1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 #ifndef __ASSEMBLER__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37
38 /*
39 * Macros to add or remove encryption attribute
40 */
41 #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot)))
43
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user() do { } while (0)
48 #endif
49
50 /*
51 * ZERO_PAGE is a global shared page that is always zero: used
52 * for zero-mapped memory areas etc..
53 */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 __visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62
63 extern pmdval_t early_pmd_flags;
64
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
69
70 #define set_pte_atomic(ptep, pte) \
71 native_set_pte_atomic(ptep, pte)
72
73 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
74
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
82 #endif
83
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d) native_p4d_clear(p4d)
86 #endif
87
88 #ifndef set_pud
89 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
90 #endif
91
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud) native_pud_clear(pud)
94 #endif
95
96 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd) native_pmd_clear(pmd)
98
99 #define pgd_val(x) native_pgd_val(x)
100 #define __pgd(x) native_make_pgd(x)
101
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x) native_p4d_val(x)
104 #define __p4d(x) native_make_p4d(x)
105 #endif
106
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x) native_pud_val(x)
109 #define __pud(x) native_make_pud(x)
110 #endif
111
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x) native_pmd_val(x)
114 #define __pmd(x) native_make_pmd(x)
115 #endif
116
117 #define pte_val(x) native_pte_val(x)
118 #define __pte(x) native_make_pte(x)
119
120 #define arch_end_context_switch(prev) do {} while(0)
121 #endif /* CONFIG_PARAVIRT_XXL */
122
pmd_set_flags(pmd_t pmd,pmdval_t set)123 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
124 {
125 pmdval_t v = native_pmd_val(pmd);
126
127 return native_make_pmd(v | set);
128 }
129
pmd_clear_flags(pmd_t pmd,pmdval_t clear)130 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
131 {
132 pmdval_t v = native_pmd_val(pmd);
133
134 return native_make_pmd(v & ~clear);
135 }
136
pud_set_flags(pud_t pud,pudval_t set)137 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
138 {
139 pudval_t v = native_pud_val(pud);
140
141 return native_make_pud(v | set);
142 }
143
pud_clear_flags(pud_t pud,pudval_t clear)144 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
145 {
146 pudval_t v = native_pud_val(pud);
147
148 return native_make_pud(v & ~clear);
149 }
150
151 /*
152 * The following only work if pte_present() is true.
153 * Undefined behaviour if not..
154 */
pte_dirty(pte_t pte)155 static inline bool pte_dirty(pte_t pte)
156 {
157 return pte_flags(pte) & _PAGE_DIRTY_BITS;
158 }
159
pte_shstk(pte_t pte)160 static inline bool pte_shstk(pte_t pte)
161 {
162 return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
163 (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
164 }
165
pte_young(pte_t pte)166 static inline int pte_young(pte_t pte)
167 {
168 return pte_flags(pte) & _PAGE_ACCESSED;
169 }
170
pte_decrypted(pte_t pte)171 static inline bool pte_decrypted(pte_t pte)
172 {
173 return cc_mkdec(pte_val(pte)) == pte_val(pte);
174 }
175
176 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)177 static inline bool pmd_dirty(pmd_t pmd)
178 {
179 return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
180 }
181
pmd_shstk(pmd_t pmd)182 static inline bool pmd_shstk(pmd_t pmd)
183 {
184 return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
185 (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
186 (_PAGE_DIRTY | _PAGE_PSE);
187 }
188
189 #define pmd_young pmd_young
pmd_young(pmd_t pmd)190 static inline int pmd_young(pmd_t pmd)
191 {
192 return pmd_flags(pmd) & _PAGE_ACCESSED;
193 }
194
pud_dirty(pud_t pud)195 static inline bool pud_dirty(pud_t pud)
196 {
197 return pud_flags(pud) & _PAGE_DIRTY_BITS;
198 }
199
pud_young(pud_t pud)200 static inline int pud_young(pud_t pud)
201 {
202 return pud_flags(pud) & _PAGE_ACCESSED;
203 }
204
pud_shstk(pud_t pud)205 static inline bool pud_shstk(pud_t pud)
206 {
207 return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
208 (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
209 (_PAGE_DIRTY | _PAGE_PSE);
210 }
211
pte_write(pte_t pte)212 static inline int pte_write(pte_t pte)
213 {
214 /*
215 * Shadow stack pages are logically writable, but do not have
216 * _PAGE_RW. Check for them separately from _PAGE_RW itself.
217 */
218 return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
219 }
220
221 #define pmd_write pmd_write
pmd_write(pmd_t pmd)222 static inline int pmd_write(pmd_t pmd)
223 {
224 /*
225 * Shadow stack pages are logically writable, but do not have
226 * _PAGE_RW. Check for them separately from _PAGE_RW itself.
227 */
228 return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
229 }
230
231 #define pud_write pud_write
pud_write(pud_t pud)232 static inline int pud_write(pud_t pud)
233 {
234 return pud_flags(pud) & _PAGE_RW;
235 }
236
pte_huge(pte_t pte)237 static inline int pte_huge(pte_t pte)
238 {
239 return pte_flags(pte) & _PAGE_PSE;
240 }
241
pte_global(pte_t pte)242 static inline int pte_global(pte_t pte)
243 {
244 return pte_flags(pte) & _PAGE_GLOBAL;
245 }
246
pte_exec(pte_t pte)247 static inline int pte_exec(pte_t pte)
248 {
249 return !(pte_flags(pte) & _PAGE_NX);
250 }
251
pte_special(pte_t pte)252 static inline int pte_special(pte_t pte)
253 {
254 return pte_flags(pte) & _PAGE_SPECIAL;
255 }
256
257 /* Entries that were set to PROT_NONE are inverted */
258
259 static inline u64 protnone_mask(u64 val);
260
261 #define PFN_PTE_SHIFT PAGE_SHIFT
262
pte_pfn(pte_t pte)263 static inline unsigned long pte_pfn(pte_t pte)
264 {
265 phys_addr_t pfn = pte_val(pte);
266 pfn ^= protnone_mask(pfn);
267 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
268 }
269
pmd_pfn(pmd_t pmd)270 static inline unsigned long pmd_pfn(pmd_t pmd)
271 {
272 phys_addr_t pfn = pmd_val(pmd);
273 pfn ^= protnone_mask(pfn);
274 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
275 }
276
277 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)278 static inline unsigned long pud_pfn(pud_t pud)
279 {
280 phys_addr_t pfn = pud_val(pud);
281 pfn ^= protnone_mask(pfn);
282 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
283 }
284
p4d_pfn(p4d_t p4d)285 static inline unsigned long p4d_pfn(p4d_t p4d)
286 {
287 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
288 }
289
pgd_pfn(pgd_t pgd)290 static inline unsigned long pgd_pfn(pgd_t pgd)
291 {
292 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
293 }
294
295 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
296
297 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pte)298 static inline bool pmd_leaf(pmd_t pte)
299 {
300 return pmd_flags(pte) & _PAGE_PSE;
301 }
302
303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)304 static inline int pmd_trans_huge(pmd_t pmd)
305 {
306 return (pmd_val(pmd) & _PAGE_PSE) == _PAGE_PSE;
307 }
308
309 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_trans_huge(pud_t pud)310 static inline int pud_trans_huge(pud_t pud)
311 {
312 return (pud_val(pud) & _PAGE_PSE) == _PAGE_PSE;
313 }
314 #endif
315
316 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)317 static inline int has_transparent_hugepage(void)
318 {
319 return boot_cpu_has(X86_FEATURE_PSE);
320 }
321
322 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)323 static inline bool pmd_special(pmd_t pmd)
324 {
325 return pmd_flags(pmd) & _PAGE_SPECIAL;
326 }
327
pmd_mkspecial(pmd_t pmd)328 static inline pmd_t pmd_mkspecial(pmd_t pmd)
329 {
330 return pmd_set_flags(pmd, _PAGE_SPECIAL);
331 }
332 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
333
334 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)335 static inline bool pud_special(pud_t pud)
336 {
337 return pud_flags(pud) & _PAGE_SPECIAL;
338 }
339
pud_mkspecial(pud_t pud)340 static inline pud_t pud_mkspecial(pud_t pud)
341 {
342 return pud_set_flags(pud, _PAGE_SPECIAL);
343 }
344 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
346
pte_set_flags(pte_t pte,pteval_t set)347 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
348 {
349 pteval_t v = native_pte_val(pte);
350
351 return native_make_pte(v | set);
352 }
353
pte_clear_flags(pte_t pte,pteval_t clear)354 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
355 {
356 pteval_t v = native_pte_val(pte);
357
358 return native_make_pte(v & ~clear);
359 }
360
361 /*
362 * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
363 * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
364 * when creating dirty, write-protected memory, a software bit is used:
365 * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
366 * Dirty bit to SavedDirty, and vice-vesra.
367 *
368 * This shifting is only done if needed. In the case of shifting
369 * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
370 * shifting SavedDirty->Dirty, the condition is Write=1.
371 */
mksaveddirty_shift(pgprotval_t v)372 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
373 {
374 pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
375
376 v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
377 v &= ~(cond << _PAGE_BIT_DIRTY);
378
379 return v;
380 }
381
clear_saveddirty_shift(pgprotval_t v)382 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
383 {
384 pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
385
386 v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
387 v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
388
389 return v;
390 }
391
pte_mksaveddirty(pte_t pte)392 static inline pte_t pte_mksaveddirty(pte_t pte)
393 {
394 pteval_t v = native_pte_val(pte);
395
396 v = mksaveddirty_shift(v);
397 return native_make_pte(v);
398 }
399
pte_clear_saveddirty(pte_t pte)400 static inline pte_t pte_clear_saveddirty(pte_t pte)
401 {
402 pteval_t v = native_pte_val(pte);
403
404 v = clear_saveddirty_shift(v);
405 return native_make_pte(v);
406 }
407
pte_wrprotect(pte_t pte)408 static inline pte_t pte_wrprotect(pte_t pte)
409 {
410 pte = pte_clear_flags(pte, _PAGE_RW);
411
412 /*
413 * Blindly clearing _PAGE_RW might accidentally create
414 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
415 * dirty value to the software bit, if present.
416 */
417 return pte_mksaveddirty(pte);
418 }
419
420 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)421 static inline int pte_uffd_wp(pte_t pte)
422 {
423 return pte_flags(pte) & _PAGE_UFFD_WP;
424 }
425
pte_mkuffd_wp(pte_t pte)426 static inline pte_t pte_mkuffd_wp(pte_t pte)
427 {
428 return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
429 }
430
pte_clear_uffd_wp(pte_t pte)431 static inline pte_t pte_clear_uffd_wp(pte_t pte)
432 {
433 return pte_clear_flags(pte, _PAGE_UFFD_WP);
434 }
435 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
436
pte_mkclean(pte_t pte)437 static inline pte_t pte_mkclean(pte_t pte)
438 {
439 return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
440 }
441
pte_mkold(pte_t pte)442 static inline pte_t pte_mkold(pte_t pte)
443 {
444 return pte_clear_flags(pte, _PAGE_ACCESSED);
445 }
446
pte_mkexec(pte_t pte)447 static inline pte_t pte_mkexec(pte_t pte)
448 {
449 return pte_clear_flags(pte, _PAGE_NX);
450 }
451
pte_mkdirty(pte_t pte)452 static inline pte_t pte_mkdirty(pte_t pte)
453 {
454 pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
455
456 return pte_mksaveddirty(pte);
457 }
458
pte_mkwrite_shstk(pte_t pte)459 static inline pte_t pte_mkwrite_shstk(pte_t pte)
460 {
461 pte = pte_clear_flags(pte, _PAGE_RW);
462
463 return pte_set_flags(pte, _PAGE_DIRTY);
464 }
465
pte_mkyoung(pte_t pte)466 static inline pte_t pte_mkyoung(pte_t pte)
467 {
468 return pte_set_flags(pte, _PAGE_ACCESSED);
469 }
470
pte_mkwrite_novma(pte_t pte)471 static inline pte_t pte_mkwrite_novma(pte_t pte)
472 {
473 return pte_set_flags(pte, _PAGE_RW);
474 }
475
476 struct vm_area_struct;
477 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
478 #define pte_mkwrite pte_mkwrite
479
pte_mkhuge(pte_t pte)480 static inline pte_t pte_mkhuge(pte_t pte)
481 {
482 return pte_set_flags(pte, _PAGE_PSE);
483 }
484
pte_clrhuge(pte_t pte)485 static inline pte_t pte_clrhuge(pte_t pte)
486 {
487 return pte_clear_flags(pte, _PAGE_PSE);
488 }
489
pte_mkglobal(pte_t pte)490 static inline pte_t pte_mkglobal(pte_t pte)
491 {
492 return pte_set_flags(pte, _PAGE_GLOBAL);
493 }
494
pte_clrglobal(pte_t pte)495 static inline pte_t pte_clrglobal(pte_t pte)
496 {
497 return pte_clear_flags(pte, _PAGE_GLOBAL);
498 }
499
pte_mkspecial(pte_t pte)500 static inline pte_t pte_mkspecial(pte_t pte)
501 {
502 return pte_set_flags(pte, _PAGE_SPECIAL);
503 }
504
505 /* See comments above mksaveddirty_shift() */
pmd_mksaveddirty(pmd_t pmd)506 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
507 {
508 pmdval_t v = native_pmd_val(pmd);
509
510 v = mksaveddirty_shift(v);
511 return native_make_pmd(v);
512 }
513
514 /* See comments above mksaveddirty_shift() */
pmd_clear_saveddirty(pmd_t pmd)515 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
516 {
517 pmdval_t v = native_pmd_val(pmd);
518
519 v = clear_saveddirty_shift(v);
520 return native_make_pmd(v);
521 }
522
pmd_wrprotect(pmd_t pmd)523 static inline pmd_t pmd_wrprotect(pmd_t pmd)
524 {
525 pmd = pmd_clear_flags(pmd, _PAGE_RW);
526
527 /*
528 * Blindly clearing _PAGE_RW might accidentally create
529 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
530 * dirty value to the software bit.
531 */
532 return pmd_mksaveddirty(pmd);
533 }
534
535 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pmd_uffd_wp(pmd_t pmd)536 static inline int pmd_uffd_wp(pmd_t pmd)
537 {
538 return pmd_flags(pmd) & _PAGE_UFFD_WP;
539 }
540
pmd_mkuffd_wp(pmd_t pmd)541 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
542 {
543 return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
544 }
545
pmd_clear_uffd_wp(pmd_t pmd)546 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
547 {
548 return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
549 }
550 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
551
pmd_mkold(pmd_t pmd)552 static inline pmd_t pmd_mkold(pmd_t pmd)
553 {
554 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
555 }
556
pmd_mkclean(pmd_t pmd)557 static inline pmd_t pmd_mkclean(pmd_t pmd)
558 {
559 return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
560 }
561
pmd_mkdirty(pmd_t pmd)562 static inline pmd_t pmd_mkdirty(pmd_t pmd)
563 {
564 pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
565
566 return pmd_mksaveddirty(pmd);
567 }
568
pmd_mkwrite_shstk(pmd_t pmd)569 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
570 {
571 pmd = pmd_clear_flags(pmd, _PAGE_RW);
572
573 return pmd_set_flags(pmd, _PAGE_DIRTY);
574 }
575
pmd_mkhuge(pmd_t pmd)576 static inline pmd_t pmd_mkhuge(pmd_t pmd)
577 {
578 return pmd_set_flags(pmd, _PAGE_PSE);
579 }
580
pmd_mkyoung(pmd_t pmd)581 static inline pmd_t pmd_mkyoung(pmd_t pmd)
582 {
583 return pmd_set_flags(pmd, _PAGE_ACCESSED);
584 }
585
pmd_mkwrite_novma(pmd_t pmd)586 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
587 {
588 return pmd_set_flags(pmd, _PAGE_RW);
589 }
590
591 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
592 #define pmd_mkwrite pmd_mkwrite
593
594 /* See comments above mksaveddirty_shift() */
pud_mksaveddirty(pud_t pud)595 static inline pud_t pud_mksaveddirty(pud_t pud)
596 {
597 pudval_t v = native_pud_val(pud);
598
599 v = mksaveddirty_shift(v);
600 return native_make_pud(v);
601 }
602
603 /* See comments above mksaveddirty_shift() */
pud_clear_saveddirty(pud_t pud)604 static inline pud_t pud_clear_saveddirty(pud_t pud)
605 {
606 pudval_t v = native_pud_val(pud);
607
608 v = clear_saveddirty_shift(v);
609 return native_make_pud(v);
610 }
611
pud_mkold(pud_t pud)612 static inline pud_t pud_mkold(pud_t pud)
613 {
614 return pud_clear_flags(pud, _PAGE_ACCESSED);
615 }
616
pud_mkclean(pud_t pud)617 static inline pud_t pud_mkclean(pud_t pud)
618 {
619 return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
620 }
621
pud_wrprotect(pud_t pud)622 static inline pud_t pud_wrprotect(pud_t pud)
623 {
624 pud = pud_clear_flags(pud, _PAGE_RW);
625
626 /*
627 * Blindly clearing _PAGE_RW might accidentally create
628 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
629 * dirty value to the software bit.
630 */
631 return pud_mksaveddirty(pud);
632 }
633
pud_mkdirty(pud_t pud)634 static inline pud_t pud_mkdirty(pud_t pud)
635 {
636 pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
637
638 return pud_mksaveddirty(pud);
639 }
640
pud_mkhuge(pud_t pud)641 static inline pud_t pud_mkhuge(pud_t pud)
642 {
643 return pud_set_flags(pud, _PAGE_PSE);
644 }
645
pud_mkyoung(pud_t pud)646 static inline pud_t pud_mkyoung(pud_t pud)
647 {
648 return pud_set_flags(pud, _PAGE_ACCESSED);
649 }
650
pud_mkwrite(pud_t pud)651 static inline pud_t pud_mkwrite(pud_t pud)
652 {
653 pud = pud_set_flags(pud, _PAGE_RW);
654
655 return pud_clear_saveddirty(pud);
656 }
657
658 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)659 static inline int pte_soft_dirty(pte_t pte)
660 {
661 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
662 }
663
pmd_soft_dirty(pmd_t pmd)664 static inline int pmd_soft_dirty(pmd_t pmd)
665 {
666 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
667 }
668
pud_soft_dirty(pud_t pud)669 static inline int pud_soft_dirty(pud_t pud)
670 {
671 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
672 }
673
pte_mksoft_dirty(pte_t pte)674 static inline pte_t pte_mksoft_dirty(pte_t pte)
675 {
676 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
677 }
678
pmd_mksoft_dirty(pmd_t pmd)679 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
680 {
681 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
682 }
683
pud_mksoft_dirty(pud_t pud)684 static inline pud_t pud_mksoft_dirty(pud_t pud)
685 {
686 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
687 }
688
pte_clear_soft_dirty(pte_t pte)689 static inline pte_t pte_clear_soft_dirty(pte_t pte)
690 {
691 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
692 }
693
pmd_clear_soft_dirty(pmd_t pmd)694 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
695 {
696 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
697 }
698
pud_clear_soft_dirty(pud_t pud)699 static inline pud_t pud_clear_soft_dirty(pud_t pud)
700 {
701 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
702 }
703
704 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
705
706 /*
707 * Mask out unsupported bits in a present pgprot. Non-present pgprots
708 * can use those bits for other purposes, so leave them be.
709 */
massage_pgprot(pgprot_t pgprot)710 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
711 {
712 pgprotval_t protval = pgprot_val(pgprot);
713
714 if (protval & _PAGE_PRESENT)
715 protval &= __supported_pte_mask;
716
717 return protval;
718 }
719
check_pgprot(pgprot_t pgprot)720 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
721 {
722 pgprotval_t massaged_val = massage_pgprot(pgprot);
723
724 /* mmdebug.h can not be included here because of dependencies */
725 #ifdef CONFIG_DEBUG_VM
726 WARN_ONCE(pgprot_val(pgprot) != massaged_val,
727 "attempted to set unsupported pgprot: %016llx "
728 "bits: %016llx supported: %016llx\n",
729 (u64)pgprot_val(pgprot),
730 (u64)pgprot_val(pgprot) ^ massaged_val,
731 (u64)__supported_pte_mask);
732 #endif
733
734 return massaged_val;
735 }
736
pfn_pte(unsigned long page_nr,pgprot_t pgprot)737 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
738 {
739 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
740 /* This bit combination is used to mark shadow stacks */
741 WARN_ON_ONCE((pgprot_val(pgprot) & (_PAGE_DIRTY | _PAGE_RW)) ==
742 _PAGE_DIRTY);
743 pfn ^= protnone_mask(pgprot_val(pgprot));
744 pfn &= PTE_PFN_MASK;
745 return __pte(pfn | check_pgprot(pgprot));
746 }
747
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)748 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
749 {
750 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
751 pfn ^= protnone_mask(pgprot_val(pgprot));
752 pfn &= PHYSICAL_PMD_PAGE_MASK;
753 return __pmd(pfn | check_pgprot(pgprot));
754 }
755
pfn_pud(unsigned long page_nr,pgprot_t pgprot)756 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
757 {
758 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
759 pfn ^= protnone_mask(pgprot_val(pgprot));
760 pfn &= PHYSICAL_PUD_PAGE_MASK;
761 return __pud(pfn | check_pgprot(pgprot));
762 }
763
pmd_mkinvalid(pmd_t pmd)764 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
765 {
766 return pfn_pmd(pmd_pfn(pmd),
767 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
768 }
769
pud_mkinvalid(pud_t pud)770 static inline pud_t pud_mkinvalid(pud_t pud)
771 {
772 return pfn_pud(pud_pfn(pud),
773 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
774 }
775
776 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
777
pte_modify(pte_t pte,pgprot_t newprot)778 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
779 {
780 pteval_t val = pte_val(pte), oldval = val;
781 pte_t pte_result;
782
783 /*
784 * Chop off the NX bit (if present), and add the NX portion of
785 * the newprot (if present):
786 */
787 val &= _PAGE_CHG_MASK;
788 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
789 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
790
791 pte_result = __pte(val);
792
793 /*
794 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
795 * 1. Marking Write=0 PTEs Dirty=1
796 * 2. Marking Dirty=1 PTEs Write=0
797 *
798 * The first case cannot happen because the _PAGE_CHG_MASK will filter
799 * out any Dirty bit passed in newprot. Handle the second case by
800 * going through the mksaveddirty exercise. Only do this if the old
801 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
802 */
803 if (oldval & _PAGE_RW)
804 pte_result = pte_mksaveddirty(pte_result);
805 else
806 pte_result = pte_clear_saveddirty(pte_result);
807
808 return pte_result;
809 }
810
pmd_modify(pmd_t pmd,pgprot_t newprot)811 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
812 {
813 pmdval_t val = pmd_val(pmd), oldval = val;
814 pmd_t pmd_result;
815
816 val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
817 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
818 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
819
820 pmd_result = __pmd(val);
821
822 /*
823 * Avoid creating shadow stack PMD by accident. See comment in
824 * pte_modify().
825 */
826 if (oldval & _PAGE_RW)
827 pmd_result = pmd_mksaveddirty(pmd_result);
828 else
829 pmd_result = pmd_clear_saveddirty(pmd_result);
830
831 return pmd_result;
832 }
833
pud_modify(pud_t pud,pgprot_t newprot)834 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
835 {
836 pudval_t val = pud_val(pud), oldval = val;
837 pud_t pud_result;
838
839 val &= _HPAGE_CHG_MASK;
840 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
841 val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK);
842
843 pud_result = __pud(val);
844
845 /*
846 * Avoid creating shadow stack PUD by accident. See comment in
847 * pte_modify().
848 */
849 if (oldval & _PAGE_RW)
850 pud_result = pud_mksaveddirty(pud_result);
851 else
852 pud_result = pud_clear_saveddirty(pud_result);
853
854 return pud_result;
855 }
856
857 /*
858 * mprotect needs to preserve PAT and encryption bits when updating
859 * vm_page_prot
860 */
861 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)862 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
863 {
864 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
865 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
866 return __pgprot(preservebits | addbits);
867 }
868
869 #define pte_pgprot(x) __pgprot(pte_flags(x))
870 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
871 #define pud_pgprot(x) __pgprot(pud_flags(x))
872 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
873
874 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
875
is_new_memtype_allowed(u64 paddr,unsigned long size,enum page_cache_mode pcm,enum page_cache_mode new_pcm)876 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
877 enum page_cache_mode pcm,
878 enum page_cache_mode new_pcm)
879 {
880 /*
881 * PAT type is always WB for untracked ranges, so no need to check.
882 */
883 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
884 return 1;
885
886 /*
887 * Certain new memtypes are not allowed with certain
888 * requested memtype:
889 * - request is uncached, return cannot be write-back
890 * - request is write-combine, return cannot be write-back
891 * - request is write-through, return cannot be write-back
892 * - request is write-through, return cannot be write-combine
893 */
894 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
895 new_pcm == _PAGE_CACHE_MODE_WB) ||
896 (pcm == _PAGE_CACHE_MODE_WC &&
897 new_pcm == _PAGE_CACHE_MODE_WB) ||
898 (pcm == _PAGE_CACHE_MODE_WT &&
899 new_pcm == _PAGE_CACHE_MODE_WB) ||
900 (pcm == _PAGE_CACHE_MODE_WT &&
901 new_pcm == _PAGE_CACHE_MODE_WC)) {
902 return 0;
903 }
904
905 return 1;
906 }
907
908 pmd_t *populate_extra_pmd(unsigned long vaddr);
909 pte_t *populate_extra_pte(unsigned long vaddr);
910
911 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
912 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
913
914 /*
915 * Take a PGD location (pgdp) and a pgd value that needs to be set there.
916 * Populates the user and returns the resulting PGD that must be set in
917 * the kernel copy of the page tables.
918 */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)919 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
920 {
921 if (!static_cpu_has(X86_FEATURE_PTI))
922 return pgd;
923 return __pti_set_user_pgtbl(pgdp, pgd);
924 }
925 #else /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)926 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
927 {
928 return pgd;
929 }
930 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
931
932 #endif /* __ASSEMBLER__ */
933
934
935 #ifdef CONFIG_X86_32
936 # include <asm/pgtable_32.h>
937 #else
938 # include <asm/pgtable_64.h>
939 #endif
940
941 #ifndef __ASSEMBLER__
942 #include <linux/mm_types.h>
943 #include <linux/mmdebug.h>
944 #include <linux/log2.h>
945 #include <asm/fixmap.h>
946
pte_none(pte_t pte)947 static inline int pte_none(pte_t pte)
948 {
949 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
950 }
951
952 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)953 static inline int pte_same(pte_t a, pte_t b)
954 {
955 return a.pte == b.pte;
956 }
957
pte_advance_pfn(pte_t pte,unsigned long nr)958 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
959 {
960 if (__pte_needs_invert(pte_val(pte)))
961 return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
962 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
963 }
964 #define pte_advance_pfn pte_advance_pfn
965
pte_present(pte_t a)966 static inline int pte_present(pte_t a)
967 {
968 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
969 }
970
971 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)972 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
973 {
974 if (pte_flags(a) & _PAGE_PRESENT)
975 return true;
976
977 if ((pte_flags(a) & _PAGE_PROTNONE) &&
978 atomic_read(&mm->tlb_flush_pending))
979 return true;
980
981 return false;
982 }
983
pmd_present(pmd_t pmd)984 static inline int pmd_present(pmd_t pmd)
985 {
986 /*
987 * Checking for _PAGE_PSE is needed too because
988 * split_huge_page will temporarily clear the present bit (but
989 * the _PAGE_PSE flag will remain set at all times while the
990 * _PAGE_PRESENT bit is clear).
991 */
992 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
993 }
994
995 #ifdef CONFIG_NUMA_BALANCING
996 /*
997 * These work without NUMA balancing but the kernel does not care. See the
998 * comment in include/linux/pgtable.h
999 */
pte_protnone(pte_t pte)1000 static inline int pte_protnone(pte_t pte)
1001 {
1002 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1003 == _PAGE_PROTNONE;
1004 }
1005
pmd_protnone(pmd_t pmd)1006 static inline int pmd_protnone(pmd_t pmd)
1007 {
1008 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1009 == _PAGE_PROTNONE;
1010 }
1011 #endif /* CONFIG_NUMA_BALANCING */
1012
pmd_none(pmd_t pmd)1013 static inline int pmd_none(pmd_t pmd)
1014 {
1015 /* Only check low word on 32-bit platforms, since it might be
1016 out of sync with upper half. */
1017 unsigned long val = native_pmd_val(pmd);
1018 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1019 }
1020
pmd_page_vaddr(pmd_t pmd)1021 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1022 {
1023 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1024 }
1025
1026 /*
1027 * Currently stuck as a macro due to indirect forward reference to
1028 * linux/mmzone.h's __section_mem_map_addr() definition:
1029 */
1030 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1031
pmd_bad(pmd_t pmd)1032 static inline int pmd_bad(pmd_t pmd)
1033 {
1034 return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1035 (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1036 }
1037
pages_to_mb(unsigned long npg)1038 static inline unsigned long pages_to_mb(unsigned long npg)
1039 {
1040 return npg >> (20 - PAGE_SHIFT);
1041 }
1042
1043 #if CONFIG_PGTABLE_LEVELS > 2
pud_none(pud_t pud)1044 static inline int pud_none(pud_t pud)
1045 {
1046 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1047 }
1048
pud_present(pud_t pud)1049 static inline int pud_present(pud_t pud)
1050 {
1051 return pud_flags(pud) & _PAGE_PRESENT;
1052 }
1053
pud_pgtable(pud_t pud)1054 static inline pmd_t *pud_pgtable(pud_t pud)
1055 {
1056 return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1057 }
1058
1059 /*
1060 * Currently stuck as a macro due to indirect forward reference to
1061 * linux/mmzone.h's __section_mem_map_addr() definition:
1062 */
1063 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1064
1065 #define pud_leaf pud_leaf
pud_leaf(pud_t pud)1066 static inline bool pud_leaf(pud_t pud)
1067 {
1068 return pud_val(pud) & _PAGE_PSE;
1069 }
1070
pud_bad(pud_t pud)1071 static inline int pud_bad(pud_t pud)
1072 {
1073 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1074 }
1075 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
1076
1077 #if CONFIG_PGTABLE_LEVELS > 3
p4d_none(p4d_t p4d)1078 static inline int p4d_none(p4d_t p4d)
1079 {
1080 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1081 }
1082
p4d_present(p4d_t p4d)1083 static inline int p4d_present(p4d_t p4d)
1084 {
1085 return p4d_flags(p4d) & _PAGE_PRESENT;
1086 }
1087
p4d_pgtable(p4d_t p4d)1088 static inline pud_t *p4d_pgtable(p4d_t p4d)
1089 {
1090 return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1091 }
1092
1093 /*
1094 * Currently stuck as a macro due to indirect forward reference to
1095 * linux/mmzone.h's __section_mem_map_addr() definition:
1096 */
1097 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1098
p4d_bad(p4d_t p4d)1099 static inline int p4d_bad(p4d_t p4d)
1100 {
1101 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1102
1103 if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1104 ignore_flags |= _PAGE_NX;
1105
1106 return (p4d_flags(p4d) & ~ignore_flags) != 0;
1107 }
1108 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1109
p4d_index(unsigned long address)1110 static inline unsigned long p4d_index(unsigned long address)
1111 {
1112 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1113 }
1114
1115 #if CONFIG_PGTABLE_LEVELS > 4
pgd_present(pgd_t pgd)1116 static inline int pgd_present(pgd_t pgd)
1117 {
1118 if (!pgtable_l5_enabled())
1119 return 1;
1120 return pgd_flags(pgd) & _PAGE_PRESENT;
1121 }
1122
pgd_page_vaddr(pgd_t pgd)1123 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1124 {
1125 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1126 }
1127
1128 /*
1129 * Currently stuck as a macro due to indirect forward reference to
1130 * linux/mmzone.h's __section_mem_map_addr() definition:
1131 */
1132 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1133
1134 /* to find an entry in a page-table-directory. */
p4d_offset(pgd_t * pgd,unsigned long address)1135 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1136 {
1137 if (!pgtable_l5_enabled())
1138 return (p4d_t *)pgd;
1139 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1140 }
1141
pgd_bad(pgd_t pgd)1142 static inline int pgd_bad(pgd_t pgd)
1143 {
1144 unsigned long ignore_flags = _PAGE_USER;
1145
1146 if (!pgtable_l5_enabled())
1147 return 0;
1148
1149 if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1150 ignore_flags |= _PAGE_NX;
1151
1152 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1153 }
1154
pgd_none(pgd_t pgd)1155 static inline int pgd_none(pgd_t pgd)
1156 {
1157 if (!pgtable_l5_enabled())
1158 return 0;
1159 /*
1160 * There is no need to do a workaround for the KNL stray
1161 * A/D bit erratum here. PGDs only point to page tables
1162 * except on 32-bit non-PAE which is not supported on
1163 * KNL.
1164 */
1165 return !native_pgd_val(pgd);
1166 }
1167 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1168
1169 #endif /* __ASSEMBLER__ */
1170
1171 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
1172 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1173
1174 #ifndef __ASSEMBLER__
1175
1176 extern int direct_gbpages;
1177 void init_mem_mapping(void);
1178 void early_alloc_pgt_buf(void);
1179 void __init poking_init(void);
1180 unsigned long init_memory_mapping(unsigned long start,
1181 unsigned long end, pgprot_t prot);
1182
1183 #ifdef CONFIG_X86_64
1184 extern pgd_t trampoline_pgd_entry;
1185 #endif
1186
1187 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)1188 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1189 {
1190 pte_t res = *ptep;
1191
1192 /* Pure native function needs no input for mm, addr */
1193 native_pte_clear(NULL, 0, ptep);
1194 return res;
1195 }
1196
native_local_pmdp_get_and_clear(pmd_t * pmdp)1197 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1198 {
1199 pmd_t res = *pmdp;
1200
1201 native_pmd_clear(pmdp);
1202 return res;
1203 }
1204
native_local_pudp_get_and_clear(pud_t * pudp)1205 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1206 {
1207 pud_t res = *pudp;
1208
1209 native_pud_clear(pudp);
1210 return res;
1211 }
1212
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)1213 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1214 pmd_t *pmdp, pmd_t pmd)
1215 {
1216 page_table_check_pmd_set(mm, pmdp, pmd);
1217 set_pmd(pmdp, pmd);
1218 }
1219
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)1220 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1221 pud_t *pudp, pud_t pud)
1222 {
1223 page_table_check_pud_set(mm, pudp, pud);
1224 native_set_pud(pudp, pud);
1225 }
1226
1227 /*
1228 * We only update the dirty/accessed state if we set
1229 * the dirty bit by hand in the kernel, since the hardware
1230 * will do the accessed bit for us, and we don't want to
1231 * race with other CPU's that might be updating the dirty
1232 * bit at the same time.
1233 */
1234 struct vm_area_struct;
1235
1236 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1237 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1238 unsigned long address, pte_t *ptep,
1239 pte_t entry, int dirty);
1240
1241 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1242 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1243 unsigned long addr, pte_t *ptep);
1244
1245 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1246 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1247 unsigned long address, pte_t *ptep);
1248
1249 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1250 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1251 pte_t *ptep)
1252 {
1253 pte_t pte = native_ptep_get_and_clear(ptep);
1254 page_table_check_pte_clear(mm, pte);
1255 return pte;
1256 }
1257
1258 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1259 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1260 unsigned long addr, pte_t *ptep,
1261 int full)
1262 {
1263 pte_t pte;
1264 if (full) {
1265 /*
1266 * Full address destruction in progress; paravirt does not
1267 * care about updates and native needs no locking
1268 */
1269 pte = native_local_ptep_get_and_clear(ptep);
1270 page_table_check_pte_clear(mm, pte);
1271 } else {
1272 pte = ptep_get_and_clear(mm, addr, ptep);
1273 }
1274 return pte;
1275 }
1276
1277 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1278 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1279 unsigned long addr, pte_t *ptep)
1280 {
1281 /*
1282 * Avoid accidentally creating shadow stack PTEs
1283 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with
1284 * the hardware setting Dirty=1.
1285 */
1286 pte_t old_pte, new_pte;
1287
1288 old_pte = READ_ONCE(*ptep);
1289 do {
1290 new_pte = pte_wrprotect(old_pte);
1291 } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1292 }
1293
1294 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1295
1296 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1297 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1298 unsigned long address, pmd_t *pmdp,
1299 pmd_t entry, int dirty);
1300 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1301 unsigned long address, pud_t *pudp,
1302 pud_t entry, int dirty);
1303
1304 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1305 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1306 unsigned long addr, pmd_t *pmdp);
1307 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1308 unsigned long addr, pud_t *pudp);
1309
1310 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1311 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1312 unsigned long address, pmd_t *pmdp);
1313
1314
1315 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1316 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1317 pmd_t *pmdp)
1318 {
1319 pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1320
1321 page_table_check_pmd_clear(mm, pmd);
1322
1323 return pmd;
1324 }
1325
1326 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1327 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1328 unsigned long addr, pud_t *pudp)
1329 {
1330 pud_t pud = native_pudp_get_and_clear(pudp);
1331
1332 page_table_check_pud_clear(mm, pud);
1333
1334 return pud;
1335 }
1336
1337 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1338 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1339 unsigned long addr, pmd_t *pmdp)
1340 {
1341 /*
1342 * Avoid accidentally creating shadow stack PTEs
1343 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with
1344 * the hardware setting Dirty=1.
1345 */
1346 pmd_t old_pmd, new_pmd;
1347
1348 old_pmd = READ_ONCE(*pmdp);
1349 do {
1350 new_pmd = pmd_wrprotect(old_pmd);
1351 } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1352 }
1353
1354 #ifndef pmdp_establish
1355 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1356 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1357 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1358 {
1359 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1360 if (IS_ENABLED(CONFIG_SMP)) {
1361 return xchg(pmdp, pmd);
1362 } else {
1363 pmd_t old = *pmdp;
1364 WRITE_ONCE(*pmdp, pmd);
1365 return old;
1366 }
1367 }
1368 #endif
1369
1370 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_establish(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t pud)1371 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1372 unsigned long address, pud_t *pudp, pud_t pud)
1373 {
1374 page_table_check_pud_set(vma->vm_mm, pudp, pud);
1375 if (IS_ENABLED(CONFIG_SMP)) {
1376 return xchg(pudp, pud);
1377 } else {
1378 pud_t old = *pudp;
1379 WRITE_ONCE(*pudp, pud);
1380 return old;
1381 }
1382 }
1383 #endif
1384
1385 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1386 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1387 unsigned long address, pmd_t *pmdp);
1388
1389 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1390 pud_t *pudp);
1391
1392 /*
1393 * Page table pages are page-aligned. The lower half of the top
1394 * level is used for userspace and the top half for the kernel.
1395 *
1396 * Returns true for parts of the PGD that map userspace and
1397 * false for the parts that map the kernel.
1398 */
pgdp_maps_userspace(void * __ptr)1399 static inline bool pgdp_maps_userspace(void *__ptr)
1400 {
1401 unsigned long ptr = (unsigned long)__ptr;
1402
1403 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1404 }
1405
1406 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1407 /*
1408 * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1409 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and
1410 * the user one is in the last 4k. To switch between them, you
1411 * just need to flip the 12th bit in their addresses.
1412 */
1413 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT
1414
1415 /*
1416 * This generates better code than the inline assembly in
1417 * __set_bit().
1418 */
ptr_set_bit(void * ptr,int bit)1419 static inline void *ptr_set_bit(void *ptr, int bit)
1420 {
1421 unsigned long __ptr = (unsigned long)ptr;
1422
1423 __ptr |= BIT(bit);
1424 return (void *)__ptr;
1425 }
ptr_clear_bit(void * ptr,int bit)1426 static inline void *ptr_clear_bit(void *ptr, int bit)
1427 {
1428 unsigned long __ptr = (unsigned long)ptr;
1429
1430 __ptr &= ~BIT(bit);
1431 return (void *)__ptr;
1432 }
1433
kernel_to_user_pgdp(pgd_t * pgdp)1434 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1435 {
1436 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1437 }
1438
user_to_kernel_pgdp(pgd_t * pgdp)1439 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1440 {
1441 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1442 }
1443
kernel_to_user_p4dp(p4d_t * p4dp)1444 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1445 {
1446 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1447 }
1448
user_to_kernel_p4dp(p4d_t * p4dp)1449 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1450 {
1451 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1452 }
1453 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1454
1455 /*
1456 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1457 *
1458 * dst - pointer to pgd range anywhere on a pgd page
1459 * src - ""
1460 * count - the number of pgds to copy.
1461 *
1462 * dst and src can be on the same page, but the range must not overlap,
1463 * and must not cross a page boundary.
1464 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)1465 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1466 {
1467 memcpy(dst, src, count * sizeof(pgd_t));
1468 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1469 if (!static_cpu_has(X86_FEATURE_PTI))
1470 return;
1471 /* Clone the user space pgd as well */
1472 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1473 count * sizeof(pgd_t));
1474 #endif
1475 }
1476
1477 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)1478 static inline int page_level_shift(enum pg_level level)
1479 {
1480 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1481 }
page_level_size(enum pg_level level)1482 static inline unsigned long page_level_size(enum pg_level level)
1483 {
1484 return 1UL << page_level_shift(level);
1485 }
page_level_mask(enum pg_level level)1486 static inline unsigned long page_level_mask(enum pg_level level)
1487 {
1488 return ~(page_level_size(level) - 1);
1489 }
1490
1491 /*
1492 * The x86 doesn't have any external MMU info: the kernel page
1493 * tables contain all the necessary information.
1494 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1495 static inline void update_mmu_cache(struct vm_area_struct *vma,
1496 unsigned long addr, pte_t *ptep)
1497 {
1498 }
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1499 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1500 struct vm_area_struct *vma, unsigned long addr,
1501 pte_t *ptep, unsigned int nr)
1502 {
1503 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1504 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1505 unsigned long addr, pmd_t *pmd)
1506 {
1507 }
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1508 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1509 unsigned long addr, pud_t *pud)
1510 {
1511 }
pte_swp_mkexclusive(pte_t pte)1512 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1513 {
1514 return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1515 }
1516
pte_swp_exclusive(pte_t pte)1517 static inline bool pte_swp_exclusive(pte_t pte)
1518 {
1519 return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1520 }
1521
pte_swp_clear_exclusive(pte_t pte)1522 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1523 {
1524 return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1525 }
1526
1527 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)1528 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1529 {
1530 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1531 }
1532
pte_swp_soft_dirty(pte_t pte)1533 static inline int pte_swp_soft_dirty(pte_t pte)
1534 {
1535 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1536 }
1537
pte_swp_clear_soft_dirty(pte_t pte)1538 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1539 {
1540 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1541 }
1542
1543 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1544 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1545 {
1546 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1547 }
1548
pmd_swp_soft_dirty(pmd_t pmd)1549 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1550 {
1551 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1552 }
1553
pmd_swp_clear_soft_dirty(pmd_t pmd)1554 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1555 {
1556 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1557 }
1558 #endif
1559 #endif
1560
1561 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)1562 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1563 {
1564 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1565 }
1566
pte_swp_uffd_wp(pte_t pte)1567 static inline int pte_swp_uffd_wp(pte_t pte)
1568 {
1569 return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1570 }
1571
pte_swp_clear_uffd_wp(pte_t pte)1572 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1573 {
1574 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1575 }
1576
pmd_swp_mkuffd_wp(pmd_t pmd)1577 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1578 {
1579 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1580 }
1581
pmd_swp_uffd_wp(pmd_t pmd)1582 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1583 {
1584 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1585 }
1586
pmd_swp_clear_uffd_wp(pmd_t pmd)1587 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1588 {
1589 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1590 }
1591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1592
pte_flags_pkey(unsigned long pte_flags)1593 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1594 {
1595 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1596 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1597 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1598 #else
1599 return 0;
1600 #endif
1601 }
1602
__pkru_allows_pkey(u16 pkey,bool write)1603 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1604 {
1605 u32 pkru = read_pkru();
1606
1607 if (!__pkru_allows_read(pkru, pkey))
1608 return false;
1609 if (write && !__pkru_allows_write(pkru, pkey))
1610 return false;
1611
1612 return true;
1613 }
1614
1615 /*
1616 * 'pteval' can come from a PTE, PMD or PUD. We only check
1617 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1618 * same value on all 3 types.
1619 */
__pte_access_permitted(unsigned long pteval,bool write)1620 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1621 {
1622 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1623
1624 /*
1625 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1626 * shouldn't generally allow access to, but since they
1627 * are already Write=0, the below logic covers both cases.
1628 */
1629 if (write)
1630 need_pte_bits |= _PAGE_RW;
1631
1632 if ((pteval & need_pte_bits) != need_pte_bits)
1633 return 0;
1634
1635 return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1636 }
1637
1638 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)1639 static inline bool pte_access_permitted(pte_t pte, bool write)
1640 {
1641 return __pte_access_permitted(pte_val(pte), write);
1642 }
1643
1644 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1645 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1646 {
1647 return __pte_access_permitted(pmd_val(pmd), write);
1648 }
1649
1650 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)1651 static inline bool pud_access_permitted(pud_t pud, bool write)
1652 {
1653 return __pte_access_permitted(pud_val(pud), write);
1654 }
1655
1656 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1657 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1658
arch_has_pfn_modify_check(void)1659 static inline bool arch_has_pfn_modify_check(void)
1660 {
1661 return boot_cpu_has_bug(X86_BUG_L1TF);
1662 }
1663
1664 #define arch_check_zapped_pte arch_check_zapped_pte
1665 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1666
1667 #define arch_check_zapped_pmd arch_check_zapped_pmd
1668 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1669
1670 #define arch_check_zapped_pud arch_check_zapped_pud
1671 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud);
1672
1673 #ifdef CONFIG_XEN_PV
1674 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
arch_has_hw_nonleaf_pmd_young(void)1675 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1676 {
1677 return !cpu_feature_enabled(X86_FEATURE_XENPV);
1678 }
1679 #endif
1680
1681 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1682 static inline bool pte_user_accessible_page(pte_t pte)
1683 {
1684 return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1685 }
1686
pmd_user_accessible_page(pmd_t pmd)1687 static inline bool pmd_user_accessible_page(pmd_t pmd)
1688 {
1689 return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1690 }
1691
pud_user_accessible_page(pud_t pud)1692 static inline bool pud_user_accessible_page(pud_t pud)
1693 {
1694 return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1695 }
1696 #endif
1697
1698 #ifdef CONFIG_X86_SGX
1699 int arch_memory_failure(unsigned long pfn, int flags);
1700 #define arch_memory_failure arch_memory_failure
1701
1702 bool arch_is_platform_page(u64 paddr);
1703 #define arch_is_platform_page arch_is_platform_page
1704 #endif
1705
1706 /*
1707 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1708 * TLB flush will be required as a result of the "set". For example, use
1709 * in scenarios where it is known ahead of time that the routine is
1710 * setting non-present entries, or re-setting an existing entry to the
1711 * same value. Otherwise, use the typical "set" helpers and flush the
1712 * TLB.
1713 */
1714 #define set_pte_safe(ptep, pte) \
1715 ({ \
1716 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1717 set_pte(ptep, pte); \
1718 })
1719
1720 #define set_pmd_safe(pmdp, pmd) \
1721 ({ \
1722 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1723 set_pmd(pmdp, pmd); \
1724 })
1725
1726 #define set_pud_safe(pudp, pud) \
1727 ({ \
1728 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1729 set_pud(pudp, pud); \
1730 })
1731
1732 #define set_p4d_safe(p4dp, p4d) \
1733 ({ \
1734 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1735 set_p4d(p4dp, p4d); \
1736 })
1737
1738 #define set_pgd_safe(pgdp, pgd) \
1739 ({ \
1740 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1741 set_pgd(pgdp, pgd); \
1742 })
1743 #endif /* __ASSEMBLER__ */
1744
1745 #endif /* _ASM_X86_PGTABLE_H */
1746