1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_INCONSISTENT_FOOTER,
66 FAULT_TIMEOUT,
67 FAULT_VMALLOC,
68 FAULT_MAX,
69 };
70
71 /* indicate which option to update */
72 enum fault_option {
73 FAULT_RATE = 1, /* only update fault rate */
74 FAULT_TYPE = 2, /* only update fault type */
75 FAULT_ALL = 4, /* reset all fault injection options/stats */
76 };
77
78 #ifdef CONFIG_F2FS_FAULT_INJECTION
79 struct f2fs_fault_info {
80 atomic_t inject_ops;
81 int inject_rate;
82 unsigned int inject_type;
83 /* Used to account total count of injection for each type */
84 unsigned int inject_count[FAULT_MAX];
85 };
86
87 extern const char *f2fs_fault_name[FAULT_MAX];
88 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
89
90 /* maximum retry count for injected failure */
91 #define DEFAULT_FAILURE_RETRY_COUNT 8
92 #else
93 #define DEFAULT_FAILURE_RETRY_COUNT 1
94 #endif
95
96 /*
97 * For mount options
98 */
99 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
100 #define F2FS_MOUNT_DISCARD 0x00000002
101 #define F2FS_MOUNT_NOHEAP 0x00000004
102 #define F2FS_MOUNT_XATTR_USER 0x00000008
103 #define F2FS_MOUNT_POSIX_ACL 0x00000010
104 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
105 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
106 #define F2FS_MOUNT_INLINE_DATA 0x00000080
107 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
108 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
109 #define F2FS_MOUNT_NOBARRIER 0x00000400
110 #define F2FS_MOUNT_FASTBOOT 0x00000800
111 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
114 #define F2FS_MOUNT_USRQUOTA 0x00008000
115 #define F2FS_MOUNT_GRPQUOTA 0x00010000
116 #define F2FS_MOUNT_PRJQUOTA 0x00020000
117 #define F2FS_MOUNT_QUOTA 0x00040000
118 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
119 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
120 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
121 #define F2FS_MOUNT_NORECOVERY 0x00400000
122 #define F2FS_MOUNT_ATGC 0x00800000
123 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
124 #define F2FS_MOUNT_GC_MERGE 0x02000000
125 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
126 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
127 #define F2FS_MOUNT_NAT_BITS 0x10000000
128 #define F2FS_MOUNT_INLINECRYPT 0x20000000
129 /*
130 * Some f2fs environments expect to be able to pass the "lazytime" option
131 * string rather than using the MS_LAZYTIME flag, so this must remain.
132 */
133 #define F2FS_MOUNT_LAZYTIME 0x40000000
134
135 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
136 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
137 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
138 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
139
140 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
141 typecheck(unsigned long long, b) && \
142 ((long long)((a) - (b)) > 0))
143
144 typedef u32 block_t; /*
145 * should not change u32, since it is the on-disk block
146 * address format, __le32.
147 */
148 typedef u32 nid_t;
149
150 #define COMPRESS_EXT_NUM 16
151
152 enum blkzone_allocation_policy {
153 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
154 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
155 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
156 };
157
158 /*
159 * An implementation of an rwsem that is explicitly unfair to readers. This
160 * prevents priority inversion when a low-priority reader acquires the read lock
161 * while sleeping on the write lock but the write lock is needed by
162 * higher-priority clients.
163 */
164
165 struct f2fs_rwsem {
166 struct rw_semaphore internal_rwsem;
167 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
168 wait_queue_head_t read_waiters;
169 #endif
170 };
171
172 struct f2fs_mount_info {
173 unsigned int opt;
174 block_t root_reserved_blocks; /* root reserved blocks */
175 kuid_t s_resuid; /* reserved blocks for uid */
176 kgid_t s_resgid; /* reserved blocks for gid */
177 int active_logs; /* # of active logs */
178 int inline_xattr_size; /* inline xattr size */
179 #ifdef CONFIG_F2FS_FAULT_INJECTION
180 struct f2fs_fault_info fault_info; /* For fault injection */
181 #endif
182 #ifdef CONFIG_QUOTA
183 /* Names of quota files with journalled quota */
184 char *s_qf_names[MAXQUOTAS];
185 int s_jquota_fmt; /* Format of quota to use */
186 #endif
187 /* For which write hints are passed down to block layer */
188 int alloc_mode; /* segment allocation policy */
189 int fsync_mode; /* fsync policy */
190 int fs_mode; /* fs mode: LFS or ADAPTIVE */
191 int bggc_mode; /* bggc mode: off, on or sync */
192 int memory_mode; /* memory mode */
193 int errors; /* errors parameter */
194 int discard_unit; /*
195 * discard command's offset/size should
196 * be aligned to this unit: block,
197 * segment or section
198 */
199 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
200 block_t unusable_cap_perc; /* percentage for cap */
201 block_t unusable_cap; /* Amount of space allowed to be
202 * unusable when disabling checkpoint
203 */
204
205 /* For compression */
206 unsigned char compress_algorithm; /* algorithm type */
207 unsigned char compress_log_size; /* cluster log size */
208 unsigned char compress_level; /* compress level */
209 bool compress_chksum; /* compressed data chksum */
210 unsigned char compress_ext_cnt; /* extension count */
211 unsigned char nocompress_ext_cnt; /* nocompress extension count */
212 int compress_mode; /* compression mode */
213 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
214 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
215 };
216
217 #define F2FS_FEATURE_ENCRYPT 0x00000001
218 #define F2FS_FEATURE_BLKZONED 0x00000002
219 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
220 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
221 #define F2FS_FEATURE_PRJQUOTA 0x00000010
222 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
223 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
224 #define F2FS_FEATURE_QUOTA_INO 0x00000080
225 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
226 #define F2FS_FEATURE_LOST_FOUND 0x00000200
227 #define F2FS_FEATURE_VERITY 0x00000400
228 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
229 #define F2FS_FEATURE_CASEFOLD 0x00001000
230 #define F2FS_FEATURE_COMPRESSION 0x00002000
231 #define F2FS_FEATURE_RO 0x00004000
232 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
233
234 #define __F2FS_HAS_FEATURE(raw_super, mask) \
235 ((raw_super->feature & cpu_to_le32(mask)) != 0)
236 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
237
238 /*
239 * Default values for user and/or group using reserved blocks
240 */
241 #define F2FS_DEF_RESUID 0
242 #define F2FS_DEF_RESGID 0
243
244 /*
245 * For checkpoint manager
246 */
247 enum {
248 NAT_BITMAP,
249 SIT_BITMAP
250 };
251
252 #define CP_UMOUNT 0x00000001
253 #define CP_FASTBOOT 0x00000002
254 #define CP_SYNC 0x00000004
255 #define CP_RECOVERY 0x00000008
256 #define CP_DISCARD 0x00000010
257 #define CP_TRIMMED 0x00000020
258 #define CP_PAUSE 0x00000040
259 #define CP_RESIZE 0x00000080
260
261 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
262 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
263 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
264 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
265 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
266 #define DEF_CP_INTERVAL 60 /* 60 secs */
267 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
268 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
269 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
270 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
271
272 struct cp_control {
273 int reason;
274 __u64 trim_start;
275 __u64 trim_end;
276 __u64 trim_minlen;
277 };
278
279 /*
280 * indicate meta/data type
281 */
282 enum {
283 META_CP,
284 META_NAT,
285 META_SIT,
286 META_SSA,
287 META_MAX,
288 META_POR,
289 DATA_GENERIC, /* check range only */
290 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
291 DATA_GENERIC_ENHANCE_READ, /*
292 * strong check on range and segment
293 * bitmap but no warning due to race
294 * condition of read on truncated area
295 * by extent_cache
296 */
297 DATA_GENERIC_ENHANCE_UPDATE, /*
298 * strong check on range and segment
299 * bitmap for update case
300 */
301 META_GENERIC,
302 };
303
304 /* for the list of ino */
305 enum {
306 ORPHAN_INO, /* for orphan ino list */
307 APPEND_INO, /* for append ino list */
308 UPDATE_INO, /* for update ino list */
309 TRANS_DIR_INO, /* for transactions dir ino list */
310 XATTR_DIR_INO, /* for xattr updated dir ino list */
311 FLUSH_INO, /* for multiple device flushing */
312 MAX_INO_ENTRY, /* max. list */
313 };
314
315 struct ino_entry {
316 struct list_head list; /* list head */
317 nid_t ino; /* inode number */
318 unsigned int dirty_device; /* dirty device bitmap */
319 };
320
321 /* for the list of inodes to be GCed */
322 struct inode_entry {
323 struct list_head list; /* list head */
324 struct inode *inode; /* vfs inode pointer */
325 };
326
327 struct fsync_node_entry {
328 struct list_head list; /* list head */
329 struct folio *folio; /* warm node folio pointer */
330 unsigned int seq_id; /* sequence id */
331 };
332
333 struct ckpt_req {
334 struct completion wait; /* completion for checkpoint done */
335 struct llist_node llnode; /* llist_node to be linked in wait queue */
336 int ret; /* return code of checkpoint */
337 ktime_t queue_time; /* request queued time */
338 };
339
340 struct ckpt_req_control {
341 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
342 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
343 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
344 atomic_t issued_ckpt; /* # of actually issued ckpts */
345 atomic_t total_ckpt; /* # of total ckpts */
346 atomic_t queued_ckpt; /* # of queued ckpts */
347 struct llist_head issue_list; /* list for command issue */
348 spinlock_t stat_lock; /* lock for below checkpoint time stats */
349 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
350 unsigned int peak_time; /* peak wait time in msec until now */
351 };
352
353 /* for the bitmap indicate blocks to be discarded */
354 struct discard_entry {
355 struct list_head list; /* list head */
356 block_t start_blkaddr; /* start blockaddr of current segment */
357 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
358 };
359
360 /* minimum discard granularity, unit: block count */
361 #define MIN_DISCARD_GRANULARITY 1
362 /* default discard granularity of inner discard thread, unit: block count */
363 #define DEFAULT_DISCARD_GRANULARITY 16
364 /* default maximum discard granularity of ordered discard, unit: block count */
365 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
366
367 /* max discard pend list number */
368 #define MAX_PLIST_NUM 512
369 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
370 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
371
372 enum {
373 D_PREP, /* initial */
374 D_PARTIAL, /* partially submitted */
375 D_SUBMIT, /* all submitted */
376 D_DONE, /* finished */
377 };
378
379 struct discard_info {
380 block_t lstart; /* logical start address */
381 block_t len; /* length */
382 block_t start; /* actual start address in dev */
383 };
384
385 struct discard_cmd {
386 struct rb_node rb_node; /* rb node located in rb-tree */
387 struct discard_info di; /* discard info */
388 struct list_head list; /* command list */
389 struct completion wait; /* completion */
390 struct block_device *bdev; /* bdev */
391 unsigned short ref; /* reference count */
392 unsigned char state; /* state */
393 unsigned char queued; /* queued discard */
394 int error; /* bio error */
395 spinlock_t lock; /* for state/bio_ref updating */
396 unsigned short bio_ref; /* bio reference count */
397 };
398
399 enum {
400 DPOLICY_BG,
401 DPOLICY_FORCE,
402 DPOLICY_FSTRIM,
403 DPOLICY_UMOUNT,
404 MAX_DPOLICY,
405 };
406
407 enum {
408 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
409 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
410 DPOLICY_IO_AWARE_MAX,
411 };
412
413 struct discard_policy {
414 int type; /* type of discard */
415 unsigned int min_interval; /* used for candidates exist */
416 unsigned int mid_interval; /* used for device busy */
417 unsigned int max_interval; /* used for candidates not exist */
418 unsigned int max_requests; /* # of discards issued per round */
419 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
420 bool io_aware; /* issue discard in idle time */
421 bool sync; /* submit discard with REQ_SYNC flag */
422 bool ordered; /* issue discard by lba order */
423 bool timeout; /* discard timeout for put_super */
424 unsigned int granularity; /* discard granularity */
425 };
426
427 struct discard_cmd_control {
428 struct task_struct *f2fs_issue_discard; /* discard thread */
429 struct list_head entry_list; /* 4KB discard entry list */
430 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
431 struct list_head wait_list; /* store on-flushing entries */
432 struct list_head fstrim_list; /* in-flight discard from fstrim */
433 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
434 struct mutex cmd_lock;
435 unsigned int nr_discards; /* # of discards in the list */
436 unsigned int max_discards; /* max. discards to be issued */
437 unsigned int max_discard_request; /* max. discard request per round */
438 unsigned int min_discard_issue_time; /* min. interval between discard issue */
439 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
440 unsigned int max_discard_issue_time; /* max. interval between discard issue */
441 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
442 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
443 unsigned int discard_granularity; /* discard granularity */
444 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
445 unsigned int discard_io_aware; /* io_aware policy */
446 unsigned int undiscard_blks; /* # of undiscard blocks */
447 unsigned int next_pos; /* next discard position */
448 atomic_t issued_discard; /* # of issued discard */
449 atomic_t queued_discard; /* # of queued discard */
450 atomic_t discard_cmd_cnt; /* # of cached cmd count */
451 struct rb_root_cached root; /* root of discard rb-tree */
452 bool rbtree_check; /* config for consistence check */
453 bool discard_wake; /* to wake up discard thread */
454 };
455
456 /* for the list of fsync inodes, used only during recovery */
457 struct fsync_inode_entry {
458 struct list_head list; /* list head */
459 struct inode *inode; /* vfs inode pointer */
460 block_t blkaddr; /* block address locating the last fsync */
461 block_t last_dentry; /* block address locating the last dentry */
462 };
463
464 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
465 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
466
467 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
468 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
469 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
470 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
471
472 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
473 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
474
update_nats_in_cursum(struct f2fs_journal * journal,int i)475 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
476 {
477 int before = nats_in_cursum(journal);
478
479 journal->n_nats = cpu_to_le16(before + i);
480 return before;
481 }
482
update_sits_in_cursum(struct f2fs_journal * journal,int i)483 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
484 {
485 int before = sits_in_cursum(journal);
486
487 journal->n_sits = cpu_to_le16(before + i);
488 return before;
489 }
490
__has_cursum_space(struct f2fs_journal * journal,int size,int type)491 static inline bool __has_cursum_space(struct f2fs_journal *journal,
492 int size, int type)
493 {
494 if (type == NAT_JOURNAL)
495 return size <= MAX_NAT_JENTRIES(journal);
496 return size <= MAX_SIT_JENTRIES(journal);
497 }
498
499 /* for inline stuff */
500 #define DEF_INLINE_RESERVED_SIZE 1
501 static inline int get_extra_isize(struct inode *inode);
502 static inline int get_inline_xattr_addrs(struct inode *inode);
503 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
504 (CUR_ADDRS_PER_INODE(inode) - \
505 get_inline_xattr_addrs(inode) - \
506 DEF_INLINE_RESERVED_SIZE))
507
508 /* for inline dir */
509 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
510 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
511 BITS_PER_BYTE + 1))
512 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
513 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
514 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
515 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
516 NR_INLINE_DENTRY(inode) + \
517 INLINE_DENTRY_BITMAP_SIZE(inode)))
518
519 /*
520 * For INODE and NODE manager
521 */
522 /* for directory operations */
523
524 struct f2fs_filename {
525 /*
526 * The filename the user specified. This is NULL for some
527 * filesystem-internal operations, e.g. converting an inline directory
528 * to a non-inline one, or roll-forward recovering an encrypted dentry.
529 */
530 const struct qstr *usr_fname;
531
532 /*
533 * The on-disk filename. For encrypted directories, this is encrypted.
534 * This may be NULL for lookups in an encrypted dir without the key.
535 */
536 struct fscrypt_str disk_name;
537
538 /* The dirhash of this filename */
539 f2fs_hash_t hash;
540
541 #ifdef CONFIG_FS_ENCRYPTION
542 /*
543 * For lookups in encrypted directories: either the buffer backing
544 * disk_name, or a buffer that holds the decoded no-key name.
545 */
546 struct fscrypt_str crypto_buf;
547 #endif
548 #if IS_ENABLED(CONFIG_UNICODE)
549 /*
550 * For casefolded directories: the casefolded name, but it's left NULL
551 * if the original name is not valid Unicode, if the original name is
552 * "." or "..", if the directory is both casefolded and encrypted and
553 * its encryption key is unavailable, or if the filesystem is doing an
554 * internal operation where usr_fname is also NULL. In all these cases
555 * we fall back to treating the name as an opaque byte sequence.
556 */
557 struct qstr cf_name;
558 #endif
559 };
560
561 struct f2fs_dentry_ptr {
562 struct inode *inode;
563 void *bitmap;
564 struct f2fs_dir_entry *dentry;
565 __u8 (*filename)[F2FS_SLOT_LEN];
566 int max;
567 int nr_bitmap;
568 };
569
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)570 static inline void make_dentry_ptr_block(struct inode *inode,
571 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
572 {
573 d->inode = inode;
574 d->max = NR_DENTRY_IN_BLOCK;
575 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
576 d->bitmap = t->dentry_bitmap;
577 d->dentry = t->dentry;
578 d->filename = t->filename;
579 }
580
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)581 static inline void make_dentry_ptr_inline(struct inode *inode,
582 struct f2fs_dentry_ptr *d, void *t)
583 {
584 int entry_cnt = NR_INLINE_DENTRY(inode);
585 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
586 int reserved_size = INLINE_RESERVED_SIZE(inode);
587
588 d->inode = inode;
589 d->max = entry_cnt;
590 d->nr_bitmap = bitmap_size;
591 d->bitmap = t;
592 d->dentry = t + bitmap_size + reserved_size;
593 d->filename = t + bitmap_size + reserved_size +
594 SIZE_OF_DIR_ENTRY * entry_cnt;
595 }
596
597 /*
598 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
599 * as its node offset to distinguish from index node blocks.
600 * But some bits are used to mark the node block.
601 */
602 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
603 >> OFFSET_BIT_SHIFT)
604 enum {
605 ALLOC_NODE, /* allocate a new node page if needed */
606 LOOKUP_NODE, /* look up a node without readahead */
607 LOOKUP_NODE_RA, /*
608 * look up a node with readahead called
609 * by get_data_block.
610 */
611 };
612
613 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
614
615 /* congestion wait timeout value, default: 20ms */
616 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
617
618 /* timeout value injected, default: 1000ms */
619 #define DEFAULT_FAULT_TIMEOUT (msecs_to_jiffies(1000))
620
621 /* maximum retry quota flush count */
622 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
623
624 /* maximum retry of EIO'ed page */
625 #define MAX_RETRY_PAGE_EIO 100
626
627 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
628
629 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
630
631 /* dirty segments threshold for triggering CP */
632 #define DEFAULT_DIRTY_THRESHOLD 4
633
634 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
635 #define RECOVERY_MIN_RA_BLOCKS 1
636
637 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
638
639 /* for in-memory extent cache entry */
640 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
641
642 /* number of extent info in extent cache we try to shrink */
643 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
644
645 /* number of age extent info in extent cache we try to shrink */
646 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
647 #define LAST_AGE_WEIGHT 30
648 #define SAME_AGE_REGION 1024
649
650 /*
651 * Define data block with age less than 1GB as hot data
652 * define data block with age less than 10GB but more than 1GB as warm data
653 */
654 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
655 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
656
657 /* default max read extent count per inode */
658 #define DEF_MAX_READ_EXTENT_COUNT 10240
659
660 /* extent cache type */
661 enum extent_type {
662 EX_READ,
663 EX_BLOCK_AGE,
664 NR_EXTENT_CACHES,
665 };
666
667 struct extent_info {
668 unsigned int fofs; /* start offset in a file */
669 unsigned int len; /* length of the extent */
670 union {
671 /* read extent_cache */
672 struct {
673 /* start block address of the extent */
674 block_t blk;
675 #ifdef CONFIG_F2FS_FS_COMPRESSION
676 /* physical extent length of compressed blocks */
677 unsigned int c_len;
678 #endif
679 };
680 /* block age extent_cache */
681 struct {
682 /* block age of the extent */
683 unsigned long long age;
684 /* last total blocks allocated */
685 unsigned long long last_blocks;
686 };
687 };
688 };
689
690 struct extent_node {
691 struct rb_node rb_node; /* rb node located in rb-tree */
692 struct extent_info ei; /* extent info */
693 struct list_head list; /* node in global extent list of sbi */
694 struct extent_tree *et; /* extent tree pointer */
695 };
696
697 struct extent_tree {
698 nid_t ino; /* inode number */
699 enum extent_type type; /* keep the extent tree type */
700 struct rb_root_cached root; /* root of extent info rb-tree */
701 struct extent_node *cached_en; /* recently accessed extent node */
702 struct list_head list; /* to be used by sbi->zombie_list */
703 rwlock_t lock; /* protect extent info rb-tree */
704 atomic_t node_cnt; /* # of extent node in rb-tree*/
705 bool largest_updated; /* largest extent updated */
706 struct extent_info largest; /* largest cached extent for EX_READ */
707 };
708
709 struct extent_tree_info {
710 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
711 struct mutex extent_tree_lock; /* locking extent radix tree */
712 struct list_head extent_list; /* lru list for shrinker */
713 spinlock_t extent_lock; /* locking extent lru list */
714 atomic_t total_ext_tree; /* extent tree count */
715 struct list_head zombie_list; /* extent zombie tree list */
716 atomic_t total_zombie_tree; /* extent zombie tree count */
717 atomic_t total_ext_node; /* extent info count */
718 };
719
720 /*
721 * State of block returned by f2fs_map_blocks.
722 */
723 #define F2FS_MAP_NEW (1U << 0)
724 #define F2FS_MAP_MAPPED (1U << 1)
725 #define F2FS_MAP_DELALLOC (1U << 2)
726 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
727 F2FS_MAP_DELALLOC)
728
729 struct f2fs_map_blocks {
730 struct block_device *m_bdev; /* for multi-device dio */
731 block_t m_pblk;
732 block_t m_lblk;
733 unsigned int m_len;
734 unsigned int m_flags;
735 unsigned long m_last_pblk; /* last allocated block, only used for DIO in LFS mode */
736 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
737 pgoff_t *m_next_extent; /* point to next possible extent */
738 int m_seg_type;
739 bool m_may_create; /* indicate it is from write path */
740 bool m_multidev_dio; /* indicate it allows multi-device dio */
741 };
742
743 /* for flag in get_data_block */
744 enum {
745 F2FS_GET_BLOCK_DEFAULT,
746 F2FS_GET_BLOCK_FIEMAP,
747 F2FS_GET_BLOCK_BMAP,
748 F2FS_GET_BLOCK_DIO,
749 F2FS_GET_BLOCK_PRE_DIO,
750 F2FS_GET_BLOCK_PRE_AIO,
751 F2FS_GET_BLOCK_PRECACHE,
752 };
753
754 /*
755 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
756 */
757 #define FADVISE_COLD_BIT 0x01
758 #define FADVISE_LOST_PINO_BIT 0x02
759 #define FADVISE_ENCRYPT_BIT 0x04
760 #define FADVISE_ENC_NAME_BIT 0x08
761 #define FADVISE_KEEP_SIZE_BIT 0x10
762 #define FADVISE_HOT_BIT 0x20
763 #define FADVISE_VERITY_BIT 0x40
764 #define FADVISE_TRUNC_BIT 0x80
765
766 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
767
768 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
769 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
770 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
771
772 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
773 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
774 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
775
776 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
777 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
778
779 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
780 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
781
782 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
783 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
784
785 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
786 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
787 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
788
789 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
790 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
791
792 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
793 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
794 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
795
796 #define DEF_DIR_LEVEL 0
797
798 /* used for f2fs_inode_info->flags */
799 enum {
800 FI_NEW_INODE, /* indicate newly allocated inode */
801 FI_DIRTY_INODE, /* indicate inode is dirty or not */
802 FI_AUTO_RECOVER, /* indicate inode is recoverable */
803 FI_DIRTY_DIR, /* indicate directory has dirty pages */
804 FI_INC_LINK, /* need to increment i_nlink */
805 FI_ACL_MODE, /* indicate acl mode */
806 FI_NO_ALLOC, /* should not allocate any blocks */
807 FI_FREE_NID, /* free allocated nide */
808 FI_NO_EXTENT, /* not to use the extent cache */
809 FI_INLINE_XATTR, /* used for inline xattr */
810 FI_INLINE_DATA, /* used for inline data*/
811 FI_INLINE_DENTRY, /* used for inline dentry */
812 FI_APPEND_WRITE, /* inode has appended data */
813 FI_UPDATE_WRITE, /* inode has in-place-update data */
814 FI_NEED_IPU, /* used for ipu per file */
815 FI_ATOMIC_FILE, /* indicate atomic file */
816 FI_DATA_EXIST, /* indicate data exists */
817 FI_SKIP_WRITES, /* should skip data page writeback */
818 FI_OPU_WRITE, /* used for opu per file */
819 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
820 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
821 FI_HOT_DATA, /* indicate file is hot */
822 FI_EXTRA_ATTR, /* indicate file has extra attribute */
823 FI_PROJ_INHERIT, /* indicate file inherits projectid */
824 FI_PIN_FILE, /* indicate file should not be gced */
825 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
826 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
827 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
828 FI_MMAP_FILE, /* indicate file was mmapped */
829 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
830 FI_COMPRESS_RELEASED, /* compressed blocks were released */
831 FI_ALIGNED_WRITE, /* enable aligned write */
832 FI_COW_FILE, /* indicate COW file */
833 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
834 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
835 FI_ATOMIC_REPLACE, /* indicate atomic replace */
836 FI_OPENED_FILE, /* indicate file has been opened */
837 FI_DONATE_FINISHED, /* indicate page donation of file has been finished */
838 FI_MAX, /* max flag, never be used */
839 };
840
841 struct f2fs_inode_info {
842 struct inode vfs_inode; /* serve a vfs inode */
843 unsigned long i_flags; /* keep an inode flags for ioctl */
844 unsigned char i_advise; /* use to give file attribute hints */
845 unsigned char i_dir_level; /* use for dentry level for large dir */
846 union {
847 unsigned int i_current_depth; /* only for directory depth */
848 unsigned short i_gc_failures; /* for gc failure statistic */
849 };
850 unsigned int i_pino; /* parent inode number */
851 umode_t i_acl_mode; /* keep file acl mode temporarily */
852
853 /* Use below internally in f2fs*/
854 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
855 unsigned int ioprio_hint; /* hint for IO priority */
856 struct f2fs_rwsem i_sem; /* protect fi info */
857 atomic_t dirty_pages; /* # of dirty pages */
858 f2fs_hash_t chash; /* hash value of given file name */
859 unsigned int clevel; /* maximum level of given file name */
860 struct task_struct *task; /* lookup and create consistency */
861 struct task_struct *cp_task; /* separate cp/wb IO stats*/
862 struct task_struct *wb_task; /* indicate inode is in context of writeback */
863 nid_t i_xattr_nid; /* node id that contains xattrs */
864 loff_t last_disk_size; /* lastly written file size */
865 spinlock_t i_size_lock; /* protect last_disk_size */
866
867 #ifdef CONFIG_QUOTA
868 struct dquot __rcu *i_dquot[MAXQUOTAS];
869
870 /* quota space reservation, managed internally by quota code */
871 qsize_t i_reserved_quota;
872 #endif
873 struct list_head dirty_list; /* dirty list for dirs and files */
874 struct list_head gdirty_list; /* linked in global dirty list */
875
876 /* linked in global inode list for cache donation */
877 struct list_head gdonate_list;
878 pgoff_t donate_start, donate_end; /* inclusive */
879 atomic_t open_count; /* # of open files */
880
881 struct task_struct *atomic_write_task; /* store atomic write task */
882 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
883 /* cached extent_tree entry */
884 union {
885 struct inode *cow_inode; /* copy-on-write inode for atomic write */
886 struct inode *atomic_inode;
887 /* point to atomic_inode, available only for cow_inode */
888 };
889
890 /* avoid racing between foreground op and gc */
891 struct f2fs_rwsem i_gc_rwsem[2];
892 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
893
894 int i_extra_isize; /* size of extra space located in i_addr */
895 kprojid_t i_projid; /* id for project quota */
896 int i_inline_xattr_size; /* inline xattr size */
897 struct timespec64 i_crtime; /* inode creation time */
898 struct timespec64 i_disk_time[3];/* inode disk times */
899
900 /* for file compress */
901 atomic_t i_compr_blocks; /* # of compressed blocks */
902 unsigned char i_compress_algorithm; /* algorithm type */
903 unsigned char i_log_cluster_size; /* log of cluster size */
904 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
905 unsigned char i_compress_flag; /* compress flag */
906 unsigned int i_cluster_size; /* cluster size */
907
908 unsigned int atomic_write_cnt;
909 loff_t original_i_size; /* original i_size before atomic write */
910 };
911
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)912 static inline void get_read_extent_info(struct extent_info *ext,
913 struct f2fs_extent *i_ext)
914 {
915 ext->fofs = le32_to_cpu(i_ext->fofs);
916 ext->blk = le32_to_cpu(i_ext->blk);
917 ext->len = le32_to_cpu(i_ext->len);
918 }
919
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)920 static inline void set_raw_read_extent(struct extent_info *ext,
921 struct f2fs_extent *i_ext)
922 {
923 i_ext->fofs = cpu_to_le32(ext->fofs);
924 i_ext->blk = cpu_to_le32(ext->blk);
925 i_ext->len = cpu_to_le32(ext->len);
926 }
927
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)928 static inline bool __is_discard_mergeable(struct discard_info *back,
929 struct discard_info *front, unsigned int max_len)
930 {
931 return (back->lstart + back->len == front->lstart) &&
932 (back->len + front->len <= max_len);
933 }
934
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)935 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
936 struct discard_info *back, unsigned int max_len)
937 {
938 return __is_discard_mergeable(back, cur, max_len);
939 }
940
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)941 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
942 struct discard_info *front, unsigned int max_len)
943 {
944 return __is_discard_mergeable(cur, front, max_len);
945 }
946
947 /*
948 * For free nid management
949 */
950 enum nid_state {
951 FREE_NID, /* newly added to free nid list */
952 PREALLOC_NID, /* it is preallocated */
953 MAX_NID_STATE,
954 };
955
956 enum nat_state {
957 TOTAL_NAT,
958 DIRTY_NAT,
959 RECLAIMABLE_NAT,
960 MAX_NAT_STATE,
961 };
962
963 struct f2fs_nm_info {
964 block_t nat_blkaddr; /* base disk address of NAT */
965 nid_t max_nid; /* maximum possible node ids */
966 nid_t available_nids; /* # of available node ids */
967 nid_t next_scan_nid; /* the next nid to be scanned */
968 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
969 unsigned int ram_thresh; /* control the memory footprint */
970 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
971 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
972
973 /* NAT cache management */
974 struct radix_tree_root nat_root;/* root of the nat entry cache */
975 struct radix_tree_root nat_set_root;/* root of the nat set cache */
976 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
977 struct list_head nat_entries; /* cached nat entry list (clean) */
978 spinlock_t nat_list_lock; /* protect clean nat entry list */
979 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
980 unsigned int nat_blocks; /* # of nat blocks */
981
982 /* free node ids management */
983 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
984 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
985 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
986 spinlock_t nid_list_lock; /* protect nid lists ops */
987 struct mutex build_lock; /* lock for build free nids */
988 unsigned char **free_nid_bitmap;
989 unsigned char *nat_block_bitmap;
990 unsigned short *free_nid_count; /* free nid count of NAT block */
991
992 /* for checkpoint */
993 char *nat_bitmap; /* NAT bitmap pointer */
994
995 unsigned int nat_bits_blocks; /* # of nat bits blocks */
996 unsigned char *nat_bits; /* NAT bits blocks */
997 unsigned char *full_nat_bits; /* full NAT pages */
998 unsigned char *empty_nat_bits; /* empty NAT pages */
999 #ifdef CONFIG_F2FS_CHECK_FS
1000 char *nat_bitmap_mir; /* NAT bitmap mirror */
1001 #endif
1002 int bitmap_size; /* bitmap size */
1003 };
1004
1005 /*
1006 * this structure is used as one of function parameters.
1007 * all the information are dedicated to a given direct node block determined
1008 * by the data offset in a file.
1009 */
1010 struct dnode_of_data {
1011 struct inode *inode; /* vfs inode pointer */
1012 struct folio *inode_folio; /* its inode folio, NULL is possible */
1013 struct folio *node_folio; /* cached direct node folio */
1014 nid_t nid; /* node id of the direct node block */
1015 unsigned int ofs_in_node; /* data offset in the node page */
1016 bool inode_folio_locked; /* inode folio is locked or not */
1017 bool node_changed; /* is node block changed */
1018 char cur_level; /* level of hole node page */
1019 char max_level; /* level of current page located */
1020 block_t data_blkaddr; /* block address of the node block */
1021 };
1022
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct folio * ifolio,struct folio * nfolio,nid_t nid)1023 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1024 struct folio *ifolio, struct folio *nfolio, nid_t nid)
1025 {
1026 memset(dn, 0, sizeof(*dn));
1027 dn->inode = inode;
1028 dn->inode_folio = ifolio;
1029 dn->node_folio = nfolio;
1030 dn->nid = nid;
1031 }
1032
1033 /*
1034 * For SIT manager
1035 *
1036 * By default, there are 6 active log areas across the whole main area.
1037 * When considering hot and cold data separation to reduce cleaning overhead,
1038 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1039 * respectively.
1040 * In the current design, you should not change the numbers intentionally.
1041 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1042 * logs individually according to the underlying devices. (default: 6)
1043 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1044 * data and 8 for node logs.
1045 */
1046 #define NR_CURSEG_DATA_TYPE (3)
1047 #define NR_CURSEG_NODE_TYPE (3)
1048 #define NR_CURSEG_INMEM_TYPE (2)
1049 #define NR_CURSEG_RO_TYPE (2)
1050 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1051 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1052
1053 enum log_type {
1054 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1055 CURSEG_WARM_DATA, /* data blocks */
1056 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1057 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1058 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1059 CURSEG_COLD_NODE, /* indirect node blocks */
1060 NR_PERSISTENT_LOG, /* number of persistent log */
1061 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1062 /* pinned file that needs consecutive block address */
1063 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1064 NO_CHECK_TYPE, /* number of persistent & inmem log */
1065 };
1066
1067 struct flush_cmd {
1068 struct completion wait;
1069 struct llist_node llnode;
1070 nid_t ino;
1071 int ret;
1072 };
1073
1074 struct flush_cmd_control {
1075 struct task_struct *f2fs_issue_flush; /* flush thread */
1076 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1077 atomic_t issued_flush; /* # of issued flushes */
1078 atomic_t queued_flush; /* # of queued flushes */
1079 struct llist_head issue_list; /* list for command issue */
1080 struct llist_node *dispatch_list; /* list for command dispatch */
1081 };
1082
1083 struct f2fs_sm_info {
1084 struct sit_info *sit_info; /* whole segment information */
1085 struct free_segmap_info *free_info; /* free segment information */
1086 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1087 struct curseg_info *curseg_array; /* active segment information */
1088
1089 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1090
1091 block_t seg0_blkaddr; /* block address of 0'th segment */
1092 block_t main_blkaddr; /* start block address of main area */
1093 block_t ssa_blkaddr; /* start block address of SSA area */
1094
1095 unsigned int segment_count; /* total # of segments */
1096 unsigned int main_segments; /* # of segments in main area */
1097 unsigned int reserved_segments; /* # of reserved segments */
1098 unsigned int ovp_segments; /* # of overprovision segments */
1099
1100 /* a threshold to reclaim prefree segments */
1101 unsigned int rec_prefree_segments;
1102
1103 struct list_head sit_entry_set; /* sit entry set list */
1104
1105 unsigned int ipu_policy; /* in-place-update policy */
1106 unsigned int min_ipu_util; /* in-place-update threshold */
1107 unsigned int min_fsync_blocks; /* threshold for fsync */
1108 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1109 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1110 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1111
1112 /* for flush command control */
1113 struct flush_cmd_control *fcc_info;
1114
1115 /* for discard command control */
1116 struct discard_cmd_control *dcc_info;
1117 };
1118
1119 /*
1120 * For superblock
1121 */
1122 /*
1123 * COUNT_TYPE for monitoring
1124 *
1125 * f2fs monitors the number of several block types such as on-writeback,
1126 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1127 */
1128 #define WB_DATA_TYPE(folio, f) \
1129 (f || f2fs_is_cp_guaranteed(folio) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1130 enum count_type {
1131 F2FS_DIRTY_DENTS,
1132 F2FS_DIRTY_DATA,
1133 F2FS_DIRTY_QDATA,
1134 F2FS_DIRTY_NODES,
1135 F2FS_DIRTY_META,
1136 F2FS_DIRTY_IMETA,
1137 F2FS_WB_CP_DATA,
1138 F2FS_WB_DATA,
1139 F2FS_RD_DATA,
1140 F2FS_RD_NODE,
1141 F2FS_RD_META,
1142 F2FS_DIO_WRITE,
1143 F2FS_DIO_READ,
1144 NR_COUNT_TYPE,
1145 };
1146
1147 /*
1148 * The below are the page types of bios used in submit_bio().
1149 * The available types are:
1150 * DATA User data pages. It operates as async mode.
1151 * NODE Node pages. It operates as async mode.
1152 * META FS metadata pages such as SIT, NAT, CP.
1153 * NR_PAGE_TYPE The number of page types.
1154 * META_FLUSH Make sure the previous pages are written
1155 * with waiting the bio's completion
1156 * ... Only can be used with META.
1157 */
1158 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1159 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1160 enum page_type {
1161 DATA = 0,
1162 NODE = 1, /* should not change this */
1163 META,
1164 NR_PAGE_TYPE,
1165 META_FLUSH,
1166 IPU, /* the below types are used by tracepoints only. */
1167 OPU,
1168 };
1169
1170 enum temp_type {
1171 HOT = 0, /* must be zero for meta bio */
1172 WARM,
1173 COLD,
1174 NR_TEMP_TYPE,
1175 };
1176
1177 enum need_lock_type {
1178 LOCK_REQ = 0,
1179 LOCK_DONE,
1180 LOCK_RETRY,
1181 };
1182
1183 enum cp_reason_type {
1184 CP_NO_NEEDED,
1185 CP_NON_REGULAR,
1186 CP_COMPRESSED,
1187 CP_HARDLINK,
1188 CP_SB_NEED_CP,
1189 CP_WRONG_PINO,
1190 CP_NO_SPC_ROLL,
1191 CP_NODE_NEED_CP,
1192 CP_FASTBOOT_MODE,
1193 CP_SPEC_LOG_NUM,
1194 CP_RECOVER_DIR,
1195 CP_XATTR_DIR,
1196 };
1197
1198 enum iostat_type {
1199 /* WRITE IO */
1200 APP_DIRECT_IO, /* app direct write IOs */
1201 APP_BUFFERED_IO, /* app buffered write IOs */
1202 APP_WRITE_IO, /* app write IOs */
1203 APP_MAPPED_IO, /* app mapped IOs */
1204 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1205 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1206 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1207 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1208 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1209 FS_META_IO, /* meta IOs from kworker/reclaimer */
1210 FS_GC_DATA_IO, /* data IOs from forground gc */
1211 FS_GC_NODE_IO, /* node IOs from forground gc */
1212 FS_CP_DATA_IO, /* data IOs from checkpoint */
1213 FS_CP_NODE_IO, /* node IOs from checkpoint */
1214 FS_CP_META_IO, /* meta IOs from checkpoint */
1215
1216 /* READ IO */
1217 APP_DIRECT_READ_IO, /* app direct read IOs */
1218 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1219 APP_READ_IO, /* app read IOs */
1220 APP_MAPPED_READ_IO, /* app mapped read IOs */
1221 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1222 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1223 FS_DATA_READ_IO, /* data read IOs */
1224 FS_GDATA_READ_IO, /* data read IOs from background gc */
1225 FS_CDATA_READ_IO, /* compressed data read IOs */
1226 FS_NODE_READ_IO, /* node read IOs */
1227 FS_META_READ_IO, /* meta read IOs */
1228
1229 /* other */
1230 FS_DISCARD_IO, /* discard */
1231 FS_FLUSH_IO, /* flush */
1232 FS_ZONE_RESET_IO, /* zone reset */
1233 NR_IO_TYPE,
1234 };
1235
1236 struct f2fs_io_info {
1237 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1238 nid_t ino; /* inode number */
1239 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1240 enum temp_type temp; /* contains HOT/WARM/COLD */
1241 enum req_op op; /* contains REQ_OP_ */
1242 blk_opf_t op_flags; /* req_flag_bits */
1243 block_t new_blkaddr; /* new block address to be written */
1244 block_t old_blkaddr; /* old block address before Cow */
1245 union {
1246 struct page *page; /* page to be written */
1247 struct folio *folio;
1248 };
1249 struct page *encrypted_page; /* encrypted page */
1250 struct page *compressed_page; /* compressed page */
1251 struct list_head list; /* serialize IOs */
1252 unsigned int compr_blocks; /* # of compressed block addresses */
1253 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1254 unsigned int version:8; /* version of the node */
1255 unsigned int submitted:1; /* indicate IO submission */
1256 unsigned int in_list:1; /* indicate fio is in io_list */
1257 unsigned int is_por:1; /* indicate IO is from recovery or not */
1258 unsigned int encrypted:1; /* indicate file is encrypted */
1259 unsigned int meta_gc:1; /* require meta inode GC */
1260 enum iostat_type io_type; /* io type */
1261 struct writeback_control *io_wbc; /* writeback control */
1262 struct bio **bio; /* bio for ipu */
1263 sector_t *last_block; /* last block number in bio */
1264 };
1265
1266 struct bio_entry {
1267 struct bio *bio;
1268 struct list_head list;
1269 };
1270
1271 #define is_read_io(rw) ((rw) == READ)
1272 struct f2fs_bio_info {
1273 struct f2fs_sb_info *sbi; /* f2fs superblock */
1274 struct bio *bio; /* bios to merge */
1275 sector_t last_block_in_bio; /* last block number */
1276 struct f2fs_io_info fio; /* store buffered io info. */
1277 #ifdef CONFIG_BLK_DEV_ZONED
1278 struct completion zone_wait; /* condition value for the previous open zone to close */
1279 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1280 void *bi_private; /* previous bi_private for pending bio */
1281 #endif
1282 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1283 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1284 struct list_head io_list; /* track fios */
1285 struct list_head bio_list; /* bio entry list head */
1286 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1287 };
1288
1289 #define FDEV(i) (sbi->devs[i])
1290 #define RDEV(i) (raw_super->devs[i])
1291 struct f2fs_dev_info {
1292 struct file *bdev_file;
1293 struct block_device *bdev;
1294 char path[MAX_PATH_LEN + 1];
1295 unsigned int total_segments;
1296 block_t start_blk;
1297 block_t end_blk;
1298 #ifdef CONFIG_BLK_DEV_ZONED
1299 unsigned int nr_blkz; /* Total number of zones */
1300 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1301 #endif
1302 };
1303
1304 enum inode_type {
1305 DIR_INODE, /* for dirty dir inode */
1306 FILE_INODE, /* for dirty regular/symlink inode */
1307 DIRTY_META, /* for all dirtied inode metadata */
1308 DONATE_INODE, /* for all inode to donate pages */
1309 NR_INODE_TYPE,
1310 };
1311
1312 /* for inner inode cache management */
1313 struct inode_management {
1314 struct radix_tree_root ino_root; /* ino entry array */
1315 spinlock_t ino_lock; /* for ino entry lock */
1316 struct list_head ino_list; /* inode list head */
1317 unsigned long ino_num; /* number of entries */
1318 };
1319
1320 /* for GC_AT */
1321 struct atgc_management {
1322 bool atgc_enabled; /* ATGC is enabled or not */
1323 struct rb_root_cached root; /* root of victim rb-tree */
1324 struct list_head victim_list; /* linked with all victim entries */
1325 unsigned int victim_count; /* victim count in rb-tree */
1326 unsigned int candidate_ratio; /* candidate ratio */
1327 unsigned int max_candidate_count; /* max candidate count */
1328 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1329 unsigned long long age_threshold; /* age threshold */
1330 };
1331
1332 struct f2fs_gc_control {
1333 unsigned int victim_segno; /* target victim segment number */
1334 int init_gc_type; /* FG_GC or BG_GC */
1335 bool no_bg_gc; /* check the space and stop bg_gc */
1336 bool should_migrate_blocks; /* should migrate blocks */
1337 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1338 bool one_time; /* require one time GC in one migration unit */
1339 unsigned int nr_free_secs; /* # of free sections to do GC */
1340 };
1341
1342 /*
1343 * For s_flag in struct f2fs_sb_info
1344 * Modification on enum should be synchronized with s_flag array
1345 */
1346 enum {
1347 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1348 SBI_IS_CLOSE, /* specify unmounting */
1349 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1350 SBI_POR_DOING, /* recovery is doing or not */
1351 SBI_NEED_SB_WRITE, /* need to recover superblock */
1352 SBI_NEED_CP, /* need to checkpoint */
1353 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1354 SBI_IS_RECOVERED, /* recovered orphan/data */
1355 SBI_CP_DISABLED, /* CP was disabled last mount */
1356 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1357 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1358 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1359 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1360 SBI_IS_RESIZEFS, /* resizefs is in process */
1361 SBI_IS_FREEZING, /* freezefs is in process */
1362 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1363 MAX_SBI_FLAG,
1364 };
1365
1366 enum {
1367 CP_TIME,
1368 REQ_TIME,
1369 DISCARD_TIME,
1370 GC_TIME,
1371 DISABLE_TIME,
1372 UMOUNT_DISCARD_TIMEOUT,
1373 MAX_TIME,
1374 };
1375
1376 /* Note that you need to keep synchronization with this gc_mode_names array */
1377 enum {
1378 GC_NORMAL,
1379 GC_IDLE_CB,
1380 GC_IDLE_GREEDY,
1381 GC_IDLE_AT,
1382 GC_URGENT_HIGH,
1383 GC_URGENT_LOW,
1384 GC_URGENT_MID,
1385 MAX_GC_MODE,
1386 };
1387
1388 enum {
1389 BGGC_MODE_ON, /* background gc is on */
1390 BGGC_MODE_OFF, /* background gc is off */
1391 BGGC_MODE_SYNC, /*
1392 * background gc is on, migrating blocks
1393 * like foreground gc
1394 */
1395 };
1396
1397 enum {
1398 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1399 FS_MODE_LFS, /* use lfs allocation only */
1400 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1401 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1402 };
1403
1404 enum {
1405 ALLOC_MODE_DEFAULT, /* stay default */
1406 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1407 };
1408
1409 enum fsync_mode {
1410 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1411 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1412 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1413 };
1414
1415 enum {
1416 COMPR_MODE_FS, /*
1417 * automatically compress compression
1418 * enabled files
1419 */
1420 COMPR_MODE_USER, /*
1421 * automatical compression is disabled.
1422 * user can control the file compression
1423 * using ioctls
1424 */
1425 };
1426
1427 enum {
1428 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1429 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1430 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1431 };
1432
1433 enum {
1434 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1435 MEMORY_MODE_LOW, /* memory mode for low memory devices */
1436 };
1437
1438 enum errors_option {
1439 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1440 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1441 MOUNT_ERRORS_PANIC, /* panic on errors */
1442 };
1443
1444 enum {
1445 BACKGROUND,
1446 FOREGROUND,
1447 MAX_CALL_TYPE,
1448 TOTAL_CALL = FOREGROUND,
1449 };
1450
1451 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1452 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1453 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1454
1455 /*
1456 * Layout of f2fs page.private:
1457 *
1458 * Layout A: lowest bit should be 1
1459 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1460 * bit 0 PAGE_PRIVATE_NOT_POINTER
1461 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1462 * bit 2 PAGE_PRIVATE_INLINE_INODE
1463 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1464 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1465 * bit 5- f2fs private data
1466 *
1467 * Layout B: lowest bit should be 0
1468 * page.private is a wrapped pointer.
1469 */
1470 enum {
1471 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1472 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1473 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1474 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1475 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1476 PAGE_PRIVATE_MAX
1477 };
1478
1479 /* For compression */
1480 enum compress_algorithm_type {
1481 COMPRESS_LZO,
1482 COMPRESS_LZ4,
1483 COMPRESS_ZSTD,
1484 COMPRESS_LZORLE,
1485 COMPRESS_MAX,
1486 };
1487
1488 enum compress_flag {
1489 COMPRESS_CHKSUM,
1490 COMPRESS_MAX_FLAG,
1491 };
1492
1493 #define COMPRESS_WATERMARK 20
1494 #define COMPRESS_PERCENT 20
1495
1496 #define COMPRESS_DATA_RESERVED_SIZE 4
1497 struct compress_data {
1498 __le32 clen; /* compressed data size */
1499 __le32 chksum; /* compressed data checksum */
1500 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1501 u8 cdata[]; /* compressed data */
1502 };
1503
1504 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1505
1506 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1507
1508 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1509
1510 #define COMPRESS_LEVEL_OFFSET 8
1511
1512 /* compress context */
1513 struct compress_ctx {
1514 struct inode *inode; /* inode the context belong to */
1515 pgoff_t cluster_idx; /* cluster index number */
1516 unsigned int cluster_size; /* page count in cluster */
1517 unsigned int log_cluster_size; /* log of cluster size */
1518 struct page **rpages; /* pages store raw data in cluster */
1519 unsigned int nr_rpages; /* total page number in rpages */
1520 struct page **cpages; /* pages store compressed data in cluster */
1521 unsigned int nr_cpages; /* total page number in cpages */
1522 unsigned int valid_nr_cpages; /* valid page number in cpages */
1523 void *rbuf; /* virtual mapped address on rpages */
1524 struct compress_data *cbuf; /* virtual mapped address on cpages */
1525 size_t rlen; /* valid data length in rbuf */
1526 size_t clen; /* valid data length in cbuf */
1527 void *private; /* payload buffer for specified compression algorithm */
1528 void *private2; /* extra payload buffer */
1529 };
1530
1531 /* compress context for write IO path */
1532 struct compress_io_ctx {
1533 u32 magic; /* magic number to indicate page is compressed */
1534 struct inode *inode; /* inode the context belong to */
1535 struct page **rpages; /* pages store raw data in cluster */
1536 unsigned int nr_rpages; /* total page number in rpages */
1537 atomic_t pending_pages; /* in-flight compressed page count */
1538 };
1539
1540 /* Context for decompressing one cluster on the read IO path */
1541 struct decompress_io_ctx {
1542 u32 magic; /* magic number to indicate page is compressed */
1543 struct inode *inode; /* inode the context belong to */
1544 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1545 pgoff_t cluster_idx; /* cluster index number */
1546 unsigned int cluster_size; /* page count in cluster */
1547 unsigned int log_cluster_size; /* log of cluster size */
1548 struct page **rpages; /* pages store raw data in cluster */
1549 unsigned int nr_rpages; /* total page number in rpages */
1550 struct page **cpages; /* pages store compressed data in cluster */
1551 unsigned int nr_cpages; /* total page number in cpages */
1552 struct page **tpages; /* temp pages to pad holes in cluster */
1553 void *rbuf; /* virtual mapped address on rpages */
1554 struct compress_data *cbuf; /* virtual mapped address on cpages */
1555 size_t rlen; /* valid data length in rbuf */
1556 size_t clen; /* valid data length in cbuf */
1557
1558 /*
1559 * The number of compressed pages remaining to be read in this cluster.
1560 * This is initially nr_cpages. It is decremented by 1 each time a page
1561 * has been read (or failed to be read). When it reaches 0, the cluster
1562 * is decompressed (or an error is reported).
1563 *
1564 * If an error occurs before all the pages have been submitted for I/O,
1565 * then this will never reach 0. In this case the I/O submitter is
1566 * responsible for calling f2fs_decompress_end_io() instead.
1567 */
1568 atomic_t remaining_pages;
1569
1570 /*
1571 * Number of references to this decompress_io_ctx.
1572 *
1573 * One reference is held for I/O completion. This reference is dropped
1574 * after the pagecache pages are updated and unlocked -- either after
1575 * decompression (and verity if enabled), or after an error.
1576 *
1577 * In addition, each compressed page holds a reference while it is in a
1578 * bio. These references are necessary prevent compressed pages from
1579 * being freed while they are still in a bio.
1580 */
1581 refcount_t refcnt;
1582
1583 bool failed; /* IO error occurred before decompression? */
1584 bool need_verity; /* need fs-verity verification after decompression? */
1585 unsigned char compress_algorithm; /* backup algorithm type */
1586 void *private; /* payload buffer for specified decompression algorithm */
1587 void *private2; /* extra payload buffer */
1588 struct work_struct verity_work; /* work to verify the decompressed pages */
1589 struct work_struct free_work; /* work for late free this structure itself */
1590 };
1591
1592 #define NULL_CLUSTER ((unsigned int)(~0))
1593 #define MIN_COMPRESS_LOG_SIZE 2
1594 #define MAX_COMPRESS_LOG_SIZE 8
1595 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1596
1597 struct f2fs_sb_info {
1598 struct super_block *sb; /* pointer to VFS super block */
1599 struct proc_dir_entry *s_proc; /* proc entry */
1600 struct f2fs_super_block *raw_super; /* raw super block pointer */
1601 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1602 int valid_super_block; /* valid super block no */
1603 unsigned long s_flag; /* flags for sbi */
1604 struct mutex writepages; /* mutex for writepages() */
1605
1606 #ifdef CONFIG_BLK_DEV_ZONED
1607 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1608 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1609 /* For adjust the priority writing position of data in zone UFS */
1610 unsigned int blkzone_alloc_policy;
1611 #endif
1612
1613 /* for node-related operations */
1614 struct f2fs_nm_info *nm_info; /* node manager */
1615 struct inode *node_inode; /* cache node blocks */
1616
1617 /* for segment-related operations */
1618 struct f2fs_sm_info *sm_info; /* segment manager */
1619
1620 /* for bio operations */
1621 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1622 /* keep migration IO order for LFS mode */
1623 struct f2fs_rwsem io_order_lock;
1624 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1625 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1626
1627 /* for checkpoint */
1628 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1629 int cur_cp_pack; /* remain current cp pack */
1630 spinlock_t cp_lock; /* for flag in ckpt */
1631 struct inode *meta_inode; /* cache meta blocks */
1632 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1633 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1634 struct f2fs_rwsem node_write; /* locking node writes */
1635 struct f2fs_rwsem node_change; /* locking node change */
1636 wait_queue_head_t cp_wait;
1637 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1638 long interval_time[MAX_TIME]; /* to store thresholds */
1639 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1640
1641 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1642
1643 spinlock_t fsync_node_lock; /* for node entry lock */
1644 struct list_head fsync_node_list; /* node list head */
1645 unsigned int fsync_seg_id; /* sequence id */
1646 unsigned int fsync_node_num; /* number of node entries */
1647
1648 /* for orphan inode, use 0'th array */
1649 unsigned int max_orphans; /* max orphan inodes */
1650
1651 /* for inode management */
1652 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1653 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1654 struct mutex flush_lock; /* for flush exclusion */
1655
1656 /* for extent tree cache */
1657 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1658 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1659 unsigned int max_read_extent_count; /* max read extent count per inode */
1660
1661 /* The threshold used for hot and warm data seperation*/
1662 unsigned int hot_data_age_threshold;
1663 unsigned int warm_data_age_threshold;
1664 unsigned int last_age_weight;
1665
1666 /* control donate caches */
1667 unsigned int donate_files;
1668
1669 /* basic filesystem units */
1670 unsigned int log_sectors_per_block; /* log2 sectors per block */
1671 unsigned int log_blocksize; /* log2 block size */
1672 unsigned int blocksize; /* block size */
1673 unsigned int root_ino_num; /* root inode number*/
1674 unsigned int node_ino_num; /* node inode number*/
1675 unsigned int meta_ino_num; /* meta inode number*/
1676 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1677 unsigned int blocks_per_seg; /* blocks per segment */
1678 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1679 unsigned int segs_per_sec; /* segments per section */
1680 unsigned int secs_per_zone; /* sections per zone */
1681 unsigned int total_sections; /* total section count */
1682 unsigned int total_node_count; /* total node block count */
1683 unsigned int total_valid_node_count; /* valid node block count */
1684 int dir_level; /* directory level */
1685 bool readdir_ra; /* readahead inode in readdir */
1686 u64 max_io_bytes; /* max io bytes to merge IOs */
1687
1688 block_t user_block_count; /* # of user blocks */
1689 block_t total_valid_block_count; /* # of valid blocks */
1690 block_t discard_blks; /* discard command candidats */
1691 block_t last_valid_block_count; /* for recovery */
1692 block_t reserved_blocks; /* configurable reserved blocks */
1693 block_t current_reserved_blocks; /* current reserved blocks */
1694
1695 /* Additional tracking for no checkpoint mode */
1696 block_t unusable_block_count; /* # of blocks saved by last cp */
1697
1698 unsigned int nquota_files; /* # of quota sysfile */
1699 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1700 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1701
1702 /* # of pages, see count_type */
1703 atomic_t nr_pages[NR_COUNT_TYPE];
1704 /* # of allocated blocks */
1705 struct percpu_counter alloc_valid_block_count;
1706 /* # of node block writes as roll forward recovery */
1707 struct percpu_counter rf_node_block_count;
1708
1709 /* writeback control */
1710 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1711
1712 /* valid inode count */
1713 struct percpu_counter total_valid_inode_count;
1714
1715 struct f2fs_mount_info mount_opt; /* mount options */
1716
1717 /* for cleaning operations */
1718 struct f2fs_rwsem gc_lock; /*
1719 * semaphore for GC, avoid
1720 * race between GC and GC or CP
1721 */
1722 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1723 struct atgc_management am; /* atgc management */
1724 unsigned int cur_victim_sec; /* current victim section num */
1725 unsigned int gc_mode; /* current GC state */
1726 unsigned int next_victim_seg[2]; /* next segment in victim section */
1727 spinlock_t gc_remaining_trials_lock;
1728 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1729 unsigned int gc_remaining_trials;
1730
1731 /* for skip statistic */
1732 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1733
1734 /* free sections reserved for pinned file */
1735 unsigned int reserved_pin_section;
1736
1737 /* threshold for gc trials on pinned files */
1738 unsigned short gc_pin_file_threshold;
1739 struct f2fs_rwsem pin_sem;
1740
1741 /* maximum # of trials to find a victim segment for SSR and GC */
1742 unsigned int max_victim_search;
1743 /* migration granularity of garbage collection, unit: segment */
1744 unsigned int migration_granularity;
1745 /* migration window granularity of garbage collection, unit: segment */
1746 unsigned int migration_window_granularity;
1747
1748 /*
1749 * for stat information.
1750 * one is for the LFS mode, and the other is for the SSR mode.
1751 */
1752 #ifdef CONFIG_F2FS_STAT_FS
1753 struct f2fs_stat_info *stat_info; /* FS status information */
1754 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1755 unsigned int segment_count[2]; /* # of allocated segments */
1756 unsigned int block_count[2]; /* # of allocated blocks */
1757 atomic_t inplace_count; /* # of inplace update */
1758 /* # of lookup extent cache */
1759 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1760 /* # of hit rbtree extent node */
1761 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1762 /* # of hit cached extent node */
1763 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1764 /* # of hit largest extent node in read extent cache */
1765 atomic64_t read_hit_largest;
1766 atomic_t inline_xattr; /* # of inline_xattr inodes */
1767 atomic_t inline_inode; /* # of inline_data inodes */
1768 atomic_t inline_dir; /* # of inline_dentry inodes */
1769 atomic_t compr_inode; /* # of compressed inodes */
1770 atomic64_t compr_blocks; /* # of compressed blocks */
1771 atomic_t swapfile_inode; /* # of swapfile inodes */
1772 atomic_t atomic_files; /* # of opened atomic file */
1773 atomic_t max_aw_cnt; /* max # of atomic writes */
1774 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1775 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1776 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1777 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1778 #endif
1779 spinlock_t stat_lock; /* lock for stat operations */
1780
1781 /* to attach REQ_META|REQ_FUA flags */
1782 unsigned int data_io_flag;
1783 unsigned int node_io_flag;
1784
1785 /* For sysfs support */
1786 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1787 struct completion s_kobj_unregister;
1788
1789 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1790 struct completion s_stat_kobj_unregister;
1791
1792 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1793 struct completion s_feature_list_kobj_unregister;
1794
1795 /* For shrinker support */
1796 struct list_head s_list;
1797 struct mutex umount_mutex;
1798 unsigned int shrinker_run_no;
1799
1800 /* For multi devices */
1801 int s_ndevs; /* number of devices */
1802 struct f2fs_dev_info *devs; /* for device list */
1803 unsigned int dirty_device; /* for checkpoint data flush */
1804 spinlock_t dev_lock; /* protect dirty_device */
1805 bool aligned_blksize; /* all devices has the same logical blksize */
1806 unsigned int first_seq_zone_segno; /* first segno in sequential zone */
1807
1808 /* For write statistics */
1809 u64 sectors_written_start;
1810 u64 kbytes_written;
1811
1812 /* Precomputed FS UUID checksum for seeding other checksums */
1813 __u32 s_chksum_seed;
1814
1815 struct workqueue_struct *post_read_wq; /* post read workqueue */
1816
1817 /*
1818 * If we are in irq context, let's update error information into
1819 * on-disk superblock in the work.
1820 */
1821 struct work_struct s_error_work;
1822 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1823 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1824 spinlock_t error_lock; /* protect errors/stop_reason array */
1825 bool error_dirty; /* errors of sb is dirty */
1826
1827 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1828 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1829
1830 /* For reclaimed segs statistics per each GC mode */
1831 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1832 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1833
1834 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1835
1836 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1837 int max_fragment_hole; /* max hole size for block fragmentation mode */
1838
1839 /* For atomic write statistics */
1840 atomic64_t current_atomic_write;
1841 s64 peak_atomic_write;
1842 u64 committed_atomic_block;
1843 u64 revoked_atomic_block;
1844
1845 /* carve out reserved_blocks from total blocks */
1846 bool carve_out;
1847
1848 #ifdef CONFIG_F2FS_FS_COMPRESSION
1849 struct kmem_cache *page_array_slab; /* page array entry */
1850 unsigned int page_array_slab_size; /* default page array slab size */
1851
1852 /* For runtime compression statistics */
1853 u64 compr_written_block;
1854 u64 compr_saved_block;
1855 u32 compr_new_inode;
1856
1857 /* For compressed block cache */
1858 struct inode *compress_inode; /* cache compressed blocks */
1859 unsigned int compress_percent; /* cache page percentage */
1860 unsigned int compress_watermark; /* cache page watermark */
1861 atomic_t compress_page_hit; /* cache hit count */
1862 #endif
1863
1864 #ifdef CONFIG_F2FS_IOSTAT
1865 /* For app/fs IO statistics */
1866 spinlock_t iostat_lock;
1867 unsigned long long iostat_count[NR_IO_TYPE];
1868 unsigned long long iostat_bytes[NR_IO_TYPE];
1869 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1870 bool iostat_enable;
1871 unsigned long iostat_next_period;
1872 unsigned int iostat_period_ms;
1873
1874 /* For io latency related statistics info in one iostat period */
1875 spinlock_t iostat_lat_lock;
1876 struct iostat_lat_info *iostat_io_lat;
1877 #endif
1878 };
1879
1880 /* Definitions to access f2fs_sb_info */
1881 #define SEGS_TO_BLKS(sbi, segs) \
1882 ((segs) << (sbi)->log_blocks_per_seg)
1883 #define BLKS_TO_SEGS(sbi, blks) \
1884 ((blks) >> (sbi)->log_blocks_per_seg)
1885
1886 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1887 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1888 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1889
1890 __printf(3, 4)
1891 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1892
1893 #define f2fs_err(sbi, fmt, ...) \
1894 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1895 #define f2fs_warn(sbi, fmt, ...) \
1896 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1897 #define f2fs_notice(sbi, fmt, ...) \
1898 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1899 #define f2fs_info(sbi, fmt, ...) \
1900 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1901 #define f2fs_debug(sbi, fmt, ...) \
1902 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1903
1904 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1905 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1906 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1907 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1908 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1909 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1910
1911 #ifdef CONFIG_F2FS_FAULT_INJECTION
1912 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1913 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1914 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1915 const char *func, const char *parent_func)
1916 {
1917 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1918
1919 if (!ffi->inject_rate)
1920 return false;
1921
1922 if (!IS_FAULT_SET(ffi, type))
1923 return false;
1924
1925 atomic_inc(&ffi->inject_ops);
1926 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1927 atomic_set(&ffi->inject_ops, 0);
1928 ffi->inject_count[type]++;
1929 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1930 f2fs_fault_name[type], func, parent_func);
1931 return true;
1932 }
1933 return false;
1934 }
1935 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1936 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1937 {
1938 return false;
1939 }
1940 #endif
1941
1942 /*
1943 * Test if the mounted volume is a multi-device volume.
1944 * - For a single regular disk volume, sbi->s_ndevs is 0.
1945 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1946 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1947 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1948 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1949 {
1950 return sbi->s_ndevs > 1;
1951 }
1952
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1953 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1954 {
1955 unsigned long now = jiffies;
1956
1957 sbi->last_time[type] = now;
1958
1959 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1960 if (type == REQ_TIME) {
1961 sbi->last_time[DISCARD_TIME] = now;
1962 sbi->last_time[GC_TIME] = now;
1963 }
1964 }
1965
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1966 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1967 {
1968 unsigned long interval = sbi->interval_time[type] * HZ;
1969
1970 return time_after(jiffies, sbi->last_time[type] + interval);
1971 }
1972
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1973 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1974 int type)
1975 {
1976 unsigned long interval = sbi->interval_time[type] * HZ;
1977 unsigned int wait_ms = 0;
1978 long delta;
1979
1980 delta = (sbi->last_time[type] + interval) - jiffies;
1981 if (delta > 0)
1982 wait_ms = jiffies_to_msecs(delta);
1983
1984 return wait_ms;
1985 }
1986
1987 /*
1988 * Inline functions
1989 */
__f2fs_crc32(u32 crc,const void * address,unsigned int length)1990 static inline u32 __f2fs_crc32(u32 crc, const void *address,
1991 unsigned int length)
1992 {
1993 return crc32(crc, address, length);
1994 }
1995
f2fs_crc32(const void * address,unsigned int length)1996 static inline u32 f2fs_crc32(const void *address, unsigned int length)
1997 {
1998 return __f2fs_crc32(F2FS_SUPER_MAGIC, address, length);
1999 }
2000
f2fs_chksum(u32 crc,const void * address,unsigned int length)2001 static inline u32 f2fs_chksum(u32 crc, const void *address, unsigned int length)
2002 {
2003 return __f2fs_crc32(crc, address, length);
2004 }
2005
F2FS_I(struct inode * inode)2006 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
2007 {
2008 return container_of(inode, struct f2fs_inode_info, vfs_inode);
2009 }
2010
F2FS_SB(struct super_block * sb)2011 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2012 {
2013 return sb->s_fs_info;
2014 }
2015
F2FS_I_SB(struct inode * inode)2016 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2017 {
2018 return F2FS_SB(inode->i_sb);
2019 }
2020
F2FS_M_SB(struct address_space * mapping)2021 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2022 {
2023 return F2FS_I_SB(mapping->host);
2024 }
2025
F2FS_F_SB(const struct folio * folio)2026 static inline struct f2fs_sb_info *F2FS_F_SB(const struct folio *folio)
2027 {
2028 return F2FS_M_SB(folio->mapping);
2029 }
2030
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2031 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2032 {
2033 return (struct f2fs_super_block *)(sbi->raw_super);
2034 }
2035
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2036 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2037 pgoff_t index)
2038 {
2039 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2040
2041 return (struct f2fs_super_block *)
2042 (page_address(folio_page(folio, idx_in_folio)) +
2043 F2FS_SUPER_OFFSET);
2044 }
2045
F2FS_CKPT(struct f2fs_sb_info * sbi)2046 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2047 {
2048 return (struct f2fs_checkpoint *)(sbi->ckpt);
2049 }
2050
F2FS_NODE(const struct folio * folio)2051 static inline struct f2fs_node *F2FS_NODE(const struct folio *folio)
2052 {
2053 return (struct f2fs_node *)folio_address(folio);
2054 }
2055
F2FS_INODE(const struct folio * folio)2056 static inline struct f2fs_inode *F2FS_INODE(const struct folio *folio)
2057 {
2058 return &((struct f2fs_node *)folio_address(folio))->i;
2059 }
2060
NM_I(struct f2fs_sb_info * sbi)2061 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2062 {
2063 return (struct f2fs_nm_info *)(sbi->nm_info);
2064 }
2065
SM_I(struct f2fs_sb_info * sbi)2066 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2067 {
2068 return (struct f2fs_sm_info *)(sbi->sm_info);
2069 }
2070
SIT_I(struct f2fs_sb_info * sbi)2071 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2072 {
2073 return (struct sit_info *)(SM_I(sbi)->sit_info);
2074 }
2075
FREE_I(struct f2fs_sb_info * sbi)2076 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2077 {
2078 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2079 }
2080
DIRTY_I(struct f2fs_sb_info * sbi)2081 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2082 {
2083 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2084 }
2085
META_MAPPING(struct f2fs_sb_info * sbi)2086 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2087 {
2088 return sbi->meta_inode->i_mapping;
2089 }
2090
NODE_MAPPING(struct f2fs_sb_info * sbi)2091 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2092 {
2093 return sbi->node_inode->i_mapping;
2094 }
2095
is_meta_folio(struct folio * folio)2096 static inline bool is_meta_folio(struct folio *folio)
2097 {
2098 return folio->mapping == META_MAPPING(F2FS_F_SB(folio));
2099 }
2100
is_node_folio(struct folio * folio)2101 static inline bool is_node_folio(struct folio *folio)
2102 {
2103 return folio->mapping == NODE_MAPPING(F2FS_F_SB(folio));
2104 }
2105
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2106 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2107 {
2108 return test_bit(type, &sbi->s_flag);
2109 }
2110
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2111 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2112 {
2113 set_bit(type, &sbi->s_flag);
2114 }
2115
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2116 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2117 {
2118 clear_bit(type, &sbi->s_flag);
2119 }
2120
cur_cp_version(struct f2fs_checkpoint * cp)2121 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2122 {
2123 return le64_to_cpu(cp->checkpoint_ver);
2124 }
2125
f2fs_qf_ino(struct super_block * sb,int type)2126 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2127 {
2128 if (type < F2FS_MAX_QUOTAS)
2129 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2130 return 0;
2131 }
2132
cur_cp_crc(struct f2fs_checkpoint * cp)2133 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2134 {
2135 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2136 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2137 }
2138
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2139 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2140 {
2141 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2142
2143 return ckpt_flags & f;
2144 }
2145
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2146 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2147 {
2148 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2149 }
2150
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2151 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2152 {
2153 unsigned int ckpt_flags;
2154
2155 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2156 ckpt_flags |= f;
2157 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2158 }
2159
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2160 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2161 {
2162 unsigned long flags;
2163
2164 spin_lock_irqsave(&sbi->cp_lock, flags);
2165 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2166 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2167 }
2168
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2169 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2170 {
2171 unsigned int ckpt_flags;
2172
2173 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2174 ckpt_flags &= (~f);
2175 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2176 }
2177
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2178 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2179 {
2180 unsigned long flags;
2181
2182 spin_lock_irqsave(&sbi->cp_lock, flags);
2183 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2184 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2185 }
2186
2187 #define init_f2fs_rwsem(sem) \
2188 do { \
2189 static struct lock_class_key __key; \
2190 \
2191 __init_f2fs_rwsem((sem), #sem, &__key); \
2192 } while (0)
2193
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2194 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2195 const char *sem_name, struct lock_class_key *key)
2196 {
2197 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2198 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2199 init_waitqueue_head(&sem->read_waiters);
2200 #endif
2201 }
2202
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2203 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2204 {
2205 return rwsem_is_locked(&sem->internal_rwsem);
2206 }
2207
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2208 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2209 {
2210 return rwsem_is_contended(&sem->internal_rwsem);
2211 }
2212
f2fs_down_read(struct f2fs_rwsem * sem)2213 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2214 {
2215 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2216 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2217 #else
2218 down_read(&sem->internal_rwsem);
2219 #endif
2220 }
2221
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2222 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2223 {
2224 return down_read_trylock(&sem->internal_rwsem);
2225 }
2226
f2fs_up_read(struct f2fs_rwsem * sem)2227 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2228 {
2229 up_read(&sem->internal_rwsem);
2230 }
2231
f2fs_down_write(struct f2fs_rwsem * sem)2232 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2233 {
2234 down_write(&sem->internal_rwsem);
2235 }
2236
2237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2238 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2239 {
2240 down_read_nested(&sem->internal_rwsem, subclass);
2241 }
2242
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2243 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2244 {
2245 down_write_nested(&sem->internal_rwsem, subclass);
2246 }
2247 #else
2248 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2249 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2250 #endif
2251
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2252 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2253 {
2254 return down_write_trylock(&sem->internal_rwsem);
2255 }
2256
f2fs_up_write(struct f2fs_rwsem * sem)2257 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2258 {
2259 up_write(&sem->internal_rwsem);
2260 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2261 wake_up_all(&sem->read_waiters);
2262 #endif
2263 }
2264
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2265 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2266 {
2267 unsigned long flags;
2268 unsigned char *nat_bits;
2269
2270 /*
2271 * In order to re-enable nat_bits we need to call fsck.f2fs by
2272 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2273 * so let's rely on regular fsck or unclean shutdown.
2274 */
2275
2276 if (lock)
2277 spin_lock_irqsave(&sbi->cp_lock, flags);
2278 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2279 nat_bits = NM_I(sbi)->nat_bits;
2280 NM_I(sbi)->nat_bits = NULL;
2281 if (lock)
2282 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2283
2284 kvfree(nat_bits);
2285 }
2286
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2287 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2288 struct cp_control *cpc)
2289 {
2290 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2291
2292 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2293 }
2294
f2fs_lock_op(struct f2fs_sb_info * sbi)2295 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2296 {
2297 f2fs_down_read(&sbi->cp_rwsem);
2298 }
2299
f2fs_trylock_op(struct f2fs_sb_info * sbi)2300 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2301 {
2302 if (time_to_inject(sbi, FAULT_LOCK_OP))
2303 return 0;
2304 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2305 }
2306
f2fs_unlock_op(struct f2fs_sb_info * sbi)2307 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2308 {
2309 f2fs_up_read(&sbi->cp_rwsem);
2310 }
2311
f2fs_lock_all(struct f2fs_sb_info * sbi)2312 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2313 {
2314 f2fs_down_write(&sbi->cp_rwsem);
2315 }
2316
f2fs_unlock_all(struct f2fs_sb_info * sbi)2317 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2318 {
2319 f2fs_up_write(&sbi->cp_rwsem);
2320 }
2321
__get_cp_reason(struct f2fs_sb_info * sbi)2322 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2323 {
2324 int reason = CP_SYNC;
2325
2326 if (test_opt(sbi, FASTBOOT))
2327 reason = CP_FASTBOOT;
2328 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2329 reason = CP_UMOUNT;
2330 return reason;
2331 }
2332
__remain_node_summaries(int reason)2333 static inline bool __remain_node_summaries(int reason)
2334 {
2335 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2336 }
2337
__exist_node_summaries(struct f2fs_sb_info * sbi)2338 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2339 {
2340 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2341 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2342 }
2343
2344 /*
2345 * Check whether the inode has blocks or not
2346 */
F2FS_HAS_BLOCKS(struct inode * inode)2347 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2348 {
2349 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2350
2351 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2352 }
2353
f2fs_has_xattr_block(unsigned int ofs)2354 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2355 {
2356 return ofs == XATTR_NODE_OFFSET;
2357 }
2358
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2359 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2360 struct inode *inode, bool cap)
2361 {
2362 if (!inode)
2363 return true;
2364 if (!test_opt(sbi, RESERVE_ROOT))
2365 return false;
2366 if (IS_NOQUOTA(inode))
2367 return true;
2368 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2369 return true;
2370 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2371 in_group_p(F2FS_OPTION(sbi).s_resgid))
2372 return true;
2373 if (cap && capable(CAP_SYS_RESOURCE))
2374 return true;
2375 return false;
2376 }
2377
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2378 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2379 struct inode *inode, bool cap)
2380 {
2381 block_t avail_user_block_count;
2382
2383 avail_user_block_count = sbi->user_block_count -
2384 sbi->current_reserved_blocks;
2385
2386 if (!__allow_reserved_blocks(sbi, inode, cap))
2387 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2388
2389 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2390 if (avail_user_block_count > sbi->unusable_block_count)
2391 avail_user_block_count -= sbi->unusable_block_count;
2392 else
2393 avail_user_block_count = 0;
2394 }
2395
2396 return avail_user_block_count;
2397 }
2398
2399 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2400 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2401 struct inode *inode, blkcnt_t *count, bool partial)
2402 {
2403 long long diff = 0, release = 0;
2404 block_t avail_user_block_count;
2405 int ret;
2406
2407 ret = dquot_reserve_block(inode, *count);
2408 if (ret)
2409 return ret;
2410
2411 if (time_to_inject(sbi, FAULT_BLOCK)) {
2412 release = *count;
2413 goto release_quota;
2414 }
2415
2416 /*
2417 * let's increase this in prior to actual block count change in order
2418 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2419 */
2420 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2421
2422 spin_lock(&sbi->stat_lock);
2423
2424 avail_user_block_count = get_available_block_count(sbi, inode, true);
2425 diff = (long long)sbi->total_valid_block_count + *count -
2426 avail_user_block_count;
2427 if (unlikely(diff > 0)) {
2428 if (!partial) {
2429 spin_unlock(&sbi->stat_lock);
2430 release = *count;
2431 goto enospc;
2432 }
2433 if (diff > *count)
2434 diff = *count;
2435 *count -= diff;
2436 release = diff;
2437 if (!*count) {
2438 spin_unlock(&sbi->stat_lock);
2439 goto enospc;
2440 }
2441 }
2442 sbi->total_valid_block_count += (block_t)(*count);
2443
2444 spin_unlock(&sbi->stat_lock);
2445
2446 if (unlikely(release)) {
2447 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2448 dquot_release_reservation_block(inode, release);
2449 }
2450 f2fs_i_blocks_write(inode, *count, true, true);
2451 return 0;
2452
2453 enospc:
2454 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2455 release_quota:
2456 dquot_release_reservation_block(inode, release);
2457 return -ENOSPC;
2458 }
2459
2460 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2461 static inline bool folio_test_f2fs_##name(const struct folio *folio) \
2462 { \
2463 unsigned long priv = (unsigned long)folio->private; \
2464 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2465 (1UL << PAGE_PRIVATE_##flagname); \
2466 return (priv & v) == v; \
2467 } \
2468 static inline bool page_private_##name(struct page *page) \
2469 { \
2470 return PagePrivate(page) && \
2471 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2472 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2473 }
2474
2475 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2476 static inline void folio_set_f2fs_##name(struct folio *folio) \
2477 { \
2478 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2479 (1UL << PAGE_PRIVATE_##flagname); \
2480 if (!folio->private) \
2481 folio_attach_private(folio, (void *)v); \
2482 else { \
2483 v |= (unsigned long)folio->private; \
2484 folio->private = (void *)v; \
2485 } \
2486 } \
2487 static inline void set_page_private_##name(struct page *page) \
2488 { \
2489 if (!PagePrivate(page)) \
2490 attach_page_private(page, (void *)0); \
2491 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2492 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2493 }
2494
2495 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2496 static inline void folio_clear_f2fs_##name(struct folio *folio) \
2497 { \
2498 unsigned long v = (unsigned long)folio->private; \
2499 \
2500 v &= ~(1UL << PAGE_PRIVATE_##flagname); \
2501 if (v == (1UL << PAGE_PRIVATE_NOT_POINTER)) \
2502 folio_detach_private(folio); \
2503 else \
2504 folio->private = (void *)v; \
2505 } \
2506 static inline void clear_page_private_##name(struct page *page) \
2507 { \
2508 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2509 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2510 detach_page_private(page); \
2511 }
2512
2513 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2514 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2515 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2516 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2517
2518 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2519 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2520 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2521 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2522
2523 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2524 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2525 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2526 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2527
folio_get_f2fs_data(struct folio * folio)2528 static inline unsigned long folio_get_f2fs_data(struct folio *folio)
2529 {
2530 unsigned long data = (unsigned long)folio->private;
2531
2532 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2533 return 0;
2534 return data >> PAGE_PRIVATE_MAX;
2535 }
2536
folio_set_f2fs_data(struct folio * folio,unsigned long data)2537 static inline void folio_set_f2fs_data(struct folio *folio, unsigned long data)
2538 {
2539 data = (1UL << PAGE_PRIVATE_NOT_POINTER) | (data << PAGE_PRIVATE_MAX);
2540
2541 if (!folio_test_private(folio))
2542 folio_attach_private(folio, (void *)data);
2543 else
2544 folio->private = (void *)((unsigned long)folio->private | data);
2545 }
2546
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2547 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2548 struct inode *inode,
2549 block_t count)
2550 {
2551 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2552
2553 spin_lock(&sbi->stat_lock);
2554 if (unlikely(sbi->total_valid_block_count < count)) {
2555 f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2556 sbi->total_valid_block_count, inode->i_ino, count);
2557 sbi->total_valid_block_count = 0;
2558 set_sbi_flag(sbi, SBI_NEED_FSCK);
2559 } else {
2560 sbi->total_valid_block_count -= count;
2561 }
2562 if (sbi->reserved_blocks &&
2563 sbi->current_reserved_blocks < sbi->reserved_blocks)
2564 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2565 sbi->current_reserved_blocks + count);
2566 spin_unlock(&sbi->stat_lock);
2567 if (unlikely(inode->i_blocks < sectors)) {
2568 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2569 inode->i_ino,
2570 (unsigned long long)inode->i_blocks,
2571 (unsigned long long)sectors);
2572 set_sbi_flag(sbi, SBI_NEED_FSCK);
2573 return;
2574 }
2575 f2fs_i_blocks_write(inode, count, false, true);
2576 }
2577
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2578 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2579 {
2580 atomic_inc(&sbi->nr_pages[count_type]);
2581
2582 if (count_type == F2FS_DIRTY_DENTS ||
2583 count_type == F2FS_DIRTY_NODES ||
2584 count_type == F2FS_DIRTY_META ||
2585 count_type == F2FS_DIRTY_QDATA ||
2586 count_type == F2FS_DIRTY_IMETA)
2587 set_sbi_flag(sbi, SBI_IS_DIRTY);
2588 }
2589
inode_inc_dirty_pages(struct inode * inode)2590 static inline void inode_inc_dirty_pages(struct inode *inode)
2591 {
2592 atomic_inc(&F2FS_I(inode)->dirty_pages);
2593 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2594 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2595 if (IS_NOQUOTA(inode))
2596 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2597 }
2598
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2599 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2600 {
2601 atomic_dec(&sbi->nr_pages[count_type]);
2602 }
2603
inode_dec_dirty_pages(struct inode * inode)2604 static inline void inode_dec_dirty_pages(struct inode *inode)
2605 {
2606 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2607 !S_ISLNK(inode->i_mode))
2608 return;
2609
2610 atomic_dec(&F2FS_I(inode)->dirty_pages);
2611 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2612 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2613 if (IS_NOQUOTA(inode))
2614 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2615 }
2616
inc_atomic_write_cnt(struct inode * inode)2617 static inline void inc_atomic_write_cnt(struct inode *inode)
2618 {
2619 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620 struct f2fs_inode_info *fi = F2FS_I(inode);
2621 u64 current_write;
2622
2623 fi->atomic_write_cnt++;
2624 atomic64_inc(&sbi->current_atomic_write);
2625 current_write = atomic64_read(&sbi->current_atomic_write);
2626 if (current_write > sbi->peak_atomic_write)
2627 sbi->peak_atomic_write = current_write;
2628 }
2629
release_atomic_write_cnt(struct inode * inode)2630 static inline void release_atomic_write_cnt(struct inode *inode)
2631 {
2632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2633 struct f2fs_inode_info *fi = F2FS_I(inode);
2634
2635 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2636 fi->atomic_write_cnt = 0;
2637 }
2638
get_pages(struct f2fs_sb_info * sbi,int count_type)2639 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2640 {
2641 return atomic_read(&sbi->nr_pages[count_type]);
2642 }
2643
get_dirty_pages(struct inode * inode)2644 static inline int get_dirty_pages(struct inode *inode)
2645 {
2646 return atomic_read(&F2FS_I(inode)->dirty_pages);
2647 }
2648
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2649 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2650 {
2651 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2652 BLKS_PER_SEC(sbi));
2653 }
2654
valid_user_blocks(struct f2fs_sb_info * sbi)2655 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2656 {
2657 return sbi->total_valid_block_count;
2658 }
2659
discard_blocks(struct f2fs_sb_info * sbi)2660 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2661 {
2662 return sbi->discard_blks;
2663 }
2664
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2665 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2666 {
2667 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2668
2669 /* return NAT or SIT bitmap */
2670 if (flag == NAT_BITMAP)
2671 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2672 else if (flag == SIT_BITMAP)
2673 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2674
2675 return 0;
2676 }
2677
__cp_payload(struct f2fs_sb_info * sbi)2678 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2679 {
2680 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2681 }
2682
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2683 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2684 {
2685 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2686 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2687 int offset;
2688
2689 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2690 offset = (flag == SIT_BITMAP) ?
2691 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2692 /*
2693 * if large_nat_bitmap feature is enabled, leave checksum
2694 * protection for all nat/sit bitmaps.
2695 */
2696 return tmp_ptr + offset + sizeof(__le32);
2697 }
2698
2699 if (__cp_payload(sbi) > 0) {
2700 if (flag == NAT_BITMAP)
2701 return tmp_ptr;
2702 else
2703 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2704 } else {
2705 offset = (flag == NAT_BITMAP) ?
2706 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2707 return tmp_ptr + offset;
2708 }
2709 }
2710
__start_cp_addr(struct f2fs_sb_info * sbi)2711 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2712 {
2713 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2714
2715 if (sbi->cur_cp_pack == 2)
2716 start_addr += BLKS_PER_SEG(sbi);
2717 return start_addr;
2718 }
2719
__start_cp_next_addr(struct f2fs_sb_info * sbi)2720 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2721 {
2722 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2723
2724 if (sbi->cur_cp_pack == 1)
2725 start_addr += BLKS_PER_SEG(sbi);
2726 return start_addr;
2727 }
2728
__set_cp_next_pack(struct f2fs_sb_info * sbi)2729 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2730 {
2731 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2732 }
2733
__start_sum_addr(struct f2fs_sb_info * sbi)2734 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2735 {
2736 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2737 }
2738
2739 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2740 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2741 struct inode *inode, bool is_inode)
2742 {
2743 block_t valid_block_count;
2744 unsigned int valid_node_count;
2745 unsigned int avail_user_block_count;
2746 int err;
2747
2748 if (is_inode) {
2749 if (inode) {
2750 err = dquot_alloc_inode(inode);
2751 if (err)
2752 return err;
2753 }
2754 } else {
2755 err = dquot_reserve_block(inode, 1);
2756 if (err)
2757 return err;
2758 }
2759
2760 if (time_to_inject(sbi, FAULT_BLOCK))
2761 goto enospc;
2762
2763 spin_lock(&sbi->stat_lock);
2764
2765 valid_block_count = sbi->total_valid_block_count + 1;
2766 avail_user_block_count = get_available_block_count(sbi, inode, false);
2767
2768 if (unlikely(valid_block_count > avail_user_block_count)) {
2769 spin_unlock(&sbi->stat_lock);
2770 goto enospc;
2771 }
2772
2773 valid_node_count = sbi->total_valid_node_count + 1;
2774 if (unlikely(valid_node_count > sbi->total_node_count)) {
2775 spin_unlock(&sbi->stat_lock);
2776 goto enospc;
2777 }
2778
2779 sbi->total_valid_node_count++;
2780 sbi->total_valid_block_count++;
2781 spin_unlock(&sbi->stat_lock);
2782
2783 if (inode) {
2784 if (is_inode)
2785 f2fs_mark_inode_dirty_sync(inode, true);
2786 else
2787 f2fs_i_blocks_write(inode, 1, true, true);
2788 }
2789
2790 percpu_counter_inc(&sbi->alloc_valid_block_count);
2791 return 0;
2792
2793 enospc:
2794 if (is_inode) {
2795 if (inode)
2796 dquot_free_inode(inode);
2797 } else {
2798 dquot_release_reservation_block(inode, 1);
2799 }
2800 return -ENOSPC;
2801 }
2802
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2803 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2804 struct inode *inode, bool is_inode)
2805 {
2806 spin_lock(&sbi->stat_lock);
2807
2808 if (unlikely(!sbi->total_valid_block_count ||
2809 !sbi->total_valid_node_count)) {
2810 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2811 sbi->total_valid_block_count,
2812 sbi->total_valid_node_count);
2813 set_sbi_flag(sbi, SBI_NEED_FSCK);
2814 } else {
2815 sbi->total_valid_block_count--;
2816 sbi->total_valid_node_count--;
2817 }
2818
2819 if (sbi->reserved_blocks &&
2820 sbi->current_reserved_blocks < sbi->reserved_blocks)
2821 sbi->current_reserved_blocks++;
2822
2823 spin_unlock(&sbi->stat_lock);
2824
2825 if (is_inode) {
2826 dquot_free_inode(inode);
2827 } else {
2828 if (unlikely(inode->i_blocks == 0)) {
2829 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2830 inode->i_ino,
2831 (unsigned long long)inode->i_blocks);
2832 set_sbi_flag(sbi, SBI_NEED_FSCK);
2833 return;
2834 }
2835 f2fs_i_blocks_write(inode, 1, false, true);
2836 }
2837 }
2838
valid_node_count(struct f2fs_sb_info * sbi)2839 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2840 {
2841 return sbi->total_valid_node_count;
2842 }
2843
inc_valid_inode_count(struct f2fs_sb_info * sbi)2844 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2845 {
2846 percpu_counter_inc(&sbi->total_valid_inode_count);
2847 }
2848
dec_valid_inode_count(struct f2fs_sb_info * sbi)2849 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2850 {
2851 percpu_counter_dec(&sbi->total_valid_inode_count);
2852 }
2853
valid_inode_count(struct f2fs_sb_info * sbi)2854 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2855 {
2856 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2857 }
2858
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2859 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2860 pgoff_t index, bool for_write)
2861 {
2862 struct folio *folio;
2863 unsigned int flags;
2864
2865 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2866 fgf_t fgf_flags;
2867
2868 if (!for_write)
2869 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2870 else
2871 fgf_flags = FGP_LOCK;
2872 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2873 if (!IS_ERR(folio))
2874 return folio;
2875
2876 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2877 return ERR_PTR(-ENOMEM);
2878 }
2879
2880 if (!for_write)
2881 return filemap_grab_folio(mapping, index);
2882
2883 flags = memalloc_nofs_save();
2884 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2885 mapping_gfp_mask(mapping));
2886 memalloc_nofs_restore(flags);
2887
2888 return folio;
2889 }
2890
f2fs_filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2891 static inline struct folio *f2fs_filemap_get_folio(
2892 struct address_space *mapping, pgoff_t index,
2893 fgf_t fgp_flags, gfp_t gfp_mask)
2894 {
2895 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2896 return ERR_PTR(-ENOMEM);
2897
2898 return __filemap_get_folio(mapping, index, fgp_flags, gfp_mask);
2899 }
2900
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2901 static inline struct page *f2fs_pagecache_get_page(
2902 struct address_space *mapping, pgoff_t index,
2903 fgf_t fgp_flags, gfp_t gfp_mask)
2904 {
2905 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2906 return NULL;
2907
2908 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2909 }
2910
f2fs_folio_put(struct folio * folio,bool unlock)2911 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2912 {
2913 if (IS_ERR_OR_NULL(folio))
2914 return;
2915
2916 if (unlock) {
2917 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2918 folio_unlock(folio);
2919 }
2920 folio_put(folio);
2921 }
2922
f2fs_put_page(struct page * page,int unlock)2923 static inline void f2fs_put_page(struct page *page, int unlock)
2924 {
2925 if (!page)
2926 return;
2927 f2fs_folio_put(page_folio(page), unlock);
2928 }
2929
f2fs_put_dnode(struct dnode_of_data * dn)2930 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2931 {
2932 if (dn->node_folio)
2933 f2fs_folio_put(dn->node_folio, true);
2934 if (dn->inode_folio && dn->node_folio != dn->inode_folio)
2935 f2fs_folio_put(dn->inode_folio, false);
2936 dn->node_folio = NULL;
2937 dn->inode_folio = NULL;
2938 }
2939
f2fs_kmem_cache_create(const char * name,size_t size)2940 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2941 size_t size)
2942 {
2943 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2944 }
2945
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2946 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2947 gfp_t flags)
2948 {
2949 void *entry;
2950
2951 entry = kmem_cache_alloc(cachep, flags);
2952 if (!entry)
2953 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2954 return entry;
2955 }
2956
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2957 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2958 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2959 {
2960 if (nofail)
2961 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2962
2963 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2964 return NULL;
2965
2966 return kmem_cache_alloc(cachep, flags);
2967 }
2968
is_inflight_io(struct f2fs_sb_info * sbi,int type)2969 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2970 {
2971 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2972 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2973 get_pages(sbi, F2FS_WB_CP_DATA) ||
2974 get_pages(sbi, F2FS_DIO_READ) ||
2975 get_pages(sbi, F2FS_DIO_WRITE))
2976 return true;
2977
2978 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2979 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2980 return true;
2981
2982 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2983 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2984 return true;
2985 return false;
2986 }
2987
is_inflight_read_io(struct f2fs_sb_info * sbi)2988 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2989 {
2990 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2991 }
2992
is_idle(struct f2fs_sb_info * sbi,int type)2993 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2994 {
2995 bool zoned_gc = (type == GC_TIME &&
2996 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2997
2998 if (sbi->gc_mode == GC_URGENT_HIGH)
2999 return true;
3000
3001 if (zoned_gc) {
3002 if (is_inflight_read_io(sbi))
3003 return false;
3004 } else {
3005 if (is_inflight_io(sbi, type))
3006 return false;
3007 }
3008
3009 if (sbi->gc_mode == GC_URGENT_MID)
3010 return true;
3011
3012 if (sbi->gc_mode == GC_URGENT_LOW &&
3013 (type == DISCARD_TIME || type == GC_TIME))
3014 return true;
3015
3016 if (zoned_gc)
3017 return true;
3018
3019 return f2fs_time_over(sbi, type);
3020 }
3021
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3022 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3023 unsigned long index, void *item)
3024 {
3025 while (radix_tree_insert(root, index, item))
3026 cond_resched();
3027 }
3028
3029 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
3030
IS_INODE(const struct folio * folio)3031 static inline bool IS_INODE(const struct folio *folio)
3032 {
3033 struct f2fs_node *p = F2FS_NODE(folio);
3034
3035 return RAW_IS_INODE(p);
3036 }
3037
offset_in_addr(struct f2fs_inode * i)3038 static inline int offset_in_addr(struct f2fs_inode *i)
3039 {
3040 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3041 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3042 }
3043
blkaddr_in_node(struct f2fs_node * node)3044 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3045 {
3046 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3047 }
3048
3049 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct folio * node_folio)3050 static inline unsigned int get_dnode_base(struct inode *inode,
3051 struct folio *node_folio)
3052 {
3053 if (!IS_INODE(node_folio))
3054 return 0;
3055
3056 return inode ? get_extra_isize(inode) :
3057 offset_in_addr(&F2FS_NODE(node_folio)->i);
3058 }
3059
get_dnode_addr(struct inode * inode,struct folio * node_folio)3060 static inline __le32 *get_dnode_addr(struct inode *inode,
3061 struct folio *node_folio)
3062 {
3063 return blkaddr_in_node(F2FS_NODE(node_folio)) +
3064 get_dnode_base(inode, node_folio);
3065 }
3066
data_blkaddr(struct inode * inode,struct folio * node_folio,unsigned int offset)3067 static inline block_t data_blkaddr(struct inode *inode,
3068 struct folio *node_folio, unsigned int offset)
3069 {
3070 return le32_to_cpu(*(get_dnode_addr(inode, node_folio) + offset));
3071 }
3072
f2fs_data_blkaddr(struct dnode_of_data * dn)3073 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3074 {
3075 return data_blkaddr(dn->inode, dn->node_folio, dn->ofs_in_node);
3076 }
3077
f2fs_test_bit(unsigned int nr,char * addr)3078 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3079 {
3080 int mask;
3081
3082 addr += (nr >> 3);
3083 mask = BIT(7 - (nr & 0x07));
3084 return mask & *addr;
3085 }
3086
f2fs_set_bit(unsigned int nr,char * addr)3087 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3088 {
3089 int mask;
3090
3091 addr += (nr >> 3);
3092 mask = BIT(7 - (nr & 0x07));
3093 *addr |= mask;
3094 }
3095
f2fs_clear_bit(unsigned int nr,char * addr)3096 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3097 {
3098 int mask;
3099
3100 addr += (nr >> 3);
3101 mask = BIT(7 - (nr & 0x07));
3102 *addr &= ~mask;
3103 }
3104
f2fs_test_and_set_bit(unsigned int nr,char * addr)3105 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3106 {
3107 int mask;
3108 int ret;
3109
3110 addr += (nr >> 3);
3111 mask = BIT(7 - (nr & 0x07));
3112 ret = mask & *addr;
3113 *addr |= mask;
3114 return ret;
3115 }
3116
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3117 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3118 {
3119 int mask;
3120 int ret;
3121
3122 addr += (nr >> 3);
3123 mask = BIT(7 - (nr & 0x07));
3124 ret = mask & *addr;
3125 *addr &= ~mask;
3126 return ret;
3127 }
3128
f2fs_change_bit(unsigned int nr,char * addr)3129 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3130 {
3131 int mask;
3132
3133 addr += (nr >> 3);
3134 mask = BIT(7 - (nr & 0x07));
3135 *addr ^= mask;
3136 }
3137
3138 /*
3139 * On-disk inode flags (f2fs_inode::i_flags)
3140 */
3141 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3142 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3143 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3144 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3145 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3146 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3147 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3148 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3149 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3150 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3151 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3152 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3153
3154 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3155
3156 /* Flags that should be inherited by new inodes from their parent. */
3157 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3158 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3159 F2FS_CASEFOLD_FL)
3160
3161 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3162 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3163 F2FS_CASEFOLD_FL))
3164
3165 /* Flags that are appropriate for non-directories/regular files. */
3166 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3167
3168 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3169
f2fs_mask_flags(umode_t mode,__u32 flags)3170 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3171 {
3172 if (S_ISDIR(mode))
3173 return flags;
3174 else if (S_ISREG(mode))
3175 return flags & F2FS_REG_FLMASK;
3176 else
3177 return flags & F2FS_OTHER_FLMASK;
3178 }
3179
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3180 static inline void __mark_inode_dirty_flag(struct inode *inode,
3181 int flag, bool set)
3182 {
3183 switch (flag) {
3184 case FI_INLINE_XATTR:
3185 case FI_INLINE_DATA:
3186 case FI_INLINE_DENTRY:
3187 case FI_NEW_INODE:
3188 if (set)
3189 return;
3190 fallthrough;
3191 case FI_DATA_EXIST:
3192 case FI_PIN_FILE:
3193 case FI_COMPRESS_RELEASED:
3194 f2fs_mark_inode_dirty_sync(inode, true);
3195 }
3196 }
3197
set_inode_flag(struct inode * inode,int flag)3198 static inline void set_inode_flag(struct inode *inode, int flag)
3199 {
3200 set_bit(flag, F2FS_I(inode)->flags);
3201 __mark_inode_dirty_flag(inode, flag, true);
3202 }
3203
is_inode_flag_set(struct inode * inode,int flag)3204 static inline int is_inode_flag_set(struct inode *inode, int flag)
3205 {
3206 return test_bit(flag, F2FS_I(inode)->flags);
3207 }
3208
clear_inode_flag(struct inode * inode,int flag)3209 static inline void clear_inode_flag(struct inode *inode, int flag)
3210 {
3211 clear_bit(flag, F2FS_I(inode)->flags);
3212 __mark_inode_dirty_flag(inode, flag, false);
3213 }
3214
f2fs_verity_in_progress(struct inode * inode)3215 static inline bool f2fs_verity_in_progress(struct inode *inode)
3216 {
3217 return IS_ENABLED(CONFIG_FS_VERITY) &&
3218 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3219 }
3220
set_acl_inode(struct inode * inode,umode_t mode)3221 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3222 {
3223 F2FS_I(inode)->i_acl_mode = mode;
3224 set_inode_flag(inode, FI_ACL_MODE);
3225 f2fs_mark_inode_dirty_sync(inode, false);
3226 }
3227
f2fs_i_links_write(struct inode * inode,bool inc)3228 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3229 {
3230 if (inc)
3231 inc_nlink(inode);
3232 else
3233 drop_nlink(inode);
3234 f2fs_mark_inode_dirty_sync(inode, true);
3235 }
3236
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3237 static inline void f2fs_i_blocks_write(struct inode *inode,
3238 block_t diff, bool add, bool claim)
3239 {
3240 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3241 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3242
3243 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3244 if (add) {
3245 if (claim)
3246 dquot_claim_block(inode, diff);
3247 else
3248 dquot_alloc_block_nofail(inode, diff);
3249 } else {
3250 dquot_free_block(inode, diff);
3251 }
3252
3253 f2fs_mark_inode_dirty_sync(inode, true);
3254 if (clean || recover)
3255 set_inode_flag(inode, FI_AUTO_RECOVER);
3256 }
3257
3258 static inline bool f2fs_is_atomic_file(struct inode *inode);
3259
f2fs_i_size_write(struct inode * inode,loff_t i_size)3260 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3261 {
3262 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3263 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3264
3265 if (i_size_read(inode) == i_size)
3266 return;
3267
3268 i_size_write(inode, i_size);
3269
3270 if (f2fs_is_atomic_file(inode))
3271 return;
3272
3273 f2fs_mark_inode_dirty_sync(inode, true);
3274 if (clean || recover)
3275 set_inode_flag(inode, FI_AUTO_RECOVER);
3276 }
3277
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3278 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3279 {
3280 F2FS_I(inode)->i_current_depth = depth;
3281 f2fs_mark_inode_dirty_sync(inode, true);
3282 }
3283
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3284 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3285 unsigned int count)
3286 {
3287 F2FS_I(inode)->i_gc_failures = count;
3288 f2fs_mark_inode_dirty_sync(inode, true);
3289 }
3290
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3291 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3292 {
3293 F2FS_I(inode)->i_xattr_nid = xnid;
3294 f2fs_mark_inode_dirty_sync(inode, true);
3295 }
3296
f2fs_i_pino_write(struct inode * inode,nid_t pino)3297 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3298 {
3299 F2FS_I(inode)->i_pino = pino;
3300 f2fs_mark_inode_dirty_sync(inode, true);
3301 }
3302
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3303 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3304 {
3305 struct f2fs_inode_info *fi = F2FS_I(inode);
3306
3307 if (ri->i_inline & F2FS_INLINE_XATTR)
3308 set_bit(FI_INLINE_XATTR, fi->flags);
3309 if (ri->i_inline & F2FS_INLINE_DATA)
3310 set_bit(FI_INLINE_DATA, fi->flags);
3311 if (ri->i_inline & F2FS_INLINE_DENTRY)
3312 set_bit(FI_INLINE_DENTRY, fi->flags);
3313 if (ri->i_inline & F2FS_DATA_EXIST)
3314 set_bit(FI_DATA_EXIST, fi->flags);
3315 if (ri->i_inline & F2FS_EXTRA_ATTR)
3316 set_bit(FI_EXTRA_ATTR, fi->flags);
3317 if (ri->i_inline & F2FS_PIN_FILE)
3318 set_bit(FI_PIN_FILE, fi->flags);
3319 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3320 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3321 }
3322
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3323 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3324 {
3325 ri->i_inline = 0;
3326
3327 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3328 ri->i_inline |= F2FS_INLINE_XATTR;
3329 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3330 ri->i_inline |= F2FS_INLINE_DATA;
3331 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3332 ri->i_inline |= F2FS_INLINE_DENTRY;
3333 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3334 ri->i_inline |= F2FS_DATA_EXIST;
3335 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3336 ri->i_inline |= F2FS_EXTRA_ATTR;
3337 if (is_inode_flag_set(inode, FI_PIN_FILE))
3338 ri->i_inline |= F2FS_PIN_FILE;
3339 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3340 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3341 }
3342
f2fs_has_extra_attr(struct inode * inode)3343 static inline int f2fs_has_extra_attr(struct inode *inode)
3344 {
3345 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3346 }
3347
f2fs_has_inline_xattr(struct inode * inode)3348 static inline int f2fs_has_inline_xattr(struct inode *inode)
3349 {
3350 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3351 }
3352
f2fs_compressed_file(struct inode * inode)3353 static inline int f2fs_compressed_file(struct inode *inode)
3354 {
3355 return S_ISREG(inode->i_mode) &&
3356 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3357 }
3358
f2fs_need_compress_data(struct inode * inode)3359 static inline bool f2fs_need_compress_data(struct inode *inode)
3360 {
3361 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3362
3363 if (!f2fs_compressed_file(inode))
3364 return false;
3365
3366 if (compress_mode == COMPR_MODE_FS)
3367 return true;
3368 else if (compress_mode == COMPR_MODE_USER &&
3369 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3370 return true;
3371
3372 return false;
3373 }
3374
addrs_per_page(struct inode * inode,bool is_inode)3375 static inline unsigned int addrs_per_page(struct inode *inode,
3376 bool is_inode)
3377 {
3378 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3379 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3380
3381 if (f2fs_compressed_file(inode))
3382 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3383 return addrs;
3384 }
3385
3386 static inline
inline_xattr_addr(struct inode * inode,const struct folio * folio)3387 void *inline_xattr_addr(struct inode *inode, const struct folio *folio)
3388 {
3389 struct f2fs_inode *ri = F2FS_INODE(folio);
3390
3391 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3392 get_inline_xattr_addrs(inode)]);
3393 }
3394
inline_xattr_size(struct inode * inode)3395 static inline int inline_xattr_size(struct inode *inode)
3396 {
3397 if (f2fs_has_inline_xattr(inode))
3398 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3399 return 0;
3400 }
3401
3402 /*
3403 * Notice: check inline_data flag without inode page lock is unsafe.
3404 * It could change at any time by f2fs_convert_inline_folio().
3405 */
f2fs_has_inline_data(struct inode * inode)3406 static inline int f2fs_has_inline_data(struct inode *inode)
3407 {
3408 return is_inode_flag_set(inode, FI_INLINE_DATA);
3409 }
3410
f2fs_exist_data(struct inode * inode)3411 static inline int f2fs_exist_data(struct inode *inode)
3412 {
3413 return is_inode_flag_set(inode, FI_DATA_EXIST);
3414 }
3415
f2fs_is_mmap_file(struct inode * inode)3416 static inline int f2fs_is_mmap_file(struct inode *inode)
3417 {
3418 return is_inode_flag_set(inode, FI_MMAP_FILE);
3419 }
3420
f2fs_is_pinned_file(struct inode * inode)3421 static inline bool f2fs_is_pinned_file(struct inode *inode)
3422 {
3423 return is_inode_flag_set(inode, FI_PIN_FILE);
3424 }
3425
f2fs_is_atomic_file(struct inode * inode)3426 static inline bool f2fs_is_atomic_file(struct inode *inode)
3427 {
3428 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3429 }
3430
f2fs_is_cow_file(struct inode * inode)3431 static inline bool f2fs_is_cow_file(struct inode *inode)
3432 {
3433 return is_inode_flag_set(inode, FI_COW_FILE);
3434 }
3435
inline_data_addr(struct inode * inode,struct folio * folio)3436 static inline void *inline_data_addr(struct inode *inode, struct folio *folio)
3437 {
3438 __le32 *addr = get_dnode_addr(inode, folio);
3439
3440 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3441 }
3442
f2fs_has_inline_dentry(struct inode * inode)3443 static inline int f2fs_has_inline_dentry(struct inode *inode)
3444 {
3445 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3446 }
3447
is_file(struct inode * inode,int type)3448 static inline int is_file(struct inode *inode, int type)
3449 {
3450 return F2FS_I(inode)->i_advise & type;
3451 }
3452
set_file(struct inode * inode,int type)3453 static inline void set_file(struct inode *inode, int type)
3454 {
3455 if (is_file(inode, type))
3456 return;
3457 F2FS_I(inode)->i_advise |= type;
3458 f2fs_mark_inode_dirty_sync(inode, true);
3459 }
3460
clear_file(struct inode * inode,int type)3461 static inline void clear_file(struct inode *inode, int type)
3462 {
3463 if (!is_file(inode, type))
3464 return;
3465 F2FS_I(inode)->i_advise &= ~type;
3466 f2fs_mark_inode_dirty_sync(inode, true);
3467 }
3468
f2fs_is_time_consistent(struct inode * inode)3469 static inline bool f2fs_is_time_consistent(struct inode *inode)
3470 {
3471 struct timespec64 ts = inode_get_atime(inode);
3472
3473 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3474 return false;
3475 ts = inode_get_ctime(inode);
3476 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3477 return false;
3478 ts = inode_get_mtime(inode);
3479 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3480 return false;
3481 return true;
3482 }
3483
f2fs_skip_inode_update(struct inode * inode,int dsync)3484 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3485 {
3486 bool ret;
3487
3488 if (dsync) {
3489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3490
3491 spin_lock(&sbi->inode_lock[DIRTY_META]);
3492 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3493 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3494 return ret;
3495 }
3496 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3497 file_keep_isize(inode) ||
3498 i_size_read(inode) & ~PAGE_MASK)
3499 return false;
3500
3501 if (!f2fs_is_time_consistent(inode))
3502 return false;
3503
3504 spin_lock(&F2FS_I(inode)->i_size_lock);
3505 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3506 spin_unlock(&F2FS_I(inode)->i_size_lock);
3507
3508 return ret;
3509 }
3510
f2fs_readonly(struct super_block * sb)3511 static inline bool f2fs_readonly(struct super_block *sb)
3512 {
3513 return sb_rdonly(sb);
3514 }
3515
f2fs_cp_error(struct f2fs_sb_info * sbi)3516 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3517 {
3518 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3519 }
3520
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3521 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3522 size_t size, gfp_t flags)
3523 {
3524 if (time_to_inject(sbi, FAULT_KMALLOC))
3525 return NULL;
3526
3527 return kmalloc(size, flags);
3528 }
3529
f2fs_getname(struct f2fs_sb_info * sbi)3530 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3531 {
3532 if (time_to_inject(sbi, FAULT_KMALLOC))
3533 return NULL;
3534
3535 return __getname();
3536 }
3537
f2fs_putname(char * buf)3538 static inline void f2fs_putname(char *buf)
3539 {
3540 __putname(buf);
3541 }
3542
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3543 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3544 size_t size, gfp_t flags)
3545 {
3546 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3547 }
3548
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3549 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3550 size_t size, gfp_t flags)
3551 {
3552 if (time_to_inject(sbi, FAULT_KVMALLOC))
3553 return NULL;
3554
3555 return kvmalloc(size, flags);
3556 }
3557
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3558 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3559 size_t size, gfp_t flags)
3560 {
3561 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3562 }
3563
f2fs_vmalloc(struct f2fs_sb_info * sbi,size_t size)3564 static inline void *f2fs_vmalloc(struct f2fs_sb_info *sbi, size_t size)
3565 {
3566 if (time_to_inject(sbi, FAULT_VMALLOC))
3567 return NULL;
3568
3569 return vmalloc(size);
3570 }
3571
get_extra_isize(struct inode * inode)3572 static inline int get_extra_isize(struct inode *inode)
3573 {
3574 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3575 }
3576
get_inline_xattr_addrs(struct inode * inode)3577 static inline int get_inline_xattr_addrs(struct inode *inode)
3578 {
3579 return F2FS_I(inode)->i_inline_xattr_size;
3580 }
3581
3582 #define f2fs_get_inode_mode(i) \
3583 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3584 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3585
3586 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3587
3588 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3589 (offsetof(struct f2fs_inode, i_extra_end) - \
3590 offsetof(struct f2fs_inode, i_extra_isize)) \
3591
3592 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3593 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3594 ((offsetof(typeof(*(f2fs_inode)), field) + \
3595 sizeof((f2fs_inode)->field)) \
3596 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3597
3598 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3599
3600 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3601
3602 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3603 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3604 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3605 block_t blkaddr, int type)
3606 {
3607 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3608 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3609 blkaddr, type);
3610 }
3611
__is_valid_data_blkaddr(block_t blkaddr)3612 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3613 {
3614 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3615 blkaddr == COMPRESS_ADDR)
3616 return false;
3617 return true;
3618 }
3619
3620 /*
3621 * file.c
3622 */
3623 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3624 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3625 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3626 int f2fs_truncate(struct inode *inode);
3627 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3628 struct kstat *stat, u32 request_mask, unsigned int flags);
3629 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3630 struct iattr *attr);
3631 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3632 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3633 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3634 bool readonly, bool need_lock);
3635 int f2fs_precache_extents(struct inode *inode);
3636 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa);
3637 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3638 struct dentry *dentry, struct file_kattr *fa);
3639 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3640 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3641 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3642 int f2fs_pin_file_control(struct inode *inode, bool inc);
3643
3644 /*
3645 * inode.c
3646 */
3647 void f2fs_set_inode_flags(struct inode *inode);
3648 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct folio *folio);
3649 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct folio *folio);
3650 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3651 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3652 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3653 void f2fs_update_inode(struct inode *inode, struct folio *node_folio);
3654 void f2fs_update_inode_page(struct inode *inode);
3655 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3656 void f2fs_remove_donate_inode(struct inode *inode);
3657 void f2fs_evict_inode(struct inode *inode);
3658 void f2fs_handle_failed_inode(struct inode *inode);
3659
3660 /*
3661 * namei.c
3662 */
3663 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3664 bool hot, bool set);
3665 struct dentry *f2fs_get_parent(struct dentry *child);
3666 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3667 struct inode **new_inode);
3668
3669 /*
3670 * dir.c
3671 */
3672 #if IS_ENABLED(CONFIG_UNICODE)
3673 int f2fs_init_casefolded_name(const struct inode *dir,
3674 struct f2fs_filename *fname);
3675 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3676 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3677 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3678 struct f2fs_filename *fname)
3679 {
3680 return 0;
3681 }
3682
f2fs_free_casefolded_name(struct f2fs_filename * fname)3683 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3684 {
3685 }
3686 #endif /* CONFIG_UNICODE */
3687
3688 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3689 int lookup, struct f2fs_filename *fname);
3690 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3691 struct f2fs_filename *fname);
3692 void f2fs_free_filename(struct f2fs_filename *fname);
3693 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3694 const struct f2fs_filename *fname, int *max_slots,
3695 bool use_hash);
3696 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3697 unsigned int start_pos, struct fscrypt_str *fstr);
3698 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3699 struct f2fs_dentry_ptr *d);
3700 struct folio *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3701 const struct f2fs_filename *fname, struct folio *dfolio);
3702 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3703 unsigned int current_depth);
3704 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3705 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3706 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3707 const struct f2fs_filename *fname, struct folio **res_folio);
3708 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3709 const struct qstr *child, struct folio **res_folio);
3710 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct folio **f);
3711 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3712 struct folio **folio);
3713 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3714 struct folio *folio, struct inode *inode);
3715 bool f2fs_has_enough_room(struct inode *dir, struct folio *ifolio,
3716 const struct f2fs_filename *fname);
3717 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3718 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3719 unsigned int bit_pos);
3720 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3721 struct inode *inode, nid_t ino, umode_t mode);
3722 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3723 struct inode *inode, nid_t ino, umode_t mode);
3724 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3725 struct inode *inode, nid_t ino, umode_t mode);
3726 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct folio *folio,
3727 struct inode *dir, struct inode *inode);
3728 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3729 struct f2fs_filename *fname);
3730 bool f2fs_empty_dir(struct inode *dir);
3731
f2fs_add_link(struct dentry * dentry,struct inode * inode)3732 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3733 {
3734 if (fscrypt_is_nokey_name(dentry))
3735 return -ENOKEY;
3736 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3737 inode, inode->i_ino, inode->i_mode);
3738 }
3739
3740 /*
3741 * super.c
3742 */
3743 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3744 void f2fs_inode_synced(struct inode *inode);
3745 int f2fs_dquot_initialize(struct inode *inode);
3746 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3747 int f2fs_do_quota_sync(struct super_block *sb, int type);
3748 loff_t max_file_blocks(struct inode *inode);
3749 void f2fs_quota_off_umount(struct super_block *sb);
3750 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3751 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3752 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3753 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3754 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3755 int f2fs_sync_fs(struct super_block *sb, int sync);
3756 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3757
3758 /*
3759 * hash.c
3760 */
3761 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3762
3763 /*
3764 * node.c
3765 */
3766 struct node_info;
3767
3768 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3769 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3770 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio);
3771 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3772 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio);
3773 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3774 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3775 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3776 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3777 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3778 struct node_info *ni, bool checkpoint_context);
3779 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3780 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3781 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3782 int f2fs_truncate_xattr_node(struct inode *inode);
3783 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3784 unsigned int seq_id);
3785 int f2fs_remove_inode_page(struct inode *inode);
3786 struct folio *f2fs_new_inode_folio(struct inode *inode);
3787 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs);
3788 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3789 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid);
3790 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3791 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid);
3792 int f2fs_move_node_folio(struct folio *node_folio, int gc_type);
3793 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3794 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3795 struct writeback_control *wbc, bool atomic,
3796 unsigned int *seq_id);
3797 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3798 struct writeback_control *wbc,
3799 bool do_balance, enum iostat_type io_type);
3800 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3801 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3802 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3803 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3804 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3805 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio);
3806 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio);
3807 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio);
3808 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3809 unsigned int segno, struct f2fs_summary_block *sum);
3810 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3811 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3812 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3813 int __init f2fs_create_node_manager_caches(void);
3814 void f2fs_destroy_node_manager_caches(void);
3815
3816 /*
3817 * segment.c
3818 */
3819 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3820 int f2fs_commit_atomic_write(struct inode *inode);
3821 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3822 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3823 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3824 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3825 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3826 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3827 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3828 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3829 unsigned int len);
3830 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3831 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3832 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3833 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3834 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3835 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3836 struct cp_control *cpc);
3837 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3838 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3839 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3840 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3841 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3842 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3843 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3844 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3845 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3846 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3847 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3848 unsigned int start, unsigned int end);
3849 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3850 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3851 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3852 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3853 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3854 struct cp_control *cpc);
3855 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno);
3856 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3857 block_t blk_addr);
3858 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3859 enum iostat_type io_type);
3860 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3861 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3862 struct f2fs_io_info *fio);
3863 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3864 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3865 block_t old_blkaddr, block_t new_blkaddr,
3866 bool recover_curseg, bool recover_newaddr,
3867 bool from_gc);
3868 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3869 block_t old_addr, block_t new_addr,
3870 unsigned char version, bool recover_curseg,
3871 bool recover_newaddr);
3872 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3873 enum log_type seg_type);
3874 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3875 block_t old_blkaddr, block_t *new_blkaddr,
3876 struct f2fs_summary *sum, int type,
3877 struct f2fs_io_info *fio);
3878 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3879 block_t blkaddr, unsigned int blkcnt);
3880 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3881 bool ordered, bool locked);
3882 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3883 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3884 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3885 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3886 block_t len);
3887 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3888 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3889 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3890 unsigned int val, int alloc);
3891 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3892 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3893 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3894 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3895 int __init f2fs_create_segment_manager_caches(void);
3896 void f2fs_destroy_segment_manager_caches(void);
3897 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3898 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3899 enum page_type type, enum temp_type temp);
3900 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3901 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3902 unsigned int segno);
3903 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3904 unsigned int segno);
3905
fio_inode(struct f2fs_io_info * fio)3906 static inline struct inode *fio_inode(struct f2fs_io_info *fio)
3907 {
3908 return fio->folio->mapping->host;
3909 }
3910
3911 #define DEF_FRAGMENT_SIZE 4
3912 #define MIN_FRAGMENT_SIZE 1
3913 #define MAX_FRAGMENT_SIZE 512
3914
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3915 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3916 {
3917 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3918 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3919 }
3920
3921 /*
3922 * checkpoint.c
3923 */
3924 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3925 unsigned char reason);
3926 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3927 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3928 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3929 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3930 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3931 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3932 block_t blkaddr, int type);
3933 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3934 block_t blkaddr, int type);
3935 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3936 int type, bool sync);
3937 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3938 unsigned int ra_blocks);
3939 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3940 long nr_to_write, enum iostat_type io_type);
3941 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3942 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3943 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3944 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3945 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3946 unsigned int devidx, int type);
3947 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3948 unsigned int devidx, int type);
3949 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3950 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3951 void f2fs_add_orphan_inode(struct inode *inode);
3952 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3953 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3954 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3955 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3956 void f2fs_remove_dirty_inode(struct inode *inode);
3957 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3958 bool from_cp);
3959 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3960 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3961 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3962 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3963 int __init f2fs_create_checkpoint_caches(void);
3964 void f2fs_destroy_checkpoint_caches(void);
3965 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3966 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3967 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3968 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3969
3970 /*
3971 * data.c
3972 */
3973 int __init f2fs_init_bioset(void);
3974 void f2fs_destroy_bioset(void);
3975 bool f2fs_is_cp_guaranteed(const struct folio *folio);
3976 int f2fs_init_bio_entry_cache(void);
3977 void f2fs_destroy_bio_entry_cache(void);
3978 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3979 enum page_type type);
3980 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3981 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3982 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3983 struct inode *inode, struct folio *folio,
3984 nid_t ino, enum page_type type);
3985 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3986 struct bio **bio, struct folio *folio);
3987 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3988 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3989 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3990 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3991 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3992 block_t blk_addr, sector_t *sector);
3993 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3994 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3995 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3996 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3997 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3998 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3999 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
4000 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
4001 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
4002 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
4003 pgoff_t *next_pgofs);
4004 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
4005 bool for_write);
4006 struct folio *f2fs_get_new_data_folio(struct inode *inode,
4007 struct folio *ifolio, pgoff_t index, bool new_i_size);
4008 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
4009 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
4010 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4011 u64 start, u64 len);
4012 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
4013 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
4014 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
4015 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
4016 struct bio **bio, sector_t *last_block,
4017 struct writeback_control *wbc,
4018 enum iostat_type io_type,
4019 int compr_blocks, bool allow_balance);
4020 void f2fs_write_failed(struct inode *inode, loff_t to);
4021 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4022 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4023 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4024 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4025 int f2fs_init_post_read_processing(void);
4026 void f2fs_destroy_post_read_processing(void);
4027 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4028 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4029 extern const struct iomap_ops f2fs_iomap_ops;
4030
4031 /*
4032 * gc.c
4033 */
4034 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4035 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4036 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4037 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4038 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4039 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4040 unsigned int start_seg, unsigned int end_seg,
4041 bool dry_run, unsigned int dry_run_sections);
4042 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4043 int __init f2fs_create_garbage_collection_cache(void);
4044 void f2fs_destroy_garbage_collection_cache(void);
4045 /* victim selection function for cleaning and SSR */
4046 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4047 int gc_type, int type, char alloc_mode,
4048 unsigned long long age, bool one_time);
4049
4050 /*
4051 * recovery.c
4052 */
4053 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4054 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4055 int __init f2fs_create_recovery_cache(void);
4056 void f2fs_destroy_recovery_cache(void);
4057
4058 /*
4059 * debug.c
4060 */
4061 #ifdef CONFIG_F2FS_STAT_FS
4062 enum {
4063 DEVSTAT_INUSE,
4064 DEVSTAT_DIRTY,
4065 DEVSTAT_FULL,
4066 DEVSTAT_FREE,
4067 DEVSTAT_PREFREE,
4068 DEVSTAT_MAX,
4069 };
4070
4071 struct f2fs_dev_stats {
4072 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4073 };
4074
4075 struct f2fs_stat_info {
4076 struct list_head stat_list;
4077 struct f2fs_sb_info *sbi;
4078 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4079 int main_area_segs, main_area_sections, main_area_zones;
4080 unsigned long long hit_cached[NR_EXTENT_CACHES];
4081 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4082 unsigned long long total_ext[NR_EXTENT_CACHES];
4083 unsigned long long hit_total[NR_EXTENT_CACHES];
4084 int ext_tree[NR_EXTENT_CACHES];
4085 int zombie_tree[NR_EXTENT_CACHES];
4086 int ext_node[NR_EXTENT_CACHES];
4087 /* to count memory footprint */
4088 unsigned long long ext_mem[NR_EXTENT_CACHES];
4089 /* for read extent cache */
4090 unsigned long long hit_largest;
4091 /* for block age extent cache */
4092 unsigned long long allocated_data_blocks;
4093 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4094 int ndirty_data, ndirty_qdata;
4095 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4096 unsigned int nquota_files, ndonate_files;
4097 int nats, dirty_nats, sits, dirty_sits;
4098 int free_nids, avail_nids, alloc_nids;
4099 int total_count, utilization;
4100 int nr_wb_cp_data, nr_wb_data;
4101 int nr_rd_data, nr_rd_node, nr_rd_meta;
4102 int nr_dio_read, nr_dio_write;
4103 unsigned int io_skip_bggc, other_skip_bggc;
4104 int nr_flushing, nr_flushed, flush_list_empty;
4105 int nr_discarding, nr_discarded;
4106 int nr_discard_cmd;
4107 unsigned int undiscard_blks;
4108 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4109 unsigned int cur_ckpt_time, peak_ckpt_time;
4110 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4111 int compr_inode, swapfile_inode;
4112 unsigned long long compr_blocks;
4113 int aw_cnt, max_aw_cnt;
4114 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4115 unsigned int bimodal, avg_vblocks;
4116 int util_free, util_valid, util_invalid;
4117 int rsvd_segs, overp_segs;
4118 int dirty_count, node_pages, meta_pages, compress_pages;
4119 int compress_page_hit;
4120 int prefree_count, free_segs, free_secs;
4121 int cp_call_count[MAX_CALL_TYPE], cp_count;
4122 int gc_call_count[MAX_CALL_TYPE];
4123 int gc_segs[2][2];
4124 int gc_secs[2][2];
4125 int tot_blks, data_blks, node_blks;
4126 int bg_data_blks, bg_node_blks;
4127 int curseg[NR_CURSEG_TYPE];
4128 int cursec[NR_CURSEG_TYPE];
4129 int curzone[NR_CURSEG_TYPE];
4130 unsigned int dirty_seg[NR_CURSEG_TYPE];
4131 unsigned int full_seg[NR_CURSEG_TYPE];
4132 unsigned int valid_blks[NR_CURSEG_TYPE];
4133
4134 unsigned int meta_count[META_MAX];
4135 unsigned int segment_count[2];
4136 unsigned int block_count[2];
4137 unsigned int inplace_count;
4138 unsigned long long base_mem, cache_mem, page_mem;
4139 struct f2fs_dev_stats *dev_stats;
4140 };
4141
F2FS_STAT(struct f2fs_sb_info * sbi)4142 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4143 {
4144 return (struct f2fs_stat_info *)sbi->stat_info;
4145 }
4146
4147 #define stat_inc_cp_call_count(sbi, foreground) \
4148 atomic_inc(&sbi->cp_call_count[(foreground)])
4149 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4150 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4151 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4152 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4153 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4154 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4155 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4156 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4157 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4158 #define stat_inc_inline_xattr(inode) \
4159 do { \
4160 if (f2fs_has_inline_xattr(inode)) \
4161 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4162 } while (0)
4163 #define stat_dec_inline_xattr(inode) \
4164 do { \
4165 if (f2fs_has_inline_xattr(inode)) \
4166 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4167 } while (0)
4168 #define stat_inc_inline_inode(inode) \
4169 do { \
4170 if (f2fs_has_inline_data(inode)) \
4171 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4172 } while (0)
4173 #define stat_dec_inline_inode(inode) \
4174 do { \
4175 if (f2fs_has_inline_data(inode)) \
4176 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4177 } while (0)
4178 #define stat_inc_inline_dir(inode) \
4179 do { \
4180 if (f2fs_has_inline_dentry(inode)) \
4181 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4182 } while (0)
4183 #define stat_dec_inline_dir(inode) \
4184 do { \
4185 if (f2fs_has_inline_dentry(inode)) \
4186 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4187 } while (0)
4188 #define stat_inc_compr_inode(inode) \
4189 do { \
4190 if (f2fs_compressed_file(inode)) \
4191 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4192 } while (0)
4193 #define stat_dec_compr_inode(inode) \
4194 do { \
4195 if (f2fs_compressed_file(inode)) \
4196 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4197 } while (0)
4198 #define stat_add_compr_blocks(inode, blocks) \
4199 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4200 #define stat_sub_compr_blocks(inode, blocks) \
4201 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4202 #define stat_inc_swapfile_inode(inode) \
4203 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4204 #define stat_dec_swapfile_inode(inode) \
4205 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4206 #define stat_inc_atomic_inode(inode) \
4207 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4208 #define stat_dec_atomic_inode(inode) \
4209 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4210 #define stat_inc_meta_count(sbi, blkaddr) \
4211 do { \
4212 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4213 atomic_inc(&(sbi)->meta_count[META_CP]); \
4214 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4215 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4216 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4217 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4218 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4219 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4220 } while (0)
4221 #define stat_inc_seg_type(sbi, curseg) \
4222 ((sbi)->segment_count[(curseg)->alloc_type]++)
4223 #define stat_inc_block_count(sbi, curseg) \
4224 ((sbi)->block_count[(curseg)->alloc_type]++)
4225 #define stat_inc_inplace_blocks(sbi) \
4226 (atomic_inc(&(sbi)->inplace_count))
4227 #define stat_update_max_atomic_write(inode) \
4228 do { \
4229 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4230 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4231 if (cur > max) \
4232 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4233 } while (0)
4234 #define stat_inc_gc_call_count(sbi, foreground) \
4235 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4236 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4237 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4238 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4239 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4240
4241 #define stat_inc_tot_blk_count(si, blks) \
4242 ((si)->tot_blks += (blks))
4243
4244 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4245 do { \
4246 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4247 stat_inc_tot_blk_count(si, blks); \
4248 si->data_blks += (blks); \
4249 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4250 } while (0)
4251
4252 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4253 do { \
4254 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4255 stat_inc_tot_blk_count(si, blks); \
4256 si->node_blks += (blks); \
4257 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4258 } while (0)
4259
4260 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4261 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4262 void __init f2fs_create_root_stats(void);
4263 void f2fs_destroy_root_stats(void);
4264 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4265 #else
4266 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4267 #define stat_inc_cp_count(sbi) do { } while (0)
4268 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4269 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4270 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4271 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4272 #define stat_inc_total_hit(sbi, type) do { } while (0)
4273 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4274 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4275 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4276 #define stat_inc_inline_xattr(inode) do { } while (0)
4277 #define stat_dec_inline_xattr(inode) do { } while (0)
4278 #define stat_inc_inline_inode(inode) do { } while (0)
4279 #define stat_dec_inline_inode(inode) do { } while (0)
4280 #define stat_inc_inline_dir(inode) do { } while (0)
4281 #define stat_dec_inline_dir(inode) do { } while (0)
4282 #define stat_inc_compr_inode(inode) do { } while (0)
4283 #define stat_dec_compr_inode(inode) do { } while (0)
4284 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4285 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4286 #define stat_inc_swapfile_inode(inode) do { } while (0)
4287 #define stat_dec_swapfile_inode(inode) do { } while (0)
4288 #define stat_inc_atomic_inode(inode) do { } while (0)
4289 #define stat_dec_atomic_inode(inode) do { } while (0)
4290 #define stat_update_max_atomic_write(inode) do { } while (0)
4291 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4292 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4293 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4294 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4295 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4296 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4297 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4298 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4299 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4300 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4301
f2fs_build_stats(struct f2fs_sb_info * sbi)4302 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4303 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4304 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4305 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4306 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4307 #endif
4308
4309 extern const struct file_operations f2fs_dir_operations;
4310 extern const struct file_operations f2fs_file_operations;
4311 extern const struct inode_operations f2fs_file_inode_operations;
4312 extern const struct address_space_operations f2fs_dblock_aops;
4313 extern const struct address_space_operations f2fs_node_aops;
4314 extern const struct address_space_operations f2fs_meta_aops;
4315 extern const struct inode_operations f2fs_dir_inode_operations;
4316 extern const struct inode_operations f2fs_symlink_inode_operations;
4317 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4318 extern const struct inode_operations f2fs_special_inode_operations;
4319 extern struct kmem_cache *f2fs_inode_entry_slab;
4320
4321 /*
4322 * inline.c
4323 */
4324 bool f2fs_may_inline_data(struct inode *inode);
4325 bool f2fs_sanity_check_inline_data(struct inode *inode, struct folio *ifolio);
4326 bool f2fs_may_inline_dentry(struct inode *inode);
4327 void f2fs_do_read_inline_data(struct folio *folio, struct folio *ifolio);
4328 void f2fs_truncate_inline_inode(struct inode *inode, struct folio *ifolio,
4329 u64 from);
4330 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4331 int f2fs_convert_inline_folio(struct dnode_of_data *dn, struct folio *folio);
4332 int f2fs_convert_inline_inode(struct inode *inode);
4333 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4334 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4335 int f2fs_recover_inline_data(struct inode *inode, struct folio *nfolio);
4336 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4337 const struct f2fs_filename *fname, struct folio **res_folio,
4338 bool use_hash);
4339 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4340 struct folio *ifolio);
4341 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4342 struct inode *inode, nid_t ino, umode_t mode);
4343 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4344 struct folio *folio, struct inode *dir, struct inode *inode);
4345 bool f2fs_empty_inline_dir(struct inode *dir);
4346 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4347 struct fscrypt_str *fstr);
4348 int f2fs_inline_data_fiemap(struct inode *inode,
4349 struct fiemap_extent_info *fieinfo,
4350 __u64 start, __u64 len);
4351
4352 /*
4353 * shrinker.c
4354 */
4355 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4356 struct shrink_control *sc);
4357 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4358 struct shrink_control *sc);
4359 unsigned int f2fs_donate_files(void);
4360 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4361 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4362 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4363
4364 /*
4365 * extent_cache.c
4366 */
4367 bool sanity_check_extent_cache(struct inode *inode, struct folio *ifolio);
4368 void f2fs_init_extent_tree(struct inode *inode);
4369 void f2fs_drop_extent_tree(struct inode *inode);
4370 void f2fs_destroy_extent_node(struct inode *inode);
4371 void f2fs_destroy_extent_tree(struct inode *inode);
4372 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4373 int __init f2fs_create_extent_cache(void);
4374 void f2fs_destroy_extent_cache(void);
4375
4376 /* read extent cache ops */
4377 void f2fs_init_read_extent_tree(struct inode *inode, struct folio *ifolio);
4378 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4379 struct extent_info *ei);
4380 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4381 block_t *blkaddr);
4382 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4383 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4384 pgoff_t fofs, block_t blkaddr, unsigned int len);
4385 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4386 int nr_shrink);
4387
4388 /* block age extent cache ops */
4389 void f2fs_init_age_extent_tree(struct inode *inode);
4390 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4391 struct extent_info *ei);
4392 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4393 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4394 pgoff_t fofs, unsigned int len);
4395 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4396 int nr_shrink);
4397
4398 /*
4399 * sysfs.c
4400 */
4401 #define MIN_RA_MUL 2
4402 #define MAX_RA_MUL 256
4403
4404 int __init f2fs_init_sysfs(void);
4405 void f2fs_exit_sysfs(void);
4406 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4407 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4408
4409 /* verity.c */
4410 extern const struct fsverity_operations f2fs_verityops;
4411
4412 /*
4413 * crypto support
4414 */
f2fs_encrypted_file(struct inode * inode)4415 static inline bool f2fs_encrypted_file(struct inode *inode)
4416 {
4417 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4418 }
4419
f2fs_set_encrypted_inode(struct inode * inode)4420 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4421 {
4422 #ifdef CONFIG_FS_ENCRYPTION
4423 file_set_encrypt(inode);
4424 f2fs_set_inode_flags(inode);
4425 #endif
4426 }
4427
4428 /*
4429 * Returns true if the reads of the inode's data need to undergo some
4430 * postprocessing step, like decryption or authenticity verification.
4431 */
f2fs_post_read_required(struct inode * inode)4432 static inline bool f2fs_post_read_required(struct inode *inode)
4433 {
4434 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4435 f2fs_compressed_file(inode);
4436 }
4437
f2fs_used_in_atomic_write(struct inode * inode)4438 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4439 {
4440 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4441 }
4442
f2fs_meta_inode_gc_required(struct inode * inode)4443 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4444 {
4445 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4446 }
4447
4448 /*
4449 * compress.c
4450 */
4451 #ifdef CONFIG_F2FS_FS_COMPRESSION
4452 enum cluster_check_type {
4453 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4454 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4455 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4456 };
4457 bool f2fs_is_compressed_page(struct folio *folio);
4458 struct folio *f2fs_compress_control_folio(struct folio *folio);
4459 int f2fs_prepare_compress_overwrite(struct inode *inode,
4460 struct page **pagep, pgoff_t index, void **fsdata);
4461 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4462 pgoff_t index, unsigned copied);
4463 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4464 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio);
4465 bool f2fs_is_compress_backend_ready(struct inode *inode);
4466 bool f2fs_is_compress_level_valid(int alg, int lvl);
4467 int __init f2fs_init_compress_mempool(void);
4468 void f2fs_destroy_compress_mempool(void);
4469 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4470 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
4471 block_t blkaddr, bool in_task);
4472 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4473 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4474 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4475 int index, int nr_pages, bool uptodate);
4476 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4477 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4478 int f2fs_write_multi_pages(struct compress_ctx *cc,
4479 int *submitted,
4480 struct writeback_control *wbc,
4481 enum iostat_type io_type);
4482 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4483 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4484 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4485 pgoff_t fofs, block_t blkaddr,
4486 unsigned int llen, unsigned int c_len);
4487 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4488 unsigned nr_pages, sector_t *last_block_in_bio,
4489 struct readahead_control *rac, bool for_write);
4490 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4491 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4492 bool in_task);
4493 void f2fs_put_folio_dic(struct folio *folio, bool in_task);
4494 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4495 unsigned int ofs_in_node);
4496 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4497 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4498 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4499 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4500 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4501 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4502 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4503 int __init f2fs_init_compress_cache(void);
4504 void f2fs_destroy_compress_cache(void);
4505 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4506 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4507 block_t blkaddr, unsigned int len);
4508 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
4509 block_t blkaddr);
4510 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4511 #define inc_compr_inode_stat(inode) \
4512 do { \
4513 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4514 sbi->compr_new_inode++; \
4515 } while (0)
4516 #define add_compr_block_stat(inode, blocks) \
4517 do { \
4518 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4519 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4520 sbi->compr_written_block += blocks; \
4521 sbi->compr_saved_block += diff; \
4522 } while (0)
4523 #else
f2fs_is_compressed_page(struct folio * folio)4524 static inline bool f2fs_is_compressed_page(struct folio *folio) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4525 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4526 {
4527 if (!f2fs_compressed_file(inode))
4528 return true;
4529 /* not support compression */
4530 return false;
4531 }
f2fs_is_compress_level_valid(int alg,int lvl)4532 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_folio(struct folio * folio)4533 static inline struct folio *f2fs_compress_control_folio(struct folio *folio)
4534 {
4535 WARN_ON_ONCE(1);
4536 return ERR_PTR(-EINVAL);
4537 }
f2fs_init_compress_mempool(void)4538 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4539 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4540 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4541 bool in_task) { }
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)4542 static inline void f2fs_end_read_compressed_page(struct folio *folio,
4543 bool failed, block_t blkaddr, bool in_task)
4544 {
4545 WARN_ON_ONCE(1);
4546 }
f2fs_put_folio_dic(struct folio * folio,bool in_task)4547 static inline void f2fs_put_folio_dic(struct folio *folio, bool in_task)
4548 {
4549 WARN_ON_ONCE(1);
4550 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4551 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4552 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4553 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4554 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4555 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4556 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4557 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4558 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4559 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4560 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4561 block_t blkaddr, unsigned int len) { }
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)4562 static inline bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi,
4563 struct folio *folio, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4564 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4565 nid_t ino) { }
4566 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4567 static inline int f2fs_is_compressed_cluster(
4568 struct inode *inode,
4569 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4570 static inline bool f2fs_is_sparse_cluster(
4571 struct inode *inode,
4572 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4573 static inline void f2fs_update_read_extent_tree_range_compressed(
4574 struct inode *inode,
4575 pgoff_t fofs, block_t blkaddr,
4576 unsigned int llen, unsigned int c_len) { }
4577 #endif
4578
set_compress_context(struct inode * inode)4579 static inline int set_compress_context(struct inode *inode)
4580 {
4581 #ifdef CONFIG_F2FS_FS_COMPRESSION
4582 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4583 struct f2fs_inode_info *fi = F2FS_I(inode);
4584
4585 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4586 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4587 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4588 BIT(COMPRESS_CHKSUM) : 0;
4589 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4590 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4591 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4592 F2FS_OPTION(sbi).compress_level)
4593 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4594 fi->i_flags |= F2FS_COMPR_FL;
4595 set_inode_flag(inode, FI_COMPRESSED_FILE);
4596 stat_inc_compr_inode(inode);
4597 inc_compr_inode_stat(inode);
4598 f2fs_mark_inode_dirty_sync(inode, true);
4599 return 0;
4600 #else
4601 return -EOPNOTSUPP;
4602 #endif
4603 }
4604
f2fs_disable_compressed_file(struct inode * inode)4605 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4606 {
4607 struct f2fs_inode_info *fi = F2FS_I(inode);
4608
4609 f2fs_down_write(&fi->i_sem);
4610
4611 if (!f2fs_compressed_file(inode)) {
4612 f2fs_up_write(&fi->i_sem);
4613 return true;
4614 }
4615 if (f2fs_is_mmap_file(inode) ||
4616 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4617 f2fs_up_write(&fi->i_sem);
4618 return false;
4619 }
4620
4621 fi->i_flags &= ~F2FS_COMPR_FL;
4622 stat_dec_compr_inode(inode);
4623 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4624 f2fs_mark_inode_dirty_sync(inode, true);
4625
4626 f2fs_up_write(&fi->i_sem);
4627 return true;
4628 }
4629
4630 #define F2FS_FEATURE_FUNCS(name, flagname) \
4631 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4632 { \
4633 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4634 }
4635
4636 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4637 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4638 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4639 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4640 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4641 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4642 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4643 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4644 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4645 F2FS_FEATURE_FUNCS(verity, VERITY);
4646 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4647 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4648 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4649 F2FS_FEATURE_FUNCS(readonly, RO);
4650 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4651
4652 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4653 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4654 unsigned int zone)
4655 {
4656 return test_bit(zone, FDEV(devi).blkz_seq);
4657 }
4658
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4659 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4660 block_t blkaddr)
4661 {
4662 return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4663 }
4664 #endif
4665
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4666 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4667 struct block_device *bdev)
4668 {
4669 int i;
4670
4671 if (!f2fs_is_multi_device(sbi))
4672 return 0;
4673
4674 for (i = 0; i < sbi->s_ndevs; i++)
4675 if (FDEV(i).bdev == bdev)
4676 return i;
4677
4678 WARN_ON(1);
4679 return -1;
4680 }
4681
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4682 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4683 {
4684 return f2fs_sb_has_blkzoned(sbi);
4685 }
4686
f2fs_bdev_support_discard(struct block_device * bdev)4687 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4688 {
4689 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4690 }
4691
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4692 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4693 {
4694 int i;
4695
4696 if (!f2fs_is_multi_device(sbi))
4697 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4698
4699 for (i = 0; i < sbi->s_ndevs; i++)
4700 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4701 return true;
4702 return false;
4703 }
4704
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4705 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4706 {
4707 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4708 f2fs_hw_should_discard(sbi);
4709 }
4710
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4711 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4712 {
4713 int i;
4714
4715 if (!f2fs_is_multi_device(sbi))
4716 return bdev_read_only(sbi->sb->s_bdev);
4717
4718 for (i = 0; i < sbi->s_ndevs; i++)
4719 if (bdev_read_only(FDEV(i).bdev))
4720 return true;
4721 return false;
4722 }
4723
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4724 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4725 {
4726 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4727 }
4728
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4729 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4730 {
4731 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4732 }
4733
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4734 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4735 block_t blkaddr)
4736 {
4737 if (f2fs_sb_has_blkzoned(sbi)) {
4738 #ifdef CONFIG_BLK_DEV_ZONED
4739 int devi = f2fs_target_device_index(sbi, blkaddr);
4740
4741 if (!bdev_is_zoned(FDEV(devi).bdev))
4742 return false;
4743
4744 if (f2fs_is_multi_device(sbi)) {
4745 if (blkaddr < FDEV(devi).start_blk ||
4746 blkaddr > FDEV(devi).end_blk) {
4747 f2fs_err(sbi, "Invalid block %x", blkaddr);
4748 return false;
4749 }
4750 blkaddr -= FDEV(devi).start_blk;
4751 }
4752
4753 return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4754 #else
4755 return false;
4756 #endif
4757 }
4758 return false;
4759 }
4760
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4761 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4762 {
4763 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4764 }
4765
f2fs_may_compress(struct inode * inode)4766 static inline bool f2fs_may_compress(struct inode *inode)
4767 {
4768 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4769 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4770 f2fs_is_mmap_file(inode))
4771 return false;
4772 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4773 }
4774
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4775 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4776 u64 blocks, bool add)
4777 {
4778 struct f2fs_inode_info *fi = F2FS_I(inode);
4779 int diff = fi->i_cluster_size - blocks;
4780
4781 /* don't update i_compr_blocks if saved blocks were released */
4782 if (!add && !atomic_read(&fi->i_compr_blocks))
4783 return;
4784
4785 if (add) {
4786 atomic_add(diff, &fi->i_compr_blocks);
4787 stat_add_compr_blocks(inode, diff);
4788 } else {
4789 atomic_sub(diff, &fi->i_compr_blocks);
4790 stat_sub_compr_blocks(inode, diff);
4791 }
4792 f2fs_mark_inode_dirty_sync(inode, true);
4793 }
4794
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4795 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4796 int flag)
4797 {
4798 if (!f2fs_is_multi_device(sbi))
4799 return false;
4800 if (flag != F2FS_GET_BLOCK_DIO)
4801 return false;
4802 return sbi->aligned_blksize;
4803 }
4804
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4805 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4806 {
4807 return fsverity_active(inode) &&
4808 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4809 }
4810
4811 #ifdef CONFIG_F2FS_FAULT_INJECTION
4812 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4813 unsigned long type, enum fault_option fo);
4814 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)4815 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4816 unsigned long rate, unsigned long type,
4817 enum fault_option fo)
4818 {
4819 return 0;
4820 }
4821 #endif
4822
is_journalled_quota(struct f2fs_sb_info * sbi)4823 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4824 {
4825 #ifdef CONFIG_QUOTA
4826 if (f2fs_sb_has_quota_ino(sbi))
4827 return true;
4828 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4829 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4830 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4831 return true;
4832 #endif
4833 return false;
4834 }
4835
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4836 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4837 {
4838 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4839 }
4840
f2fs_io_schedule_timeout(long timeout)4841 static inline void f2fs_io_schedule_timeout(long timeout)
4842 {
4843 set_current_state(TASK_UNINTERRUPTIBLE);
4844 io_schedule_timeout(timeout);
4845 }
4846
f2fs_io_schedule_timeout_killable(long timeout)4847 static inline void f2fs_io_schedule_timeout_killable(long timeout)
4848 {
4849 while (timeout) {
4850 if (fatal_signal_pending(current))
4851 return;
4852 set_current_state(TASK_UNINTERRUPTIBLE);
4853 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
4854 if (timeout <= DEFAULT_IO_TIMEOUT)
4855 return;
4856 timeout -= DEFAULT_IO_TIMEOUT;
4857 }
4858 }
4859
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4860 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4861 struct folio *folio, enum page_type type)
4862 {
4863 pgoff_t ofs = folio->index;
4864
4865 if (unlikely(f2fs_cp_error(sbi)))
4866 return;
4867
4868 if (ofs == sbi->page_eio_ofs[type]) {
4869 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4870 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4871 } else {
4872 sbi->page_eio_ofs[type] = ofs;
4873 sbi->page_eio_cnt[type] = 0;
4874 }
4875 }
4876
f2fs_is_readonly(struct f2fs_sb_info * sbi)4877 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4878 {
4879 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4880 }
4881
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4882 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4883 block_t blkaddr, unsigned int cnt)
4884 {
4885 bool need_submit = false;
4886 int i = 0;
4887
4888 do {
4889 struct folio *folio;
4890
4891 folio = filemap_get_folio(META_MAPPING(sbi), blkaddr + i);
4892 if (!IS_ERR(folio)) {
4893 if (folio_test_writeback(folio))
4894 need_submit = true;
4895 f2fs_folio_put(folio, false);
4896 }
4897 } while (++i < cnt && !need_submit);
4898
4899 if (need_submit)
4900 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4901 NULL, 0, DATA);
4902
4903 truncate_inode_pages_range(META_MAPPING(sbi),
4904 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4905 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4906 }
4907
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4908 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4909 block_t blkaddr, unsigned int len)
4910 {
4911 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4912 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4913 }
4914
4915 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4916 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4917
4918 #endif /* _LINUX_F2FS_H */
4919