1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
35 *
36 * Prefixes:
37 *
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 * (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 * (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 * that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
46 */
47
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66
67 #include "pmecc.h"
68
69 #define ATMEL_HSMC_NFC_CFG 0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
80
81 #define ATMEL_HSMC_NFC_CTRL 0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
84
85 #define ATMEL_HSMC_NFC_SR 0x8
86 #define ATMEL_HSMC_NFC_IER 0xc
87 #define ATMEL_HSMC_NFC_IDR 0x10
88 #define ATMEL_HSMC_NFC_IMR 0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
102 ATMEL_HSMC_NFC_SR_UNDEF | \
103 ATMEL_HSMC_NFC_SR_AWB | \
104 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
106
107 #define ATMEL_HSMC_NFC_ADDR 0x18
108 #define ATMEL_HSMC_NFC_BANK 0x1c
109
110 #define ATMEL_NFC_MAX_RB_ID 7
111
112 #define ATMEL_NFC_SRAM_SIZE 0x2400
113
114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2 BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
118 #define ATMEL_NFC_DATAEN BIT(25)
119 #define ATMEL_NFC_NFCWR BIT(26)
120
121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
122
123 #define ATMEL_NAND_ALE_OFFSET BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET BIT(22)
125
126 #define DEFAULT_TIMEOUT_MS 1000
127 #define MIN_DMA_LEN 128
128
129 static bool atmel_nand_avoid_dma __read_mostly;
130
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134 enum atmel_nand_rb_type {
135 ATMEL_NAND_NO_RB,
136 ATMEL_NAND_NATIVE_RB,
137 ATMEL_NAND_GPIO_RB,
138 };
139
140 struct atmel_nand_rb {
141 enum atmel_nand_rb_type type;
142 union {
143 struct gpio_desc *gpio;
144 int id;
145 };
146 };
147
148 struct atmel_nand_cs {
149 int id;
150 struct atmel_nand_rb rb;
151 struct gpio_desc *csgpio;
152 struct {
153 void __iomem *virt;
154 dma_addr_t dma;
155 } io;
156
157 struct atmel_smc_cs_conf smcconf;
158 };
159
160 struct atmel_nand {
161 struct list_head node;
162 struct device *dev;
163 struct nand_chip base;
164 struct atmel_nand_cs *activecs;
165 struct atmel_pmecc_user *pmecc;
166 struct gpio_desc *cdgpio;
167 int numcs;
168 struct atmel_nand_cs cs[] __counted_by(numcs);
169 };
170
to_atmel_nand(struct nand_chip * chip)171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 return container_of(chip, struct atmel_nand, base);
174 }
175
176 enum atmel_nfc_data_xfer {
177 ATMEL_NFC_NO_DATA,
178 ATMEL_NFC_READ_DATA,
179 ATMEL_NFC_WRITE_DATA,
180 };
181
182 struct atmel_nfc_op {
183 u8 cs;
184 u8 ncmds;
185 u8 cmds[2];
186 u8 naddrs;
187 u8 addrs[5];
188 enum atmel_nfc_data_xfer data;
189 u32 wait;
190 u32 errors;
191 };
192
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195
196 struct atmel_nand_controller_ops {
197 int (*probe)(struct platform_device *pdev,
198 const struct atmel_nand_controller_caps *caps);
199 int (*remove)(struct atmel_nand_controller *nc);
200 void (*nand_init)(struct atmel_nand_controller *nc,
201 struct atmel_nand *nand);
202 int (*ecc_init)(struct nand_chip *chip);
203 int (*setup_interface)(struct atmel_nand *nand, int csline,
204 const struct nand_interface_config *conf);
205 int (*exec_op)(struct atmel_nand *nand,
206 const struct nand_operation *op, bool check_only);
207 };
208
209 struct atmel_nand_controller_caps {
210 bool has_dma;
211 bool legacy_of_bindings;
212 u32 ale_offs;
213 u32 cle_offs;
214 const char *ebi_csa_regmap_name;
215 const struct atmel_nand_controller_ops *ops;
216 };
217
218 struct atmel_nand_controller {
219 struct nand_controller base;
220 const struct atmel_nand_controller_caps *caps;
221 struct device *dev;
222 struct regmap *smc;
223 struct dma_chan *dmac;
224 struct atmel_pmecc *pmecc;
225 struct list_head chips;
226 struct clk *mck;
227 };
228
229 static inline struct atmel_nand_controller *
to_nand_controller(struct nand_controller * ctl)230 to_nand_controller(struct nand_controller *ctl)
231 {
232 return container_of(ctl, struct atmel_nand_controller, base);
233 }
234
235 struct atmel_smc_nand_ebi_csa_cfg {
236 u32 offs;
237 u32 nfd0_on_d16;
238 };
239
240 struct atmel_smc_nand_controller {
241 struct atmel_nand_controller base;
242 struct regmap *ebi_csa_regmap;
243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245
246 static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_controller * ctl)247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 return container_of(to_nand_controller(ctl),
250 struct atmel_smc_nand_controller, base);
251 }
252
253 struct atmel_hsmc_nand_controller {
254 struct atmel_nand_controller base;
255 struct {
256 struct gen_pool *pool;
257 void __iomem *virt;
258 dma_addr_t dma;
259 } sram;
260 const struct atmel_hsmc_reg_layout *hsmc_layout;
261 struct regmap *io;
262 struct atmel_nfc_op op;
263 struct completion complete;
264 u32 cfg;
265 int irq;
266
267 /* Only used when instantiating from legacy DT bindings. */
268 struct clk *clk;
269 };
270
271 static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_controller * ctl)272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 return container_of(to_nand_controller(ctl),
275 struct atmel_hsmc_nand_controller, base);
276 }
277
atmel_nfc_op_done(struct atmel_nfc_op * op,u32 status)278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 op->wait ^= status & op->wait;
282
283 return !op->wait || op->errors;
284 }
285
atmel_nfc_interrupt(int irq,void * data)286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 struct atmel_hsmc_nand_controller *nc = data;
289 u32 sr, rcvd;
290 bool done;
291
292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293
294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 done = atmel_nfc_op_done(&nc->op, sr);
296
297 if (rcvd)
298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299
300 if (done)
301 complete(&nc->complete);
302
303 return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305
atmel_nfc_wait(struct atmel_hsmc_nand_controller * nc,bool poll,unsigned int timeout_ms)306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 unsigned int timeout_ms)
308 {
309 int ret;
310
311 if (!timeout_ms)
312 timeout_ms = DEFAULT_TIMEOUT_MS;
313
314 if (poll) {
315 u32 status;
316
317 ret = regmap_read_poll_timeout(nc->base.smc,
318 ATMEL_HSMC_NFC_SR, status,
319 atmel_nfc_op_done(&nc->op,
320 status),
321 0, timeout_ms * 1000);
322 } else {
323 init_completion(&nc->complete);
324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 ret = wait_for_completion_timeout(&nc->complete,
327 msecs_to_jiffies(timeout_ms));
328 if (!ret)
329 ret = -ETIMEDOUT;
330 else
331 ret = 0;
332
333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 }
335
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 ret = -ETIMEDOUT;
339 }
340
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 dev_err(nc->base.dev, "Access to an undefined area\n");
343 ret = -EIO;
344 }
345
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 dev_err(nc->base.dev, "Access while busy\n");
348 ret = -EIO;
349 }
350
351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 dev_err(nc->base.dev, "Wrong access size\n");
353 ret = -EIO;
354 }
355
356 return ret;
357 }
358
atmel_nand_dma_transfer_finished(void * data)359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 struct completion *finished = data;
362
363 complete(finished);
364 }
365
atmel_nand_dma_transfer(struct atmel_nand_controller * nc,void * buf,dma_addr_t dev_dma,size_t len,enum dma_data_direction dir)366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 void *buf, dma_addr_t dev_dma, size_t len,
368 enum dma_data_direction dir)
369 {
370 DECLARE_COMPLETION_ONSTACK(finished);
371 dma_addr_t src_dma, dst_dma, buf_dma;
372 struct dma_async_tx_descriptor *tx;
373 dma_cookie_t cookie;
374
375 buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 if (dma_mapping_error(nc->dev, buf_dma)) {
377 dev_err(nc->dev,
378 "Failed to prepare a buffer for DMA access\n");
379 goto err;
380 }
381
382 if (dir == DMA_FROM_DEVICE) {
383 src_dma = dev_dma;
384 dst_dma = buf_dma;
385 } else {
386 src_dma = buf_dma;
387 dst_dma = dev_dma;
388 }
389
390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 if (!tx) {
393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 goto err_unmap;
395 }
396
397 tx->callback = atmel_nand_dma_transfer_finished;
398 tx->callback_param = &finished;
399
400 cookie = dmaengine_submit(tx);
401 if (dma_submit_error(cookie)) {
402 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 goto err_unmap;
404 }
405
406 dma_async_issue_pending(nc->dmac);
407 wait_for_completion(&finished);
408 dma_unmap_single(nc->dev, buf_dma, len, dir);
409
410 return 0;
411
412 err_unmap:
413 dma_unmap_single(nc->dev, buf_dma, len, dir);
414
415 err:
416 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417
418 return -EIO;
419 }
420
atmel_nfc_exec_op(struct atmel_hsmc_nand_controller * nc,bool poll)421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 {
423 u8 *addrs = nc->op.addrs;
424 unsigned int op = 0;
425 u32 addr, val;
426 int i, ret;
427
428 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429
430 for (i = 0; i < nc->op.ncmds; i++)
431 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432
433 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435
436 op |= ATMEL_NFC_CSID(nc->op.cs) |
437 ATMEL_NFC_ACYCLE(nc->op.naddrs);
438
439 if (nc->op.ncmds > 1)
440 op |= ATMEL_NFC_VCMD2;
441
442 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443 (addrs[3] << 24);
444
445 if (nc->op.data != ATMEL_NFC_NO_DATA) {
446 op |= ATMEL_NFC_DATAEN;
447 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448
449 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450 op |= ATMEL_NFC_NFCWR;
451 }
452
453 /* Clear all flags. */
454 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455
456 /* Send the command. */
457 regmap_write(nc->io, op, addr);
458
459 ret = atmel_nfc_wait(nc, poll, 0);
460 if (ret)
461 dev_err(nc->base.dev,
462 "Failed to send NAND command (err = %d)!",
463 ret);
464
465 /* Reset the op state. */
466 memset(&nc->op, 0, sizeof(nc->op));
467
468 return ret;
469 }
470
atmel_nand_data_in(struct atmel_nand * nand,void * buf,unsigned int len,bool force_8bit)471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472 unsigned int len, bool force_8bit)
473 {
474 struct atmel_nand_controller *nc;
475
476 nc = to_nand_controller(nand->base.controller);
477
478 /*
479 * If the controller supports DMA, the buffer address is DMA-able and
480 * len is long enough to make DMA transfers profitable, let's trigger
481 * a DMA transfer. If it fails, fallback to PIO mode.
482 */
483 if (nc->dmac && virt_addr_valid(buf) &&
484 len >= MIN_DMA_LEN && !force_8bit &&
485 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486 DMA_FROM_DEVICE))
487 return;
488
489 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491 else
492 ioread8_rep(nand->activecs->io.virt, buf, len);
493 }
494
atmel_nand_data_out(struct atmel_nand * nand,const void * buf,unsigned int len,bool force_8bit)495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496 unsigned int len, bool force_8bit)
497 {
498 struct atmel_nand_controller *nc;
499
500 nc = to_nand_controller(nand->base.controller);
501
502 /*
503 * If the controller supports DMA, the buffer address is DMA-able and
504 * len is long enough to make DMA transfers profitable, let's trigger
505 * a DMA transfer. If it fails, fallback to PIO mode.
506 */
507 if (nc->dmac && virt_addr_valid(buf) &&
508 len >= MIN_DMA_LEN && !force_8bit &&
509 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510 len, DMA_TO_DEVICE))
511 return;
512
513 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515 else
516 iowrite8_rep(nand->activecs->io.virt, buf, len);
517 }
518
atmel_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 {
521 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522 return nand_soft_waitrdy(&nand->base, timeout_ms);
523
524 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525 timeout_ms);
526 }
527
atmel_hsmc_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529 unsigned int timeout_ms)
530 {
531 struct atmel_hsmc_nand_controller *nc;
532 u32 status, mask;
533
534 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535 return atmel_nand_waitrdy(nand, timeout_ms);
536
537 nc = to_hsmc_nand_controller(nand->base.controller);
538 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540 status, status & mask,
541 10, timeout_ms * 1000);
542 }
543
atmel_nand_select_target(struct atmel_nand * nand,unsigned int cs)544 static void atmel_nand_select_target(struct atmel_nand *nand,
545 unsigned int cs)
546 {
547 nand->activecs = &nand->cs[cs];
548 }
549
atmel_hsmc_nand_select_target(struct atmel_nand * nand,unsigned int cs)550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551 unsigned int cs)
552 {
553 struct mtd_info *mtd = nand_to_mtd(&nand->base);
554 struct atmel_hsmc_nand_controller *nc;
555 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557 ATMEL_HSMC_NFC_CFG_RSPARE;
558
559 nand->activecs = &nand->cs[cs];
560 nc = to_hsmc_nand_controller(nand->base.controller);
561 if (nc->cfg == cfg)
562 return;
563
564 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567 ATMEL_HSMC_NFC_CFG_RSPARE |
568 ATMEL_HSMC_NFC_CFG_WSPARE,
569 cfg);
570 nc->cfg = cfg;
571 }
572
atmel_smc_nand_exec_instr(struct atmel_nand * nand,const struct nand_op_instr * instr)573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574 const struct nand_op_instr *instr)
575 {
576 struct atmel_nand_controller *nc;
577 unsigned int i;
578
579 nc = to_nand_controller(nand->base.controller);
580 switch (instr->type) {
581 case NAND_OP_CMD_INSTR:
582 writeb(instr->ctx.cmd.opcode,
583 nand->activecs->io.virt + nc->caps->cle_offs);
584 return 0;
585 case NAND_OP_ADDR_INSTR:
586 for (i = 0; i < instr->ctx.addr.naddrs; i++)
587 writeb(instr->ctx.addr.addrs[i],
588 nand->activecs->io.virt + nc->caps->ale_offs);
589 return 0;
590 case NAND_OP_DATA_IN_INSTR:
591 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592 instr->ctx.data.len,
593 instr->ctx.data.force_8bit);
594 return 0;
595 case NAND_OP_DATA_OUT_INSTR:
596 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597 instr->ctx.data.len,
598 instr->ctx.data.force_8bit);
599 return 0;
600 case NAND_OP_WAITRDY_INSTR:
601 return atmel_nand_waitrdy(nand,
602 instr->ctx.waitrdy.timeout_ms);
603 default:
604 break;
605 }
606
607 return -EINVAL;
608 }
609
atmel_smc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611 const struct nand_operation *op,
612 bool check_only)
613 {
614 unsigned int i;
615 int ret = 0;
616
617 if (check_only)
618 return 0;
619
620 atmel_nand_select_target(nand, op->cs);
621 gpiod_set_value(nand->activecs->csgpio, 0);
622 for (i = 0; i < op->ninstrs; i++) {
623 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624 if (ret)
625 break;
626 }
627 gpiod_set_value(nand->activecs->csgpio, 1);
628
629 return ret;
630 }
631
atmel_hsmc_exec_cmd_addr(struct nand_chip * chip,const struct nand_subop * subop)632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633 const struct nand_subop *subop)
634 {
635 struct atmel_nand *nand = to_atmel_nand(chip);
636 struct atmel_hsmc_nand_controller *nc;
637 unsigned int i, j;
638
639 nc = to_hsmc_nand_controller(chip->controller);
640
641 nc->op.cs = nand->activecs->id;
642 for (i = 0; i < subop->ninstrs; i++) {
643 const struct nand_op_instr *instr = &subop->instrs[i];
644
645 if (instr->type == NAND_OP_CMD_INSTR) {
646 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647 continue;
648 }
649
650 for (j = nand_subop_get_addr_start_off(subop, i);
651 j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653 nc->op.naddrs++;
654 }
655 }
656
657 return atmel_nfc_exec_op(nc, true);
658 }
659
atmel_hsmc_exec_rw(struct nand_chip * chip,const struct nand_subop * subop)660 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661 const struct nand_subop *subop)
662 {
663 const struct nand_op_instr *instr = subop->instrs;
664 struct atmel_nand *nand = to_atmel_nand(chip);
665
666 if (instr->type == NAND_OP_DATA_IN_INSTR)
667 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668 instr->ctx.data.len,
669 instr->ctx.data.force_8bit);
670 else
671 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672 instr->ctx.data.len,
673 instr->ctx.data.force_8bit);
674
675 return 0;
676 }
677
atmel_hsmc_exec_waitrdy(struct nand_chip * chip,const struct nand_subop * subop)678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679 const struct nand_subop *subop)
680 {
681 const struct nand_op_instr *instr = subop->instrs;
682 struct atmel_nand *nand = to_atmel_nand(chip);
683
684 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685 }
686
687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689 NAND_OP_PARSER_PAT_CMD_ELEM(true),
690 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698 );
699
atmel_hsmc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701 const struct nand_operation *op,
702 bool check_only)
703 {
704 int ret;
705
706 if (check_only)
707 return nand_op_parser_exec_op(&nand->base,
708 &atmel_hsmc_op_parser, op, true);
709
710 atmel_hsmc_nand_select_target(nand, op->cs);
711 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712 false);
713
714 return ret;
715 }
716
atmel_nfc_copy_to_sram(struct nand_chip * chip,const u8 * buf,bool oob_required)717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718 bool oob_required)
719 {
720 struct mtd_info *mtd = nand_to_mtd(chip);
721 struct atmel_hsmc_nand_controller *nc;
722 int ret = -EIO;
723
724 nc = to_hsmc_nand_controller(chip->controller);
725
726 if (nc->base.dmac)
727 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728 nc->sram.dma, mtd->writesize,
729 DMA_TO_DEVICE);
730
731 /* Falling back to CPU copy. */
732 if (ret)
733 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734
735 if (oob_required)
736 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737 mtd->oobsize);
738 }
739
atmel_nfc_copy_from_sram(struct nand_chip * chip,u8 * buf,bool oob_required)740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741 bool oob_required)
742 {
743 struct mtd_info *mtd = nand_to_mtd(chip);
744 struct atmel_hsmc_nand_controller *nc;
745 int ret = -EIO;
746
747 nc = to_hsmc_nand_controller(chip->controller);
748
749 if (nc->base.dmac)
750 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751 mtd->writesize, DMA_FROM_DEVICE);
752
753 /* Falling back to CPU copy. */
754 if (ret)
755 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756
757 if (oob_required)
758 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759 mtd->oobsize);
760 }
761
atmel_nfc_set_op_addr(struct nand_chip * chip,int page,int column)762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 {
764 struct mtd_info *mtd = nand_to_mtd(chip);
765 struct atmel_hsmc_nand_controller *nc;
766
767 nc = to_hsmc_nand_controller(chip->controller);
768
769 if (column >= 0) {
770 nc->op.addrs[nc->op.naddrs++] = column;
771
772 /*
773 * 2 address cycles for the column offset on large page NANDs.
774 */
775 if (mtd->writesize > 512)
776 nc->op.addrs[nc->op.naddrs++] = column >> 8;
777 }
778
779 if (page >= 0) {
780 nc->op.addrs[nc->op.naddrs++] = page;
781 nc->op.addrs[nc->op.naddrs++] = page >> 8;
782
783 if (chip->options & NAND_ROW_ADDR_3)
784 nc->op.addrs[nc->op.naddrs++] = page >> 16;
785 }
786 }
787
atmel_nand_pmecc_enable(struct nand_chip * chip,int op,bool raw)788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 {
790 struct atmel_nand *nand = to_atmel_nand(chip);
791 struct atmel_nand_controller *nc;
792 int ret;
793
794 nc = to_nand_controller(chip->controller);
795
796 if (raw)
797 return 0;
798
799 ret = atmel_pmecc_enable(nand->pmecc, op);
800 if (ret)
801 dev_err(nc->dev,
802 "Failed to enable ECC engine (err = %d)\n", ret);
803
804 return ret;
805 }
806
atmel_nand_pmecc_disable(struct nand_chip * chip,bool raw)807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 {
809 struct atmel_nand *nand = to_atmel_nand(chip);
810
811 if (!raw)
812 atmel_pmecc_disable(nand->pmecc);
813 }
814
atmel_nand_pmecc_generate_eccbytes(struct nand_chip * chip,bool raw)815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 {
817 struct atmel_nand *nand = to_atmel_nand(chip);
818 struct mtd_info *mtd = nand_to_mtd(chip);
819 struct atmel_nand_controller *nc;
820 struct mtd_oob_region oobregion;
821 void *eccbuf;
822 int ret, i;
823
824 nc = to_nand_controller(chip->controller);
825
826 if (raw)
827 return 0;
828
829 ret = atmel_pmecc_wait_rdy(nand->pmecc);
830 if (ret) {
831 dev_err(nc->dev,
832 "Failed to transfer NAND page data (err = %d)\n",
833 ret);
834 return ret;
835 }
836
837 mtd_ooblayout_ecc(mtd, 0, &oobregion);
838 eccbuf = chip->oob_poi + oobregion.offset;
839
840 for (i = 0; i < chip->ecc.steps; i++) {
841 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842 eccbuf);
843 eccbuf += chip->ecc.bytes;
844 }
845
846 return 0;
847 }
848
atmel_nand_pmecc_correct_data(struct nand_chip * chip,void * buf,bool raw)849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850 bool raw)
851 {
852 struct atmel_nand *nand = to_atmel_nand(chip);
853 struct mtd_info *mtd = nand_to_mtd(chip);
854 struct atmel_nand_controller *nc;
855 struct mtd_oob_region oobregion;
856 int ret, i, max_bitflips = 0;
857 void *databuf, *eccbuf;
858
859 nc = to_nand_controller(chip->controller);
860
861 if (raw)
862 return 0;
863
864 ret = atmel_pmecc_wait_rdy(nand->pmecc);
865 if (ret) {
866 dev_err(nc->dev,
867 "Failed to read NAND page data (err = %d)\n",
868 ret);
869 return ret;
870 }
871
872 mtd_ooblayout_ecc(mtd, 0, &oobregion);
873 eccbuf = chip->oob_poi + oobregion.offset;
874 databuf = buf;
875
876 for (i = 0; i < chip->ecc.steps; i++) {
877 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878 eccbuf);
879 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880 ret = nand_check_erased_ecc_chunk(databuf,
881 chip->ecc.size,
882 eccbuf,
883 chip->ecc.bytes,
884 NULL, 0,
885 chip->ecc.strength);
886
887 if (ret >= 0) {
888 mtd->ecc_stats.corrected += ret;
889 max_bitflips = max(ret, max_bitflips);
890 } else {
891 mtd->ecc_stats.failed++;
892 }
893
894 databuf += chip->ecc.size;
895 eccbuf += chip->ecc.bytes;
896 }
897
898 return max_bitflips;
899 }
900
atmel_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902 bool oob_required, int page, bool raw)
903 {
904 struct mtd_info *mtd = nand_to_mtd(chip);
905 struct atmel_nand *nand = to_atmel_nand(chip);
906 int ret;
907
908 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909
910 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911 if (ret)
912 return ret;
913
914 nand_write_data_op(chip, buf, mtd->writesize, false);
915
916 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917 if (ret) {
918 atmel_pmecc_disable(nand->pmecc);
919 return ret;
920 }
921
922 atmel_nand_pmecc_disable(chip, raw);
923
924 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925
926 return nand_prog_page_end_op(chip);
927 }
928
atmel_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930 int oob_required, int page)
931 {
932 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933 }
934
atmel_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936 const u8 *buf, int oob_required,
937 int page)
938 {
939 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940 }
941
atmel_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943 bool oob_required, int page, bool raw)
944 {
945 struct mtd_info *mtd = nand_to_mtd(chip);
946 int ret;
947
948 nand_read_page_op(chip, page, 0, NULL, 0);
949
950 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951 if (ret)
952 return ret;
953
954 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955 if (ret)
956 goto out_disable;
957
958 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959 if (ret)
960 goto out_disable;
961
962 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963
964 out_disable:
965 atmel_nand_pmecc_disable(chip, raw);
966
967 return ret;
968 }
969
atmel_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971 int oob_required, int page)
972 {
973 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974 }
975
atmel_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977 int oob_required, int page)
978 {
979 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980 }
981
atmel_hsmc_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983 const u8 *buf, bool oob_required,
984 int page, bool raw)
985 {
986 struct mtd_info *mtd = nand_to_mtd(chip);
987 struct atmel_nand *nand = to_atmel_nand(chip);
988 struct atmel_hsmc_nand_controller *nc;
989 int ret;
990
991 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992 nc = to_hsmc_nand_controller(chip->controller);
993
994 atmel_nfc_copy_to_sram(chip, buf, false);
995
996 nc->op.cmds[0] = NAND_CMD_SEQIN;
997 nc->op.ncmds = 1;
998 atmel_nfc_set_op_addr(chip, page, 0x0);
999 nc->op.cs = nand->activecs->id;
1000 nc->op.data = ATMEL_NFC_WRITE_DATA;
1001
1002 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003 if (ret)
1004 return ret;
1005
1006 ret = atmel_nfc_exec_op(nc, false);
1007 if (ret) {
1008 atmel_nand_pmecc_disable(chip, raw);
1009 dev_err(nc->base.dev,
1010 "Failed to transfer NAND page data (err = %d)\n",
1011 ret);
1012 return ret;
1013 }
1014
1015 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016
1017 atmel_nand_pmecc_disable(chip, raw);
1018
1019 if (ret)
1020 return ret;
1021
1022 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023
1024 return nand_prog_page_end_op(chip);
1025 }
1026
atmel_hsmc_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028 const u8 *buf, int oob_required,
1029 int page)
1030 {
1031 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032 false);
1033 }
1034
atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036 const u8 *buf,
1037 int oob_required, int page)
1038 {
1039 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040 true);
1041 }
1042
atmel_hsmc_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044 bool oob_required, int page,
1045 bool raw)
1046 {
1047 struct mtd_info *mtd = nand_to_mtd(chip);
1048 struct atmel_nand *nand = to_atmel_nand(chip);
1049 struct atmel_hsmc_nand_controller *nc;
1050 int ret;
1051
1052 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053 nc = to_hsmc_nand_controller(chip->controller);
1054
1055 /*
1056 * Optimized read page accessors only work when the NAND R/B pin is
1057 * connected to a native SoC R/B pin. If that's not the case, fallback
1058 * to the non-optimized one.
1059 */
1060 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062 raw);
1063
1064 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065
1066 if (mtd->writesize > 512)
1067 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068
1069 atmel_nfc_set_op_addr(chip, page, 0x0);
1070 nc->op.cs = nand->activecs->id;
1071 nc->op.data = ATMEL_NFC_READ_DATA;
1072
1073 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074 if (ret)
1075 return ret;
1076
1077 ret = atmel_nfc_exec_op(nc, false);
1078 if (ret) {
1079 atmel_nand_pmecc_disable(chip, raw);
1080 dev_err(nc->base.dev,
1081 "Failed to load NAND page data (err = %d)\n",
1082 ret);
1083 return ret;
1084 }
1085
1086 atmel_nfc_copy_from_sram(chip, buf, true);
1087
1088 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089
1090 atmel_nand_pmecc_disable(chip, raw);
1091
1092 return ret;
1093 }
1094
atmel_hsmc_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096 int oob_required, int page)
1097 {
1098 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099 false);
1100 }
1101
atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103 u8 *buf, int oob_required,
1104 int page)
1105 {
1106 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107 true);
1108 }
1109
atmel_nand_pmecc_init(struct nand_chip * chip)1110 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111 {
1112 const struct nand_ecc_props *requirements =
1113 nanddev_get_ecc_requirements(&chip->base);
1114 struct mtd_info *mtd = nand_to_mtd(chip);
1115 struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116 struct atmel_nand *nand = to_atmel_nand(chip);
1117 struct atmel_nand_controller *nc;
1118 struct atmel_pmecc_user_req req;
1119
1120 nc = to_nand_controller(chip->controller);
1121
1122 if (!nc->pmecc) {
1123 dev_err(nc->dev, "HW ECC not supported\n");
1124 return -ENOTSUPP;
1125 }
1126
1127 if (nc->caps->legacy_of_bindings) {
1128 u32 val;
1129
1130 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131 &val))
1132 chip->ecc.strength = val;
1133
1134 if (!of_property_read_u32(nc->dev->of_node,
1135 "atmel,pmecc-sector-size",
1136 &val))
1137 chip->ecc.size = val;
1138 }
1139
1140 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142 else if (chip->ecc.strength)
1143 req.ecc.strength = chip->ecc.strength;
1144 else if (requirements->strength)
1145 req.ecc.strength = requirements->strength;
1146 else
1147 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148
1149 if (chip->ecc.size)
1150 req.ecc.sectorsize = chip->ecc.size;
1151 else if (requirements->step_size)
1152 req.ecc.sectorsize = requirements->step_size;
1153 else
1154 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155
1156 req.pagesize = mtd->writesize;
1157 req.oobsize = mtd->oobsize;
1158
1159 if (mtd->writesize <= 512) {
1160 req.ecc.bytes = 4;
1161 req.ecc.ooboffset = 0;
1162 } else {
1163 req.ecc.bytes = mtd->oobsize - 2;
1164 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165 }
1166
1167 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168 if (IS_ERR(nand->pmecc))
1169 return PTR_ERR(nand->pmecc);
1170
1171 chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172 chip->ecc.size = req.ecc.sectorsize;
1173 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174 chip->ecc.strength = req.ecc.strength;
1175
1176 chip->options |= NAND_NO_SUBPAGE_WRITE;
1177
1178 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179
1180 return 0;
1181 }
1182
atmel_nand_ecc_init(struct nand_chip * chip)1183 static int atmel_nand_ecc_init(struct nand_chip *chip)
1184 {
1185 struct atmel_nand_controller *nc;
1186 int ret;
1187
1188 nc = to_nand_controller(chip->controller);
1189
1190 switch (chip->ecc.engine_type) {
1191 case NAND_ECC_ENGINE_TYPE_NONE:
1192 case NAND_ECC_ENGINE_TYPE_SOFT:
1193 /*
1194 * Nothing to do, the core will initialize everything for us.
1195 */
1196 break;
1197
1198 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199 ret = atmel_nand_pmecc_init(chip);
1200 if (ret)
1201 return ret;
1202
1203 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207 break;
1208
1209 default:
1210 /* Other modes are not supported. */
1211 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212 chip->ecc.engine_type);
1213 return -ENOTSUPP;
1214 }
1215
1216 return 0;
1217 }
1218
atmel_hsmc_nand_ecc_init(struct nand_chip * chip)1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220 {
1221 int ret;
1222
1223 ret = atmel_nand_ecc_init(chip);
1224 if (ret)
1225 return ret;
1226
1227 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228 return 0;
1229
1230 /* Adjust the ECC operations for the HSMC IP. */
1231 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235
1236 return 0;
1237 }
1238
atmel_smc_nand_prepare_smcconf(struct atmel_nand * nand,const struct nand_interface_config * conf,struct atmel_smc_cs_conf * smcconf)1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240 const struct nand_interface_config *conf,
1241 struct atmel_smc_cs_conf *smcconf)
1242 {
1243 u32 ncycles, totalcycles, timeps, mckperiodps;
1244 struct atmel_nand_controller *nc;
1245 int ret;
1246
1247 nc = to_nand_controller(nand->base.controller);
1248
1249 /* DDR interface not supported. */
1250 if (!nand_interface_is_sdr(conf))
1251 return -ENOTSUPP;
1252
1253 /*
1254 * tRC < 30ns implies EDO mode. This controller does not support this
1255 * mode.
1256 */
1257 if (conf->timings.sdr.tRC_min < 30000)
1258 return -ENOTSUPP;
1259
1260 atmel_smc_cs_conf_init(smcconf);
1261
1262 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263 mckperiodps *= 1000;
1264
1265 /*
1266 * Set write pulse timing. This one is easy to extract:
1267 *
1268 * NWE_PULSE = tWP
1269 */
1270 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271 totalcycles = ncycles;
1272 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273 ncycles);
1274 if (ret)
1275 return ret;
1276
1277 /*
1278 * The write setup timing depends on the operation done on the NAND.
1279 * All operations goes through the same data bus, but the operation
1280 * type depends on the address we are writing to (ALE/CLE address
1281 * lines).
1282 * Since we have no way to differentiate the different operations at
1283 * the SMC level, we must consider the worst case (the biggest setup
1284 * time among all operation types):
1285 *
1286 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287 */
1288 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289 conf->timings.sdr.tALS_min);
1290 timeps = max(timeps, conf->timings.sdr.tDS_min);
1291 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293 totalcycles += ncycles;
1294 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295 ncycles);
1296 if (ret)
1297 return ret;
1298
1299 /*
1300 * As for the write setup timing, the write hold timing depends on the
1301 * operation done on the NAND:
1302 *
1303 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304 */
1305 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306 conf->timings.sdr.tALH_min);
1307 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308 conf->timings.sdr.tWH_min);
1309 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310 totalcycles += ncycles;
1311
1312 /*
1313 * The write cycle timing is directly matching tWC, but is also
1314 * dependent on the other timings on the setup and hold timings we
1315 * calculated earlier, which gives:
1316 *
1317 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318 */
1319 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320 ncycles = max(totalcycles, ncycles);
1321 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322 ncycles);
1323 if (ret)
1324 return ret;
1325
1326 /*
1327 * We don't want the CS line to be toggled between each byte/word
1328 * transfer to the NAND. The only way to guarantee that is to have the
1329 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330 *
1331 * NCS_WR_PULSE = NWE_CYCLE
1332 */
1333 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334 ncycles);
1335 if (ret)
1336 return ret;
1337
1338 /*
1339 * As for the write setup timing, the read hold timing depends on the
1340 * operation done on the NAND:
1341 *
1342 * NRD_HOLD = max(tREH, tRHOH)
1343 */
1344 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346 totalcycles = ncycles;
1347
1348 /*
1349 * TDF = tRHZ - NRD_HOLD
1350 */
1351 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352 ncycles -= totalcycles;
1353
1354 /*
1355 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356 * we might end up with a config that does not fit in the TDF field.
1357 * Just take the max value in this case and hope that the NAND is more
1358 * tolerant than advertised.
1359 */
1360 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364
1365 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367
1368 /*
1369 * Read pulse timing directly matches tRP:
1370 *
1371 * NRD_PULSE = tRP
1372 */
1373 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374 totalcycles += ncycles;
1375 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376 ncycles);
1377 if (ret)
1378 return ret;
1379
1380 /*
1381 * Read setup timing depends on the operation done on the NAND:
1382 *
1383 * NRD_SETUP = max(tAR, tCLR)
1384 */
1385 timeps = max(conf->timings.sdr.tAR_min, conf->timings.sdr.tCLR_min);
1386 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1387 totalcycles += ncycles;
1388 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles);
1389 if (ret)
1390 return ret;
1391
1392 /*
1393 * The read cycle timing is directly matching tRC, but is also
1394 * dependent on the setup and hold timings we calculated earlier,
1395 * which gives:
1396 *
1397 * NRD_CYCLE = max(tRC, NRD_SETUP + NRD_PULSE + NRD_HOLD)
1398 */
1399 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1400 ncycles = max(totalcycles, ncycles);
1401 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1402 ncycles);
1403 if (ret)
1404 return ret;
1405
1406 /*
1407 * We don't want the CS line to be toggled between each byte/word
1408 * transfer from the NAND. The only way to guarantee that is to have
1409 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1410 *
1411 * NCS_RD_PULSE = NRD_CYCLE
1412 */
1413 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1414 ncycles);
1415 if (ret)
1416 return ret;
1417
1418 /* Txxx timings are directly matching tXXX ones. */
1419 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1420 ret = atmel_smc_cs_conf_set_timing(smcconf,
1421 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1422 ncycles);
1423 if (ret)
1424 return ret;
1425
1426 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1427 ret = atmel_smc_cs_conf_set_timing(smcconf,
1428 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1429 ncycles);
1430 /*
1431 * Version 4 of the ONFI spec mandates that tADL be at least 400
1432 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1433 * fit in the tADL field of the SMC reg. We need to relax the check and
1434 * accept the -ERANGE return code.
1435 *
1436 * Note that previous versions of the ONFI spec had a lower tADL_min
1437 * (100 or 200 ns). It's not clear why this timing constraint got
1438 * increased but it seems most NANDs are fine with values lower than
1439 * 400ns, so we should be safe.
1440 */
1441 if (ret && ret != -ERANGE)
1442 return ret;
1443
1444 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1445 ret = atmel_smc_cs_conf_set_timing(smcconf,
1446 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1447 ncycles);
1448 if (ret)
1449 return ret;
1450
1451 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1452 ret = atmel_smc_cs_conf_set_timing(smcconf,
1453 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1454 ncycles);
1455 if (ret)
1456 return ret;
1457
1458 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1459 ret = atmel_smc_cs_conf_set_timing(smcconf,
1460 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1461 ncycles);
1462 if (ret)
1463 return ret;
1464
1465 /* Attach the CS line to the NFC logic. */
1466 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1467
1468 /* Set the appropriate data bus width. */
1469 if (nand->base.options & NAND_BUSWIDTH_16)
1470 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1471
1472 /* Operate in NRD/NWE READ/WRITEMODE. */
1473 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1474 ATMEL_SMC_MODE_WRITEMODE_NWE;
1475
1476 return 0;
1477 }
1478
atmel_smc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1479 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1480 int csline,
1481 const struct nand_interface_config *conf)
1482 {
1483 struct atmel_nand_controller *nc;
1484 struct atmel_smc_cs_conf smcconf;
1485 struct atmel_nand_cs *cs;
1486 int ret;
1487
1488 nc = to_nand_controller(nand->base.controller);
1489
1490 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1491 if (ret)
1492 return ret;
1493
1494 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1495 return 0;
1496
1497 cs = &nand->cs[csline];
1498 cs->smcconf = smcconf;
1499 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1500
1501 return 0;
1502 }
1503
atmel_hsmc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1504 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1505 int csline,
1506 const struct nand_interface_config *conf)
1507 {
1508 struct atmel_hsmc_nand_controller *nc;
1509 struct atmel_smc_cs_conf smcconf;
1510 struct atmel_nand_cs *cs;
1511 int ret;
1512
1513 nc = to_hsmc_nand_controller(nand->base.controller);
1514
1515 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1516 if (ret)
1517 return ret;
1518
1519 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1520 return 0;
1521
1522 cs = &nand->cs[csline];
1523 cs->smcconf = smcconf;
1524
1525 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1526 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1527
1528 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1529 &cs->smcconf);
1530
1531 return 0;
1532 }
1533
atmel_nand_setup_interface(struct nand_chip * chip,int csline,const struct nand_interface_config * conf)1534 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1535 const struct nand_interface_config *conf)
1536 {
1537 struct atmel_nand *nand = to_atmel_nand(chip);
1538 const struct nand_sdr_timings *sdr;
1539 struct atmel_nand_controller *nc;
1540
1541 sdr = nand_get_sdr_timings(conf);
1542 if (IS_ERR(sdr))
1543 return PTR_ERR(sdr);
1544
1545 nc = to_nand_controller(nand->base.controller);
1546
1547 if (csline >= nand->numcs ||
1548 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1549 return -EINVAL;
1550
1551 return nc->caps->ops->setup_interface(nand, csline, conf);
1552 }
1553
atmel_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)1554 static int atmel_nand_exec_op(struct nand_chip *chip,
1555 const struct nand_operation *op,
1556 bool check_only)
1557 {
1558 struct atmel_nand *nand = to_atmel_nand(chip);
1559 struct atmel_nand_controller *nc;
1560
1561 nc = to_nand_controller(nand->base.controller);
1562
1563 return nc->caps->ops->exec_op(nand, op, check_only);
1564 }
1565
atmel_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1566 static void atmel_nand_init(struct atmel_nand_controller *nc,
1567 struct atmel_nand *nand)
1568 {
1569 struct nand_chip *chip = &nand->base;
1570 struct mtd_info *mtd = nand_to_mtd(chip);
1571
1572 mtd->dev.parent = nc->dev;
1573 nand->base.controller = &nc->base;
1574
1575 if (!nc->mck || !nc->caps->ops->setup_interface)
1576 chip->options |= NAND_KEEP_TIMINGS;
1577
1578 /*
1579 * Use a bounce buffer when the buffer passed by the MTD user is not
1580 * suitable for DMA.
1581 */
1582 if (nc->dmac)
1583 chip->options |= NAND_USES_DMA;
1584
1585 /* Default to HW ECC if pmecc is available. */
1586 if (nc->pmecc)
1587 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1588 }
1589
atmel_smc_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1590 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1591 struct atmel_nand *nand)
1592 {
1593 struct nand_chip *chip = &nand->base;
1594 struct atmel_smc_nand_controller *smc_nc;
1595 int i;
1596
1597 atmel_nand_init(nc, nand);
1598
1599 smc_nc = to_smc_nand_controller(chip->controller);
1600 if (!smc_nc->ebi_csa_regmap)
1601 return;
1602
1603 /* Attach the CS to the NAND Flash logic. */
1604 for (i = 0; i < nand->numcs; i++)
1605 regmap_update_bits(smc_nc->ebi_csa_regmap,
1606 smc_nc->ebi_csa->offs,
1607 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1608
1609 if (smc_nc->ebi_csa->nfd0_on_d16)
1610 regmap_update_bits(smc_nc->ebi_csa_regmap,
1611 smc_nc->ebi_csa->offs,
1612 smc_nc->ebi_csa->nfd0_on_d16,
1613 smc_nc->ebi_csa->nfd0_on_d16);
1614 }
1615
atmel_nand_controller_remove_nand(struct atmel_nand * nand)1616 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1617 {
1618 struct nand_chip *chip = &nand->base;
1619 struct mtd_info *mtd = nand_to_mtd(chip);
1620 int ret;
1621
1622 ret = mtd_device_unregister(mtd);
1623 if (ret)
1624 return ret;
1625
1626 nand_cleanup(chip);
1627 list_del(&nand->node);
1628
1629 return 0;
1630 }
1631
atmel_nand_create(struct atmel_nand_controller * nc,struct device_node * np,int reg_cells)1632 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1633 struct device_node *np,
1634 int reg_cells)
1635 {
1636 struct atmel_nand *nand;
1637 struct gpio_desc *gpio;
1638 int numcs, ret, i;
1639
1640 numcs = of_property_count_elems_of_size(np, "reg",
1641 reg_cells * sizeof(u32));
1642 if (numcs < 1) {
1643 dev_err(nc->dev, "Missing or invalid reg property\n");
1644 return ERR_PTR(-EINVAL);
1645 }
1646
1647 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1648 if (!nand)
1649 return ERR_PTR(-ENOMEM);
1650
1651 nand->numcs = numcs;
1652
1653 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1654 "det", GPIOD_IN, "nand-det");
1655 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1656 dev_err(nc->dev,
1657 "Failed to get detect gpio (err = %ld)\n",
1658 PTR_ERR(gpio));
1659 return ERR_CAST(gpio);
1660 }
1661
1662 if (!IS_ERR(gpio))
1663 nand->cdgpio = gpio;
1664
1665 for (i = 0; i < numcs; i++) {
1666 struct resource res;
1667 u32 val;
1668
1669 ret = of_address_to_resource(np, 0, &res);
1670 if (ret) {
1671 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1672 ret);
1673 return ERR_PTR(ret);
1674 }
1675
1676 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1677 &val);
1678 if (ret) {
1679 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1680 ret);
1681 return ERR_PTR(ret);
1682 }
1683
1684 nand->cs[i].id = val;
1685
1686 nand->cs[i].io.dma = res.start;
1687 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1688 if (IS_ERR(nand->cs[i].io.virt))
1689 return ERR_CAST(nand->cs[i].io.virt);
1690
1691 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1692 if (val > ATMEL_NFC_MAX_RB_ID)
1693 return ERR_PTR(-EINVAL);
1694
1695 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1696 nand->cs[i].rb.id = val;
1697 } else {
1698 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1699 of_fwnode_handle(np),
1700 "rb", i, GPIOD_IN,
1701 "nand-rb");
1702 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1703 dev_err(nc->dev,
1704 "Failed to get R/B gpio (err = %ld)\n",
1705 PTR_ERR(gpio));
1706 return ERR_CAST(gpio);
1707 }
1708
1709 if (!IS_ERR(gpio)) {
1710 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1711 nand->cs[i].rb.gpio = gpio;
1712 }
1713 }
1714
1715 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1716 of_fwnode_handle(np),
1717 "cs", i, GPIOD_OUT_HIGH,
1718 "nand-cs");
1719 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1720 dev_err(nc->dev,
1721 "Failed to get CS gpio (err = %ld)\n",
1722 PTR_ERR(gpio));
1723 return ERR_CAST(gpio);
1724 }
1725
1726 if (!IS_ERR(gpio))
1727 nand->cs[i].csgpio = gpio;
1728 }
1729
1730 nand_set_flash_node(&nand->base, np);
1731
1732 return nand;
1733 }
1734
1735 static int
atmel_nand_controller_add_nand(struct atmel_nand_controller * nc,struct atmel_nand * nand)1736 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1737 struct atmel_nand *nand)
1738 {
1739 struct nand_chip *chip = &nand->base;
1740 struct mtd_info *mtd = nand_to_mtd(chip);
1741 int ret;
1742
1743 /* No card inserted, skip this NAND. */
1744 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1745 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1746 return 0;
1747 }
1748
1749 nc->caps->ops->nand_init(nc, nand);
1750
1751 ret = nand_scan(chip, nand->numcs);
1752 if (ret) {
1753 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1754 return ret;
1755 }
1756
1757 ret = mtd_device_register(mtd, NULL, 0);
1758 if (ret) {
1759 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1760 nand_cleanup(chip);
1761 return ret;
1762 }
1763
1764 list_add_tail(&nand->node, &nc->chips);
1765
1766 return 0;
1767 }
1768
1769 static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller * nc)1770 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1771 {
1772 struct atmel_nand *nand, *tmp;
1773 int ret;
1774
1775 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1776 ret = atmel_nand_controller_remove_nand(nand);
1777 if (ret)
1778 return ret;
1779 }
1780
1781 return 0;
1782 }
1783
1784 static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller * nc)1785 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1786 {
1787 struct device *dev = nc->dev;
1788 struct platform_device *pdev = to_platform_device(dev);
1789 struct atmel_nand *nand;
1790 struct gpio_desc *gpio;
1791 struct resource *res;
1792
1793 /*
1794 * Legacy bindings only allow connecting a single NAND with a unique CS
1795 * line to the controller.
1796 */
1797 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1798 GFP_KERNEL);
1799 if (!nand)
1800 return -ENOMEM;
1801
1802 nand->numcs = 1;
1803
1804 nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1805 if (IS_ERR(nand->cs[0].io.virt))
1806 return PTR_ERR(nand->cs[0].io.virt);
1807
1808 nand->cs[0].io.dma = res->start;
1809
1810 /*
1811 * The old driver was hardcoding the CS id to 3 for all sama5
1812 * controllers. Since this id is only meaningful for the sama5
1813 * controller we can safely assign this id to 3 no matter the
1814 * controller.
1815 * If one wants to connect a NAND to a different CS line, he will
1816 * have to use the new bindings.
1817 */
1818 nand->cs[0].id = 3;
1819
1820 /* R/B GPIO. */
1821 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1822 if (IS_ERR(gpio)) {
1823 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1824 PTR_ERR(gpio));
1825 return PTR_ERR(gpio);
1826 }
1827
1828 if (gpio) {
1829 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1830 nand->cs[0].rb.gpio = gpio;
1831 }
1832
1833 /* CS GPIO. */
1834 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1835 if (IS_ERR(gpio)) {
1836 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1837 PTR_ERR(gpio));
1838 return PTR_ERR(gpio);
1839 }
1840
1841 nand->cs[0].csgpio = gpio;
1842
1843 /* Card detect GPIO. */
1844 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1845 if (IS_ERR(gpio)) {
1846 dev_err(dev,
1847 "Failed to get detect gpio (err = %ld)\n",
1848 PTR_ERR(gpio));
1849 return PTR_ERR(gpio);
1850 }
1851
1852 nand->cdgpio = gpio;
1853
1854 nand_set_flash_node(&nand->base, nc->dev->of_node);
1855
1856 return atmel_nand_controller_add_nand(nc, nand);
1857 }
1858
atmel_nand_controller_add_nands(struct atmel_nand_controller * nc)1859 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1860 {
1861 struct device_node *np, *nand_np;
1862 struct device *dev = nc->dev;
1863 int ret, reg_cells;
1864 u32 val;
1865
1866 /* We do not retrieve the SMC syscon when parsing old DTs. */
1867 if (nc->caps->legacy_of_bindings)
1868 return atmel_nand_controller_legacy_add_nands(nc);
1869
1870 np = dev->of_node;
1871
1872 ret = of_property_read_u32(np, "#address-cells", &val);
1873 if (ret) {
1874 dev_err(dev, "missing #address-cells property\n");
1875 return ret;
1876 }
1877
1878 reg_cells = val;
1879
1880 ret = of_property_read_u32(np, "#size-cells", &val);
1881 if (ret) {
1882 dev_err(dev, "missing #size-cells property\n");
1883 return ret;
1884 }
1885
1886 reg_cells += val;
1887
1888 for_each_child_of_node(np, nand_np) {
1889 struct atmel_nand *nand;
1890
1891 nand = atmel_nand_create(nc, nand_np, reg_cells);
1892 if (IS_ERR(nand)) {
1893 ret = PTR_ERR(nand);
1894 goto err;
1895 }
1896
1897 ret = atmel_nand_controller_add_nand(nc, nand);
1898 if (ret)
1899 goto err;
1900 }
1901
1902 return 0;
1903
1904 err:
1905 atmel_nand_controller_remove_nands(nc);
1906
1907 return ret;
1908 }
1909
atmel_nand_controller_cleanup(struct atmel_nand_controller * nc)1910 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1911 {
1912 if (nc->dmac)
1913 dma_release_channel(nc->dmac);
1914
1915 clk_put(nc->mck);
1916 }
1917
1918 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1919 .offs = AT91SAM9260_MATRIX_EBICSA,
1920 };
1921
1922 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1923 .offs = AT91SAM9261_MATRIX_EBICSA,
1924 };
1925
1926 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1927 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1928 };
1929
1930 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1931 .offs = AT91SAM9RL_MATRIX_EBICSA,
1932 };
1933
1934 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1935 .offs = AT91SAM9G45_MATRIX_EBICSA,
1936 };
1937
1938 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1939 .offs = AT91SAM9N12_MATRIX_EBICSA,
1940 };
1941
1942 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1943 .offs = AT91SAM9X5_MATRIX_EBICSA,
1944 };
1945
1946 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1947 .offs = AT91_SFR_CCFG_EBICSA,
1948 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1949 };
1950
1951 static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1952 {
1953 .compatible = "atmel,at91sam9260-matrix",
1954 .data = &at91sam9260_ebi_csa,
1955 },
1956 {
1957 .compatible = "atmel,at91sam9261-matrix",
1958 .data = &at91sam9261_ebi_csa,
1959 },
1960 {
1961 .compatible = "atmel,at91sam9263-matrix",
1962 .data = &at91sam9263_ebi_csa,
1963 },
1964 {
1965 .compatible = "atmel,at91sam9rl-matrix",
1966 .data = &at91sam9rl_ebi_csa,
1967 },
1968 {
1969 .compatible = "atmel,at91sam9g45-matrix",
1970 .data = &at91sam9g45_ebi_csa,
1971 },
1972 {
1973 .compatible = "atmel,at91sam9n12-matrix",
1974 .data = &at91sam9n12_ebi_csa,
1975 },
1976 {
1977 .compatible = "atmel,at91sam9x5-matrix",
1978 .data = &at91sam9x5_ebi_csa,
1979 },
1980 {
1981 .compatible = "microchip,sam9x60-sfr",
1982 .data = &sam9x60_ebi_csa,
1983 },
1984 { /* sentinel */ },
1985 };
1986
atmel_nand_attach_chip(struct nand_chip * chip)1987 static int atmel_nand_attach_chip(struct nand_chip *chip)
1988 {
1989 struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1990 struct atmel_nand *nand = to_atmel_nand(chip);
1991 struct mtd_info *mtd = nand_to_mtd(chip);
1992 int ret;
1993
1994 ret = nc->caps->ops->ecc_init(chip);
1995 if (ret)
1996 return ret;
1997
1998 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1999 /*
2000 * We keep the MTD name unchanged to avoid breaking platforms
2001 * where the MTD cmdline parser is used and the bootloader
2002 * has not been updated to use the new naming scheme.
2003 */
2004 mtd->name = "atmel_nand";
2005 } else if (!mtd->name) {
2006 /*
2007 * If the new bindings are used and the bootloader has not been
2008 * updated to pass a new mtdparts parameter on the cmdline, you
2009 * should define the following property in your nand node:
2010 *
2011 * label = "atmel_nand";
2012 *
2013 * This way, mtd->name will be set by the core when
2014 * nand_set_flash_node() is called.
2015 */
2016 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2017 "%s:nand.%d", dev_name(nc->dev),
2018 nand->cs[0].id);
2019 if (!mtd->name) {
2020 dev_err(nc->dev, "Failed to allocate mtd->name\n");
2021 return -ENOMEM;
2022 }
2023 }
2024
2025 return 0;
2026 }
2027
2028 static const struct nand_controller_ops atmel_nand_controller_ops = {
2029 .attach_chip = atmel_nand_attach_chip,
2030 .setup_interface = atmel_nand_setup_interface,
2031 .exec_op = atmel_nand_exec_op,
2032 };
2033
atmel_nand_controller_init(struct atmel_nand_controller * nc,struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2034 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2035 struct platform_device *pdev,
2036 const struct atmel_nand_controller_caps *caps)
2037 {
2038 struct device *dev = &pdev->dev;
2039 struct device_node *np = dev->of_node;
2040 int ret;
2041
2042 nand_controller_init(&nc->base);
2043 nc->base.ops = &atmel_nand_controller_ops;
2044 INIT_LIST_HEAD(&nc->chips);
2045 nc->dev = dev;
2046 nc->caps = caps;
2047
2048 platform_set_drvdata(pdev, nc);
2049
2050 nc->pmecc = devm_atmel_pmecc_get(dev);
2051 if (IS_ERR(nc->pmecc))
2052 return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2053 "Could not get PMECC object\n");
2054
2055 if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2056 dma_cap_mask_t mask;
2057
2058 dma_cap_zero(mask);
2059 dma_cap_set(DMA_MEMCPY, mask);
2060
2061 nc->dmac = dma_request_channel(mask, NULL, NULL);
2062 if (nc->dmac)
2063 dev_info(nc->dev, "using %s for DMA transfers\n",
2064 dma_chan_name(nc->dmac));
2065 else
2066 dev_err(nc->dev, "Failed to request DMA channel\n");
2067 }
2068
2069 /* We do not retrieve the SMC syscon when parsing old DTs. */
2070 if (nc->caps->legacy_of_bindings)
2071 return 0;
2072
2073 nc->mck = of_clk_get(dev->parent->of_node, 0);
2074 if (IS_ERR(nc->mck)) {
2075 dev_err(dev, "Failed to retrieve MCK clk\n");
2076 ret = PTR_ERR(nc->mck);
2077 goto out_release_dma;
2078 }
2079
2080 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2081 if (!np) {
2082 dev_err(dev, "Missing or invalid atmel,smc property\n");
2083 ret = -EINVAL;
2084 goto out_release_dma;
2085 }
2086
2087 nc->smc = syscon_node_to_regmap(np);
2088 of_node_put(np);
2089 if (IS_ERR(nc->smc)) {
2090 ret = PTR_ERR(nc->smc);
2091 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2092 goto out_release_dma;
2093 }
2094
2095 return 0;
2096
2097 out_release_dma:
2098 if (nc->dmac)
2099 dma_release_channel(nc->dmac);
2100
2101 return ret;
2102 }
2103
2104 static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller * nc)2105 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2106 {
2107 struct device *dev = nc->base.dev;
2108 const struct of_device_id *match;
2109 struct device_node *np;
2110 int ret;
2111
2112 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2113 if (nc->base.caps->legacy_of_bindings)
2114 return 0;
2115
2116 np = of_parse_phandle(dev->parent->of_node,
2117 nc->base.caps->ebi_csa_regmap_name, 0);
2118 if (!np)
2119 return 0;
2120
2121 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2122 if (!match) {
2123 of_node_put(np);
2124 return 0;
2125 }
2126
2127 nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2128 of_node_put(np);
2129 if (IS_ERR(nc->ebi_csa_regmap)) {
2130 ret = PTR_ERR(nc->ebi_csa_regmap);
2131 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2132 return ret;
2133 }
2134
2135 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2136
2137 /*
2138 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2139 * add 4 to ->ebi_csa->offs.
2140 */
2141 if (of_device_is_compatible(dev->parent->of_node,
2142 "atmel,at91sam9263-ebi1"))
2143 nc->ebi_csa->offs += 4;
2144
2145 return 0;
2146 }
2147
2148 static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller * nc)2149 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2150 {
2151 struct regmap_config regmap_conf = {
2152 .reg_bits = 32,
2153 .val_bits = 32,
2154 .reg_stride = 4,
2155 };
2156
2157 struct device *dev = nc->base.dev;
2158 struct device_node *nand_np, *nfc_np;
2159 void __iomem *iomem;
2160 struct resource res;
2161 int ret;
2162
2163 nand_np = dev->of_node;
2164 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2165 if (!nfc_np) {
2166 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2167 return -ENODEV;
2168 }
2169
2170 nc->clk = of_clk_get(nfc_np, 0);
2171 if (IS_ERR(nc->clk)) {
2172 ret = PTR_ERR(nc->clk);
2173 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2174 ret);
2175 goto out;
2176 }
2177
2178 ret = clk_prepare_enable(nc->clk);
2179 if (ret) {
2180 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2181 ret);
2182 goto out;
2183 }
2184
2185 nc->irq = of_irq_get(nand_np, 0);
2186 if (nc->irq <= 0) {
2187 ret = nc->irq ?: -ENXIO;
2188 if (ret != -EPROBE_DEFER)
2189 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2190 ret);
2191 goto out;
2192 }
2193
2194 ret = of_address_to_resource(nfc_np, 0, &res);
2195 if (ret) {
2196 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2197 ret);
2198 goto out;
2199 }
2200
2201 iomem = devm_ioremap_resource(dev, &res);
2202 if (IS_ERR(iomem)) {
2203 ret = PTR_ERR(iomem);
2204 goto out;
2205 }
2206
2207 regmap_conf.name = "nfc-io";
2208 regmap_conf.max_register = resource_size(&res) - 4;
2209 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2210 if (IS_ERR(nc->io)) {
2211 ret = PTR_ERR(nc->io);
2212 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2213 ret);
2214 goto out;
2215 }
2216
2217 ret = of_address_to_resource(nfc_np, 1, &res);
2218 if (ret) {
2219 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2220 ret);
2221 goto out;
2222 }
2223
2224 iomem = devm_ioremap_resource(dev, &res);
2225 if (IS_ERR(iomem)) {
2226 ret = PTR_ERR(iomem);
2227 goto out;
2228 }
2229
2230 regmap_conf.name = "smc";
2231 regmap_conf.max_register = resource_size(&res) - 4;
2232 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2233 if (IS_ERR(nc->base.smc)) {
2234 ret = PTR_ERR(nc->base.smc);
2235 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2236 ret);
2237 goto out;
2238 }
2239
2240 ret = of_address_to_resource(nfc_np, 2, &res);
2241 if (ret) {
2242 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2243 ret);
2244 goto out;
2245 }
2246
2247 nc->sram.virt = devm_ioremap_resource(dev, &res);
2248 if (IS_ERR(nc->sram.virt)) {
2249 ret = PTR_ERR(nc->sram.virt);
2250 goto out;
2251 }
2252
2253 nc->sram.dma = res.start;
2254
2255 out:
2256 of_node_put(nfc_np);
2257
2258 return ret;
2259 }
2260
2261 static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller * nc)2262 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2263 {
2264 struct device *dev = nc->base.dev;
2265 struct device_node *np;
2266 int ret;
2267
2268 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2269 if (!np) {
2270 dev_err(dev, "Missing or invalid atmel,smc property\n");
2271 return -EINVAL;
2272 }
2273
2274 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2275
2276 nc->irq = of_irq_get(np, 0);
2277 of_node_put(np);
2278 if (nc->irq <= 0) {
2279 ret = nc->irq ?: -ENXIO;
2280 if (ret != -EPROBE_DEFER)
2281 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2282 ret);
2283 return ret;
2284 }
2285
2286 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2287 if (!np) {
2288 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2289 return -EINVAL;
2290 }
2291
2292 nc->io = syscon_node_to_regmap(np);
2293 of_node_put(np);
2294 if (IS_ERR(nc->io)) {
2295 ret = PTR_ERR(nc->io);
2296 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2297 return ret;
2298 }
2299
2300 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2301 "atmel,nfc-sram", 0);
2302 if (!nc->sram.pool) {
2303 dev_err(nc->base.dev, "Missing SRAM\n");
2304 return -ENOMEM;
2305 }
2306
2307 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2308 ATMEL_NFC_SRAM_SIZE,
2309 &nc->sram.dma);
2310 if (!nc->sram.virt) {
2311 dev_err(nc->base.dev,
2312 "Could not allocate memory from the NFC SRAM pool\n");
2313 return -ENOMEM;
2314 }
2315
2316 return 0;
2317 }
2318
2319 static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller * nc)2320 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2321 {
2322 struct atmel_hsmc_nand_controller *hsmc_nc;
2323 int ret;
2324
2325 ret = atmel_nand_controller_remove_nands(nc);
2326 if (ret)
2327 return ret;
2328
2329 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2330 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2331 ATMEL_HSMC_NFC_CTRL_DIS);
2332
2333 if (hsmc_nc->sram.pool)
2334 gen_pool_free(hsmc_nc->sram.pool,
2335 (unsigned long)hsmc_nc->sram.virt,
2336 ATMEL_NFC_SRAM_SIZE);
2337
2338 if (hsmc_nc->clk) {
2339 clk_disable_unprepare(hsmc_nc->clk);
2340 clk_put(hsmc_nc->clk);
2341 }
2342
2343 atmel_nand_controller_cleanup(nc);
2344
2345 return 0;
2346 }
2347
atmel_hsmc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2348 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2349 const struct atmel_nand_controller_caps *caps)
2350 {
2351 struct device *dev = &pdev->dev;
2352 struct atmel_hsmc_nand_controller *nc;
2353 int ret;
2354
2355 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2356 if (!nc)
2357 return -ENOMEM;
2358
2359 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2360 if (ret)
2361 return ret;
2362
2363 if (caps->legacy_of_bindings)
2364 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2365 else
2366 ret = atmel_hsmc_nand_controller_init(nc);
2367
2368 if (ret)
2369 return ret;
2370
2371 /* Make sure all irqs are masked before registering our IRQ handler. */
2372 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2373 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2374 IRQF_SHARED, "nfc", nc);
2375 if (ret) {
2376 dev_err(dev,
2377 "Could not get register NFC interrupt handler (err = %d)\n",
2378 ret);
2379 goto err;
2380 }
2381
2382 /* Initial NFC configuration. */
2383 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2384 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2385 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2386 ATMEL_HSMC_NFC_CTRL_EN);
2387
2388 ret = atmel_nand_controller_add_nands(&nc->base);
2389 if (ret)
2390 goto err;
2391
2392 return 0;
2393
2394 err:
2395 atmel_hsmc_nand_controller_remove(&nc->base);
2396
2397 return ret;
2398 }
2399
2400 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2401 .probe = atmel_hsmc_nand_controller_probe,
2402 .remove = atmel_hsmc_nand_controller_remove,
2403 .ecc_init = atmel_hsmc_nand_ecc_init,
2404 .nand_init = atmel_nand_init,
2405 .setup_interface = atmel_hsmc_nand_setup_interface,
2406 .exec_op = atmel_hsmc_nand_exec_op,
2407 };
2408
2409 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2410 .has_dma = true,
2411 .ale_offs = BIT(21),
2412 .cle_offs = BIT(22),
2413 .ops = &atmel_hsmc_nc_ops,
2414 };
2415
2416 /* Only used to parse old bindings. */
2417 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2418 .has_dma = true,
2419 .ale_offs = BIT(21),
2420 .cle_offs = BIT(22),
2421 .ops = &atmel_hsmc_nc_ops,
2422 .legacy_of_bindings = true,
2423 };
2424
atmel_smc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2425 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2426 const struct atmel_nand_controller_caps *caps)
2427 {
2428 struct device *dev = &pdev->dev;
2429 struct atmel_smc_nand_controller *nc;
2430 int ret;
2431
2432 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2433 if (!nc)
2434 return -ENOMEM;
2435
2436 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2437 if (ret)
2438 return ret;
2439
2440 ret = atmel_smc_nand_controller_init(nc);
2441 if (ret)
2442 return ret;
2443
2444 return atmel_nand_controller_add_nands(&nc->base);
2445 }
2446
2447 static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller * nc)2448 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2449 {
2450 int ret;
2451
2452 ret = atmel_nand_controller_remove_nands(nc);
2453 if (ret)
2454 return ret;
2455
2456 atmel_nand_controller_cleanup(nc);
2457
2458 return 0;
2459 }
2460
2461 /*
2462 * The SMC reg layout of at91rm9200 is completely different which prevents us
2463 * from re-using atmel_smc_nand_setup_interface() for the
2464 * ->setup_interface() hook.
2465 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2466 * ->setup_interface() unassigned.
2467 */
2468 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2469 .probe = atmel_smc_nand_controller_probe,
2470 .remove = atmel_smc_nand_controller_remove,
2471 .ecc_init = atmel_nand_ecc_init,
2472 .nand_init = atmel_smc_nand_init,
2473 .exec_op = atmel_smc_nand_exec_op,
2474 };
2475
2476 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2477 .ale_offs = BIT(21),
2478 .cle_offs = BIT(22),
2479 .ebi_csa_regmap_name = "atmel,matrix",
2480 .ops = &at91rm9200_nc_ops,
2481 };
2482
2483 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2484 .probe = atmel_smc_nand_controller_probe,
2485 .remove = atmel_smc_nand_controller_remove,
2486 .ecc_init = atmel_nand_ecc_init,
2487 .nand_init = atmel_smc_nand_init,
2488 .setup_interface = atmel_smc_nand_setup_interface,
2489 .exec_op = atmel_smc_nand_exec_op,
2490 };
2491
2492 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2493 .ale_offs = BIT(21),
2494 .cle_offs = BIT(22),
2495 .ebi_csa_regmap_name = "atmel,matrix",
2496 .ops = &atmel_smc_nc_ops,
2497 };
2498
2499 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2500 .ale_offs = BIT(22),
2501 .cle_offs = BIT(21),
2502 .ebi_csa_regmap_name = "atmel,matrix",
2503 .ops = &atmel_smc_nc_ops,
2504 };
2505
2506 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2507 .has_dma = true,
2508 .ale_offs = BIT(21),
2509 .cle_offs = BIT(22),
2510 .ebi_csa_regmap_name = "atmel,matrix",
2511 .ops = &atmel_smc_nc_ops,
2512 };
2513
2514 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2515 .has_dma = true,
2516 .ale_offs = BIT(21),
2517 .cle_offs = BIT(22),
2518 .ebi_csa_regmap_name = "microchip,sfr",
2519 .ops = &atmel_smc_nc_ops,
2520 };
2521
2522 /* Only used to parse old bindings. */
2523 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2524 .ale_offs = BIT(21),
2525 .cle_offs = BIT(22),
2526 .ops = &atmel_smc_nc_ops,
2527 .legacy_of_bindings = true,
2528 };
2529
2530 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2531 .ale_offs = BIT(22),
2532 .cle_offs = BIT(21),
2533 .ops = &atmel_smc_nc_ops,
2534 .legacy_of_bindings = true,
2535 };
2536
2537 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2538 .has_dma = true,
2539 .ale_offs = BIT(21),
2540 .cle_offs = BIT(22),
2541 .ops = &atmel_smc_nc_ops,
2542 .legacy_of_bindings = true,
2543 };
2544
2545 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2546 {
2547 .compatible = "atmel,at91rm9200-nand-controller",
2548 .data = &atmel_rm9200_nc_caps,
2549 },
2550 {
2551 .compatible = "atmel,at91sam9260-nand-controller",
2552 .data = &atmel_sam9260_nc_caps,
2553 },
2554 {
2555 .compatible = "atmel,at91sam9261-nand-controller",
2556 .data = &atmel_sam9261_nc_caps,
2557 },
2558 {
2559 .compatible = "atmel,at91sam9g45-nand-controller",
2560 .data = &atmel_sam9g45_nc_caps,
2561 },
2562 {
2563 .compatible = "atmel,sama5d3-nand-controller",
2564 .data = &atmel_sama5_nc_caps,
2565 },
2566 {
2567 .compatible = "microchip,sam9x60-nand-controller",
2568 .data = µchip_sam9x60_nc_caps,
2569 },
2570 /* Support for old/deprecated bindings: */
2571 {
2572 .compatible = "atmel,at91rm9200-nand",
2573 .data = &atmel_rm9200_nand_caps,
2574 },
2575 {
2576 .compatible = "atmel,sama5d4-nand",
2577 .data = &atmel_rm9200_nand_caps,
2578 },
2579 {
2580 .compatible = "atmel,sama5d2-nand",
2581 .data = &atmel_rm9200_nand_caps,
2582 },
2583 { /* sentinel */ },
2584 };
2585 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2586
atmel_nand_controller_probe(struct platform_device * pdev)2587 static int atmel_nand_controller_probe(struct platform_device *pdev)
2588 {
2589 const struct atmel_nand_controller_caps *caps;
2590
2591 if (pdev->id_entry)
2592 caps = (void *)pdev->id_entry->driver_data;
2593 else
2594 caps = of_device_get_match_data(&pdev->dev);
2595
2596 if (!caps) {
2597 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2598 return -EINVAL;
2599 }
2600
2601 if (caps->legacy_of_bindings) {
2602 struct device_node *nfc_node;
2603 u32 ale_offs = 21;
2604
2605 /*
2606 * If we are parsing legacy DT props and the DT contains a
2607 * valid NFC node, forward the request to the sama5 logic.
2608 */
2609 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2610 "atmel,sama5d3-nfc");
2611 if (nfc_node) {
2612 caps = &atmel_sama5_nand_caps;
2613 of_node_put(nfc_node);
2614 }
2615
2616 /*
2617 * Even if the compatible says we are dealing with an
2618 * at91rm9200 controller, the atmel,nand-has-dma specify that
2619 * this controller supports DMA, which means we are in fact
2620 * dealing with an at91sam9g45+ controller.
2621 */
2622 if (!caps->has_dma &&
2623 of_property_read_bool(pdev->dev.of_node,
2624 "atmel,nand-has-dma"))
2625 caps = &atmel_sam9g45_nand_caps;
2626
2627 /*
2628 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2629 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2630 * actually dealing with an at91sam9261 controller.
2631 */
2632 of_property_read_u32(pdev->dev.of_node,
2633 "atmel,nand-addr-offset", &ale_offs);
2634 if (ale_offs != 21)
2635 caps = &atmel_sam9261_nand_caps;
2636 }
2637
2638 return caps->ops->probe(pdev, caps);
2639 }
2640
atmel_nand_controller_remove(struct platform_device * pdev)2641 static void atmel_nand_controller_remove(struct platform_device *pdev)
2642 {
2643 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2644
2645 WARN_ON(nc->caps->ops->remove(nc));
2646 }
2647
atmel_nand_controller_resume(struct device * dev)2648 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2649 {
2650 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2651 struct atmel_nand *nand;
2652
2653 if (nc->pmecc)
2654 atmel_pmecc_reset(nc->pmecc);
2655
2656 list_for_each_entry(nand, &nc->chips, node) {
2657 int i;
2658
2659 for (i = 0; i < nand->numcs; i++)
2660 nand_reset(&nand->base, i);
2661 }
2662
2663 return 0;
2664 }
2665
2666 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2667 atmel_nand_controller_resume);
2668
2669 static struct platform_driver atmel_nand_controller_driver = {
2670 .driver = {
2671 .name = "atmel-nand-controller",
2672 .of_match_table = atmel_nand_controller_of_ids,
2673 .pm = &atmel_nand_controller_pm_ops,
2674 },
2675 .probe = atmel_nand_controller_probe,
2676 .remove = atmel_nand_controller_remove,
2677 };
2678 module_platform_driver(atmel_nand_controller_driver);
2679
2680 MODULE_LICENSE("GPL");
2681 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2682 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2683 MODULE_ALIAS("platform:atmel-nand-controller");
2684