3857 if (ret < 0)
3858 return ret;
3859 if (parent == ino1)
3860 return parent_gen == ino1_gen;
3861 ino = parent;
3862 }
3863 return 0;
3864 }
3865
3866 /*
3867 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3868 * possible path (in case ino2 is not a directory and has multiple hard links).
3869 * Return 1 if true, 0 if false and < 0 on error.
3870 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3871 static int is_ancestor(struct btrfs_root *root,
3872 const u64 ino1,
3873 const u64 ino1_gen,
3874 const u64 ino2,
3875 struct fs_path *fs_path)
3876 {
3877 bool free_fs_path = false;
3878 int ret = 0;
3879 int iter_ret = 0;
3880 struct btrfs_path *path = NULL;
3881 struct btrfs_key key;
3882
3883 if (!fs_path) {
3884 fs_path = fs_path_alloc();
3885 if (!fs_path)
3886 return -ENOMEM;
3887 free_fs_path = true;
3888 }
3889
3890 path = alloc_path_for_send();
3891 if (!path) {
3892 ret = -ENOMEM;
3893 goto out;
3894 }
3895
3896 key.objectid = ino2;
3897 key.type = BTRFS_INODE_REF_KEY;
3898 key.offset = 0;
3899
3900 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3901 struct extent_buffer *leaf = path->nodes[0];
3902 int slot = path->slots[0];
3903 u32 cur_offset = 0;
3904 u32 item_size;
3905
3906 if (key.objectid != ino2)
3907 break;
3908 if (key.type != BTRFS_INODE_REF_KEY &&
3909 key.type != BTRFS_INODE_EXTREF_KEY)
3910 break;
3911
3912 item_size = btrfs_item_size(leaf, slot);
3913 while (cur_offset < item_size) {
3914 u64 parent;
3915 u64 parent_gen;
3916
3917 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3918 unsigned long ptr;
3919 struct btrfs_inode_extref *extref;
3920
3921 ptr = btrfs_item_ptr_offset(leaf, slot);
3922 extref = (struct btrfs_inode_extref *)
3923 (ptr + cur_offset);
3924 parent = btrfs_inode_extref_parent(leaf,
3925 extref);
3926 cur_offset += sizeof(*extref);
3927 cur_offset += btrfs_inode_extref_name_len(leaf,
3928 extref);
3929 } else {
3930 parent = key.offset;
3931 cur_offset = item_size;
3932 }
3933
3934 ret = get_inode_gen(root, parent, &parent_gen);
3935 if (ret < 0)
3936 goto out;
3937 ret = check_ino_in_path(root, ino1, ino1_gen,
3938 parent, parent_gen, fs_path);
3939 if (ret)
3940 goto out;
3941 }
3942 }
3943 ret = 0;
3944 if (iter_ret < 0)
3945 ret = iter_ret;
3946
3947 out:
3948 btrfs_free_path(path);
3949 if (free_fs_path)
3950 fs_path_free(fs_path);
3951 return ret;
3952 }
3953
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3954 static int wait_for_parent_move(struct send_ctx *sctx,
3955 struct recorded_ref *parent_ref,
3956 const bool is_orphan)
3957 {
3958 int ret = 0;
3959 u64 ino = parent_ref->dir;
3960 u64 ino_gen = parent_ref->dir_gen;
3961 u64 parent_ino_before, parent_ino_after;
3962 struct fs_path *path_before = NULL;
3963 struct fs_path *path_after = NULL;
3964 int len1, len2;
3965
3966 path_after = fs_path_alloc();
3967 path_before = fs_path_alloc();
3968 if (!path_after || !path_before) {
3969 ret = -ENOMEM;
3970 goto out;
3971 }
3972
3973 /*
3974 * Our current directory inode may not yet be renamed/moved because some
3975 * ancestor (immediate or not) has to be renamed/moved first. So find if
3976 * such ancestor exists and make sure our own rename/move happens after
3977 * that ancestor is processed to avoid path build infinite loops (done
3978 * at get_cur_path()).
3979 */
3980 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3981 u64 parent_ino_after_gen;
3982
3983 if (is_waiting_for_move(sctx, ino)) {
3984 /*
3985 * If the current inode is an ancestor of ino in the
3986 * parent root, we need to delay the rename of the
3987 * current inode, otherwise don't delayed the rename
3988 * because we can end up with a circular dependency
3989 * of renames, resulting in some directories never
3990 * getting the respective rename operations issued in
3991 * the send stream or getting into infinite path build
3992 * loops.
3993 */
3994 ret = is_ancestor(sctx->parent_root,
3995 sctx->cur_ino, sctx->cur_inode_gen,
3996 ino, path_before);
3997 if (ret)
3998 break;
3999 }
4000
4001 fs_path_reset(path_before);
4002 fs_path_reset(path_after);
4003
4004 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4005 &parent_ino_after_gen, path_after);
4006 if (ret < 0)
4007 goto out;
4008 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4009 NULL, path_before);
4010 if (ret < 0 && ret != -ENOENT) {
4011 goto out;
4012 } else if (ret == -ENOENT) {
4013 ret = 0;
4014 break;
4015 }
4016
4017 len1 = fs_path_len(path_before);
4018 len2 = fs_path_len(path_after);
4019 if (ino > sctx->cur_ino &&
4020 (parent_ino_before != parent_ino_after || len1 != len2 ||
4021 memcmp(path_before->start, path_after->start, len1))) {
4022 u64 parent_ino_gen;
4023
4024 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4025 if (ret < 0)
4026 goto out;
4027 if (ino_gen == parent_ino_gen) {
4028 ret = 1;
4029 break;
4030 }
4031 }
4032 ino = parent_ino_after;
4033 ino_gen = parent_ino_after_gen;
4034 }
4035
4036 out:
4037 fs_path_free(path_before);
4038 fs_path_free(path_after);
4039
4040 if (ret == 1) {
4041 ret = add_pending_dir_move(sctx,
4042 sctx->cur_ino,
4043 sctx->cur_inode_gen,
4044 ino,
4045 &sctx->new_refs,
4046 &sctx->deleted_refs,
4047 is_orphan);
4048 if (!ret)
4049 ret = 1;
4050 }
4051
4052 return ret;
4053 }
4054
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4055 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4056 {
4057 int ret;
4058 struct fs_path *new_path;
4059
4060 /*
4061 * Our reference's name member points to its full_path member string, so
4062 * we use here a new path.
4063 */
4064 new_path = fs_path_alloc();
4065 if (!new_path)
4066 return -ENOMEM;
4067
4068 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4069 if (ret < 0) {
4070 fs_path_free(new_path);
4071 return ret;
4072 }
4073 ret = fs_path_add(new_path, ref->name, ref->name_len);
4074 if (ret < 0) {
4075 fs_path_free(new_path);
4076 return ret;
4077 }
4078
4079 fs_path_free(ref->full_path);
4080 set_ref_path(ref, new_path);
4081
4082 return 0;
4083 }
4084
4085 /*
4086 * When processing the new references for an inode we may orphanize an existing
4087 * directory inode because its old name conflicts with one of the new references
4088 * of the current inode. Later, when processing another new reference of our
4089 * inode, we might need to orphanize another inode, but the path we have in the
4090 * reference reflects the pre-orphanization name of the directory we previously
4091 * orphanized. For example:
4092 *
4093 * parent snapshot looks like:
4094 *
4095 * . (ino 256)
4096 * |----- f1 (ino 257)
4097 * |----- f2 (ino 258)
4098 * |----- d1/ (ino 259)
4099 * |----- d2/ (ino 260)
4100 *
4101 * send snapshot looks like:
4102 *
4103 * . (ino 256)
4104 * |----- d1 (ino 258)
4105 * |----- f2/ (ino 259)
4106 * |----- f2_link/ (ino 260)
4107 * | |----- f1 (ino 257)
4108 * |
4109 * |----- d2 (ino 258)
4110 *
4111 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4112 * cache it in the name cache. Later when we start processing inode 258, when
4113 * collecting all its new references we set a full path of "d1/d2" for its new
4114 * reference with name "d2". When we start processing the new references we
4115 * start by processing the new reference with name "d1", and this results in
4116 * orphanizing inode 259, since its old reference causes a conflict. Then we
4117 * move on the next new reference, with name "d2", and we find out we must
4118 * orphanize inode 260, as its old reference conflicts with ours - but for the
4119 * orphanization we use a source path corresponding to the path we stored in the
4120 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4121 * receiver fail since the path component "d1/" no longer exists, it was renamed
4122 * to "o259-6-0/" when processing the previous new reference. So in this case we
4123 * must recompute the path in the new reference and use it for the new
4124 * orphanization operation.
4125 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4126 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4127 {
4128 char *name;
4129 int ret;
4130
4131 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4132 if (!name)
4133 return -ENOMEM;
4134
4135 fs_path_reset(ref->full_path);
4136 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4137 if (ret < 0)
4138 goto out;
4139
4140 ret = fs_path_add(ref->full_path, name, ref->name_len);
4141 if (ret < 0)
4142 goto out;
4143
4144 /* Update the reference's base name pointer. */
4145 set_ref_path(ref, ref->full_path);
4146 out:
4147 kfree(name);
4148 return ret;
4149 }
4150
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4151 static int rename_current_inode(struct send_ctx *sctx,
4152 struct fs_path *current_path,
4153 struct fs_path *new_path)
4154 {
4155 int ret;
4156
4157 ret = send_rename(sctx, current_path, new_path);
4158 if (ret < 0)
4159 return ret;
4160
4161 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4162 if (ret < 0)
4163 return ret;
4164
4165 return fs_path_copy(current_path, new_path);
4166 }
4167
4168 /*
4169 * This does all the move/link/unlink/rmdir magic.
4170 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4171 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4172 {
4173 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4174 int ret = 0;
4175 struct recorded_ref *cur;
4176 struct recorded_ref *cur2;
4177 LIST_HEAD(check_dirs);
4178 struct fs_path *valid_path = NULL;
4179 u64 ow_inode = 0;
4180 u64 ow_gen;
4181 u64 ow_mode;
4182 u64 last_dir_ino_rm = 0;
4183 bool did_overwrite = false;
4184 bool is_orphan = false;
4185 bool can_rename = true;
4186 bool orphanized_dir = false;
4187 bool orphanized_ancestor = false;
4188
4189 /*
4190 * This should never happen as the root dir always has the same ref
4191 * which is always '..'
4192 */
4193 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4194 btrfs_err(fs_info,
4195 "send: unexpected inode %llu in process_recorded_refs()",
4196 sctx->cur_ino);
4197 ret = -EINVAL;
4198 goto out;
4199 }
4200
4201 valid_path = fs_path_alloc();
4202 if (!valid_path) {
4203 ret = -ENOMEM;
4204 goto out;
4205 }
4206
4207 /*
4208 * First, check if the first ref of the current inode was overwritten
4209 * before. If yes, we know that the current inode was already orphanized
4210 * and thus use the orphan name. If not, we can use get_cur_path to
4211 * get the path of the first ref as it would like while receiving at
4212 * this point in time.
4213 * New inodes are always orphan at the beginning, so force to use the
4214 * orphan name in this case.
4215 * The first ref is stored in valid_path and will be updated if it
4216 * gets moved around.
4217 */
4218 if (!sctx->cur_inode_new) {
4219 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4220 sctx->cur_inode_gen);
4221 if (ret < 0)
4222 goto out;
4223 if (ret)
4224 did_overwrite = true;
4225 }
4226 if (sctx->cur_inode_new || did_overwrite) {
4227 ret = gen_unique_name(sctx, sctx->cur_ino,
4228 sctx->cur_inode_gen, valid_path);
4229 if (ret < 0)
4230 goto out;
4231 is_orphan = true;
4232 } else {
4233 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4234 valid_path);
4235 if (ret < 0)
4236 goto out;
4237 }
4238
4239 /*
4240 * Before doing any rename and link operations, do a first pass on the
4241 * new references to orphanize any unprocessed inodes that may have a
4242 * reference that conflicts with one of the new references of the current
4243 * inode. This needs to happen first because a new reference may conflict
4244 * with the old reference of a parent directory, so we must make sure
4245 * that the path used for link and rename commands don't use an
4246 * orphanized name when an ancestor was not yet orphanized.
4247 *
4248 * Example:
4249 *
4250 * Parent snapshot:
4251 *
4252 * . (ino 256)
4253 * |----- testdir/ (ino 259)
4254 * | |----- a (ino 257)
4255 * |
4256 * |----- b (ino 258)
4257 *
4258 * Send snapshot:
4259 *
4260 * . (ino 256)
4261 * |----- testdir_2/ (ino 259)
4262 * | |----- a (ino 260)
4263 * |
4264 * |----- testdir (ino 257)
4265 * |----- b (ino 257)
4266 * |----- b2 (ino 258)
4267 *
4268 * Processing the new reference for inode 257 with name "b" may happen
4269 * before processing the new reference with name "testdir". If so, we
4270 * must make sure that by the time we send a link command to create the
4271 * hard link "b", inode 259 was already orphanized, since the generated
4272 * path in "valid_path" already contains the orphanized name for 259.
4273 * We are processing inode 257, so only later when processing 259 we do
4274 * the rename operation to change its temporary (orphanized) name to
4275 * "testdir_2".
4276 */
4277 list_for_each_entry(cur, &sctx->new_refs, list) {
4278 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4279 if (ret < 0)
4280 goto out;
4281 if (ret == inode_state_will_create)
4282 continue;
4283
4284 /*
4285 * Check if this new ref would overwrite the first ref of another
4286 * unprocessed inode. If yes, orphanize the overwritten inode.
4287 * If we find an overwritten ref that is not the first ref,
4288 * simply unlink it.
4289 */
4290 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4291 cur->name, cur->name_len,
4292 &ow_inode, &ow_gen, &ow_mode);
4293 if (ret < 0)
4294 goto out;
4295 if (ret) {
4296 ret = is_first_ref(sctx->parent_root,
4297 ow_inode, cur->dir, cur->name,
4298 cur->name_len);
4299 if (ret < 0)
4300 goto out;
4301 if (ret) {
4302 struct name_cache_entry *nce;
4303 struct waiting_dir_move *wdm;
4304
4305 if (orphanized_dir) {
4306 ret = refresh_ref_path(sctx, cur);
4307 if (ret < 0)
4308 goto out;
4309 }
4310
4311 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4312 cur->full_path);
4313 if (ret < 0)
4314 goto out;
4315 if (S_ISDIR(ow_mode))
4316 orphanized_dir = true;
4317
4318 /*
4319 * If ow_inode has its rename operation delayed
4320 * make sure that its orphanized name is used in
4321 * the source path when performing its rename
4322 * operation.
4323 */
4324 wdm = get_waiting_dir_move(sctx, ow_inode);
4325 if (wdm)
4326 wdm->orphanized = true;
4327
4328 /*
4329 * Make sure we clear our orphanized inode's
4330 * name from the name cache. This is because the
4331 * inode ow_inode might be an ancestor of some
4332 * other inode that will be orphanized as well
4333 * later and has an inode number greater than
4334 * sctx->send_progress. We need to prevent
4335 * future name lookups from using the old name
4336 * and get instead the orphan name.
4337 */
4338 nce = name_cache_search(sctx, ow_inode, ow_gen);
4339 if (nce)
4340 btrfs_lru_cache_remove(&sctx->name_cache,
4341 &nce->entry);
4342
4343 /*
4344 * ow_inode might currently be an ancestor of
4345 * cur_ino, therefore compute valid_path (the
4346 * current path of cur_ino) again because it
4347 * might contain the pre-orphanization name of
4348 * ow_inode, which is no longer valid.
4349 */
4350 ret = is_ancestor(sctx->parent_root,
4351 ow_inode, ow_gen,
4352 sctx->cur_ino, NULL);
4353 if (ret > 0) {
4354 orphanized_ancestor = true;
4355 fs_path_reset(valid_path);
4356 fs_path_reset(&sctx->cur_inode_path);
4357 ret = get_cur_path(sctx, sctx->cur_ino,
4358 sctx->cur_inode_gen,
4359 valid_path);
4360 }
4361 if (ret < 0)
4362 goto out;
4363 } else {
4364 /*
4365 * If we previously orphanized a directory that
4366 * collided with a new reference that we already
4367 * processed, recompute the current path because
4368 * that directory may be part of the path.
4369 */
4370 if (orphanized_dir) {
4371 ret = refresh_ref_path(sctx, cur);
4372 if (ret < 0)
4373 goto out;
4374 }
4375 ret = send_unlink(sctx, cur->full_path);
4376 if (ret < 0)
4377 goto out;
4378 }
4379 }
4380
4381 }
4382
4383 list_for_each_entry(cur, &sctx->new_refs, list) {
4384 /*
4385 * We may have refs where the parent directory does not exist
4386 * yet. This happens if the parent directories inum is higher
4387 * than the current inum. To handle this case, we create the
4388 * parent directory out of order. But we need to check if this
4389 * did already happen before due to other refs in the same dir.
4390 */
4391 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4392 if (ret < 0)
4393 goto out;
4394 if (ret == inode_state_will_create) {
4395 ret = 0;
4396 /*
4397 * First check if any of the current inodes refs did
4398 * already create the dir.
4399 */
4400 list_for_each_entry(cur2, &sctx->new_refs, list) {
4401 if (cur == cur2)
4402 break;
4403 if (cur2->dir == cur->dir) {
4404 ret = 1;
4405 break;
4406 }
4407 }
4408
4409 /*
4410 * If that did not happen, check if a previous inode
4411 * did already create the dir.
4412 */
4413 if (!ret)
4414 ret = did_create_dir(sctx, cur->dir);
4415 if (ret < 0)
4416 goto out;
4417 if (!ret) {
4418 ret = send_create_inode(sctx, cur->dir);
4419 if (ret < 0)
4420 goto out;
4421 cache_dir_created(sctx, cur->dir);
4422 }
4423 }
4424
4425 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4426 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4427 if (ret < 0)
4428 goto out;
4429 if (ret == 1) {
4430 can_rename = false;
4431 *pending_move = 1;
4432 }
4433 }
4434
4435 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4436 can_rename) {
4437 ret = wait_for_parent_move(sctx, cur, is_orphan);
4438 if (ret < 0)
4439 goto out;
4440 if (ret == 1) {
4441 can_rename = false;
4442 *pending_move = 1;
4443 }
4444 }
4445
4446 /*
4447 * link/move the ref to the new place. If we have an orphan
4448 * inode, move it and update valid_path. If not, link or move
4449 * it depending on the inode mode.
4450 */
4451 if (is_orphan && can_rename) {
4452 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4453 if (ret < 0)
4454 goto out;
4455 is_orphan = false;
4456 } else if (can_rename) {
4457 if (S_ISDIR(sctx->cur_inode_mode)) {
4458 /*
4459 * Dirs can't be linked, so move it. For moved
4460 * dirs, we always have one new and one deleted
4461 * ref. The deleted ref is ignored later.
4462 */
4463 ret = rename_current_inode(sctx, valid_path,
4464 cur->full_path);
4465 if (ret < 0)
4466 goto out;
4467 } else {
4468 /*
4469 * We might have previously orphanized an inode
4470 * which is an ancestor of our current inode,
4471 * so our reference's full path, which was
4472 * computed before any such orphanizations, must
4473 * be updated.
4474 */
4475 if (orphanized_dir) {
4476 ret = update_ref_path(sctx, cur);
4477 if (ret < 0)
4478 goto out;
4479 }
4480 ret = send_link(sctx, cur->full_path,
4481 valid_path);
4482 if (ret < 0)
4483 goto out;
4484 }
4485 }
4486 ret = dup_ref(cur, &check_dirs);
4487 if (ret < 0)
4488 goto out;
4489 }
4490
4491 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4492 /*
4493 * Check if we can already rmdir the directory. If not,
4494 * orphanize it. For every dir item inside that gets deleted
4495 * later, we do this check again and rmdir it then if possible.
4496 * See the use of check_dirs for more details.
4497 */
4498 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4499 if (ret < 0)
4500 goto out;
4501 if (ret) {
4502 ret = send_rmdir(sctx, valid_path);
4503 if (ret < 0)
4504 goto out;
4505 } else if (!is_orphan) {
4506 ret = orphanize_inode(sctx, sctx->cur_ino,
4507 sctx->cur_inode_gen, valid_path);
4508 if (ret < 0)
4509 goto out;
4510 is_orphan = true;
4511 }
4512
4513 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4514 ret = dup_ref(cur, &check_dirs);
4515 if (ret < 0)
4516 goto out;
4517 }
4518 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4519 !list_empty(&sctx->deleted_refs)) {
4520 /*
4521 * We have a moved dir. Add the old parent to check_dirs
4522 */
4523 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list);
4524 ret = dup_ref(cur, &check_dirs);
4525 if (ret < 0)
4526 goto out;
4527 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4528 /*
4529 * We have a non dir inode. Go through all deleted refs and
4530 * unlink them if they were not already overwritten by other
4531 * inodes.
4532 */
4533 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4534 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4535 sctx->cur_ino, sctx->cur_inode_gen,
4536 cur->name, cur->name_len);
4537 if (ret < 0)
4538 goto out;
4539 if (!ret) {
4540 /*
4541 * If we orphanized any ancestor before, we need
4542 * to recompute the full path for deleted names,
4543 * since any such path was computed before we
4544 * processed any references and orphanized any
4545 * ancestor inode.
4546 */
4547 if (orphanized_ancestor) {
4548 ret = update_ref_path(sctx, cur);
4549 if (ret < 0)
4550 goto out;
4551 }
4552 ret = send_unlink(sctx, cur->full_path);
4553 if (ret < 0)
4554 goto out;
4555 if (is_current_inode_path(sctx, cur->full_path))
4556 fs_path_reset(&sctx->cur_inode_path);
4557 }
4558 ret = dup_ref(cur, &check_dirs);
4559 if (ret < 0)
4560 goto out;
4561 }
4562 /*
4563 * If the inode is still orphan, unlink the orphan. This may
4564 * happen when a previous inode did overwrite the first ref
4565 * of this inode and no new refs were added for the current
4566 * inode. Unlinking does not mean that the inode is deleted in
4567 * all cases. There may still be links to this inode in other
4568 * places.
4569 */
4570 if (is_orphan) {
4571 ret = send_unlink(sctx, valid_path);
4572 if (ret < 0)
4573 goto out;
4574 }
4575 }
4576
4577 /*
4578 * We did collect all parent dirs where cur_inode was once located. We
4579 * now go through all these dirs and check if they are pending for
4580 * deletion and if it's finally possible to perform the rmdir now.
4581 * We also update the inode stats of the parent dirs here.
4582 */
4583 list_for_each_entry(cur, &check_dirs, list) {
4584 /*
4585 * In case we had refs into dirs that were not processed yet,
4586 * we don't need to do the utime and rmdir logic for these dirs.
4587 * The dir will be processed later.
4588 */
4589 if (cur->dir > sctx->cur_ino)
4590 continue;
4591
4592 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4593 if (ret < 0)
4594 goto out;
4595
4596 if (ret == inode_state_did_create ||
4597 ret == inode_state_no_change) {
4598 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4599 if (ret < 0)
4600 goto out;
4601 } else if (ret == inode_state_did_delete &&
4602 cur->dir != last_dir_ino_rm) {
4603 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4604 if (ret < 0)
4605 goto out;
4606 if (ret) {
4607 ret = get_cur_path(sctx, cur->dir,
4608 cur->dir_gen, valid_path);
4609 if (ret < 0)
4610 goto out;
4611 ret = send_rmdir(sctx, valid_path);
4612 if (ret < 0)
4613 goto out;
4614 last_dir_ino_rm = cur->dir;
4615 }
4616 }
4617 }
4618
4619 ret = 0;
4620
4621 out:
4622 __free_recorded_refs(&check_dirs);
4623 free_recorded_refs(sctx);
4624 fs_path_free(valid_path);
4625 return ret;
4626 }
4627
rbtree_ref_comp(const void * k,const struct rb_node * node)4628 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4629 {
4630 const struct recorded_ref *data = k;
4631 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4632
4633 if (data->dir > ref->dir)
4634 return 1;
4635 if (data->dir < ref->dir)
4636 return -1;
4637 if (data->dir_gen > ref->dir_gen)
4638 return 1;
4639 if (data->dir_gen < ref->dir_gen)
4640 return -1;
4641 if (data->name_len > ref->name_len)
4642 return 1;
4643 if (data->name_len < ref->name_len)
4644 return -1;
4645 return strcmp(data->name, ref->name);
4646 }
4647
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4648 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4649 {
4650 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4651
4652 return rbtree_ref_comp(entry, parent) < 0;
4653 }
4654
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4655 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4656 struct fs_path *name, u64 dir, u64 dir_gen,
4657 struct send_ctx *sctx)
4658 {
4659 int ret = 0;
4660 struct fs_path *path = NULL;
4661 struct recorded_ref *ref = NULL;
4662
4663 path = fs_path_alloc();
4664 if (!path) {
4665 ret = -ENOMEM;
4666 goto out;
4667 }
4668
4669 ref = recorded_ref_alloc();
4670 if (!ref) {
4671 ret = -ENOMEM;
4672 goto out;
4673 }
4674
4675 ret = get_cur_path(sctx, dir, dir_gen, path);
4676 if (ret < 0)
4677 goto out;
4678 ret = fs_path_add_path(path, name);
4679 if (ret < 0)
4680 goto out;
4681
4682 ref->dir = dir;
4683 ref->dir_gen = dir_gen;
4684 set_ref_path(ref, path);
4685 list_add_tail(&ref->list, refs);
4686 rb_add(&ref->node, root, rbtree_ref_less);
4687 ref->root = root;
4688 out:
4689 if (ret) {
4690 if (path && (!ref || !ref->full_path))
4691 fs_path_free(path);
4692 recorded_ref_free(ref);
4693 }
4694 return ret;
4695 }
4696
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4697 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4698 {
4699 int ret;
4700 struct send_ctx *sctx = ctx;
4701 struct rb_node *node = NULL;
4702 struct recorded_ref data;
4703 struct recorded_ref *ref;
4704 u64 dir_gen;
4705
4706 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4707 if (ret < 0)
4708 return ret;
4709
4710 data.dir = dir;
4711 data.dir_gen = dir_gen;
4712 set_ref_path(&data, name);
4713 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4714 if (node) {
4715 ref = rb_entry(node, struct recorded_ref, node);
4716 recorded_ref_free(ref);
4717 } else {
4718 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4719 &sctx->new_refs, name, dir, dir_gen,
4720 sctx);
4721 }
4722
4723 return ret;
4724 }
4725
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4726 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4727 {
4728 int ret;
4729 struct send_ctx *sctx = ctx;
4730 struct rb_node *node = NULL;
4731 struct recorded_ref data;
4732 struct recorded_ref *ref;
4733 u64 dir_gen;
4734
4735 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4736 if (ret < 0)
4737 return ret;
4738
4739 data.dir = dir;
4740 data.dir_gen = dir_gen;
4741 set_ref_path(&data, name);
4742 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4743 if (node) {
4744 ref = rb_entry(node, struct recorded_ref, node);
4745 recorded_ref_free(ref);
4746 } else {
4747 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4748 &sctx->deleted_refs, name, dir,
4749 dir_gen, sctx);
4750 }
4751
4752 return ret;
4753 }
4754
record_new_ref(struct send_ctx * sctx)4755 static int record_new_ref(struct send_ctx *sctx)
4756 {
4757 int ret;
4758
4759 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4760 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4761 if (ret < 0)
4762 return ret;
4763
4764 return 0;
4765 }
4766
record_deleted_ref(struct send_ctx * sctx)4767 static int record_deleted_ref(struct send_ctx *sctx)
4768 {
4769 int ret;
4770
4771 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4772 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4773 sctx);
4774 if (ret < 0)
4775 return ret;
4776
4777 return 0;
4778 }
4779
record_changed_ref(struct send_ctx * sctx)4780 static int record_changed_ref(struct send_ctx *sctx)
4781 {
4782 int ret;
4783
4784 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4785 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4786 if (ret < 0)
4787 return ret;
4788 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4789 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4790 if (ret < 0)
4791 return ret;
4792
4793 return 0;
4794 }
4795
4796 /*
4797 * Record and process all refs at once. Needed when an inode changes the
4798 * generation number, which means that it was deleted and recreated.
4799 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4800 static int process_all_refs(struct send_ctx *sctx,
4801 enum btrfs_compare_tree_result cmd)
4802 {
4803 int ret = 0;
4804 int iter_ret = 0;
4805 struct btrfs_root *root;
4806 struct btrfs_path *path;
4807 struct btrfs_key key;
4808 struct btrfs_key found_key;
4809 iterate_inode_ref_t cb;
4810 int pending_move = 0;
4811
4812 path = alloc_path_for_send();
4813 if (!path)
4814 return -ENOMEM;
4815
4816 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4817 root = sctx->send_root;
4818 cb = record_new_ref_if_needed;
4819 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4820 root = sctx->parent_root;
4821 cb = record_deleted_ref_if_needed;
4822 } else {
4823 btrfs_err(sctx->send_root->fs_info,
4824 "Wrong command %d in process_all_refs", cmd);
4825 ret = -EINVAL;
4826 goto out;
4827 }
4828
4829 key.objectid = sctx->cmp_key->objectid;
4830 key.type = BTRFS_INODE_REF_KEY;
4831 key.offset = 0;
4832 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4833 if (found_key.objectid != key.objectid ||
4834 (found_key.type != BTRFS_INODE_REF_KEY &&
4835 found_key.type != BTRFS_INODE_EXTREF_KEY))
4836 break;
4837
4838 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4839 if (ret < 0)
4840 goto out;
4841 }
4842 /* Catch error found during iteration */
4843 if (iter_ret < 0) {
4844 ret = iter_ret;
4845 goto out;
4846 }
4847 btrfs_release_path(path);
4848
4849 /*
4850 * We don't actually care about pending_move as we are simply
4851 * re-creating this inode and will be rename'ing it into place once we
4852 * rename the parent directory.
4853 */
4854 ret = process_recorded_refs(sctx, &pending_move);
4855 out:
4856 btrfs_free_path(path);
4857 return ret;
4858 }
4859
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4860 static int send_set_xattr(struct send_ctx *sctx,
4861 const char *name, int name_len,
4862 const char *data, int data_len)
4863 {
4864 struct fs_path *path;
4865 int ret;
4866
4867 path = get_cur_inode_path(sctx);
4868 if (IS_ERR(path))
4869 return PTR_ERR(path);
4870
4871 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4872 if (ret < 0)
4873 return ret;
4874
4875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4876 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4877 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4878
4879 ret = send_cmd(sctx);
4880
4881 tlv_put_failure:
4882 return ret;
4883 }
4884
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4885 static int send_remove_xattr(struct send_ctx *sctx,
4886 struct fs_path *path,
4887 const char *name, int name_len)
4888 {
4889 int ret;
4890
4891 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4892 if (ret < 0)
4893 return ret;
4894
4895 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4896 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4897
4898 ret = send_cmd(sctx);
4899
4900 tlv_put_failure:
4901 return ret;
4902 }
4903
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4904 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4905 const char *name, int name_len, const char *data,
4906 int data_len, void *ctx)
4907 {
4908 struct send_ctx *sctx = ctx;
4909 struct posix_acl_xattr_header dummy_acl;
4910
4911 /* Capabilities are emitted by finish_inode_if_needed */
4912 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4913 return 0;
4914
4915 /*
4916 * This hack is needed because empty acls are stored as zero byte
4917 * data in xattrs. Problem with that is, that receiving these zero byte
4918 * acls will fail later. To fix this, we send a dummy acl list that
4919 * only contains the version number and no entries.
4920 */
4921 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4922 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4923 if (data_len == 0) {
4924 dummy_acl.a_version =
4925 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4926 data = (char *)&dummy_acl;
4927 data_len = sizeof(dummy_acl);
4928 }
4929 }
4930
4931 return send_set_xattr(sctx, name, name_len, data, data_len);
4932 }
4933
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4934 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4935 const char *name, int name_len,
4936 const char *data, int data_len, void *ctx)
4937 {
4938 struct send_ctx *sctx = ctx;
4939 struct fs_path *p;
4940
4941 p = get_cur_inode_path(sctx);
4942 if (IS_ERR(p))
4943 return PTR_ERR(p);
4944
4945 return send_remove_xattr(sctx, p, name, name_len);
4946 }
4947
process_new_xattr(struct send_ctx * sctx)4948 static int process_new_xattr(struct send_ctx *sctx)
4949 {
4950 return iterate_dir_item(sctx->send_root, sctx->left_path,
4951 __process_new_xattr, sctx);
4952 }
4953
process_deleted_xattr(struct send_ctx * sctx)4954 static int process_deleted_xattr(struct send_ctx *sctx)
4955 {
4956 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4957 __process_deleted_xattr, sctx);
4958 }
4959
4960 struct find_xattr_ctx {
4961 const char *name;
4962 int name_len;
4963 int found_idx;
4964 char *found_data;
4965 int found_data_len;
4966 };
4967
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)4968 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4969 int name_len, const char *data, int data_len, void *vctx)
4970 {
4971 struct find_xattr_ctx *ctx = vctx;
4972
4973 if (name_len == ctx->name_len &&
4974 strncmp(name, ctx->name, name_len) == 0) {
4975 ctx->found_idx = num;
4976 ctx->found_data_len = data_len;
4977 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4978 if (!ctx->found_data)
4979 return -ENOMEM;
4980 return 1;
4981 }
4982 return 0;
4983 }
4984
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4985 static int find_xattr(struct btrfs_root *root,
4986 struct btrfs_path *path,
4987 struct btrfs_key *key,
4988 const char *name, int name_len,
4989 char **data, int *data_len)
4990 {
4991 int ret;
4992 struct find_xattr_ctx ctx;
4993
4994 ctx.name = name;
4995 ctx.name_len = name_len;
4996 ctx.found_idx = -1;
4997 ctx.found_data = NULL;
4998 ctx.found_data_len = 0;
4999
5000 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5001 if (ret < 0)
5002 return ret;
5003
5004 if (ctx.found_idx == -1)
5005 return -ENOENT;
5006 if (data) {
5007 *data = ctx.found_data;
5008 *data_len = ctx.found_data_len;
5009 } else {
5010 kfree(ctx.found_data);
5011 }
5012 return ctx.found_idx;
5013 }
5014
5015
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5016 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5017 const char *name, int name_len,
5018 const char *data, int data_len,
5019 void *ctx)
5020 {
5021 int ret;
5022 struct send_ctx *sctx = ctx;
5023 char *found_data = NULL;
5024 int found_data_len = 0;
5025
5026 ret = find_xattr(sctx->parent_root, sctx->right_path,
5027 sctx->cmp_key, name, name_len, &found_data,
5028 &found_data_len);
5029 if (ret == -ENOENT) {
5030 ret = __process_new_xattr(num, di_key, name, name_len, data,
5031 data_len, ctx);
5032 } else if (ret >= 0) {
5033 if (data_len != found_data_len ||
5034 memcmp(data, found_data, data_len)) {
5035 ret = __process_new_xattr(num, di_key, name, name_len,
5036 data, data_len, ctx);
5037 } else {
5038 ret = 0;
5039 }
5040 }
5041
5042 kfree(found_data);
5043 return ret;
5044 }
5045
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5046 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5047 const char *name, int name_len,
5048 const char *data, int data_len,
5049 void *ctx)
5050 {
5051 int ret;
5052 struct send_ctx *sctx = ctx;
5053
5054 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5055 name, name_len, NULL, NULL);
5056 if (ret == -ENOENT)
5057 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5058 data_len, ctx);
5059 else if (ret >= 0)
5060 ret = 0;
5061
5062 return ret;
5063 }
5064
process_changed_xattr(struct send_ctx * sctx)5065 static int process_changed_xattr(struct send_ctx *sctx)
5066 {
5067 int ret;
5068
5069 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5070 __process_changed_new_xattr, sctx);
5071 if (ret < 0)
5072 return ret;
5073
5074 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5075 __process_changed_deleted_xattr, sctx);
5076 }
5077
process_all_new_xattrs(struct send_ctx * sctx)5078 static int process_all_new_xattrs(struct send_ctx *sctx)
5079 {
5080 int ret = 0;
5081 int iter_ret = 0;
5082 struct btrfs_root *root;
5083 struct btrfs_path *path;
5084 struct btrfs_key key;
5085 struct btrfs_key found_key;
5086
5087 path = alloc_path_for_send();
5088 if (!path)
5089 return -ENOMEM;
5090
5091 root = sctx->send_root;
5092
5093 key.objectid = sctx->cmp_key->objectid;
5094 key.type = BTRFS_XATTR_ITEM_KEY;
5095 key.offset = 0;
5096 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5097 if (found_key.objectid != key.objectid ||
5098 found_key.type != key.type) {
5099 ret = 0;
5100 break;
5101 }
5102
5103 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5104 if (ret < 0)
5105 break;
5106 }
5107 /* Catch error found during iteration */
5108 if (iter_ret < 0)
5109 ret = iter_ret;
5110
5111 btrfs_free_path(path);
5112 return ret;
5113 }
5114
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5115 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5116 struct fsverity_descriptor *desc)
5117 {
5118 int ret;
5119
5120 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5121 if (ret < 0)
5122 return ret;
5123
5124 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5125 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5126 le8_to_cpu(desc->hash_algorithm));
5127 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5128 1U << le8_to_cpu(desc->log_blocksize));
5129 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5130 le8_to_cpu(desc->salt_size));
5131 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5132 le32_to_cpu(desc->sig_size));
5133
5134 ret = send_cmd(sctx);
5135
5136 tlv_put_failure:
5137 return ret;
5138 }
5139
process_verity(struct send_ctx * sctx)5140 static int process_verity(struct send_ctx *sctx)
5141 {
5142 int ret = 0;
5143 struct btrfs_inode *inode;
5144 struct fs_path *p;
5145
5146 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5147 if (IS_ERR(inode))
5148 return PTR_ERR(inode);
5149
5150 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0);
5151 if (ret < 0)
5152 goto iput;
5153
5154 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5155 ret = -EMSGSIZE;
5156 goto iput;
5157 }
5158 if (!sctx->verity_descriptor) {
5159 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5160 GFP_KERNEL);
5161 if (!sctx->verity_descriptor) {
5162 ret = -ENOMEM;
5163 goto iput;
5164 }
5165 }
5166
5167 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret);
5168 if (ret < 0)
5169 goto iput;
5170
5171 p = get_cur_inode_path(sctx);
5172 if (IS_ERR(p)) {
5173 ret = PTR_ERR(p);
5174 goto iput;
5175 }
5176
5177 ret = send_verity(sctx, p, sctx->verity_descriptor);
5178 iput:
5179 iput(&inode->vfs_inode);
5180 return ret;
5181 }
5182
max_send_read_size(const struct send_ctx * sctx)5183 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5184 {
5185 return sctx->send_max_size - SZ_16K;
5186 }
5187
put_data_header(struct send_ctx * sctx,u32 len)5188 static int put_data_header(struct send_ctx *sctx, u32 len)
5189 {
5190 if (WARN_ON_ONCE(sctx->put_data))
5191 return -EINVAL;
5192 sctx->put_data = true;
5193 if (sctx->proto >= 2) {
5194 /*
5195 * Since v2, the data attribute header doesn't include a length,
5196 * it is implicitly to the end of the command.
5197 */
5198 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5199 return -EOVERFLOW;
5200 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5201 sctx->send_size += sizeof(__le16);
5202 } else {
5203 struct btrfs_tlv_header *hdr;
5204
5205 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5206 return -EOVERFLOW;
5207 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5208 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5209 put_unaligned_le16(len, &hdr->tlv_len);
5210 sctx->send_size += sizeof(*hdr);
5211 }
5212 return 0;
5213 }
5214
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5215 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5216 {
5217 struct btrfs_root *root = sctx->send_root;
5218 struct btrfs_fs_info *fs_info = root->fs_info;
5219 u64 cur = offset;
5220 const u64 end = offset + len;
5221 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT);
5222 struct address_space *mapping = sctx->cur_inode->i_mapping;
5223 int ret;
5224
5225 ret = put_data_header(sctx, len);
5226 if (ret)
5227 return ret;
5228
5229 while (cur < end) {
5230 pgoff_t index = (cur >> PAGE_SHIFT);
5231 unsigned int cur_len;
5232 unsigned int pg_offset;
5233 struct folio *folio;
5234
5235 folio = filemap_lock_folio(mapping, index);
5236 if (IS_ERR(folio)) {
5237 page_cache_sync_readahead(mapping,
5238 &sctx->ra, NULL, index,
5239 last_index + 1 - index);
5240
5241 folio = filemap_grab_folio(mapping, index);
5242 if (IS_ERR(folio)) {
5243 ret = PTR_ERR(folio);
5244 break;
5245 }
5246 }
5247 pg_offset = offset_in_folio(folio, cur);
5248 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset);
5249
5250 if (folio_test_readahead(folio))
5251 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5252 last_index + 1 - index);
5253
5254 if (!folio_test_uptodate(folio)) {
5255 btrfs_read_folio(NULL, folio);
5256 folio_lock(folio);
5257 if (!folio_test_uptodate(folio)) {
5258 folio_unlock(folio);
5259 btrfs_err(fs_info,
5260 "send: IO error at offset %llu for inode %llu root %llu",
5261 folio_pos(folio), sctx->cur_ino,
5262 btrfs_root_id(sctx->send_root));
5263 folio_put(folio);
5264 ret = -EIO;
5265 break;
5266 }
5267 if (folio->mapping != mapping) {
5268 folio_unlock(folio);
5269 folio_put(folio);
5270 continue;
5271 }
5272 }
5273
5274 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5275 pg_offset, cur_len);
5276 folio_unlock(folio);
5277 folio_put(folio);
5278 cur += cur_len;
5279 sctx->send_size += cur_len;
5280 }
5281
5282 return ret;
5283 }
5284
5285 /*
5286 * Read some bytes from the current inode/file and send a write command to
5287 * user space.
5288 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5289 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5290 {
5291 int ret = 0;
5292 struct fs_path *p;
5293
5294 p = get_cur_inode_path(sctx);
5295 if (IS_ERR(p))
5296 return PTR_ERR(p);
5297
5298 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5299 if (ret < 0)
5300 return ret;
5301
5302 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5303 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5304 ret = put_file_data(sctx, offset, len);
5305 if (ret < 0)
5306 return ret;
5307
5308 ret = send_cmd(sctx);
5309
5310 tlv_put_failure:
5311 return ret;
5312 }
5313
5314 /*
5315 * Send a clone command to user space.
5316 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5317 static int send_clone(struct send_ctx *sctx,
5318 u64 offset, u32 len,
5319 struct clone_root *clone_root)
5320 {
5321 int ret = 0;
5322 struct fs_path *p;
5323 struct fs_path *cur_inode_path;
5324 u64 gen;
5325
5326 cur_inode_path = get_cur_inode_path(sctx);
5327 if (IS_ERR(cur_inode_path))
5328 return PTR_ERR(cur_inode_path);
5329
5330 p = fs_path_alloc();
5331 if (!p)
5332 return -ENOMEM;
5333
5334 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5335 if (ret < 0)
5336 goto out;
5337
5338 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5339 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5340 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5341
5342 if (clone_root->root == sctx->send_root) {
5343 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5344 if (ret < 0)
5345 goto out;
5346 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5347 } else {
5348 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5349 }
5350 if (ret < 0)
5351 goto out;
5352
5353 /*
5354 * If the parent we're using has a received_uuid set then use that as
5355 * our clone source as that is what we will look for when doing a
5356 * receive.
5357 *
5358 * This covers the case that we create a snapshot off of a received
5359 * subvolume and then use that as the parent and try to receive on a
5360 * different host.
5361 */
5362 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5364 clone_root->root->root_item.received_uuid);
5365 else
5366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5367 clone_root->root->root_item.uuid);
5368 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5369 btrfs_root_ctransid(&clone_root->root->root_item));
5370 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5371 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5372 clone_root->offset);
5373
5374 ret = send_cmd(sctx);
5375
5376 tlv_put_failure:
5377 out:
5378 fs_path_free(p);
5379 return ret;
5380 }
5381
5382 /*
5383 * Send an update extent command to user space.
5384 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5385 static int send_update_extent(struct send_ctx *sctx,
5386 u64 offset, u32 len)
5387 {
5388 int ret = 0;
5389 struct fs_path *p;
5390
5391 p = get_cur_inode_path(sctx);
5392 if (IS_ERR(p))
5393 return PTR_ERR(p);
5394
5395 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5396 if (ret < 0)
5397 return ret;
5398
5399 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5400 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5401 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5402
5403 ret = send_cmd(sctx);
5404
5405 tlv_put_failure:
5406 return ret;
5407 }
5408
send_fallocate(struct send_ctx * sctx,u32 mode,u64 offset,u64 len)5409 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len)
5410 {
5411 struct fs_path *path;
5412 int ret;
5413
5414 path = get_cur_inode_path(sctx);
5415 if (IS_ERR(path))
5416 return PTR_ERR(path);
5417
5418 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE);
5419 if (ret < 0)
5420 return ret;
5421
5422 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5423 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode);
5424 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5425 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5426
5427 ret = send_cmd(sctx);
5428
5429 tlv_put_failure:
5430 return ret;
5431 }
5432
send_hole(struct send_ctx * sctx,u64 end)5433 static int send_hole(struct send_ctx *sctx, u64 end)
5434 {
5435 struct fs_path *p = NULL;
5436 u64 read_size = max_send_read_size(sctx);
5437 u64 offset = sctx->cur_inode_last_extent;
5438 int ret = 0;
5439
5440 /*
5441 * Starting with send stream v2 we have fallocate and can use it to
5442 * punch holes instead of sending writes full of zeroes.
5443 */
5444 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE))
5445 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
5446 offset, end - offset);
5447
5448 /*
5449 * A hole that starts at EOF or beyond it. Since we do not yet support
5450 * fallocate (for extent preallocation and hole punching), sending a
5451 * write of zeroes starting at EOF or beyond would later require issuing
5452 * a truncate operation which would undo the write and achieve nothing.
5453 */
5454 if (offset >= sctx->cur_inode_size)
5455 return 0;
5456
5457 /*
5458 * Don't go beyond the inode's i_size due to prealloc extents that start
5459 * after the i_size.
5460 */
5461 end = min_t(u64, end, sctx->cur_inode_size);
5462
5463 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5464 return send_update_extent(sctx, offset, end - offset);
5465
5466 p = get_cur_inode_path(sctx);
5467 if (IS_ERR(p))
5468 return PTR_ERR(p);
5469
5470 while (offset < end) {
5471 u64 len = min(end - offset, read_size);
5472
5473 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5474 if (ret < 0)
5475 break;
5476 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5477 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5478 ret = put_data_header(sctx, len);
5479 if (ret < 0)
5480 break;
5481 memset(sctx->send_buf + sctx->send_size, 0, len);
5482 sctx->send_size += len;
5483 ret = send_cmd(sctx);
5484 if (ret < 0)
5485 break;
5486 offset += len;
5487 }
5488 sctx->cur_inode_next_write_offset = offset;
5489 tlv_put_failure:
5490 return ret;
5491 }
5492
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5493 static int send_encoded_inline_extent(struct send_ctx *sctx,
5494 struct btrfs_path *path, u64 offset,
5495 u64 len)
5496 {
5497 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5498 struct fs_path *fspath;
5499 struct extent_buffer *leaf = path->nodes[0];
5500 struct btrfs_key key;
5501 struct btrfs_file_extent_item *ei;
5502 u64 ram_bytes;
5503 size_t inline_size;
5504 int ret;
5505
5506 fspath = get_cur_inode_path(sctx);
5507 if (IS_ERR(fspath))
5508 return PTR_ERR(fspath);
5509
5510 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5511 if (ret < 0)
5512 return ret;
5513
5514 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5515 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5516 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5517 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5518
5519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5520 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5522 min(key.offset + ram_bytes - offset, len));
5523 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5524 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5525 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5526 btrfs_file_extent_compression(leaf, ei));
5527 if (ret < 0)
5528 return ret;
5529 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5530
5531 ret = put_data_header(sctx, inline_size);
5532 if (ret < 0)
5533 return ret;
5534 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5535 btrfs_file_extent_inline_start(ei), inline_size);
5536 sctx->send_size += inline_size;
5537
5538 ret = send_cmd(sctx);
5539
5540 tlv_put_failure:
5541 return ret;
5542 }
5543
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5544 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5545 u64 offset, u64 len)
5546 {
5547 struct btrfs_root *root = sctx->send_root;
5548 struct btrfs_fs_info *fs_info = root->fs_info;
5549 struct btrfs_inode *inode;
5550 struct fs_path *fspath;
5551 struct extent_buffer *leaf = path->nodes[0];
5552 struct btrfs_key key;
5553 struct btrfs_file_extent_item *ei;
5554 u64 disk_bytenr, disk_num_bytes;
5555 u32 data_offset;
5556 struct btrfs_cmd_header *hdr;
5557 u32 crc;
5558 int ret;
5559
5560 inode = btrfs_iget(sctx->cur_ino, root);
5561 if (IS_ERR(inode))
5562 return PTR_ERR(inode);
5563
5564 fspath = get_cur_inode_path(sctx);
5565 if (IS_ERR(fspath)) {
5566 ret = PTR_ERR(fspath);
5567 goto out;
5568 }
5569
5570 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5571 if (ret < 0)
5572 goto out;
5573
5574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5575 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5576 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5577 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5578
5579 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5582 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5583 len));
5584 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5585 btrfs_file_extent_ram_bytes(leaf, ei));
5586 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5587 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5588 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5589 btrfs_file_extent_compression(leaf, ei));
5590 if (ret < 0)
5591 goto out;
5592 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5593 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5594
5595 ret = put_data_header(sctx, disk_num_bytes);
5596 if (ret < 0)
5597 goto out;
5598
5599 /*
5600 * We want to do I/O directly into the send buffer, so get the next page
5601 * boundary in the send buffer. This means that there may be a gap
5602 * between the beginning of the command and the file data.
5603 */
5604 data_offset = PAGE_ALIGN(sctx->send_size);
5605 if (data_offset > sctx->send_max_size ||
5606 sctx->send_max_size - data_offset < disk_num_bytes) {
5607 ret = -EOVERFLOW;
5608 goto out;
5609 }
5610
5611 /*
5612 * Note that send_buf is a mapping of send_buf_pages, so this is really
5613 * reading into send_buf.
5614 */
5615 ret = btrfs_encoded_read_regular_fill_pages(inode,
5616 disk_bytenr, disk_num_bytes,
5617 sctx->send_buf_pages +
5618 (data_offset >> PAGE_SHIFT),
5619 NULL);
5620 if (ret)
5621 goto out;
5622
5623 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5624 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5625 hdr->crc = 0;
5626 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5627 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5628 hdr->crc = cpu_to_le32(crc);
5629
5630 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5631 &sctx->send_off);
5632 if (!ret) {
5633 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5634 disk_num_bytes, &sctx->send_off);
5635 }
5636 sctx->send_size = 0;
5637 sctx->put_data = false;
5638
5639 tlv_put_failure:
5640 out:
5641 iput(&inode->vfs_inode);
5642 return ret;
5643 }
5644
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5645 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5646 const u64 offset, const u64 len)
5647 {
5648 const u64 end = offset + len;
5649 struct extent_buffer *leaf = path->nodes[0];
5650 struct btrfs_file_extent_item *ei;
5651 u64 read_size = max_send_read_size(sctx);
5652 u64 sent = 0;
5653
5654 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5655 return send_update_extent(sctx, offset, len);
5656
5657 ei = btrfs_item_ptr(leaf, path->slots[0],
5658 struct btrfs_file_extent_item);
5659 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5660 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5661 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5662 BTRFS_FILE_EXTENT_INLINE);
5663
5664 /*
5665 * Send the compressed extent unless the compressed data is
5666 * larger than the decompressed data. This can happen if we're
5667 * not sending the entire extent, either because it has been
5668 * partially overwritten/truncated or because this is a part of
5669 * the extent that we couldn't clone in clone_range().
5670 */
5671 if (is_inline &&
5672 btrfs_file_extent_inline_item_len(leaf,
5673 path->slots[0]) <= len) {
5674 return send_encoded_inline_extent(sctx, path, offset,
5675 len);
5676 } else if (!is_inline &&
5677 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5678 return send_encoded_extent(sctx, path, offset, len);
5679 }
5680 }
5681
5682 if (sctx->cur_inode == NULL) {
5683 struct btrfs_inode *btrfs_inode;
5684 struct btrfs_root *root = sctx->send_root;
5685
5686 btrfs_inode = btrfs_iget(sctx->cur_ino, root);
5687 if (IS_ERR(btrfs_inode))
5688 return PTR_ERR(btrfs_inode);
5689
5690 sctx->cur_inode = &btrfs_inode->vfs_inode;
5691 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5692 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5693
5694 /*
5695 * It's very likely there are no pages from this inode in the page
5696 * cache, so after reading extents and sending their data, we clean
5697 * the page cache to avoid trashing the page cache (adding pressure
5698 * to the page cache and forcing eviction of other data more useful
5699 * for applications).
5700 *
5701 * We decide if we should clean the page cache simply by checking
5702 * if the inode's mapping nrpages is 0 when we first open it, and
5703 * not by using something like filemap_range_has_page() before
5704 * reading an extent because when we ask the readahead code to
5705 * read a given file range, it may (and almost always does) read
5706 * pages from beyond that range (see the documentation for
5707 * page_cache_sync_readahead()), so it would not be reliable,
5708 * because after reading the first extent future calls to
5709 * filemap_range_has_page() would return true because the readahead
5710 * on the previous extent resulted in reading pages of the current
5711 * extent as well.
5712 */
5713 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5714 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5715 }
5716
5717 while (sent < len) {
5718 u64 size = min(len - sent, read_size);
5719 int ret;
5720
5721 ret = send_write(sctx, offset + sent, size);
5722 if (ret < 0)
5723 return ret;
5724 sent += size;
5725 }
5726
5727 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5728 /*
5729 * Always operate only on ranges that are a multiple of the page
5730 * size. This is not only to prevent zeroing parts of a page in
5731 * the case of subpage sector size, but also to guarantee we evict
5732 * pages, as passing a range that is smaller than page size does
5733 * not evict the respective page (only zeroes part of its content).
5734 *
5735 * Always start from the end offset of the last range cleared.
5736 * This is because the readahead code may (and very often does)
5737 * reads pages beyond the range we request for readahead. So if
5738 * we have an extent layout like this:
5739 *
5740 * [ extent A ] [ extent B ] [ extent C ]
5741 *
5742 * When we ask page_cache_sync_readahead() to read extent A, it
5743 * may also trigger reads for pages of extent B. If we are doing
5744 * an incremental send and extent B has not changed between the
5745 * parent and send snapshots, some or all of its pages may end
5746 * up being read and placed in the page cache. So when truncating
5747 * the page cache we always start from the end offset of the
5748 * previously processed extent up to the end of the current
5749 * extent.
5750 */
5751 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5752 sctx->page_cache_clear_start,
5753 end - 1);
5754 sctx->page_cache_clear_start = end;
5755 }
5756
5757 return 0;
5758 }
5759
5760 /*
5761 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5762 * found, call send_set_xattr function to emit it.
5763 *
5764 * Return 0 if there isn't a capability, or when the capability was emitted
5765 * successfully, or < 0 if an error occurred.
5766 */
send_capabilities(struct send_ctx * sctx)5767 static int send_capabilities(struct send_ctx *sctx)
5768 {
5769 struct btrfs_path *path;
5770 struct btrfs_dir_item *di;
5771 struct extent_buffer *leaf;
5772 unsigned long data_ptr;
5773 char *buf = NULL;
5774 int buf_len;
5775 int ret = 0;
5776
5777 path = alloc_path_for_send();
5778 if (!path)
5779 return -ENOMEM;
5780
5781 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5782 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5783 if (!di) {
5784 /* There is no xattr for this inode */
5785 goto out;
5786 } else if (IS_ERR(di)) {
5787 ret = PTR_ERR(di);
5788 goto out;
5789 }
5790
5791 leaf = path->nodes[0];
5792 buf_len = btrfs_dir_data_len(leaf, di);
5793
5794 buf = kmalloc(buf_len, GFP_KERNEL);
5795 if (!buf) {
5796 ret = -ENOMEM;
5797 goto out;
5798 }
5799
5800 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5801 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5802
5803 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5804 strlen(XATTR_NAME_CAPS), buf, buf_len);
5805 out:
5806 kfree(buf);
5807 btrfs_free_path(path);
5808 return ret;
5809 }
5810
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5811 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5812 struct clone_root *clone_root, const u64 disk_byte,
5813 u64 data_offset, u64 offset, u64 len)
5814 {
5815 struct btrfs_path *path;
5816 struct btrfs_key key;
5817 int ret;
5818 struct btrfs_inode_info info;
5819 u64 clone_src_i_size = 0;
5820
5821 /*
5822 * Prevent cloning from a zero offset with a length matching the sector
5823 * size because in some scenarios this will make the receiver fail.
5824 *
5825 * For example, if in the source filesystem the extent at offset 0
5826 * has a length of sectorsize and it was written using direct IO, then
5827 * it can never be an inline extent (even if compression is enabled).
5828 * Then this extent can be cloned in the original filesystem to a non
5829 * zero file offset, but it may not be possible to clone in the
5830 * destination filesystem because it can be inlined due to compression
5831 * on the destination filesystem (as the receiver's write operations are
5832 * always done using buffered IO). The same happens when the original
5833 * filesystem does not have compression enabled but the destination
5834 * filesystem has.
5835 */
5836 if (clone_root->offset == 0 &&
5837 len == sctx->send_root->fs_info->sectorsize)
5838 return send_extent_data(sctx, dst_path, offset, len);
5839
5840 path = alloc_path_for_send();
5841 if (!path)
5842 return -ENOMEM;
5843
5844 /*
5845 * There are inodes that have extents that lie behind its i_size. Don't
5846 * accept clones from these extents.
5847 */
5848 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5849 btrfs_release_path(path);
5850 if (ret < 0)
5851 goto out;
5852 clone_src_i_size = info.size;
5853
5854 /*
5855 * We can't send a clone operation for the entire range if we find
5856 * extent items in the respective range in the source file that
5857 * refer to different extents or if we find holes.
5858 * So check for that and do a mix of clone and regular write/copy
5859 * operations if needed.
5860 *
5861 * Example:
5862 *
5863 * mkfs.btrfs -f /dev/sda
5864 * mount /dev/sda /mnt
5865 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5866 * cp --reflink=always /mnt/foo /mnt/bar
5867 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5868 * btrfs subvolume snapshot -r /mnt /mnt/snap
5869 *
5870 * If when we send the snapshot and we are processing file bar (which
5871 * has a higher inode number than foo) we blindly send a clone operation
5872 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5873 * a file bar that matches the content of file foo - iow, doesn't match
5874 * the content from bar in the original filesystem.
5875 */
5876 key.objectid = clone_root->ino;
5877 key.type = BTRFS_EXTENT_DATA_KEY;
5878 key.offset = clone_root->offset;
5879 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5880 if (ret < 0)
5881 goto out;
5882 if (ret > 0 && path->slots[0] > 0) {
5883 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5884 if (key.objectid == clone_root->ino &&
5885 key.type == BTRFS_EXTENT_DATA_KEY)
5886 path->slots[0]--;
5887 }
5888
5889 while (true) {
5890 struct extent_buffer *leaf = path->nodes[0];
5891 int slot = path->slots[0];
5892 struct btrfs_file_extent_item *ei;
5893 u8 type;
5894 u64 ext_len;
5895 u64 clone_len;
5896 u64 clone_data_offset;
5897 bool crossed_src_i_size = false;
5898
5899 if (slot >= btrfs_header_nritems(leaf)) {
5900 ret = btrfs_next_leaf(clone_root->root, path);
5901 if (ret < 0)
5902 goto out;
5903 else if (ret > 0)
5904 break;
5905 continue;
5906 }
5907
5908 btrfs_item_key_to_cpu(leaf, &key, slot);
5909
5910 /*
5911 * We might have an implicit trailing hole (NO_HOLES feature
5912 * enabled). We deal with it after leaving this loop.
5913 */
5914 if (key.objectid != clone_root->ino ||
5915 key.type != BTRFS_EXTENT_DATA_KEY)
5916 break;
5917
5918 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5919 type = btrfs_file_extent_type(leaf, ei);
5920 if (type == BTRFS_FILE_EXTENT_INLINE) {
5921 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5922 ext_len = PAGE_ALIGN(ext_len);
5923 } else {
5924 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5925 }
5926
5927 if (key.offset + ext_len <= clone_root->offset)
5928 goto next;
5929
5930 if (key.offset > clone_root->offset) {
5931 /* Implicit hole, NO_HOLES feature enabled. */
5932 u64 hole_len = key.offset - clone_root->offset;
5933
5934 if (hole_len > len)
5935 hole_len = len;
5936 ret = send_extent_data(sctx, dst_path, offset,
5937 hole_len);
5938 if (ret < 0)
5939 goto out;
5940
5941 len -= hole_len;
5942 if (len == 0)
5943 break;
5944 offset += hole_len;
5945 clone_root->offset += hole_len;
5946 data_offset += hole_len;
5947 }
5948
5949 if (key.offset >= clone_root->offset + len)
5950 break;
5951
5952 if (key.offset >= clone_src_i_size)
5953 break;
5954
5955 if (key.offset + ext_len > clone_src_i_size) {
5956 ext_len = clone_src_i_size - key.offset;
5957 crossed_src_i_size = true;
5958 }
5959
5960 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5961 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5962 clone_root->offset = key.offset;
5963 if (clone_data_offset < data_offset &&
5964 clone_data_offset + ext_len > data_offset) {
5965 u64 extent_offset;
5966
5967 extent_offset = data_offset - clone_data_offset;
5968 ext_len -= extent_offset;
5969 clone_data_offset += extent_offset;
5970 clone_root->offset += extent_offset;
5971 }
5972 }
5973
5974 clone_len = min_t(u64, ext_len, len);
5975
5976 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5977 clone_data_offset == data_offset) {
5978 const u64 src_end = clone_root->offset + clone_len;
5979 const u64 sectorsize = SZ_64K;
5980
5981 /*
5982 * We can't clone the last block, when its size is not
5983 * sector size aligned, into the middle of a file. If we
5984 * do so, the receiver will get a failure (-EINVAL) when
5985 * trying to clone or will silently corrupt the data in
5986 * the destination file if it's on a kernel without the
5987 * fix introduced by commit ac765f83f1397646
5988 * ("Btrfs: fix data corruption due to cloning of eof
5989 * block).
5990 *
5991 * So issue a clone of the aligned down range plus a
5992 * regular write for the eof block, if we hit that case.
5993 *
5994 * Also, we use the maximum possible sector size, 64K,
5995 * because we don't know what's the sector size of the
5996 * filesystem that receives the stream, so we have to
5997 * assume the largest possible sector size.
5998 */
5999 if (src_end == clone_src_i_size &&
6000 !IS_ALIGNED(src_end, sectorsize) &&
6001 offset + clone_len < sctx->cur_inode_size) {
6002 u64 slen;
6003
6004 slen = ALIGN_DOWN(src_end - clone_root->offset,
6005 sectorsize);
6006 if (slen > 0) {
6007 ret = send_clone(sctx, offset, slen,
6008 clone_root);
6009 if (ret < 0)
6010 goto out;
6011 }
6012 ret = send_extent_data(sctx, dst_path,
6013 offset + slen,
6014 clone_len - slen);
6015 } else {
6016 ret = send_clone(sctx, offset, clone_len,
6017 clone_root);
6018 }
6019 } else if (crossed_src_i_size && clone_len < len) {
6020 /*
6021 * If we are at i_size of the clone source inode and we
6022 * can not clone from it, terminate the loop. This is
6023 * to avoid sending two write operations, one with a
6024 * length matching clone_len and the final one after
6025 * this loop with a length of len - clone_len.
6026 *
6027 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6028 * was passed to the send ioctl), this helps avoid
6029 * sending an encoded write for an offset that is not
6030 * sector size aligned, in case the i_size of the source
6031 * inode is not sector size aligned. That will make the
6032 * receiver fallback to decompression of the data and
6033 * writing it using regular buffered IO, therefore while
6034 * not incorrect, it's not optimal due decompression and
6035 * possible re-compression at the receiver.
6036 */
6037 break;
6038 } else {
6039 ret = send_extent_data(sctx, dst_path, offset,
6040 clone_len);
6041 }
6042
6043 if (ret < 0)
6044 goto out;
6045
6046 len -= clone_len;
6047 if (len == 0)
6048 break;
6049 offset += clone_len;
6050 clone_root->offset += clone_len;
6051
6052 /*
6053 * If we are cloning from the file we are currently processing,
6054 * and using the send root as the clone root, we must stop once
6055 * the current clone offset reaches the current eof of the file
6056 * at the receiver, otherwise we would issue an invalid clone
6057 * operation (source range going beyond eof) and cause the
6058 * receiver to fail. So if we reach the current eof, bail out
6059 * and fallback to a regular write.
6060 */
6061 if (clone_root->root == sctx->send_root &&
6062 clone_root->ino == sctx->cur_ino &&
6063 clone_root->offset >= sctx->cur_inode_next_write_offset)
6064 break;
6065
6066 data_offset += clone_len;
6067 next:
6068 path->slots[0]++;
6069 }
6070
6071 if (len > 0)
6072 ret = send_extent_data(sctx, dst_path, offset, len);
6073 else
6074 ret = 0;
6075 out:
6076 btrfs_free_path(path);
6077 return ret;
6078 }
6079
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6080 static int send_write_or_clone(struct send_ctx *sctx,
6081 struct btrfs_path *path,
6082 struct btrfs_key *key,
6083 struct clone_root *clone_root)
6084 {
6085 int ret = 0;
6086 u64 offset = key->offset;
6087 u64 end;
6088 u64 bs = sctx->send_root->fs_info->sectorsize;
6089 struct btrfs_file_extent_item *ei;
6090 u64 disk_byte;
6091 u64 data_offset;
6092 u64 num_bytes;
6093 struct btrfs_inode_info info = { 0 };
6094
6095 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6096 if (offset >= end)
6097 return 0;
6098
6099 num_bytes = end - offset;
6100
6101 if (!clone_root)
6102 goto write_data;
6103
6104 if (IS_ALIGNED(end, bs))
6105 goto clone_data;
6106
6107 /*
6108 * If the extent end is not aligned, we can clone if the extent ends at
6109 * the i_size of the inode and the clone range ends at the i_size of the
6110 * source inode, otherwise the clone operation fails with -EINVAL.
6111 */
6112 if (end != sctx->cur_inode_size)
6113 goto write_data;
6114
6115 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6116 if (ret < 0)
6117 return ret;
6118
6119 if (clone_root->offset + num_bytes == info.size) {
6120 /*
6121 * The final size of our file matches the end offset, but it may
6122 * be that its current size is larger, so we have to truncate it
6123 * to any value between the start offset of the range and the
6124 * final i_size, otherwise the clone operation is invalid
6125 * because it's unaligned and it ends before the current EOF.
6126 * We do this truncate to the final i_size when we finish
6127 * processing the inode, but it's too late by then. And here we
6128 * truncate to the start offset of the range because it's always
6129 * sector size aligned while if it were the final i_size it
6130 * would result in dirtying part of a page, filling part of a
6131 * page with zeroes and then having the clone operation at the
6132 * receiver trigger IO and wait for it due to the dirty page.
6133 */
6134 if (sctx->parent_root != NULL) {
6135 ret = send_truncate(sctx, sctx->cur_ino,
6136 sctx->cur_inode_gen, offset);
6137 if (ret < 0)
6138 return ret;
6139 }
6140 goto clone_data;
6141 }
6142
6143 write_data:
6144 ret = send_extent_data(sctx, path, offset, num_bytes);
6145 sctx->cur_inode_next_write_offset = end;
6146 return ret;
6147
6148 clone_data:
6149 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6150 struct btrfs_file_extent_item);
6151 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6152 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6153 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6154 num_bytes);
6155 sctx->cur_inode_next_write_offset = end;
6156 return ret;
6157 }
6158
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6159 static int is_extent_unchanged(struct send_ctx *sctx,
6160 struct btrfs_path *left_path,
6161 struct btrfs_key *ekey)
6162 {
6163 int ret = 0;
6164 struct btrfs_key key;
6165 struct btrfs_path *path = NULL;
6166 struct extent_buffer *eb;
6167 int slot;
6168 struct btrfs_key found_key;
6169 struct btrfs_file_extent_item *ei;
6170 u64 left_disknr;
6171 u64 right_disknr;
6172 u64 left_offset;
6173 u64 right_offset;
6174 u64 left_offset_fixed;
6175 u64 left_len;
6176 u64 right_len;
6177 u64 left_gen;
6178 u64 right_gen;
6179 u8 left_type;
6180 u8 right_type;
6181
6182 path = alloc_path_for_send();
6183 if (!path)
6184 return -ENOMEM;
6185
6186 eb = left_path->nodes[0];
6187 slot = left_path->slots[0];
6188 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6189 left_type = btrfs_file_extent_type(eb, ei);
6190
6191 if (left_type != BTRFS_FILE_EXTENT_REG) {
6192 ret = 0;
6193 goto out;
6194 }
6195 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6196 left_len = btrfs_file_extent_num_bytes(eb, ei);
6197 left_offset = btrfs_file_extent_offset(eb, ei);
6198 left_gen = btrfs_file_extent_generation(eb, ei);
6199
6200 /*
6201 * Following comments will refer to these graphics. L is the left
6202 * extents which we are checking at the moment. 1-8 are the right
6203 * extents that we iterate.
6204 *
6205 * |-----L-----|
6206 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6207 *
6208 * |-----L-----|
6209 * |--1--|-2b-|...(same as above)
6210 *
6211 * Alternative situation. Happens on files where extents got split.
6212 * |-----L-----|
6213 * |-----------7-----------|-6-|
6214 *
6215 * Alternative situation. Happens on files which got larger.
6216 * |-----L-----|
6217 * |-8-|
6218 * Nothing follows after 8.
6219 */
6220
6221 key.objectid = ekey->objectid;
6222 key.type = BTRFS_EXTENT_DATA_KEY;
6223 key.offset = ekey->offset;
6224 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6225 if (ret < 0)
6226 goto out;
6227 if (ret) {
6228 ret = 0;
6229 goto out;
6230 }
6231
6232 /*
6233 * Handle special case where the right side has no extents at all.
6234 */
6235 eb = path->nodes[0];
6236 slot = path->slots[0];
6237 btrfs_item_key_to_cpu(eb, &found_key, slot);
6238 if (found_key.objectid != key.objectid ||
6239 found_key.type != key.type) {
6240 /* If we're a hole then just pretend nothing changed */
6241 ret = (left_disknr) ? 0 : 1;
6242 goto out;
6243 }
6244
6245 /*
6246 * We're now on 2a, 2b or 7.
6247 */
6248 key = found_key;
6249 while (key.offset < ekey->offset + left_len) {
6250 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6251 right_type = btrfs_file_extent_type(eb, ei);
6252 if (right_type != BTRFS_FILE_EXTENT_REG &&
6253 right_type != BTRFS_FILE_EXTENT_INLINE) {
6254 ret = 0;
6255 goto out;
6256 }
6257
6258 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6259 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6260 right_len = PAGE_ALIGN(right_len);
6261 } else {
6262 right_len = btrfs_file_extent_num_bytes(eb, ei);
6263 }
6264
6265 /*
6266 * Are we at extent 8? If yes, we know the extent is changed.
6267 * This may only happen on the first iteration.
6268 */
6269 if (found_key.offset + right_len <= ekey->offset) {
6270 /* If we're a hole just pretend nothing changed */
6271 ret = (left_disknr) ? 0 : 1;
6272 goto out;
6273 }
6274
6275 /*
6276 * We just wanted to see if when we have an inline extent, what
6277 * follows it is a regular extent (wanted to check the above
6278 * condition for inline extents too). This should normally not
6279 * happen but it's possible for example when we have an inline
6280 * compressed extent representing data with a size matching
6281 * the page size (currently the same as sector size).
6282 */
6283 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6284 ret = 0;
6285 goto out;
6286 }
6287
6288 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6289 right_offset = btrfs_file_extent_offset(eb, ei);
6290 right_gen = btrfs_file_extent_generation(eb, ei);
6291
6292 left_offset_fixed = left_offset;
6293 if (key.offset < ekey->offset) {
6294 /* Fix the right offset for 2a and 7. */
6295 right_offset += ekey->offset - key.offset;
6296 } else {
6297 /* Fix the left offset for all behind 2a and 2b */
6298 left_offset_fixed += key.offset - ekey->offset;
6299 }
6300
6301 /*
6302 * Check if we have the same extent.
6303 */
6304 if (left_disknr != right_disknr ||
6305 left_offset_fixed != right_offset ||
6306 left_gen != right_gen) {
6307 ret = 0;
6308 goto out;
6309 }
6310
6311 /*
6312 * Go to the next extent.
6313 */
6314 ret = btrfs_next_item(sctx->parent_root, path);
6315 if (ret < 0)
6316 goto out;
6317 if (!ret) {
6318 eb = path->nodes[0];
6319 slot = path->slots[0];
6320 btrfs_item_key_to_cpu(eb, &found_key, slot);
6321 }
6322 if (ret || found_key.objectid != key.objectid ||
6323 found_key.type != key.type) {
6324 key.offset += right_len;
6325 break;
6326 }
6327 if (found_key.offset != key.offset + right_len) {
6328 ret = 0;
6329 goto out;
6330 }
6331 key = found_key;
6332 }
6333
6334 /*
6335 * We're now behind the left extent (treat as unchanged) or at the end
6336 * of the right side (treat as changed).
6337 */
6338 if (key.offset >= ekey->offset + left_len)
6339 ret = 1;
6340 else
6341 ret = 0;
6342
6343
6344 out:
6345 btrfs_free_path(path);
6346 return ret;
6347 }
6348
get_last_extent(struct send_ctx * sctx,u64 offset)6349 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6350 {
6351 struct btrfs_path *path;
6352 struct btrfs_root *root = sctx->send_root;
6353 struct btrfs_key key;
6354 int ret;
6355
6356 path = alloc_path_for_send();
6357 if (!path)
6358 return -ENOMEM;
6359
6360 sctx->cur_inode_last_extent = 0;
6361
6362 key.objectid = sctx->cur_ino;
6363 key.type = BTRFS_EXTENT_DATA_KEY;
6364 key.offset = offset;
6365 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6366 if (ret < 0)
6367 goto out;
6368 ret = 0;
6369 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6370 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6371 goto out;
6372
6373 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6374 out:
6375 btrfs_free_path(path);
6376 return ret;
6377 }
6378
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6379 static int range_is_hole_in_parent(struct send_ctx *sctx,
6380 const u64 start,
6381 const u64 end)
6382 {
6383 struct btrfs_path *path;
6384 struct btrfs_key key;
6385 struct btrfs_root *root = sctx->parent_root;
6386 u64 search_start = start;
6387 int ret;
6388
6389 path = alloc_path_for_send();
6390 if (!path)
6391 return -ENOMEM;
6392
6393 key.objectid = sctx->cur_ino;
6394 key.type = BTRFS_EXTENT_DATA_KEY;
6395 key.offset = search_start;
6396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6397 if (ret < 0)
6398 goto out;
6399 if (ret > 0 && path->slots[0] > 0)
6400 path->slots[0]--;
6401
6402 while (search_start < end) {
6403 struct extent_buffer *leaf = path->nodes[0];
6404 int slot = path->slots[0];
6405 struct btrfs_file_extent_item *fi;
6406 u64 extent_end;
6407
6408 if (slot >= btrfs_header_nritems(leaf)) {
6409 ret = btrfs_next_leaf(root, path);
6410 if (ret < 0)
6411 goto out;
6412 else if (ret > 0)
6413 break;
6414 continue;
6415 }
6416
6417 btrfs_item_key_to_cpu(leaf, &key, slot);
6418 if (key.objectid < sctx->cur_ino ||
6419 key.type < BTRFS_EXTENT_DATA_KEY)
6420 goto next;
6421 if (key.objectid > sctx->cur_ino ||
6422 key.type > BTRFS_EXTENT_DATA_KEY ||
6423 key.offset >= end)
6424 break;
6425
6426 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6427 extent_end = btrfs_file_extent_end(path);
6428 if (extent_end <= start)
6429 goto next;
6430 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6431 search_start = extent_end;
6432 goto next;
6433 }
6434 ret = 0;
6435 goto out;
6436 next:
6437 path->slots[0]++;
6438 }
6439 ret = 1;
6440 out:
6441 btrfs_free_path(path);
6442 return ret;
6443 }
6444
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6445 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6446 struct btrfs_key *key)
6447 {
6448 int ret = 0;
6449
6450 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6451 return 0;
6452
6453 /*
6454 * Get last extent's end offset (exclusive) if we haven't determined it
6455 * yet (we're processing the first file extent item that is new), or if
6456 * we're at the first slot of a leaf and the last extent's end is less
6457 * than the current extent's offset, because we might have skipped
6458 * entire leaves that contained only file extent items for our current
6459 * inode. These leaves have a generation number smaller (older) than the
6460 * one in the current leaf and the leaf our last extent came from, and
6461 * are located between these 2 leaves.
6462 */
6463 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6464 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6465 ret = get_last_extent(sctx, key->offset - 1);
6466 if (ret)
6467 return ret;
6468 }
6469
6470 if (sctx->cur_inode_last_extent < key->offset) {
6471 ret = range_is_hole_in_parent(sctx,
6472 sctx->cur_inode_last_extent,
6473 key->offset);
6474 if (ret < 0)
6475 return ret;
6476 else if (ret == 0)
6477 ret = send_hole(sctx, key->offset);
6478 else
6479 ret = 0;
6480 }
6481 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6482 return ret;
6483 }
6484
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6485 static int process_extent(struct send_ctx *sctx,
6486 struct btrfs_path *path,
6487 struct btrfs_key *key)
6488 {
6489 struct clone_root *found_clone = NULL;
6490 int ret = 0;
6491
6492 if (S_ISLNK(sctx->cur_inode_mode))
6493 return 0;
6494
6495 if (sctx->parent_root && !sctx->cur_inode_new) {
6496 ret = is_extent_unchanged(sctx, path, key);
6497 if (ret < 0)
6498 goto out;
6499 if (ret) {
6500 ret = 0;
6501 goto out_hole;
6502 }
6503 } else {
6504 struct btrfs_file_extent_item *ei;
6505 u8 type;
6506
6507 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6508 struct btrfs_file_extent_item);
6509 type = btrfs_file_extent_type(path->nodes[0], ei);
6510 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6511 type == BTRFS_FILE_EXTENT_REG) {
6512 /*
6513 * The send spec does not have a prealloc command yet,
6514 * so just leave a hole for prealloc'ed extents until
6515 * we have enough commands queued up to justify rev'ing
6516 * the send spec.
6517 */
6518 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6519 ret = 0;
6520 goto out;
6521 }
6522
6523 /* Have a hole, just skip it. */
6524 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6525 ret = 0;
6526 goto out;
6527 }
6528 }
6529 }
6530
6531 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6532 sctx->cur_inode_size, &found_clone);
6533 if (ret != -ENOENT && ret < 0)
6534 goto out;
6535
6536 ret = send_write_or_clone(sctx, path, key, found_clone);
6537 if (ret)
6538 goto out;
6539 out_hole:
6540 ret = maybe_send_hole(sctx, path, key);
6541 out:
6542 return ret;
6543 }
6544
process_all_extents(struct send_ctx * sctx)6545 static int process_all_extents(struct send_ctx *sctx)
6546 {
6547 int ret = 0;
6548 int iter_ret = 0;
6549 struct btrfs_root *root;
6550 struct btrfs_path *path;
6551 struct btrfs_key key;
6552 struct btrfs_key found_key;
6553
6554 root = sctx->send_root;
6555 path = alloc_path_for_send();
6556 if (!path)
6557 return -ENOMEM;
6558
6559 key.objectid = sctx->cmp_key->objectid;
6560 key.type = BTRFS_EXTENT_DATA_KEY;
6561 key.offset = 0;
6562 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6563 if (found_key.objectid != key.objectid ||
6564 found_key.type != key.type) {
6565 ret = 0;
6566 break;
6567 }
6568
6569 ret = process_extent(sctx, path, &found_key);
6570 if (ret < 0)
6571 break;
6572 }
6573 /* Catch error found during iteration */
6574 if (iter_ret < 0)
6575 ret = iter_ret;
6576
6577 btrfs_free_path(path);
6578 return ret;
6579 }
6580
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6581 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6582 int *pending_move,
6583 int *refs_processed)
6584 {
6585 int ret = 0;
6586
6587 if (sctx->cur_ino == 0)
6588 goto out;
6589 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6590 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6591 goto out;
6592 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6593 goto out;
6594
6595 ret = process_recorded_refs(sctx, pending_move);
6596 if (ret < 0)
6597 goto out;
6598
6599 *refs_processed = 1;
6600 out:
6601 return ret;
6602 }
6603
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6604 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6605 {
6606 int ret = 0;
6607 struct btrfs_inode_info info;
6608 u64 left_mode;
6609 u64 left_uid;
6610 u64 left_gid;
6611 u64 left_fileattr;
6612 u64 right_mode;
6613 u64 right_uid;
6614 u64 right_gid;
6615 u64 right_fileattr;
6616 int need_chmod = 0;
6617 int need_chown = 0;
6618 bool need_fileattr = false;
6619 int need_truncate = 1;
6620 int pending_move = 0;
6621 int refs_processed = 0;
6622
6623 if (sctx->ignore_cur_inode)
6624 return 0;
6625
6626 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6627 &refs_processed);
6628 if (ret < 0)
6629 goto out;
6630
6631 /*
6632 * We have processed the refs and thus need to advance send_progress.
6633 * Now, calls to get_cur_xxx will take the updated refs of the current
6634 * inode into account.
6635 *
6636 * On the other hand, if our current inode is a directory and couldn't
6637 * be moved/renamed because its parent was renamed/moved too and it has
6638 * a higher inode number, we can only move/rename our current inode
6639 * after we moved/renamed its parent. Therefore in this case operate on
6640 * the old path (pre move/rename) of our current inode, and the
6641 * move/rename will be performed later.
6642 */
6643 if (refs_processed && !pending_move)
6644 sctx->send_progress = sctx->cur_ino + 1;
6645
6646 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6647 goto out;
6648 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6649 goto out;
6650 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6651 if (ret < 0)
6652 goto out;
6653 left_mode = info.mode;
6654 left_uid = info.uid;
6655 left_gid = info.gid;
6656 left_fileattr = info.fileattr;
6657
6658 if (!sctx->parent_root || sctx->cur_inode_new) {
6659 need_chown = 1;
6660 if (!S_ISLNK(sctx->cur_inode_mode))
6661 need_chmod = 1;
6662 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6663 need_truncate = 0;
6664 } else {
6665 u64 old_size;
6666
6667 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6668 if (ret < 0)
6669 goto out;
6670 old_size = info.size;
6671 right_mode = info.mode;
6672 right_uid = info.uid;
6673 right_gid = info.gid;
6674 right_fileattr = info.fileattr;
6675
6676 if (left_uid != right_uid || left_gid != right_gid)
6677 need_chown = 1;
6678 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6679 need_chmod = 1;
6680 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6681 need_fileattr = true;
6682 if ((old_size == sctx->cur_inode_size) ||
6683 (sctx->cur_inode_size > old_size &&
6684 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6685 need_truncate = 0;
6686 }
6687
6688 if (S_ISREG(sctx->cur_inode_mode)) {
6689 if (need_send_hole(sctx)) {
6690 if (sctx->cur_inode_last_extent == (u64)-1 ||
6691 sctx->cur_inode_last_extent <
6692 sctx->cur_inode_size) {
6693 ret = get_last_extent(sctx, (u64)-1);
6694 if (ret)
6695 goto out;
6696 }
6697 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6698 ret = range_is_hole_in_parent(sctx,
6699 sctx->cur_inode_last_extent,
6700 sctx->cur_inode_size);
6701 if (ret < 0) {
6702 goto out;
6703 } else if (ret == 0) {
6704 ret = send_hole(sctx, sctx->cur_inode_size);
6705 if (ret < 0)
6706 goto out;
6707 } else {
6708 /* Range is already a hole, skip. */
6709 ret = 0;
6710 }
6711 }
6712 }
6713 if (need_truncate) {
6714 ret = send_truncate(sctx, sctx->cur_ino,
6715 sctx->cur_inode_gen,
6716 sctx->cur_inode_size);
6717 if (ret < 0)
6718 goto out;
6719 }
6720 }
6721
6722 if (need_chown) {
6723 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6724 left_uid, left_gid);
6725 if (ret < 0)
6726 goto out;
6727 }
6728 if (need_chmod) {
6729 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6730 left_mode);
6731 if (ret < 0)
6732 goto out;
6733 }
6734 if (need_fileattr) {
6735 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6736 left_fileattr);
6737 if (ret < 0)
6738 goto out;
6739 }
6740
6741 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6742 && sctx->cur_inode_needs_verity) {
6743 ret = process_verity(sctx);
6744 if (ret < 0)
6745 goto out;
6746 }
6747
6748 ret = send_capabilities(sctx);
6749 if (ret < 0)
6750 goto out;
6751
6752 /*
6753 * If other directory inodes depended on our current directory
6754 * inode's move/rename, now do their move/rename operations.
6755 */
6756 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6757 ret = apply_children_dir_moves(sctx);
6758 if (ret)
6759 goto out;
6760 /*
6761 * Need to send that every time, no matter if it actually
6762 * changed between the two trees as we have done changes to
6763 * the inode before. If our inode is a directory and it's
6764 * waiting to be moved/renamed, we will send its utimes when
6765 * it's moved/renamed, therefore we don't need to do it here.
6766 */
6767 sctx->send_progress = sctx->cur_ino + 1;
6768
6769 /*
6770 * If the current inode is a non-empty directory, delay issuing
6771 * the utimes command for it, as it's very likely we have inodes
6772 * with an higher number inside it. We want to issue the utimes
6773 * command only after adding all dentries to it.
6774 */
6775 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6776 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6777 else
6778 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6779
6780 if (ret < 0)
6781 goto out;
6782 }
6783
6784 out:
6785 if (!ret)
6786 ret = trim_dir_utimes_cache(sctx);
6787
6788 return ret;
6789 }
6790
close_current_inode(struct send_ctx * sctx)6791 static void close_current_inode(struct send_ctx *sctx)
6792 {
6793 u64 i_size;
6794
6795 if (sctx->cur_inode == NULL)
6796 return;
6797
6798 i_size = i_size_read(sctx->cur_inode);
6799
6800 /*
6801 * If we are doing an incremental send, we may have extents between the
6802 * last processed extent and the i_size that have not been processed
6803 * because they haven't changed but we may have read some of their pages
6804 * through readahead, see the comments at send_extent_data().
6805 */
6806 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6807 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6808 sctx->page_cache_clear_start,
6809 round_up(i_size, PAGE_SIZE) - 1);
6810
6811 iput(sctx->cur_inode);
6812 sctx->cur_inode = NULL;
6813 }
6814
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6815 static int changed_inode(struct send_ctx *sctx,
6816 enum btrfs_compare_tree_result result)
6817 {
6818 int ret = 0;
6819 struct btrfs_key *key = sctx->cmp_key;
6820 struct btrfs_inode_item *left_ii = NULL;
6821 struct btrfs_inode_item *right_ii = NULL;
6822 u64 left_gen = 0;
6823 u64 right_gen = 0;
6824
6825 close_current_inode(sctx);
6826
6827 sctx->cur_ino = key->objectid;
6828 sctx->cur_inode_new_gen = false;
6829 sctx->cur_inode_last_extent = (u64)-1;
6830 sctx->cur_inode_next_write_offset = 0;
6831 sctx->ignore_cur_inode = false;
6832 fs_path_reset(&sctx->cur_inode_path);
6833
6834 /*
6835 * Set send_progress to current inode. This will tell all get_cur_xxx
6836 * functions that the current inode's refs are not updated yet. Later,
6837 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6838 */
6839 sctx->send_progress = sctx->cur_ino;
6840
6841 if (result == BTRFS_COMPARE_TREE_NEW ||
6842 result == BTRFS_COMPARE_TREE_CHANGED) {
6843 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6844 sctx->left_path->slots[0],
6845 struct btrfs_inode_item);
6846 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6847 left_ii);
6848 } else {
6849 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6850 sctx->right_path->slots[0],
6851 struct btrfs_inode_item);
6852 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6853 right_ii);
6854 }
6855 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6856 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6857 sctx->right_path->slots[0],
6858 struct btrfs_inode_item);
6859
6860 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6861 right_ii);
6862
6863 /*
6864 * The cur_ino = root dir case is special here. We can't treat
6865 * the inode as deleted+reused because it would generate a
6866 * stream that tries to delete/mkdir the root dir.
6867 */
6868 if (left_gen != right_gen &&
6869 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6870 sctx->cur_inode_new_gen = true;
6871 }
6872
6873 /*
6874 * Normally we do not find inodes with a link count of zero (orphans)
6875 * because the most common case is to create a snapshot and use it
6876 * for a send operation. However other less common use cases involve
6877 * using a subvolume and send it after turning it to RO mode just
6878 * after deleting all hard links of a file while holding an open
6879 * file descriptor against it or turning a RO snapshot into RW mode,
6880 * keep an open file descriptor against a file, delete it and then
6881 * turn the snapshot back to RO mode before using it for a send
6882 * operation. The former is what the receiver operation does.
6883 * Therefore, if we want to send these snapshots soon after they're
6884 * received, we need to handle orphan inodes as well. Moreover, orphans
6885 * can appear not only in the send snapshot but also in the parent
6886 * snapshot. Here are several cases:
6887 *
6888 * Case 1: BTRFS_COMPARE_TREE_NEW
6889 * | send snapshot | action
6890 * --------------------------------
6891 * nlink | 0 | ignore
6892 *
6893 * Case 2: BTRFS_COMPARE_TREE_DELETED
6894 * | parent snapshot | action
6895 * ----------------------------------
6896 * nlink | 0 | as usual
6897 * Note: No unlinks will be sent because there're no paths for it.
6898 *
6899 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6900 * | | parent snapshot | send snapshot | action
6901 * -----------------------------------------------------------------------
6902 * subcase 1 | nlink | 0 | 0 | ignore
6903 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6904 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6905 *
6906 */
6907 if (result == BTRFS_COMPARE_TREE_NEW) {
6908 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6909 sctx->ignore_cur_inode = true;
6910 goto out;
6911 }
6912 sctx->cur_inode_gen = left_gen;
6913 sctx->cur_inode_new = true;
6914 sctx->cur_inode_deleted = false;
6915 sctx->cur_inode_size = btrfs_inode_size(
6916 sctx->left_path->nodes[0], left_ii);
6917 sctx->cur_inode_mode = btrfs_inode_mode(
6918 sctx->left_path->nodes[0], left_ii);
6919 sctx->cur_inode_rdev = btrfs_inode_rdev(
6920 sctx->left_path->nodes[0], left_ii);
6921 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6922 ret = send_create_inode_if_needed(sctx);
6923 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6924 sctx->cur_inode_gen = right_gen;
6925 sctx->cur_inode_new = false;
6926 sctx->cur_inode_deleted = true;
6927 sctx->cur_inode_size = btrfs_inode_size(
6928 sctx->right_path->nodes[0], right_ii);
6929 sctx->cur_inode_mode = btrfs_inode_mode(
6930 sctx->right_path->nodes[0], right_ii);
6931 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6932 u32 new_nlinks, old_nlinks;
6933
6934 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6935 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6936 if (new_nlinks == 0 && old_nlinks == 0) {
6937 sctx->ignore_cur_inode = true;
6938 goto out;
6939 } else if (new_nlinks == 0 || old_nlinks == 0) {
6940 sctx->cur_inode_new_gen = 1;
6941 }
6942 /*
6943 * We need to do some special handling in case the inode was
6944 * reported as changed with a changed generation number. This
6945 * means that the original inode was deleted and new inode
6946 * reused the same inum. So we have to treat the old inode as
6947 * deleted and the new one as new.
6948 */
6949 if (sctx->cur_inode_new_gen) {
6950 /*
6951 * First, process the inode as if it was deleted.
6952 */
6953 if (old_nlinks > 0) {
6954 sctx->cur_inode_gen = right_gen;
6955 sctx->cur_inode_new = false;
6956 sctx->cur_inode_deleted = true;
6957 sctx->cur_inode_size = btrfs_inode_size(
6958 sctx->right_path->nodes[0], right_ii);
6959 sctx->cur_inode_mode = btrfs_inode_mode(
6960 sctx->right_path->nodes[0], right_ii);
6961 ret = process_all_refs(sctx,
6962 BTRFS_COMPARE_TREE_DELETED);
6963 if (ret < 0)
6964 goto out;
6965 }
6966
6967 /*
6968 * Now process the inode as if it was new.
6969 */
6970 if (new_nlinks > 0) {
6971 sctx->cur_inode_gen = left_gen;
6972 sctx->cur_inode_new = true;
6973 sctx->cur_inode_deleted = false;
6974 sctx->cur_inode_size = btrfs_inode_size(
6975 sctx->left_path->nodes[0],
6976 left_ii);
6977 sctx->cur_inode_mode = btrfs_inode_mode(
6978 sctx->left_path->nodes[0],
6979 left_ii);
6980 sctx->cur_inode_rdev = btrfs_inode_rdev(
6981 sctx->left_path->nodes[0],
6982 left_ii);
6983 ret = send_create_inode_if_needed(sctx);
6984 if (ret < 0)
6985 goto out;
6986
6987 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6988 if (ret < 0)
6989 goto out;
6990 /*
6991 * Advance send_progress now as we did not get
6992 * into process_recorded_refs_if_needed in the
6993 * new_gen case.
6994 */
6995 sctx->send_progress = sctx->cur_ino + 1;
6996
6997 /*
6998 * Now process all extents and xattrs of the
6999 * inode as if they were all new.
7000 */
7001 ret = process_all_extents(sctx);
7002 if (ret < 0)
7003 goto out;
7004 ret = process_all_new_xattrs(sctx);
7005 if (ret < 0)
7006 goto out;
7007 }
7008 } else {
7009 sctx->cur_inode_gen = left_gen;
7010 sctx->cur_inode_new = false;
7011 sctx->cur_inode_new_gen = false;
7012 sctx->cur_inode_deleted = false;
7013 sctx->cur_inode_size = btrfs_inode_size(
7014 sctx->left_path->nodes[0], left_ii);
7015 sctx->cur_inode_mode = btrfs_inode_mode(
7016 sctx->left_path->nodes[0], left_ii);
7017 }
7018 }
7019
7020 out:
7021 return ret;
7022 }
7023
7024 /*
7025 * We have to process new refs before deleted refs, but compare_trees gives us
7026 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7027 * first and later process them in process_recorded_refs.
7028 * For the cur_inode_new_gen case, we skip recording completely because
7029 * changed_inode did already initiate processing of refs. The reason for this is
7030 * that in this case, compare_tree actually compares the refs of 2 different
7031 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7032 * refs of the right tree as deleted and all refs of the left tree as new.
7033 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7034 static int changed_ref(struct send_ctx *sctx,
7035 enum btrfs_compare_tree_result result)
7036 {
7037 int ret = 0;
7038
7039 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7040 inconsistent_snapshot_error(sctx, result, "reference");
7041 return -EIO;
7042 }
7043
7044 if (!sctx->cur_inode_new_gen &&
7045 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7046 if (result == BTRFS_COMPARE_TREE_NEW)
7047 ret = record_new_ref(sctx);
7048 else if (result == BTRFS_COMPARE_TREE_DELETED)
7049 ret = record_deleted_ref(sctx);
7050 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7051 ret = record_changed_ref(sctx);
7052 }
7053
7054 return ret;
7055 }
7056
7057 /*
7058 * Process new/deleted/changed xattrs. We skip processing in the
7059 * cur_inode_new_gen case because changed_inode did already initiate processing
7060 * of xattrs. The reason is the same as in changed_ref
7061 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7062 static int changed_xattr(struct send_ctx *sctx,
7063 enum btrfs_compare_tree_result result)
7064 {
7065 int ret = 0;
7066
7067 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7068 inconsistent_snapshot_error(sctx, result, "xattr");
7069 return -EIO;
7070 }
7071
7072 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7073 if (result == BTRFS_COMPARE_TREE_NEW)
7074 ret = process_new_xattr(sctx);
7075 else if (result == BTRFS_COMPARE_TREE_DELETED)
7076 ret = process_deleted_xattr(sctx);
7077 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7078 ret = process_changed_xattr(sctx);
7079 }
7080
7081 return ret;
7082 }
7083
7084 /*
7085 * Process new/deleted/changed extents. We skip processing in the
7086 * cur_inode_new_gen case because changed_inode did already initiate processing
7087 * of extents. The reason is the same as in changed_ref
7088 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7089 static int changed_extent(struct send_ctx *sctx,
7090 enum btrfs_compare_tree_result result)
7091 {
7092 int ret = 0;
7093
7094 /*
7095 * We have found an extent item that changed without the inode item
7096 * having changed. This can happen either after relocation (where the
7097 * disk_bytenr of an extent item is replaced at
7098 * relocation.c:replace_file_extents()) or after deduplication into a
7099 * file in both the parent and send snapshots (where an extent item can
7100 * get modified or replaced with a new one). Note that deduplication
7101 * updates the inode item, but it only changes the iversion (sequence
7102 * field in the inode item) of the inode, so if a file is deduplicated
7103 * the same amount of times in both the parent and send snapshots, its
7104 * iversion becomes the same in both snapshots, whence the inode item is
7105 * the same on both snapshots.
7106 */
7107 if (sctx->cur_ino != sctx->cmp_key->objectid)
7108 return 0;
7109
7110 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7111 if (result != BTRFS_COMPARE_TREE_DELETED)
7112 ret = process_extent(sctx, sctx->left_path,
7113 sctx->cmp_key);
7114 }
7115
7116 return ret;
7117 }
7118
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7119 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7120 {
7121 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7122 if (result == BTRFS_COMPARE_TREE_NEW)
7123 sctx->cur_inode_needs_verity = true;
7124 }
7125 return 0;
7126 }
7127
dir_changed(struct send_ctx * sctx,u64 dir)7128 static int dir_changed(struct send_ctx *sctx, u64 dir)
7129 {
7130 u64 orig_gen, new_gen;
7131 int ret;
7132
7133 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7134 if (ret)
7135 return ret;
7136
7137 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7138 if (ret)
7139 return ret;
7140
7141 return (orig_gen != new_gen) ? 1 : 0;
7142 }
7143
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7144 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7145 struct btrfs_key *key)
7146 {
7147 struct btrfs_inode_extref *extref;
7148 struct extent_buffer *leaf;
7149 u64 dirid = 0, last_dirid = 0;
7150 unsigned long ptr;
7151 u32 item_size;
7152 u32 cur_offset = 0;
7153 int ref_name_len;
7154 int ret = 0;
7155
7156 /* Easy case, just check this one dirid */
7157 if (key->type == BTRFS_INODE_REF_KEY) {
7158 dirid = key->offset;
7159
7160 ret = dir_changed(sctx, dirid);
7161 goto out;
7162 }
7163
7164 leaf = path->nodes[0];
7165 item_size = btrfs_item_size(leaf, path->slots[0]);
7166 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7167 while (cur_offset < item_size) {
7168 extref = (struct btrfs_inode_extref *)(ptr +
7169 cur_offset);
7170 dirid = btrfs_inode_extref_parent(leaf, extref);
7171 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7172 cur_offset += ref_name_len + sizeof(*extref);
7173 if (dirid == last_dirid)
7174 continue;
7175 ret = dir_changed(sctx, dirid);
7176 if (ret)
7177 break;
7178 last_dirid = dirid;
7179 }
7180 out:
7181 return ret;
7182 }
7183
7184 /*
7185 * Updates compare related fields in sctx and simply forwards to the actual
7186 * changed_xxx functions.
7187 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7188 static int changed_cb(struct btrfs_path *left_path,
7189 struct btrfs_path *right_path,
7190 struct btrfs_key *key,
7191 enum btrfs_compare_tree_result result,
7192 struct send_ctx *sctx)
7193 {
7194 int ret;
7195
7196 /*
7197 * We can not hold the commit root semaphore here. This is because in
7198 * the case of sending and receiving to the same filesystem, using a
7199 * pipe, could result in a deadlock:
7200 *
7201 * 1) The task running send blocks on the pipe because it's full;
7202 *
7203 * 2) The task running receive, which is the only consumer of the pipe,
7204 * is waiting for a transaction commit (for example due to a space
7205 * reservation when doing a write or triggering a transaction commit
7206 * when creating a subvolume);
7207 *
7208 * 3) The transaction is waiting to write lock the commit root semaphore,
7209 * but can not acquire it since it's being held at 1).
7210 *
7211 * Down this call chain we write to the pipe through kernel_write().
7212 * The same type of problem can also happen when sending to a file that
7213 * is stored in the same filesystem - when reserving space for a write
7214 * into the file, we can trigger a transaction commit.
7215 *
7216 * Our caller has supplied us with clones of leaves from the send and
7217 * parent roots, so we're safe here from a concurrent relocation and
7218 * further reallocation of metadata extents while we are here. Below we
7219 * also assert that the leaves are clones.
7220 */
7221 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7222
7223 /*
7224 * We always have a send root, so left_path is never NULL. We will not
7225 * have a leaf when we have reached the end of the send root but have
7226 * not yet reached the end of the parent root.
7227 */
7228 if (left_path->nodes[0])
7229 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7230 &left_path->nodes[0]->bflags));
7231 /*
7232 * When doing a full send we don't have a parent root, so right_path is
7233 * NULL. When doing an incremental send, we may have reached the end of
7234 * the parent root already, so we don't have a leaf at right_path.
7235 */
7236 if (right_path && right_path->nodes[0])
7237 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7238 &right_path->nodes[0]->bflags));
7239
7240 if (result == BTRFS_COMPARE_TREE_SAME) {
7241 if (key->type == BTRFS_INODE_REF_KEY ||
7242 key->type == BTRFS_INODE_EXTREF_KEY) {
7243 ret = compare_refs(sctx, left_path, key);
7244 if (!ret)
7245 return 0;
7246 if (ret < 0)
7247 return ret;
7248 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7249 return maybe_send_hole(sctx, left_path, key);
7250 } else {
7251 return 0;
7252 }
7253 result = BTRFS_COMPARE_TREE_CHANGED;
7254 }
7255
7256 sctx->left_path = left_path;
7257 sctx->right_path = right_path;
7258 sctx->cmp_key = key;
7259
7260 ret = finish_inode_if_needed(sctx, 0);
7261 if (ret < 0)
7262 goto out;
7263
7264 /* Ignore non-FS objects */
7265 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7266 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7267 goto out;
7268
7269 if (key->type == BTRFS_INODE_ITEM_KEY) {
7270 ret = changed_inode(sctx, result);
7271 } else if (!sctx->ignore_cur_inode) {
7272 if (key->type == BTRFS_INODE_REF_KEY ||
7273 key->type == BTRFS_INODE_EXTREF_KEY)
7274 ret = changed_ref(sctx, result);
7275 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7276 ret = changed_xattr(sctx, result);
7277 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7278 ret = changed_extent(sctx, result);
7279 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7280 key->offset == 0)
7281 ret = changed_verity(sctx, result);
7282 }
7283
7284 out:
7285 return ret;
7286 }
7287
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7288 static int search_key_again(const struct send_ctx *sctx,
7289 struct btrfs_root *root,
7290 struct btrfs_path *path,
7291 const struct btrfs_key *key)
7292 {
7293 int ret;
7294
7295 if (!path->need_commit_sem)
7296 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7297
7298 /*
7299 * Roots used for send operations are readonly and no one can add,
7300 * update or remove keys from them, so we should be able to find our
7301 * key again. The only exception is deduplication, which can operate on
7302 * readonly roots and add, update or remove keys to/from them - but at
7303 * the moment we don't allow it to run in parallel with send.
7304 */
7305 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7306 ASSERT(ret <= 0);
7307 if (ret > 0) {
7308 btrfs_print_tree(path->nodes[path->lowest_level], false);
7309 btrfs_err(root->fs_info,
7310 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7311 key->objectid, key->type, key->offset,
7312 (root == sctx->parent_root ? "parent" : "send"),
7313 btrfs_root_id(root), path->lowest_level,
7314 path->slots[path->lowest_level]);
7315 return -EUCLEAN;
7316 }
7317
7318 return ret;
7319 }
7320
full_send_tree(struct send_ctx * sctx)7321 static int full_send_tree(struct send_ctx *sctx)
7322 {
7323 int ret;
7324 struct btrfs_root *send_root = sctx->send_root;
7325 struct btrfs_key key;
7326 struct btrfs_fs_info *fs_info = send_root->fs_info;
7327 struct btrfs_path *path;
7328
7329 path = alloc_path_for_send();
7330 if (!path)
7331 return -ENOMEM;
7332 path->reada = READA_FORWARD_ALWAYS;
7333
7334 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7335 key.type = BTRFS_INODE_ITEM_KEY;
7336 key.offset = 0;
7337
7338 down_read(&fs_info->commit_root_sem);
7339 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7340 up_read(&fs_info->commit_root_sem);
7341
7342 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7343 if (ret < 0)
7344 goto out;
7345 if (ret)
7346 goto out_finish;
7347
7348 while (1) {
7349 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7350
7351 ret = changed_cb(path, NULL, &key,
7352 BTRFS_COMPARE_TREE_NEW, sctx);
7353 if (ret < 0)
7354 goto out;
7355
7356 down_read(&fs_info->commit_root_sem);
7357 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7358 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7359 up_read(&fs_info->commit_root_sem);
7360 /*
7361 * A transaction used for relocating a block group was
7362 * committed or is about to finish its commit. Release
7363 * our path (leaf) and restart the search, so that we
7364 * avoid operating on any file extent items that are
7365 * stale, with a disk_bytenr that reflects a pre
7366 * relocation value. This way we avoid as much as
7367 * possible to fallback to regular writes when checking
7368 * if we can clone file ranges.
7369 */
7370 btrfs_release_path(path);
7371 ret = search_key_again(sctx, send_root, path, &key);
7372 if (ret < 0)
7373 goto out;
7374 } else {
7375 up_read(&fs_info->commit_root_sem);
7376 }
7377
7378 ret = btrfs_next_item(send_root, path);
7379 if (ret < 0)
7380 goto out;
7381 if (ret) {
7382 ret = 0;
7383 break;
7384 }
7385 }
7386
7387 out_finish:
7388 ret = finish_inode_if_needed(sctx, 1);
7389
7390 out:
7391 btrfs_free_path(path);
7392 return ret;
7393 }
7394
replace_node_with_clone(struct btrfs_path * path,int level)7395 static int replace_node_with_clone(struct btrfs_path *path, int level)
7396 {
7397 struct extent_buffer *clone;
7398
7399 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7400 if (!clone)
7401 return -ENOMEM;
7402
7403 free_extent_buffer(path->nodes[level]);
7404 path->nodes[level] = clone;
7405
7406 return 0;
7407 }
7408
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7409 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7410 {
7411 struct extent_buffer *eb;
7412 struct extent_buffer *parent = path->nodes[*level];
7413 int slot = path->slots[*level];
7414 const int nritems = btrfs_header_nritems(parent);
7415 u64 reada_max;
7416 u64 reada_done = 0;
7417
7418 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7419 ASSERT(*level != 0);
7420
7421 eb = btrfs_read_node_slot(parent, slot);
7422 if (IS_ERR(eb))
7423 return PTR_ERR(eb);
7424
7425 /*
7426 * Trigger readahead for the next leaves we will process, so that it is
7427 * very likely that when we need them they are already in memory and we
7428 * will not block on disk IO. For nodes we only do readahead for one,
7429 * since the time window between processing nodes is typically larger.
7430 */
7431 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7432
7433 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7434 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7435 btrfs_readahead_node_child(parent, slot);
7436 reada_done += eb->fs_info->nodesize;
7437 }
7438 }
7439
7440 path->nodes[*level - 1] = eb;
7441 path->slots[*level - 1] = 0;
7442 (*level)--;
7443
7444 if (*level == 0)
7445 return replace_node_with_clone(path, 0);
7446
7447 return 0;
7448 }
7449
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7450 static int tree_move_next_or_upnext(struct btrfs_path *path,
7451 int *level, int root_level)
7452 {
7453 int ret = 0;
7454 int nritems;
7455 nritems = btrfs_header_nritems(path->nodes[*level]);
7456
7457 path->slots[*level]++;
7458
7459 while (path->slots[*level] >= nritems) {
7460 if (*level == root_level) {
7461 path->slots[*level] = nritems - 1;
7462 return -1;
7463 }
7464
7465 /* move upnext */
7466 path->slots[*level] = 0;
7467 free_extent_buffer(path->nodes[*level]);
7468 path->nodes[*level] = NULL;
7469 (*level)++;
7470 path->slots[*level]++;
7471
7472 nritems = btrfs_header_nritems(path->nodes[*level]);
7473 ret = 1;
7474 }
7475 return ret;
7476 }
7477
7478 /*
7479 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7480 * or down.
7481 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7482 static int tree_advance(struct btrfs_path *path,
7483 int *level, int root_level,
7484 int allow_down,
7485 struct btrfs_key *key,
7486 u64 reada_min_gen)
7487 {
7488 int ret;
7489
7490 if (*level == 0 || !allow_down) {
7491 ret = tree_move_next_or_upnext(path, level, root_level);
7492 } else {
7493 ret = tree_move_down(path, level, reada_min_gen);
7494 }
7495
7496 /*
7497 * Even if we have reached the end of a tree, ret is -1, update the key
7498 * anyway, so that in case we need to restart due to a block group
7499 * relocation, we can assert that the last key of the root node still
7500 * exists in the tree.
7501 */
7502 if (*level == 0)
7503 btrfs_item_key_to_cpu(path->nodes[*level], key,
7504 path->slots[*level]);
7505 else
7506 btrfs_node_key_to_cpu(path->nodes[*level], key,
7507 path->slots[*level]);
7508
7509 return ret;
7510 }
7511
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7512 static int tree_compare_item(struct btrfs_path *left_path,
7513 struct btrfs_path *right_path,
7514 char *tmp_buf)
7515 {
7516 int cmp;
7517 int len1, len2;
7518 unsigned long off1, off2;
7519
7520 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7521 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7522 if (len1 != len2)
7523 return 1;
7524
7525 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7526 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7527 right_path->slots[0]);
7528
7529 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7530
7531 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7532 if (cmp)
7533 return 1;
7534 return 0;
7535 }
7536
7537 /*
7538 * A transaction used for relocating a block group was committed or is about to
7539 * finish its commit. Release our paths and restart the search, so that we are
7540 * not using stale extent buffers:
7541 *
7542 * 1) For levels > 0, we are only holding references of extent buffers, without
7543 * any locks on them, which does not prevent them from having been relocated
7544 * and reallocated after the last time we released the commit root semaphore.
7545 * The exception are the root nodes, for which we always have a clone, see
7546 * the comment at btrfs_compare_trees();
7547 *
7548 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7549 * we are safe from the concurrent relocation and reallocation. However they
7550 * can have file extent items with a pre relocation disk_bytenr value, so we
7551 * restart the start from the current commit roots and clone the new leaves so
7552 * that we get the post relocation disk_bytenr values. Not doing so, could
7553 * make us clone the wrong data in case there are new extents using the old
7554 * disk_bytenr that happen to be shared.
7555 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7556 static int restart_after_relocation(struct btrfs_path *left_path,
7557 struct btrfs_path *right_path,
7558 const struct btrfs_key *left_key,
7559 const struct btrfs_key *right_key,
7560 int left_level,
7561 int right_level,
7562 const struct send_ctx *sctx)
7563 {
7564 int root_level;
7565 int ret;
7566
7567 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7568
7569 btrfs_release_path(left_path);
7570 btrfs_release_path(right_path);
7571
7572 /*
7573 * Since keys can not be added or removed to/from our roots because they
7574 * are readonly and we do not allow deduplication to run in parallel
7575 * (which can add, remove or change keys), the layout of the trees should
7576 * not change.
7577 */
7578 left_path->lowest_level = left_level;
7579 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7580 if (ret < 0)
7581 return ret;
7582
7583 right_path->lowest_level = right_level;
7584 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7585 if (ret < 0)
7586 return ret;
7587
7588 /*
7589 * If the lowest level nodes are leaves, clone them so that they can be
7590 * safely used by changed_cb() while not under the protection of the
7591 * commit root semaphore, even if relocation and reallocation happens in
7592 * parallel.
7593 */
7594 if (left_level == 0) {
7595 ret = replace_node_with_clone(left_path, 0);
7596 if (ret < 0)
7597 return ret;
7598 }
7599
7600 if (right_level == 0) {
7601 ret = replace_node_with_clone(right_path, 0);
7602 if (ret < 0)
7603 return ret;
7604 }
7605
7606 /*
7607 * Now clone the root nodes (unless they happen to be the leaves we have
7608 * already cloned). This is to protect against concurrent snapshotting of
7609 * the send and parent roots (see the comment at btrfs_compare_trees()).
7610 */
7611 root_level = btrfs_header_level(sctx->send_root->commit_root);
7612 if (root_level > 0) {
7613 ret = replace_node_with_clone(left_path, root_level);
7614 if (ret < 0)
7615 return ret;
7616 }
7617
7618 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7619 if (root_level > 0) {
7620 ret = replace_node_with_clone(right_path, root_level);
7621 if (ret < 0)
7622 return ret;
7623 }
7624
7625 return 0;
7626 }
7627
7628 /*
7629 * This function compares two trees and calls the provided callback for
7630 * every changed/new/deleted item it finds.
7631 * If shared tree blocks are encountered, whole subtrees are skipped, making
7632 * the compare pretty fast on snapshotted subvolumes.
7633 *
7634 * This currently works on commit roots only. As commit roots are read only,
7635 * we don't do any locking. The commit roots are protected with transactions.
7636 * Transactions are ended and rejoined when a commit is tried in between.
7637 *
7638 * This function checks for modifications done to the trees while comparing.
7639 * If it detects a change, it aborts immediately.
7640 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7641 static int btrfs_compare_trees(struct btrfs_root *left_root,
7642 struct btrfs_root *right_root, struct send_ctx *sctx)
7643 {
7644 struct btrfs_fs_info *fs_info = left_root->fs_info;
7645 int ret;
7646 int cmp;
7647 struct btrfs_path *left_path = NULL;
7648 struct btrfs_path *right_path = NULL;
7649 struct btrfs_key left_key;
7650 struct btrfs_key right_key;
7651 char *tmp_buf = NULL;
7652 int left_root_level;
7653 int right_root_level;
7654 int left_level;
7655 int right_level;
7656 int left_end_reached = 0;
7657 int right_end_reached = 0;
7658 int advance_left = 0;
7659 int advance_right = 0;
7660 u64 left_blockptr;
7661 u64 right_blockptr;
7662 u64 left_gen;
7663 u64 right_gen;
7664 u64 reada_min_gen;
7665
7666 left_path = btrfs_alloc_path();
7667 if (!left_path) {
7668 ret = -ENOMEM;
7669 goto out;
7670 }
7671 right_path = btrfs_alloc_path();
7672 if (!right_path) {
7673 ret = -ENOMEM;
7674 goto out;
7675 }
7676
7677 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7678 if (!tmp_buf) {
7679 ret = -ENOMEM;
7680 goto out;
7681 }
7682
7683 left_path->search_commit_root = 1;
7684 left_path->skip_locking = 1;
7685 right_path->search_commit_root = 1;
7686 right_path->skip_locking = 1;
7687
7688 /*
7689 * Strategy: Go to the first items of both trees. Then do
7690 *
7691 * If both trees are at level 0
7692 * Compare keys of current items
7693 * If left < right treat left item as new, advance left tree
7694 * and repeat
7695 * If left > right treat right item as deleted, advance right tree
7696 * and repeat
7697 * If left == right do deep compare of items, treat as changed if
7698 * needed, advance both trees and repeat
7699 * If both trees are at the same level but not at level 0
7700 * Compare keys of current nodes/leafs
7701 * If left < right advance left tree and repeat
7702 * If left > right advance right tree and repeat
7703 * If left == right compare blockptrs of the next nodes/leafs
7704 * If they match advance both trees but stay at the same level
7705 * and repeat
7706 * If they don't match advance both trees while allowing to go
7707 * deeper and repeat
7708 * If tree levels are different
7709 * Advance the tree that needs it and repeat
7710 *
7711 * Advancing a tree means:
7712 * If we are at level 0, try to go to the next slot. If that's not
7713 * possible, go one level up and repeat. Stop when we found a level
7714 * where we could go to the next slot. We may at this point be on a
7715 * node or a leaf.
7716 *
7717 * If we are not at level 0 and not on shared tree blocks, go one
7718 * level deeper.
7719 *
7720 * If we are not at level 0 and on shared tree blocks, go one slot to
7721 * the right if possible or go up and right.
7722 */
7723
7724 down_read(&fs_info->commit_root_sem);
7725 left_level = btrfs_header_level(left_root->commit_root);
7726 left_root_level = left_level;
7727 /*
7728 * We clone the root node of the send and parent roots to prevent races
7729 * with snapshot creation of these roots. Snapshot creation COWs the
7730 * root node of a tree, so after the transaction is committed the old
7731 * extent can be reallocated while this send operation is still ongoing.
7732 * So we clone them, under the commit root semaphore, to be race free.
7733 */
7734 left_path->nodes[left_level] =
7735 btrfs_clone_extent_buffer(left_root->commit_root);
7736 if (!left_path->nodes[left_level]) {
7737 ret = -ENOMEM;
7738 goto out_unlock;
7739 }
7740
7741 right_level = btrfs_header_level(right_root->commit_root);
7742 right_root_level = right_level;
7743 right_path->nodes[right_level] =
7744 btrfs_clone_extent_buffer(right_root->commit_root);
7745 if (!right_path->nodes[right_level]) {
7746 ret = -ENOMEM;
7747 goto out_unlock;
7748 }
7749 /*
7750 * Our right root is the parent root, while the left root is the "send"
7751 * root. We know that all new nodes/leaves in the left root must have
7752 * a generation greater than the right root's generation, so we trigger
7753 * readahead for those nodes and leaves of the left root, as we know we
7754 * will need to read them at some point.
7755 */
7756 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7757
7758 if (left_level == 0)
7759 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7760 &left_key, left_path->slots[left_level]);
7761 else
7762 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7763 &left_key, left_path->slots[left_level]);
7764 if (right_level == 0)
7765 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7766 &right_key, right_path->slots[right_level]);
7767 else
7768 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7769 &right_key, right_path->slots[right_level]);
7770
7771 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7772
7773 while (1) {
7774 if (need_resched() ||
7775 rwsem_is_contended(&fs_info->commit_root_sem)) {
7776 up_read(&fs_info->commit_root_sem);
7777 cond_resched();
7778 down_read(&fs_info->commit_root_sem);
7779 }
7780
7781 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7782 ret = restart_after_relocation(left_path, right_path,
7783 &left_key, &right_key,
7784 left_level, right_level,
7785 sctx);
7786 if (ret < 0)
7787 goto out_unlock;
7788 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7789 }
7790
7791 if (advance_left && !left_end_reached) {
7792 ret = tree_advance(left_path, &left_level,
7793 left_root_level,
7794 advance_left != ADVANCE_ONLY_NEXT,
7795 &left_key, reada_min_gen);
7796 if (ret == -1)
7797 left_end_reached = ADVANCE;
7798 else if (ret < 0)
7799 goto out_unlock;
7800 advance_left = 0;
7801 }
7802 if (advance_right && !right_end_reached) {
7803 ret = tree_advance(right_path, &right_level,
7804 right_root_level,
7805 advance_right != ADVANCE_ONLY_NEXT,
7806 &right_key, reada_min_gen);
7807 if (ret == -1)
7808 right_end_reached = ADVANCE;
7809 else if (ret < 0)
7810 goto out_unlock;
7811 advance_right = 0;
7812 }
7813
7814 if (left_end_reached && right_end_reached) {
7815 ret = 0;
7816 goto out_unlock;
7817 } else if (left_end_reached) {
7818 if (right_level == 0) {
7819 up_read(&fs_info->commit_root_sem);
7820 ret = changed_cb(left_path, right_path,
7821 &right_key,
7822 BTRFS_COMPARE_TREE_DELETED,
7823 sctx);
7824 if (ret < 0)
7825 goto out;
7826 down_read(&fs_info->commit_root_sem);
7827 }
7828 advance_right = ADVANCE;
7829 continue;
7830 } else if (right_end_reached) {
7831 if (left_level == 0) {
7832 up_read(&fs_info->commit_root_sem);
7833 ret = changed_cb(left_path, right_path,
7834 &left_key,
7835 BTRFS_COMPARE_TREE_NEW,
7836 sctx);
7837 if (ret < 0)
7838 goto out;
7839 down_read(&fs_info->commit_root_sem);
7840 }
7841 advance_left = ADVANCE;
7842 continue;
7843 }
7844
7845 if (left_level == 0 && right_level == 0) {
7846 up_read(&fs_info->commit_root_sem);
7847 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7848 if (cmp < 0) {
7849 ret = changed_cb(left_path, right_path,
7850 &left_key,
7851 BTRFS_COMPARE_TREE_NEW,
7852 sctx);
7853 advance_left = ADVANCE;
7854 } else if (cmp > 0) {
7855 ret = changed_cb(left_path, right_path,
7856 &right_key,
7857 BTRFS_COMPARE_TREE_DELETED,
7858 sctx);
7859 advance_right = ADVANCE;
7860 } else {
7861 enum btrfs_compare_tree_result result;
7862
7863 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7864 ret = tree_compare_item(left_path, right_path,
7865 tmp_buf);
7866 if (ret)
7867 result = BTRFS_COMPARE_TREE_CHANGED;
7868 else
7869 result = BTRFS_COMPARE_TREE_SAME;
7870 ret = changed_cb(left_path, right_path,
7871 &left_key, result, sctx);
7872 advance_left = ADVANCE;
7873 advance_right = ADVANCE;
7874 }
7875
7876 if (ret < 0)
7877 goto out;
7878 down_read(&fs_info->commit_root_sem);
7879 } else if (left_level == right_level) {
7880 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7881 if (cmp < 0) {
7882 advance_left = ADVANCE;
7883 } else if (cmp > 0) {
7884 advance_right = ADVANCE;
7885 } else {
7886 left_blockptr = btrfs_node_blockptr(
7887 left_path->nodes[left_level],
7888 left_path->slots[left_level]);
7889 right_blockptr = btrfs_node_blockptr(
7890 right_path->nodes[right_level],
7891 right_path->slots[right_level]);
7892 left_gen = btrfs_node_ptr_generation(
7893 left_path->nodes[left_level],
7894 left_path->slots[left_level]);
7895 right_gen = btrfs_node_ptr_generation(
7896 right_path->nodes[right_level],
7897 right_path->slots[right_level]);
7898 if (left_blockptr == right_blockptr &&
7899 left_gen == right_gen) {
7900 /*
7901 * As we're on a shared block, don't
7902 * allow to go deeper.
7903 */
7904 advance_left = ADVANCE_ONLY_NEXT;
7905 advance_right = ADVANCE_ONLY_NEXT;
7906 } else {
7907 advance_left = ADVANCE;
7908 advance_right = ADVANCE;
7909 }
7910 }
7911 } else if (left_level < right_level) {
7912 advance_right = ADVANCE;
7913 } else {
7914 advance_left = ADVANCE;
7915 }
7916 }
7917
7918 out_unlock:
7919 up_read(&fs_info->commit_root_sem);
7920 out:
7921 btrfs_free_path(left_path);
7922 btrfs_free_path(right_path);
7923 kvfree(tmp_buf);
7924 return ret;
7925 }
7926
send_subvol(struct send_ctx * sctx)7927 static int send_subvol(struct send_ctx *sctx)
7928 {
7929 int ret;
7930
7931 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7932 ret = send_header(sctx);
7933 if (ret < 0)
7934 goto out;
7935 }
7936
7937 ret = send_subvol_begin(sctx);
7938 if (ret < 0)
7939 goto out;
7940
7941 if (sctx->parent_root) {
7942 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7943 if (ret < 0)
7944 goto out;
7945 ret = finish_inode_if_needed(sctx, 1);
7946 if (ret < 0)
7947 goto out;
7948 } else {
7949 ret = full_send_tree(sctx);
7950 if (ret < 0)
7951 goto out;
7952 }
7953
7954 out:
7955 free_recorded_refs(sctx);
7956 return ret;
7957 }
7958
7959 /*
7960 * If orphan cleanup did remove any orphans from a root, it means the tree
7961 * was modified and therefore the commit root is not the same as the current
7962 * root anymore. This is a problem, because send uses the commit root and
7963 * therefore can see inode items that don't exist in the current root anymore,
7964 * and for example make calls to btrfs_iget, which will do tree lookups based
7965 * on the current root and not on the commit root. Those lookups will fail,
7966 * returning a -ESTALE error, and making send fail with that error. So make
7967 * sure a send does not see any orphans we have just removed, and that it will
7968 * see the same inodes regardless of whether a transaction commit happened
7969 * before it started (meaning that the commit root will be the same as the
7970 * current root) or not.
7971 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7972 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7973 {
7974 struct btrfs_root *root = sctx->parent_root;
7975
7976 if (root && root->node != root->commit_root)
7977 return btrfs_commit_current_transaction(root);
7978
7979 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
7980 root = sctx->clone_roots[i].root;
7981 if (root->node != root->commit_root)
7982 return btrfs_commit_current_transaction(root);
7983 }
7984
7985 return 0;
7986 }
7987
7988 /*
7989 * Make sure any existing dellaloc is flushed for any root used by a send
7990 * operation so that we do not miss any data and we do not race with writeback
7991 * finishing and changing a tree while send is using the tree. This could
7992 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7993 * a send operation then uses the subvolume.
7994 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7995 */
flush_delalloc_roots(struct send_ctx * sctx)7996 static int flush_delalloc_roots(struct send_ctx *sctx)
7997 {
7998 struct btrfs_root *root = sctx->parent_root;
7999 int ret;
8000 int i;
8001
8002 if (root) {
8003 ret = btrfs_start_delalloc_snapshot(root, false);
8004 if (ret)
8005 return ret;
8006 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8007 }
8008
8009 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8010 root = sctx->clone_roots[i].root;
8011 ret = btrfs_start_delalloc_snapshot(root, false);
8012 if (ret)
8013 return ret;
8014 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8015 }
8016
8017 return 0;
8018 }
8019
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8020 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8021 {
8022 spin_lock(&root->root_item_lock);
8023 root->send_in_progress--;
8024 /*
8025 * Not much left to do, we don't know why it's unbalanced and
8026 * can't blindly reset it to 0.
8027 */
8028 if (root->send_in_progress < 0)
8029 btrfs_err(root->fs_info,
8030 "send_in_progress unbalanced %d root %llu",
8031 root->send_in_progress, btrfs_root_id(root));
8032 spin_unlock(&root->root_item_lock);
8033 }
8034
dedupe_in_progress_warn(const struct btrfs_root * root)8035 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8036 {
8037 btrfs_warn_rl(root->fs_info,
8038 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8039 btrfs_root_id(root), root->dedupe_in_progress);
8040 }
8041
btrfs_ioctl_send(struct btrfs_root * send_root,const struct btrfs_ioctl_send_args * arg)8042 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg)
8043 {
8044 int ret = 0;
8045 struct btrfs_fs_info *fs_info = send_root->fs_info;
8046 struct btrfs_root *clone_root;
8047 struct send_ctx *sctx = NULL;
8048 u32 i;
8049 u64 *clone_sources_tmp = NULL;
8050 int clone_sources_to_rollback = 0;
8051 size_t alloc_size;
8052 int sort_clone_roots = 0;
8053 struct btrfs_lru_cache_entry *entry;
8054 struct btrfs_lru_cache_entry *tmp;
8055
8056 if (!capable(CAP_SYS_ADMIN))
8057 return -EPERM;
8058
8059 /*
8060 * The subvolume must remain read-only during send, protect against
8061 * making it RW. This also protects against deletion.
8062 */
8063 spin_lock(&send_root->root_item_lock);
8064 /*
8065 * Unlikely but possible, if the subvolume is marked for deletion but
8066 * is slow to remove the directory entry, send can still be started.
8067 */
8068 if (btrfs_root_dead(send_root)) {
8069 spin_unlock(&send_root->root_item_lock);
8070 return -EPERM;
8071 }
8072 /* Userspace tools do the checks and warn the user if it's not RO. */
8073 if (!btrfs_root_readonly(send_root)) {
8074 spin_unlock(&send_root->root_item_lock);
8075 return -EPERM;
8076 }
8077 if (send_root->dedupe_in_progress) {
8078 dedupe_in_progress_warn(send_root);
8079 spin_unlock(&send_root->root_item_lock);
8080 return -EAGAIN;
8081 }
8082 send_root->send_in_progress++;
8083 spin_unlock(&send_root->root_item_lock);
8084
8085 /*
8086 * Check that we don't overflow at later allocations, we request
8087 * clone_sources_count + 1 items, and compare to unsigned long inside
8088 * access_ok. Also set an upper limit for allocation size so this can't
8089 * easily exhaust memory. Max number of clone sources is about 200K.
8090 */
8091 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8092 ret = -EINVAL;
8093 goto out;
8094 }
8095
8096 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8097 ret = -EOPNOTSUPP;
8098 goto out;
8099 }
8100
8101 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8102 if (!sctx) {
8103 ret = -ENOMEM;
8104 goto out;
8105 }
8106
8107 init_path(&sctx->cur_inode_path);
8108 INIT_LIST_HEAD(&sctx->new_refs);
8109 INIT_LIST_HEAD(&sctx->deleted_refs);
8110
8111 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8112 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8113 btrfs_lru_cache_init(&sctx->dir_created_cache,
8114 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8115 /*
8116 * This cache is periodically trimmed to a fixed size elsewhere, see
8117 * cache_dir_utimes() and trim_dir_utimes_cache().
8118 */
8119 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8120
8121 sctx->pending_dir_moves = RB_ROOT;
8122 sctx->waiting_dir_moves = RB_ROOT;
8123 sctx->orphan_dirs = RB_ROOT;
8124 sctx->rbtree_new_refs = RB_ROOT;
8125 sctx->rbtree_deleted_refs = RB_ROOT;
8126
8127 sctx->flags = arg->flags;
8128
8129 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8130 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8131 ret = -EPROTO;
8132 goto out;
8133 }
8134 /* Zero means "use the highest version" */
8135 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8136 } else {
8137 sctx->proto = 1;
8138 }
8139 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8140 ret = -EINVAL;
8141 goto out;
8142 }
8143
8144 sctx->send_filp = fget(arg->send_fd);
8145 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8146 ret = -EBADF;
8147 goto out;
8148 }
8149
8150 sctx->send_root = send_root;
8151 sctx->clone_roots_cnt = arg->clone_sources_count;
8152
8153 if (sctx->proto >= 2) {
8154 u32 send_buf_num_pages;
8155
8156 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8157 sctx->send_buf = vmalloc(sctx->send_max_size);
8158 if (!sctx->send_buf) {
8159 ret = -ENOMEM;
8160 goto out;
8161 }
8162 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8163 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8164 sizeof(*sctx->send_buf_pages),
8165 GFP_KERNEL);
8166 if (!sctx->send_buf_pages) {
8167 ret = -ENOMEM;
8168 goto out;
8169 }
8170 for (i = 0; i < send_buf_num_pages; i++) {
8171 sctx->send_buf_pages[i] =
8172 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8173 }
8174 } else {
8175 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8176 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8177 }
8178 if (!sctx->send_buf) {
8179 ret = -ENOMEM;
8180 goto out;
8181 }
8182
8183 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8184 sizeof(*sctx->clone_roots),
8185 GFP_KERNEL);
8186 if (!sctx->clone_roots) {
8187 ret = -ENOMEM;
8188 goto out;
8189 }
8190
8191 alloc_size = array_size(sizeof(*arg->clone_sources),
8192 arg->clone_sources_count);
8193
8194 if (arg->clone_sources_count) {
8195 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8196 if (!clone_sources_tmp) {
8197 ret = -ENOMEM;
8198 goto out;
8199 }
8200
8201 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8202 alloc_size);
8203 if (ret) {
8204 ret = -EFAULT;
8205 goto out;
8206 }
8207
8208 for (i = 0; i < arg->clone_sources_count; i++) {
8209 clone_root = btrfs_get_fs_root(fs_info,
8210 clone_sources_tmp[i], true);
8211 if (IS_ERR(clone_root)) {
8212 ret = PTR_ERR(clone_root);
8213 goto out;
8214 }
8215 spin_lock(&clone_root->root_item_lock);
8216 if (!btrfs_root_readonly(clone_root) ||
8217 btrfs_root_dead(clone_root)) {
8218 spin_unlock(&clone_root->root_item_lock);
8219 btrfs_put_root(clone_root);
8220 ret = -EPERM;
8221 goto out;
8222 }
8223 if (clone_root->dedupe_in_progress) {
8224 dedupe_in_progress_warn(clone_root);
8225 spin_unlock(&clone_root->root_item_lock);
8226 btrfs_put_root(clone_root);
8227 ret = -EAGAIN;
8228 goto out;
8229 }
8230 clone_root->send_in_progress++;
8231 spin_unlock(&clone_root->root_item_lock);
8232
8233 sctx->clone_roots[i].root = clone_root;
8234 clone_sources_to_rollback = i + 1;
8235 }
8236 kvfree(clone_sources_tmp);
8237 clone_sources_tmp = NULL;
8238 }
8239
8240 if (arg->parent_root) {
8241 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8242 true);
8243 if (IS_ERR(sctx->parent_root)) {
8244 ret = PTR_ERR(sctx->parent_root);
8245 goto out;
8246 }
8247
8248 spin_lock(&sctx->parent_root->root_item_lock);
8249 sctx->parent_root->send_in_progress++;
8250 if (!btrfs_root_readonly(sctx->parent_root) ||
8251 btrfs_root_dead(sctx->parent_root)) {
8252 spin_unlock(&sctx->parent_root->root_item_lock);
8253 ret = -EPERM;
8254 goto out;
8255 }
8256 if (sctx->parent_root->dedupe_in_progress) {
8257 dedupe_in_progress_warn(sctx->parent_root);
8258 spin_unlock(&sctx->parent_root->root_item_lock);
8259 ret = -EAGAIN;
8260 goto out;
8261 }
8262 spin_unlock(&sctx->parent_root->root_item_lock);
8263 }
8264
8265 /*
8266 * Clones from send_root are allowed, but only if the clone source
8267 * is behind the current send position. This is checked while searching
8268 * for possible clone sources.
8269 */
8270 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8271 btrfs_grab_root(sctx->send_root);
8272
8273 /* We do a bsearch later */
8274 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8275 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8276 NULL);
8277 sort_clone_roots = 1;
8278
8279 ret = flush_delalloc_roots(sctx);
8280 if (ret)
8281 goto out;
8282
8283 ret = ensure_commit_roots_uptodate(sctx);
8284 if (ret)
8285 goto out;
8286
8287 ret = send_subvol(sctx);
8288 if (ret < 0)
8289 goto out;
8290
8291 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8292 ret = send_utimes(sctx, entry->key, entry->gen);
8293 if (ret < 0)
8294 goto out;
8295 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8296 }
8297
8298 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8299 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8300 if (ret < 0)
8301 goto out;
8302 ret = send_cmd(sctx);
8303 if (ret < 0)
8304 goto out;
8305 }
8306
8307 out:
8308 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8309 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8310 struct rb_node *n;
8311 struct pending_dir_move *pm;
8312
8313 n = rb_first(&sctx->pending_dir_moves);
8314 pm = rb_entry(n, struct pending_dir_move, node);
8315 while (!list_empty(&pm->list)) {
8316 struct pending_dir_move *pm2;
8317
8318 pm2 = list_first_entry(&pm->list,
8319 struct pending_dir_move, list);
8320 free_pending_move(sctx, pm2);
8321 }
8322 free_pending_move(sctx, pm);
8323 }
8324
8325 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8326 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8327 struct rb_node *n;
8328 struct waiting_dir_move *dm;
8329
8330 n = rb_first(&sctx->waiting_dir_moves);
8331 dm = rb_entry(n, struct waiting_dir_move, node);
8332 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8333 kfree(dm);
8334 }
8335
8336 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8337 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8338 struct rb_node *n;
8339 struct orphan_dir_info *odi;
8340
8341 n = rb_first(&sctx->orphan_dirs);
8342 odi = rb_entry(n, struct orphan_dir_info, node);
8343 free_orphan_dir_info(sctx, odi);
8344 }
8345
8346 if (sort_clone_roots) {
8347 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8348 btrfs_root_dec_send_in_progress(
8349 sctx->clone_roots[i].root);
8350 btrfs_put_root(sctx->clone_roots[i].root);
8351 }
8352 } else {
8353 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8354 btrfs_root_dec_send_in_progress(
8355 sctx->clone_roots[i].root);
8356 btrfs_put_root(sctx->clone_roots[i].root);
8357 }
8358
8359 btrfs_root_dec_send_in_progress(send_root);
8360 }
8361 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8362 btrfs_root_dec_send_in_progress(sctx->parent_root);
8363 btrfs_put_root(sctx->parent_root);
8364 }
8365
8366 kvfree(clone_sources_tmp);
8367
8368 if (sctx) {
8369 if (sctx->send_filp)
8370 fput(sctx->send_filp);
8371
8372 kvfree(sctx->clone_roots);
8373 kfree(sctx->send_buf_pages);
8374 kvfree(sctx->send_buf);
8375 kvfree(sctx->verity_descriptor);
8376
8377 close_current_inode(sctx);
8378
8379 btrfs_lru_cache_clear(&sctx->name_cache);
8380 btrfs_lru_cache_clear(&sctx->backref_cache);
8381 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8382 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8383
8384 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8385 kfree(sctx->cur_inode_path.buf);
8386
8387 kfree(sctx);
8388 }
8389
8390 return ret;
8391 }
8392