xref: /linux/arch/x86/kernel/cpu/mtrr/mtrr.c (revision 2f0a7504530c24f55daec7d2364d933bb1a1fa68)
1 // SPDX-License-Identifier: LGPL-2.0+
2 /*  Generic MTRR (Memory Type Range Register) driver.
3 
4     Copyright (C) 1997-2000  Richard Gooch
5     Copyright (c) 2002	     Patrick Mochel
6 
7     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
8     The postal address is:
9       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
10 
11     Source: "Pentium Pro Family Developer's Manual, Volume 3:
12     Operating System Writer's Guide" (Intel document number 242692),
13     section 11.11.7
14 
15     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
16     on 6-7 March 2002.
17     Source: Intel Architecture Software Developers Manual, Volume 3:
18     System Programming Guide; Section 9.11. (1997 edition - PPro).
19 */
20 
21 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
22 
23 #include <linux/stop_machine.h>
24 #include <linux/kvm_para.h>
25 #include <linux/uaccess.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/init.h>
29 #include <linux/sort.h>
30 #include <linux/cpu.h>
31 #include <linux/pci.h>
32 #include <linux/smp.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/rcupdate.h>
35 
36 #include <asm/cacheinfo.h>
37 #include <asm/cpufeature.h>
38 #include <asm/e820/api.h>
39 #include <asm/mtrr.h>
40 #include <asm/msr.h>
41 #include <asm/memtype.h>
42 
43 #include "mtrr.h"
44 
45 static_assert(X86_MEMTYPE_UC == MTRR_TYPE_UNCACHABLE);
46 static_assert(X86_MEMTYPE_WC == MTRR_TYPE_WRCOMB);
47 static_assert(X86_MEMTYPE_WT == MTRR_TYPE_WRTHROUGH);
48 static_assert(X86_MEMTYPE_WP == MTRR_TYPE_WRPROT);
49 static_assert(X86_MEMTYPE_WB == MTRR_TYPE_WRBACK);
50 
51 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
52 #define MTRR_TO_PHYS_WC_OFFSET 1000
53 
54 u32 num_var_ranges;
55 
56 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
57 DEFINE_MUTEX(mtrr_mutex);
58 
59 const struct mtrr_ops *mtrr_if;
60 
61 /*  Returns non-zero if we have the write-combining memory type  */
have_wrcomb(void)62 static int have_wrcomb(void)
63 {
64 	struct pci_dev *dev;
65 
66 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
67 	if (dev != NULL) {
68 		/*
69 		 * ServerWorks LE chipsets < rev 6 have problems with
70 		 * write-combining. Don't allow it and leave room for other
71 		 * chipsets to be tagged
72 		 */
73 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
74 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
75 		    dev->revision <= 5) {
76 			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
77 			pci_dev_put(dev);
78 			return 0;
79 		}
80 		/*
81 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
82 		 * write combining memory may resulting in data corruption
83 		 */
84 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
85 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
86 			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
87 			pci_dev_put(dev);
88 			return 0;
89 		}
90 		pci_dev_put(dev);
91 	}
92 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
93 }
94 
init_table(void)95 static void __init init_table(void)
96 {
97 	int i, max;
98 
99 	max = num_var_ranges;
100 	for (i = 0; i < max; i++)
101 		mtrr_usage_table[i] = 1;
102 }
103 
104 struct set_mtrr_data {
105 	unsigned long	smp_base;
106 	unsigned long	smp_size;
107 	unsigned int	smp_reg;
108 	mtrr_type	smp_type;
109 };
110 
111 /**
112  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
113  * by all the CPUs.
114  * @info: pointer to mtrr configuration data
115  *
116  * Returns nothing.
117  */
mtrr_rendezvous_handler(void * info)118 static int mtrr_rendezvous_handler(void *info)
119 {
120 	struct set_mtrr_data *data = info;
121 
122 	mtrr_if->set(data->smp_reg, data->smp_base,
123 		     data->smp_size, data->smp_type);
124 	return 0;
125 }
126 
types_compatible(mtrr_type type1,mtrr_type type2)127 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
128 {
129 	return type1 == MTRR_TYPE_UNCACHABLE ||
130 	       type2 == MTRR_TYPE_UNCACHABLE ||
131 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
132 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
133 }
134 
135 /**
136  * set_mtrr - update mtrrs on all processors
137  * @reg:	mtrr in question
138  * @base:	mtrr base
139  * @size:	mtrr size
140  * @type:	mtrr type
141  *
142  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
143  *
144  * 1. Queue work to do the following on all processors:
145  * 2. Disable Interrupts
146  * 3. Wait for all procs to do so
147  * 4. Enter no-fill cache mode
148  * 5. Flush caches
149  * 6. Clear PGE bit
150  * 7. Flush all TLBs
151  * 8. Disable all range registers
152  * 9. Update the MTRRs
153  * 10. Enable all range registers
154  * 11. Flush all TLBs and caches again
155  * 12. Enter normal cache mode and reenable caching
156  * 13. Set PGE
157  * 14. Wait for buddies to catch up
158  * 15. Enable interrupts.
159  *
160  * What does that mean for us? Well, stop_machine() will ensure that
161  * the rendezvous handler is started on each CPU. And in lockstep they
162  * do the state transition of disabling interrupts, updating MTRR's
163  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
164  * callback and let them take care of it.) and enabling interrupts.
165  *
166  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
167  * becomes nops.
168  */
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)169 static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size,
170 		     mtrr_type type)
171 {
172 	struct set_mtrr_data data = { .smp_reg = reg,
173 				      .smp_base = base,
174 				      .smp_size = size,
175 				      .smp_type = type
176 				    };
177 
178 	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
179 
180 	generic_rebuild_map();
181 }
182 
183 /**
184  * mtrr_add_page - Add a memory type region
185  * @base: Physical base address of region in pages (in units of 4 kB!)
186  * @size: Physical size of region in pages (4 kB)
187  * @type: Type of MTRR desired
188  * @increment: If this is true do usage counting on the region
189  *
190  * Memory type region registers control the caching on newer Intel and
191  * non Intel processors. This function allows drivers to request an
192  * MTRR is added. The details and hardware specifics of each processor's
193  * implementation are hidden from the caller, but nevertheless the
194  * caller should expect to need to provide a power of two size on an
195  * equivalent power of two boundary.
196  *
197  * If the region cannot be added either because all regions are in use
198  * or the CPU cannot support it a negative value is returned. On success
199  * the register number for this entry is returned, but should be treated
200  * as a cookie only.
201  *
202  * On a multiprocessor machine the changes are made to all processors.
203  * This is required on x86 by the Intel processors.
204  *
205  * The available types are
206  *
207  * %MTRR_TYPE_UNCACHABLE - No caching
208  *
209  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
210  *
211  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
212  *
213  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
214  *
215  * BUGS: Needs a quiet flag for the cases where drivers do not mind
216  * failures and do not wish system log messages to be sent.
217  */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)218 int mtrr_add_page(unsigned long base, unsigned long size,
219 		  unsigned int type, bool increment)
220 {
221 	unsigned long lbase, lsize;
222 	int i, replace, error;
223 	mtrr_type ltype;
224 
225 	if (!mtrr_enabled())
226 		return -ENXIO;
227 
228 	error = mtrr_if->validate_add_page(base, size, type);
229 	if (error)
230 		return error;
231 
232 	if (type >= MTRR_NUM_TYPES) {
233 		pr_warn("type: %u invalid\n", type);
234 		return -EINVAL;
235 	}
236 
237 	/* If the type is WC, check that this processor supports it */
238 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
239 		pr_warn("your processor doesn't support write-combining\n");
240 		return -ENOSYS;
241 	}
242 
243 	if (!size) {
244 		pr_warn("zero sized request\n");
245 		return -EINVAL;
246 	}
247 
248 	if ((base | (base + size - 1)) >>
249 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
250 		pr_warn("base or size exceeds the MTRR width\n");
251 		return -EINVAL;
252 	}
253 
254 	error = -EINVAL;
255 	replace = -1;
256 
257 	/* No CPU hotplug when we change MTRR entries */
258 	cpus_read_lock();
259 
260 	/* Search for existing MTRR  */
261 	mutex_lock(&mtrr_mutex);
262 	for (i = 0; i < num_var_ranges; ++i) {
263 		mtrr_if->get(i, &lbase, &lsize, &ltype);
264 		if (!lsize || base > lbase + lsize - 1 ||
265 		    base + size - 1 < lbase)
266 			continue;
267 		/*
268 		 * At this point we know there is some kind of
269 		 * overlap/enclosure
270 		 */
271 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
272 			if (base <= lbase &&
273 			    base + size - 1 >= lbase + lsize - 1) {
274 				/*  New region encloses an existing region  */
275 				if (type == ltype) {
276 					replace = replace == -1 ? i : -2;
277 					continue;
278 				} else if (types_compatible(type, ltype))
279 					continue;
280 			}
281 			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
282 				lsize);
283 			goto out;
284 		}
285 		/* New region is enclosed by an existing region */
286 		if (ltype != type) {
287 			if (types_compatible(type, ltype))
288 				continue;
289 			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
290 				base, size, mtrr_attrib_to_str(ltype),
291 				mtrr_attrib_to_str(type));
292 			goto out;
293 		}
294 		if (increment)
295 			++mtrr_usage_table[i];
296 		error = i;
297 		goto out;
298 	}
299 	/* Search for an empty MTRR */
300 	i = mtrr_if->get_free_region(base, size, replace);
301 	if (i >= 0) {
302 		set_mtrr(i, base, size, type);
303 		if (likely(replace < 0)) {
304 			mtrr_usage_table[i] = 1;
305 		} else {
306 			mtrr_usage_table[i] = mtrr_usage_table[replace];
307 			if (increment)
308 				mtrr_usage_table[i]++;
309 			if (unlikely(replace != i)) {
310 				set_mtrr(replace, 0, 0, 0);
311 				mtrr_usage_table[replace] = 0;
312 			}
313 		}
314 	} else {
315 		pr_info("no more MTRRs available\n");
316 	}
317 	error = i;
318  out:
319 	mutex_unlock(&mtrr_mutex);
320 	cpus_read_unlock();
321 	return error;
322 }
323 
mtrr_check(unsigned long base,unsigned long size)324 static int mtrr_check(unsigned long base, unsigned long size)
325 {
326 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
327 		pr_warn("size and base must be multiples of 4 kiB\n");
328 		Dprintk("size: 0x%lx  base: 0x%lx\n", size, base);
329 		dump_stack();
330 		return -1;
331 	}
332 	return 0;
333 }
334 
335 /**
336  * mtrr_add - Add a memory type region
337  * @base: Physical base address of region
338  * @size: Physical size of region
339  * @type: Type of MTRR desired
340  * @increment: If this is true do usage counting on the region
341  *
342  * Memory type region registers control the caching on newer Intel and
343  * non Intel processors. This function allows drivers to request an
344  * MTRR is added. The details and hardware specifics of each processor's
345  * implementation are hidden from the caller, but nevertheless the
346  * caller should expect to need to provide a power of two size on an
347  * equivalent power of two boundary.
348  *
349  * If the region cannot be added either because all regions are in use
350  * or the CPU cannot support it a negative value is returned. On success
351  * the register number for this entry is returned, but should be treated
352  * as a cookie only.
353  *
354  * On a multiprocessor machine the changes are made to all processors.
355  * This is required on x86 by the Intel processors.
356  *
357  * The available types are
358  *
359  * %MTRR_TYPE_UNCACHABLE - No caching
360  *
361  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
362  *
363  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
364  *
365  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
366  *
367  * BUGS: Needs a quiet flag for the cases where drivers do not mind
368  * failures and do not wish system log messages to be sent.
369  */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)370 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
371 	     bool increment)
372 {
373 	if (!mtrr_enabled())
374 		return -ENODEV;
375 	if (mtrr_check(base, size))
376 		return -EINVAL;
377 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
378 			     increment);
379 }
380 
381 /**
382  * mtrr_del_page - delete a memory type region
383  * @reg: Register returned by mtrr_add
384  * @base: Physical base address
385  * @size: Size of region
386  *
387  * If register is supplied then base and size are ignored. This is
388  * how drivers should call it.
389  *
390  * Releases an MTRR region. If the usage count drops to zero the
391  * register is freed and the region returns to default state.
392  * On success the register is returned, on failure a negative error
393  * code.
394  */
mtrr_del_page(int reg,unsigned long base,unsigned long size)395 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
396 {
397 	int i, max;
398 	mtrr_type ltype;
399 	unsigned long lbase, lsize;
400 	int error = -EINVAL;
401 
402 	if (!mtrr_enabled())
403 		return -ENODEV;
404 
405 	max = num_var_ranges;
406 	/* No CPU hotplug when we change MTRR entries */
407 	cpus_read_lock();
408 	mutex_lock(&mtrr_mutex);
409 	if (reg < 0) {
410 		/*  Search for existing MTRR  */
411 		for (i = 0; i < max; ++i) {
412 			mtrr_if->get(i, &lbase, &lsize, &ltype);
413 			if (lbase == base && lsize == size) {
414 				reg = i;
415 				break;
416 			}
417 		}
418 		if (reg < 0) {
419 			Dprintk("no MTRR for %lx000,%lx000 found\n", base, size);
420 			goto out;
421 		}
422 	}
423 	if (reg >= max) {
424 		pr_warn("register: %d too big\n", reg);
425 		goto out;
426 	}
427 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
428 	if (lsize < 1) {
429 		pr_warn("MTRR %d not used\n", reg);
430 		goto out;
431 	}
432 	if (mtrr_usage_table[reg] < 1) {
433 		pr_warn("reg: %d has count=0\n", reg);
434 		goto out;
435 	}
436 	if (--mtrr_usage_table[reg] < 1)
437 		set_mtrr(reg, 0, 0, 0);
438 	error = reg;
439  out:
440 	mutex_unlock(&mtrr_mutex);
441 	cpus_read_unlock();
442 	return error;
443 }
444 
445 /**
446  * mtrr_del - delete a memory type region
447  * @reg: Register returned by mtrr_add
448  * @base: Physical base address
449  * @size: Size of region
450  *
451  * If register is supplied then base and size are ignored. This is
452  * how drivers should call it.
453  *
454  * Releases an MTRR region. If the usage count drops to zero the
455  * register is freed and the region returns to default state.
456  * On success the register is returned, on failure a negative error
457  * code.
458  */
mtrr_del(int reg,unsigned long base,unsigned long size)459 int mtrr_del(int reg, unsigned long base, unsigned long size)
460 {
461 	if (!mtrr_enabled())
462 		return -ENODEV;
463 	if (mtrr_check(base, size))
464 		return -EINVAL;
465 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
466 }
467 
468 /**
469  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
470  * @base: Physical base address
471  * @size: Size of region
472  *
473  * If PAT is available, this does nothing.  If PAT is unavailable, it
474  * attempts to add a WC MTRR covering size bytes starting at base and
475  * logs an error if this fails.
476  *
477  * The called should provide a power of two size on an equivalent
478  * power of two boundary.
479  *
480  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
481  * but drivers should not try to interpret that return value.
482  */
arch_phys_wc_add(unsigned long base,unsigned long size)483 int arch_phys_wc_add(unsigned long base, unsigned long size)
484 {
485 	int ret;
486 
487 	if (pat_enabled() || !mtrr_enabled())
488 		return 0;  /* Success!  (We don't need to do anything.) */
489 
490 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
491 	if (ret < 0) {
492 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
493 			(void *)base, (void *)(base + size - 1));
494 		return ret;
495 	}
496 	return ret + MTRR_TO_PHYS_WC_OFFSET;
497 }
498 EXPORT_SYMBOL(arch_phys_wc_add);
499 
500 /*
501  * arch_phys_wc_del - undoes arch_phys_wc_add
502  * @handle: Return value from arch_phys_wc_add
503  *
504  * This cleans up after mtrr_add_wc_if_needed.
505  *
506  * The API guarantees that mtrr_del_wc_if_needed(error code) and
507  * mtrr_del_wc_if_needed(0) do nothing.
508  */
arch_phys_wc_del(int handle)509 void arch_phys_wc_del(int handle)
510 {
511 	if (handle >= 1) {
512 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
513 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
514 	}
515 }
516 EXPORT_SYMBOL(arch_phys_wc_del);
517 
518 /*
519  * arch_phys_wc_index - translates arch_phys_wc_add's return value
520  * @handle: Return value from arch_phys_wc_add
521  *
522  * This will turn the return value from arch_phys_wc_add into an mtrr
523  * index suitable for debugging.
524  *
525  * Note: There is no legitimate use for this function, except possibly
526  * in printk line.  Alas there is an illegitimate use in some ancient
527  * drm ioctls.
528  */
arch_phys_wc_index(int handle)529 int arch_phys_wc_index(int handle)
530 {
531 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
532 		return -1;
533 	else
534 		return handle - MTRR_TO_PHYS_WC_OFFSET;
535 }
536 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
537 
538 int __initdata changed_by_mtrr_cleanup;
539 
540 /**
541  * mtrr_bp_init - initialize MTRRs on the boot CPU
542  *
543  * This needs to be called early; before any of the other CPUs are
544  * initialized (i.e. before smp_init()).
545  */
mtrr_bp_init(void)546 void __init mtrr_bp_init(void)
547 {
548 	bool generic_mtrrs = cpu_feature_enabled(X86_FEATURE_MTRR);
549 	const char *why = "(not available)";
550 	unsigned long config, dummy;
551 
552 	phys_hi_rsvd = GENMASK(31, boot_cpu_data.x86_phys_bits - 32);
553 
554 	if (!generic_mtrrs && mtrr_state.enabled) {
555 		/*
556 		 * Software overwrite of MTRR state, only for generic case.
557 		 * Note that X86_FEATURE_MTRR has been reset in this case.
558 		 */
559 		init_table();
560 		mtrr_build_map();
561 		pr_info("MTRRs set to read-only\n");
562 
563 		return;
564 	}
565 
566 	if (generic_mtrrs)
567 		mtrr_if = &generic_mtrr_ops;
568 	else
569 		mtrr_set_if();
570 
571 	if (mtrr_enabled()) {
572 		/* Get the number of variable MTRR ranges. */
573 		if (mtrr_if == &generic_mtrr_ops)
574 			rdmsr(MSR_MTRRcap, config, dummy);
575 		else
576 			config = mtrr_if->var_regs;
577 		num_var_ranges = config & MTRR_CAP_VCNT;
578 
579 		init_table();
580 		if (mtrr_if == &generic_mtrr_ops) {
581 			/* BIOS may override */
582 			if (get_mtrr_state()) {
583 				memory_caching_control |= CACHE_MTRR;
584 				changed_by_mtrr_cleanup = mtrr_cleanup();
585 				mtrr_build_map();
586 			} else {
587 				mtrr_if = NULL;
588 				why = "by BIOS";
589 			}
590 		}
591 	}
592 
593 	if (!mtrr_enabled())
594 		pr_info("MTRRs disabled %s\n", why);
595 }
596 
597 /**
598  * mtrr_save_state - Save current fixed-range MTRR state of the first
599  *	cpu in cpu_online_mask.
600  */
mtrr_save_state(void)601 void mtrr_save_state(void)
602 {
603 	int first_cpu;
604 
605 	if (!mtrr_enabled() || !mtrr_state.have_fixed)
606 		return;
607 
608 	first_cpu = cpumask_first(cpu_online_mask);
609 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
610 }
611 
mtrr_init_finalize(void)612 static int __init mtrr_init_finalize(void)
613 {
614 	/*
615 	 * Map might exist if guest_force_mtrr_state() has been called or if
616 	 * mtrr_enabled() returns true.
617 	 */
618 	mtrr_copy_map();
619 
620 	if (!mtrr_enabled())
621 		return 0;
622 
623 	if (memory_caching_control & CACHE_MTRR) {
624 		if (!changed_by_mtrr_cleanup)
625 			mtrr_state_warn();
626 		return 0;
627 	}
628 
629 	mtrr_register_syscore();
630 
631 	return 0;
632 }
633 subsys_initcall(mtrr_init_finalize);
634