xref: /linux/net/mptcp/protocol.c (revision 1cac38910ecb881b09f61f57545a771bbe57ba68)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
mptcp_fallback_tcp_ops(const struct sock * sk)62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 	unsigned short family = READ_ONCE(sk->sk_family);
65 
66 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
67 	if (family == AF_INET6)
68 		return &inet6_stream_ops;
69 #endif
70 	WARN_ON_ONCE(family != AF_INET);
71 	return &inet_stream_ops;
72 }
73 
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
75 {
76 	struct net *net = sock_net((struct sock *)msk);
77 
78 	if (__mptcp_check_fallback(msk))
79 		return true;
80 
81 	/* The caller possibly is not holding the msk socket lock, but
82 	 * in the fallback case only the current subflow is touching
83 	 * the OoO queue.
84 	 */
85 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
86 		return false;
87 
88 	spin_lock_bh(&msk->fallback_lock);
89 	if (!msk->allow_infinite_fallback) {
90 		spin_unlock_bh(&msk->fallback_lock);
91 		return false;
92 	}
93 
94 	msk->allow_subflows = false;
95 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
96 	__MPTCP_INC_STATS(net, fb_mib);
97 	spin_unlock_bh(&msk->fallback_lock);
98 	return true;
99 }
100 
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
113 	WRITE_ONCE(msk->first, ssock->sk);
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	subflow->subflow_id = msk->subflow_id++;
119 
120 	/* This is the first subflow, always with id 0 */
121 	WRITE_ONCE(subflow->local_id, 0);
122 	mptcp_sock_graft(msk->first, sk->sk_socket);
123 	iput(SOCK_INODE(ssock));
124 
125 	return 0;
126 }
127 
128 /* If the MPC handshake is not started, returns the first subflow,
129  * eventually allocating it.
130  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
132 {
133 	struct sock *sk = (struct sock *)msk;
134 	int ret;
135 
136 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
137 		return ERR_PTR(-EINVAL);
138 
139 	if (!msk->first) {
140 		ret = __mptcp_socket_create(msk);
141 		if (ret)
142 			return ERR_PTR(ret);
143 	}
144 
145 	return msk->first;
146 }
147 
mptcp_drop(struct sock * sk,struct sk_buff * skb)148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
149 {
150 	sk_drops_skbadd(sk, skb);
151 	__kfree_skb(skb);
152 }
153 
__mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta)154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
155 				 struct sk_buff *from, bool *fragstolen,
156 				 int *delta)
157 {
158 	int limit = READ_ONCE(sk->sk_rcvbuf);
159 
160 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
161 	    MPTCP_SKB_CB(from)->offset ||
162 	    ((to->len + from->len) > (limit >> 3)) ||
163 	    !skb_try_coalesce(to, from, fragstolen, delta))
164 		return false;
165 
166 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
167 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
168 		 to->len, MPTCP_SKB_CB(from)->end_seq);
169 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
170 	return true;
171 }
172 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
174 			       struct sk_buff *from)
175 {
176 	bool fragstolen;
177 	int delta;
178 
179 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
180 		return false;
181 
182 	/* note the fwd memory can reach a negative value after accounting
183 	 * for the delta, but the later skb free will restore a non
184 	 * negative one
185 	 */
186 	atomic_add(delta, &sk->sk_rmem_alloc);
187 	sk_mem_charge(sk, delta);
188 	kfree_skb_partial(from, fragstolen);
189 
190 	return true;
191 }
192 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
194 				   struct sk_buff *from)
195 {
196 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
197 		return false;
198 
199 	return mptcp_try_coalesce((struct sock *)msk, to, from);
200 }
201 
202 /* "inspired" by tcp_rcvbuf_grow(), main difference:
203  * - mptcp does not maintain a msk-level window clamp
204  * - returns true when  the receive buffer is actually updated
205  */
mptcp_rcvbuf_grow(struct sock * sk,u32 newval)206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
207 {
208 	struct mptcp_sock *msk = mptcp_sk(sk);
209 	const struct net *net = sock_net(sk);
210 	u32 rcvwin, rcvbuf, cap, oldval;
211 	u64 grow;
212 
213 	oldval = msk->rcvq_space.space;
214 	msk->rcvq_space.space = newval;
215 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
216 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
217 		return false;
218 
219 	/* DRS is always one RTT late. */
220 	rcvwin = newval << 1;
221 
222 	/* slow start: allow the sender to double its rate. */
223 	grow = (u64)rcvwin * (newval - oldval);
224 	do_div(grow, oldval);
225 	rcvwin += grow << 1;
226 
227 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
228 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
229 
230 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
231 
232 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
233 	if (rcvbuf > sk->sk_rcvbuf) {
234 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
235 		return true;
236 	}
237 	return false;
238 }
239 
240 /* "inspired" by tcp_data_queue_ofo(), main differences:
241  * - use mptcp seqs
242  * - don't cope with sacks
243  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
245 {
246 	struct sock *sk = (struct sock *)msk;
247 	struct rb_node **p, *parent;
248 	u64 seq, end_seq, max_seq;
249 	struct sk_buff *skb1;
250 
251 	seq = MPTCP_SKB_CB(skb)->map_seq;
252 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
253 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
254 
255 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
256 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
257 	if (after64(end_seq, max_seq)) {
258 		/* out of window */
259 		mptcp_drop(sk, skb);
260 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
261 			 (unsigned long long)end_seq - (unsigned long)max_seq,
262 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
264 		return;
265 	}
266 
267 	p = &msk->out_of_order_queue.rb_node;
268 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
269 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
270 		rb_link_node(&skb->rbnode, NULL, p);
271 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
272 		msk->ooo_last_skb = skb;
273 		goto end;
274 	}
275 
276 	/* with 2 subflows, adding at end of ooo queue is quite likely
277 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
278 	 */
279 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
280 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
281 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
282 		return;
283 	}
284 
285 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
286 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
287 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
288 		parent = &msk->ooo_last_skb->rbnode;
289 		p = &parent->rb_right;
290 		goto insert;
291 	}
292 
293 	/* Find place to insert this segment. Handle overlaps on the way. */
294 	parent = NULL;
295 	while (*p) {
296 		parent = *p;
297 		skb1 = rb_to_skb(parent);
298 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
299 			p = &parent->rb_left;
300 			continue;
301 		}
302 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
304 				/* All the bits are present. Drop. */
305 				mptcp_drop(sk, skb);
306 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
307 				return;
308 			}
309 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
310 				/* partial overlap:
311 				 *     |     skb      |
312 				 *  |     skb1    |
313 				 * continue traversing
314 				 */
315 			} else {
316 				/* skb's seq == skb1's seq and skb covers skb1.
317 				 * Replace skb1 with skb.
318 				 */
319 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
320 						&msk->out_of_order_queue);
321 				mptcp_drop(sk, skb1);
322 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 				goto merge_right;
324 			}
325 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
326 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
327 			return;
328 		}
329 		p = &parent->rb_right;
330 	}
331 
332 insert:
333 	/* Insert segment into RB tree. */
334 	rb_link_node(&skb->rbnode, parent, p);
335 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
336 
337 merge_right:
338 	/* Remove other segments covered by skb. */
339 	while ((skb1 = skb_rb_next(skb)) != NULL) {
340 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
341 			break;
342 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
343 		mptcp_drop(sk, skb1);
344 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
345 	}
346 	/* If there is no skb after us, we are the last_skb ! */
347 	if (!skb1)
348 		msk->ooo_last_skb = skb;
349 
350 end:
351 	skb_condense(skb);
352 	skb_set_owner_r(skb, sk);
353 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
354 	if (sk->sk_socket)
355 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
356 }
357 
mptcp_init_skb(struct sock * ssk,struct sk_buff * skb,int offset,int copy_len)358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
359 			   int copy_len)
360 {
361 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
362 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
363 
364 	/* the skb map_seq accounts for the skb offset:
365 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
366 	 * value
367 	 */
368 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
369 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
370 	MPTCP_SKB_CB(skb)->offset = offset;
371 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
372 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
373 
374 	__skb_unlink(skb, &ssk->sk_receive_queue);
375 
376 	skb_ext_reset(skb);
377 	skb_dst_drop(skb);
378 }
379 
__mptcp_move_skb(struct sock * sk,struct sk_buff * skb)380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
381 {
382 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
383 	struct mptcp_sock *msk = mptcp_sk(sk);
384 	struct sk_buff *tail;
385 
386 	mptcp_borrow_fwdmem(sk, skb);
387 
388 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
389 		/* in sequence */
390 		msk->bytes_received += copy_len;
391 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
392 		tail = skb_peek_tail(&sk->sk_receive_queue);
393 		if (tail && mptcp_try_coalesce(sk, tail, skb))
394 			return true;
395 
396 		skb_set_owner_r(skb, sk);
397 		__skb_queue_tail(&sk->sk_receive_queue, skb);
398 		return true;
399 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
400 		mptcp_data_queue_ofo(msk, skb);
401 		return false;
402 	}
403 
404 	/* old data, keep it simple and drop the whole pkt, sender
405 	 * will retransmit as needed, if needed.
406 	 */
407 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
408 	mptcp_drop(sk, skb);
409 	return false;
410 }
411 
mptcp_stop_rtx_timer(struct sock * sk)412 static void mptcp_stop_rtx_timer(struct sock *sk)
413 {
414 	sk_stop_timer(sk, &sk->mptcp_retransmit_timer);
415 	mptcp_sk(sk)->timer_ival = 0;
416 }
417 
mptcp_close_wake_up(struct sock * sk)418 static void mptcp_close_wake_up(struct sock *sk)
419 {
420 	if (sock_flag(sk, SOCK_DEAD))
421 		return;
422 
423 	sk->sk_state_change(sk);
424 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
425 	    sk->sk_state == TCP_CLOSE)
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
427 	else
428 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
429 }
430 
mptcp_shutdown_subflows(struct mptcp_sock * msk)431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
432 {
433 	struct mptcp_subflow_context *subflow;
434 
435 	mptcp_for_each_subflow(msk, subflow) {
436 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
437 		bool slow;
438 
439 		slow = lock_sock_fast(ssk);
440 		tcp_shutdown(ssk, SEND_SHUTDOWN);
441 		unlock_sock_fast(ssk, slow);
442 	}
443 }
444 
445 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)446 static bool mptcp_pending_data_fin_ack(struct sock *sk)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	return ((1 << sk->sk_state) &
451 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
452 	       msk->write_seq == READ_ONCE(msk->snd_una);
453 }
454 
mptcp_check_data_fin_ack(struct sock * sk)455 static void mptcp_check_data_fin_ack(struct sock *sk)
456 {
457 	struct mptcp_sock *msk = mptcp_sk(sk);
458 
459 	/* Look for an acknowledged DATA_FIN */
460 	if (mptcp_pending_data_fin_ack(sk)) {
461 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
462 
463 		switch (sk->sk_state) {
464 		case TCP_FIN_WAIT1:
465 			mptcp_set_state(sk, TCP_FIN_WAIT2);
466 			break;
467 		case TCP_CLOSING:
468 		case TCP_LAST_ACK:
469 			mptcp_shutdown_subflows(msk);
470 			mptcp_set_state(sk, TCP_CLOSE);
471 			break;
472 		}
473 
474 		mptcp_close_wake_up(sk);
475 	}
476 }
477 
478 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
480 {
481 	struct mptcp_sock *msk = mptcp_sk(sk);
482 
483 	if (READ_ONCE(msk->rcv_data_fin) &&
484 	    ((1 << inet_sk_state_load(sk)) &
485 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
486 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
487 
488 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
489 			if (seq)
490 				*seq = rcv_data_fin_seq;
491 
492 			return true;
493 		}
494 	}
495 
496 	return false;
497 }
498 
mptcp_set_datafin_timeout(struct sock * sk)499 static void mptcp_set_datafin_timeout(struct sock *sk)
500 {
501 	struct inet_connection_sock *icsk = inet_csk(sk);
502 	u32 retransmits;
503 
504 	retransmits = min_t(u32, icsk->icsk_retransmits,
505 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
506 
507 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
508 }
509 
__mptcp_set_timeout(struct sock * sk,long tout)510 static void __mptcp_set_timeout(struct sock *sk, long tout)
511 {
512 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
513 }
514 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
516 {
517 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
518 
519 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
520 	       tcp_timeout_expires(ssk) - jiffies : 0;
521 }
522 
mptcp_set_timeout(struct sock * sk)523 static void mptcp_set_timeout(struct sock *sk)
524 {
525 	struct mptcp_subflow_context *subflow;
526 	long tout = 0;
527 
528 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
529 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
530 	__mptcp_set_timeout(sk, tout);
531 }
532 
tcp_can_send_ack(const struct sock * ssk)533 static inline bool tcp_can_send_ack(const struct sock *ssk)
534 {
535 	return !((1 << inet_sk_state_load(ssk)) &
536 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
537 }
538 
__mptcp_subflow_send_ack(struct sock * ssk)539 void __mptcp_subflow_send_ack(struct sock *ssk)
540 {
541 	if (tcp_can_send_ack(ssk))
542 		tcp_send_ack(ssk);
543 }
544 
mptcp_subflow_send_ack(struct sock * ssk)545 static void mptcp_subflow_send_ack(struct sock *ssk)
546 {
547 	bool slow;
548 
549 	slow = lock_sock_fast(ssk);
550 	__mptcp_subflow_send_ack(ssk);
551 	unlock_sock_fast(ssk, slow);
552 }
553 
mptcp_send_ack(struct mptcp_sock * msk)554 static void mptcp_send_ack(struct mptcp_sock *msk)
555 {
556 	struct mptcp_subflow_context *subflow;
557 
558 	mptcp_for_each_subflow(msk, subflow)
559 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
560 }
561 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
563 {
564 	bool slow;
565 
566 	slow = lock_sock_fast(ssk);
567 	if (tcp_can_send_ack(ssk))
568 		tcp_cleanup_rbuf(ssk, copied);
569 	unlock_sock_fast(ssk, slow);
570 }
571 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
573 {
574 	const struct inet_connection_sock *icsk = inet_csk(ssk);
575 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
576 	const struct tcp_sock *tp = tcp_sk(ssk);
577 
578 	return (ack_pending & ICSK_ACK_SCHED) &&
579 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
580 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
581 		 (rx_empty && ack_pending &
582 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
583 }
584 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
586 {
587 	int old_space = READ_ONCE(msk->old_wspace);
588 	struct mptcp_subflow_context *subflow;
589 	struct sock *sk = (struct sock *)msk;
590 	int space =  __mptcp_space(sk);
591 	bool cleanup, rx_empty;
592 
593 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
594 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
595 
596 	mptcp_for_each_subflow(msk, subflow) {
597 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
598 
599 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
600 			mptcp_subflow_cleanup_rbuf(ssk, copied);
601 	}
602 }
603 
mptcp_check_data_fin(struct sock * sk)604 static void mptcp_check_data_fin(struct sock *sk)
605 {
606 	struct mptcp_sock *msk = mptcp_sk(sk);
607 	u64 rcv_data_fin_seq;
608 
609 	/* Need to ack a DATA_FIN received from a peer while this side
610 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
611 	 * msk->rcv_data_fin was set when parsing the incoming options
612 	 * at the subflow level and the msk lock was not held, so this
613 	 * is the first opportunity to act on the DATA_FIN and change
614 	 * the msk state.
615 	 *
616 	 * If we are caught up to the sequence number of the incoming
617 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
618 	 * not caught up, do nothing and let the recv code send DATA_ACK
619 	 * when catching up.
620 	 */
621 
622 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
623 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
624 		WRITE_ONCE(msk->rcv_data_fin, 0);
625 
626 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
627 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
628 
629 		switch (sk->sk_state) {
630 		case TCP_ESTABLISHED:
631 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
632 			break;
633 		case TCP_FIN_WAIT1:
634 			mptcp_set_state(sk, TCP_CLOSING);
635 			break;
636 		case TCP_FIN_WAIT2:
637 			mptcp_shutdown_subflows(msk);
638 			mptcp_set_state(sk, TCP_CLOSE);
639 			break;
640 		default:
641 			/* Other states not expected */
642 			WARN_ON_ONCE(1);
643 			break;
644 		}
645 
646 		if (!__mptcp_check_fallback(msk))
647 			mptcp_send_ack(msk);
648 		mptcp_close_wake_up(sk);
649 	}
650 }
651 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
653 {
654 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
655 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
656 		mptcp_subflow_reset(ssk);
657 	}
658 }
659 
__mptcp_add_backlog(struct sock * sk,struct mptcp_subflow_context * subflow,struct sk_buff * skb)660 static void __mptcp_add_backlog(struct sock *sk,
661 				struct mptcp_subflow_context *subflow,
662 				struct sk_buff *skb)
663 {
664 	struct mptcp_sock *msk = mptcp_sk(sk);
665 	struct sk_buff *tail = NULL;
666 	struct sock *ssk = skb->sk;
667 	bool fragstolen;
668 	int delta;
669 
670 	if (unlikely(sk->sk_state == TCP_CLOSE)) {
671 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
672 		return;
673 	}
674 
675 	/* Try to coalesce with the last skb in our backlog */
676 	if (!list_empty(&msk->backlog_list))
677 		tail = list_last_entry(&msk->backlog_list, struct sk_buff, list);
678 
679 	if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq &&
680 	    ssk == tail->sk &&
681 	    __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) {
682 		skb->truesize -= delta;
683 		kfree_skb_partial(skb, fragstolen);
684 		__mptcp_subflow_lend_fwdmem(subflow, delta);
685 		goto account;
686 	}
687 
688 	list_add_tail(&skb->list, &msk->backlog_list);
689 	mptcp_subflow_lend_fwdmem(subflow, skb);
690 	delta = skb->truesize;
691 
692 account:
693 	WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta);
694 
695 	/* Possibly not accept()ed yet, keep track of memory not CG
696 	 * accounted, mptcp_graft_subflows() will handle it.
697 	 */
698 	if (!mem_cgroup_from_sk(ssk))
699 		msk->backlog_unaccounted += delta;
700 }
701 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,bool own_msk)702 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
703 					   struct sock *ssk, bool own_msk)
704 {
705 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
706 	struct sock *sk = (struct sock *)msk;
707 	bool more_data_avail;
708 	struct tcp_sock *tp;
709 	bool ret = false;
710 
711 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
712 	tp = tcp_sk(ssk);
713 	do {
714 		u32 map_remaining, offset;
715 		u32 seq = tp->copied_seq;
716 		struct sk_buff *skb;
717 		bool fin;
718 
719 		/* try to move as much data as available */
720 		map_remaining = subflow->map_data_len -
721 				mptcp_subflow_get_map_offset(subflow);
722 
723 		skb = skb_peek(&ssk->sk_receive_queue);
724 		if (unlikely(!skb))
725 			break;
726 
727 		if (__mptcp_check_fallback(msk)) {
728 			/* Under fallback skbs have no MPTCP extension and TCP could
729 			 * collapse them between the dummy map creation and the
730 			 * current dequeue. Be sure to adjust the map size.
731 			 */
732 			map_remaining = skb->len;
733 			subflow->map_data_len = skb->len;
734 		}
735 
736 		offset = seq - TCP_SKB_CB(skb)->seq;
737 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
738 		if (fin)
739 			seq++;
740 
741 		if (offset < skb->len) {
742 			size_t len = skb->len - offset;
743 
744 			mptcp_init_skb(ssk, skb, offset, len);
745 
746 			if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) {
747 				mptcp_subflow_lend_fwdmem(subflow, skb);
748 				ret |= __mptcp_move_skb(sk, skb);
749 			} else {
750 				__mptcp_add_backlog(sk, subflow, skb);
751 			}
752 			seq += len;
753 
754 			if (unlikely(map_remaining < len)) {
755 				DEBUG_NET_WARN_ON_ONCE(1);
756 				mptcp_dss_corruption(msk, ssk);
757 			}
758 		} else {
759 			if (unlikely(!fin)) {
760 				DEBUG_NET_WARN_ON_ONCE(1);
761 				mptcp_dss_corruption(msk, ssk);
762 			}
763 
764 			sk_eat_skb(ssk, skb);
765 		}
766 
767 		WRITE_ONCE(tp->copied_seq, seq);
768 		more_data_avail = mptcp_subflow_data_available(ssk);
769 
770 	} while (more_data_avail);
771 
772 	if (ret)
773 		msk->last_data_recv = tcp_jiffies32;
774 	return ret;
775 }
776 
__mptcp_ofo_queue(struct mptcp_sock * msk)777 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
778 {
779 	struct sock *sk = (struct sock *)msk;
780 	struct sk_buff *skb, *tail;
781 	bool moved = false;
782 	struct rb_node *p;
783 	u64 end_seq;
784 
785 	p = rb_first(&msk->out_of_order_queue);
786 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
787 	while (p) {
788 		skb = rb_to_skb(p);
789 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
790 			break;
791 
792 		p = rb_next(p);
793 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
794 
795 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
796 				      msk->ack_seq))) {
797 			mptcp_drop(sk, skb);
798 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
799 			continue;
800 		}
801 
802 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
803 		tail = skb_peek_tail(&sk->sk_receive_queue);
804 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
805 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
806 
807 			/* skip overlapping data, if any */
808 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
809 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
810 				 delta);
811 			MPTCP_SKB_CB(skb)->offset += delta;
812 			MPTCP_SKB_CB(skb)->map_seq += delta;
813 			__skb_queue_tail(&sk->sk_receive_queue, skb);
814 		}
815 		msk->bytes_received += end_seq - msk->ack_seq;
816 		WRITE_ONCE(msk->ack_seq, end_seq);
817 		moved = true;
818 	}
819 	return moved;
820 }
821 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)822 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
823 {
824 	int ssk_state;
825 	int err;
826 
827 	/* only propagate errors on fallen-back sockets or
828 	 * on MPC connect
829 	 */
830 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
831 		return false;
832 
833 	err = sock_error(ssk);
834 	if (!err)
835 		return false;
836 
837 	/* We need to propagate only transition to CLOSE state.
838 	 * Orphaned socket will see such state change via
839 	 * subflow_sched_work_if_closed() and that path will properly
840 	 * destroy the msk as needed.
841 	 */
842 	ssk_state = inet_sk_state_load(ssk);
843 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
844 		mptcp_set_state(sk, ssk_state);
845 	WRITE_ONCE(sk->sk_err, -err);
846 
847 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
848 	smp_wmb();
849 	sk_error_report(sk);
850 	return true;
851 }
852 
__mptcp_error_report(struct sock * sk)853 void __mptcp_error_report(struct sock *sk)
854 {
855 	struct mptcp_subflow_context *subflow;
856 	struct mptcp_sock *msk = mptcp_sk(sk);
857 
858 	mptcp_for_each_subflow(msk, subflow)
859 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
860 			break;
861 }
862 
863 /* In most cases we will be able to lock the mptcp socket.  If its already
864  * owned, we need to defer to the work queue to avoid ABBA deadlock.
865  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)866 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
867 {
868 	struct sock *sk = (struct sock *)msk;
869 	bool moved;
870 
871 	moved = __mptcp_move_skbs_from_subflow(msk, ssk, true);
872 	__mptcp_ofo_queue(msk);
873 	if (unlikely(ssk->sk_err))
874 		__mptcp_subflow_error_report(sk, ssk);
875 
876 	/* If the moves have caught up with the DATA_FIN sequence number
877 	 * it's time to ack the DATA_FIN and change socket state, but
878 	 * this is not a good place to change state. Let the workqueue
879 	 * do it.
880 	 */
881 	if (mptcp_pending_data_fin(sk, NULL))
882 		mptcp_schedule_work(sk);
883 	return moved;
884 }
885 
mptcp_data_ready(struct sock * sk,struct sock * ssk)886 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
887 {
888 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
889 	struct mptcp_sock *msk = mptcp_sk(sk);
890 
891 	/* The peer can send data while we are shutting down this
892 	 * subflow at subflow destruction time, but we must avoid enqueuing
893 	 * more data to the msk receive queue
894 	 */
895 	if (unlikely(subflow->closing))
896 		return;
897 
898 	mptcp_data_lock(sk);
899 	if (!sock_owned_by_user(sk)) {
900 		/* Wake-up the reader only for in-sequence data */
901 		if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
902 			sk->sk_data_ready(sk);
903 	} else {
904 		__mptcp_move_skbs_from_subflow(msk, ssk, false);
905 	}
906 	mptcp_data_unlock(sk);
907 }
908 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)909 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
910 {
911 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
912 	msk->allow_infinite_fallback = false;
913 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
914 }
915 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)916 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
917 {
918 	struct sock *sk = (struct sock *)msk;
919 
920 	if (sk->sk_state != TCP_ESTABLISHED)
921 		return false;
922 
923 	spin_lock_bh(&msk->fallback_lock);
924 	if (!msk->allow_subflows) {
925 		spin_unlock_bh(&msk->fallback_lock);
926 		return false;
927 	}
928 	mptcp_subflow_joined(msk, ssk);
929 	spin_unlock_bh(&msk->fallback_lock);
930 
931 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
932 	mptcp_sockopt_sync_locked(msk, ssk);
933 	mptcp_stop_tout_timer(sk);
934 	__mptcp_propagate_sndbuf(sk, ssk);
935 	return true;
936 }
937 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)938 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
939 {
940 	struct mptcp_subflow_context *tmp, *subflow;
941 	struct mptcp_sock *msk = mptcp_sk(sk);
942 
943 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
944 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
945 		bool slow = lock_sock_fast(ssk);
946 
947 		list_move_tail(&subflow->node, &msk->conn_list);
948 		if (!__mptcp_finish_join(msk, ssk))
949 			mptcp_subflow_reset(ssk);
950 		unlock_sock_fast(ssk, slow);
951 	}
952 }
953 
mptcp_rtx_timer_pending(struct sock * sk)954 static bool mptcp_rtx_timer_pending(struct sock *sk)
955 {
956 	return timer_pending(&sk->mptcp_retransmit_timer);
957 }
958 
mptcp_reset_rtx_timer(struct sock * sk)959 static void mptcp_reset_rtx_timer(struct sock *sk)
960 {
961 	unsigned long tout;
962 
963 	/* prevent rescheduling on close */
964 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
965 		return;
966 
967 	tout = mptcp_sk(sk)->timer_ival;
968 	sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout);
969 }
970 
mptcp_schedule_work(struct sock * sk)971 bool mptcp_schedule_work(struct sock *sk)
972 {
973 	if (inet_sk_state_load(sk) == TCP_CLOSE)
974 		return false;
975 
976 	/* Get a reference on this socket, mptcp_worker() will release it.
977 	 * As mptcp_worker() might complete before us, we can not avoid
978 	 * a sock_hold()/sock_put() if schedule_work() returns false.
979 	 */
980 	sock_hold(sk);
981 
982 	if (schedule_work(&mptcp_sk(sk)->work))
983 		return true;
984 
985 	sock_put(sk);
986 	return false;
987 }
988 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)989 static bool mptcp_skb_can_collapse_to(u64 write_seq,
990 				      const struct sk_buff *skb,
991 				      const struct mptcp_ext *mpext)
992 {
993 	if (!tcp_skb_can_collapse_to(skb))
994 		return false;
995 
996 	/* can collapse only if MPTCP level sequence is in order and this
997 	 * mapping has not been xmitted yet
998 	 */
999 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
1000 	       !mpext->frozen;
1001 }
1002 
1003 /* we can append data to the given data frag if:
1004  * - there is space available in the backing page_frag
1005  * - the data frag tail matches the current page_frag free offset
1006  * - the data frag end sequence number matches the current write seq
1007  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)1008 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1009 				       const struct page_frag *pfrag,
1010 				       const struct mptcp_data_frag *df)
1011 {
1012 	return df && pfrag->page == df->page &&
1013 		pfrag->size - pfrag->offset > 0 &&
1014 		pfrag->offset == (df->offset + df->data_len) &&
1015 		df->data_seq + df->data_len == msk->write_seq;
1016 }
1017 
dfrag_uncharge(struct sock * sk,int len)1018 static void dfrag_uncharge(struct sock *sk, int len)
1019 {
1020 	sk_mem_uncharge(sk, len);
1021 	sk_wmem_queued_add(sk, -len);
1022 }
1023 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1024 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1025 {
1026 	int len = dfrag->data_len + dfrag->overhead;
1027 
1028 	list_del(&dfrag->list);
1029 	dfrag_uncharge(sk, len);
1030 	put_page(dfrag->page);
1031 }
1032 
1033 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1034 static void __mptcp_clean_una(struct sock *sk)
1035 {
1036 	struct mptcp_sock *msk = mptcp_sk(sk);
1037 	struct mptcp_data_frag *dtmp, *dfrag;
1038 	u64 snd_una;
1039 
1040 	snd_una = msk->snd_una;
1041 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1042 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1043 			break;
1044 
1045 		if (unlikely(dfrag == msk->first_pending)) {
1046 			/* in recovery mode can see ack after the current snd head */
1047 			if (WARN_ON_ONCE(!msk->recovery))
1048 				break;
1049 
1050 			msk->first_pending = mptcp_send_next(sk);
1051 		}
1052 
1053 		dfrag_clear(sk, dfrag);
1054 	}
1055 
1056 	dfrag = mptcp_rtx_head(sk);
1057 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1058 		u64 delta = snd_una - dfrag->data_seq;
1059 
1060 		/* prevent wrap around in recovery mode */
1061 		if (unlikely(delta > dfrag->already_sent)) {
1062 			if (WARN_ON_ONCE(!msk->recovery))
1063 				goto out;
1064 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1065 				goto out;
1066 			dfrag->already_sent += delta - dfrag->already_sent;
1067 		}
1068 
1069 		dfrag->data_seq += delta;
1070 		dfrag->offset += delta;
1071 		dfrag->data_len -= delta;
1072 		dfrag->already_sent -= delta;
1073 
1074 		dfrag_uncharge(sk, delta);
1075 	}
1076 
1077 	/* all retransmitted data acked, recovery completed */
1078 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1079 		msk->recovery = false;
1080 
1081 out:
1082 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1083 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1084 			mptcp_stop_rtx_timer(sk);
1085 	} else {
1086 		mptcp_reset_rtx_timer(sk);
1087 	}
1088 
1089 	if (mptcp_pending_data_fin_ack(sk))
1090 		mptcp_schedule_work(sk);
1091 }
1092 
__mptcp_clean_una_wakeup(struct sock * sk)1093 static void __mptcp_clean_una_wakeup(struct sock *sk)
1094 {
1095 	lockdep_assert_held_once(&sk->sk_lock.slock);
1096 
1097 	__mptcp_clean_una(sk);
1098 	mptcp_write_space(sk);
1099 }
1100 
mptcp_clean_una_wakeup(struct sock * sk)1101 static void mptcp_clean_una_wakeup(struct sock *sk)
1102 {
1103 	mptcp_data_lock(sk);
1104 	__mptcp_clean_una_wakeup(sk);
1105 	mptcp_data_unlock(sk);
1106 }
1107 
mptcp_enter_memory_pressure(struct sock * sk)1108 static void mptcp_enter_memory_pressure(struct sock *sk)
1109 {
1110 	struct mptcp_subflow_context *subflow;
1111 	struct mptcp_sock *msk = mptcp_sk(sk);
1112 	bool first = true;
1113 
1114 	mptcp_for_each_subflow(msk, subflow) {
1115 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1116 
1117 		if (first && !ssk->sk_bypass_prot_mem) {
1118 			tcp_enter_memory_pressure(ssk);
1119 			first = false;
1120 		}
1121 
1122 		sk_stream_moderate_sndbuf(ssk);
1123 	}
1124 	__mptcp_sync_sndbuf(sk);
1125 }
1126 
1127 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1128  * data
1129  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1130 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1131 {
1132 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1133 					pfrag, sk->sk_allocation)))
1134 		return true;
1135 
1136 	mptcp_enter_memory_pressure(sk);
1137 	return false;
1138 }
1139 
1140 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1141 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1142 		      int orig_offset)
1143 {
1144 	int offset = ALIGN(orig_offset, sizeof(long));
1145 	struct mptcp_data_frag *dfrag;
1146 
1147 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1148 	dfrag->data_len = 0;
1149 	dfrag->data_seq = msk->write_seq;
1150 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1151 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1152 	dfrag->already_sent = 0;
1153 	dfrag->page = pfrag->page;
1154 
1155 	return dfrag;
1156 }
1157 
1158 struct mptcp_sendmsg_info {
1159 	int mss_now;
1160 	int size_goal;
1161 	u16 limit;
1162 	u16 sent;
1163 	unsigned int flags;
1164 	bool data_lock_held;
1165 };
1166 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1167 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1168 				    u64 data_seq, int avail_size)
1169 {
1170 	u64 window_end = mptcp_wnd_end(msk);
1171 	u64 mptcp_snd_wnd;
1172 
1173 	if (__mptcp_check_fallback(msk))
1174 		return avail_size;
1175 
1176 	mptcp_snd_wnd = window_end - data_seq;
1177 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1178 
1179 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1180 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1181 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1182 	}
1183 
1184 	return avail_size;
1185 }
1186 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1187 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1188 {
1189 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1190 
1191 	if (!mpext)
1192 		return false;
1193 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1194 	return true;
1195 }
1196 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1197 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1198 {
1199 	struct sk_buff *skb;
1200 
1201 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1202 	if (likely(skb)) {
1203 		if (likely(__mptcp_add_ext(skb, gfp))) {
1204 			skb_reserve(skb, MAX_TCP_HEADER);
1205 			skb->ip_summed = CHECKSUM_PARTIAL;
1206 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1207 			return skb;
1208 		}
1209 		__kfree_skb(skb);
1210 	} else {
1211 		mptcp_enter_memory_pressure(sk);
1212 	}
1213 	return NULL;
1214 }
1215 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1216 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1217 {
1218 	struct sk_buff *skb;
1219 
1220 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1221 	if (!skb)
1222 		return NULL;
1223 
1224 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1225 		tcp_skb_entail(ssk, skb);
1226 		return skb;
1227 	}
1228 	tcp_skb_tsorted_anchor_cleanup(skb);
1229 	kfree_skb(skb);
1230 	return NULL;
1231 }
1232 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1233 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1234 {
1235 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1236 
1237 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1238 }
1239 
1240 /* note: this always recompute the csum on the whole skb, even
1241  * if we just appended a single frag. More status info needed
1242  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1243 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1244 {
1245 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1246 	__wsum csum = ~csum_unfold(mpext->csum);
1247 	int offset = skb->len - added;
1248 
1249 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1250 }
1251 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1252 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1253 				      struct sock *ssk,
1254 				      struct mptcp_ext *mpext)
1255 {
1256 	if (!mpext)
1257 		return;
1258 
1259 	mpext->infinite_map = 1;
1260 	mpext->data_len = 0;
1261 
1262 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1263 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1264 		mptcp_subflow_reset(ssk);
1265 		return;
1266 	}
1267 
1268 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1269 }
1270 
1271 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1272 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1273 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1274 			      struct mptcp_data_frag *dfrag,
1275 			      struct mptcp_sendmsg_info *info)
1276 {
1277 	u64 data_seq = dfrag->data_seq + info->sent;
1278 	int offset = dfrag->offset + info->sent;
1279 	struct mptcp_sock *msk = mptcp_sk(sk);
1280 	bool zero_window_probe = false;
1281 	struct mptcp_ext *mpext = NULL;
1282 	bool can_coalesce = false;
1283 	bool reuse_skb = true;
1284 	struct sk_buff *skb;
1285 	size_t copy;
1286 	int i;
1287 
1288 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1289 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1290 
1291 	if (WARN_ON_ONCE(info->sent > info->limit ||
1292 			 info->limit > dfrag->data_len))
1293 		return 0;
1294 
1295 	if (unlikely(!__tcp_can_send(ssk)))
1296 		return -EAGAIN;
1297 
1298 	/* compute send limit */
1299 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1300 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1301 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1302 	copy = info->size_goal;
1303 
1304 	skb = tcp_write_queue_tail(ssk);
1305 	if (skb && copy > skb->len) {
1306 		/* Limit the write to the size available in the
1307 		 * current skb, if any, so that we create at most a new skb.
1308 		 * Explicitly tells TCP internals to avoid collapsing on later
1309 		 * queue management operation, to avoid breaking the ext <->
1310 		 * SSN association set here
1311 		 */
1312 		mpext = mptcp_get_ext(skb);
1313 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1314 			TCP_SKB_CB(skb)->eor = 1;
1315 			tcp_mark_push(tcp_sk(ssk), skb);
1316 			goto alloc_skb;
1317 		}
1318 
1319 		i = skb_shinfo(skb)->nr_frags;
1320 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1321 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1322 			tcp_mark_push(tcp_sk(ssk), skb);
1323 			goto alloc_skb;
1324 		}
1325 
1326 		copy -= skb->len;
1327 	} else {
1328 alloc_skb:
1329 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1330 		if (!skb)
1331 			return -ENOMEM;
1332 
1333 		i = skb_shinfo(skb)->nr_frags;
1334 		reuse_skb = false;
1335 		mpext = mptcp_get_ext(skb);
1336 	}
1337 
1338 	/* Zero window and all data acked? Probe. */
1339 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1340 	if (copy == 0) {
1341 		u64 snd_una = READ_ONCE(msk->snd_una);
1342 
1343 		/* No need for zero probe if there are any data pending
1344 		 * either at the msk or ssk level; skb is the current write
1345 		 * queue tail and can be empty at this point.
1346 		 */
1347 		if (snd_una != msk->snd_nxt || skb->len ||
1348 		    skb != tcp_send_head(ssk)) {
1349 			tcp_remove_empty_skb(ssk);
1350 			return 0;
1351 		}
1352 
1353 		zero_window_probe = true;
1354 		data_seq = snd_una - 1;
1355 		copy = 1;
1356 	}
1357 
1358 	copy = min_t(size_t, copy, info->limit - info->sent);
1359 	if (!sk_wmem_schedule(ssk, copy)) {
1360 		tcp_remove_empty_skb(ssk);
1361 		return -ENOMEM;
1362 	}
1363 
1364 	if (can_coalesce) {
1365 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1366 	} else {
1367 		get_page(dfrag->page);
1368 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1369 	}
1370 
1371 	skb->len += copy;
1372 	skb->data_len += copy;
1373 	skb->truesize += copy;
1374 	sk_wmem_queued_add(ssk, copy);
1375 	sk_mem_charge(ssk, copy);
1376 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1377 	TCP_SKB_CB(skb)->end_seq += copy;
1378 	tcp_skb_pcount_set(skb, 0);
1379 
1380 	/* on skb reuse we just need to update the DSS len */
1381 	if (reuse_skb) {
1382 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383 		mpext->data_len += copy;
1384 		goto out;
1385 	}
1386 
1387 	memset(mpext, 0, sizeof(*mpext));
1388 	mpext->data_seq = data_seq;
1389 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1390 	mpext->data_len = copy;
1391 	mpext->use_map = 1;
1392 	mpext->dsn64 = 1;
1393 
1394 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1395 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1396 		 mpext->dsn64);
1397 
1398 	if (zero_window_probe) {
1399 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1400 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1401 		mpext->frozen = 1;
1402 		if (READ_ONCE(msk->csum_enabled))
1403 			mptcp_update_data_checksum(skb, copy);
1404 		tcp_push_pending_frames(ssk);
1405 		return 0;
1406 	}
1407 out:
1408 	if (READ_ONCE(msk->csum_enabled))
1409 		mptcp_update_data_checksum(skb, copy);
1410 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1411 		mptcp_update_infinite_map(msk, ssk, mpext);
1412 	trace_mptcp_sendmsg_frag(mpext);
1413 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1414 	return copy;
1415 }
1416 
1417 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1418 					 sizeof(struct tcphdr) - \
1419 					 MAX_TCP_OPTION_SPACE - \
1420 					 sizeof(struct ipv6hdr) - \
1421 					 sizeof(struct frag_hdr))
1422 
1423 struct subflow_send_info {
1424 	struct sock *ssk;
1425 	u64 linger_time;
1426 };
1427 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1428 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1429 {
1430 	if (!subflow->stale)
1431 		return;
1432 
1433 	subflow->stale = 0;
1434 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1435 }
1436 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1437 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1438 {
1439 	if (unlikely(subflow->stale)) {
1440 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1441 
1442 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1443 			return false;
1444 
1445 		mptcp_subflow_set_active(subflow);
1446 	}
1447 	return __mptcp_subflow_active(subflow);
1448 }
1449 
1450 #define SSK_MODE_ACTIVE	0
1451 #define SSK_MODE_BACKUP	1
1452 #define SSK_MODE_MAX	2
1453 
1454 /* implement the mptcp packet scheduler;
1455  * returns the subflow that will transmit the next DSS
1456  * additionally updates the rtx timeout
1457  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1458 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1459 {
1460 	struct subflow_send_info send_info[SSK_MODE_MAX];
1461 	struct mptcp_subflow_context *subflow;
1462 	struct sock *sk = (struct sock *)msk;
1463 	u32 pace, burst, wmem;
1464 	int i, nr_active = 0;
1465 	struct sock *ssk;
1466 	u64 linger_time;
1467 	long tout = 0;
1468 
1469 	/* pick the subflow with the lower wmem/wspace ratio */
1470 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1471 		send_info[i].ssk = NULL;
1472 		send_info[i].linger_time = -1;
1473 	}
1474 
1475 	mptcp_for_each_subflow(msk, subflow) {
1476 		bool backup = subflow->backup || subflow->request_bkup;
1477 
1478 		trace_mptcp_subflow_get_send(subflow);
1479 		ssk =  mptcp_subflow_tcp_sock(subflow);
1480 		if (!mptcp_subflow_active(subflow))
1481 			continue;
1482 
1483 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1484 		nr_active += !backup;
1485 		pace = subflow->avg_pacing_rate;
1486 		if (unlikely(!pace)) {
1487 			/* init pacing rate from socket */
1488 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1489 			pace = subflow->avg_pacing_rate;
1490 			if (!pace)
1491 				continue;
1492 		}
1493 
1494 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1495 		if (linger_time < send_info[backup].linger_time) {
1496 			send_info[backup].ssk = ssk;
1497 			send_info[backup].linger_time = linger_time;
1498 		}
1499 	}
1500 	__mptcp_set_timeout(sk, tout);
1501 
1502 	/* pick the best backup if no other subflow is active */
1503 	if (!nr_active)
1504 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1505 
1506 	/* According to the blest algorithm, to avoid HoL blocking for the
1507 	 * faster flow, we need to:
1508 	 * - estimate the faster flow linger time
1509 	 * - use the above to estimate the amount of byte transferred
1510 	 *   by the faster flow
1511 	 * - check that the amount of queued data is greater than the above,
1512 	 *   otherwise do not use the picked, slower, subflow
1513 	 * We select the subflow with the shorter estimated time to flush
1514 	 * the queued mem, which basically ensure the above. We just need
1515 	 * to check that subflow has a non empty cwin.
1516 	 */
1517 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1518 	if (!ssk || !sk_stream_memory_free(ssk))
1519 		return NULL;
1520 
1521 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1522 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1523 	if (!burst)
1524 		return ssk;
1525 
1526 	subflow = mptcp_subflow_ctx(ssk);
1527 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1528 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1529 					   burst + wmem);
1530 	msk->snd_burst = burst;
1531 	return ssk;
1532 }
1533 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1534 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1535 {
1536 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1537 	release_sock(ssk);
1538 }
1539 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1540 static void mptcp_update_post_push(struct mptcp_sock *msk,
1541 				   struct mptcp_data_frag *dfrag,
1542 				   u32 sent)
1543 {
1544 	u64 snd_nxt_new = dfrag->data_seq;
1545 
1546 	dfrag->already_sent += sent;
1547 
1548 	msk->snd_burst -= sent;
1549 
1550 	snd_nxt_new += dfrag->already_sent;
1551 
1552 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1553 	 * is recovering after a failover. In that event, this re-sends
1554 	 * old segments.
1555 	 *
1556 	 * Thus compute snd_nxt_new candidate based on
1557 	 * the dfrag->data_seq that was sent and the data
1558 	 * that has been handed to the subflow for transmission
1559 	 * and skip update in case it was old dfrag.
1560 	 */
1561 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1562 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1563 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1564 	}
1565 }
1566 
mptcp_check_and_set_pending(struct sock * sk)1567 void mptcp_check_and_set_pending(struct sock *sk)
1568 {
1569 	if (mptcp_send_head(sk)) {
1570 		mptcp_data_lock(sk);
1571 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1572 		mptcp_data_unlock(sk);
1573 	}
1574 }
1575 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1576 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1577 				  struct mptcp_sendmsg_info *info)
1578 {
1579 	struct mptcp_sock *msk = mptcp_sk(sk);
1580 	struct mptcp_data_frag *dfrag;
1581 	int len, copied = 0, err = 0;
1582 
1583 	while ((dfrag = mptcp_send_head(sk))) {
1584 		info->sent = dfrag->already_sent;
1585 		info->limit = dfrag->data_len;
1586 		len = dfrag->data_len - dfrag->already_sent;
1587 		while (len > 0) {
1588 			int ret = 0;
1589 
1590 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1591 			if (ret <= 0) {
1592 				err = copied ? : ret;
1593 				goto out;
1594 			}
1595 
1596 			info->sent += ret;
1597 			copied += ret;
1598 			len -= ret;
1599 
1600 			mptcp_update_post_push(msk, dfrag, ret);
1601 		}
1602 		msk->first_pending = mptcp_send_next(sk);
1603 
1604 		if (msk->snd_burst <= 0 ||
1605 		    !sk_stream_memory_free(ssk) ||
1606 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1607 			err = copied;
1608 			goto out;
1609 		}
1610 		mptcp_set_timeout(sk);
1611 	}
1612 	err = copied;
1613 
1614 out:
1615 	if (err > 0)
1616 		msk->last_data_sent = tcp_jiffies32;
1617 	return err;
1618 }
1619 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1620 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1621 {
1622 	struct sock *prev_ssk = NULL, *ssk = NULL;
1623 	struct mptcp_sock *msk = mptcp_sk(sk);
1624 	struct mptcp_sendmsg_info info = {
1625 				.flags = flags,
1626 	};
1627 	bool copied = false;
1628 	int push_count = 1;
1629 
1630 	while (mptcp_send_head(sk) && (push_count > 0)) {
1631 		struct mptcp_subflow_context *subflow;
1632 		int ret = 0;
1633 
1634 		if (mptcp_sched_get_send(msk))
1635 			break;
1636 
1637 		push_count = 0;
1638 
1639 		mptcp_for_each_subflow(msk, subflow) {
1640 			if (READ_ONCE(subflow->scheduled)) {
1641 				mptcp_subflow_set_scheduled(subflow, false);
1642 
1643 				prev_ssk = ssk;
1644 				ssk = mptcp_subflow_tcp_sock(subflow);
1645 				if (ssk != prev_ssk) {
1646 					/* First check. If the ssk has changed since
1647 					 * the last round, release prev_ssk
1648 					 */
1649 					if (prev_ssk)
1650 						mptcp_push_release(prev_ssk, &info);
1651 
1652 					/* Need to lock the new subflow only if different
1653 					 * from the previous one, otherwise we are still
1654 					 * helding the relevant lock
1655 					 */
1656 					lock_sock(ssk);
1657 				}
1658 
1659 				push_count++;
1660 
1661 				ret = __subflow_push_pending(sk, ssk, &info);
1662 				if (ret <= 0) {
1663 					if (ret != -EAGAIN ||
1664 					    (1 << ssk->sk_state) &
1665 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1666 						push_count--;
1667 					continue;
1668 				}
1669 				copied = true;
1670 			}
1671 		}
1672 	}
1673 
1674 	/* at this point we held the socket lock for the last subflow we used */
1675 	if (ssk)
1676 		mptcp_push_release(ssk, &info);
1677 
1678 	/* Avoid scheduling the rtx timer if no data has been pushed; the timer
1679 	 * will be updated on positive acks by __mptcp_cleanup_una().
1680 	 */
1681 	if (copied) {
1682 		if (!mptcp_rtx_timer_pending(sk))
1683 			mptcp_reset_rtx_timer(sk);
1684 		mptcp_check_send_data_fin(sk);
1685 	}
1686 }
1687 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1688 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1689 {
1690 	struct mptcp_sock *msk = mptcp_sk(sk);
1691 	struct mptcp_sendmsg_info info = {
1692 		.data_lock_held = true,
1693 	};
1694 	bool keep_pushing = true;
1695 	struct sock *xmit_ssk;
1696 	int copied = 0;
1697 
1698 	info.flags = 0;
1699 	while (mptcp_send_head(sk) && keep_pushing) {
1700 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1701 		int ret = 0;
1702 
1703 		/* check for a different subflow usage only after
1704 		 * spooling the first chunk of data
1705 		 */
1706 		if (first) {
1707 			mptcp_subflow_set_scheduled(subflow, false);
1708 			ret = __subflow_push_pending(sk, ssk, &info);
1709 			first = false;
1710 			if (ret <= 0)
1711 				break;
1712 			copied += ret;
1713 			continue;
1714 		}
1715 
1716 		if (mptcp_sched_get_send(msk))
1717 			goto out;
1718 
1719 		if (READ_ONCE(subflow->scheduled)) {
1720 			mptcp_subflow_set_scheduled(subflow, false);
1721 			ret = __subflow_push_pending(sk, ssk, &info);
1722 			if (ret <= 0)
1723 				keep_pushing = false;
1724 			copied += ret;
1725 		}
1726 
1727 		mptcp_for_each_subflow(msk, subflow) {
1728 			if (READ_ONCE(subflow->scheduled)) {
1729 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1730 				if (xmit_ssk != ssk) {
1731 					mptcp_subflow_delegate(subflow,
1732 							       MPTCP_DELEGATE_SEND);
1733 					keep_pushing = false;
1734 				}
1735 			}
1736 		}
1737 	}
1738 
1739 out:
1740 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1741 	 * not going to flush it via release_sock()
1742 	 */
1743 	if (copied) {
1744 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1745 			 info.size_goal);
1746 		if (!mptcp_rtx_timer_pending(sk))
1747 			mptcp_reset_rtx_timer(sk);
1748 
1749 		if (msk->snd_data_fin_enable &&
1750 		    msk->snd_nxt + 1 == msk->write_seq)
1751 			mptcp_schedule_work(sk);
1752 	}
1753 }
1754 
1755 static int mptcp_disconnect(struct sock *sk, int flags);
1756 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1757 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1758 				  size_t len, int *copied_syn)
1759 {
1760 	unsigned int saved_flags = msg->msg_flags;
1761 	struct mptcp_sock *msk = mptcp_sk(sk);
1762 	struct sock *ssk;
1763 	int ret;
1764 
1765 	/* on flags based fastopen the mptcp is supposed to create the
1766 	 * first subflow right now. Otherwise we are in the defer_connect
1767 	 * path, and the first subflow must be already present.
1768 	 * Since the defer_connect flag is cleared after the first succsful
1769 	 * fastopen attempt, no need to check for additional subflow status.
1770 	 */
1771 	if (msg->msg_flags & MSG_FASTOPEN) {
1772 		ssk = __mptcp_nmpc_sk(msk);
1773 		if (IS_ERR(ssk))
1774 			return PTR_ERR(ssk);
1775 	}
1776 	if (!msk->first)
1777 		return -EINVAL;
1778 
1779 	ssk = msk->first;
1780 
1781 	lock_sock(ssk);
1782 	msg->msg_flags |= MSG_DONTWAIT;
1783 	msk->fastopening = 1;
1784 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1785 	msk->fastopening = 0;
1786 	msg->msg_flags = saved_flags;
1787 	release_sock(ssk);
1788 
1789 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1790 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1791 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1792 					    msg->msg_namelen, msg->msg_flags, 1);
1793 
1794 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1795 		 * case of any error, except timeout or signal
1796 		 */
1797 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1798 			*copied_syn = 0;
1799 	} else if (ret && ret != -EINPROGRESS) {
1800 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1801 		 * __inet_stream_connect() can fail, due to looking check,
1802 		 * see mptcp_disconnect().
1803 		 * Attempt it again outside the problematic scope.
1804 		 */
1805 		if (!mptcp_disconnect(sk, 0)) {
1806 			sk->sk_disconnects++;
1807 			sk->sk_socket->state = SS_UNCONNECTED;
1808 		}
1809 	}
1810 	inet_clear_bit(DEFER_CONNECT, sk);
1811 
1812 	return ret;
1813 }
1814 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1815 static int do_copy_data_nocache(struct sock *sk, int copy,
1816 				struct iov_iter *from, char *to)
1817 {
1818 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1819 		if (!copy_from_iter_full_nocache(to, copy, from))
1820 			return -EFAULT;
1821 	} else if (!copy_from_iter_full(to, copy, from)) {
1822 		return -EFAULT;
1823 	}
1824 	return 0;
1825 }
1826 
1827 /* open-code sk_stream_memory_free() plus sent limit computation to
1828  * avoid indirect calls in fast-path.
1829  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1830  * annotations.
1831  */
mptcp_send_limit(const struct sock * sk)1832 static u32 mptcp_send_limit(const struct sock *sk)
1833 {
1834 	const struct mptcp_sock *msk = mptcp_sk(sk);
1835 	u32 limit, not_sent;
1836 
1837 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1838 		return 0;
1839 
1840 	limit = mptcp_notsent_lowat(sk);
1841 	if (limit == UINT_MAX)
1842 		return UINT_MAX;
1843 
1844 	not_sent = msk->write_seq - msk->snd_nxt;
1845 	if (not_sent >= limit)
1846 		return 0;
1847 
1848 	return limit - not_sent;
1849 }
1850 
mptcp_rps_record_subflows(const struct mptcp_sock * msk)1851 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1852 {
1853 	struct mptcp_subflow_context *subflow;
1854 
1855 	if (!rfs_is_needed())
1856 		return;
1857 
1858 	mptcp_for_each_subflow(msk, subflow) {
1859 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1860 
1861 		sock_rps_record_flow(ssk);
1862 	}
1863 }
1864 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1865 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1866 {
1867 	struct mptcp_sock *msk = mptcp_sk(sk);
1868 	struct page_frag *pfrag;
1869 	size_t copied = 0;
1870 	int ret = 0;
1871 	long timeo;
1872 
1873 	/* silently ignore everything else */
1874 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1875 
1876 	lock_sock(sk);
1877 
1878 	mptcp_rps_record_subflows(msk);
1879 
1880 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1881 		     msg->msg_flags & MSG_FASTOPEN)) {
1882 		int copied_syn = 0;
1883 
1884 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1885 		copied += copied_syn;
1886 		if (ret == -EINPROGRESS && copied_syn > 0)
1887 			goto out;
1888 		else if (ret)
1889 			goto do_error;
1890 	}
1891 
1892 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1893 
1894 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1895 		ret = sk_stream_wait_connect(sk, &timeo);
1896 		if (ret)
1897 			goto do_error;
1898 	}
1899 
1900 	ret = -EPIPE;
1901 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1902 		goto do_error;
1903 
1904 	pfrag = sk_page_frag(sk);
1905 
1906 	while (msg_data_left(msg)) {
1907 		int total_ts, frag_truesize = 0;
1908 		struct mptcp_data_frag *dfrag;
1909 		bool dfrag_collapsed;
1910 		size_t psize, offset;
1911 		u32 copy_limit;
1912 
1913 		/* ensure fitting the notsent_lowat() constraint */
1914 		copy_limit = mptcp_send_limit(sk);
1915 		if (!copy_limit)
1916 			goto wait_for_memory;
1917 
1918 		/* reuse tail pfrag, if possible, or carve a new one from the
1919 		 * page allocator
1920 		 */
1921 		dfrag = mptcp_pending_tail(sk);
1922 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1923 		if (!dfrag_collapsed) {
1924 			if (!mptcp_page_frag_refill(sk, pfrag))
1925 				goto wait_for_memory;
1926 
1927 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1928 			frag_truesize = dfrag->overhead;
1929 		}
1930 
1931 		/* we do not bound vs wspace, to allow a single packet.
1932 		 * memory accounting will prevent execessive memory usage
1933 		 * anyway
1934 		 */
1935 		offset = dfrag->offset + dfrag->data_len;
1936 		psize = pfrag->size - offset;
1937 		psize = min_t(size_t, psize, msg_data_left(msg));
1938 		psize = min_t(size_t, psize, copy_limit);
1939 		total_ts = psize + frag_truesize;
1940 
1941 		if (!sk_wmem_schedule(sk, total_ts))
1942 			goto wait_for_memory;
1943 
1944 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1945 					   page_address(dfrag->page) + offset);
1946 		if (ret)
1947 			goto do_error;
1948 
1949 		/* data successfully copied into the write queue */
1950 		sk_forward_alloc_add(sk, -total_ts);
1951 		copied += psize;
1952 		dfrag->data_len += psize;
1953 		frag_truesize += psize;
1954 		pfrag->offset += frag_truesize;
1955 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1956 
1957 		/* charge data on mptcp pending queue to the msk socket
1958 		 * Note: we charge such data both to sk and ssk
1959 		 */
1960 		sk_wmem_queued_add(sk, frag_truesize);
1961 		if (!dfrag_collapsed) {
1962 			get_page(dfrag->page);
1963 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1964 			if (!msk->first_pending)
1965 				msk->first_pending = dfrag;
1966 		}
1967 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1968 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1969 			 !dfrag_collapsed);
1970 
1971 		continue;
1972 
1973 wait_for_memory:
1974 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1975 		__mptcp_push_pending(sk, msg->msg_flags);
1976 		ret = sk_stream_wait_memory(sk, &timeo);
1977 		if (ret)
1978 			goto do_error;
1979 	}
1980 
1981 	if (copied)
1982 		__mptcp_push_pending(sk, msg->msg_flags);
1983 
1984 out:
1985 	release_sock(sk);
1986 	return copied;
1987 
1988 do_error:
1989 	if (copied)
1990 		goto out;
1991 
1992 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1993 	goto out;
1994 }
1995 
1996 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1997 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,int copied_total,struct scm_timestamping_internal * tss,int * cmsg_flags)1998 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1999 				size_t len, int flags, int copied_total,
2000 				struct scm_timestamping_internal *tss,
2001 				int *cmsg_flags)
2002 {
2003 	struct mptcp_sock *msk = mptcp_sk(sk);
2004 	struct sk_buff *skb, *tmp;
2005 	int total_data_len = 0;
2006 	int copied = 0;
2007 
2008 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
2009 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
2010 		u32 data_len = skb->len - offset;
2011 		u32 count;
2012 		int err;
2013 
2014 		if (flags & MSG_PEEK) {
2015 			/* skip already peeked skbs */
2016 			if (total_data_len + data_len <= copied_total) {
2017 				total_data_len += data_len;
2018 				continue;
2019 			}
2020 
2021 			/* skip the already peeked data in the current skb */
2022 			delta = copied_total - total_data_len;
2023 			offset += delta;
2024 			data_len -= delta;
2025 		}
2026 
2027 		count = min_t(size_t, len - copied, data_len);
2028 		if (!(flags & MSG_TRUNC)) {
2029 			err = skb_copy_datagram_msg(skb, offset, msg, count);
2030 			if (unlikely(err < 0)) {
2031 				if (!copied)
2032 					return err;
2033 				break;
2034 			}
2035 		}
2036 
2037 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2038 			tcp_update_recv_tstamps(skb, tss);
2039 			*cmsg_flags |= MPTCP_CMSG_TS;
2040 		}
2041 
2042 		copied += count;
2043 
2044 		if (!(flags & MSG_PEEK)) {
2045 			msk->bytes_consumed += count;
2046 			if (count < data_len) {
2047 				MPTCP_SKB_CB(skb)->offset += count;
2048 				MPTCP_SKB_CB(skb)->map_seq += count;
2049 				break;
2050 			}
2051 
2052 			/* avoid the indirect call, we know the destructor is sock_rfree */
2053 			skb->destructor = NULL;
2054 			skb->sk = NULL;
2055 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2056 			sk_mem_uncharge(sk, skb->truesize);
2057 			__skb_unlink(skb, &sk->sk_receive_queue);
2058 			skb_attempt_defer_free(skb);
2059 		}
2060 
2061 		if (copied >= len)
2062 			break;
2063 	}
2064 
2065 	mptcp_rcv_space_adjust(msk, copied);
2066 	return copied;
2067 }
2068 
2069 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2070  *
2071  * Only difference: Use highest rtt estimate of the subflows in use.
2072  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2073 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2074 {
2075 	struct mptcp_subflow_context *subflow;
2076 	struct sock *sk = (struct sock *)msk;
2077 	u8 scaling_ratio = U8_MAX;
2078 	u32 time, advmss = 1;
2079 	u64 rtt_us, mstamp;
2080 
2081 	msk_owned_by_me(msk);
2082 
2083 	if (copied <= 0)
2084 		return;
2085 
2086 	if (!msk->rcvspace_init)
2087 		mptcp_rcv_space_init(msk, msk->first);
2088 
2089 	msk->rcvq_space.copied += copied;
2090 
2091 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2092 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2093 
2094 	rtt_us = msk->rcvq_space.rtt_us;
2095 	if (rtt_us && time < (rtt_us >> 3))
2096 		return;
2097 
2098 	rtt_us = 0;
2099 	mptcp_for_each_subflow(msk, subflow) {
2100 		const struct tcp_sock *tp;
2101 		u64 sf_rtt_us;
2102 		u32 sf_advmss;
2103 
2104 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2105 
2106 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2107 		sf_advmss = READ_ONCE(tp->advmss);
2108 
2109 		rtt_us = max(sf_rtt_us, rtt_us);
2110 		advmss = max(sf_advmss, advmss);
2111 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2112 	}
2113 
2114 	msk->rcvq_space.rtt_us = rtt_us;
2115 	msk->scaling_ratio = scaling_ratio;
2116 	if (time < (rtt_us >> 3) || rtt_us == 0)
2117 		return;
2118 
2119 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2120 		goto new_measure;
2121 
2122 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2123 		/* Make subflows follow along.  If we do not do this, we
2124 		 * get drops at subflow level if skbs can't be moved to
2125 		 * the mptcp rx queue fast enough (announced rcv_win can
2126 		 * exceed ssk->sk_rcvbuf).
2127 		 */
2128 		mptcp_for_each_subflow(msk, subflow) {
2129 			struct sock *ssk;
2130 			bool slow;
2131 
2132 			ssk = mptcp_subflow_tcp_sock(subflow);
2133 			slow = lock_sock_fast(ssk);
2134 			/* subflows can be added before tcp_init_transfer() */
2135 			if (tcp_sk(ssk)->rcvq_space.space)
2136 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2137 			unlock_sock_fast(ssk, slow);
2138 		}
2139 	}
2140 
2141 new_measure:
2142 	msk->rcvq_space.copied = 0;
2143 	msk->rcvq_space.time = mstamp;
2144 }
2145 
__mptcp_move_skbs(struct sock * sk,struct list_head * skbs,u32 * delta)2146 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta)
2147 {
2148 	struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list);
2149 	struct mptcp_sock *msk = mptcp_sk(sk);
2150 	bool moved = false;
2151 
2152 	*delta = 0;
2153 	while (1) {
2154 		/* If the msk recvbuf is full stop, don't drop */
2155 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2156 			break;
2157 
2158 		prefetch(skb->next);
2159 		list_del(&skb->list);
2160 		*delta += skb->truesize;
2161 
2162 		moved |= __mptcp_move_skb(sk, skb);
2163 		if (list_empty(skbs))
2164 			break;
2165 
2166 		skb = list_first_entry(skbs, struct sk_buff, list);
2167 	}
2168 
2169 	__mptcp_ofo_queue(msk);
2170 	if (moved)
2171 		mptcp_check_data_fin((struct sock *)msk);
2172 	return moved;
2173 }
2174 
mptcp_can_spool_backlog(struct sock * sk,struct list_head * skbs)2175 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs)
2176 {
2177 	struct mptcp_sock *msk = mptcp_sk(sk);
2178 
2179 	/* After CG initialization, subflows should never add skb before
2180 	 * gaining the CG themself.
2181 	 */
2182 	DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket &&
2183 			       mem_cgroup_from_sk(sk));
2184 
2185 	/* Don't spool the backlog if the rcvbuf is full. */
2186 	if (list_empty(&msk->backlog_list) ||
2187 	    sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2188 		return false;
2189 
2190 	INIT_LIST_HEAD(skbs);
2191 	list_splice_init(&msk->backlog_list, skbs);
2192 	return true;
2193 }
2194 
mptcp_backlog_spooled(struct sock * sk,u32 moved,struct list_head * skbs)2195 static void mptcp_backlog_spooled(struct sock *sk, u32 moved,
2196 				  struct list_head *skbs)
2197 {
2198 	struct mptcp_sock *msk = mptcp_sk(sk);
2199 
2200 	WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved);
2201 	list_splice(skbs, &msk->backlog_list);
2202 }
2203 
mptcp_move_skbs(struct sock * sk)2204 static bool mptcp_move_skbs(struct sock *sk)
2205 {
2206 	struct list_head skbs;
2207 	bool enqueued = false;
2208 	u32 moved;
2209 
2210 	mptcp_data_lock(sk);
2211 	while (mptcp_can_spool_backlog(sk, &skbs)) {
2212 		mptcp_data_unlock(sk);
2213 		enqueued |= __mptcp_move_skbs(sk, &skbs, &moved);
2214 
2215 		mptcp_data_lock(sk);
2216 		mptcp_backlog_spooled(sk, moved, &skbs);
2217 	}
2218 	mptcp_data_unlock(sk);
2219 	return enqueued;
2220 }
2221 
mptcp_inq_hint(const struct sock * sk)2222 static unsigned int mptcp_inq_hint(const struct sock *sk)
2223 {
2224 	const struct mptcp_sock *msk = mptcp_sk(sk);
2225 	const struct sk_buff *skb;
2226 
2227 	skb = skb_peek(&sk->sk_receive_queue);
2228 	if (skb) {
2229 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2230 
2231 		if (hint_val >= INT_MAX)
2232 			return INT_MAX;
2233 
2234 		return (unsigned int)hint_val;
2235 	}
2236 
2237 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2238 		return 1;
2239 
2240 	return 0;
2241 }
2242 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2243 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2244 			 int flags, int *addr_len)
2245 {
2246 	struct mptcp_sock *msk = mptcp_sk(sk);
2247 	struct scm_timestamping_internal tss;
2248 	int copied = 0, cmsg_flags = 0;
2249 	int target;
2250 	long timeo;
2251 
2252 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2253 	if (unlikely(flags & MSG_ERRQUEUE))
2254 		return inet_recv_error(sk, msg, len, addr_len);
2255 
2256 	lock_sock(sk);
2257 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2258 		copied = -ENOTCONN;
2259 		goto out_err;
2260 	}
2261 
2262 	mptcp_rps_record_subflows(msk);
2263 
2264 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2265 
2266 	len = min_t(size_t, len, INT_MAX);
2267 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2268 
2269 	if (unlikely(msk->recvmsg_inq))
2270 		cmsg_flags = MPTCP_CMSG_INQ;
2271 
2272 	while (copied < len) {
2273 		int err, bytes_read;
2274 
2275 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2276 						  copied, &tss, &cmsg_flags);
2277 		if (unlikely(bytes_read < 0)) {
2278 			if (!copied)
2279 				copied = bytes_read;
2280 			goto out_err;
2281 		}
2282 
2283 		copied += bytes_read;
2284 
2285 		if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk))
2286 			continue;
2287 
2288 		/* only the MPTCP socket status is relevant here. The exit
2289 		 * conditions mirror closely tcp_recvmsg()
2290 		 */
2291 		if (copied >= target)
2292 			break;
2293 
2294 		if (copied) {
2295 			if (sk->sk_err ||
2296 			    sk->sk_state == TCP_CLOSE ||
2297 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2298 			    !timeo ||
2299 			    signal_pending(current))
2300 				break;
2301 		} else {
2302 			if (sk->sk_err) {
2303 				copied = sock_error(sk);
2304 				break;
2305 			}
2306 
2307 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2308 				break;
2309 
2310 			if (sk->sk_state == TCP_CLOSE) {
2311 				copied = -ENOTCONN;
2312 				break;
2313 			}
2314 
2315 			if (!timeo) {
2316 				copied = -EAGAIN;
2317 				break;
2318 			}
2319 
2320 			if (signal_pending(current)) {
2321 				copied = sock_intr_errno(timeo);
2322 				break;
2323 			}
2324 		}
2325 
2326 		pr_debug("block timeout %ld\n", timeo);
2327 		mptcp_cleanup_rbuf(msk, copied);
2328 		err = sk_wait_data(sk, &timeo, NULL);
2329 		if (err < 0) {
2330 			err = copied ? : err;
2331 			goto out_err;
2332 		}
2333 	}
2334 
2335 	mptcp_cleanup_rbuf(msk, copied);
2336 
2337 out_err:
2338 	if (cmsg_flags && copied >= 0) {
2339 		if (cmsg_flags & MPTCP_CMSG_TS)
2340 			tcp_recv_timestamp(msg, sk, &tss);
2341 
2342 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2343 			unsigned int inq = mptcp_inq_hint(sk);
2344 
2345 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2346 		}
2347 	}
2348 
2349 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2350 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2351 
2352 	release_sock(sk);
2353 	return copied;
2354 }
2355 
mptcp_retransmit_timer(struct timer_list * t)2356 static void mptcp_retransmit_timer(struct timer_list *t)
2357 {
2358 	struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer);
2359 	struct mptcp_sock *msk = mptcp_sk(sk);
2360 
2361 	bh_lock_sock(sk);
2362 	if (!sock_owned_by_user(sk)) {
2363 		/* we need a process context to retransmit */
2364 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2365 			mptcp_schedule_work(sk);
2366 	} else {
2367 		/* delegate our work to tcp_release_cb() */
2368 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2369 	}
2370 	bh_unlock_sock(sk);
2371 	sock_put(sk);
2372 }
2373 
mptcp_tout_timer(struct timer_list * t)2374 static void mptcp_tout_timer(struct timer_list *t)
2375 {
2376 	struct inet_connection_sock *icsk =
2377 		timer_container_of(icsk, t, mptcp_tout_timer);
2378 	struct sock *sk = &icsk->icsk_inet.sk;
2379 
2380 	mptcp_schedule_work(sk);
2381 	sock_put(sk);
2382 }
2383 
2384 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2385  * level.
2386  *
2387  * A backup subflow is returned only if that is the only kind available.
2388  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2389 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2390 {
2391 	struct sock *backup = NULL, *pick = NULL;
2392 	struct mptcp_subflow_context *subflow;
2393 	int min_stale_count = INT_MAX;
2394 
2395 	mptcp_for_each_subflow(msk, subflow) {
2396 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2397 
2398 		if (!__mptcp_subflow_active(subflow))
2399 			continue;
2400 
2401 		/* still data outstanding at TCP level? skip this */
2402 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2403 			mptcp_pm_subflow_chk_stale(msk, ssk);
2404 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2405 			continue;
2406 		}
2407 
2408 		if (subflow->backup || subflow->request_bkup) {
2409 			if (!backup)
2410 				backup = ssk;
2411 			continue;
2412 		}
2413 
2414 		if (!pick)
2415 			pick = ssk;
2416 	}
2417 
2418 	if (pick)
2419 		return pick;
2420 
2421 	/* use backup only if there are no progresses anywhere */
2422 	return min_stale_count > 1 ? backup : NULL;
2423 }
2424 
__mptcp_retransmit_pending_data(struct sock * sk)2425 bool __mptcp_retransmit_pending_data(struct sock *sk)
2426 {
2427 	struct mptcp_data_frag *cur, *rtx_head;
2428 	struct mptcp_sock *msk = mptcp_sk(sk);
2429 
2430 	if (__mptcp_check_fallback(msk))
2431 		return false;
2432 
2433 	/* the closing socket has some data untransmitted and/or unacked:
2434 	 * some data in the mptcp rtx queue has not really xmitted yet.
2435 	 * keep it simple and re-inject the whole mptcp level rtx queue
2436 	 */
2437 	mptcp_data_lock(sk);
2438 	__mptcp_clean_una_wakeup(sk);
2439 	rtx_head = mptcp_rtx_head(sk);
2440 	if (!rtx_head) {
2441 		mptcp_data_unlock(sk);
2442 		return false;
2443 	}
2444 
2445 	msk->recovery_snd_nxt = msk->snd_nxt;
2446 	msk->recovery = true;
2447 	mptcp_data_unlock(sk);
2448 
2449 	msk->first_pending = rtx_head;
2450 	msk->snd_burst = 0;
2451 
2452 	/* be sure to clear the "sent status" on all re-injected fragments */
2453 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2454 		if (!cur->already_sent)
2455 			break;
2456 		cur->already_sent = 0;
2457 	}
2458 
2459 	return true;
2460 }
2461 
2462 /* flags for __mptcp_close_ssk() */
2463 #define MPTCP_CF_PUSH		BIT(1)
2464 
2465 /* be sure to send a reset only if the caller asked for it, also
2466  * clean completely the subflow status when the subflow reaches
2467  * TCP_CLOSE state
2468  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,bool fastclosing)2469 static void __mptcp_subflow_disconnect(struct sock *ssk,
2470 				       struct mptcp_subflow_context *subflow,
2471 				       bool fastclosing)
2472 {
2473 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2474 	    fastclosing) {
2475 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2476 		 * disconnect should never fail
2477 		 */
2478 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2479 		mptcp_subflow_ctx_reset(subflow);
2480 	} else {
2481 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2482 	}
2483 }
2484 
2485 /* subflow sockets can be either outgoing (connect) or incoming
2486  * (accept).
2487  *
2488  * Outgoing subflows use in-kernel sockets.
2489  * Incoming subflows do not have their own 'struct socket' allocated,
2490  * so we need to use tcp_close() after detaching them from the mptcp
2491  * parent socket.
2492  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2493 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2494 			      struct mptcp_subflow_context *subflow,
2495 			      unsigned int flags)
2496 {
2497 	struct mptcp_sock *msk = mptcp_sk(sk);
2498 	bool dispose_it, need_push = false;
2499 	int fwd_remaining;
2500 
2501 	/* Do not pass RX data to the msk, even if the subflow socket is not
2502 	 * going to be freed (i.e. even for the first subflow on graceful
2503 	 * subflow close.
2504 	 */
2505 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2506 	subflow->closing = 1;
2507 
2508 	/* Borrow the fwd allocated page left-over; fwd memory for the subflow
2509 	 * could be negative at this point, but will be reach zero soon - when
2510 	 * the data allocated using such fragment will be freed.
2511 	 */
2512 	if (subflow->lent_mem_frag) {
2513 		fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag;
2514 		sk_forward_alloc_add(sk, fwd_remaining);
2515 		sk_forward_alloc_add(ssk, -fwd_remaining);
2516 		subflow->lent_mem_frag = 0;
2517 	}
2518 
2519 	/* If the first subflow moved to a close state before accept, e.g. due
2520 	 * to an incoming reset or listener shutdown, the subflow socket is
2521 	 * already deleted by inet_child_forget() and the mptcp socket can't
2522 	 * survive too.
2523 	 */
2524 	if (msk->in_accept_queue && msk->first == ssk &&
2525 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2526 		/* ensure later check in mptcp_worker() will dispose the msk */
2527 		sock_set_flag(sk, SOCK_DEAD);
2528 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2529 		mptcp_subflow_drop_ctx(ssk);
2530 		goto out_release;
2531 	}
2532 
2533 	dispose_it = msk->free_first || ssk != msk->first;
2534 	if (dispose_it)
2535 		list_del(&subflow->node);
2536 
2537 	if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2538 		tcp_set_state(ssk, TCP_CLOSE);
2539 
2540 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2541 	if (!dispose_it) {
2542 		__mptcp_subflow_disconnect(ssk, subflow, msk->fastclosing);
2543 		release_sock(ssk);
2544 
2545 		goto out;
2546 	}
2547 
2548 	subflow->disposable = 1;
2549 
2550 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2551 	 * the ssk has been already destroyed, we just need to release the
2552 	 * reference owned by msk;
2553 	 */
2554 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2555 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2556 		kfree_rcu(subflow, rcu);
2557 	} else {
2558 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2559 		__tcp_close(ssk, 0);
2560 
2561 		/* close acquired an extra ref */
2562 		__sock_put(ssk);
2563 	}
2564 
2565 out_release:
2566 	__mptcp_subflow_error_report(sk, ssk);
2567 	release_sock(ssk);
2568 
2569 	sock_put(ssk);
2570 
2571 	if (ssk == msk->first)
2572 		WRITE_ONCE(msk->first, NULL);
2573 
2574 out:
2575 	__mptcp_sync_sndbuf(sk);
2576 	if (need_push)
2577 		__mptcp_push_pending(sk, 0);
2578 
2579 	/* Catch every 'all subflows closed' scenario, including peers silently
2580 	 * closing them, e.g. due to timeout.
2581 	 * For established sockets, allow an additional timeout before closing,
2582 	 * as the protocol can still create more subflows.
2583 	 */
2584 	if (list_is_singular(&msk->conn_list) && msk->first &&
2585 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2586 		if (sk->sk_state != TCP_ESTABLISHED ||
2587 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2588 			mptcp_set_state(sk, TCP_CLOSE);
2589 			mptcp_close_wake_up(sk);
2590 		} else {
2591 			mptcp_start_tout_timer(sk);
2592 		}
2593 	}
2594 }
2595 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2596 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2597 		     struct mptcp_subflow_context *subflow)
2598 {
2599 	struct mptcp_sock *msk = mptcp_sk(sk);
2600 	struct sk_buff *skb;
2601 
2602 	/* The first subflow can already be closed or disconnected */
2603 	if (subflow->close_event_done || READ_ONCE(subflow->local_id) < 0)
2604 		return;
2605 
2606 	subflow->close_event_done = true;
2607 
2608 	if (sk->sk_state == TCP_ESTABLISHED)
2609 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2610 
2611 	/* Remove any reference from the backlog to this ssk; backlog skbs consume
2612 	 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc
2613 	 */
2614 	list_for_each_entry(skb, &msk->backlog_list, list) {
2615 		if (skb->sk != ssk)
2616 			continue;
2617 
2618 		atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc);
2619 		skb->sk = NULL;
2620 	}
2621 
2622 	/* subflow aborted before reaching the fully_established status
2623 	 * attempt the creation of the next subflow
2624 	 */
2625 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2626 
2627 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2628 }
2629 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2630 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2631 {
2632 	return 0;
2633 }
2634 
__mptcp_close_subflow(struct sock * sk)2635 static void __mptcp_close_subflow(struct sock *sk)
2636 {
2637 	struct mptcp_subflow_context *subflow, *tmp;
2638 	struct mptcp_sock *msk = mptcp_sk(sk);
2639 
2640 	might_sleep();
2641 
2642 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2643 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2644 		int ssk_state = inet_sk_state_load(ssk);
2645 
2646 		if (ssk_state != TCP_CLOSE &&
2647 		    (ssk_state != TCP_CLOSE_WAIT ||
2648 		     inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2649 		     __mptcp_check_fallback(msk)))
2650 			continue;
2651 
2652 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2653 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2654 			continue;
2655 
2656 		mptcp_close_ssk(sk, ssk, subflow);
2657 	}
2658 
2659 }
2660 
mptcp_close_tout_expired(const struct sock * sk)2661 static bool mptcp_close_tout_expired(const struct sock *sk)
2662 {
2663 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2664 	    sk->sk_state == TCP_CLOSE)
2665 		return false;
2666 
2667 	return time_after32(tcp_jiffies32,
2668 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2669 }
2670 
mptcp_check_fastclose(struct mptcp_sock * msk)2671 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2672 {
2673 	struct mptcp_subflow_context *subflow, *tmp;
2674 	struct sock *sk = (struct sock *)msk;
2675 
2676 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2677 		return;
2678 
2679 	mptcp_token_destroy(msk);
2680 
2681 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2682 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2683 		bool slow;
2684 
2685 		slow = lock_sock_fast(tcp_sk);
2686 		if (tcp_sk->sk_state != TCP_CLOSE) {
2687 			mptcp_send_active_reset_reason(tcp_sk);
2688 			tcp_set_state(tcp_sk, TCP_CLOSE);
2689 		}
2690 		unlock_sock_fast(tcp_sk, slow);
2691 	}
2692 
2693 	/* Mirror the tcp_reset() error propagation */
2694 	switch (sk->sk_state) {
2695 	case TCP_SYN_SENT:
2696 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2697 		break;
2698 	case TCP_CLOSE_WAIT:
2699 		WRITE_ONCE(sk->sk_err, EPIPE);
2700 		break;
2701 	case TCP_CLOSE:
2702 		return;
2703 	default:
2704 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2705 	}
2706 
2707 	mptcp_set_state(sk, TCP_CLOSE);
2708 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2709 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2710 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2711 
2712 	/* the calling mptcp_worker will properly destroy the socket */
2713 	if (sock_flag(sk, SOCK_DEAD))
2714 		return;
2715 
2716 	sk->sk_state_change(sk);
2717 	sk_error_report(sk);
2718 }
2719 
__mptcp_retrans(struct sock * sk)2720 static void __mptcp_retrans(struct sock *sk)
2721 {
2722 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2723 	struct mptcp_sock *msk = mptcp_sk(sk);
2724 	struct mptcp_subflow_context *subflow;
2725 	struct mptcp_data_frag *dfrag;
2726 	struct sock *ssk;
2727 	int ret, err;
2728 	u16 len = 0;
2729 
2730 	mptcp_clean_una_wakeup(sk);
2731 
2732 	/* first check ssk: need to kick "stale" logic */
2733 	err = mptcp_sched_get_retrans(msk);
2734 	dfrag = mptcp_rtx_head(sk);
2735 	if (!dfrag) {
2736 		if (mptcp_data_fin_enabled(msk)) {
2737 			struct inet_connection_sock *icsk = inet_csk(sk);
2738 
2739 			WRITE_ONCE(icsk->icsk_retransmits,
2740 				   icsk->icsk_retransmits + 1);
2741 			mptcp_set_datafin_timeout(sk);
2742 			mptcp_send_ack(msk);
2743 
2744 			goto reset_timer;
2745 		}
2746 
2747 		if (!mptcp_send_head(sk))
2748 			goto clear_scheduled;
2749 
2750 		goto reset_timer;
2751 	}
2752 
2753 	if (err)
2754 		goto reset_timer;
2755 
2756 	mptcp_for_each_subflow(msk, subflow) {
2757 		if (READ_ONCE(subflow->scheduled)) {
2758 			u16 copied = 0;
2759 
2760 			mptcp_subflow_set_scheduled(subflow, false);
2761 
2762 			ssk = mptcp_subflow_tcp_sock(subflow);
2763 
2764 			lock_sock(ssk);
2765 
2766 			/* limit retransmission to the bytes already sent on some subflows */
2767 			info.sent = 0;
2768 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2769 								    dfrag->already_sent;
2770 
2771 			/*
2772 			 * make the whole retrans decision, xmit, disallow
2773 			 * fallback atomic, note that we can't retrans even
2774 			 * when an infinite fallback is in progress, i.e. new
2775 			 * subflows are disallowed.
2776 			 */
2777 			spin_lock_bh(&msk->fallback_lock);
2778 			if (__mptcp_check_fallback(msk) ||
2779 			    !msk->allow_subflows) {
2780 				spin_unlock_bh(&msk->fallback_lock);
2781 				release_sock(ssk);
2782 				goto clear_scheduled;
2783 			}
2784 
2785 			while (info.sent < info.limit) {
2786 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2787 				if (ret <= 0)
2788 					break;
2789 
2790 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2791 				copied += ret;
2792 				info.sent += ret;
2793 			}
2794 			if (copied) {
2795 				len = max(copied, len);
2796 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2797 					 info.size_goal);
2798 				msk->allow_infinite_fallback = false;
2799 			}
2800 			spin_unlock_bh(&msk->fallback_lock);
2801 
2802 			release_sock(ssk);
2803 		}
2804 	}
2805 
2806 	msk->bytes_retrans += len;
2807 	dfrag->already_sent = max(dfrag->already_sent, len);
2808 
2809 reset_timer:
2810 	mptcp_check_and_set_pending(sk);
2811 
2812 	if (!mptcp_rtx_timer_pending(sk))
2813 		mptcp_reset_rtx_timer(sk);
2814 
2815 clear_scheduled:
2816 	/* If no rtx data was available or in case of fallback, there
2817 	 * could be left-over scheduled subflows; clear them all
2818 	 * or later xmit could use bad ones
2819 	 */
2820 	mptcp_for_each_subflow(msk, subflow)
2821 		if (READ_ONCE(subflow->scheduled))
2822 			mptcp_subflow_set_scheduled(subflow, false);
2823 }
2824 
2825 /* schedule the timeout timer for the relevant event: either close timeout
2826  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2827  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2828 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2829 {
2830 	struct sock *sk = (struct sock *)msk;
2831 	unsigned long timeout, close_timeout;
2832 
2833 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2834 		return;
2835 
2836 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2837 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2838 
2839 	/* the close timeout takes precedence on the fail one, and here at least one of
2840 	 * them is active
2841 	 */
2842 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2843 
2844 	sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout);
2845 }
2846 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2847 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2848 {
2849 	struct sock *ssk = msk->first;
2850 	bool slow;
2851 
2852 	if (!ssk)
2853 		return;
2854 
2855 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2856 
2857 	slow = lock_sock_fast(ssk);
2858 	mptcp_subflow_reset(ssk);
2859 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2860 	unlock_sock_fast(ssk, slow);
2861 }
2862 
mptcp_backlog_purge(struct sock * sk)2863 static void mptcp_backlog_purge(struct sock *sk)
2864 {
2865 	struct mptcp_sock *msk = mptcp_sk(sk);
2866 	struct sk_buff *tmp, *skb;
2867 	LIST_HEAD(backlog);
2868 
2869 	mptcp_data_lock(sk);
2870 	list_splice_init(&msk->backlog_list, &backlog);
2871 	msk->backlog_len = 0;
2872 	mptcp_data_unlock(sk);
2873 
2874 	list_for_each_entry_safe(skb, tmp, &backlog, list) {
2875 		mptcp_borrow_fwdmem(sk, skb);
2876 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
2877 	}
2878 	sk_mem_reclaim(sk);
2879 }
2880 
mptcp_do_fastclose(struct sock * sk)2881 static void mptcp_do_fastclose(struct sock *sk)
2882 {
2883 	struct mptcp_subflow_context *subflow, *tmp;
2884 	struct mptcp_sock *msk = mptcp_sk(sk);
2885 
2886 	mptcp_set_state(sk, TCP_CLOSE);
2887 	mptcp_backlog_purge(sk);
2888 	msk->fastclosing = 1;
2889 
2890 	/* Explicitly send the fastclose reset as need */
2891 	if (__mptcp_check_fallback(msk))
2892 		return;
2893 
2894 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2895 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2896 
2897 		lock_sock(ssk);
2898 
2899 		/* Some subflow socket states don't allow/need a reset.*/
2900 		if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2901 			goto unlock;
2902 
2903 		subflow->send_fastclose = 1;
2904 
2905 		/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2906 		 * issue in __tcp_select_window(), see tcp_disconnect().
2907 		 */
2908 		inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS;
2909 
2910 		tcp_send_active_reset(ssk, ssk->sk_allocation,
2911 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2912 unlock:
2913 		release_sock(ssk);
2914 	}
2915 }
2916 
mptcp_worker(struct work_struct * work)2917 static void mptcp_worker(struct work_struct *work)
2918 {
2919 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2920 	struct sock *sk = (struct sock *)msk;
2921 	unsigned long fail_tout;
2922 	int state;
2923 
2924 	lock_sock(sk);
2925 	state = sk->sk_state;
2926 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2927 		goto unlock;
2928 
2929 	mptcp_check_fastclose(msk);
2930 
2931 	mptcp_pm_worker(msk);
2932 
2933 	mptcp_check_send_data_fin(sk);
2934 	mptcp_check_data_fin_ack(sk);
2935 	mptcp_check_data_fin(sk);
2936 
2937 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2938 		__mptcp_close_subflow(sk);
2939 
2940 	if (mptcp_close_tout_expired(sk)) {
2941 		struct mptcp_subflow_context *subflow, *tmp;
2942 
2943 		mptcp_do_fastclose(sk);
2944 		mptcp_for_each_subflow_safe(msk, subflow, tmp)
2945 			__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2946 		mptcp_close_wake_up(sk);
2947 	}
2948 
2949 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2950 		__mptcp_destroy_sock(sk);
2951 		goto unlock;
2952 	}
2953 
2954 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2955 		__mptcp_retrans(sk);
2956 
2957 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2958 	if (fail_tout && time_after(jiffies, fail_tout))
2959 		mptcp_mp_fail_no_response(msk);
2960 
2961 unlock:
2962 	release_sock(sk);
2963 	sock_put(sk);
2964 }
2965 
__mptcp_init_sock(struct sock * sk)2966 static void __mptcp_init_sock(struct sock *sk)
2967 {
2968 	struct mptcp_sock *msk = mptcp_sk(sk);
2969 
2970 	INIT_LIST_HEAD(&msk->conn_list);
2971 	INIT_LIST_HEAD(&msk->join_list);
2972 	INIT_LIST_HEAD(&msk->rtx_queue);
2973 	INIT_LIST_HEAD(&msk->backlog_list);
2974 	INIT_WORK(&msk->work, mptcp_worker);
2975 	msk->out_of_order_queue = RB_ROOT;
2976 	msk->first_pending = NULL;
2977 	msk->timer_ival = TCP_RTO_MIN;
2978 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2979 	msk->backlog_len = 0;
2980 
2981 	WRITE_ONCE(msk->first, NULL);
2982 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2983 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2984 	msk->allow_infinite_fallback = true;
2985 	msk->allow_subflows = true;
2986 	msk->recovery = false;
2987 	msk->subflow_id = 1;
2988 	msk->last_data_sent = tcp_jiffies32;
2989 	msk->last_data_recv = tcp_jiffies32;
2990 	msk->last_ack_recv = tcp_jiffies32;
2991 
2992 	mptcp_pm_data_init(msk);
2993 	spin_lock_init(&msk->fallback_lock);
2994 
2995 	/* re-use the csk retrans timer for MPTCP-level retrans */
2996 	timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0);
2997 	timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0);
2998 }
2999 
mptcp_ca_reset(struct sock * sk)3000 static void mptcp_ca_reset(struct sock *sk)
3001 {
3002 	struct inet_connection_sock *icsk = inet_csk(sk);
3003 
3004 	tcp_assign_congestion_control(sk);
3005 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
3006 		sizeof(mptcp_sk(sk)->ca_name));
3007 
3008 	/* no need to keep a reference to the ops, the name will suffice */
3009 	tcp_cleanup_congestion_control(sk);
3010 	icsk->icsk_ca_ops = NULL;
3011 }
3012 
mptcp_init_sock(struct sock * sk)3013 static int mptcp_init_sock(struct sock *sk)
3014 {
3015 	struct net *net = sock_net(sk);
3016 	int ret;
3017 
3018 	__mptcp_init_sock(sk);
3019 
3020 	if (!mptcp_is_enabled(net))
3021 		return -ENOPROTOOPT;
3022 
3023 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
3024 		return -ENOMEM;
3025 
3026 	rcu_read_lock();
3027 	ret = mptcp_init_sched(mptcp_sk(sk),
3028 			       mptcp_sched_find(mptcp_get_scheduler(net)));
3029 	rcu_read_unlock();
3030 	if (ret)
3031 		return ret;
3032 
3033 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
3034 
3035 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
3036 	 * propagate the correct value
3037 	 */
3038 	mptcp_ca_reset(sk);
3039 
3040 	sk_sockets_allocated_inc(sk);
3041 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
3042 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
3043 
3044 	return 0;
3045 }
3046 
__mptcp_clear_xmit(struct sock * sk)3047 static void __mptcp_clear_xmit(struct sock *sk)
3048 {
3049 	struct mptcp_sock *msk = mptcp_sk(sk);
3050 	struct mptcp_data_frag *dtmp, *dfrag;
3051 
3052 	msk->first_pending = NULL;
3053 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
3054 		dfrag_clear(sk, dfrag);
3055 }
3056 
mptcp_cancel_work(struct sock * sk)3057 void mptcp_cancel_work(struct sock *sk)
3058 {
3059 	struct mptcp_sock *msk = mptcp_sk(sk);
3060 
3061 	if (cancel_work_sync(&msk->work))
3062 		__sock_put(sk);
3063 }
3064 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)3065 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
3066 {
3067 	lock_sock(ssk);
3068 
3069 	switch (ssk->sk_state) {
3070 	case TCP_LISTEN:
3071 		if (!(how & RCV_SHUTDOWN))
3072 			break;
3073 		fallthrough;
3074 	case TCP_SYN_SENT:
3075 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
3076 		break;
3077 	default:
3078 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
3079 			pr_debug("Fallback\n");
3080 			ssk->sk_shutdown |= how;
3081 			tcp_shutdown(ssk, how);
3082 
3083 			/* simulate the data_fin ack reception to let the state
3084 			 * machine move forward
3085 			 */
3086 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
3087 			mptcp_schedule_work(sk);
3088 		} else {
3089 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
3090 			tcp_send_ack(ssk);
3091 			if (!mptcp_rtx_timer_pending(sk))
3092 				mptcp_reset_rtx_timer(sk);
3093 		}
3094 		break;
3095 	}
3096 
3097 	release_sock(ssk);
3098 }
3099 
mptcp_set_state(struct sock * sk,int state)3100 void mptcp_set_state(struct sock *sk, int state)
3101 {
3102 	int oldstate = sk->sk_state;
3103 
3104 	switch (state) {
3105 	case TCP_ESTABLISHED:
3106 		if (oldstate != TCP_ESTABLISHED)
3107 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3108 		break;
3109 	case TCP_CLOSE_WAIT:
3110 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3111 		 * MPTCP "accepted" sockets will be created later on. So no
3112 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3113 		 */
3114 		break;
3115 	default:
3116 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3117 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3118 	}
3119 
3120 	inet_sk_state_store(sk, state);
3121 }
3122 
3123 static const unsigned char new_state[16] = {
3124 	/* current state:     new state:      action:	*/
3125 	[0 /* (Invalid) */] = TCP_CLOSE,
3126 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3127 	[TCP_SYN_SENT]      = TCP_CLOSE,
3128 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3129 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3130 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3131 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3132 	[TCP_CLOSE]         = TCP_CLOSE,
3133 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3134 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3135 	[TCP_LISTEN]        = TCP_CLOSE,
3136 	[TCP_CLOSING]       = TCP_CLOSING,
3137 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3138 };
3139 
mptcp_close_state(struct sock * sk)3140 static int mptcp_close_state(struct sock *sk)
3141 {
3142 	int next = (int)new_state[sk->sk_state];
3143 	int ns = next & TCP_STATE_MASK;
3144 
3145 	mptcp_set_state(sk, ns);
3146 
3147 	return next & TCP_ACTION_FIN;
3148 }
3149 
mptcp_check_send_data_fin(struct sock * sk)3150 static void mptcp_check_send_data_fin(struct sock *sk)
3151 {
3152 	struct mptcp_subflow_context *subflow;
3153 	struct mptcp_sock *msk = mptcp_sk(sk);
3154 
3155 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3156 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3157 		 msk->snd_nxt, msk->write_seq);
3158 
3159 	/* we still need to enqueue subflows or not really shutting down,
3160 	 * skip this
3161 	 */
3162 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3163 	    mptcp_send_head(sk))
3164 		return;
3165 
3166 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3167 
3168 	mptcp_for_each_subflow(msk, subflow) {
3169 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3170 
3171 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3172 	}
3173 }
3174 
__mptcp_wr_shutdown(struct sock * sk)3175 static void __mptcp_wr_shutdown(struct sock *sk)
3176 {
3177 	struct mptcp_sock *msk = mptcp_sk(sk);
3178 
3179 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3180 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3181 		 !!mptcp_send_head(sk));
3182 
3183 	/* will be ignored by fallback sockets */
3184 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3185 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3186 
3187 	mptcp_check_send_data_fin(sk);
3188 }
3189 
__mptcp_destroy_sock(struct sock * sk)3190 static void __mptcp_destroy_sock(struct sock *sk)
3191 {
3192 	struct mptcp_sock *msk = mptcp_sk(sk);
3193 
3194 	pr_debug("msk=%p\n", msk);
3195 
3196 	might_sleep();
3197 
3198 	mptcp_stop_rtx_timer(sk);
3199 	sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer);
3200 	msk->pm.status = 0;
3201 	mptcp_release_sched(msk);
3202 
3203 	sk->sk_prot->destroy(sk);
3204 
3205 	sk_stream_kill_queues(sk);
3206 	xfrm_sk_free_policy(sk);
3207 
3208 	sock_put(sk);
3209 }
3210 
__mptcp_unaccepted_force_close(struct sock * sk)3211 void __mptcp_unaccepted_force_close(struct sock *sk)
3212 {
3213 	sock_set_flag(sk, SOCK_DEAD);
3214 	mptcp_do_fastclose(sk);
3215 	__mptcp_destroy_sock(sk);
3216 }
3217 
mptcp_check_readable(struct sock * sk)3218 static __poll_t mptcp_check_readable(struct sock *sk)
3219 {
3220 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3221 }
3222 
mptcp_check_listen_stop(struct sock * sk)3223 static void mptcp_check_listen_stop(struct sock *sk)
3224 {
3225 	struct sock *ssk;
3226 
3227 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3228 		return;
3229 
3230 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3231 	ssk = mptcp_sk(sk)->first;
3232 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3233 		return;
3234 
3235 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3236 	tcp_set_state(ssk, TCP_CLOSE);
3237 	mptcp_subflow_queue_clean(sk, ssk);
3238 	inet_csk_listen_stop(ssk);
3239 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3240 	release_sock(ssk);
3241 }
3242 
__mptcp_close(struct sock * sk,long timeout)3243 bool __mptcp_close(struct sock *sk, long timeout)
3244 {
3245 	struct mptcp_subflow_context *subflow;
3246 	struct mptcp_sock *msk = mptcp_sk(sk);
3247 	bool do_cancel_work = false;
3248 	int subflows_alive = 0;
3249 
3250 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3251 
3252 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3253 		mptcp_check_listen_stop(sk);
3254 		mptcp_set_state(sk, TCP_CLOSE);
3255 		goto cleanup;
3256 	}
3257 
3258 	if (mptcp_data_avail(msk) || timeout < 0) {
3259 		/* If the msk has read data, or the caller explicitly ask it,
3260 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3261 		 */
3262 		mptcp_do_fastclose(sk);
3263 		timeout = 0;
3264 	} else if (mptcp_close_state(sk)) {
3265 		__mptcp_wr_shutdown(sk);
3266 	}
3267 
3268 	sk_stream_wait_close(sk, timeout);
3269 
3270 cleanup:
3271 	/* orphan all the subflows */
3272 	mptcp_for_each_subflow(msk, subflow) {
3273 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3274 		bool slow = lock_sock_fast_nested(ssk);
3275 
3276 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3277 
3278 		/* since the close timeout takes precedence on the fail one,
3279 		 * cancel the latter
3280 		 */
3281 		if (ssk == msk->first)
3282 			subflow->fail_tout = 0;
3283 
3284 		/* detach from the parent socket, but allow data_ready to
3285 		 * push incoming data into the mptcp stack, to properly ack it
3286 		 */
3287 		ssk->sk_socket = NULL;
3288 		ssk->sk_wq = NULL;
3289 		unlock_sock_fast(ssk, slow);
3290 	}
3291 	sock_orphan(sk);
3292 
3293 	/* all the subflows are closed, only timeout can change the msk
3294 	 * state, let's not keep resources busy for no reasons
3295 	 */
3296 	if (subflows_alive == 0)
3297 		mptcp_set_state(sk, TCP_CLOSE);
3298 
3299 	sock_hold(sk);
3300 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3301 	mptcp_pm_connection_closed(msk);
3302 
3303 	if (sk->sk_state == TCP_CLOSE) {
3304 		__mptcp_destroy_sock(sk);
3305 		do_cancel_work = true;
3306 	} else {
3307 		mptcp_start_tout_timer(sk);
3308 	}
3309 
3310 	return do_cancel_work;
3311 }
3312 
mptcp_close(struct sock * sk,long timeout)3313 static void mptcp_close(struct sock *sk, long timeout)
3314 {
3315 	bool do_cancel_work;
3316 
3317 	lock_sock(sk);
3318 
3319 	do_cancel_work = __mptcp_close(sk, timeout);
3320 	release_sock(sk);
3321 	if (do_cancel_work)
3322 		mptcp_cancel_work(sk);
3323 
3324 	sock_put(sk);
3325 }
3326 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3327 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3328 {
3329 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3330 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3331 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3332 
3333 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3334 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3335 
3336 	if (msk6 && ssk6) {
3337 		msk6->saddr = ssk6->saddr;
3338 		msk6->flow_label = ssk6->flow_label;
3339 	}
3340 #endif
3341 
3342 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3343 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3344 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3345 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3346 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3347 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3348 }
3349 
mptcp_destroy_common(struct mptcp_sock * msk)3350 static void mptcp_destroy_common(struct mptcp_sock *msk)
3351 {
3352 	struct mptcp_subflow_context *subflow, *tmp;
3353 	struct sock *sk = (struct sock *)msk;
3354 
3355 	__mptcp_clear_xmit(sk);
3356 	mptcp_backlog_purge(sk);
3357 
3358 	/* join list will be eventually flushed (with rst) at sock lock release time */
3359 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3360 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3361 
3362 	__skb_queue_purge(&sk->sk_receive_queue);
3363 	skb_rbtree_purge(&msk->out_of_order_queue);
3364 
3365 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3366 	 * inet_sock_destruct() will dispose it
3367 	 */
3368 	mptcp_token_destroy(msk);
3369 	mptcp_pm_destroy(msk);
3370 }
3371 
mptcp_disconnect(struct sock * sk,int flags)3372 static int mptcp_disconnect(struct sock *sk, int flags)
3373 {
3374 	struct mptcp_sock *msk = mptcp_sk(sk);
3375 
3376 	/* We are on the fastopen error path. We can't call straight into the
3377 	 * subflows cleanup code due to lock nesting (we are already under
3378 	 * msk->firstsocket lock).
3379 	 */
3380 	if (msk->fastopening)
3381 		return -EBUSY;
3382 
3383 	mptcp_check_listen_stop(sk);
3384 	mptcp_set_state(sk, TCP_CLOSE);
3385 
3386 	mptcp_stop_rtx_timer(sk);
3387 	mptcp_stop_tout_timer(sk);
3388 
3389 	mptcp_pm_connection_closed(msk);
3390 
3391 	/* msk->subflow is still intact, the following will not free the first
3392 	 * subflow
3393 	 */
3394 	mptcp_do_fastclose(sk);
3395 	mptcp_destroy_common(msk);
3396 
3397 	/* The first subflow is already in TCP_CLOSE status, the following
3398 	 * can't overlap with a fallback anymore
3399 	 */
3400 	spin_lock_bh(&msk->fallback_lock);
3401 	msk->allow_subflows = true;
3402 	msk->allow_infinite_fallback = true;
3403 	WRITE_ONCE(msk->flags, 0);
3404 	spin_unlock_bh(&msk->fallback_lock);
3405 
3406 	msk->cb_flags = 0;
3407 	msk->recovery = false;
3408 	WRITE_ONCE(msk->can_ack, false);
3409 	WRITE_ONCE(msk->fully_established, false);
3410 	WRITE_ONCE(msk->rcv_data_fin, false);
3411 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3412 	WRITE_ONCE(msk->rcv_fastclose, false);
3413 	WRITE_ONCE(msk->use_64bit_ack, false);
3414 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3415 	mptcp_pm_data_reset(msk);
3416 	mptcp_ca_reset(sk);
3417 	msk->bytes_consumed = 0;
3418 	msk->bytes_acked = 0;
3419 	msk->bytes_received = 0;
3420 	msk->bytes_sent = 0;
3421 	msk->bytes_retrans = 0;
3422 	msk->rcvspace_init = 0;
3423 	msk->fastclosing = 0;
3424 
3425 	/* for fallback's sake */
3426 	WRITE_ONCE(msk->ack_seq, 0);
3427 
3428 	WRITE_ONCE(sk->sk_shutdown, 0);
3429 	sk_error_report(sk);
3430 	return 0;
3431 }
3432 
3433 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3434 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3435 {
3436 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3437 
3438 	return &msk6->np;
3439 }
3440 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3441 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3442 {
3443 	const struct ipv6_pinfo *np = inet6_sk(sk);
3444 	struct ipv6_txoptions *opt;
3445 	struct ipv6_pinfo *newnp;
3446 
3447 	newnp = inet6_sk(newsk);
3448 
3449 	rcu_read_lock();
3450 	opt = rcu_dereference(np->opt);
3451 	if (opt) {
3452 		opt = ipv6_dup_options(newsk, opt);
3453 		if (!opt)
3454 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3455 	}
3456 	RCU_INIT_POINTER(newnp->opt, opt);
3457 	rcu_read_unlock();
3458 }
3459 #endif
3460 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3461 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3462 {
3463 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3464 	const struct inet_sock *inet = inet_sk(sk);
3465 	struct inet_sock *newinet;
3466 
3467 	newinet = inet_sk(newsk);
3468 
3469 	rcu_read_lock();
3470 	inet_opt = rcu_dereference(inet->inet_opt);
3471 	if (inet_opt) {
3472 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3473 				      inet_opt->opt.optlen, GFP_ATOMIC);
3474 		if (!newopt)
3475 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3476 	}
3477 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3478 	rcu_read_unlock();
3479 }
3480 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3481 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3482 				 const struct mptcp_options_received *mp_opt,
3483 				 struct sock *ssk,
3484 				 struct request_sock *req)
3485 {
3486 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3487 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3488 	struct mptcp_subflow_context *subflow;
3489 	struct mptcp_sock *msk;
3490 
3491 	if (!nsk)
3492 		return NULL;
3493 
3494 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3495 	if (nsk->sk_family == AF_INET6)
3496 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3497 #endif
3498 
3499 	__mptcp_init_sock(nsk);
3500 
3501 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3502 	if (nsk->sk_family == AF_INET6)
3503 		mptcp_copy_ip6_options(nsk, sk);
3504 	else
3505 #endif
3506 		mptcp_copy_ip_options(nsk, sk);
3507 
3508 	msk = mptcp_sk(nsk);
3509 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3510 	WRITE_ONCE(msk->token, subflow_req->token);
3511 	msk->in_accept_queue = 1;
3512 	WRITE_ONCE(msk->fully_established, false);
3513 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3514 		WRITE_ONCE(msk->csum_enabled, true);
3515 
3516 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3517 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3518 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3519 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3520 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3521 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3522 
3523 	/* passive msk is created after the first/MPC subflow */
3524 	msk->subflow_id = 2;
3525 
3526 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3527 	security_inet_csk_clone(nsk, req);
3528 
3529 	/* this can't race with mptcp_close(), as the msk is
3530 	 * not yet exposted to user-space
3531 	 */
3532 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3533 
3534 	/* The msk maintain a ref to each subflow in the connections list */
3535 	WRITE_ONCE(msk->first, ssk);
3536 	subflow = mptcp_subflow_ctx(ssk);
3537 	list_add(&subflow->node, &msk->conn_list);
3538 	sock_hold(ssk);
3539 
3540 	/* new mpc subflow takes ownership of the newly
3541 	 * created mptcp socket
3542 	 */
3543 	mptcp_token_accept(subflow_req, msk);
3544 
3545 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3546 	 * uses the correct data
3547 	 */
3548 	mptcp_copy_inaddrs(nsk, ssk);
3549 	__mptcp_propagate_sndbuf(nsk, ssk);
3550 
3551 	mptcp_rcv_space_init(msk, ssk);
3552 
3553 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3554 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3555 	bh_unlock_sock(nsk);
3556 
3557 	/* note: the newly allocated socket refcount is 2 now */
3558 	return nsk;
3559 }
3560 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3561 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3562 {
3563 	const struct tcp_sock *tp = tcp_sk(ssk);
3564 
3565 	msk->rcvspace_init = 1;
3566 	msk->rcvq_space.copied = 0;
3567 	msk->rcvq_space.rtt_us = 0;
3568 
3569 	msk->rcvq_space.time = tp->tcp_mstamp;
3570 
3571 	/* initial rcv_space offering made to peer */
3572 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3573 				      TCP_INIT_CWND * tp->advmss);
3574 	if (msk->rcvq_space.space == 0)
3575 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3576 }
3577 
mptcp_destroy(struct sock * sk)3578 static void mptcp_destroy(struct sock *sk)
3579 {
3580 	struct mptcp_sock *msk = mptcp_sk(sk);
3581 
3582 	/* allow the following to close even the initial subflow */
3583 	msk->free_first = 1;
3584 	mptcp_destroy_common(msk);
3585 	sk_sockets_allocated_dec(sk);
3586 }
3587 
__mptcp_data_acked(struct sock * sk)3588 void __mptcp_data_acked(struct sock *sk)
3589 {
3590 	if (!sock_owned_by_user(sk))
3591 		__mptcp_clean_una(sk);
3592 	else
3593 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3594 }
3595 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3596 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3597 {
3598 	if (!sock_owned_by_user(sk))
3599 		__mptcp_subflow_push_pending(sk, ssk, false);
3600 	else
3601 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3602 }
3603 
3604 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3605 				      BIT(MPTCP_RETRANSMIT) | \
3606 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3607 
3608 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3609 static void mptcp_release_cb(struct sock *sk)
3610 	__must_hold(&sk->sk_lock.slock)
3611 {
3612 	struct mptcp_sock *msk = mptcp_sk(sk);
3613 
3614 	for (;;) {
3615 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3616 		struct list_head join_list, skbs;
3617 		bool spool_bl;
3618 		u32 moved;
3619 
3620 		spool_bl = mptcp_can_spool_backlog(sk, &skbs);
3621 		if (!flags && !spool_bl)
3622 			break;
3623 
3624 		INIT_LIST_HEAD(&join_list);
3625 		list_splice_init(&msk->join_list, &join_list);
3626 
3627 		/* the following actions acquire the subflow socket lock
3628 		 *
3629 		 * 1) can't be invoked in atomic scope
3630 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3631 		 *    datapath acquires the msk socket spinlock while helding
3632 		 *    the subflow socket lock
3633 		 */
3634 		msk->cb_flags &= ~flags;
3635 		spin_unlock_bh(&sk->sk_lock.slock);
3636 
3637 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3638 			__mptcp_flush_join_list(sk, &join_list);
3639 		if (flags & BIT(MPTCP_PUSH_PENDING))
3640 			__mptcp_push_pending(sk, 0);
3641 		if (flags & BIT(MPTCP_RETRANSMIT))
3642 			__mptcp_retrans(sk);
3643 		if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) {
3644 			/* notify ack seq update */
3645 			mptcp_cleanup_rbuf(msk, 0);
3646 			sk->sk_data_ready(sk);
3647 		}
3648 
3649 		cond_resched();
3650 		spin_lock_bh(&sk->sk_lock.slock);
3651 		if (spool_bl)
3652 			mptcp_backlog_spooled(sk, moved, &skbs);
3653 	}
3654 
3655 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3656 		__mptcp_clean_una_wakeup(sk);
3657 	if (unlikely(msk->cb_flags)) {
3658 		/* be sure to sync the msk state before taking actions
3659 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3660 		 * On sk release avoid actions depending on the first subflow
3661 		 */
3662 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3663 			__mptcp_sync_state(sk, msk->pending_state);
3664 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3665 			__mptcp_error_report(sk);
3666 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3667 			__mptcp_sync_sndbuf(sk);
3668 	}
3669 }
3670 
3671 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3672  * TCP can't schedule delack timer before the subflow is fully established.
3673  * MPTCP uses the delack timer to do 3rd ack retransmissions
3674  */
schedule_3rdack_retransmission(struct sock * ssk)3675 static void schedule_3rdack_retransmission(struct sock *ssk)
3676 {
3677 	struct inet_connection_sock *icsk = inet_csk(ssk);
3678 	struct tcp_sock *tp = tcp_sk(ssk);
3679 	unsigned long timeout;
3680 
3681 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3682 		return;
3683 
3684 	/* reschedule with a timeout above RTT, as we must look only for drop */
3685 	if (tp->srtt_us)
3686 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3687 	else
3688 		timeout = TCP_TIMEOUT_INIT;
3689 	timeout += jiffies;
3690 
3691 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3692 	smp_store_release(&icsk->icsk_ack.pending,
3693 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3694 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3695 }
3696 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3697 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3698 {
3699 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3700 	struct sock *sk = subflow->conn;
3701 
3702 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3703 		mptcp_data_lock(sk);
3704 		if (!sock_owned_by_user(sk))
3705 			__mptcp_subflow_push_pending(sk, ssk, true);
3706 		else
3707 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3708 		mptcp_data_unlock(sk);
3709 	}
3710 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3711 		mptcp_data_lock(sk);
3712 		if (!sock_owned_by_user(sk))
3713 			__mptcp_sync_sndbuf(sk);
3714 		else
3715 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3716 		mptcp_data_unlock(sk);
3717 	}
3718 	if (status & BIT(MPTCP_DELEGATE_ACK))
3719 		schedule_3rdack_retransmission(ssk);
3720 }
3721 
mptcp_hash(struct sock * sk)3722 static int mptcp_hash(struct sock *sk)
3723 {
3724 	/* should never be called,
3725 	 * we hash the TCP subflows not the MPTCP socket
3726 	 */
3727 	WARN_ON_ONCE(1);
3728 	return 0;
3729 }
3730 
mptcp_unhash(struct sock * sk)3731 static void mptcp_unhash(struct sock *sk)
3732 {
3733 	/* called from sk_common_release(), but nothing to do here */
3734 }
3735 
mptcp_get_port(struct sock * sk,unsigned short snum)3736 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3737 {
3738 	struct mptcp_sock *msk = mptcp_sk(sk);
3739 
3740 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3741 	if (WARN_ON_ONCE(!msk->first))
3742 		return -EINVAL;
3743 
3744 	return inet_csk_get_port(msk->first, snum);
3745 }
3746 
mptcp_finish_connect(struct sock * ssk)3747 void mptcp_finish_connect(struct sock *ssk)
3748 {
3749 	struct mptcp_subflow_context *subflow;
3750 	struct mptcp_sock *msk;
3751 	struct sock *sk;
3752 
3753 	subflow = mptcp_subflow_ctx(ssk);
3754 	sk = subflow->conn;
3755 	msk = mptcp_sk(sk);
3756 
3757 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3758 
3759 	subflow->map_seq = subflow->iasn;
3760 	subflow->map_subflow_seq = 1;
3761 
3762 	/* the socket is not connected yet, no msk/subflow ops can access/race
3763 	 * accessing the field below
3764 	 */
3765 	WRITE_ONCE(msk->local_key, subflow->local_key);
3766 
3767 	mptcp_pm_new_connection(msk, ssk, 0);
3768 }
3769 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3770 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3771 {
3772 	write_lock_bh(&sk->sk_callback_lock);
3773 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3774 	sk_set_socket(sk, parent);
3775 	write_unlock_bh(&sk->sk_callback_lock);
3776 }
3777 
3778 /* Can be called without holding the msk socket lock; use the callback lock
3779  * to avoid {READ_,WRITE_}ONCE annotations on sk_socket.
3780  */
mptcp_sock_check_graft(struct sock * sk,struct sock * ssk)3781 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk)
3782 {
3783 	struct socket *sock;
3784 
3785 	write_lock_bh(&sk->sk_callback_lock);
3786 	sock = sk->sk_socket;
3787 	write_unlock_bh(&sk->sk_callback_lock);
3788 	if (sock) {
3789 		mptcp_sock_graft(ssk, sock);
3790 		__mptcp_inherit_cgrp_data(sk, ssk);
3791 		__mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC);
3792 	}
3793 }
3794 
mptcp_finish_join(struct sock * ssk)3795 bool mptcp_finish_join(struct sock *ssk)
3796 {
3797 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3798 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3799 	struct sock *parent = (void *)msk;
3800 	bool ret = true;
3801 
3802 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3803 
3804 	/* mptcp socket already closing? */
3805 	if (!mptcp_is_fully_established(parent)) {
3806 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3807 		return false;
3808 	}
3809 
3810 	/* Active subflow, already present inside the conn_list; is grafted
3811 	 * either by __mptcp_subflow_connect() or accept.
3812 	 */
3813 	if (!list_empty(&subflow->node)) {
3814 		spin_lock_bh(&msk->fallback_lock);
3815 		if (!msk->allow_subflows) {
3816 			spin_unlock_bh(&msk->fallback_lock);
3817 			return false;
3818 		}
3819 		mptcp_subflow_joined(msk, ssk);
3820 		spin_unlock_bh(&msk->fallback_lock);
3821 		mptcp_propagate_sndbuf(parent, ssk);
3822 		return true;
3823 	}
3824 
3825 	if (!mptcp_pm_allow_new_subflow(msk)) {
3826 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3827 		goto err_prohibited;
3828 	}
3829 
3830 	/* If we can't acquire msk socket lock here, let the release callback
3831 	 * handle it
3832 	 */
3833 	mptcp_data_lock(parent);
3834 	if (!sock_owned_by_user(parent)) {
3835 		ret = __mptcp_finish_join(msk, ssk);
3836 		if (ret) {
3837 			sock_hold(ssk);
3838 			list_add_tail(&subflow->node, &msk->conn_list);
3839 			mptcp_sock_check_graft(parent, ssk);
3840 		}
3841 	} else {
3842 		sock_hold(ssk);
3843 		list_add_tail(&subflow->node, &msk->join_list);
3844 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3845 
3846 		/* In case of later failures, __mptcp_flush_join_list() will
3847 		 * properly orphan the ssk via mptcp_close_ssk().
3848 		 */
3849 		mptcp_sock_check_graft(parent, ssk);
3850 	}
3851 	mptcp_data_unlock(parent);
3852 
3853 	if (!ret) {
3854 err_prohibited:
3855 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3856 		return false;
3857 	}
3858 
3859 	return true;
3860 }
3861 
mptcp_shutdown(struct sock * sk,int how)3862 static void mptcp_shutdown(struct sock *sk, int how)
3863 {
3864 	pr_debug("sk=%p, how=%d\n", sk, how);
3865 
3866 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3867 		__mptcp_wr_shutdown(sk);
3868 }
3869 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3870 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3871 {
3872 	const struct sock *sk = (void *)msk;
3873 	u64 delta;
3874 
3875 	if (sk->sk_state == TCP_LISTEN)
3876 		return -EINVAL;
3877 
3878 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3879 		return 0;
3880 
3881 	delta = msk->write_seq - v;
3882 	if (__mptcp_check_fallback(msk) && msk->first) {
3883 		struct tcp_sock *tp = tcp_sk(msk->first);
3884 
3885 		/* the first subflow is disconnected after close - see
3886 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3887 		 * so ignore that status, too.
3888 		 */
3889 		if (!((1 << msk->first->sk_state) &
3890 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3891 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3892 	}
3893 	if (delta > INT_MAX)
3894 		delta = INT_MAX;
3895 
3896 	return (int)delta;
3897 }
3898 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3899 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3900 {
3901 	struct mptcp_sock *msk = mptcp_sk(sk);
3902 	bool slow;
3903 
3904 	switch (cmd) {
3905 	case SIOCINQ:
3906 		if (sk->sk_state == TCP_LISTEN)
3907 			return -EINVAL;
3908 
3909 		lock_sock(sk);
3910 		if (mptcp_move_skbs(sk))
3911 			mptcp_cleanup_rbuf(msk, 0);
3912 		*karg = mptcp_inq_hint(sk);
3913 		release_sock(sk);
3914 		break;
3915 	case SIOCOUTQ:
3916 		slow = lock_sock_fast(sk);
3917 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3918 		unlock_sock_fast(sk, slow);
3919 		break;
3920 	case SIOCOUTQNSD:
3921 		slow = lock_sock_fast(sk);
3922 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3923 		unlock_sock_fast(sk, slow);
3924 		break;
3925 	default:
3926 		return -ENOIOCTLCMD;
3927 	}
3928 
3929 	return 0;
3930 }
3931 
mptcp_connect(struct sock * sk,struct sockaddr_unsized * uaddr,int addr_len)3932 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3933 			 int addr_len)
3934 {
3935 	struct mptcp_subflow_context *subflow;
3936 	struct mptcp_sock *msk = mptcp_sk(sk);
3937 	int err = -EINVAL;
3938 	struct sock *ssk;
3939 
3940 	ssk = __mptcp_nmpc_sk(msk);
3941 	if (IS_ERR(ssk))
3942 		return PTR_ERR(ssk);
3943 
3944 	mptcp_set_state(sk, TCP_SYN_SENT);
3945 	subflow = mptcp_subflow_ctx(ssk);
3946 #ifdef CONFIG_TCP_MD5SIG
3947 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3948 	 * TCP option space.
3949 	 */
3950 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3951 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3952 #endif
3953 	if (subflow->request_mptcp) {
3954 		if (mptcp_active_should_disable(sk))
3955 			mptcp_early_fallback(msk, subflow,
3956 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3957 		else if (mptcp_token_new_connect(ssk) < 0)
3958 			mptcp_early_fallback(msk, subflow,
3959 					     MPTCP_MIB_TOKENFALLBACKINIT);
3960 	}
3961 
3962 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3963 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3964 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3965 	if (likely(!__mptcp_check_fallback(msk)))
3966 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3967 
3968 	/* if reaching here via the fastopen/sendmsg path, the caller already
3969 	 * acquired the subflow socket lock, too.
3970 	 */
3971 	if (!msk->fastopening)
3972 		lock_sock(ssk);
3973 
3974 	/* the following mirrors closely a very small chunk of code from
3975 	 * __inet_stream_connect()
3976 	 */
3977 	if (ssk->sk_state != TCP_CLOSE)
3978 		goto out;
3979 
3980 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3981 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3982 		if (err)
3983 			goto out;
3984 	}
3985 
3986 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3987 	if (err < 0)
3988 		goto out;
3989 
3990 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3991 
3992 out:
3993 	if (!msk->fastopening)
3994 		release_sock(ssk);
3995 
3996 	/* on successful connect, the msk state will be moved to established by
3997 	 * subflow_finish_connect()
3998 	 */
3999 	if (unlikely(err)) {
4000 		/* avoid leaving a dangling token in an unconnected socket */
4001 		mptcp_token_destroy(msk);
4002 		mptcp_set_state(sk, TCP_CLOSE);
4003 		return err;
4004 	}
4005 
4006 	mptcp_copy_inaddrs(sk, ssk);
4007 	return 0;
4008 }
4009 
4010 static struct proto mptcp_prot = {
4011 	.name		= "MPTCP",
4012 	.owner		= THIS_MODULE,
4013 	.init		= mptcp_init_sock,
4014 	.connect	= mptcp_connect,
4015 	.disconnect	= mptcp_disconnect,
4016 	.close		= mptcp_close,
4017 	.setsockopt	= mptcp_setsockopt,
4018 	.getsockopt	= mptcp_getsockopt,
4019 	.shutdown	= mptcp_shutdown,
4020 	.destroy	= mptcp_destroy,
4021 	.sendmsg	= mptcp_sendmsg,
4022 	.ioctl		= mptcp_ioctl,
4023 	.recvmsg	= mptcp_recvmsg,
4024 	.release_cb	= mptcp_release_cb,
4025 	.hash		= mptcp_hash,
4026 	.unhash		= mptcp_unhash,
4027 	.get_port	= mptcp_get_port,
4028 	.stream_memory_free	= mptcp_stream_memory_free,
4029 	.sockets_allocated	= &mptcp_sockets_allocated,
4030 
4031 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
4032 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
4033 
4034 	.memory_pressure	= &tcp_memory_pressure,
4035 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
4036 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
4037 	.sysctl_mem	= sysctl_tcp_mem,
4038 	.obj_size	= sizeof(struct mptcp_sock),
4039 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
4040 	.no_autobind	= true,
4041 };
4042 
mptcp_bind(struct socket * sock,struct sockaddr_unsized * uaddr,int addr_len)4043 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
4044 {
4045 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4046 	struct sock *ssk, *sk = sock->sk;
4047 	int err = -EINVAL;
4048 
4049 	lock_sock(sk);
4050 	ssk = __mptcp_nmpc_sk(msk);
4051 	if (IS_ERR(ssk)) {
4052 		err = PTR_ERR(ssk);
4053 		goto unlock;
4054 	}
4055 
4056 	if (sk->sk_family == AF_INET)
4057 		err = inet_bind_sk(ssk, uaddr, addr_len);
4058 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4059 	else if (sk->sk_family == AF_INET6)
4060 		err = inet6_bind_sk(ssk, uaddr, addr_len);
4061 #endif
4062 	if (!err)
4063 		mptcp_copy_inaddrs(sk, ssk);
4064 
4065 unlock:
4066 	release_sock(sk);
4067 	return err;
4068 }
4069 
mptcp_listen(struct socket * sock,int backlog)4070 static int mptcp_listen(struct socket *sock, int backlog)
4071 {
4072 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4073 	struct sock *sk = sock->sk;
4074 	struct sock *ssk;
4075 	int err;
4076 
4077 	pr_debug("msk=%p\n", msk);
4078 
4079 	lock_sock(sk);
4080 
4081 	err = -EINVAL;
4082 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
4083 		goto unlock;
4084 
4085 	ssk = __mptcp_nmpc_sk(msk);
4086 	if (IS_ERR(ssk)) {
4087 		err = PTR_ERR(ssk);
4088 		goto unlock;
4089 	}
4090 
4091 	mptcp_set_state(sk, TCP_LISTEN);
4092 	sock_set_flag(sk, SOCK_RCU_FREE);
4093 
4094 	lock_sock(ssk);
4095 	err = __inet_listen_sk(ssk, backlog);
4096 	release_sock(ssk);
4097 	mptcp_set_state(sk, inet_sk_state_load(ssk));
4098 
4099 	if (!err) {
4100 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
4101 		mptcp_copy_inaddrs(sk, ssk);
4102 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
4103 	}
4104 
4105 unlock:
4106 	release_sock(sk);
4107 	return err;
4108 }
4109 
mptcp_graft_subflows(struct sock * sk)4110 static void mptcp_graft_subflows(struct sock *sk)
4111 {
4112 	struct mptcp_subflow_context *subflow;
4113 	struct mptcp_sock *msk = mptcp_sk(sk);
4114 
4115 	if (mem_cgroup_sockets_enabled) {
4116 		LIST_HEAD(join_list);
4117 
4118 		/* Subflows joining after __inet_accept() will get the
4119 		 * mem CG properly initialized at mptcp_finish_join() time,
4120 		 * but subflows pending in join_list need explicit
4121 		 * initialization before flushing `backlog_unaccounted`
4122 		 * or MPTCP can later unexpectedly observe unaccounted memory.
4123 		 */
4124 		mptcp_data_lock(sk);
4125 		list_splice_init(&msk->join_list, &join_list);
4126 		mptcp_data_unlock(sk);
4127 
4128 		__mptcp_flush_join_list(sk, &join_list);
4129 	}
4130 
4131 	mptcp_for_each_subflow(msk, subflow) {
4132 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4133 
4134 		lock_sock(ssk);
4135 
4136 		/* Set ssk->sk_socket of accept()ed flows to mptcp socket.
4137 		 * This is needed so NOSPACE flag can be set from tcp stack.
4138 		 */
4139 		if (!ssk->sk_socket)
4140 			mptcp_sock_graft(ssk, sk->sk_socket);
4141 
4142 		if (!mem_cgroup_sk_enabled(sk))
4143 			goto unlock;
4144 
4145 		__mptcp_inherit_cgrp_data(sk, ssk);
4146 		__mptcp_inherit_memcg(sk, ssk, GFP_KERNEL);
4147 
4148 unlock:
4149 		release_sock(ssk);
4150 	}
4151 
4152 	if (mem_cgroup_sk_enabled(sk)) {
4153 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
4154 		int amt;
4155 
4156 		/* Account the backlog memory; prior accept() is aware of
4157 		 * fwd and rmem only.
4158 		 */
4159 		mptcp_data_lock(sk);
4160 		amt = sk_mem_pages(sk->sk_forward_alloc +
4161 				   msk->backlog_unaccounted +
4162 				   atomic_read(&sk->sk_rmem_alloc)) -
4163 		      sk_mem_pages(sk->sk_forward_alloc +
4164 				   atomic_read(&sk->sk_rmem_alloc));
4165 		msk->backlog_unaccounted = 0;
4166 		mptcp_data_unlock(sk);
4167 
4168 		if (amt)
4169 			mem_cgroup_sk_charge(sk, amt, gfp);
4170 	}
4171 }
4172 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)4173 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
4174 			       struct proto_accept_arg *arg)
4175 {
4176 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4177 	struct sock *ssk, *newsk;
4178 
4179 	pr_debug("msk=%p\n", msk);
4180 
4181 	/* Buggy applications can call accept on socket states other then LISTEN
4182 	 * but no need to allocate the first subflow just to error out.
4183 	 */
4184 	ssk = READ_ONCE(msk->first);
4185 	if (!ssk)
4186 		return -EINVAL;
4187 
4188 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4189 	newsk = inet_csk_accept(ssk, arg);
4190 	if (!newsk)
4191 		return arg->err;
4192 
4193 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4194 	if (sk_is_mptcp(newsk)) {
4195 		struct mptcp_subflow_context *subflow;
4196 		struct sock *new_mptcp_sock;
4197 
4198 		subflow = mptcp_subflow_ctx(newsk);
4199 		new_mptcp_sock = subflow->conn;
4200 
4201 		/* is_mptcp should be false if subflow->conn is missing, see
4202 		 * subflow_syn_recv_sock()
4203 		 */
4204 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
4205 			tcp_sk(newsk)->is_mptcp = 0;
4206 			goto tcpfallback;
4207 		}
4208 
4209 		newsk = new_mptcp_sock;
4210 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4211 
4212 		newsk->sk_kern_sock = arg->kern;
4213 		lock_sock(newsk);
4214 		__inet_accept(sock, newsock, newsk);
4215 
4216 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4217 		msk = mptcp_sk(newsk);
4218 		msk->in_accept_queue = 0;
4219 
4220 		mptcp_graft_subflows(newsk);
4221 		mptcp_rps_record_subflows(msk);
4222 
4223 		/* Do late cleanup for the first subflow as necessary. Also
4224 		 * deal with bad peers not doing a complete shutdown.
4225 		 */
4226 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4227 			if (unlikely(list_is_singular(&msk->conn_list)))
4228 				mptcp_set_state(newsk, TCP_CLOSE);
4229 			mptcp_close_ssk(newsk, msk->first,
4230 					mptcp_subflow_ctx(msk->first));
4231 		}
4232 	} else {
4233 tcpfallback:
4234 		newsk->sk_kern_sock = arg->kern;
4235 		lock_sock(newsk);
4236 		__inet_accept(sock, newsock, newsk);
4237 		/* we are being invoked after accepting a non-mp-capable
4238 		 * flow: sk is a tcp_sk, not an mptcp one.
4239 		 *
4240 		 * Hand the socket over to tcp so all further socket ops
4241 		 * bypass mptcp.
4242 		 */
4243 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4244 			   mptcp_fallback_tcp_ops(newsock->sk));
4245 	}
4246 	release_sock(newsk);
4247 
4248 	return 0;
4249 }
4250 
mptcp_check_writeable(struct mptcp_sock * msk)4251 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4252 {
4253 	struct sock *sk = (struct sock *)msk;
4254 
4255 	if (__mptcp_stream_is_writeable(sk, 1))
4256 		return EPOLLOUT | EPOLLWRNORM;
4257 
4258 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4259 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4260 	if (__mptcp_stream_is_writeable(sk, 1))
4261 		return EPOLLOUT | EPOLLWRNORM;
4262 
4263 	return 0;
4264 }
4265 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4266 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4267 			   struct poll_table_struct *wait)
4268 {
4269 	struct sock *sk = sock->sk;
4270 	struct mptcp_sock *msk;
4271 	__poll_t mask = 0;
4272 	u8 shutdown;
4273 	int state;
4274 
4275 	msk = mptcp_sk(sk);
4276 	sock_poll_wait(file, sock, wait);
4277 
4278 	state = inet_sk_state_load(sk);
4279 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4280 	if (state == TCP_LISTEN) {
4281 		struct sock *ssk = READ_ONCE(msk->first);
4282 
4283 		if (WARN_ON_ONCE(!ssk))
4284 			return 0;
4285 
4286 		return inet_csk_listen_poll(ssk);
4287 	}
4288 
4289 	shutdown = READ_ONCE(sk->sk_shutdown);
4290 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4291 		mask |= EPOLLHUP;
4292 	if (shutdown & RCV_SHUTDOWN)
4293 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4294 
4295 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4296 		mask |= mptcp_check_readable(sk);
4297 		if (shutdown & SEND_SHUTDOWN)
4298 			mask |= EPOLLOUT | EPOLLWRNORM;
4299 		else
4300 			mask |= mptcp_check_writeable(msk);
4301 	} else if (state == TCP_SYN_SENT &&
4302 		   inet_test_bit(DEFER_CONNECT, sk)) {
4303 		/* cf tcp_poll() note about TFO */
4304 		mask |= EPOLLOUT | EPOLLWRNORM;
4305 	}
4306 
4307 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4308 	smp_rmb();
4309 	if (READ_ONCE(sk->sk_err))
4310 		mask |= EPOLLERR;
4311 
4312 	return mask;
4313 }
4314 
4315 static const struct proto_ops mptcp_stream_ops = {
4316 	.family		   = PF_INET,
4317 	.owner		   = THIS_MODULE,
4318 	.release	   = inet_release,
4319 	.bind		   = mptcp_bind,
4320 	.connect	   = inet_stream_connect,
4321 	.socketpair	   = sock_no_socketpair,
4322 	.accept		   = mptcp_stream_accept,
4323 	.getname	   = inet_getname,
4324 	.poll		   = mptcp_poll,
4325 	.ioctl		   = inet_ioctl,
4326 	.gettstamp	   = sock_gettstamp,
4327 	.listen		   = mptcp_listen,
4328 	.shutdown	   = inet_shutdown,
4329 	.setsockopt	   = sock_common_setsockopt,
4330 	.getsockopt	   = sock_common_getsockopt,
4331 	.sendmsg	   = inet_sendmsg,
4332 	.recvmsg	   = inet_recvmsg,
4333 	.mmap		   = sock_no_mmap,
4334 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4335 };
4336 
4337 static struct inet_protosw mptcp_protosw = {
4338 	.type		= SOCK_STREAM,
4339 	.protocol	= IPPROTO_MPTCP,
4340 	.prot		= &mptcp_prot,
4341 	.ops		= &mptcp_stream_ops,
4342 	.flags		= INET_PROTOSW_ICSK,
4343 };
4344 
mptcp_napi_poll(struct napi_struct * napi,int budget)4345 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4346 {
4347 	struct mptcp_delegated_action *delegated;
4348 	struct mptcp_subflow_context *subflow;
4349 	int work_done = 0;
4350 
4351 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4352 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4353 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4354 
4355 		bh_lock_sock_nested(ssk);
4356 		if (!sock_owned_by_user(ssk)) {
4357 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4358 		} else {
4359 			/* tcp_release_cb_override already processed
4360 			 * the action or will do at next release_sock().
4361 			 * In both case must dequeue the subflow here - on the same
4362 			 * CPU that scheduled it.
4363 			 */
4364 			smp_wmb();
4365 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4366 		}
4367 		bh_unlock_sock(ssk);
4368 		sock_put(ssk);
4369 
4370 		if (++work_done == budget)
4371 			return budget;
4372 	}
4373 
4374 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4375 	 * will not try accessing the NULL napi->dev ptr
4376 	 */
4377 	napi_complete_done(napi, 0);
4378 	return work_done;
4379 }
4380 
mptcp_proto_init(void)4381 void __init mptcp_proto_init(void)
4382 {
4383 	struct mptcp_delegated_action *delegated;
4384 	int cpu;
4385 
4386 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4387 
4388 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4389 		panic("Failed to allocate MPTCP pcpu counter\n");
4390 
4391 	mptcp_napi_dev = alloc_netdev_dummy(0);
4392 	if (!mptcp_napi_dev)
4393 		panic("Failed to allocate MPTCP dummy netdev\n");
4394 	for_each_possible_cpu(cpu) {
4395 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4396 		INIT_LIST_HEAD(&delegated->head);
4397 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4398 				  mptcp_napi_poll);
4399 		napi_enable(&delegated->napi);
4400 	}
4401 
4402 	mptcp_subflow_init();
4403 	mptcp_pm_init();
4404 	mptcp_sched_init();
4405 	mptcp_token_init();
4406 
4407 	if (proto_register(&mptcp_prot, 1) != 0)
4408 		panic("Failed to register MPTCP proto.\n");
4409 
4410 	inet_register_protosw(&mptcp_protosw);
4411 
4412 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4413 }
4414 
4415 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4416 static const struct proto_ops mptcp_v6_stream_ops = {
4417 	.family		   = PF_INET6,
4418 	.owner		   = THIS_MODULE,
4419 	.release	   = inet6_release,
4420 	.bind		   = mptcp_bind,
4421 	.connect	   = inet_stream_connect,
4422 	.socketpair	   = sock_no_socketpair,
4423 	.accept		   = mptcp_stream_accept,
4424 	.getname	   = inet6_getname,
4425 	.poll		   = mptcp_poll,
4426 	.ioctl		   = inet6_ioctl,
4427 	.gettstamp	   = sock_gettstamp,
4428 	.listen		   = mptcp_listen,
4429 	.shutdown	   = inet_shutdown,
4430 	.setsockopt	   = sock_common_setsockopt,
4431 	.getsockopt	   = sock_common_getsockopt,
4432 	.sendmsg	   = inet6_sendmsg,
4433 	.recvmsg	   = inet6_recvmsg,
4434 	.mmap		   = sock_no_mmap,
4435 #ifdef CONFIG_COMPAT
4436 	.compat_ioctl	   = inet6_compat_ioctl,
4437 #endif
4438 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4439 };
4440 
4441 static struct proto mptcp_v6_prot;
4442 
4443 static struct inet_protosw mptcp_v6_protosw = {
4444 	.type		= SOCK_STREAM,
4445 	.protocol	= IPPROTO_MPTCP,
4446 	.prot		= &mptcp_v6_prot,
4447 	.ops		= &mptcp_v6_stream_ops,
4448 	.flags		= INET_PROTOSW_ICSK,
4449 };
4450 
mptcp_proto_v6_init(void)4451 int __init mptcp_proto_v6_init(void)
4452 {
4453 	int err;
4454 
4455 	mptcp_v6_prot = mptcp_prot;
4456 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4457 	mptcp_v6_prot.slab = NULL;
4458 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4459 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4460 
4461 	err = proto_register(&mptcp_v6_prot, 1);
4462 	if (err)
4463 		return err;
4464 
4465 	err = inet6_register_protosw(&mptcp_v6_protosw);
4466 	if (err)
4467 		proto_unregister(&mptcp_v6_prot);
4468 
4469 	return err;
4470 }
4471 #endif
4472