xref: /linux/arch/x86/include/asm/pgtable.h (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLER__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37 
38 /*
39  * Macros to add or remove encryption attribute
40  */
41 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
43 
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user()	do { } while (0)
48 #endif
49 
50 /*
51  * ZERO_PAGE is a global shared page that is always zero: used
52  * for zero-mapped memory areas etc..
53  */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 	__visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57 
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60 
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62 
63 extern pmdval_t early_pmd_flags;
64 
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else  /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
69 
70 #define set_pte_atomic(ptep, pte)					\
71 	native_set_pte_atomic(ptep, pte)
72 
73 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
74 
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79 
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
82 #endif
83 
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d)			native_p4d_clear(p4d)
86 #endif
87 
88 #ifndef set_pud
89 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
90 #endif
91 
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud)			native_pud_clear(pud)
94 #endif
95 
96 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd)			native_pmd_clear(pmd)
98 
99 #define pgd_val(x)	native_pgd_val(x)
100 #define __pgd(x)	native_make_pgd(x)
101 
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x)	native_p4d_val(x)
104 #define __p4d(x)	native_make_p4d(x)
105 #endif
106 
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x)	native_pud_val(x)
109 #define __pud(x)	native_make_pud(x)
110 #endif
111 
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x)	native_pmd_val(x)
114 #define __pmd(x)	native_make_pmd(x)
115 #endif
116 
117 #define pte_val(x)	native_pte_val(x)
118 #define __pte(x)	native_make_pte(x)
119 
120 #define arch_end_context_switch(prev)	do {} while(0)
121 #endif	/* CONFIG_PARAVIRT_XXL */
122 
pmd_set_flags(pmd_t pmd,pmdval_t set)123 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
124 {
125 	pmdval_t v = native_pmd_val(pmd);
126 
127 	return native_make_pmd(v | set);
128 }
129 
pmd_clear_flags(pmd_t pmd,pmdval_t clear)130 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
131 {
132 	pmdval_t v = native_pmd_val(pmd);
133 
134 	return native_make_pmd(v & ~clear);
135 }
136 
pud_set_flags(pud_t pud,pudval_t set)137 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
138 {
139 	pudval_t v = native_pud_val(pud);
140 
141 	return native_make_pud(v | set);
142 }
143 
pud_clear_flags(pud_t pud,pudval_t clear)144 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
145 {
146 	pudval_t v = native_pud_val(pud);
147 
148 	return native_make_pud(v & ~clear);
149 }
150 
151 /*
152  * The following only work if pte_present() is true.
153  * Undefined behaviour if not..
154  */
pte_dirty(pte_t pte)155 static inline bool pte_dirty(pte_t pte)
156 {
157 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
158 }
159 
pte_shstk(pte_t pte)160 static inline bool pte_shstk(pte_t pte)
161 {
162 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
163 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
164 }
165 
pte_young(pte_t pte)166 static inline int pte_young(pte_t pte)
167 {
168 	return pte_flags(pte) & _PAGE_ACCESSED;
169 }
170 
pte_decrypted(pte_t pte)171 static inline bool pte_decrypted(pte_t pte)
172 {
173 	return cc_mkdec(pte_val(pte)) == pte_val(pte);
174 }
175 
176 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)177 static inline bool pmd_dirty(pmd_t pmd)
178 {
179 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
180 }
181 
pmd_shstk(pmd_t pmd)182 static inline bool pmd_shstk(pmd_t pmd)
183 {
184 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
185 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
186 	       (_PAGE_DIRTY | _PAGE_PSE);
187 }
188 
189 #define pmd_young pmd_young
pmd_young(pmd_t pmd)190 static inline int pmd_young(pmd_t pmd)
191 {
192 	return pmd_flags(pmd) & _PAGE_ACCESSED;
193 }
194 
pud_dirty(pud_t pud)195 static inline bool pud_dirty(pud_t pud)
196 {
197 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
198 }
199 
pud_young(pud_t pud)200 static inline int pud_young(pud_t pud)
201 {
202 	return pud_flags(pud) & _PAGE_ACCESSED;
203 }
204 
pud_shstk(pud_t pud)205 static inline bool pud_shstk(pud_t pud)
206 {
207 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
208 	       (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
209 	       (_PAGE_DIRTY | _PAGE_PSE);
210 }
211 
pte_write(pte_t pte)212 static inline int pte_write(pte_t pte)
213 {
214 	/*
215 	 * Shadow stack pages are logically writable, but do not have
216 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
217 	 */
218 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
219 }
220 
221 #define pmd_write pmd_write
pmd_write(pmd_t pmd)222 static inline int pmd_write(pmd_t pmd)
223 {
224 	/*
225 	 * Shadow stack pages are logically writable, but do not have
226 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
227 	 */
228 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
229 }
230 
231 #define pud_write pud_write
pud_write(pud_t pud)232 static inline int pud_write(pud_t pud)
233 {
234 	return pud_flags(pud) & _PAGE_RW;
235 }
236 
pte_huge(pte_t pte)237 static inline int pte_huge(pte_t pte)
238 {
239 	return pte_flags(pte) & _PAGE_PSE;
240 }
241 
pte_global(pte_t pte)242 static inline int pte_global(pte_t pte)
243 {
244 	return pte_flags(pte) & _PAGE_GLOBAL;
245 }
246 
pte_exec(pte_t pte)247 static inline int pte_exec(pte_t pte)
248 {
249 	return !(pte_flags(pte) & _PAGE_NX);
250 }
251 
pte_special(pte_t pte)252 static inline int pte_special(pte_t pte)
253 {
254 	return pte_flags(pte) & _PAGE_SPECIAL;
255 }
256 
257 /* Entries that were set to PROT_NONE are inverted */
258 
259 static inline u64 protnone_mask(u64 val);
260 
261 #define PFN_PTE_SHIFT	PAGE_SHIFT
262 
pte_pfn(pte_t pte)263 static inline unsigned long pte_pfn(pte_t pte)
264 {
265 	phys_addr_t pfn = pte_val(pte);
266 	pfn ^= protnone_mask(pfn);
267 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
268 }
269 
pmd_pfn(pmd_t pmd)270 static inline unsigned long pmd_pfn(pmd_t pmd)
271 {
272 	phys_addr_t pfn = pmd_val(pmd);
273 	pfn ^= protnone_mask(pfn);
274 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
275 }
276 
277 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)278 static inline unsigned long pud_pfn(pud_t pud)
279 {
280 	phys_addr_t pfn = pud_val(pud);
281 	pfn ^= protnone_mask(pfn);
282 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
283 }
284 
p4d_pfn(p4d_t p4d)285 static inline unsigned long p4d_pfn(p4d_t p4d)
286 {
287 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
288 }
289 
pgd_pfn(pgd_t pgd)290 static inline unsigned long pgd_pfn(pgd_t pgd)
291 {
292 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
293 }
294 
295 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
296 
297 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pte)298 static inline bool pmd_leaf(pmd_t pte)
299 {
300 	return pmd_flags(pte) & _PAGE_PSE;
301 }
302 
303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)304 static inline int pmd_trans_huge(pmd_t pmd)
305 {
306 	return (pmd_val(pmd) & _PAGE_PSE) == _PAGE_PSE;
307 }
308 
309 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_trans_huge(pud_t pud)310 static inline int pud_trans_huge(pud_t pud)
311 {
312 	return (pud_val(pud) & _PAGE_PSE) == _PAGE_PSE;
313 }
314 #endif
315 
316 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)317 static inline int has_transparent_hugepage(void)
318 {
319 	return boot_cpu_has(X86_FEATURE_PSE);
320 }
321 
322 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)323 static inline bool pmd_special(pmd_t pmd)
324 {
325 	return pmd_flags(pmd) & _PAGE_SPECIAL;
326 }
327 
pmd_mkspecial(pmd_t pmd)328 static inline pmd_t pmd_mkspecial(pmd_t pmd)
329 {
330 	return pmd_set_flags(pmd, _PAGE_SPECIAL);
331 }
332 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
333 
334 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)335 static inline bool pud_special(pud_t pud)
336 {
337 	return pud_flags(pud) & _PAGE_SPECIAL;
338 }
339 
pud_mkspecial(pud_t pud)340 static inline pud_t pud_mkspecial(pud_t pud)
341 {
342 	return pud_set_flags(pud, _PAGE_SPECIAL);
343 }
344 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
346 
pte_set_flags(pte_t pte,pteval_t set)347 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
348 {
349 	pteval_t v = native_pte_val(pte);
350 
351 	return native_make_pte(v | set);
352 }
353 
pte_clear_flags(pte_t pte,pteval_t clear)354 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
355 {
356 	pteval_t v = native_pte_val(pte);
357 
358 	return native_make_pte(v & ~clear);
359 }
360 
361 /*
362  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
363  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
364  * when creating dirty, write-protected memory, a software bit is used:
365  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
366  * Dirty bit to SavedDirty, and vice-vesra.
367  *
368  * This shifting is only done if needed. In the case of shifting
369  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
370  * shifting SavedDirty->Dirty, the condition is Write=1.
371  */
mksaveddirty_shift(pgprotval_t v)372 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
373 {
374 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
375 
376 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
377 	v &= ~(cond << _PAGE_BIT_DIRTY);
378 
379 	return v;
380 }
381 
clear_saveddirty_shift(pgprotval_t v)382 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
383 {
384 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
385 
386 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
387 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
388 
389 	return v;
390 }
391 
pte_mksaveddirty(pte_t pte)392 static inline pte_t pte_mksaveddirty(pte_t pte)
393 {
394 	pteval_t v = native_pte_val(pte);
395 
396 	v = mksaveddirty_shift(v);
397 	return native_make_pte(v);
398 }
399 
pte_clear_saveddirty(pte_t pte)400 static inline pte_t pte_clear_saveddirty(pte_t pte)
401 {
402 	pteval_t v = native_pte_val(pte);
403 
404 	v = clear_saveddirty_shift(v);
405 	return native_make_pte(v);
406 }
407 
pte_wrprotect(pte_t pte)408 static inline pte_t pte_wrprotect(pte_t pte)
409 {
410 	pte = pte_clear_flags(pte, _PAGE_RW);
411 
412 	/*
413 	 * Blindly clearing _PAGE_RW might accidentally create
414 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
415 	 * dirty value to the software bit, if present.
416 	 */
417 	return pte_mksaveddirty(pte);
418 }
419 
420 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)421 static inline int pte_uffd_wp(pte_t pte)
422 {
423 	return pte_flags(pte) & _PAGE_UFFD_WP;
424 }
425 
pte_mkuffd_wp(pte_t pte)426 static inline pte_t pte_mkuffd_wp(pte_t pte)
427 {
428 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
429 }
430 
pte_clear_uffd_wp(pte_t pte)431 static inline pte_t pte_clear_uffd_wp(pte_t pte)
432 {
433 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
434 }
435 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
436 
pte_mkclean(pte_t pte)437 static inline pte_t pte_mkclean(pte_t pte)
438 {
439 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
440 }
441 
pte_mkold(pte_t pte)442 static inline pte_t pte_mkold(pte_t pte)
443 {
444 	return pte_clear_flags(pte, _PAGE_ACCESSED);
445 }
446 
pte_mkexec(pte_t pte)447 static inline pte_t pte_mkexec(pte_t pte)
448 {
449 	return pte_clear_flags(pte, _PAGE_NX);
450 }
451 
pte_mkdirty(pte_t pte)452 static inline pte_t pte_mkdirty(pte_t pte)
453 {
454 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
455 
456 	return pte_mksaveddirty(pte);
457 }
458 
pte_mkwrite_shstk(pte_t pte)459 static inline pte_t pte_mkwrite_shstk(pte_t pte)
460 {
461 	pte = pte_clear_flags(pte, _PAGE_RW);
462 
463 	return pte_set_flags(pte, _PAGE_DIRTY);
464 }
465 
pte_mkyoung(pte_t pte)466 static inline pte_t pte_mkyoung(pte_t pte)
467 {
468 	return pte_set_flags(pte, _PAGE_ACCESSED);
469 }
470 
pte_mkwrite_novma(pte_t pte)471 static inline pte_t pte_mkwrite_novma(pte_t pte)
472 {
473 	return pte_set_flags(pte, _PAGE_RW);
474 }
475 
476 struct vm_area_struct;
477 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
478 #define pte_mkwrite pte_mkwrite
479 
pte_mkhuge(pte_t pte)480 static inline pte_t pte_mkhuge(pte_t pte)
481 {
482 	return pte_set_flags(pte, _PAGE_PSE);
483 }
484 
pte_clrhuge(pte_t pte)485 static inline pte_t pte_clrhuge(pte_t pte)
486 {
487 	return pte_clear_flags(pte, _PAGE_PSE);
488 }
489 
pte_mkglobal(pte_t pte)490 static inline pte_t pte_mkglobal(pte_t pte)
491 {
492 	return pte_set_flags(pte, _PAGE_GLOBAL);
493 }
494 
pte_clrglobal(pte_t pte)495 static inline pte_t pte_clrglobal(pte_t pte)
496 {
497 	return pte_clear_flags(pte, _PAGE_GLOBAL);
498 }
499 
pte_mkspecial(pte_t pte)500 static inline pte_t pte_mkspecial(pte_t pte)
501 {
502 	return pte_set_flags(pte, _PAGE_SPECIAL);
503 }
504 
505 /* See comments above mksaveddirty_shift() */
pmd_mksaveddirty(pmd_t pmd)506 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
507 {
508 	pmdval_t v = native_pmd_val(pmd);
509 
510 	v = mksaveddirty_shift(v);
511 	return native_make_pmd(v);
512 }
513 
514 /* See comments above mksaveddirty_shift() */
pmd_clear_saveddirty(pmd_t pmd)515 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
516 {
517 	pmdval_t v = native_pmd_val(pmd);
518 
519 	v = clear_saveddirty_shift(v);
520 	return native_make_pmd(v);
521 }
522 
pmd_wrprotect(pmd_t pmd)523 static inline pmd_t pmd_wrprotect(pmd_t pmd)
524 {
525 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
526 
527 	/*
528 	 * Blindly clearing _PAGE_RW might accidentally create
529 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
530 	 * dirty value to the software bit.
531 	 */
532 	return pmd_mksaveddirty(pmd);
533 }
534 
535 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pmd_uffd_wp(pmd_t pmd)536 static inline int pmd_uffd_wp(pmd_t pmd)
537 {
538 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
539 }
540 
pmd_mkuffd_wp(pmd_t pmd)541 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
542 {
543 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
544 }
545 
pmd_clear_uffd_wp(pmd_t pmd)546 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
547 {
548 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
549 }
550 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
551 
pmd_mkold(pmd_t pmd)552 static inline pmd_t pmd_mkold(pmd_t pmd)
553 {
554 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
555 }
556 
pmd_mkclean(pmd_t pmd)557 static inline pmd_t pmd_mkclean(pmd_t pmd)
558 {
559 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
560 }
561 
pmd_mkdirty(pmd_t pmd)562 static inline pmd_t pmd_mkdirty(pmd_t pmd)
563 {
564 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
565 
566 	return pmd_mksaveddirty(pmd);
567 }
568 
pmd_mkwrite_shstk(pmd_t pmd)569 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
570 {
571 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
572 
573 	return pmd_set_flags(pmd, _PAGE_DIRTY);
574 }
575 
pmd_mkhuge(pmd_t pmd)576 static inline pmd_t pmd_mkhuge(pmd_t pmd)
577 {
578 	return pmd_set_flags(pmd, _PAGE_PSE);
579 }
580 
pmd_mkyoung(pmd_t pmd)581 static inline pmd_t pmd_mkyoung(pmd_t pmd)
582 {
583 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
584 }
585 
pmd_mkwrite_novma(pmd_t pmd)586 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
587 {
588 	return pmd_set_flags(pmd, _PAGE_RW);
589 }
590 
591 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
592 #define pmd_mkwrite pmd_mkwrite
593 
594 /* See comments above mksaveddirty_shift() */
pud_mksaveddirty(pud_t pud)595 static inline pud_t pud_mksaveddirty(pud_t pud)
596 {
597 	pudval_t v = native_pud_val(pud);
598 
599 	v = mksaveddirty_shift(v);
600 	return native_make_pud(v);
601 }
602 
603 /* See comments above mksaveddirty_shift() */
pud_clear_saveddirty(pud_t pud)604 static inline pud_t pud_clear_saveddirty(pud_t pud)
605 {
606 	pudval_t v = native_pud_val(pud);
607 
608 	v = clear_saveddirty_shift(v);
609 	return native_make_pud(v);
610 }
611 
pud_mkold(pud_t pud)612 static inline pud_t pud_mkold(pud_t pud)
613 {
614 	return pud_clear_flags(pud, _PAGE_ACCESSED);
615 }
616 
pud_mkclean(pud_t pud)617 static inline pud_t pud_mkclean(pud_t pud)
618 {
619 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
620 }
621 
pud_wrprotect(pud_t pud)622 static inline pud_t pud_wrprotect(pud_t pud)
623 {
624 	pud = pud_clear_flags(pud, _PAGE_RW);
625 
626 	/*
627 	 * Blindly clearing _PAGE_RW might accidentally create
628 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
629 	 * dirty value to the software bit.
630 	 */
631 	return pud_mksaveddirty(pud);
632 }
633 
pud_mkdirty(pud_t pud)634 static inline pud_t pud_mkdirty(pud_t pud)
635 {
636 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
637 
638 	return pud_mksaveddirty(pud);
639 }
640 
pud_mkhuge(pud_t pud)641 static inline pud_t pud_mkhuge(pud_t pud)
642 {
643 	return pud_set_flags(pud, _PAGE_PSE);
644 }
645 
pud_mkyoung(pud_t pud)646 static inline pud_t pud_mkyoung(pud_t pud)
647 {
648 	return pud_set_flags(pud, _PAGE_ACCESSED);
649 }
650 
pud_mkwrite(pud_t pud)651 static inline pud_t pud_mkwrite(pud_t pud)
652 {
653 	pud = pud_set_flags(pud, _PAGE_RW);
654 
655 	return pud_clear_saveddirty(pud);
656 }
657 
658 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)659 static inline int pte_soft_dirty(pte_t pte)
660 {
661 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
662 }
663 
pmd_soft_dirty(pmd_t pmd)664 static inline int pmd_soft_dirty(pmd_t pmd)
665 {
666 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
667 }
668 
pud_soft_dirty(pud_t pud)669 static inline int pud_soft_dirty(pud_t pud)
670 {
671 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
672 }
673 
pte_mksoft_dirty(pte_t pte)674 static inline pte_t pte_mksoft_dirty(pte_t pte)
675 {
676 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
677 }
678 
pmd_mksoft_dirty(pmd_t pmd)679 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
680 {
681 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
682 }
683 
pud_mksoft_dirty(pud_t pud)684 static inline pud_t pud_mksoft_dirty(pud_t pud)
685 {
686 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
687 }
688 
pte_clear_soft_dirty(pte_t pte)689 static inline pte_t pte_clear_soft_dirty(pte_t pte)
690 {
691 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
692 }
693 
pmd_clear_soft_dirty(pmd_t pmd)694 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
695 {
696 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
697 }
698 
pud_clear_soft_dirty(pud_t pud)699 static inline pud_t pud_clear_soft_dirty(pud_t pud)
700 {
701 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
702 }
703 
704 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
705 
706 /*
707  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
708  * can use those bits for other purposes, so leave them be.
709  */
massage_pgprot(pgprot_t pgprot)710 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
711 {
712 	pgprotval_t protval = pgprot_val(pgprot);
713 
714 	if (protval & _PAGE_PRESENT)
715 		protval &= __supported_pte_mask;
716 
717 	return protval;
718 }
719 
check_pgprot(pgprot_t pgprot)720 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
721 {
722 	pgprotval_t massaged_val = massage_pgprot(pgprot);
723 
724 	/* mmdebug.h can not be included here because of dependencies */
725 #ifdef CONFIG_DEBUG_VM
726 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
727 		  "attempted to set unsupported pgprot: %016llx "
728 		  "bits: %016llx supported: %016llx\n",
729 		  (u64)pgprot_val(pgprot),
730 		  (u64)pgprot_val(pgprot) ^ massaged_val,
731 		  (u64)__supported_pte_mask);
732 #endif
733 
734 	return massaged_val;
735 }
736 
pfn_pte(unsigned long page_nr,pgprot_t pgprot)737 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
738 {
739 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
740 	/* This bit combination is used to mark shadow stacks */
741 	WARN_ON_ONCE((pgprot_val(pgprot) & (_PAGE_DIRTY | _PAGE_RW)) ==
742 			_PAGE_DIRTY);
743 	pfn ^= protnone_mask(pgprot_val(pgprot));
744 	pfn &= PTE_PFN_MASK;
745 	return __pte(pfn | check_pgprot(pgprot));
746 }
747 
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)748 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
749 {
750 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
751 	pfn ^= protnone_mask(pgprot_val(pgprot));
752 	pfn &= PHYSICAL_PMD_PAGE_MASK;
753 	return __pmd(pfn | check_pgprot(pgprot));
754 }
755 
pfn_pud(unsigned long page_nr,pgprot_t pgprot)756 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
757 {
758 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
759 	pfn ^= protnone_mask(pgprot_val(pgprot));
760 	pfn &= PHYSICAL_PUD_PAGE_MASK;
761 	return __pud(pfn | check_pgprot(pgprot));
762 }
763 
pmd_mkinvalid(pmd_t pmd)764 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
765 {
766 	return pfn_pmd(pmd_pfn(pmd),
767 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
768 }
769 
pud_mkinvalid(pud_t pud)770 static inline pud_t pud_mkinvalid(pud_t pud)
771 {
772 	return pfn_pud(pud_pfn(pud),
773 		       __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
774 }
775 
776 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
777 
pte_modify(pte_t pte,pgprot_t newprot)778 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
779 {
780 	pteval_t val = pte_val(pte), oldval = val;
781 	pte_t pte_result;
782 
783 	/*
784 	 * Chop off the NX bit (if present), and add the NX portion of
785 	 * the newprot (if present):
786 	 */
787 	val &= _PAGE_CHG_MASK;
788 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
789 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
790 
791 	pte_result = __pte(val);
792 
793 	/*
794 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
795 	 *  1. Marking Write=0 PTEs Dirty=1
796 	 *  2. Marking Dirty=1 PTEs Write=0
797 	 *
798 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
799 	 * out any Dirty bit passed in newprot. Handle the second case by
800 	 * going through the mksaveddirty exercise. Only do this if the old
801 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
802 	 */
803 	if (oldval & _PAGE_RW)
804 		pte_result = pte_mksaveddirty(pte_result);
805 	else
806 		pte_result = pte_clear_saveddirty(pte_result);
807 
808 	return pte_result;
809 }
810 
pmd_modify(pmd_t pmd,pgprot_t newprot)811 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
812 {
813 	pmdval_t val = pmd_val(pmd), oldval = val;
814 	pmd_t pmd_result;
815 
816 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
817 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
818 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
819 
820 	pmd_result = __pmd(val);
821 
822 	/*
823 	 * Avoid creating shadow stack PMD by accident.  See comment in
824 	 * pte_modify().
825 	 */
826 	if (oldval & _PAGE_RW)
827 		pmd_result = pmd_mksaveddirty(pmd_result);
828 	else
829 		pmd_result = pmd_clear_saveddirty(pmd_result);
830 
831 	return pmd_result;
832 }
833 
pud_modify(pud_t pud,pgprot_t newprot)834 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
835 {
836 	pudval_t val = pud_val(pud), oldval = val;
837 	pud_t pud_result;
838 
839 	val &= _HPAGE_CHG_MASK;
840 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
841 	val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK);
842 
843 	pud_result = __pud(val);
844 
845 	/*
846 	 * Avoid creating shadow stack PUD by accident.  See comment in
847 	 * pte_modify().
848 	 */
849 	if (oldval & _PAGE_RW)
850 		pud_result = pud_mksaveddirty(pud_result);
851 	else
852 		pud_result = pud_clear_saveddirty(pud_result);
853 
854 	return pud_result;
855 }
856 
857 /*
858  * mprotect needs to preserve PAT and encryption bits when updating
859  * vm_page_prot
860  */
861 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)862 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
863 {
864 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
865 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
866 	return __pgprot(preservebits | addbits);
867 }
868 
869 #define pte_pgprot(x) __pgprot(pte_flags(x))
870 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
871 #define pud_pgprot(x) __pgprot(pud_flags(x))
872 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
873 
874 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
875 
is_new_memtype_allowed(u64 paddr,unsigned long size,enum page_cache_mode pcm,enum page_cache_mode new_pcm)876 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
877 					 enum page_cache_mode pcm,
878 					 enum page_cache_mode new_pcm)
879 {
880 	/*
881 	 * PAT type is always WB for untracked ranges, so no need to check.
882 	 */
883 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
884 		return 1;
885 
886 	/*
887 	 * Certain new memtypes are not allowed with certain
888 	 * requested memtype:
889 	 * - request is uncached, return cannot be write-back
890 	 * - request is write-combine, return cannot be write-back
891 	 * - request is write-through, return cannot be write-back
892 	 * - request is write-through, return cannot be write-combine
893 	 */
894 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
895 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
896 	    (pcm == _PAGE_CACHE_MODE_WC &&
897 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
898 	    (pcm == _PAGE_CACHE_MODE_WT &&
899 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
900 	    (pcm == _PAGE_CACHE_MODE_WT &&
901 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
902 		return 0;
903 	}
904 
905 	return 1;
906 }
907 
908 pmd_t *populate_extra_pmd(unsigned long vaddr);
909 pte_t *populate_extra_pte(unsigned long vaddr);
910 
911 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
912 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
913 
914 /*
915  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
916  * Populates the user and returns the resulting PGD that must be set in
917  * the kernel copy of the page tables.
918  */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)919 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
920 {
921 	if (!static_cpu_has(X86_FEATURE_PTI))
922 		return pgd;
923 	return __pti_set_user_pgtbl(pgdp, pgd);
924 }
925 #else   /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)926 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
927 {
928 	return pgd;
929 }
930 #endif  /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
931 
932 #endif	/* __ASSEMBLER__ */
933 
934 
935 #ifdef CONFIG_X86_32
936 # include <asm/pgtable_32.h>
937 #else
938 # include <asm/pgtable_64.h>
939 #endif
940 
941 #ifndef __ASSEMBLER__
942 #include <linux/mm_types.h>
943 #include <linux/mmdebug.h>
944 #include <linux/log2.h>
945 #include <asm/fixmap.h>
946 
pte_none(pte_t pte)947 static inline int pte_none(pte_t pte)
948 {
949 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
950 }
951 
952 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)953 static inline int pte_same(pte_t a, pte_t b)
954 {
955 	return a.pte == b.pte;
956 }
957 
pte_advance_pfn(pte_t pte,unsigned long nr)958 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
959 {
960 	if (__pte_needs_invert(pte_val(pte)))
961 		return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
962 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
963 }
964 #define pte_advance_pfn	pte_advance_pfn
965 
pte_present(pte_t a)966 static inline int pte_present(pte_t a)
967 {
968 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
969 }
970 
971 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)972 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
973 {
974 	if (pte_flags(a) & _PAGE_PRESENT)
975 		return true;
976 
977 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
978 			atomic_read(&mm->tlb_flush_pending))
979 		return true;
980 
981 	return false;
982 }
983 
pmd_present(pmd_t pmd)984 static inline int pmd_present(pmd_t pmd)
985 {
986 	/*
987 	 * Checking for _PAGE_PSE is needed too because
988 	 * split_huge_page will temporarily clear the present bit (but
989 	 * the _PAGE_PSE flag will remain set at all times while the
990 	 * _PAGE_PRESENT bit is clear).
991 	 */
992 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
993 }
994 
995 #ifdef CONFIG_NUMA_BALANCING
996 /*
997  * These work without NUMA balancing but the kernel does not care. See the
998  * comment in include/linux/pgtable.h
999  */
pte_protnone(pte_t pte)1000 static inline int pte_protnone(pte_t pte)
1001 {
1002 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1003 		== _PAGE_PROTNONE;
1004 }
1005 
pmd_protnone(pmd_t pmd)1006 static inline int pmd_protnone(pmd_t pmd)
1007 {
1008 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1009 		== _PAGE_PROTNONE;
1010 }
1011 #endif /* CONFIG_NUMA_BALANCING */
1012 
pmd_none(pmd_t pmd)1013 static inline int pmd_none(pmd_t pmd)
1014 {
1015 	/* Only check low word on 32-bit platforms, since it might be
1016 	   out of sync with upper half. */
1017 	unsigned long val = native_pmd_val(pmd);
1018 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1019 }
1020 
pmd_page_vaddr(pmd_t pmd)1021 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1022 {
1023 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1024 }
1025 
1026 /*
1027  * Currently stuck as a macro due to indirect forward reference to
1028  * linux/mmzone.h's __section_mem_map_addr() definition:
1029  */
1030 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1031 
pmd_bad(pmd_t pmd)1032 static inline int pmd_bad(pmd_t pmd)
1033 {
1034 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1035 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1036 }
1037 
pages_to_mb(unsigned long npg)1038 static inline unsigned long pages_to_mb(unsigned long npg)
1039 {
1040 	return npg >> (20 - PAGE_SHIFT);
1041 }
1042 
1043 #if CONFIG_PGTABLE_LEVELS > 2
pud_none(pud_t pud)1044 static inline int pud_none(pud_t pud)
1045 {
1046 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1047 }
1048 
pud_present(pud_t pud)1049 static inline int pud_present(pud_t pud)
1050 {
1051 	return pud_flags(pud) & _PAGE_PRESENT;
1052 }
1053 
pud_pgtable(pud_t pud)1054 static inline pmd_t *pud_pgtable(pud_t pud)
1055 {
1056 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1057 }
1058 
1059 /*
1060  * Currently stuck as a macro due to indirect forward reference to
1061  * linux/mmzone.h's __section_mem_map_addr() definition:
1062  */
1063 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1064 
1065 #define pud_leaf pud_leaf
pud_leaf(pud_t pud)1066 static inline bool pud_leaf(pud_t pud)
1067 {
1068 	return pud_val(pud) & _PAGE_PSE;
1069 }
1070 
pud_bad(pud_t pud)1071 static inline int pud_bad(pud_t pud)
1072 {
1073 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1074 }
1075 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1076 
1077 #if CONFIG_PGTABLE_LEVELS > 3
p4d_none(p4d_t p4d)1078 static inline int p4d_none(p4d_t p4d)
1079 {
1080 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1081 }
1082 
p4d_present(p4d_t p4d)1083 static inline int p4d_present(p4d_t p4d)
1084 {
1085 	return p4d_flags(p4d) & _PAGE_PRESENT;
1086 }
1087 
p4d_pgtable(p4d_t p4d)1088 static inline pud_t *p4d_pgtable(p4d_t p4d)
1089 {
1090 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1091 }
1092 
1093 /*
1094  * Currently stuck as a macro due to indirect forward reference to
1095  * linux/mmzone.h's __section_mem_map_addr() definition:
1096  */
1097 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1098 
p4d_bad(p4d_t p4d)1099 static inline int p4d_bad(p4d_t p4d)
1100 {
1101 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1102 
1103 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1104 		ignore_flags |= _PAGE_NX;
1105 
1106 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1107 }
1108 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1109 
p4d_index(unsigned long address)1110 static inline unsigned long p4d_index(unsigned long address)
1111 {
1112 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1113 }
1114 
1115 #if CONFIG_PGTABLE_LEVELS > 4
pgd_present(pgd_t pgd)1116 static inline int pgd_present(pgd_t pgd)
1117 {
1118 	if (!pgtable_l5_enabled())
1119 		return 1;
1120 	return pgd_flags(pgd) & _PAGE_PRESENT;
1121 }
1122 
pgd_page_vaddr(pgd_t pgd)1123 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1124 {
1125 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1126 }
1127 
1128 /*
1129  * Currently stuck as a macro due to indirect forward reference to
1130  * linux/mmzone.h's __section_mem_map_addr() definition:
1131  */
1132 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1133 
1134 /* to find an entry in a page-table-directory. */
p4d_offset(pgd_t * pgd,unsigned long address)1135 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1136 {
1137 	if (!pgtable_l5_enabled())
1138 		return (p4d_t *)pgd;
1139 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1140 }
1141 
pgd_bad(pgd_t pgd)1142 static inline int pgd_bad(pgd_t pgd)
1143 {
1144 	unsigned long ignore_flags = _PAGE_USER;
1145 
1146 	if (!pgtable_l5_enabled())
1147 		return 0;
1148 
1149 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1150 		ignore_flags |= _PAGE_NX;
1151 
1152 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1153 }
1154 
pgd_none(pgd_t pgd)1155 static inline int pgd_none(pgd_t pgd)
1156 {
1157 	if (!pgtable_l5_enabled())
1158 		return 0;
1159 	/*
1160 	 * There is no need to do a workaround for the KNL stray
1161 	 * A/D bit erratum here.  PGDs only point to page tables
1162 	 * except on 32-bit non-PAE which is not supported on
1163 	 * KNL.
1164 	 */
1165 	return !native_pgd_val(pgd);
1166 }
1167 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1168 
1169 #endif	/* __ASSEMBLER__ */
1170 
1171 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1172 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1173 
1174 #ifndef __ASSEMBLER__
1175 
1176 extern int direct_gbpages;
1177 void init_mem_mapping(void);
1178 void early_alloc_pgt_buf(void);
1179 void __init poking_init(void);
1180 unsigned long init_memory_mapping(unsigned long start,
1181 				  unsigned long end, pgprot_t prot);
1182 
1183 #ifdef CONFIG_X86_64
1184 extern pgd_t trampoline_pgd_entry;
1185 #endif
1186 
1187 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)1188 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1189 {
1190 	pte_t res = *ptep;
1191 
1192 	/* Pure native function needs no input for mm, addr */
1193 	native_pte_clear(NULL, 0, ptep);
1194 	return res;
1195 }
1196 
native_local_pmdp_get_and_clear(pmd_t * pmdp)1197 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1198 {
1199 	pmd_t res = *pmdp;
1200 
1201 	native_pmd_clear(pmdp);
1202 	return res;
1203 }
1204 
native_local_pudp_get_and_clear(pud_t * pudp)1205 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1206 {
1207 	pud_t res = *pudp;
1208 
1209 	native_pud_clear(pudp);
1210 	return res;
1211 }
1212 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)1213 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1214 			      pmd_t *pmdp, pmd_t pmd)
1215 {
1216 	page_table_check_pmd_set(mm, pmdp, pmd);
1217 	set_pmd(pmdp, pmd);
1218 }
1219 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)1220 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1221 			      pud_t *pudp, pud_t pud)
1222 {
1223 	page_table_check_pud_set(mm, pudp, pud);
1224 	native_set_pud(pudp, pud);
1225 }
1226 
1227 /*
1228  * We only update the dirty/accessed state if we set
1229  * the dirty bit by hand in the kernel, since the hardware
1230  * will do the accessed bit for us, and we don't want to
1231  * race with other CPU's that might be updating the dirty
1232  * bit at the same time.
1233  */
1234 struct vm_area_struct;
1235 
1236 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1237 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1238 				 unsigned long address, pte_t *ptep,
1239 				 pte_t entry, int dirty);
1240 
1241 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1242 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1243 				     unsigned long addr, pte_t *ptep);
1244 
1245 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1246 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1247 				  unsigned long address, pte_t *ptep);
1248 
1249 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1250 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1251 				       pte_t *ptep)
1252 {
1253 	pte_t pte = native_ptep_get_and_clear(ptep);
1254 	page_table_check_pte_clear(mm, pte);
1255 	return pte;
1256 }
1257 
1258 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1259 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1260 					    unsigned long addr, pte_t *ptep,
1261 					    int full)
1262 {
1263 	pte_t pte;
1264 	if (full) {
1265 		/*
1266 		 * Full address destruction in progress; paravirt does not
1267 		 * care about updates and native needs no locking
1268 		 */
1269 		pte = native_local_ptep_get_and_clear(ptep);
1270 		page_table_check_pte_clear(mm, pte);
1271 	} else {
1272 		pte = ptep_get_and_clear(mm, addr, ptep);
1273 	}
1274 	return pte;
1275 }
1276 
1277 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1278 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1279 				      unsigned long addr, pte_t *ptep)
1280 {
1281 	/*
1282 	 * Avoid accidentally creating shadow stack PTEs
1283 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1284 	 * the hardware setting Dirty=1.
1285 	 */
1286 	pte_t old_pte, new_pte;
1287 
1288 	old_pte = READ_ONCE(*ptep);
1289 	do {
1290 		new_pte = pte_wrprotect(old_pte);
1291 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1292 }
1293 
1294 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1295 
1296 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1297 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1298 				 unsigned long address, pmd_t *pmdp,
1299 				 pmd_t entry, int dirty);
1300 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1301 				 unsigned long address, pud_t *pudp,
1302 				 pud_t entry, int dirty);
1303 
1304 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1305 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1306 				     unsigned long addr, pmd_t *pmdp);
1307 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1308 				     unsigned long addr, pud_t *pudp);
1309 
1310 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1311 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1312 				  unsigned long address, pmd_t *pmdp);
1313 
1314 
1315 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1316 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1317 				       pmd_t *pmdp)
1318 {
1319 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1320 
1321 	page_table_check_pmd_clear(mm, pmd);
1322 
1323 	return pmd;
1324 }
1325 
1326 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1327 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1328 					unsigned long addr, pud_t *pudp)
1329 {
1330 	pud_t pud = native_pudp_get_and_clear(pudp);
1331 
1332 	page_table_check_pud_clear(mm, pud);
1333 
1334 	return pud;
1335 }
1336 
1337 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1338 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1339 				      unsigned long addr, pmd_t *pmdp)
1340 {
1341 	/*
1342 	 * Avoid accidentally creating shadow stack PTEs
1343 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1344 	 * the hardware setting Dirty=1.
1345 	 */
1346 	pmd_t old_pmd, new_pmd;
1347 
1348 	old_pmd = READ_ONCE(*pmdp);
1349 	do {
1350 		new_pmd = pmd_wrprotect(old_pmd);
1351 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1352 }
1353 
1354 #ifndef pmdp_establish
1355 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1356 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1357 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1358 {
1359 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1360 	if (IS_ENABLED(CONFIG_SMP)) {
1361 		return xchg(pmdp, pmd);
1362 	} else {
1363 		pmd_t old = *pmdp;
1364 		WRITE_ONCE(*pmdp, pmd);
1365 		return old;
1366 	}
1367 }
1368 #endif
1369 
1370 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_establish(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t pud)1371 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1372 		unsigned long address, pud_t *pudp, pud_t pud)
1373 {
1374 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
1375 	if (IS_ENABLED(CONFIG_SMP)) {
1376 		return xchg(pudp, pud);
1377 	} else {
1378 		pud_t old = *pudp;
1379 		WRITE_ONCE(*pudp, pud);
1380 		return old;
1381 	}
1382 }
1383 #endif
1384 
1385 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1386 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1387 				unsigned long address, pmd_t *pmdp);
1388 
1389 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1390 		      pud_t *pudp);
1391 
1392 /*
1393  * Page table pages are page-aligned.  The lower half of the top
1394  * level is used for userspace and the top half for the kernel.
1395  *
1396  * Returns true for parts of the PGD that map userspace and
1397  * false for the parts that map the kernel.
1398  */
pgdp_maps_userspace(void * __ptr)1399 static inline bool pgdp_maps_userspace(void *__ptr)
1400 {
1401 	unsigned long ptr = (unsigned long)__ptr;
1402 
1403 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1404 }
1405 
1406 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1407 /*
1408  * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1409  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1410  * the user one is in the last 4k.  To switch between them, you
1411  * just need to flip the 12th bit in their addresses.
1412  */
1413 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1414 
1415 /*
1416  * This generates better code than the inline assembly in
1417  * __set_bit().
1418  */
ptr_set_bit(void * ptr,int bit)1419 static inline void *ptr_set_bit(void *ptr, int bit)
1420 {
1421 	unsigned long __ptr = (unsigned long)ptr;
1422 
1423 	__ptr |= BIT(bit);
1424 	return (void *)__ptr;
1425 }
ptr_clear_bit(void * ptr,int bit)1426 static inline void *ptr_clear_bit(void *ptr, int bit)
1427 {
1428 	unsigned long __ptr = (unsigned long)ptr;
1429 
1430 	__ptr &= ~BIT(bit);
1431 	return (void *)__ptr;
1432 }
1433 
kernel_to_user_pgdp(pgd_t * pgdp)1434 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1435 {
1436 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1437 }
1438 
user_to_kernel_pgdp(pgd_t * pgdp)1439 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1440 {
1441 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1442 }
1443 
kernel_to_user_p4dp(p4d_t * p4dp)1444 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1445 {
1446 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1447 }
1448 
user_to_kernel_p4dp(p4d_t * p4dp)1449 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1450 {
1451 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1452 }
1453 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1454 
1455 /*
1456  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1457  *
1458  *  dst - pointer to pgd range anywhere on a pgd page
1459  *  src - ""
1460  *  count - the number of pgds to copy.
1461  *
1462  * dst and src can be on the same page, but the range must not overlap,
1463  * and must not cross a page boundary.
1464  */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)1465 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1466 {
1467 	memcpy(dst, src, count * sizeof(pgd_t));
1468 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1469 	if (!static_cpu_has(X86_FEATURE_PTI))
1470 		return;
1471 	/* Clone the user space pgd as well */
1472 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1473 	       count * sizeof(pgd_t));
1474 #endif
1475 }
1476 
1477 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)1478 static inline int page_level_shift(enum pg_level level)
1479 {
1480 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1481 }
page_level_size(enum pg_level level)1482 static inline unsigned long page_level_size(enum pg_level level)
1483 {
1484 	return 1UL << page_level_shift(level);
1485 }
page_level_mask(enum pg_level level)1486 static inline unsigned long page_level_mask(enum pg_level level)
1487 {
1488 	return ~(page_level_size(level) - 1);
1489 }
1490 
1491 /*
1492  * The x86 doesn't have any external MMU info: the kernel page
1493  * tables contain all the necessary information.
1494  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1495 static inline void update_mmu_cache(struct vm_area_struct *vma,
1496 		unsigned long addr, pte_t *ptep)
1497 {
1498 }
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1499 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1500 		struct vm_area_struct *vma, unsigned long addr,
1501 		pte_t *ptep, unsigned int nr)
1502 {
1503 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1504 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1505 		unsigned long addr, pmd_t *pmd)
1506 {
1507 }
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1508 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1509 		unsigned long addr, pud_t *pud)
1510 {
1511 }
pte_swp_mkexclusive(pte_t pte)1512 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1513 {
1514 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1515 }
1516 
pte_swp_exclusive(pte_t pte)1517 static inline bool pte_swp_exclusive(pte_t pte)
1518 {
1519 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1520 }
1521 
pte_swp_clear_exclusive(pte_t pte)1522 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1523 {
1524 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1525 }
1526 
1527 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)1528 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1529 {
1530 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1531 }
1532 
pte_swp_soft_dirty(pte_t pte)1533 static inline int pte_swp_soft_dirty(pte_t pte)
1534 {
1535 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1536 }
1537 
pte_swp_clear_soft_dirty(pte_t pte)1538 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1539 {
1540 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1541 }
1542 
1543 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1544 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1545 {
1546 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1547 }
1548 
pmd_swp_soft_dirty(pmd_t pmd)1549 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1550 {
1551 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1552 }
1553 
pmd_swp_clear_soft_dirty(pmd_t pmd)1554 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1555 {
1556 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1557 }
1558 #endif
1559 #endif
1560 
1561 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)1562 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1563 {
1564 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1565 }
1566 
pte_swp_uffd_wp(pte_t pte)1567 static inline int pte_swp_uffd_wp(pte_t pte)
1568 {
1569 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1570 }
1571 
pte_swp_clear_uffd_wp(pte_t pte)1572 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1573 {
1574 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1575 }
1576 
pmd_swp_mkuffd_wp(pmd_t pmd)1577 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1578 {
1579 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1580 }
1581 
pmd_swp_uffd_wp(pmd_t pmd)1582 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1583 {
1584 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1585 }
1586 
pmd_swp_clear_uffd_wp(pmd_t pmd)1587 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1588 {
1589 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1590 }
1591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1592 
pte_flags_pkey(unsigned long pte_flags)1593 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1594 {
1595 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1596 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1597 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1598 #else
1599 	return 0;
1600 #endif
1601 }
1602 
__pkru_allows_pkey(u16 pkey,bool write)1603 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1604 {
1605 	u32 pkru = read_pkru();
1606 
1607 	if (!__pkru_allows_read(pkru, pkey))
1608 		return false;
1609 	if (write && !__pkru_allows_write(pkru, pkey))
1610 		return false;
1611 
1612 	return true;
1613 }
1614 
1615 /*
1616  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1617  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1618  * same value on all 3 types.
1619  */
__pte_access_permitted(unsigned long pteval,bool write)1620 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1621 {
1622 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1623 
1624 	/*
1625 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1626 	 * shouldn't generally allow access to, but since they
1627 	 * are already Write=0, the below logic covers both cases.
1628 	 */
1629 	if (write)
1630 		need_pte_bits |= _PAGE_RW;
1631 
1632 	if ((pteval & need_pte_bits) != need_pte_bits)
1633 		return 0;
1634 
1635 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1636 }
1637 
1638 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)1639 static inline bool pte_access_permitted(pte_t pte, bool write)
1640 {
1641 	return __pte_access_permitted(pte_val(pte), write);
1642 }
1643 
1644 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1645 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1646 {
1647 	return __pte_access_permitted(pmd_val(pmd), write);
1648 }
1649 
1650 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)1651 static inline bool pud_access_permitted(pud_t pud, bool write)
1652 {
1653 	return __pte_access_permitted(pud_val(pud), write);
1654 }
1655 
1656 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1657 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1658 
arch_has_pfn_modify_check(void)1659 static inline bool arch_has_pfn_modify_check(void)
1660 {
1661 	return boot_cpu_has_bug(X86_BUG_L1TF);
1662 }
1663 
1664 #define arch_check_zapped_pte arch_check_zapped_pte
1665 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1666 
1667 #define arch_check_zapped_pmd arch_check_zapped_pmd
1668 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1669 
1670 #define arch_check_zapped_pud arch_check_zapped_pud
1671 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud);
1672 
1673 #ifdef CONFIG_XEN_PV
1674 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
arch_has_hw_nonleaf_pmd_young(void)1675 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1676 {
1677 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1678 }
1679 #endif
1680 
1681 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1682 static inline bool pte_user_accessible_page(pte_t pte)
1683 {
1684 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1685 }
1686 
pmd_user_accessible_page(pmd_t pmd)1687 static inline bool pmd_user_accessible_page(pmd_t pmd)
1688 {
1689 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1690 }
1691 
pud_user_accessible_page(pud_t pud)1692 static inline bool pud_user_accessible_page(pud_t pud)
1693 {
1694 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1695 }
1696 #endif
1697 
1698 #ifdef CONFIG_X86_SGX
1699 int arch_memory_failure(unsigned long pfn, int flags);
1700 #define arch_memory_failure arch_memory_failure
1701 
1702 bool arch_is_platform_page(u64 paddr);
1703 #define arch_is_platform_page arch_is_platform_page
1704 #endif
1705 
1706 /*
1707  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1708  * TLB flush will be required as a result of the "set". For example, use
1709  * in scenarios where it is known ahead of time that the routine is
1710  * setting non-present entries, or re-setting an existing entry to the
1711  * same value. Otherwise, use the typical "set" helpers and flush the
1712  * TLB.
1713  */
1714 #define set_pte_safe(ptep, pte) \
1715 ({ \
1716 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1717 	set_pte(ptep, pte); \
1718 })
1719 
1720 #define set_pmd_safe(pmdp, pmd) \
1721 ({ \
1722 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1723 	set_pmd(pmdp, pmd); \
1724 })
1725 
1726 #define set_pud_safe(pudp, pud) \
1727 ({ \
1728 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1729 	set_pud(pudp, pud); \
1730 })
1731 
1732 #define set_p4d_safe(p4dp, p4d) \
1733 ({ \
1734 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1735 	set_p4d(p4dp, p4d); \
1736 })
1737 
1738 #define set_pgd_safe(pgdp, pgd) \
1739 ({ \
1740 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1741 	set_pgd(pgdp, pgd); \
1742 })
1743 #endif	/* __ASSEMBLER__ */
1744 
1745 #endif /* _ASM_X86_PGTABLE_H */
1746