xref: /linux/net/mptcp/protocol.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/sock.h>
16 #include <net/inet_common.h>
17 #include <net/inet_hashtables.h>
18 #include <net/protocol.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/hotdata.h>
25 #include <net/xfrm.h>
26 #include <asm/ioctls.h>
27 #include "protocol.h"
28 #include "mib.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/mptcp.h>
32 
33 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
34 struct mptcp6_sock {
35 	struct mptcp_sock msk;
36 	struct ipv6_pinfo np;
37 };
38 #endif
39 
40 enum {
41 	MPTCP_CMSG_TS = BIT(0),
42 	MPTCP_CMSG_INQ = BIT(1),
43 };
44 
45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
46 
47 static void __mptcp_destroy_sock(struct sock *sk);
48 static void mptcp_check_send_data_fin(struct sock *sk);
49 
50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
51 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
52 };
53 static struct net_device *mptcp_napi_dev;
54 
55 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
57 {
58 	return READ_ONCE(msk->wnd_end);
59 }
60 
mptcp_fallback_tcp_ops(const struct sock * sk)61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
62 {
63 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
64 	if (sk->sk_prot == &tcpv6_prot)
65 		return &inet6_stream_ops;
66 #endif
67 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
68 	return &inet_stream_ops;
69 }
70 
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)71 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
72 {
73 	struct net *net = sock_net((struct sock *)msk);
74 
75 	if (__mptcp_check_fallback(msk))
76 		return true;
77 
78 	spin_lock_bh(&msk->fallback_lock);
79 	if (!msk->allow_infinite_fallback) {
80 		spin_unlock_bh(&msk->fallback_lock);
81 		return false;
82 	}
83 
84 	msk->allow_subflows = false;
85 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
86 	__MPTCP_INC_STATS(net, fb_mib);
87 	spin_unlock_bh(&msk->fallback_lock);
88 	return true;
89 }
90 
__mptcp_socket_create(struct mptcp_sock * msk)91 static int __mptcp_socket_create(struct mptcp_sock *msk)
92 {
93 	struct mptcp_subflow_context *subflow;
94 	struct sock *sk = (struct sock *)msk;
95 	struct socket *ssock;
96 	int err;
97 
98 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
99 	if (err)
100 		return err;
101 
102 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
103 	WRITE_ONCE(msk->first, ssock->sk);
104 	subflow = mptcp_subflow_ctx(ssock->sk);
105 	list_add(&subflow->node, &msk->conn_list);
106 	sock_hold(ssock->sk);
107 	subflow->request_mptcp = 1;
108 	subflow->subflow_id = msk->subflow_id++;
109 
110 	/* This is the first subflow, always with id 0 */
111 	WRITE_ONCE(subflow->local_id, 0);
112 	mptcp_sock_graft(msk->first, sk->sk_socket);
113 	iput(SOCK_INODE(ssock));
114 
115 	return 0;
116 }
117 
118 /* If the MPC handshake is not started, returns the first subflow,
119  * eventually allocating it.
120  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)121 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
122 {
123 	struct sock *sk = (struct sock *)msk;
124 	int ret;
125 
126 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
127 		return ERR_PTR(-EINVAL);
128 
129 	if (!msk->first) {
130 		ret = __mptcp_socket_create(msk);
131 		if (ret)
132 			return ERR_PTR(ret);
133 	}
134 
135 	return msk->first;
136 }
137 
mptcp_drop(struct sock * sk,struct sk_buff * skb)138 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
139 {
140 	sk_drops_add(sk, skb);
141 	__kfree_skb(skb);
142 }
143 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)144 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
145 			       struct sk_buff *from)
146 {
147 	bool fragstolen;
148 	int delta;
149 
150 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
151 	    MPTCP_SKB_CB(from)->offset ||
152 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
153 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
154 		return false;
155 
156 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
157 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
158 		 to->len, MPTCP_SKB_CB(from)->end_seq);
159 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
160 
161 	/* note the fwd memory can reach a negative value after accounting
162 	 * for the delta, but the later skb free will restore a non
163 	 * negative one
164 	 */
165 	atomic_add(delta, &sk->sk_rmem_alloc);
166 	sk_mem_charge(sk, delta);
167 	kfree_skb_partial(from, fragstolen);
168 
169 	return true;
170 }
171 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
173 				   struct sk_buff *from)
174 {
175 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
176 		return false;
177 
178 	return mptcp_try_coalesce((struct sock *)msk, to, from);
179 }
180 
181 /* "inspired" by tcp_data_queue_ofo(), main differences:
182  * - use mptcp seqs
183  * - don't cope with sacks
184  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)185 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
186 {
187 	struct sock *sk = (struct sock *)msk;
188 	struct rb_node **p, *parent;
189 	u64 seq, end_seq, max_seq;
190 	struct sk_buff *skb1;
191 
192 	seq = MPTCP_SKB_CB(skb)->map_seq;
193 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
194 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
195 
196 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
197 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
198 	if (after64(end_seq, max_seq)) {
199 		/* out of window */
200 		mptcp_drop(sk, skb);
201 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
202 			 (unsigned long long)end_seq - (unsigned long)max_seq,
203 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
204 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
205 		return;
206 	}
207 
208 	p = &msk->out_of_order_queue.rb_node;
209 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
210 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
211 		rb_link_node(&skb->rbnode, NULL, p);
212 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
213 		msk->ooo_last_skb = skb;
214 		goto end;
215 	}
216 
217 	/* with 2 subflows, adding at end of ooo queue is quite likely
218 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
219 	 */
220 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
221 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
222 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
223 		return;
224 	}
225 
226 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
227 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
229 		parent = &msk->ooo_last_skb->rbnode;
230 		p = &parent->rb_right;
231 		goto insert;
232 	}
233 
234 	/* Find place to insert this segment. Handle overlaps on the way. */
235 	parent = NULL;
236 	while (*p) {
237 		parent = *p;
238 		skb1 = rb_to_skb(parent);
239 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
240 			p = &parent->rb_left;
241 			continue;
242 		}
243 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
244 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
245 				/* All the bits are present. Drop. */
246 				mptcp_drop(sk, skb);
247 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
248 				return;
249 			}
250 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
251 				/* partial overlap:
252 				 *     |     skb      |
253 				 *  |     skb1    |
254 				 * continue traversing
255 				 */
256 			} else {
257 				/* skb's seq == skb1's seq and skb covers skb1.
258 				 * Replace skb1 with skb.
259 				 */
260 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
261 						&msk->out_of_order_queue);
262 				mptcp_drop(sk, skb1);
263 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
264 				goto merge_right;
265 			}
266 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
267 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
268 			return;
269 		}
270 		p = &parent->rb_right;
271 	}
272 
273 insert:
274 	/* Insert segment into RB tree. */
275 	rb_link_node(&skb->rbnode, parent, p);
276 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
277 
278 merge_right:
279 	/* Remove other segments covered by skb. */
280 	while ((skb1 = skb_rb_next(skb)) != NULL) {
281 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
282 			break;
283 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
284 		mptcp_drop(sk, skb1);
285 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
286 	}
287 	/* If there is no skb after us, we are the last_skb ! */
288 	if (!skb1)
289 		msk->ooo_last_skb = skb;
290 
291 end:
292 	skb_condense(skb);
293 	skb_set_owner_r(skb, sk);
294 }
295 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)296 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
297 			     struct sk_buff *skb, unsigned int offset,
298 			     size_t copy_len)
299 {
300 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
301 	struct sock *sk = (struct sock *)msk;
302 	struct sk_buff *tail;
303 	bool has_rxtstamp;
304 
305 	__skb_unlink(skb, &ssk->sk_receive_queue);
306 
307 	skb_ext_reset(skb);
308 	skb_orphan(skb);
309 
310 	/* try to fetch required memory from subflow */
311 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
312 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
313 		goto drop;
314 	}
315 
316 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
317 
318 	/* the skb map_seq accounts for the skb offset:
319 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
320 	 * value
321 	 */
322 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
323 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
324 	MPTCP_SKB_CB(skb)->offset = offset;
325 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
326 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
327 
328 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
329 		/* in sequence */
330 		msk->bytes_received += copy_len;
331 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
332 		tail = skb_peek_tail(&sk->sk_receive_queue);
333 		if (tail && mptcp_try_coalesce(sk, tail, skb))
334 			return true;
335 
336 		skb_set_owner_r(skb, sk);
337 		__skb_queue_tail(&sk->sk_receive_queue, skb);
338 		return true;
339 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
340 		mptcp_data_queue_ofo(msk, skb);
341 		return false;
342 	}
343 
344 	/* old data, keep it simple and drop the whole pkt, sender
345 	 * will retransmit as needed, if needed.
346 	 */
347 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
348 drop:
349 	mptcp_drop(sk, skb);
350 	return false;
351 }
352 
mptcp_stop_rtx_timer(struct sock * sk)353 static void mptcp_stop_rtx_timer(struct sock *sk)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
358 	mptcp_sk(sk)->timer_ival = 0;
359 }
360 
mptcp_close_wake_up(struct sock * sk)361 static void mptcp_close_wake_up(struct sock *sk)
362 {
363 	if (sock_flag(sk, SOCK_DEAD))
364 		return;
365 
366 	sk->sk_state_change(sk);
367 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
368 	    sk->sk_state == TCP_CLOSE)
369 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
370 	else
371 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
372 }
373 
374 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)375 static bool mptcp_pending_data_fin_ack(struct sock *sk)
376 {
377 	struct mptcp_sock *msk = mptcp_sk(sk);
378 
379 	return ((1 << sk->sk_state) &
380 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
381 	       msk->write_seq == READ_ONCE(msk->snd_una);
382 }
383 
mptcp_check_data_fin_ack(struct sock * sk)384 static void mptcp_check_data_fin_ack(struct sock *sk)
385 {
386 	struct mptcp_sock *msk = mptcp_sk(sk);
387 
388 	/* Look for an acknowledged DATA_FIN */
389 	if (mptcp_pending_data_fin_ack(sk)) {
390 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
391 
392 		switch (sk->sk_state) {
393 		case TCP_FIN_WAIT1:
394 			mptcp_set_state(sk, TCP_FIN_WAIT2);
395 			break;
396 		case TCP_CLOSING:
397 		case TCP_LAST_ACK:
398 			mptcp_set_state(sk, TCP_CLOSE);
399 			break;
400 		}
401 
402 		mptcp_close_wake_up(sk);
403 	}
404 }
405 
406 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)407 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
408 {
409 	struct mptcp_sock *msk = mptcp_sk(sk);
410 
411 	if (READ_ONCE(msk->rcv_data_fin) &&
412 	    ((1 << inet_sk_state_load(sk)) &
413 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
414 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
415 
416 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
417 			if (seq)
418 				*seq = rcv_data_fin_seq;
419 
420 			return true;
421 		}
422 	}
423 
424 	return false;
425 }
426 
mptcp_set_datafin_timeout(struct sock * sk)427 static void mptcp_set_datafin_timeout(struct sock *sk)
428 {
429 	struct inet_connection_sock *icsk = inet_csk(sk);
430 	u32 retransmits;
431 
432 	retransmits = min_t(u32, icsk->icsk_retransmits,
433 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
434 
435 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
436 }
437 
__mptcp_set_timeout(struct sock * sk,long tout)438 static void __mptcp_set_timeout(struct sock *sk, long tout)
439 {
440 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
441 }
442 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)443 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
444 {
445 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
446 
447 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
448 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
449 }
450 
mptcp_set_timeout(struct sock * sk)451 static void mptcp_set_timeout(struct sock *sk)
452 {
453 	struct mptcp_subflow_context *subflow;
454 	long tout = 0;
455 
456 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
457 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
458 	__mptcp_set_timeout(sk, tout);
459 }
460 
tcp_can_send_ack(const struct sock * ssk)461 static inline bool tcp_can_send_ack(const struct sock *ssk)
462 {
463 	return !((1 << inet_sk_state_load(ssk)) &
464 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
465 }
466 
__mptcp_subflow_send_ack(struct sock * ssk)467 void __mptcp_subflow_send_ack(struct sock *ssk)
468 {
469 	if (tcp_can_send_ack(ssk))
470 		tcp_send_ack(ssk);
471 }
472 
mptcp_subflow_send_ack(struct sock * ssk)473 static void mptcp_subflow_send_ack(struct sock *ssk)
474 {
475 	bool slow;
476 
477 	slow = lock_sock_fast(ssk);
478 	__mptcp_subflow_send_ack(ssk);
479 	unlock_sock_fast(ssk, slow);
480 }
481 
mptcp_send_ack(struct mptcp_sock * msk)482 static void mptcp_send_ack(struct mptcp_sock *msk)
483 {
484 	struct mptcp_subflow_context *subflow;
485 
486 	mptcp_for_each_subflow(msk, subflow)
487 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
488 }
489 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)490 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
491 {
492 	bool slow;
493 
494 	slow = lock_sock_fast(ssk);
495 	if (tcp_can_send_ack(ssk))
496 		tcp_cleanup_rbuf(ssk, copied);
497 	unlock_sock_fast(ssk, slow);
498 }
499 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)500 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
501 {
502 	const struct inet_connection_sock *icsk = inet_csk(ssk);
503 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
504 	const struct tcp_sock *tp = tcp_sk(ssk);
505 
506 	return (ack_pending & ICSK_ACK_SCHED) &&
507 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
508 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
509 		 (rx_empty && ack_pending &
510 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
511 }
512 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)513 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
514 {
515 	int old_space = READ_ONCE(msk->old_wspace);
516 	struct mptcp_subflow_context *subflow;
517 	struct sock *sk = (struct sock *)msk;
518 	int space =  __mptcp_space(sk);
519 	bool cleanup, rx_empty;
520 
521 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
522 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
523 
524 	mptcp_for_each_subflow(msk, subflow) {
525 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
526 
527 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
528 			mptcp_subflow_cleanup_rbuf(ssk, copied);
529 	}
530 }
531 
mptcp_check_data_fin(struct sock * sk)532 static bool mptcp_check_data_fin(struct sock *sk)
533 {
534 	struct mptcp_sock *msk = mptcp_sk(sk);
535 	u64 rcv_data_fin_seq;
536 	bool ret = false;
537 
538 	/* Need to ack a DATA_FIN received from a peer while this side
539 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
540 	 * msk->rcv_data_fin was set when parsing the incoming options
541 	 * at the subflow level and the msk lock was not held, so this
542 	 * is the first opportunity to act on the DATA_FIN and change
543 	 * the msk state.
544 	 *
545 	 * If we are caught up to the sequence number of the incoming
546 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
547 	 * not caught up, do nothing and let the recv code send DATA_ACK
548 	 * when catching up.
549 	 */
550 
551 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
552 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
553 		WRITE_ONCE(msk->rcv_data_fin, 0);
554 
555 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
556 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
557 
558 		switch (sk->sk_state) {
559 		case TCP_ESTABLISHED:
560 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
561 			break;
562 		case TCP_FIN_WAIT1:
563 			mptcp_set_state(sk, TCP_CLOSING);
564 			break;
565 		case TCP_FIN_WAIT2:
566 			mptcp_set_state(sk, TCP_CLOSE);
567 			break;
568 		default:
569 			/* Other states not expected */
570 			WARN_ON_ONCE(1);
571 			break;
572 		}
573 
574 		ret = true;
575 		if (!__mptcp_check_fallback(msk))
576 			mptcp_send_ack(msk);
577 		mptcp_close_wake_up(sk);
578 	}
579 	return ret;
580 }
581 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)582 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
583 {
584 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
585 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
586 		mptcp_subflow_reset(ssk);
587 	}
588 }
589 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)590 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
591 					   struct sock *ssk)
592 {
593 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
594 	struct sock *sk = (struct sock *)msk;
595 	bool more_data_avail;
596 	struct tcp_sock *tp;
597 	bool ret = false;
598 
599 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
600 	tp = tcp_sk(ssk);
601 	do {
602 		u32 map_remaining, offset;
603 		u32 seq = tp->copied_seq;
604 		struct sk_buff *skb;
605 		bool fin;
606 
607 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
608 			break;
609 
610 		/* try to move as much data as available */
611 		map_remaining = subflow->map_data_len -
612 				mptcp_subflow_get_map_offset(subflow);
613 
614 		skb = skb_peek(&ssk->sk_receive_queue);
615 		if (unlikely(!skb))
616 			break;
617 
618 		if (__mptcp_check_fallback(msk)) {
619 			/* Under fallback skbs have no MPTCP extension and TCP could
620 			 * collapse them between the dummy map creation and the
621 			 * current dequeue. Be sure to adjust the map size.
622 			 */
623 			map_remaining = skb->len;
624 			subflow->map_data_len = skb->len;
625 		}
626 
627 		offset = seq - TCP_SKB_CB(skb)->seq;
628 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
629 		if (fin)
630 			seq++;
631 
632 		if (offset < skb->len) {
633 			size_t len = skb->len - offset;
634 
635 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
636 			seq += len;
637 
638 			if (unlikely(map_remaining < len)) {
639 				DEBUG_NET_WARN_ON_ONCE(1);
640 				mptcp_dss_corruption(msk, ssk);
641 			}
642 		} else {
643 			if (unlikely(!fin)) {
644 				DEBUG_NET_WARN_ON_ONCE(1);
645 				mptcp_dss_corruption(msk, ssk);
646 			}
647 
648 			sk_eat_skb(ssk, skb);
649 		}
650 
651 		WRITE_ONCE(tp->copied_seq, seq);
652 		more_data_avail = mptcp_subflow_data_available(ssk);
653 
654 	} while (more_data_avail);
655 
656 	if (ret)
657 		msk->last_data_recv = tcp_jiffies32;
658 	return ret;
659 }
660 
__mptcp_ofo_queue(struct mptcp_sock * msk)661 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
662 {
663 	struct sock *sk = (struct sock *)msk;
664 	struct sk_buff *skb, *tail;
665 	bool moved = false;
666 	struct rb_node *p;
667 	u64 end_seq;
668 
669 	p = rb_first(&msk->out_of_order_queue);
670 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
671 	while (p) {
672 		skb = rb_to_skb(p);
673 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
674 			break;
675 
676 		p = rb_next(p);
677 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
678 
679 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
680 				      msk->ack_seq))) {
681 			mptcp_drop(sk, skb);
682 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
683 			continue;
684 		}
685 
686 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
687 		tail = skb_peek_tail(&sk->sk_receive_queue);
688 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
689 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
690 
691 			/* skip overlapping data, if any */
692 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
693 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
694 				 delta);
695 			MPTCP_SKB_CB(skb)->offset += delta;
696 			MPTCP_SKB_CB(skb)->map_seq += delta;
697 			__skb_queue_tail(&sk->sk_receive_queue, skb);
698 		}
699 		msk->bytes_received += end_seq - msk->ack_seq;
700 		WRITE_ONCE(msk->ack_seq, end_seq);
701 		moved = true;
702 	}
703 	return moved;
704 }
705 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)706 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
707 {
708 	int err = sock_error(ssk);
709 	int ssk_state;
710 
711 	if (!err)
712 		return false;
713 
714 	/* only propagate errors on fallen-back sockets or
715 	 * on MPC connect
716 	 */
717 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
718 		return false;
719 
720 	/* We need to propagate only transition to CLOSE state.
721 	 * Orphaned socket will see such state change via
722 	 * subflow_sched_work_if_closed() and that path will properly
723 	 * destroy the msk as needed.
724 	 */
725 	ssk_state = inet_sk_state_load(ssk);
726 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
727 		mptcp_set_state(sk, ssk_state);
728 	WRITE_ONCE(sk->sk_err, -err);
729 
730 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
731 	smp_wmb();
732 	sk_error_report(sk);
733 	return true;
734 }
735 
__mptcp_error_report(struct sock * sk)736 void __mptcp_error_report(struct sock *sk)
737 {
738 	struct mptcp_subflow_context *subflow;
739 	struct mptcp_sock *msk = mptcp_sk(sk);
740 
741 	mptcp_for_each_subflow(msk, subflow)
742 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
743 			break;
744 }
745 
746 /* In most cases we will be able to lock the mptcp socket.  If its already
747  * owned, we need to defer to the work queue to avoid ABBA deadlock.
748  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)749 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
750 {
751 	struct sock *sk = (struct sock *)msk;
752 	bool moved;
753 
754 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
755 	__mptcp_ofo_queue(msk);
756 	if (unlikely(ssk->sk_err)) {
757 		if (!sock_owned_by_user(sk))
758 			__mptcp_error_report(sk);
759 		else
760 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
761 	}
762 
763 	/* If the moves have caught up with the DATA_FIN sequence number
764 	 * it's time to ack the DATA_FIN and change socket state, but
765 	 * this is not a good place to change state. Let the workqueue
766 	 * do it.
767 	 */
768 	if (mptcp_pending_data_fin(sk, NULL))
769 		mptcp_schedule_work(sk);
770 	return moved;
771 }
772 
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)773 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
774 {
775 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
776 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
777 }
778 
__mptcp_data_ready(struct sock * sk,struct sock * ssk)779 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
780 {
781 	struct mptcp_sock *msk = mptcp_sk(sk);
782 
783 	__mptcp_rcvbuf_update(sk, ssk);
784 
785 	/* Wake-up the reader only for in-sequence data */
786 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
787 		sk->sk_data_ready(sk);
788 }
789 
mptcp_data_ready(struct sock * sk,struct sock * ssk)790 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
791 {
792 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
793 
794 	/* The peer can send data while we are shutting down this
795 	 * subflow at msk destruction time, but we must avoid enqueuing
796 	 * more data to the msk receive queue
797 	 */
798 	if (unlikely(subflow->disposable))
799 		return;
800 
801 	mptcp_data_lock(sk);
802 	if (!sock_owned_by_user(sk))
803 		__mptcp_data_ready(sk, ssk);
804 	else
805 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
806 	mptcp_data_unlock(sk);
807 }
808 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)809 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
810 {
811 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
812 	msk->allow_infinite_fallback = false;
813 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
814 }
815 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)816 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
817 {
818 	struct sock *sk = (struct sock *)msk;
819 
820 	if (sk->sk_state != TCP_ESTABLISHED)
821 		return false;
822 
823 	spin_lock_bh(&msk->fallback_lock);
824 	if (!msk->allow_subflows) {
825 		spin_unlock_bh(&msk->fallback_lock);
826 		return false;
827 	}
828 	mptcp_subflow_joined(msk, ssk);
829 	spin_unlock_bh(&msk->fallback_lock);
830 
831 	/* attach to msk socket only after we are sure we will deal with it
832 	 * at close time
833 	 */
834 	if (sk->sk_socket && !ssk->sk_socket)
835 		mptcp_sock_graft(ssk, sk->sk_socket);
836 
837 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
838 	mptcp_sockopt_sync_locked(msk, ssk);
839 	mptcp_stop_tout_timer(sk);
840 	__mptcp_propagate_sndbuf(sk, ssk);
841 	return true;
842 }
843 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)844 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
845 {
846 	struct mptcp_subflow_context *tmp, *subflow;
847 	struct mptcp_sock *msk = mptcp_sk(sk);
848 
849 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
850 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
851 		bool slow = lock_sock_fast(ssk);
852 
853 		list_move_tail(&subflow->node, &msk->conn_list);
854 		if (!__mptcp_finish_join(msk, ssk))
855 			mptcp_subflow_reset(ssk);
856 		unlock_sock_fast(ssk, slow);
857 	}
858 }
859 
mptcp_rtx_timer_pending(struct sock * sk)860 static bool mptcp_rtx_timer_pending(struct sock *sk)
861 {
862 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
863 }
864 
mptcp_reset_rtx_timer(struct sock * sk)865 static void mptcp_reset_rtx_timer(struct sock *sk)
866 {
867 	struct inet_connection_sock *icsk = inet_csk(sk);
868 	unsigned long tout;
869 
870 	/* prevent rescheduling on close */
871 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
872 		return;
873 
874 	tout = mptcp_sk(sk)->timer_ival;
875 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
876 }
877 
mptcp_schedule_work(struct sock * sk)878 bool mptcp_schedule_work(struct sock *sk)
879 {
880 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
881 	    schedule_work(&mptcp_sk(sk)->work)) {
882 		/* each subflow already holds a reference to the sk, and the
883 		 * workqueue is invoked by a subflow, so sk can't go away here.
884 		 */
885 		sock_hold(sk);
886 		return true;
887 	}
888 	return false;
889 }
890 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)891 static bool mptcp_skb_can_collapse_to(u64 write_seq,
892 				      const struct sk_buff *skb,
893 				      const struct mptcp_ext *mpext)
894 {
895 	if (!tcp_skb_can_collapse_to(skb))
896 		return false;
897 
898 	/* can collapse only if MPTCP level sequence is in order and this
899 	 * mapping has not been xmitted yet
900 	 */
901 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
902 	       !mpext->frozen;
903 }
904 
905 /* we can append data to the given data frag if:
906  * - there is space available in the backing page_frag
907  * - the data frag tail matches the current page_frag free offset
908  * - the data frag end sequence number matches the current write seq
909  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)910 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
911 				       const struct page_frag *pfrag,
912 				       const struct mptcp_data_frag *df)
913 {
914 	return df && pfrag->page == df->page &&
915 		pfrag->size - pfrag->offset > 0 &&
916 		pfrag->offset == (df->offset + df->data_len) &&
917 		df->data_seq + df->data_len == msk->write_seq;
918 }
919 
dfrag_uncharge(struct sock * sk,int len)920 static void dfrag_uncharge(struct sock *sk, int len)
921 {
922 	sk_mem_uncharge(sk, len);
923 	sk_wmem_queued_add(sk, -len);
924 }
925 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)926 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
927 {
928 	int len = dfrag->data_len + dfrag->overhead;
929 
930 	list_del(&dfrag->list);
931 	dfrag_uncharge(sk, len);
932 	put_page(dfrag->page);
933 }
934 
935 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)936 static void __mptcp_clean_una(struct sock *sk)
937 {
938 	struct mptcp_sock *msk = mptcp_sk(sk);
939 	struct mptcp_data_frag *dtmp, *dfrag;
940 	u64 snd_una;
941 
942 	snd_una = msk->snd_una;
943 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
944 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
945 			break;
946 
947 		if (unlikely(dfrag == msk->first_pending)) {
948 			/* in recovery mode can see ack after the current snd head */
949 			if (WARN_ON_ONCE(!msk->recovery))
950 				break;
951 
952 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
953 		}
954 
955 		dfrag_clear(sk, dfrag);
956 	}
957 
958 	dfrag = mptcp_rtx_head(sk);
959 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
960 		u64 delta = snd_una - dfrag->data_seq;
961 
962 		/* prevent wrap around in recovery mode */
963 		if (unlikely(delta > dfrag->already_sent)) {
964 			if (WARN_ON_ONCE(!msk->recovery))
965 				goto out;
966 			if (WARN_ON_ONCE(delta > dfrag->data_len))
967 				goto out;
968 			dfrag->already_sent += delta - dfrag->already_sent;
969 		}
970 
971 		dfrag->data_seq += delta;
972 		dfrag->offset += delta;
973 		dfrag->data_len -= delta;
974 		dfrag->already_sent -= delta;
975 
976 		dfrag_uncharge(sk, delta);
977 	}
978 
979 	/* all retransmitted data acked, recovery completed */
980 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
981 		msk->recovery = false;
982 
983 out:
984 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
985 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
986 			mptcp_stop_rtx_timer(sk);
987 	} else {
988 		mptcp_reset_rtx_timer(sk);
989 	}
990 
991 	if (mptcp_pending_data_fin_ack(sk))
992 		mptcp_schedule_work(sk);
993 }
994 
__mptcp_clean_una_wakeup(struct sock * sk)995 static void __mptcp_clean_una_wakeup(struct sock *sk)
996 {
997 	lockdep_assert_held_once(&sk->sk_lock.slock);
998 
999 	__mptcp_clean_una(sk);
1000 	mptcp_write_space(sk);
1001 }
1002 
mptcp_clean_una_wakeup(struct sock * sk)1003 static void mptcp_clean_una_wakeup(struct sock *sk)
1004 {
1005 	mptcp_data_lock(sk);
1006 	__mptcp_clean_una_wakeup(sk);
1007 	mptcp_data_unlock(sk);
1008 }
1009 
mptcp_enter_memory_pressure(struct sock * sk)1010 static void mptcp_enter_memory_pressure(struct sock *sk)
1011 {
1012 	struct mptcp_subflow_context *subflow;
1013 	struct mptcp_sock *msk = mptcp_sk(sk);
1014 	bool first = true;
1015 
1016 	mptcp_for_each_subflow(msk, subflow) {
1017 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1018 
1019 		if (first)
1020 			tcp_enter_memory_pressure(ssk);
1021 		sk_stream_moderate_sndbuf(ssk);
1022 
1023 		first = false;
1024 	}
1025 	__mptcp_sync_sndbuf(sk);
1026 }
1027 
1028 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1029  * data
1030  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1031 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1032 {
1033 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1034 					pfrag, sk->sk_allocation)))
1035 		return true;
1036 
1037 	mptcp_enter_memory_pressure(sk);
1038 	return false;
1039 }
1040 
1041 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1042 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1043 		      int orig_offset)
1044 {
1045 	int offset = ALIGN(orig_offset, sizeof(long));
1046 	struct mptcp_data_frag *dfrag;
1047 
1048 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1049 	dfrag->data_len = 0;
1050 	dfrag->data_seq = msk->write_seq;
1051 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1052 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1053 	dfrag->already_sent = 0;
1054 	dfrag->page = pfrag->page;
1055 
1056 	return dfrag;
1057 }
1058 
1059 struct mptcp_sendmsg_info {
1060 	int mss_now;
1061 	int size_goal;
1062 	u16 limit;
1063 	u16 sent;
1064 	unsigned int flags;
1065 	bool data_lock_held;
1066 };
1067 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1068 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1069 				    u64 data_seq, int avail_size)
1070 {
1071 	u64 window_end = mptcp_wnd_end(msk);
1072 	u64 mptcp_snd_wnd;
1073 
1074 	if (__mptcp_check_fallback(msk))
1075 		return avail_size;
1076 
1077 	mptcp_snd_wnd = window_end - data_seq;
1078 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1079 
1080 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1081 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1082 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1083 	}
1084 
1085 	return avail_size;
1086 }
1087 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1088 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1089 {
1090 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1091 
1092 	if (!mpext)
1093 		return false;
1094 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1095 	return true;
1096 }
1097 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1098 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1099 {
1100 	struct sk_buff *skb;
1101 
1102 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1103 	if (likely(skb)) {
1104 		if (likely(__mptcp_add_ext(skb, gfp))) {
1105 			skb_reserve(skb, MAX_TCP_HEADER);
1106 			skb->ip_summed = CHECKSUM_PARTIAL;
1107 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1108 			return skb;
1109 		}
1110 		__kfree_skb(skb);
1111 	} else {
1112 		mptcp_enter_memory_pressure(sk);
1113 	}
1114 	return NULL;
1115 }
1116 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1117 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1118 {
1119 	struct sk_buff *skb;
1120 
1121 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1122 	if (!skb)
1123 		return NULL;
1124 
1125 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1126 		tcp_skb_entail(ssk, skb);
1127 		return skb;
1128 	}
1129 	tcp_skb_tsorted_anchor_cleanup(skb);
1130 	kfree_skb(skb);
1131 	return NULL;
1132 }
1133 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1134 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1135 {
1136 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1137 
1138 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1139 }
1140 
1141 /* note: this always recompute the csum on the whole skb, even
1142  * if we just appended a single frag. More status info needed
1143  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1144 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1145 {
1146 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1147 	__wsum csum = ~csum_unfold(mpext->csum);
1148 	int offset = skb->len - added;
1149 
1150 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1151 }
1152 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1153 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1154 				      struct sock *ssk,
1155 				      struct mptcp_ext *mpext)
1156 {
1157 	if (!mpext)
1158 		return;
1159 
1160 	mpext->infinite_map = 1;
1161 	mpext->data_len = 0;
1162 
1163 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1164 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1165 		mptcp_subflow_reset(ssk);
1166 		return;
1167 	}
1168 
1169 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1170 }
1171 
1172 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1173 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1174 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1175 			      struct mptcp_data_frag *dfrag,
1176 			      struct mptcp_sendmsg_info *info)
1177 {
1178 	u64 data_seq = dfrag->data_seq + info->sent;
1179 	int offset = dfrag->offset + info->sent;
1180 	struct mptcp_sock *msk = mptcp_sk(sk);
1181 	bool zero_window_probe = false;
1182 	struct mptcp_ext *mpext = NULL;
1183 	bool can_coalesce = false;
1184 	bool reuse_skb = true;
1185 	struct sk_buff *skb;
1186 	size_t copy;
1187 	int i;
1188 
1189 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1190 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1191 
1192 	if (WARN_ON_ONCE(info->sent > info->limit ||
1193 			 info->limit > dfrag->data_len))
1194 		return 0;
1195 
1196 	if (unlikely(!__tcp_can_send(ssk)))
1197 		return -EAGAIN;
1198 
1199 	/* compute send limit */
1200 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1201 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1202 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1203 	copy = info->size_goal;
1204 
1205 	skb = tcp_write_queue_tail(ssk);
1206 	if (skb && copy > skb->len) {
1207 		/* Limit the write to the size available in the
1208 		 * current skb, if any, so that we create at most a new skb.
1209 		 * Explicitly tells TCP internals to avoid collapsing on later
1210 		 * queue management operation, to avoid breaking the ext <->
1211 		 * SSN association set here
1212 		 */
1213 		mpext = mptcp_get_ext(skb);
1214 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1215 			TCP_SKB_CB(skb)->eor = 1;
1216 			tcp_mark_push(tcp_sk(ssk), skb);
1217 			goto alloc_skb;
1218 		}
1219 
1220 		i = skb_shinfo(skb)->nr_frags;
1221 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1222 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1223 			tcp_mark_push(tcp_sk(ssk), skb);
1224 			goto alloc_skb;
1225 		}
1226 
1227 		copy -= skb->len;
1228 	} else {
1229 alloc_skb:
1230 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1231 		if (!skb)
1232 			return -ENOMEM;
1233 
1234 		i = skb_shinfo(skb)->nr_frags;
1235 		reuse_skb = false;
1236 		mpext = mptcp_get_ext(skb);
1237 	}
1238 
1239 	/* Zero window and all data acked? Probe. */
1240 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1241 	if (copy == 0) {
1242 		u64 snd_una = READ_ONCE(msk->snd_una);
1243 
1244 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1245 			tcp_remove_empty_skb(ssk);
1246 			return 0;
1247 		}
1248 
1249 		zero_window_probe = true;
1250 		data_seq = snd_una - 1;
1251 		copy = 1;
1252 	}
1253 
1254 	copy = min_t(size_t, copy, info->limit - info->sent);
1255 	if (!sk_wmem_schedule(ssk, copy)) {
1256 		tcp_remove_empty_skb(ssk);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	if (can_coalesce) {
1261 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 	} else {
1263 		get_page(dfrag->page);
1264 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1265 	}
1266 
1267 	skb->len += copy;
1268 	skb->data_len += copy;
1269 	skb->truesize += copy;
1270 	sk_wmem_queued_add(ssk, copy);
1271 	sk_mem_charge(ssk, copy);
1272 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1273 	TCP_SKB_CB(skb)->end_seq += copy;
1274 	tcp_skb_pcount_set(skb, 0);
1275 
1276 	/* on skb reuse we just need to update the DSS len */
1277 	if (reuse_skb) {
1278 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1279 		mpext->data_len += copy;
1280 		goto out;
1281 	}
1282 
1283 	memset(mpext, 0, sizeof(*mpext));
1284 	mpext->data_seq = data_seq;
1285 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1286 	mpext->data_len = copy;
1287 	mpext->use_map = 1;
1288 	mpext->dsn64 = 1;
1289 
1290 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1291 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1292 		 mpext->dsn64);
1293 
1294 	if (zero_window_probe) {
1295 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1296 		mpext->frozen = 1;
1297 		if (READ_ONCE(msk->csum_enabled))
1298 			mptcp_update_data_checksum(skb, copy);
1299 		tcp_push_pending_frames(ssk);
1300 		return 0;
1301 	}
1302 out:
1303 	if (READ_ONCE(msk->csum_enabled))
1304 		mptcp_update_data_checksum(skb, copy);
1305 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1306 		mptcp_update_infinite_map(msk, ssk, mpext);
1307 	trace_mptcp_sendmsg_frag(mpext);
1308 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1309 	return copy;
1310 }
1311 
1312 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1313 					 sizeof(struct tcphdr) - \
1314 					 MAX_TCP_OPTION_SPACE - \
1315 					 sizeof(struct ipv6hdr) - \
1316 					 sizeof(struct frag_hdr))
1317 
1318 struct subflow_send_info {
1319 	struct sock *ssk;
1320 	u64 linger_time;
1321 };
1322 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1323 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1324 {
1325 	if (!subflow->stale)
1326 		return;
1327 
1328 	subflow->stale = 0;
1329 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1330 }
1331 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1332 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1333 {
1334 	if (unlikely(subflow->stale)) {
1335 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1336 
1337 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1338 			return false;
1339 
1340 		mptcp_subflow_set_active(subflow);
1341 	}
1342 	return __mptcp_subflow_active(subflow);
1343 }
1344 
1345 #define SSK_MODE_ACTIVE	0
1346 #define SSK_MODE_BACKUP	1
1347 #define SSK_MODE_MAX	2
1348 
1349 /* implement the mptcp packet scheduler;
1350  * returns the subflow that will transmit the next DSS
1351  * additionally updates the rtx timeout
1352  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1353 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1354 {
1355 	struct subflow_send_info send_info[SSK_MODE_MAX];
1356 	struct mptcp_subflow_context *subflow;
1357 	struct sock *sk = (struct sock *)msk;
1358 	u32 pace, burst, wmem;
1359 	int i, nr_active = 0;
1360 	struct sock *ssk;
1361 	u64 linger_time;
1362 	long tout = 0;
1363 
1364 	/* pick the subflow with the lower wmem/wspace ratio */
1365 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1366 		send_info[i].ssk = NULL;
1367 		send_info[i].linger_time = -1;
1368 	}
1369 
1370 	mptcp_for_each_subflow(msk, subflow) {
1371 		bool backup = subflow->backup || subflow->request_bkup;
1372 
1373 		trace_mptcp_subflow_get_send(subflow);
1374 		ssk =  mptcp_subflow_tcp_sock(subflow);
1375 		if (!mptcp_subflow_active(subflow))
1376 			continue;
1377 
1378 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1379 		nr_active += !backup;
1380 		pace = subflow->avg_pacing_rate;
1381 		if (unlikely(!pace)) {
1382 			/* init pacing rate from socket */
1383 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1384 			pace = subflow->avg_pacing_rate;
1385 			if (!pace)
1386 				continue;
1387 		}
1388 
1389 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1390 		if (linger_time < send_info[backup].linger_time) {
1391 			send_info[backup].ssk = ssk;
1392 			send_info[backup].linger_time = linger_time;
1393 		}
1394 	}
1395 	__mptcp_set_timeout(sk, tout);
1396 
1397 	/* pick the best backup if no other subflow is active */
1398 	if (!nr_active)
1399 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1400 
1401 	/* According to the blest algorithm, to avoid HoL blocking for the
1402 	 * faster flow, we need to:
1403 	 * - estimate the faster flow linger time
1404 	 * - use the above to estimate the amount of byte transferred
1405 	 *   by the faster flow
1406 	 * - check that the amount of queued data is greater than the above,
1407 	 *   otherwise do not use the picked, slower, subflow
1408 	 * We select the subflow with the shorter estimated time to flush
1409 	 * the queued mem, which basically ensure the above. We just need
1410 	 * to check that subflow has a non empty cwin.
1411 	 */
1412 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1413 	if (!ssk || !sk_stream_memory_free(ssk))
1414 		return NULL;
1415 
1416 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1417 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1418 	if (!burst)
1419 		return ssk;
1420 
1421 	subflow = mptcp_subflow_ctx(ssk);
1422 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1423 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1424 					   burst + wmem);
1425 	msk->snd_burst = burst;
1426 	return ssk;
1427 }
1428 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1429 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1430 {
1431 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1432 	release_sock(ssk);
1433 }
1434 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1435 static void mptcp_update_post_push(struct mptcp_sock *msk,
1436 				   struct mptcp_data_frag *dfrag,
1437 				   u32 sent)
1438 {
1439 	u64 snd_nxt_new = dfrag->data_seq;
1440 
1441 	dfrag->already_sent += sent;
1442 
1443 	msk->snd_burst -= sent;
1444 
1445 	snd_nxt_new += dfrag->already_sent;
1446 
1447 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1448 	 * is recovering after a failover. In that event, this re-sends
1449 	 * old segments.
1450 	 *
1451 	 * Thus compute snd_nxt_new candidate based on
1452 	 * the dfrag->data_seq that was sent and the data
1453 	 * that has been handed to the subflow for transmission
1454 	 * and skip update in case it was old dfrag.
1455 	 */
1456 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1457 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1458 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1459 	}
1460 }
1461 
mptcp_check_and_set_pending(struct sock * sk)1462 void mptcp_check_and_set_pending(struct sock *sk)
1463 {
1464 	if (mptcp_send_head(sk)) {
1465 		mptcp_data_lock(sk);
1466 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1467 		mptcp_data_unlock(sk);
1468 	}
1469 }
1470 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1471 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1472 				  struct mptcp_sendmsg_info *info)
1473 {
1474 	struct mptcp_sock *msk = mptcp_sk(sk);
1475 	struct mptcp_data_frag *dfrag;
1476 	int len, copied = 0, err = 0;
1477 
1478 	while ((dfrag = mptcp_send_head(sk))) {
1479 		info->sent = dfrag->already_sent;
1480 		info->limit = dfrag->data_len;
1481 		len = dfrag->data_len - dfrag->already_sent;
1482 		while (len > 0) {
1483 			int ret = 0;
1484 
1485 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1486 			if (ret <= 0) {
1487 				err = copied ? : ret;
1488 				goto out;
1489 			}
1490 
1491 			info->sent += ret;
1492 			copied += ret;
1493 			len -= ret;
1494 
1495 			mptcp_update_post_push(msk, dfrag, ret);
1496 		}
1497 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1498 
1499 		if (msk->snd_burst <= 0 ||
1500 		    !sk_stream_memory_free(ssk) ||
1501 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1502 			err = copied;
1503 			goto out;
1504 		}
1505 		mptcp_set_timeout(sk);
1506 	}
1507 	err = copied;
1508 
1509 out:
1510 	if (err > 0)
1511 		msk->last_data_sent = tcp_jiffies32;
1512 	return err;
1513 }
1514 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1515 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1516 {
1517 	struct sock *prev_ssk = NULL, *ssk = NULL;
1518 	struct mptcp_sock *msk = mptcp_sk(sk);
1519 	struct mptcp_sendmsg_info info = {
1520 				.flags = flags,
1521 	};
1522 	bool do_check_data_fin = false;
1523 	int push_count = 1;
1524 
1525 	while (mptcp_send_head(sk) && (push_count > 0)) {
1526 		struct mptcp_subflow_context *subflow;
1527 		int ret = 0;
1528 
1529 		if (mptcp_sched_get_send(msk))
1530 			break;
1531 
1532 		push_count = 0;
1533 
1534 		mptcp_for_each_subflow(msk, subflow) {
1535 			if (READ_ONCE(subflow->scheduled)) {
1536 				mptcp_subflow_set_scheduled(subflow, false);
1537 
1538 				prev_ssk = ssk;
1539 				ssk = mptcp_subflow_tcp_sock(subflow);
1540 				if (ssk != prev_ssk) {
1541 					/* First check. If the ssk has changed since
1542 					 * the last round, release prev_ssk
1543 					 */
1544 					if (prev_ssk)
1545 						mptcp_push_release(prev_ssk, &info);
1546 
1547 					/* Need to lock the new subflow only if different
1548 					 * from the previous one, otherwise we are still
1549 					 * helding the relevant lock
1550 					 */
1551 					lock_sock(ssk);
1552 				}
1553 
1554 				push_count++;
1555 
1556 				ret = __subflow_push_pending(sk, ssk, &info);
1557 				if (ret <= 0) {
1558 					if (ret != -EAGAIN ||
1559 					    (1 << ssk->sk_state) &
1560 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1561 						push_count--;
1562 					continue;
1563 				}
1564 				do_check_data_fin = true;
1565 			}
1566 		}
1567 	}
1568 
1569 	/* at this point we held the socket lock for the last subflow we used */
1570 	if (ssk)
1571 		mptcp_push_release(ssk, &info);
1572 
1573 	/* ensure the rtx timer is running */
1574 	if (!mptcp_rtx_timer_pending(sk))
1575 		mptcp_reset_rtx_timer(sk);
1576 	if (do_check_data_fin)
1577 		mptcp_check_send_data_fin(sk);
1578 }
1579 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1580 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1581 {
1582 	struct mptcp_sock *msk = mptcp_sk(sk);
1583 	struct mptcp_sendmsg_info info = {
1584 		.data_lock_held = true,
1585 	};
1586 	bool keep_pushing = true;
1587 	struct sock *xmit_ssk;
1588 	int copied = 0;
1589 
1590 	info.flags = 0;
1591 	while (mptcp_send_head(sk) && keep_pushing) {
1592 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1593 		int ret = 0;
1594 
1595 		/* check for a different subflow usage only after
1596 		 * spooling the first chunk of data
1597 		 */
1598 		if (first) {
1599 			mptcp_subflow_set_scheduled(subflow, false);
1600 			ret = __subflow_push_pending(sk, ssk, &info);
1601 			first = false;
1602 			if (ret <= 0)
1603 				break;
1604 			copied += ret;
1605 			continue;
1606 		}
1607 
1608 		if (mptcp_sched_get_send(msk))
1609 			goto out;
1610 
1611 		if (READ_ONCE(subflow->scheduled)) {
1612 			mptcp_subflow_set_scheduled(subflow, false);
1613 			ret = __subflow_push_pending(sk, ssk, &info);
1614 			if (ret <= 0)
1615 				keep_pushing = false;
1616 			copied += ret;
1617 		}
1618 
1619 		mptcp_for_each_subflow(msk, subflow) {
1620 			if (READ_ONCE(subflow->scheduled)) {
1621 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1622 				if (xmit_ssk != ssk) {
1623 					mptcp_subflow_delegate(subflow,
1624 							       MPTCP_DELEGATE_SEND);
1625 					keep_pushing = false;
1626 				}
1627 			}
1628 		}
1629 	}
1630 
1631 out:
1632 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1633 	 * not going to flush it via release_sock()
1634 	 */
1635 	if (copied) {
1636 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1637 			 info.size_goal);
1638 		if (!mptcp_rtx_timer_pending(sk))
1639 			mptcp_reset_rtx_timer(sk);
1640 
1641 		if (msk->snd_data_fin_enable &&
1642 		    msk->snd_nxt + 1 == msk->write_seq)
1643 			mptcp_schedule_work(sk);
1644 	}
1645 }
1646 
1647 static int mptcp_disconnect(struct sock *sk, int flags);
1648 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1649 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1650 				  size_t len, int *copied_syn)
1651 {
1652 	unsigned int saved_flags = msg->msg_flags;
1653 	struct mptcp_sock *msk = mptcp_sk(sk);
1654 	struct sock *ssk;
1655 	int ret;
1656 
1657 	/* on flags based fastopen the mptcp is supposed to create the
1658 	 * first subflow right now. Otherwise we are in the defer_connect
1659 	 * path, and the first subflow must be already present.
1660 	 * Since the defer_connect flag is cleared after the first succsful
1661 	 * fastopen attempt, no need to check for additional subflow status.
1662 	 */
1663 	if (msg->msg_flags & MSG_FASTOPEN) {
1664 		ssk = __mptcp_nmpc_sk(msk);
1665 		if (IS_ERR(ssk))
1666 			return PTR_ERR(ssk);
1667 	}
1668 	if (!msk->first)
1669 		return -EINVAL;
1670 
1671 	ssk = msk->first;
1672 
1673 	lock_sock(ssk);
1674 	msg->msg_flags |= MSG_DONTWAIT;
1675 	msk->fastopening = 1;
1676 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1677 	msk->fastopening = 0;
1678 	msg->msg_flags = saved_flags;
1679 	release_sock(ssk);
1680 
1681 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1682 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1683 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1684 					    msg->msg_namelen, msg->msg_flags, 1);
1685 
1686 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1687 		 * case of any error, except timeout or signal
1688 		 */
1689 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1690 			*copied_syn = 0;
1691 	} else if (ret && ret != -EINPROGRESS) {
1692 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1693 		 * __inet_stream_connect() can fail, due to looking check,
1694 		 * see mptcp_disconnect().
1695 		 * Attempt it again outside the problematic scope.
1696 		 */
1697 		if (!mptcp_disconnect(sk, 0)) {
1698 			sk->sk_disconnects++;
1699 			sk->sk_socket->state = SS_UNCONNECTED;
1700 		}
1701 	}
1702 	inet_clear_bit(DEFER_CONNECT, sk);
1703 
1704 	return ret;
1705 }
1706 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1707 static int do_copy_data_nocache(struct sock *sk, int copy,
1708 				struct iov_iter *from, char *to)
1709 {
1710 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1711 		if (!copy_from_iter_full_nocache(to, copy, from))
1712 			return -EFAULT;
1713 	} else if (!copy_from_iter_full(to, copy, from)) {
1714 		return -EFAULT;
1715 	}
1716 	return 0;
1717 }
1718 
1719 /* open-code sk_stream_memory_free() plus sent limit computation to
1720  * avoid indirect calls in fast-path.
1721  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1722  * annotations.
1723  */
mptcp_send_limit(const struct sock * sk)1724 static u32 mptcp_send_limit(const struct sock *sk)
1725 {
1726 	const struct mptcp_sock *msk = mptcp_sk(sk);
1727 	u32 limit, not_sent;
1728 
1729 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1730 		return 0;
1731 
1732 	limit = mptcp_notsent_lowat(sk);
1733 	if (limit == UINT_MAX)
1734 		return UINT_MAX;
1735 
1736 	not_sent = msk->write_seq - msk->snd_nxt;
1737 	if (not_sent >= limit)
1738 		return 0;
1739 
1740 	return limit - not_sent;
1741 }
1742 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1743 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1744 {
1745 	struct mptcp_sock *msk = mptcp_sk(sk);
1746 	struct page_frag *pfrag;
1747 	size_t copied = 0;
1748 	int ret = 0;
1749 	long timeo;
1750 
1751 	/* silently ignore everything else */
1752 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1753 
1754 	lock_sock(sk);
1755 
1756 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1757 		     msg->msg_flags & MSG_FASTOPEN)) {
1758 		int copied_syn = 0;
1759 
1760 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1761 		copied += copied_syn;
1762 		if (ret == -EINPROGRESS && copied_syn > 0)
1763 			goto out;
1764 		else if (ret)
1765 			goto do_error;
1766 	}
1767 
1768 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1769 
1770 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1771 		ret = sk_stream_wait_connect(sk, &timeo);
1772 		if (ret)
1773 			goto do_error;
1774 	}
1775 
1776 	ret = -EPIPE;
1777 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1778 		goto do_error;
1779 
1780 	pfrag = sk_page_frag(sk);
1781 
1782 	while (msg_data_left(msg)) {
1783 		int total_ts, frag_truesize = 0;
1784 		struct mptcp_data_frag *dfrag;
1785 		bool dfrag_collapsed;
1786 		size_t psize, offset;
1787 		u32 copy_limit;
1788 
1789 		/* ensure fitting the notsent_lowat() constraint */
1790 		copy_limit = mptcp_send_limit(sk);
1791 		if (!copy_limit)
1792 			goto wait_for_memory;
1793 
1794 		/* reuse tail pfrag, if possible, or carve a new one from the
1795 		 * page allocator
1796 		 */
1797 		dfrag = mptcp_pending_tail(sk);
1798 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1799 		if (!dfrag_collapsed) {
1800 			if (!mptcp_page_frag_refill(sk, pfrag))
1801 				goto wait_for_memory;
1802 
1803 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1804 			frag_truesize = dfrag->overhead;
1805 		}
1806 
1807 		/* we do not bound vs wspace, to allow a single packet.
1808 		 * memory accounting will prevent execessive memory usage
1809 		 * anyway
1810 		 */
1811 		offset = dfrag->offset + dfrag->data_len;
1812 		psize = pfrag->size - offset;
1813 		psize = min_t(size_t, psize, msg_data_left(msg));
1814 		psize = min_t(size_t, psize, copy_limit);
1815 		total_ts = psize + frag_truesize;
1816 
1817 		if (!sk_wmem_schedule(sk, total_ts))
1818 			goto wait_for_memory;
1819 
1820 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1821 					   page_address(dfrag->page) + offset);
1822 		if (ret)
1823 			goto do_error;
1824 
1825 		/* data successfully copied into the write queue */
1826 		sk_forward_alloc_add(sk, -total_ts);
1827 		copied += psize;
1828 		dfrag->data_len += psize;
1829 		frag_truesize += psize;
1830 		pfrag->offset += frag_truesize;
1831 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1832 
1833 		/* charge data on mptcp pending queue to the msk socket
1834 		 * Note: we charge such data both to sk and ssk
1835 		 */
1836 		sk_wmem_queued_add(sk, frag_truesize);
1837 		if (!dfrag_collapsed) {
1838 			get_page(dfrag->page);
1839 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1840 			if (!msk->first_pending)
1841 				WRITE_ONCE(msk->first_pending, dfrag);
1842 		}
1843 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1844 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1845 			 !dfrag_collapsed);
1846 
1847 		continue;
1848 
1849 wait_for_memory:
1850 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1851 		__mptcp_push_pending(sk, msg->msg_flags);
1852 		ret = sk_stream_wait_memory(sk, &timeo);
1853 		if (ret)
1854 			goto do_error;
1855 	}
1856 
1857 	if (copied)
1858 		__mptcp_push_pending(sk, msg->msg_flags);
1859 
1860 out:
1861 	release_sock(sk);
1862 	return copied;
1863 
1864 do_error:
1865 	if (copied)
1866 		goto out;
1867 
1868 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1869 	goto out;
1870 }
1871 
1872 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1873 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1874 static int __mptcp_recvmsg_mskq(struct sock *sk,
1875 				struct msghdr *msg,
1876 				size_t len, int flags,
1877 				struct scm_timestamping_internal *tss,
1878 				int *cmsg_flags)
1879 {
1880 	struct mptcp_sock *msk = mptcp_sk(sk);
1881 	struct sk_buff *skb, *tmp;
1882 	int copied = 0;
1883 
1884 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1885 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1886 		u32 data_len = skb->len - offset;
1887 		u32 count = min_t(size_t, len - copied, data_len);
1888 		int err;
1889 
1890 		if (!(flags & MSG_TRUNC)) {
1891 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1892 			if (unlikely(err < 0)) {
1893 				if (!copied)
1894 					return err;
1895 				break;
1896 			}
1897 		}
1898 
1899 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1900 			tcp_update_recv_tstamps(skb, tss);
1901 			*cmsg_flags |= MPTCP_CMSG_TS;
1902 		}
1903 
1904 		copied += count;
1905 
1906 		if (count < data_len) {
1907 			if (!(flags & MSG_PEEK)) {
1908 				MPTCP_SKB_CB(skb)->offset += count;
1909 				MPTCP_SKB_CB(skb)->map_seq += count;
1910 				msk->bytes_consumed += count;
1911 			}
1912 			break;
1913 		}
1914 
1915 		if (!(flags & MSG_PEEK)) {
1916 			/* avoid the indirect call, we know the destructor is sock_wfree */
1917 			skb->destructor = NULL;
1918 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1919 			sk_mem_uncharge(sk, skb->truesize);
1920 			__skb_unlink(skb, &sk->sk_receive_queue);
1921 			__kfree_skb(skb);
1922 			msk->bytes_consumed += count;
1923 		}
1924 
1925 		if (copied >= len)
1926 			break;
1927 	}
1928 
1929 	mptcp_rcv_space_adjust(msk, copied);
1930 	return copied;
1931 }
1932 
1933 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1934  *
1935  * Only difference: Use highest rtt estimate of the subflows in use.
1936  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1937 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1938 {
1939 	struct mptcp_subflow_context *subflow;
1940 	struct sock *sk = (struct sock *)msk;
1941 	u8 scaling_ratio = U8_MAX;
1942 	u32 time, advmss = 1;
1943 	u64 rtt_us, mstamp;
1944 
1945 	msk_owned_by_me(msk);
1946 
1947 	if (copied <= 0)
1948 		return;
1949 
1950 	if (!msk->rcvspace_init)
1951 		mptcp_rcv_space_init(msk, msk->first);
1952 
1953 	msk->rcvq_space.copied += copied;
1954 
1955 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1956 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1957 
1958 	rtt_us = msk->rcvq_space.rtt_us;
1959 	if (rtt_us && time < (rtt_us >> 3))
1960 		return;
1961 
1962 	rtt_us = 0;
1963 	mptcp_for_each_subflow(msk, subflow) {
1964 		const struct tcp_sock *tp;
1965 		u64 sf_rtt_us;
1966 		u32 sf_advmss;
1967 
1968 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1969 
1970 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1971 		sf_advmss = READ_ONCE(tp->advmss);
1972 
1973 		rtt_us = max(sf_rtt_us, rtt_us);
1974 		advmss = max(sf_advmss, advmss);
1975 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1976 	}
1977 
1978 	msk->rcvq_space.rtt_us = rtt_us;
1979 	msk->scaling_ratio = scaling_ratio;
1980 	if (time < (rtt_us >> 3) || rtt_us == 0)
1981 		return;
1982 
1983 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1984 		goto new_measure;
1985 
1986 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1987 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1988 		u64 rcvwin, grow;
1989 		int rcvbuf;
1990 
1991 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1992 
1993 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1994 
1995 		do_div(grow, msk->rcvq_space.space);
1996 		rcvwin += (grow << 1);
1997 
1998 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1999 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2000 
2001 		if (rcvbuf > sk->sk_rcvbuf) {
2002 			u32 window_clamp;
2003 
2004 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
2005 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2006 
2007 			/* Make subflows follow along.  If we do not do this, we
2008 			 * get drops at subflow level if skbs can't be moved to
2009 			 * the mptcp rx queue fast enough (announced rcv_win can
2010 			 * exceed ssk->sk_rcvbuf).
2011 			 */
2012 			mptcp_for_each_subflow(msk, subflow) {
2013 				struct sock *ssk;
2014 				bool slow;
2015 
2016 				ssk = mptcp_subflow_tcp_sock(subflow);
2017 				slow = lock_sock_fast(ssk);
2018 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2019 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2020 				if (tcp_can_send_ack(ssk))
2021 					tcp_cleanup_rbuf(ssk, 1);
2022 				unlock_sock_fast(ssk, slow);
2023 			}
2024 		}
2025 	}
2026 
2027 	msk->rcvq_space.space = msk->rcvq_space.copied;
2028 new_measure:
2029 	msk->rcvq_space.copied = 0;
2030 	msk->rcvq_space.time = mstamp;
2031 }
2032 
2033 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2034 __mptcp_first_ready_from(struct mptcp_sock *msk,
2035 			 struct mptcp_subflow_context *subflow)
2036 {
2037 	struct mptcp_subflow_context *start_subflow = subflow;
2038 
2039 	while (!READ_ONCE(subflow->data_avail)) {
2040 		subflow = mptcp_next_subflow(msk, subflow);
2041 		if (subflow == start_subflow)
2042 			return NULL;
2043 	}
2044 	return subflow;
2045 }
2046 
__mptcp_move_skbs(struct sock * sk)2047 static bool __mptcp_move_skbs(struct sock *sk)
2048 {
2049 	struct mptcp_subflow_context *subflow;
2050 	struct mptcp_sock *msk = mptcp_sk(sk);
2051 	bool ret = false;
2052 
2053 	if (list_empty(&msk->conn_list))
2054 		return false;
2055 
2056 	/* verify we can move any data from the subflow, eventually updating */
2057 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2058 		mptcp_for_each_subflow(msk, subflow)
2059 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2060 
2061 	subflow = list_first_entry(&msk->conn_list,
2062 				   struct mptcp_subflow_context, node);
2063 	for (;;) {
2064 		struct sock *ssk;
2065 		bool slowpath;
2066 
2067 		/*
2068 		 * As an optimization avoid traversing the subflows list
2069 		 * and ev. acquiring the subflow socket lock before baling out
2070 		 */
2071 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2072 			break;
2073 
2074 		subflow = __mptcp_first_ready_from(msk, subflow);
2075 		if (!subflow)
2076 			break;
2077 
2078 		ssk = mptcp_subflow_tcp_sock(subflow);
2079 		slowpath = lock_sock_fast(ssk);
2080 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2081 		if (unlikely(ssk->sk_err))
2082 			__mptcp_error_report(sk);
2083 		unlock_sock_fast(ssk, slowpath);
2084 
2085 		subflow = mptcp_next_subflow(msk, subflow);
2086 	}
2087 
2088 	__mptcp_ofo_queue(msk);
2089 	if (ret)
2090 		mptcp_check_data_fin((struct sock *)msk);
2091 	return ret;
2092 }
2093 
mptcp_inq_hint(const struct sock * sk)2094 static unsigned int mptcp_inq_hint(const struct sock *sk)
2095 {
2096 	const struct mptcp_sock *msk = mptcp_sk(sk);
2097 	const struct sk_buff *skb;
2098 
2099 	skb = skb_peek(&sk->sk_receive_queue);
2100 	if (skb) {
2101 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2102 
2103 		if (hint_val >= INT_MAX)
2104 			return INT_MAX;
2105 
2106 		return (unsigned int)hint_val;
2107 	}
2108 
2109 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2110 		return 1;
2111 
2112 	return 0;
2113 }
2114 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2115 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2116 			 int flags, int *addr_len)
2117 {
2118 	struct mptcp_sock *msk = mptcp_sk(sk);
2119 	struct scm_timestamping_internal tss;
2120 	int copied = 0, cmsg_flags = 0;
2121 	int target;
2122 	long timeo;
2123 
2124 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2125 	if (unlikely(flags & MSG_ERRQUEUE))
2126 		return inet_recv_error(sk, msg, len, addr_len);
2127 
2128 	lock_sock(sk);
2129 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2130 		copied = -ENOTCONN;
2131 		goto out_err;
2132 	}
2133 
2134 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2135 
2136 	len = min_t(size_t, len, INT_MAX);
2137 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2138 
2139 	if (unlikely(msk->recvmsg_inq))
2140 		cmsg_flags = MPTCP_CMSG_INQ;
2141 
2142 	while (copied < len) {
2143 		int err, bytes_read;
2144 
2145 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2146 		if (unlikely(bytes_read < 0)) {
2147 			if (!copied)
2148 				copied = bytes_read;
2149 			goto out_err;
2150 		}
2151 
2152 		copied += bytes_read;
2153 
2154 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2155 			continue;
2156 
2157 		/* only the MPTCP socket status is relevant here. The exit
2158 		 * conditions mirror closely tcp_recvmsg()
2159 		 */
2160 		if (copied >= target)
2161 			break;
2162 
2163 		if (copied) {
2164 			if (sk->sk_err ||
2165 			    sk->sk_state == TCP_CLOSE ||
2166 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2167 			    !timeo ||
2168 			    signal_pending(current))
2169 				break;
2170 		} else {
2171 			if (sk->sk_err) {
2172 				copied = sock_error(sk);
2173 				break;
2174 			}
2175 
2176 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2177 				/* race breaker: the shutdown could be after the
2178 				 * previous receive queue check
2179 				 */
2180 				if (__mptcp_move_skbs(sk))
2181 					continue;
2182 				break;
2183 			}
2184 
2185 			if (sk->sk_state == TCP_CLOSE) {
2186 				copied = -ENOTCONN;
2187 				break;
2188 			}
2189 
2190 			if (!timeo) {
2191 				copied = -EAGAIN;
2192 				break;
2193 			}
2194 
2195 			if (signal_pending(current)) {
2196 				copied = sock_intr_errno(timeo);
2197 				break;
2198 			}
2199 		}
2200 
2201 		pr_debug("block timeout %ld\n", timeo);
2202 		mptcp_cleanup_rbuf(msk, copied);
2203 		err = sk_wait_data(sk, &timeo, NULL);
2204 		if (err < 0) {
2205 			err = copied ? : err;
2206 			goto out_err;
2207 		}
2208 	}
2209 
2210 	mptcp_cleanup_rbuf(msk, copied);
2211 
2212 out_err:
2213 	if (cmsg_flags && copied >= 0) {
2214 		if (cmsg_flags & MPTCP_CMSG_TS)
2215 			tcp_recv_timestamp(msg, sk, &tss);
2216 
2217 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2218 			unsigned int inq = mptcp_inq_hint(sk);
2219 
2220 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2221 		}
2222 	}
2223 
2224 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2225 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2226 
2227 	release_sock(sk);
2228 	return copied;
2229 }
2230 
mptcp_retransmit_timer(struct timer_list * t)2231 static void mptcp_retransmit_timer(struct timer_list *t)
2232 {
2233 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2234 							       icsk_retransmit_timer);
2235 	struct sock *sk = &icsk->icsk_inet.sk;
2236 	struct mptcp_sock *msk = mptcp_sk(sk);
2237 
2238 	bh_lock_sock(sk);
2239 	if (!sock_owned_by_user(sk)) {
2240 		/* we need a process context to retransmit */
2241 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2242 			mptcp_schedule_work(sk);
2243 	} else {
2244 		/* delegate our work to tcp_release_cb() */
2245 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2246 	}
2247 	bh_unlock_sock(sk);
2248 	sock_put(sk);
2249 }
2250 
mptcp_tout_timer(struct timer_list * t)2251 static void mptcp_tout_timer(struct timer_list *t)
2252 {
2253 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2254 
2255 	mptcp_schedule_work(sk);
2256 	sock_put(sk);
2257 }
2258 
2259 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2260  * level.
2261  *
2262  * A backup subflow is returned only if that is the only kind available.
2263  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2264 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2265 {
2266 	struct sock *backup = NULL, *pick = NULL;
2267 	struct mptcp_subflow_context *subflow;
2268 	int min_stale_count = INT_MAX;
2269 
2270 	mptcp_for_each_subflow(msk, subflow) {
2271 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2272 
2273 		if (!__mptcp_subflow_active(subflow))
2274 			continue;
2275 
2276 		/* still data outstanding at TCP level? skip this */
2277 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2278 			mptcp_pm_subflow_chk_stale(msk, ssk);
2279 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2280 			continue;
2281 		}
2282 
2283 		if (subflow->backup || subflow->request_bkup) {
2284 			if (!backup)
2285 				backup = ssk;
2286 			continue;
2287 		}
2288 
2289 		if (!pick)
2290 			pick = ssk;
2291 	}
2292 
2293 	if (pick)
2294 		return pick;
2295 
2296 	/* use backup only if there are no progresses anywhere */
2297 	return min_stale_count > 1 ? backup : NULL;
2298 }
2299 
__mptcp_retransmit_pending_data(struct sock * sk)2300 bool __mptcp_retransmit_pending_data(struct sock *sk)
2301 {
2302 	struct mptcp_data_frag *cur, *rtx_head;
2303 	struct mptcp_sock *msk = mptcp_sk(sk);
2304 
2305 	if (__mptcp_check_fallback(msk))
2306 		return false;
2307 
2308 	/* the closing socket has some data untransmitted and/or unacked:
2309 	 * some data in the mptcp rtx queue has not really xmitted yet.
2310 	 * keep it simple and re-inject the whole mptcp level rtx queue
2311 	 */
2312 	mptcp_data_lock(sk);
2313 	__mptcp_clean_una_wakeup(sk);
2314 	rtx_head = mptcp_rtx_head(sk);
2315 	if (!rtx_head) {
2316 		mptcp_data_unlock(sk);
2317 		return false;
2318 	}
2319 
2320 	msk->recovery_snd_nxt = msk->snd_nxt;
2321 	msk->recovery = true;
2322 	mptcp_data_unlock(sk);
2323 
2324 	msk->first_pending = rtx_head;
2325 	msk->snd_burst = 0;
2326 
2327 	/* be sure to clear the "sent status" on all re-injected fragments */
2328 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2329 		if (!cur->already_sent)
2330 			break;
2331 		cur->already_sent = 0;
2332 	}
2333 
2334 	return true;
2335 }
2336 
2337 /* flags for __mptcp_close_ssk() */
2338 #define MPTCP_CF_PUSH		BIT(1)
2339 #define MPTCP_CF_FASTCLOSE	BIT(2)
2340 
2341 /* be sure to send a reset only if the caller asked for it, also
2342  * clean completely the subflow status when the subflow reaches
2343  * TCP_CLOSE state
2344  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2345 static void __mptcp_subflow_disconnect(struct sock *ssk,
2346 				       struct mptcp_subflow_context *subflow,
2347 				       unsigned int flags)
2348 {
2349 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2350 	    (flags & MPTCP_CF_FASTCLOSE)) {
2351 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2352 		 * disconnect should never fail
2353 		 */
2354 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2355 		mptcp_subflow_ctx_reset(subflow);
2356 	} else {
2357 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2358 	}
2359 }
2360 
2361 /* subflow sockets can be either outgoing (connect) or incoming
2362  * (accept).
2363  *
2364  * Outgoing subflows use in-kernel sockets.
2365  * Incoming subflows do not have their own 'struct socket' allocated,
2366  * so we need to use tcp_close() after detaching them from the mptcp
2367  * parent socket.
2368  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2369 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2370 			      struct mptcp_subflow_context *subflow,
2371 			      unsigned int flags)
2372 {
2373 	struct mptcp_sock *msk = mptcp_sk(sk);
2374 	bool dispose_it, need_push = false;
2375 
2376 	/* If the first subflow moved to a close state before accept, e.g. due
2377 	 * to an incoming reset or listener shutdown, the subflow socket is
2378 	 * already deleted by inet_child_forget() and the mptcp socket can't
2379 	 * survive too.
2380 	 */
2381 	if (msk->in_accept_queue && msk->first == ssk &&
2382 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2383 		/* ensure later check in mptcp_worker() will dispose the msk */
2384 		sock_set_flag(sk, SOCK_DEAD);
2385 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2386 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2387 		mptcp_subflow_drop_ctx(ssk);
2388 		goto out_release;
2389 	}
2390 
2391 	dispose_it = msk->free_first || ssk != msk->first;
2392 	if (dispose_it)
2393 		list_del(&subflow->node);
2394 
2395 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2396 
2397 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2398 		/* be sure to force the tcp_close path
2399 		 * to generate the egress reset
2400 		 */
2401 		ssk->sk_lingertime = 0;
2402 		sock_set_flag(ssk, SOCK_LINGER);
2403 		subflow->send_fastclose = 1;
2404 	}
2405 
2406 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2407 	if (!dispose_it) {
2408 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2409 		release_sock(ssk);
2410 
2411 		goto out;
2412 	}
2413 
2414 	subflow->disposable = 1;
2415 
2416 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2417 	 * the ssk has been already destroyed, we just need to release the
2418 	 * reference owned by msk;
2419 	 */
2420 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2421 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2422 		kfree_rcu(subflow, rcu);
2423 	} else {
2424 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2425 		__tcp_close(ssk, 0);
2426 
2427 		/* close acquired an extra ref */
2428 		__sock_put(ssk);
2429 	}
2430 
2431 out_release:
2432 	__mptcp_subflow_error_report(sk, ssk);
2433 	release_sock(ssk);
2434 
2435 	sock_put(ssk);
2436 
2437 	if (ssk == msk->first)
2438 		WRITE_ONCE(msk->first, NULL);
2439 
2440 out:
2441 	__mptcp_sync_sndbuf(sk);
2442 	if (need_push)
2443 		__mptcp_push_pending(sk, 0);
2444 
2445 	/* Catch every 'all subflows closed' scenario, including peers silently
2446 	 * closing them, e.g. due to timeout.
2447 	 * For established sockets, allow an additional timeout before closing,
2448 	 * as the protocol can still create more subflows.
2449 	 */
2450 	if (list_is_singular(&msk->conn_list) && msk->first &&
2451 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2452 		if (sk->sk_state != TCP_ESTABLISHED ||
2453 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2454 			mptcp_set_state(sk, TCP_CLOSE);
2455 			mptcp_close_wake_up(sk);
2456 		} else {
2457 			mptcp_start_tout_timer(sk);
2458 		}
2459 	}
2460 }
2461 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2462 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2463 		     struct mptcp_subflow_context *subflow)
2464 {
2465 	/* The first subflow can already be closed and still in the list */
2466 	if (subflow->close_event_done)
2467 		return;
2468 
2469 	subflow->close_event_done = true;
2470 
2471 	if (sk->sk_state == TCP_ESTABLISHED)
2472 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2473 
2474 	/* subflow aborted before reaching the fully_established status
2475 	 * attempt the creation of the next subflow
2476 	 */
2477 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2478 
2479 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2480 }
2481 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2482 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2483 {
2484 	return 0;
2485 }
2486 
__mptcp_close_subflow(struct sock * sk)2487 static void __mptcp_close_subflow(struct sock *sk)
2488 {
2489 	struct mptcp_subflow_context *subflow, *tmp;
2490 	struct mptcp_sock *msk = mptcp_sk(sk);
2491 
2492 	might_sleep();
2493 
2494 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2495 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2496 		int ssk_state = inet_sk_state_load(ssk);
2497 
2498 		if (ssk_state != TCP_CLOSE &&
2499 		    (ssk_state != TCP_CLOSE_WAIT ||
2500 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2501 			continue;
2502 
2503 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2504 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2505 			continue;
2506 
2507 		mptcp_close_ssk(sk, ssk, subflow);
2508 	}
2509 
2510 }
2511 
mptcp_close_tout_expired(const struct sock * sk)2512 static bool mptcp_close_tout_expired(const struct sock *sk)
2513 {
2514 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2515 	    sk->sk_state == TCP_CLOSE)
2516 		return false;
2517 
2518 	return time_after32(tcp_jiffies32,
2519 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2520 }
2521 
mptcp_check_fastclose(struct mptcp_sock * msk)2522 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2523 {
2524 	struct mptcp_subflow_context *subflow, *tmp;
2525 	struct sock *sk = (struct sock *)msk;
2526 
2527 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2528 		return;
2529 
2530 	mptcp_token_destroy(msk);
2531 
2532 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2533 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2534 		bool slow;
2535 
2536 		slow = lock_sock_fast(tcp_sk);
2537 		if (tcp_sk->sk_state != TCP_CLOSE) {
2538 			mptcp_send_active_reset_reason(tcp_sk);
2539 			tcp_set_state(tcp_sk, TCP_CLOSE);
2540 		}
2541 		unlock_sock_fast(tcp_sk, slow);
2542 	}
2543 
2544 	/* Mirror the tcp_reset() error propagation */
2545 	switch (sk->sk_state) {
2546 	case TCP_SYN_SENT:
2547 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2548 		break;
2549 	case TCP_CLOSE_WAIT:
2550 		WRITE_ONCE(sk->sk_err, EPIPE);
2551 		break;
2552 	case TCP_CLOSE:
2553 		return;
2554 	default:
2555 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2556 	}
2557 
2558 	mptcp_set_state(sk, TCP_CLOSE);
2559 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2560 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2561 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2562 
2563 	/* the calling mptcp_worker will properly destroy the socket */
2564 	if (sock_flag(sk, SOCK_DEAD))
2565 		return;
2566 
2567 	sk->sk_state_change(sk);
2568 	sk_error_report(sk);
2569 }
2570 
__mptcp_retrans(struct sock * sk)2571 static void __mptcp_retrans(struct sock *sk)
2572 {
2573 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2574 	struct mptcp_sock *msk = mptcp_sk(sk);
2575 	struct mptcp_subflow_context *subflow;
2576 	struct mptcp_data_frag *dfrag;
2577 	struct sock *ssk;
2578 	int ret, err;
2579 	u16 len = 0;
2580 
2581 	mptcp_clean_una_wakeup(sk);
2582 
2583 	/* first check ssk: need to kick "stale" logic */
2584 	err = mptcp_sched_get_retrans(msk);
2585 	dfrag = mptcp_rtx_head(sk);
2586 	if (!dfrag) {
2587 		if (mptcp_data_fin_enabled(msk)) {
2588 			struct inet_connection_sock *icsk = inet_csk(sk);
2589 
2590 			icsk->icsk_retransmits++;
2591 			mptcp_set_datafin_timeout(sk);
2592 			mptcp_send_ack(msk);
2593 
2594 			goto reset_timer;
2595 		}
2596 
2597 		if (!mptcp_send_head(sk))
2598 			return;
2599 
2600 		goto reset_timer;
2601 	}
2602 
2603 	if (err)
2604 		goto reset_timer;
2605 
2606 	mptcp_for_each_subflow(msk, subflow) {
2607 		if (READ_ONCE(subflow->scheduled)) {
2608 			u16 copied = 0;
2609 
2610 			mptcp_subflow_set_scheduled(subflow, false);
2611 
2612 			ssk = mptcp_subflow_tcp_sock(subflow);
2613 
2614 			lock_sock(ssk);
2615 
2616 			/* limit retransmission to the bytes already sent on some subflows */
2617 			info.sent = 0;
2618 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2619 								    dfrag->already_sent;
2620 
2621 			/*
2622 			 * make the whole retrans decision, xmit, disallow
2623 			 * fallback atomic
2624 			 */
2625 			spin_lock_bh(&msk->fallback_lock);
2626 			if (__mptcp_check_fallback(msk)) {
2627 				spin_unlock_bh(&msk->fallback_lock);
2628 				release_sock(ssk);
2629 				return;
2630 			}
2631 
2632 			while (info.sent < info.limit) {
2633 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2634 				if (ret <= 0)
2635 					break;
2636 
2637 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2638 				copied += ret;
2639 				info.sent += ret;
2640 			}
2641 			if (copied) {
2642 				len = max(copied, len);
2643 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2644 					 info.size_goal);
2645 				msk->allow_infinite_fallback = false;
2646 			}
2647 			spin_unlock_bh(&msk->fallback_lock);
2648 
2649 			release_sock(ssk);
2650 		}
2651 	}
2652 
2653 	msk->bytes_retrans += len;
2654 	dfrag->already_sent = max(dfrag->already_sent, len);
2655 
2656 reset_timer:
2657 	mptcp_check_and_set_pending(sk);
2658 
2659 	if (!mptcp_rtx_timer_pending(sk))
2660 		mptcp_reset_rtx_timer(sk);
2661 }
2662 
2663 /* schedule the timeout timer for the relevant event: either close timeout
2664  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2665  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2666 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2667 {
2668 	struct sock *sk = (struct sock *)msk;
2669 	unsigned long timeout, close_timeout;
2670 
2671 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2672 		return;
2673 
2674 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2675 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2676 
2677 	/* the close timeout takes precedence on the fail one, and here at least one of
2678 	 * them is active
2679 	 */
2680 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2681 
2682 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2683 }
2684 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2685 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2686 {
2687 	struct sock *ssk = msk->first;
2688 	bool slow;
2689 
2690 	if (!ssk)
2691 		return;
2692 
2693 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2694 
2695 	slow = lock_sock_fast(ssk);
2696 	mptcp_subflow_reset(ssk);
2697 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2698 	unlock_sock_fast(ssk, slow);
2699 }
2700 
mptcp_do_fastclose(struct sock * sk)2701 static void mptcp_do_fastclose(struct sock *sk)
2702 {
2703 	struct mptcp_subflow_context *subflow, *tmp;
2704 	struct mptcp_sock *msk = mptcp_sk(sk);
2705 
2706 	mptcp_set_state(sk, TCP_CLOSE);
2707 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2708 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2709 				  subflow, MPTCP_CF_FASTCLOSE);
2710 }
2711 
mptcp_worker(struct work_struct * work)2712 static void mptcp_worker(struct work_struct *work)
2713 {
2714 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2715 	struct sock *sk = (struct sock *)msk;
2716 	unsigned long fail_tout;
2717 	int state;
2718 
2719 	lock_sock(sk);
2720 	state = sk->sk_state;
2721 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2722 		goto unlock;
2723 
2724 	mptcp_check_fastclose(msk);
2725 
2726 	mptcp_pm_worker(msk);
2727 
2728 	mptcp_check_send_data_fin(sk);
2729 	mptcp_check_data_fin_ack(sk);
2730 	mptcp_check_data_fin(sk);
2731 
2732 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2733 		__mptcp_close_subflow(sk);
2734 
2735 	if (mptcp_close_tout_expired(sk)) {
2736 		mptcp_do_fastclose(sk);
2737 		mptcp_close_wake_up(sk);
2738 	}
2739 
2740 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2741 		__mptcp_destroy_sock(sk);
2742 		goto unlock;
2743 	}
2744 
2745 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2746 		__mptcp_retrans(sk);
2747 
2748 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2749 	if (fail_tout && time_after(jiffies, fail_tout))
2750 		mptcp_mp_fail_no_response(msk);
2751 
2752 unlock:
2753 	release_sock(sk);
2754 	sock_put(sk);
2755 }
2756 
__mptcp_init_sock(struct sock * sk)2757 static void __mptcp_init_sock(struct sock *sk)
2758 {
2759 	struct mptcp_sock *msk = mptcp_sk(sk);
2760 
2761 	INIT_LIST_HEAD(&msk->conn_list);
2762 	INIT_LIST_HEAD(&msk->join_list);
2763 	INIT_LIST_HEAD(&msk->rtx_queue);
2764 	INIT_WORK(&msk->work, mptcp_worker);
2765 	msk->out_of_order_queue = RB_ROOT;
2766 	msk->first_pending = NULL;
2767 	msk->timer_ival = TCP_RTO_MIN;
2768 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2769 
2770 	WRITE_ONCE(msk->first, NULL);
2771 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2772 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2773 	msk->allow_infinite_fallback = true;
2774 	msk->allow_subflows = true;
2775 	msk->recovery = false;
2776 	msk->subflow_id = 1;
2777 	msk->last_data_sent = tcp_jiffies32;
2778 	msk->last_data_recv = tcp_jiffies32;
2779 	msk->last_ack_recv = tcp_jiffies32;
2780 
2781 	mptcp_pm_data_init(msk);
2782 	spin_lock_init(&msk->fallback_lock);
2783 
2784 	/* re-use the csk retrans timer for MPTCP-level retrans */
2785 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2786 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2787 }
2788 
mptcp_ca_reset(struct sock * sk)2789 static void mptcp_ca_reset(struct sock *sk)
2790 {
2791 	struct inet_connection_sock *icsk = inet_csk(sk);
2792 
2793 	tcp_assign_congestion_control(sk);
2794 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2795 		sizeof(mptcp_sk(sk)->ca_name));
2796 
2797 	/* no need to keep a reference to the ops, the name will suffice */
2798 	tcp_cleanup_congestion_control(sk);
2799 	icsk->icsk_ca_ops = NULL;
2800 }
2801 
mptcp_init_sock(struct sock * sk)2802 static int mptcp_init_sock(struct sock *sk)
2803 {
2804 	struct net *net = sock_net(sk);
2805 	int ret;
2806 
2807 	__mptcp_init_sock(sk);
2808 
2809 	if (!mptcp_is_enabled(net))
2810 		return -ENOPROTOOPT;
2811 
2812 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2813 		return -ENOMEM;
2814 
2815 	rcu_read_lock();
2816 	ret = mptcp_init_sched(mptcp_sk(sk),
2817 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2818 	rcu_read_unlock();
2819 	if (ret)
2820 		return ret;
2821 
2822 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2823 
2824 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2825 	 * propagate the correct value
2826 	 */
2827 	mptcp_ca_reset(sk);
2828 
2829 	sk_sockets_allocated_inc(sk);
2830 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2831 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2832 
2833 	return 0;
2834 }
2835 
__mptcp_clear_xmit(struct sock * sk)2836 static void __mptcp_clear_xmit(struct sock *sk)
2837 {
2838 	struct mptcp_sock *msk = mptcp_sk(sk);
2839 	struct mptcp_data_frag *dtmp, *dfrag;
2840 
2841 	WRITE_ONCE(msk->first_pending, NULL);
2842 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2843 		dfrag_clear(sk, dfrag);
2844 }
2845 
mptcp_cancel_work(struct sock * sk)2846 void mptcp_cancel_work(struct sock *sk)
2847 {
2848 	struct mptcp_sock *msk = mptcp_sk(sk);
2849 
2850 	if (cancel_work_sync(&msk->work))
2851 		__sock_put(sk);
2852 }
2853 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2854 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2855 {
2856 	lock_sock(ssk);
2857 
2858 	switch (ssk->sk_state) {
2859 	case TCP_LISTEN:
2860 		if (!(how & RCV_SHUTDOWN))
2861 			break;
2862 		fallthrough;
2863 	case TCP_SYN_SENT:
2864 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2865 		break;
2866 	default:
2867 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2868 			pr_debug("Fallback\n");
2869 			ssk->sk_shutdown |= how;
2870 			tcp_shutdown(ssk, how);
2871 
2872 			/* simulate the data_fin ack reception to let the state
2873 			 * machine move forward
2874 			 */
2875 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2876 			mptcp_schedule_work(sk);
2877 		} else {
2878 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2879 			tcp_send_ack(ssk);
2880 			if (!mptcp_rtx_timer_pending(sk))
2881 				mptcp_reset_rtx_timer(sk);
2882 		}
2883 		break;
2884 	}
2885 
2886 	release_sock(ssk);
2887 }
2888 
mptcp_set_state(struct sock * sk,int state)2889 void mptcp_set_state(struct sock *sk, int state)
2890 {
2891 	int oldstate = sk->sk_state;
2892 
2893 	switch (state) {
2894 	case TCP_ESTABLISHED:
2895 		if (oldstate != TCP_ESTABLISHED)
2896 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2897 		break;
2898 	case TCP_CLOSE_WAIT:
2899 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2900 		 * MPTCP "accepted" sockets will be created later on. So no
2901 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2902 		 */
2903 		break;
2904 	default:
2905 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2906 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2907 	}
2908 
2909 	inet_sk_state_store(sk, state);
2910 }
2911 
2912 static const unsigned char new_state[16] = {
2913 	/* current state:     new state:      action:	*/
2914 	[0 /* (Invalid) */] = TCP_CLOSE,
2915 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2916 	[TCP_SYN_SENT]      = TCP_CLOSE,
2917 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2918 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2919 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2920 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2921 	[TCP_CLOSE]         = TCP_CLOSE,
2922 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2923 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2924 	[TCP_LISTEN]        = TCP_CLOSE,
2925 	[TCP_CLOSING]       = TCP_CLOSING,
2926 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2927 };
2928 
mptcp_close_state(struct sock * sk)2929 static int mptcp_close_state(struct sock *sk)
2930 {
2931 	int next = (int)new_state[sk->sk_state];
2932 	int ns = next & TCP_STATE_MASK;
2933 
2934 	mptcp_set_state(sk, ns);
2935 
2936 	return next & TCP_ACTION_FIN;
2937 }
2938 
mptcp_check_send_data_fin(struct sock * sk)2939 static void mptcp_check_send_data_fin(struct sock *sk)
2940 {
2941 	struct mptcp_subflow_context *subflow;
2942 	struct mptcp_sock *msk = mptcp_sk(sk);
2943 
2944 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2945 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2946 		 msk->snd_nxt, msk->write_seq);
2947 
2948 	/* we still need to enqueue subflows or not really shutting down,
2949 	 * skip this
2950 	 */
2951 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2952 	    mptcp_send_head(sk))
2953 		return;
2954 
2955 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2956 
2957 	mptcp_for_each_subflow(msk, subflow) {
2958 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2959 
2960 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2961 	}
2962 }
2963 
__mptcp_wr_shutdown(struct sock * sk)2964 static void __mptcp_wr_shutdown(struct sock *sk)
2965 {
2966 	struct mptcp_sock *msk = mptcp_sk(sk);
2967 
2968 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2969 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2970 		 !!mptcp_send_head(sk));
2971 
2972 	/* will be ignored by fallback sockets */
2973 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2974 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2975 
2976 	mptcp_check_send_data_fin(sk);
2977 }
2978 
__mptcp_destroy_sock(struct sock * sk)2979 static void __mptcp_destroy_sock(struct sock *sk)
2980 {
2981 	struct mptcp_sock *msk = mptcp_sk(sk);
2982 
2983 	pr_debug("msk=%p\n", msk);
2984 
2985 	might_sleep();
2986 
2987 	mptcp_stop_rtx_timer(sk);
2988 	sk_stop_timer(sk, &sk->sk_timer);
2989 	msk->pm.status = 0;
2990 	mptcp_release_sched(msk);
2991 
2992 	sk->sk_prot->destroy(sk);
2993 
2994 	sk_stream_kill_queues(sk);
2995 	xfrm_sk_free_policy(sk);
2996 
2997 	sock_put(sk);
2998 }
2999 
__mptcp_unaccepted_force_close(struct sock * sk)3000 void __mptcp_unaccepted_force_close(struct sock *sk)
3001 {
3002 	sock_set_flag(sk, SOCK_DEAD);
3003 	mptcp_do_fastclose(sk);
3004 	__mptcp_destroy_sock(sk);
3005 }
3006 
mptcp_check_readable(struct sock * sk)3007 static __poll_t mptcp_check_readable(struct sock *sk)
3008 {
3009 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3010 }
3011 
mptcp_check_listen_stop(struct sock * sk)3012 static void mptcp_check_listen_stop(struct sock *sk)
3013 {
3014 	struct sock *ssk;
3015 
3016 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3017 		return;
3018 
3019 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3020 	ssk = mptcp_sk(sk)->first;
3021 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3022 		return;
3023 
3024 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3025 	tcp_set_state(ssk, TCP_CLOSE);
3026 	mptcp_subflow_queue_clean(sk, ssk);
3027 	inet_csk_listen_stop(ssk);
3028 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3029 	release_sock(ssk);
3030 }
3031 
__mptcp_close(struct sock * sk,long timeout)3032 bool __mptcp_close(struct sock *sk, long timeout)
3033 {
3034 	struct mptcp_subflow_context *subflow;
3035 	struct mptcp_sock *msk = mptcp_sk(sk);
3036 	bool do_cancel_work = false;
3037 	int subflows_alive = 0;
3038 
3039 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3040 
3041 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3042 		mptcp_check_listen_stop(sk);
3043 		mptcp_set_state(sk, TCP_CLOSE);
3044 		goto cleanup;
3045 	}
3046 
3047 	if (mptcp_data_avail(msk) || timeout < 0) {
3048 		/* If the msk has read data, or the caller explicitly ask it,
3049 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3050 		 */
3051 		mptcp_do_fastclose(sk);
3052 		timeout = 0;
3053 	} else if (mptcp_close_state(sk)) {
3054 		__mptcp_wr_shutdown(sk);
3055 	}
3056 
3057 	sk_stream_wait_close(sk, timeout);
3058 
3059 cleanup:
3060 	/* orphan all the subflows */
3061 	mptcp_for_each_subflow(msk, subflow) {
3062 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3063 		bool slow = lock_sock_fast_nested(ssk);
3064 
3065 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3066 
3067 		/* since the close timeout takes precedence on the fail one,
3068 		 * cancel the latter
3069 		 */
3070 		if (ssk == msk->first)
3071 			subflow->fail_tout = 0;
3072 
3073 		/* detach from the parent socket, but allow data_ready to
3074 		 * push incoming data into the mptcp stack, to properly ack it
3075 		 */
3076 		ssk->sk_socket = NULL;
3077 		ssk->sk_wq = NULL;
3078 		unlock_sock_fast(ssk, slow);
3079 	}
3080 	sock_orphan(sk);
3081 
3082 	/* all the subflows are closed, only timeout can change the msk
3083 	 * state, let's not keep resources busy for no reasons
3084 	 */
3085 	if (subflows_alive == 0)
3086 		mptcp_set_state(sk, TCP_CLOSE);
3087 
3088 	sock_hold(sk);
3089 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3090 	mptcp_pm_connection_closed(msk);
3091 
3092 	if (sk->sk_state == TCP_CLOSE) {
3093 		__mptcp_destroy_sock(sk);
3094 		do_cancel_work = true;
3095 	} else {
3096 		mptcp_start_tout_timer(sk);
3097 	}
3098 
3099 	return do_cancel_work;
3100 }
3101 
mptcp_close(struct sock * sk,long timeout)3102 static void mptcp_close(struct sock *sk, long timeout)
3103 {
3104 	bool do_cancel_work;
3105 
3106 	lock_sock(sk);
3107 
3108 	do_cancel_work = __mptcp_close(sk, timeout);
3109 	release_sock(sk);
3110 	if (do_cancel_work)
3111 		mptcp_cancel_work(sk);
3112 
3113 	sock_put(sk);
3114 }
3115 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3116 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3117 {
3118 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3119 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3120 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3121 
3122 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3123 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3124 
3125 	if (msk6 && ssk6) {
3126 		msk6->saddr = ssk6->saddr;
3127 		msk6->flow_label = ssk6->flow_label;
3128 	}
3129 #endif
3130 
3131 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3132 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3133 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3134 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3135 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3136 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3137 }
3138 
mptcp_disconnect(struct sock * sk,int flags)3139 static int mptcp_disconnect(struct sock *sk, int flags)
3140 {
3141 	struct mptcp_sock *msk = mptcp_sk(sk);
3142 
3143 	/* We are on the fastopen error path. We can't call straight into the
3144 	 * subflows cleanup code due to lock nesting (we are already under
3145 	 * msk->firstsocket lock).
3146 	 */
3147 	if (msk->fastopening)
3148 		return -EBUSY;
3149 
3150 	mptcp_check_listen_stop(sk);
3151 	mptcp_set_state(sk, TCP_CLOSE);
3152 
3153 	mptcp_stop_rtx_timer(sk);
3154 	mptcp_stop_tout_timer(sk);
3155 
3156 	mptcp_pm_connection_closed(msk);
3157 
3158 	/* msk->subflow is still intact, the following will not free the first
3159 	 * subflow
3160 	 */
3161 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3162 
3163 	/* The first subflow is already in TCP_CLOSE status, the following
3164 	 * can't overlap with a fallback anymore
3165 	 */
3166 	spin_lock_bh(&msk->fallback_lock);
3167 	msk->allow_subflows = true;
3168 	msk->allow_infinite_fallback = true;
3169 	WRITE_ONCE(msk->flags, 0);
3170 	spin_unlock_bh(&msk->fallback_lock);
3171 
3172 	msk->cb_flags = 0;
3173 	msk->recovery = false;
3174 	WRITE_ONCE(msk->can_ack, false);
3175 	WRITE_ONCE(msk->fully_established, false);
3176 	WRITE_ONCE(msk->rcv_data_fin, false);
3177 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3178 	WRITE_ONCE(msk->rcv_fastclose, false);
3179 	WRITE_ONCE(msk->use_64bit_ack, false);
3180 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3181 	mptcp_pm_data_reset(msk);
3182 	mptcp_ca_reset(sk);
3183 	msk->bytes_consumed = 0;
3184 	msk->bytes_acked = 0;
3185 	msk->bytes_received = 0;
3186 	msk->bytes_sent = 0;
3187 	msk->bytes_retrans = 0;
3188 	msk->rcvspace_init = 0;
3189 
3190 	WRITE_ONCE(sk->sk_shutdown, 0);
3191 	sk_error_report(sk);
3192 	return 0;
3193 }
3194 
3195 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3196 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3197 {
3198 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3199 
3200 	return &msk6->np;
3201 }
3202 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3203 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3204 {
3205 	const struct ipv6_pinfo *np = inet6_sk(sk);
3206 	struct ipv6_txoptions *opt;
3207 	struct ipv6_pinfo *newnp;
3208 
3209 	newnp = inet6_sk(newsk);
3210 
3211 	rcu_read_lock();
3212 	opt = rcu_dereference(np->opt);
3213 	if (opt) {
3214 		opt = ipv6_dup_options(newsk, opt);
3215 		if (!opt)
3216 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3217 	}
3218 	RCU_INIT_POINTER(newnp->opt, opt);
3219 	rcu_read_unlock();
3220 }
3221 #endif
3222 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3223 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3224 {
3225 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3226 	const struct inet_sock *inet = inet_sk(sk);
3227 	struct inet_sock *newinet;
3228 
3229 	newinet = inet_sk(newsk);
3230 
3231 	rcu_read_lock();
3232 	inet_opt = rcu_dereference(inet->inet_opt);
3233 	if (inet_opt) {
3234 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3235 				      inet_opt->opt.optlen, GFP_ATOMIC);
3236 		if (!newopt)
3237 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3238 	}
3239 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3240 	rcu_read_unlock();
3241 }
3242 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3243 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3244 				 const struct mptcp_options_received *mp_opt,
3245 				 struct sock *ssk,
3246 				 struct request_sock *req)
3247 {
3248 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3249 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3250 	struct mptcp_subflow_context *subflow;
3251 	struct mptcp_sock *msk;
3252 
3253 	if (!nsk)
3254 		return NULL;
3255 
3256 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3257 	if (nsk->sk_family == AF_INET6)
3258 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3259 #endif
3260 
3261 	__mptcp_init_sock(nsk);
3262 
3263 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3264 	if (nsk->sk_family == AF_INET6)
3265 		mptcp_copy_ip6_options(nsk, sk);
3266 	else
3267 #endif
3268 		mptcp_copy_ip_options(nsk, sk);
3269 
3270 	msk = mptcp_sk(nsk);
3271 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3272 	WRITE_ONCE(msk->token, subflow_req->token);
3273 	msk->in_accept_queue = 1;
3274 	WRITE_ONCE(msk->fully_established, false);
3275 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3276 		WRITE_ONCE(msk->csum_enabled, true);
3277 
3278 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3279 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3280 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3281 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3282 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3283 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3284 
3285 	/* passive msk is created after the first/MPC subflow */
3286 	msk->subflow_id = 2;
3287 
3288 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3289 	security_inet_csk_clone(nsk, req);
3290 
3291 	/* this can't race with mptcp_close(), as the msk is
3292 	 * not yet exposted to user-space
3293 	 */
3294 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3295 
3296 	/* The msk maintain a ref to each subflow in the connections list */
3297 	WRITE_ONCE(msk->first, ssk);
3298 	subflow = mptcp_subflow_ctx(ssk);
3299 	list_add(&subflow->node, &msk->conn_list);
3300 	sock_hold(ssk);
3301 
3302 	/* new mpc subflow takes ownership of the newly
3303 	 * created mptcp socket
3304 	 */
3305 	mptcp_token_accept(subflow_req, msk);
3306 
3307 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3308 	 * uses the correct data
3309 	 */
3310 	mptcp_copy_inaddrs(nsk, ssk);
3311 	__mptcp_propagate_sndbuf(nsk, ssk);
3312 
3313 	mptcp_rcv_space_init(msk, ssk);
3314 
3315 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3316 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3317 	bh_unlock_sock(nsk);
3318 
3319 	/* note: the newly allocated socket refcount is 2 now */
3320 	return nsk;
3321 }
3322 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3323 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3324 {
3325 	const struct tcp_sock *tp = tcp_sk(ssk);
3326 
3327 	msk->rcvspace_init = 1;
3328 	msk->rcvq_space.copied = 0;
3329 	msk->rcvq_space.rtt_us = 0;
3330 
3331 	msk->rcvq_space.time = tp->tcp_mstamp;
3332 
3333 	/* initial rcv_space offering made to peer */
3334 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3335 				      TCP_INIT_CWND * tp->advmss);
3336 	if (msk->rcvq_space.space == 0)
3337 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3338 }
3339 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3340 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3341 {
3342 	struct mptcp_subflow_context *subflow, *tmp;
3343 	struct sock *sk = (struct sock *)msk;
3344 
3345 	__mptcp_clear_xmit(sk);
3346 
3347 	/* join list will be eventually flushed (with rst) at sock lock release time */
3348 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3349 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3350 
3351 	__skb_queue_purge(&sk->sk_receive_queue);
3352 	skb_rbtree_purge(&msk->out_of_order_queue);
3353 
3354 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3355 	 * inet_sock_destruct() will dispose it
3356 	 */
3357 	mptcp_token_destroy(msk);
3358 	mptcp_pm_destroy(msk);
3359 }
3360 
mptcp_destroy(struct sock * sk)3361 static void mptcp_destroy(struct sock *sk)
3362 {
3363 	struct mptcp_sock *msk = mptcp_sk(sk);
3364 
3365 	/* allow the following to close even the initial subflow */
3366 	msk->free_first = 1;
3367 	mptcp_destroy_common(msk, 0);
3368 	sk_sockets_allocated_dec(sk);
3369 }
3370 
__mptcp_data_acked(struct sock * sk)3371 void __mptcp_data_acked(struct sock *sk)
3372 {
3373 	if (!sock_owned_by_user(sk))
3374 		__mptcp_clean_una(sk);
3375 	else
3376 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3377 }
3378 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3379 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3380 {
3381 	if (!mptcp_send_head(sk))
3382 		return;
3383 
3384 	if (!sock_owned_by_user(sk))
3385 		__mptcp_subflow_push_pending(sk, ssk, false);
3386 	else
3387 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3388 }
3389 
3390 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3391 				      BIT(MPTCP_RETRANSMIT) | \
3392 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3393 				      BIT(MPTCP_DEQUEUE))
3394 
3395 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3396 static void mptcp_release_cb(struct sock *sk)
3397 	__must_hold(&sk->sk_lock.slock)
3398 {
3399 	struct mptcp_sock *msk = mptcp_sk(sk);
3400 
3401 	for (;;) {
3402 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3403 		struct list_head join_list;
3404 
3405 		if (!flags)
3406 			break;
3407 
3408 		INIT_LIST_HEAD(&join_list);
3409 		list_splice_init(&msk->join_list, &join_list);
3410 
3411 		/* the following actions acquire the subflow socket lock
3412 		 *
3413 		 * 1) can't be invoked in atomic scope
3414 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3415 		 *    datapath acquires the msk socket spinlock while helding
3416 		 *    the subflow socket lock
3417 		 */
3418 		msk->cb_flags &= ~flags;
3419 		spin_unlock_bh(&sk->sk_lock.slock);
3420 
3421 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3422 			__mptcp_flush_join_list(sk, &join_list);
3423 		if (flags & BIT(MPTCP_PUSH_PENDING))
3424 			__mptcp_push_pending(sk, 0);
3425 		if (flags & BIT(MPTCP_RETRANSMIT))
3426 			__mptcp_retrans(sk);
3427 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3428 			/* notify ack seq update */
3429 			mptcp_cleanup_rbuf(msk, 0);
3430 			sk->sk_data_ready(sk);
3431 		}
3432 
3433 		cond_resched();
3434 		spin_lock_bh(&sk->sk_lock.slock);
3435 	}
3436 
3437 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3438 		__mptcp_clean_una_wakeup(sk);
3439 	if (unlikely(msk->cb_flags)) {
3440 		/* be sure to sync the msk state before taking actions
3441 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3442 		 * On sk release avoid actions depending on the first subflow
3443 		 */
3444 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3445 			__mptcp_sync_state(sk, msk->pending_state);
3446 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3447 			__mptcp_error_report(sk);
3448 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3449 			__mptcp_sync_sndbuf(sk);
3450 	}
3451 }
3452 
3453 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3454  * TCP can't schedule delack timer before the subflow is fully established.
3455  * MPTCP uses the delack timer to do 3rd ack retransmissions
3456  */
schedule_3rdack_retransmission(struct sock * ssk)3457 static void schedule_3rdack_retransmission(struct sock *ssk)
3458 {
3459 	struct inet_connection_sock *icsk = inet_csk(ssk);
3460 	struct tcp_sock *tp = tcp_sk(ssk);
3461 	unsigned long timeout;
3462 
3463 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3464 		return;
3465 
3466 	/* reschedule with a timeout above RTT, as we must look only for drop */
3467 	if (tp->srtt_us)
3468 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3469 	else
3470 		timeout = TCP_TIMEOUT_INIT;
3471 	timeout += jiffies;
3472 
3473 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3474 	smp_store_release(&icsk->icsk_ack.pending,
3475 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3476 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3477 }
3478 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3479 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3480 {
3481 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3482 	struct sock *sk = subflow->conn;
3483 
3484 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3485 		mptcp_data_lock(sk);
3486 		if (!sock_owned_by_user(sk))
3487 			__mptcp_subflow_push_pending(sk, ssk, true);
3488 		else
3489 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3490 		mptcp_data_unlock(sk);
3491 	}
3492 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3493 		mptcp_data_lock(sk);
3494 		if (!sock_owned_by_user(sk))
3495 			__mptcp_sync_sndbuf(sk);
3496 		else
3497 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3498 		mptcp_data_unlock(sk);
3499 	}
3500 	if (status & BIT(MPTCP_DELEGATE_ACK))
3501 		schedule_3rdack_retransmission(ssk);
3502 }
3503 
mptcp_hash(struct sock * sk)3504 static int mptcp_hash(struct sock *sk)
3505 {
3506 	/* should never be called,
3507 	 * we hash the TCP subflows not the MPTCP socket
3508 	 */
3509 	WARN_ON_ONCE(1);
3510 	return 0;
3511 }
3512 
mptcp_unhash(struct sock * sk)3513 static void mptcp_unhash(struct sock *sk)
3514 {
3515 	/* called from sk_common_release(), but nothing to do here */
3516 }
3517 
mptcp_get_port(struct sock * sk,unsigned short snum)3518 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3519 {
3520 	struct mptcp_sock *msk = mptcp_sk(sk);
3521 
3522 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3523 	if (WARN_ON_ONCE(!msk->first))
3524 		return -EINVAL;
3525 
3526 	return inet_csk_get_port(msk->first, snum);
3527 }
3528 
mptcp_finish_connect(struct sock * ssk)3529 void mptcp_finish_connect(struct sock *ssk)
3530 {
3531 	struct mptcp_subflow_context *subflow;
3532 	struct mptcp_sock *msk;
3533 	struct sock *sk;
3534 
3535 	subflow = mptcp_subflow_ctx(ssk);
3536 	sk = subflow->conn;
3537 	msk = mptcp_sk(sk);
3538 
3539 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3540 
3541 	subflow->map_seq = subflow->iasn;
3542 	subflow->map_subflow_seq = 1;
3543 
3544 	/* the socket is not connected yet, no msk/subflow ops can access/race
3545 	 * accessing the field below
3546 	 */
3547 	WRITE_ONCE(msk->local_key, subflow->local_key);
3548 
3549 	mptcp_pm_new_connection(msk, ssk, 0);
3550 }
3551 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3552 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3553 {
3554 	write_lock_bh(&sk->sk_callback_lock);
3555 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3556 	sk_set_socket(sk, parent);
3557 	WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
3558 	write_unlock_bh(&sk->sk_callback_lock);
3559 }
3560 
mptcp_finish_join(struct sock * ssk)3561 bool mptcp_finish_join(struct sock *ssk)
3562 {
3563 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3564 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3565 	struct sock *parent = (void *)msk;
3566 	bool ret = true;
3567 
3568 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3569 
3570 	/* mptcp socket already closing? */
3571 	if (!mptcp_is_fully_established(parent)) {
3572 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3573 		return false;
3574 	}
3575 
3576 	/* active subflow, already present inside the conn_list */
3577 	if (!list_empty(&subflow->node)) {
3578 		spin_lock_bh(&msk->fallback_lock);
3579 		if (!msk->allow_subflows) {
3580 			spin_unlock_bh(&msk->fallback_lock);
3581 			return false;
3582 		}
3583 		mptcp_subflow_joined(msk, ssk);
3584 		spin_unlock_bh(&msk->fallback_lock);
3585 		mptcp_propagate_sndbuf(parent, ssk);
3586 		return true;
3587 	}
3588 
3589 	if (!mptcp_pm_allow_new_subflow(msk)) {
3590 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3591 		goto err_prohibited;
3592 	}
3593 
3594 	/* If we can't acquire msk socket lock here, let the release callback
3595 	 * handle it
3596 	 */
3597 	mptcp_data_lock(parent);
3598 	if (!sock_owned_by_user(parent)) {
3599 		ret = __mptcp_finish_join(msk, ssk);
3600 		if (ret) {
3601 			sock_hold(ssk);
3602 			list_add_tail(&subflow->node, &msk->conn_list);
3603 		}
3604 	} else {
3605 		sock_hold(ssk);
3606 		list_add_tail(&subflow->node, &msk->join_list);
3607 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3608 	}
3609 	mptcp_data_unlock(parent);
3610 
3611 	if (!ret) {
3612 err_prohibited:
3613 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3614 		return false;
3615 	}
3616 
3617 	return true;
3618 }
3619 
mptcp_shutdown(struct sock * sk,int how)3620 static void mptcp_shutdown(struct sock *sk, int how)
3621 {
3622 	pr_debug("sk=%p, how=%d\n", sk, how);
3623 
3624 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3625 		__mptcp_wr_shutdown(sk);
3626 }
3627 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3628 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3629 {
3630 	const struct sock *sk = (void *)msk;
3631 	u64 delta;
3632 
3633 	if (sk->sk_state == TCP_LISTEN)
3634 		return -EINVAL;
3635 
3636 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3637 		return 0;
3638 
3639 	delta = msk->write_seq - v;
3640 	if (__mptcp_check_fallback(msk) && msk->first) {
3641 		struct tcp_sock *tp = tcp_sk(msk->first);
3642 
3643 		/* the first subflow is disconnected after close - see
3644 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3645 		 * so ignore that status, too.
3646 		 */
3647 		if (!((1 << msk->first->sk_state) &
3648 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3649 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3650 	}
3651 	if (delta > INT_MAX)
3652 		delta = INT_MAX;
3653 
3654 	return (int)delta;
3655 }
3656 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3657 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3658 {
3659 	struct mptcp_sock *msk = mptcp_sk(sk);
3660 	bool slow;
3661 
3662 	switch (cmd) {
3663 	case SIOCINQ:
3664 		if (sk->sk_state == TCP_LISTEN)
3665 			return -EINVAL;
3666 
3667 		lock_sock(sk);
3668 		if (__mptcp_move_skbs(sk))
3669 			mptcp_cleanup_rbuf(msk, 0);
3670 		*karg = mptcp_inq_hint(sk);
3671 		release_sock(sk);
3672 		break;
3673 	case SIOCOUTQ:
3674 		slow = lock_sock_fast(sk);
3675 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3676 		unlock_sock_fast(sk, slow);
3677 		break;
3678 	case SIOCOUTQNSD:
3679 		slow = lock_sock_fast(sk);
3680 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3681 		unlock_sock_fast(sk, slow);
3682 		break;
3683 	default:
3684 		return -ENOIOCTLCMD;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3690 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3691 {
3692 	struct mptcp_subflow_context *subflow;
3693 	struct mptcp_sock *msk = mptcp_sk(sk);
3694 	int err = -EINVAL;
3695 	struct sock *ssk;
3696 
3697 	ssk = __mptcp_nmpc_sk(msk);
3698 	if (IS_ERR(ssk))
3699 		return PTR_ERR(ssk);
3700 
3701 	mptcp_set_state(sk, TCP_SYN_SENT);
3702 	subflow = mptcp_subflow_ctx(ssk);
3703 #ifdef CONFIG_TCP_MD5SIG
3704 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3705 	 * TCP option space.
3706 	 */
3707 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3708 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3709 #endif
3710 	if (subflow->request_mptcp) {
3711 		if (mptcp_active_should_disable(sk))
3712 			mptcp_early_fallback(msk, subflow,
3713 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3714 		else if (mptcp_token_new_connect(ssk) < 0)
3715 			mptcp_early_fallback(msk, subflow,
3716 					     MPTCP_MIB_TOKENFALLBACKINIT);
3717 	}
3718 
3719 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3720 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3721 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3722 	if (likely(!__mptcp_check_fallback(msk)))
3723 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3724 
3725 	/* if reaching here via the fastopen/sendmsg path, the caller already
3726 	 * acquired the subflow socket lock, too.
3727 	 */
3728 	if (!msk->fastopening)
3729 		lock_sock(ssk);
3730 
3731 	/* the following mirrors closely a very small chunk of code from
3732 	 * __inet_stream_connect()
3733 	 */
3734 	if (ssk->sk_state != TCP_CLOSE)
3735 		goto out;
3736 
3737 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3738 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3739 		if (err)
3740 			goto out;
3741 	}
3742 
3743 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3744 	if (err < 0)
3745 		goto out;
3746 
3747 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3748 
3749 out:
3750 	if (!msk->fastopening)
3751 		release_sock(ssk);
3752 
3753 	/* on successful connect, the msk state will be moved to established by
3754 	 * subflow_finish_connect()
3755 	 */
3756 	if (unlikely(err)) {
3757 		/* avoid leaving a dangling token in an unconnected socket */
3758 		mptcp_token_destroy(msk);
3759 		mptcp_set_state(sk, TCP_CLOSE);
3760 		return err;
3761 	}
3762 
3763 	mptcp_copy_inaddrs(sk, ssk);
3764 	return 0;
3765 }
3766 
3767 static struct proto mptcp_prot = {
3768 	.name		= "MPTCP",
3769 	.owner		= THIS_MODULE,
3770 	.init		= mptcp_init_sock,
3771 	.connect	= mptcp_connect,
3772 	.disconnect	= mptcp_disconnect,
3773 	.close		= mptcp_close,
3774 	.setsockopt	= mptcp_setsockopt,
3775 	.getsockopt	= mptcp_getsockopt,
3776 	.shutdown	= mptcp_shutdown,
3777 	.destroy	= mptcp_destroy,
3778 	.sendmsg	= mptcp_sendmsg,
3779 	.ioctl		= mptcp_ioctl,
3780 	.recvmsg	= mptcp_recvmsg,
3781 	.release_cb	= mptcp_release_cb,
3782 	.hash		= mptcp_hash,
3783 	.unhash		= mptcp_unhash,
3784 	.get_port	= mptcp_get_port,
3785 	.stream_memory_free	= mptcp_stream_memory_free,
3786 	.sockets_allocated	= &mptcp_sockets_allocated,
3787 
3788 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3789 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3790 
3791 	.memory_pressure	= &tcp_memory_pressure,
3792 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3793 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3794 	.sysctl_mem	= sysctl_tcp_mem,
3795 	.obj_size	= sizeof(struct mptcp_sock),
3796 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3797 	.no_autobind	= true,
3798 };
3799 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3800 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3801 {
3802 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3803 	struct sock *ssk, *sk = sock->sk;
3804 	int err = -EINVAL;
3805 
3806 	lock_sock(sk);
3807 	ssk = __mptcp_nmpc_sk(msk);
3808 	if (IS_ERR(ssk)) {
3809 		err = PTR_ERR(ssk);
3810 		goto unlock;
3811 	}
3812 
3813 	if (sk->sk_family == AF_INET)
3814 		err = inet_bind_sk(ssk, uaddr, addr_len);
3815 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3816 	else if (sk->sk_family == AF_INET6)
3817 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3818 #endif
3819 	if (!err)
3820 		mptcp_copy_inaddrs(sk, ssk);
3821 
3822 unlock:
3823 	release_sock(sk);
3824 	return err;
3825 }
3826 
mptcp_listen(struct socket * sock,int backlog)3827 static int mptcp_listen(struct socket *sock, int backlog)
3828 {
3829 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3830 	struct sock *sk = sock->sk;
3831 	struct sock *ssk;
3832 	int err;
3833 
3834 	pr_debug("msk=%p\n", msk);
3835 
3836 	lock_sock(sk);
3837 
3838 	err = -EINVAL;
3839 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3840 		goto unlock;
3841 
3842 	ssk = __mptcp_nmpc_sk(msk);
3843 	if (IS_ERR(ssk)) {
3844 		err = PTR_ERR(ssk);
3845 		goto unlock;
3846 	}
3847 
3848 	mptcp_set_state(sk, TCP_LISTEN);
3849 	sock_set_flag(sk, SOCK_RCU_FREE);
3850 
3851 	lock_sock(ssk);
3852 	err = __inet_listen_sk(ssk, backlog);
3853 	release_sock(ssk);
3854 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3855 
3856 	if (!err) {
3857 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3858 		mptcp_copy_inaddrs(sk, ssk);
3859 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3860 	}
3861 
3862 unlock:
3863 	release_sock(sk);
3864 	return err;
3865 }
3866 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3867 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3868 			       struct proto_accept_arg *arg)
3869 {
3870 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3871 	struct sock *ssk, *newsk;
3872 
3873 	pr_debug("msk=%p\n", msk);
3874 
3875 	/* Buggy applications can call accept on socket states other then LISTEN
3876 	 * but no need to allocate the first subflow just to error out.
3877 	 */
3878 	ssk = READ_ONCE(msk->first);
3879 	if (!ssk)
3880 		return -EINVAL;
3881 
3882 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3883 	newsk = inet_csk_accept(ssk, arg);
3884 	if (!newsk)
3885 		return arg->err;
3886 
3887 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3888 	if (sk_is_mptcp(newsk)) {
3889 		struct mptcp_subflow_context *subflow;
3890 		struct sock *new_mptcp_sock;
3891 
3892 		subflow = mptcp_subflow_ctx(newsk);
3893 		new_mptcp_sock = subflow->conn;
3894 
3895 		/* is_mptcp should be false if subflow->conn is missing, see
3896 		 * subflow_syn_recv_sock()
3897 		 */
3898 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3899 			tcp_sk(newsk)->is_mptcp = 0;
3900 			goto tcpfallback;
3901 		}
3902 
3903 		newsk = new_mptcp_sock;
3904 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3905 
3906 		newsk->sk_kern_sock = arg->kern;
3907 		lock_sock(newsk);
3908 		__inet_accept(sock, newsock, newsk);
3909 
3910 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3911 		msk = mptcp_sk(newsk);
3912 		msk->in_accept_queue = 0;
3913 
3914 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3915 		 * This is needed so NOSPACE flag can be set from tcp stack.
3916 		 */
3917 		mptcp_for_each_subflow(msk, subflow) {
3918 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3919 
3920 			if (!ssk->sk_socket)
3921 				mptcp_sock_graft(ssk, newsock);
3922 		}
3923 
3924 		/* Do late cleanup for the first subflow as necessary. Also
3925 		 * deal with bad peers not doing a complete shutdown.
3926 		 */
3927 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3928 			__mptcp_close_ssk(newsk, msk->first,
3929 					  mptcp_subflow_ctx(msk->first), 0);
3930 			if (unlikely(list_is_singular(&msk->conn_list)))
3931 				mptcp_set_state(newsk, TCP_CLOSE);
3932 		}
3933 	} else {
3934 tcpfallback:
3935 		newsk->sk_kern_sock = arg->kern;
3936 		lock_sock(newsk);
3937 		__inet_accept(sock, newsock, newsk);
3938 		/* we are being invoked after accepting a non-mp-capable
3939 		 * flow: sk is a tcp_sk, not an mptcp one.
3940 		 *
3941 		 * Hand the socket over to tcp so all further socket ops
3942 		 * bypass mptcp.
3943 		 */
3944 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3945 			   mptcp_fallback_tcp_ops(newsock->sk));
3946 	}
3947 	release_sock(newsk);
3948 
3949 	return 0;
3950 }
3951 
mptcp_check_writeable(struct mptcp_sock * msk)3952 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3953 {
3954 	struct sock *sk = (struct sock *)msk;
3955 
3956 	if (__mptcp_stream_is_writeable(sk, 1))
3957 		return EPOLLOUT | EPOLLWRNORM;
3958 
3959 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3960 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3961 	if (__mptcp_stream_is_writeable(sk, 1))
3962 		return EPOLLOUT | EPOLLWRNORM;
3963 
3964 	return 0;
3965 }
3966 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3967 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3968 			   struct poll_table_struct *wait)
3969 {
3970 	struct sock *sk = sock->sk;
3971 	struct mptcp_sock *msk;
3972 	__poll_t mask = 0;
3973 	u8 shutdown;
3974 	int state;
3975 
3976 	msk = mptcp_sk(sk);
3977 	sock_poll_wait(file, sock, wait);
3978 
3979 	state = inet_sk_state_load(sk);
3980 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3981 	if (state == TCP_LISTEN) {
3982 		struct sock *ssk = READ_ONCE(msk->first);
3983 
3984 		if (WARN_ON_ONCE(!ssk))
3985 			return 0;
3986 
3987 		return inet_csk_listen_poll(ssk);
3988 	}
3989 
3990 	shutdown = READ_ONCE(sk->sk_shutdown);
3991 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3992 		mask |= EPOLLHUP;
3993 	if (shutdown & RCV_SHUTDOWN)
3994 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3995 
3996 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3997 		mask |= mptcp_check_readable(sk);
3998 		if (shutdown & SEND_SHUTDOWN)
3999 			mask |= EPOLLOUT | EPOLLWRNORM;
4000 		else
4001 			mask |= mptcp_check_writeable(msk);
4002 	} else if (state == TCP_SYN_SENT &&
4003 		   inet_test_bit(DEFER_CONNECT, sk)) {
4004 		/* cf tcp_poll() note about TFO */
4005 		mask |= EPOLLOUT | EPOLLWRNORM;
4006 	}
4007 
4008 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4009 	smp_rmb();
4010 	if (READ_ONCE(sk->sk_err))
4011 		mask |= EPOLLERR;
4012 
4013 	return mask;
4014 }
4015 
4016 static const struct proto_ops mptcp_stream_ops = {
4017 	.family		   = PF_INET,
4018 	.owner		   = THIS_MODULE,
4019 	.release	   = inet_release,
4020 	.bind		   = mptcp_bind,
4021 	.connect	   = inet_stream_connect,
4022 	.socketpair	   = sock_no_socketpair,
4023 	.accept		   = mptcp_stream_accept,
4024 	.getname	   = inet_getname,
4025 	.poll		   = mptcp_poll,
4026 	.ioctl		   = inet_ioctl,
4027 	.gettstamp	   = sock_gettstamp,
4028 	.listen		   = mptcp_listen,
4029 	.shutdown	   = inet_shutdown,
4030 	.setsockopt	   = sock_common_setsockopt,
4031 	.getsockopt	   = sock_common_getsockopt,
4032 	.sendmsg	   = inet_sendmsg,
4033 	.recvmsg	   = inet_recvmsg,
4034 	.mmap		   = sock_no_mmap,
4035 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4036 };
4037 
4038 static struct inet_protosw mptcp_protosw = {
4039 	.type		= SOCK_STREAM,
4040 	.protocol	= IPPROTO_MPTCP,
4041 	.prot		= &mptcp_prot,
4042 	.ops		= &mptcp_stream_ops,
4043 	.flags		= INET_PROTOSW_ICSK,
4044 };
4045 
mptcp_napi_poll(struct napi_struct * napi,int budget)4046 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4047 {
4048 	struct mptcp_delegated_action *delegated;
4049 	struct mptcp_subflow_context *subflow;
4050 	int work_done = 0;
4051 
4052 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4053 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4054 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4055 
4056 		bh_lock_sock_nested(ssk);
4057 		if (!sock_owned_by_user(ssk)) {
4058 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4059 		} else {
4060 			/* tcp_release_cb_override already processed
4061 			 * the action or will do at next release_sock().
4062 			 * In both case must dequeue the subflow here - on the same
4063 			 * CPU that scheduled it.
4064 			 */
4065 			smp_wmb();
4066 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4067 		}
4068 		bh_unlock_sock(ssk);
4069 		sock_put(ssk);
4070 
4071 		if (++work_done == budget)
4072 			return budget;
4073 	}
4074 
4075 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4076 	 * will not try accessing the NULL napi->dev ptr
4077 	 */
4078 	napi_complete_done(napi, 0);
4079 	return work_done;
4080 }
4081 
mptcp_proto_init(void)4082 void __init mptcp_proto_init(void)
4083 {
4084 	struct mptcp_delegated_action *delegated;
4085 	int cpu;
4086 
4087 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4088 
4089 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4090 		panic("Failed to allocate MPTCP pcpu counter\n");
4091 
4092 	mptcp_napi_dev = alloc_netdev_dummy(0);
4093 	if (!mptcp_napi_dev)
4094 		panic("Failed to allocate MPTCP dummy netdev\n");
4095 	for_each_possible_cpu(cpu) {
4096 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4097 		INIT_LIST_HEAD(&delegated->head);
4098 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4099 				  mptcp_napi_poll);
4100 		napi_enable(&delegated->napi);
4101 	}
4102 
4103 	mptcp_subflow_init();
4104 	mptcp_pm_init();
4105 	mptcp_sched_init();
4106 	mptcp_token_init();
4107 
4108 	if (proto_register(&mptcp_prot, 1) != 0)
4109 		panic("Failed to register MPTCP proto.\n");
4110 
4111 	inet_register_protosw(&mptcp_protosw);
4112 
4113 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4114 }
4115 
4116 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4117 static const struct proto_ops mptcp_v6_stream_ops = {
4118 	.family		   = PF_INET6,
4119 	.owner		   = THIS_MODULE,
4120 	.release	   = inet6_release,
4121 	.bind		   = mptcp_bind,
4122 	.connect	   = inet_stream_connect,
4123 	.socketpair	   = sock_no_socketpair,
4124 	.accept		   = mptcp_stream_accept,
4125 	.getname	   = inet6_getname,
4126 	.poll		   = mptcp_poll,
4127 	.ioctl		   = inet6_ioctl,
4128 	.gettstamp	   = sock_gettstamp,
4129 	.listen		   = mptcp_listen,
4130 	.shutdown	   = inet_shutdown,
4131 	.setsockopt	   = sock_common_setsockopt,
4132 	.getsockopt	   = sock_common_getsockopt,
4133 	.sendmsg	   = inet6_sendmsg,
4134 	.recvmsg	   = inet6_recvmsg,
4135 	.mmap		   = sock_no_mmap,
4136 #ifdef CONFIG_COMPAT
4137 	.compat_ioctl	   = inet6_compat_ioctl,
4138 #endif
4139 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4140 };
4141 
4142 static struct proto mptcp_v6_prot;
4143 
4144 static struct inet_protosw mptcp_v6_protosw = {
4145 	.type		= SOCK_STREAM,
4146 	.protocol	= IPPROTO_MPTCP,
4147 	.prot		= &mptcp_v6_prot,
4148 	.ops		= &mptcp_v6_stream_ops,
4149 	.flags		= INET_PROTOSW_ICSK,
4150 };
4151 
mptcp_proto_v6_init(void)4152 int __init mptcp_proto_v6_init(void)
4153 {
4154 	int err;
4155 
4156 	mptcp_v6_prot = mptcp_prot;
4157 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4158 	mptcp_v6_prot.slab = NULL;
4159 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4160 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4161 
4162 	err = proto_register(&mptcp_v6_prot, 1);
4163 	if (err)
4164 		return err;
4165 
4166 	err = inet6_register_protosw(&mptcp_v6_protosw);
4167 	if (err)
4168 		proto_unregister(&mptcp_v6_prot);
4169 
4170 	return err;
4171 }
4172 #endif
4173