1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/sock.h>
16 #include <net/inet_common.h>
17 #include <net/inet_hashtables.h>
18 #include <net/protocol.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/hotdata.h>
25 #include <net/xfrm.h>
26 #include <asm/ioctls.h>
27 #include "protocol.h"
28 #include "mib.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/mptcp.h>
32
33 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
34 struct mptcp6_sock {
35 struct mptcp_sock msk;
36 struct ipv6_pinfo np;
37 };
38 #endif
39
40 enum {
41 MPTCP_CMSG_TS = BIT(0),
42 MPTCP_CMSG_INQ = BIT(1),
43 };
44
45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
46
47 static void __mptcp_destroy_sock(struct sock *sk);
48 static void mptcp_check_send_data_fin(struct sock *sk);
49
50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
51 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
52 };
53 static struct net_device *mptcp_napi_dev;
54
55 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
57 {
58 return READ_ONCE(msk->wnd_end);
59 }
60
mptcp_fallback_tcp_ops(const struct sock * sk)61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
62 {
63 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
64 if (sk->sk_prot == &tcpv6_prot)
65 return &inet6_stream_ops;
66 #endif
67 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
68 return &inet_stream_ops;
69 }
70
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)71 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
72 {
73 struct net *net = sock_net((struct sock *)msk);
74
75 if (__mptcp_check_fallback(msk))
76 return true;
77
78 spin_lock_bh(&msk->fallback_lock);
79 if (!msk->allow_infinite_fallback) {
80 spin_unlock_bh(&msk->fallback_lock);
81 return false;
82 }
83
84 msk->allow_subflows = false;
85 set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
86 __MPTCP_INC_STATS(net, fb_mib);
87 spin_unlock_bh(&msk->fallback_lock);
88 return true;
89 }
90
__mptcp_socket_create(struct mptcp_sock * msk)91 static int __mptcp_socket_create(struct mptcp_sock *msk)
92 {
93 struct mptcp_subflow_context *subflow;
94 struct sock *sk = (struct sock *)msk;
95 struct socket *ssock;
96 int err;
97
98 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
99 if (err)
100 return err;
101
102 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
103 WRITE_ONCE(msk->first, ssock->sk);
104 subflow = mptcp_subflow_ctx(ssock->sk);
105 list_add(&subflow->node, &msk->conn_list);
106 sock_hold(ssock->sk);
107 subflow->request_mptcp = 1;
108 subflow->subflow_id = msk->subflow_id++;
109
110 /* This is the first subflow, always with id 0 */
111 WRITE_ONCE(subflow->local_id, 0);
112 mptcp_sock_graft(msk->first, sk->sk_socket);
113 iput(SOCK_INODE(ssock));
114
115 return 0;
116 }
117
118 /* If the MPC handshake is not started, returns the first subflow,
119 * eventually allocating it.
120 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)121 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
122 {
123 struct sock *sk = (struct sock *)msk;
124 int ret;
125
126 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
127 return ERR_PTR(-EINVAL);
128
129 if (!msk->first) {
130 ret = __mptcp_socket_create(msk);
131 if (ret)
132 return ERR_PTR(ret);
133 }
134
135 return msk->first;
136 }
137
mptcp_drop(struct sock * sk,struct sk_buff * skb)138 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
139 {
140 sk_drops_add(sk, skb);
141 __kfree_skb(skb);
142 }
143
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)144 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
145 struct sk_buff *from)
146 {
147 bool fragstolen;
148 int delta;
149
150 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
151 MPTCP_SKB_CB(from)->offset ||
152 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
153 !skb_try_coalesce(to, from, &fragstolen, &delta))
154 return false;
155
156 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
157 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
158 to->len, MPTCP_SKB_CB(from)->end_seq);
159 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
160
161 /* note the fwd memory can reach a negative value after accounting
162 * for the delta, but the later skb free will restore a non
163 * negative one
164 */
165 atomic_add(delta, &sk->sk_rmem_alloc);
166 sk_mem_charge(sk, delta);
167 kfree_skb_partial(from, fragstolen);
168
169 return true;
170 }
171
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
173 struct sk_buff *from)
174 {
175 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
176 return false;
177
178 return mptcp_try_coalesce((struct sock *)msk, to, from);
179 }
180
181 /* "inspired" by tcp_data_queue_ofo(), main differences:
182 * - use mptcp seqs
183 * - don't cope with sacks
184 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)185 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
186 {
187 struct sock *sk = (struct sock *)msk;
188 struct rb_node **p, *parent;
189 u64 seq, end_seq, max_seq;
190 struct sk_buff *skb1;
191
192 seq = MPTCP_SKB_CB(skb)->map_seq;
193 end_seq = MPTCP_SKB_CB(skb)->end_seq;
194 max_seq = atomic64_read(&msk->rcv_wnd_sent);
195
196 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
197 RB_EMPTY_ROOT(&msk->out_of_order_queue));
198 if (after64(end_seq, max_seq)) {
199 /* out of window */
200 mptcp_drop(sk, skb);
201 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
202 (unsigned long long)end_seq - (unsigned long)max_seq,
203 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
204 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
205 return;
206 }
207
208 p = &msk->out_of_order_queue.rb_node;
209 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
210 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
211 rb_link_node(&skb->rbnode, NULL, p);
212 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
213 msk->ooo_last_skb = skb;
214 goto end;
215 }
216
217 /* with 2 subflows, adding at end of ooo queue is quite likely
218 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
219 */
220 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
221 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
222 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
223 return;
224 }
225
226 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
227 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
229 parent = &msk->ooo_last_skb->rbnode;
230 p = &parent->rb_right;
231 goto insert;
232 }
233
234 /* Find place to insert this segment. Handle overlaps on the way. */
235 parent = NULL;
236 while (*p) {
237 parent = *p;
238 skb1 = rb_to_skb(parent);
239 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
240 p = &parent->rb_left;
241 continue;
242 }
243 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
244 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
245 /* All the bits are present. Drop. */
246 mptcp_drop(sk, skb);
247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
248 return;
249 }
250 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
251 /* partial overlap:
252 * | skb |
253 * | skb1 |
254 * continue traversing
255 */
256 } else {
257 /* skb's seq == skb1's seq and skb covers skb1.
258 * Replace skb1 with skb.
259 */
260 rb_replace_node(&skb1->rbnode, &skb->rbnode,
261 &msk->out_of_order_queue);
262 mptcp_drop(sk, skb1);
263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
264 goto merge_right;
265 }
266 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
267 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
268 return;
269 }
270 p = &parent->rb_right;
271 }
272
273 insert:
274 /* Insert segment into RB tree. */
275 rb_link_node(&skb->rbnode, parent, p);
276 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
277
278 merge_right:
279 /* Remove other segments covered by skb. */
280 while ((skb1 = skb_rb_next(skb)) != NULL) {
281 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
282 break;
283 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
284 mptcp_drop(sk, skb1);
285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
286 }
287 /* If there is no skb after us, we are the last_skb ! */
288 if (!skb1)
289 msk->ooo_last_skb = skb;
290
291 end:
292 skb_condense(skb);
293 skb_set_owner_r(skb, sk);
294 }
295
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)296 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
297 struct sk_buff *skb, unsigned int offset,
298 size_t copy_len)
299 {
300 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
301 struct sock *sk = (struct sock *)msk;
302 struct sk_buff *tail;
303 bool has_rxtstamp;
304
305 __skb_unlink(skb, &ssk->sk_receive_queue);
306
307 skb_ext_reset(skb);
308 skb_orphan(skb);
309
310 /* try to fetch required memory from subflow */
311 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
313 goto drop;
314 }
315
316 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
317
318 /* the skb map_seq accounts for the skb offset:
319 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
320 * value
321 */
322 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
323 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
324 MPTCP_SKB_CB(skb)->offset = offset;
325 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
326 MPTCP_SKB_CB(skb)->cant_coalesce = 0;
327
328 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
329 /* in sequence */
330 msk->bytes_received += copy_len;
331 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
332 tail = skb_peek_tail(&sk->sk_receive_queue);
333 if (tail && mptcp_try_coalesce(sk, tail, skb))
334 return true;
335
336 skb_set_owner_r(skb, sk);
337 __skb_queue_tail(&sk->sk_receive_queue, skb);
338 return true;
339 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
340 mptcp_data_queue_ofo(msk, skb);
341 return false;
342 }
343
344 /* old data, keep it simple and drop the whole pkt, sender
345 * will retransmit as needed, if needed.
346 */
347 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
348 drop:
349 mptcp_drop(sk, skb);
350 return false;
351 }
352
mptcp_stop_rtx_timer(struct sock * sk)353 static void mptcp_stop_rtx_timer(struct sock *sk)
354 {
355 struct inet_connection_sock *icsk = inet_csk(sk);
356
357 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
358 mptcp_sk(sk)->timer_ival = 0;
359 }
360
mptcp_close_wake_up(struct sock * sk)361 static void mptcp_close_wake_up(struct sock *sk)
362 {
363 if (sock_flag(sk, SOCK_DEAD))
364 return;
365
366 sk->sk_state_change(sk);
367 if (sk->sk_shutdown == SHUTDOWN_MASK ||
368 sk->sk_state == TCP_CLOSE)
369 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
370 else
371 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
372 }
373
374 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)375 static bool mptcp_pending_data_fin_ack(struct sock *sk)
376 {
377 struct mptcp_sock *msk = mptcp_sk(sk);
378
379 return ((1 << sk->sk_state) &
380 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
381 msk->write_seq == READ_ONCE(msk->snd_una);
382 }
383
mptcp_check_data_fin_ack(struct sock * sk)384 static void mptcp_check_data_fin_ack(struct sock *sk)
385 {
386 struct mptcp_sock *msk = mptcp_sk(sk);
387
388 /* Look for an acknowledged DATA_FIN */
389 if (mptcp_pending_data_fin_ack(sk)) {
390 WRITE_ONCE(msk->snd_data_fin_enable, 0);
391
392 switch (sk->sk_state) {
393 case TCP_FIN_WAIT1:
394 mptcp_set_state(sk, TCP_FIN_WAIT2);
395 break;
396 case TCP_CLOSING:
397 case TCP_LAST_ACK:
398 mptcp_set_state(sk, TCP_CLOSE);
399 break;
400 }
401
402 mptcp_close_wake_up(sk);
403 }
404 }
405
406 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)407 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
408 {
409 struct mptcp_sock *msk = mptcp_sk(sk);
410
411 if (READ_ONCE(msk->rcv_data_fin) &&
412 ((1 << inet_sk_state_load(sk)) &
413 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
414 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
415
416 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
417 if (seq)
418 *seq = rcv_data_fin_seq;
419
420 return true;
421 }
422 }
423
424 return false;
425 }
426
mptcp_set_datafin_timeout(struct sock * sk)427 static void mptcp_set_datafin_timeout(struct sock *sk)
428 {
429 struct inet_connection_sock *icsk = inet_csk(sk);
430 u32 retransmits;
431
432 retransmits = min_t(u32, icsk->icsk_retransmits,
433 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
434
435 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
436 }
437
__mptcp_set_timeout(struct sock * sk,long tout)438 static void __mptcp_set_timeout(struct sock *sk, long tout)
439 {
440 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
441 }
442
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)443 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
444 {
445 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
446
447 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
448 icsk_timeout(inet_csk(ssk)) - jiffies : 0;
449 }
450
mptcp_set_timeout(struct sock * sk)451 static void mptcp_set_timeout(struct sock *sk)
452 {
453 struct mptcp_subflow_context *subflow;
454 long tout = 0;
455
456 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
457 tout = max(tout, mptcp_timeout_from_subflow(subflow));
458 __mptcp_set_timeout(sk, tout);
459 }
460
tcp_can_send_ack(const struct sock * ssk)461 static inline bool tcp_can_send_ack(const struct sock *ssk)
462 {
463 return !((1 << inet_sk_state_load(ssk)) &
464 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
465 }
466
__mptcp_subflow_send_ack(struct sock * ssk)467 void __mptcp_subflow_send_ack(struct sock *ssk)
468 {
469 if (tcp_can_send_ack(ssk))
470 tcp_send_ack(ssk);
471 }
472
mptcp_subflow_send_ack(struct sock * ssk)473 static void mptcp_subflow_send_ack(struct sock *ssk)
474 {
475 bool slow;
476
477 slow = lock_sock_fast(ssk);
478 __mptcp_subflow_send_ack(ssk);
479 unlock_sock_fast(ssk, slow);
480 }
481
mptcp_send_ack(struct mptcp_sock * msk)482 static void mptcp_send_ack(struct mptcp_sock *msk)
483 {
484 struct mptcp_subflow_context *subflow;
485
486 mptcp_for_each_subflow(msk, subflow)
487 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
488 }
489
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)490 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
491 {
492 bool slow;
493
494 slow = lock_sock_fast(ssk);
495 if (tcp_can_send_ack(ssk))
496 tcp_cleanup_rbuf(ssk, copied);
497 unlock_sock_fast(ssk, slow);
498 }
499
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)500 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
501 {
502 const struct inet_connection_sock *icsk = inet_csk(ssk);
503 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
504 const struct tcp_sock *tp = tcp_sk(ssk);
505
506 return (ack_pending & ICSK_ACK_SCHED) &&
507 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
508 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
509 (rx_empty && ack_pending &
510 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
511 }
512
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)513 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
514 {
515 int old_space = READ_ONCE(msk->old_wspace);
516 struct mptcp_subflow_context *subflow;
517 struct sock *sk = (struct sock *)msk;
518 int space = __mptcp_space(sk);
519 bool cleanup, rx_empty;
520
521 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
522 rx_empty = !sk_rmem_alloc_get(sk) && copied;
523
524 mptcp_for_each_subflow(msk, subflow) {
525 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
526
527 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
528 mptcp_subflow_cleanup_rbuf(ssk, copied);
529 }
530 }
531
mptcp_check_data_fin(struct sock * sk)532 static bool mptcp_check_data_fin(struct sock *sk)
533 {
534 struct mptcp_sock *msk = mptcp_sk(sk);
535 u64 rcv_data_fin_seq;
536 bool ret = false;
537
538 /* Need to ack a DATA_FIN received from a peer while this side
539 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
540 * msk->rcv_data_fin was set when parsing the incoming options
541 * at the subflow level and the msk lock was not held, so this
542 * is the first opportunity to act on the DATA_FIN and change
543 * the msk state.
544 *
545 * If we are caught up to the sequence number of the incoming
546 * DATA_FIN, send the DATA_ACK now and do state transition. If
547 * not caught up, do nothing and let the recv code send DATA_ACK
548 * when catching up.
549 */
550
551 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
552 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
553 WRITE_ONCE(msk->rcv_data_fin, 0);
554
555 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
556 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
557
558 switch (sk->sk_state) {
559 case TCP_ESTABLISHED:
560 mptcp_set_state(sk, TCP_CLOSE_WAIT);
561 break;
562 case TCP_FIN_WAIT1:
563 mptcp_set_state(sk, TCP_CLOSING);
564 break;
565 case TCP_FIN_WAIT2:
566 mptcp_set_state(sk, TCP_CLOSE);
567 break;
568 default:
569 /* Other states not expected */
570 WARN_ON_ONCE(1);
571 break;
572 }
573
574 ret = true;
575 if (!__mptcp_check_fallback(msk))
576 mptcp_send_ack(msk);
577 mptcp_close_wake_up(sk);
578 }
579 return ret;
580 }
581
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)582 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
583 {
584 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
585 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
586 mptcp_subflow_reset(ssk);
587 }
588 }
589
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)590 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
591 struct sock *ssk)
592 {
593 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
594 struct sock *sk = (struct sock *)msk;
595 bool more_data_avail;
596 struct tcp_sock *tp;
597 bool ret = false;
598
599 pr_debug("msk=%p ssk=%p\n", msk, ssk);
600 tp = tcp_sk(ssk);
601 do {
602 u32 map_remaining, offset;
603 u32 seq = tp->copied_seq;
604 struct sk_buff *skb;
605 bool fin;
606
607 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
608 break;
609
610 /* try to move as much data as available */
611 map_remaining = subflow->map_data_len -
612 mptcp_subflow_get_map_offset(subflow);
613
614 skb = skb_peek(&ssk->sk_receive_queue);
615 if (unlikely(!skb))
616 break;
617
618 if (__mptcp_check_fallback(msk)) {
619 /* Under fallback skbs have no MPTCP extension and TCP could
620 * collapse them between the dummy map creation and the
621 * current dequeue. Be sure to adjust the map size.
622 */
623 map_remaining = skb->len;
624 subflow->map_data_len = skb->len;
625 }
626
627 offset = seq - TCP_SKB_CB(skb)->seq;
628 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
629 if (fin)
630 seq++;
631
632 if (offset < skb->len) {
633 size_t len = skb->len - offset;
634
635 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
636 seq += len;
637
638 if (unlikely(map_remaining < len)) {
639 DEBUG_NET_WARN_ON_ONCE(1);
640 mptcp_dss_corruption(msk, ssk);
641 }
642 } else {
643 if (unlikely(!fin)) {
644 DEBUG_NET_WARN_ON_ONCE(1);
645 mptcp_dss_corruption(msk, ssk);
646 }
647
648 sk_eat_skb(ssk, skb);
649 }
650
651 WRITE_ONCE(tp->copied_seq, seq);
652 more_data_avail = mptcp_subflow_data_available(ssk);
653
654 } while (more_data_avail);
655
656 if (ret)
657 msk->last_data_recv = tcp_jiffies32;
658 return ret;
659 }
660
__mptcp_ofo_queue(struct mptcp_sock * msk)661 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
662 {
663 struct sock *sk = (struct sock *)msk;
664 struct sk_buff *skb, *tail;
665 bool moved = false;
666 struct rb_node *p;
667 u64 end_seq;
668
669 p = rb_first(&msk->out_of_order_queue);
670 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
671 while (p) {
672 skb = rb_to_skb(p);
673 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
674 break;
675
676 p = rb_next(p);
677 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
678
679 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
680 msk->ack_seq))) {
681 mptcp_drop(sk, skb);
682 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
683 continue;
684 }
685
686 end_seq = MPTCP_SKB_CB(skb)->end_seq;
687 tail = skb_peek_tail(&sk->sk_receive_queue);
688 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
689 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
690
691 /* skip overlapping data, if any */
692 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
693 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
694 delta);
695 MPTCP_SKB_CB(skb)->offset += delta;
696 MPTCP_SKB_CB(skb)->map_seq += delta;
697 __skb_queue_tail(&sk->sk_receive_queue, skb);
698 }
699 msk->bytes_received += end_seq - msk->ack_seq;
700 WRITE_ONCE(msk->ack_seq, end_seq);
701 moved = true;
702 }
703 return moved;
704 }
705
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)706 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
707 {
708 int err = sock_error(ssk);
709 int ssk_state;
710
711 if (!err)
712 return false;
713
714 /* only propagate errors on fallen-back sockets or
715 * on MPC connect
716 */
717 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
718 return false;
719
720 /* We need to propagate only transition to CLOSE state.
721 * Orphaned socket will see such state change via
722 * subflow_sched_work_if_closed() and that path will properly
723 * destroy the msk as needed.
724 */
725 ssk_state = inet_sk_state_load(ssk);
726 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
727 mptcp_set_state(sk, ssk_state);
728 WRITE_ONCE(sk->sk_err, -err);
729
730 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
731 smp_wmb();
732 sk_error_report(sk);
733 return true;
734 }
735
__mptcp_error_report(struct sock * sk)736 void __mptcp_error_report(struct sock *sk)
737 {
738 struct mptcp_subflow_context *subflow;
739 struct mptcp_sock *msk = mptcp_sk(sk);
740
741 mptcp_for_each_subflow(msk, subflow)
742 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
743 break;
744 }
745
746 /* In most cases we will be able to lock the mptcp socket. If its already
747 * owned, we need to defer to the work queue to avoid ABBA deadlock.
748 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)749 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
750 {
751 struct sock *sk = (struct sock *)msk;
752 bool moved;
753
754 moved = __mptcp_move_skbs_from_subflow(msk, ssk);
755 __mptcp_ofo_queue(msk);
756 if (unlikely(ssk->sk_err)) {
757 if (!sock_owned_by_user(sk))
758 __mptcp_error_report(sk);
759 else
760 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
761 }
762
763 /* If the moves have caught up with the DATA_FIN sequence number
764 * it's time to ack the DATA_FIN and change socket state, but
765 * this is not a good place to change state. Let the workqueue
766 * do it.
767 */
768 if (mptcp_pending_data_fin(sk, NULL))
769 mptcp_schedule_work(sk);
770 return moved;
771 }
772
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)773 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
774 {
775 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
776 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
777 }
778
__mptcp_data_ready(struct sock * sk,struct sock * ssk)779 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
780 {
781 struct mptcp_sock *msk = mptcp_sk(sk);
782
783 __mptcp_rcvbuf_update(sk, ssk);
784
785 /* Wake-up the reader only for in-sequence data */
786 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
787 sk->sk_data_ready(sk);
788 }
789
mptcp_data_ready(struct sock * sk,struct sock * ssk)790 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
791 {
792 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
793
794 /* The peer can send data while we are shutting down this
795 * subflow at msk destruction time, but we must avoid enqueuing
796 * more data to the msk receive queue
797 */
798 if (unlikely(subflow->disposable))
799 return;
800
801 mptcp_data_lock(sk);
802 if (!sock_owned_by_user(sk))
803 __mptcp_data_ready(sk, ssk);
804 else
805 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
806 mptcp_data_unlock(sk);
807 }
808
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)809 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
810 {
811 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
812 msk->allow_infinite_fallback = false;
813 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
814 }
815
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)816 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
817 {
818 struct sock *sk = (struct sock *)msk;
819
820 if (sk->sk_state != TCP_ESTABLISHED)
821 return false;
822
823 spin_lock_bh(&msk->fallback_lock);
824 if (!msk->allow_subflows) {
825 spin_unlock_bh(&msk->fallback_lock);
826 return false;
827 }
828 mptcp_subflow_joined(msk, ssk);
829 spin_unlock_bh(&msk->fallback_lock);
830
831 /* attach to msk socket only after we are sure we will deal with it
832 * at close time
833 */
834 if (sk->sk_socket && !ssk->sk_socket)
835 mptcp_sock_graft(ssk, sk->sk_socket);
836
837 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
838 mptcp_sockopt_sync_locked(msk, ssk);
839 mptcp_stop_tout_timer(sk);
840 __mptcp_propagate_sndbuf(sk, ssk);
841 return true;
842 }
843
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)844 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
845 {
846 struct mptcp_subflow_context *tmp, *subflow;
847 struct mptcp_sock *msk = mptcp_sk(sk);
848
849 list_for_each_entry_safe(subflow, tmp, join_list, node) {
850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
851 bool slow = lock_sock_fast(ssk);
852
853 list_move_tail(&subflow->node, &msk->conn_list);
854 if (!__mptcp_finish_join(msk, ssk))
855 mptcp_subflow_reset(ssk);
856 unlock_sock_fast(ssk, slow);
857 }
858 }
859
mptcp_rtx_timer_pending(struct sock * sk)860 static bool mptcp_rtx_timer_pending(struct sock *sk)
861 {
862 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
863 }
864
mptcp_reset_rtx_timer(struct sock * sk)865 static void mptcp_reset_rtx_timer(struct sock *sk)
866 {
867 struct inet_connection_sock *icsk = inet_csk(sk);
868 unsigned long tout;
869
870 /* prevent rescheduling on close */
871 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
872 return;
873
874 tout = mptcp_sk(sk)->timer_ival;
875 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
876 }
877
mptcp_schedule_work(struct sock * sk)878 bool mptcp_schedule_work(struct sock *sk)
879 {
880 if (inet_sk_state_load(sk) != TCP_CLOSE &&
881 schedule_work(&mptcp_sk(sk)->work)) {
882 /* each subflow already holds a reference to the sk, and the
883 * workqueue is invoked by a subflow, so sk can't go away here.
884 */
885 sock_hold(sk);
886 return true;
887 }
888 return false;
889 }
890
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)891 static bool mptcp_skb_can_collapse_to(u64 write_seq,
892 const struct sk_buff *skb,
893 const struct mptcp_ext *mpext)
894 {
895 if (!tcp_skb_can_collapse_to(skb))
896 return false;
897
898 /* can collapse only if MPTCP level sequence is in order and this
899 * mapping has not been xmitted yet
900 */
901 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
902 !mpext->frozen;
903 }
904
905 /* we can append data to the given data frag if:
906 * - there is space available in the backing page_frag
907 * - the data frag tail matches the current page_frag free offset
908 * - the data frag end sequence number matches the current write seq
909 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)910 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
911 const struct page_frag *pfrag,
912 const struct mptcp_data_frag *df)
913 {
914 return df && pfrag->page == df->page &&
915 pfrag->size - pfrag->offset > 0 &&
916 pfrag->offset == (df->offset + df->data_len) &&
917 df->data_seq + df->data_len == msk->write_seq;
918 }
919
dfrag_uncharge(struct sock * sk,int len)920 static void dfrag_uncharge(struct sock *sk, int len)
921 {
922 sk_mem_uncharge(sk, len);
923 sk_wmem_queued_add(sk, -len);
924 }
925
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)926 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
927 {
928 int len = dfrag->data_len + dfrag->overhead;
929
930 list_del(&dfrag->list);
931 dfrag_uncharge(sk, len);
932 put_page(dfrag->page);
933 }
934
935 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)936 static void __mptcp_clean_una(struct sock *sk)
937 {
938 struct mptcp_sock *msk = mptcp_sk(sk);
939 struct mptcp_data_frag *dtmp, *dfrag;
940 u64 snd_una;
941
942 snd_una = msk->snd_una;
943 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
944 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
945 break;
946
947 if (unlikely(dfrag == msk->first_pending)) {
948 /* in recovery mode can see ack after the current snd head */
949 if (WARN_ON_ONCE(!msk->recovery))
950 break;
951
952 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
953 }
954
955 dfrag_clear(sk, dfrag);
956 }
957
958 dfrag = mptcp_rtx_head(sk);
959 if (dfrag && after64(snd_una, dfrag->data_seq)) {
960 u64 delta = snd_una - dfrag->data_seq;
961
962 /* prevent wrap around in recovery mode */
963 if (unlikely(delta > dfrag->already_sent)) {
964 if (WARN_ON_ONCE(!msk->recovery))
965 goto out;
966 if (WARN_ON_ONCE(delta > dfrag->data_len))
967 goto out;
968 dfrag->already_sent += delta - dfrag->already_sent;
969 }
970
971 dfrag->data_seq += delta;
972 dfrag->offset += delta;
973 dfrag->data_len -= delta;
974 dfrag->already_sent -= delta;
975
976 dfrag_uncharge(sk, delta);
977 }
978
979 /* all retransmitted data acked, recovery completed */
980 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
981 msk->recovery = false;
982
983 out:
984 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
985 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
986 mptcp_stop_rtx_timer(sk);
987 } else {
988 mptcp_reset_rtx_timer(sk);
989 }
990
991 if (mptcp_pending_data_fin_ack(sk))
992 mptcp_schedule_work(sk);
993 }
994
__mptcp_clean_una_wakeup(struct sock * sk)995 static void __mptcp_clean_una_wakeup(struct sock *sk)
996 {
997 lockdep_assert_held_once(&sk->sk_lock.slock);
998
999 __mptcp_clean_una(sk);
1000 mptcp_write_space(sk);
1001 }
1002
mptcp_clean_una_wakeup(struct sock * sk)1003 static void mptcp_clean_una_wakeup(struct sock *sk)
1004 {
1005 mptcp_data_lock(sk);
1006 __mptcp_clean_una_wakeup(sk);
1007 mptcp_data_unlock(sk);
1008 }
1009
mptcp_enter_memory_pressure(struct sock * sk)1010 static void mptcp_enter_memory_pressure(struct sock *sk)
1011 {
1012 struct mptcp_subflow_context *subflow;
1013 struct mptcp_sock *msk = mptcp_sk(sk);
1014 bool first = true;
1015
1016 mptcp_for_each_subflow(msk, subflow) {
1017 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1018
1019 if (first)
1020 tcp_enter_memory_pressure(ssk);
1021 sk_stream_moderate_sndbuf(ssk);
1022
1023 first = false;
1024 }
1025 __mptcp_sync_sndbuf(sk);
1026 }
1027
1028 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1029 * data
1030 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1031 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1032 {
1033 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1034 pfrag, sk->sk_allocation)))
1035 return true;
1036
1037 mptcp_enter_memory_pressure(sk);
1038 return false;
1039 }
1040
1041 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1042 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1043 int orig_offset)
1044 {
1045 int offset = ALIGN(orig_offset, sizeof(long));
1046 struct mptcp_data_frag *dfrag;
1047
1048 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1049 dfrag->data_len = 0;
1050 dfrag->data_seq = msk->write_seq;
1051 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1052 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1053 dfrag->already_sent = 0;
1054 dfrag->page = pfrag->page;
1055
1056 return dfrag;
1057 }
1058
1059 struct mptcp_sendmsg_info {
1060 int mss_now;
1061 int size_goal;
1062 u16 limit;
1063 u16 sent;
1064 unsigned int flags;
1065 bool data_lock_held;
1066 };
1067
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1068 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1069 u64 data_seq, int avail_size)
1070 {
1071 u64 window_end = mptcp_wnd_end(msk);
1072 u64 mptcp_snd_wnd;
1073
1074 if (__mptcp_check_fallback(msk))
1075 return avail_size;
1076
1077 mptcp_snd_wnd = window_end - data_seq;
1078 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1079
1080 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1081 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1082 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1083 }
1084
1085 return avail_size;
1086 }
1087
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1088 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1089 {
1090 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1091
1092 if (!mpext)
1093 return false;
1094 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1095 return true;
1096 }
1097
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1098 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1099 {
1100 struct sk_buff *skb;
1101
1102 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1103 if (likely(skb)) {
1104 if (likely(__mptcp_add_ext(skb, gfp))) {
1105 skb_reserve(skb, MAX_TCP_HEADER);
1106 skb->ip_summed = CHECKSUM_PARTIAL;
1107 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1108 return skb;
1109 }
1110 __kfree_skb(skb);
1111 } else {
1112 mptcp_enter_memory_pressure(sk);
1113 }
1114 return NULL;
1115 }
1116
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1117 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1118 {
1119 struct sk_buff *skb;
1120
1121 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1122 if (!skb)
1123 return NULL;
1124
1125 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1126 tcp_skb_entail(ssk, skb);
1127 return skb;
1128 }
1129 tcp_skb_tsorted_anchor_cleanup(skb);
1130 kfree_skb(skb);
1131 return NULL;
1132 }
1133
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1134 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1135 {
1136 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1137
1138 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1139 }
1140
1141 /* note: this always recompute the csum on the whole skb, even
1142 * if we just appended a single frag. More status info needed
1143 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1144 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1145 {
1146 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1147 __wsum csum = ~csum_unfold(mpext->csum);
1148 int offset = skb->len - added;
1149
1150 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1151 }
1152
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1153 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1154 struct sock *ssk,
1155 struct mptcp_ext *mpext)
1156 {
1157 if (!mpext)
1158 return;
1159
1160 mpext->infinite_map = 1;
1161 mpext->data_len = 0;
1162
1163 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1164 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1165 mptcp_subflow_reset(ssk);
1166 return;
1167 }
1168
1169 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1170 }
1171
1172 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1173
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1174 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1175 struct mptcp_data_frag *dfrag,
1176 struct mptcp_sendmsg_info *info)
1177 {
1178 u64 data_seq = dfrag->data_seq + info->sent;
1179 int offset = dfrag->offset + info->sent;
1180 struct mptcp_sock *msk = mptcp_sk(sk);
1181 bool zero_window_probe = false;
1182 struct mptcp_ext *mpext = NULL;
1183 bool can_coalesce = false;
1184 bool reuse_skb = true;
1185 struct sk_buff *skb;
1186 size_t copy;
1187 int i;
1188
1189 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1190 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1191
1192 if (WARN_ON_ONCE(info->sent > info->limit ||
1193 info->limit > dfrag->data_len))
1194 return 0;
1195
1196 if (unlikely(!__tcp_can_send(ssk)))
1197 return -EAGAIN;
1198
1199 /* compute send limit */
1200 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1201 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1202 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1203 copy = info->size_goal;
1204
1205 skb = tcp_write_queue_tail(ssk);
1206 if (skb && copy > skb->len) {
1207 /* Limit the write to the size available in the
1208 * current skb, if any, so that we create at most a new skb.
1209 * Explicitly tells TCP internals to avoid collapsing on later
1210 * queue management operation, to avoid breaking the ext <->
1211 * SSN association set here
1212 */
1213 mpext = mptcp_get_ext(skb);
1214 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1215 TCP_SKB_CB(skb)->eor = 1;
1216 tcp_mark_push(tcp_sk(ssk), skb);
1217 goto alloc_skb;
1218 }
1219
1220 i = skb_shinfo(skb)->nr_frags;
1221 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1222 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1223 tcp_mark_push(tcp_sk(ssk), skb);
1224 goto alloc_skb;
1225 }
1226
1227 copy -= skb->len;
1228 } else {
1229 alloc_skb:
1230 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1231 if (!skb)
1232 return -ENOMEM;
1233
1234 i = skb_shinfo(skb)->nr_frags;
1235 reuse_skb = false;
1236 mpext = mptcp_get_ext(skb);
1237 }
1238
1239 /* Zero window and all data acked? Probe. */
1240 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1241 if (copy == 0) {
1242 u64 snd_una = READ_ONCE(msk->snd_una);
1243
1244 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1245 tcp_remove_empty_skb(ssk);
1246 return 0;
1247 }
1248
1249 zero_window_probe = true;
1250 data_seq = snd_una - 1;
1251 copy = 1;
1252 }
1253
1254 copy = min_t(size_t, copy, info->limit - info->sent);
1255 if (!sk_wmem_schedule(ssk, copy)) {
1256 tcp_remove_empty_skb(ssk);
1257 return -ENOMEM;
1258 }
1259
1260 if (can_coalesce) {
1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 } else {
1263 get_page(dfrag->page);
1264 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1265 }
1266
1267 skb->len += copy;
1268 skb->data_len += copy;
1269 skb->truesize += copy;
1270 sk_wmem_queued_add(ssk, copy);
1271 sk_mem_charge(ssk, copy);
1272 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1273 TCP_SKB_CB(skb)->end_seq += copy;
1274 tcp_skb_pcount_set(skb, 0);
1275
1276 /* on skb reuse we just need to update the DSS len */
1277 if (reuse_skb) {
1278 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1279 mpext->data_len += copy;
1280 goto out;
1281 }
1282
1283 memset(mpext, 0, sizeof(*mpext));
1284 mpext->data_seq = data_seq;
1285 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1286 mpext->data_len = copy;
1287 mpext->use_map = 1;
1288 mpext->dsn64 = 1;
1289
1290 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1291 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1292 mpext->dsn64);
1293
1294 if (zero_window_probe) {
1295 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1296 mpext->frozen = 1;
1297 if (READ_ONCE(msk->csum_enabled))
1298 mptcp_update_data_checksum(skb, copy);
1299 tcp_push_pending_frames(ssk);
1300 return 0;
1301 }
1302 out:
1303 if (READ_ONCE(msk->csum_enabled))
1304 mptcp_update_data_checksum(skb, copy);
1305 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1306 mptcp_update_infinite_map(msk, ssk, mpext);
1307 trace_mptcp_sendmsg_frag(mpext);
1308 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1309 return copy;
1310 }
1311
1312 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1313 sizeof(struct tcphdr) - \
1314 MAX_TCP_OPTION_SPACE - \
1315 sizeof(struct ipv6hdr) - \
1316 sizeof(struct frag_hdr))
1317
1318 struct subflow_send_info {
1319 struct sock *ssk;
1320 u64 linger_time;
1321 };
1322
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1323 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1324 {
1325 if (!subflow->stale)
1326 return;
1327
1328 subflow->stale = 0;
1329 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1330 }
1331
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1332 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1333 {
1334 if (unlikely(subflow->stale)) {
1335 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1336
1337 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1338 return false;
1339
1340 mptcp_subflow_set_active(subflow);
1341 }
1342 return __mptcp_subflow_active(subflow);
1343 }
1344
1345 #define SSK_MODE_ACTIVE 0
1346 #define SSK_MODE_BACKUP 1
1347 #define SSK_MODE_MAX 2
1348
1349 /* implement the mptcp packet scheduler;
1350 * returns the subflow that will transmit the next DSS
1351 * additionally updates the rtx timeout
1352 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1353 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1354 {
1355 struct subflow_send_info send_info[SSK_MODE_MAX];
1356 struct mptcp_subflow_context *subflow;
1357 struct sock *sk = (struct sock *)msk;
1358 u32 pace, burst, wmem;
1359 int i, nr_active = 0;
1360 struct sock *ssk;
1361 u64 linger_time;
1362 long tout = 0;
1363
1364 /* pick the subflow with the lower wmem/wspace ratio */
1365 for (i = 0; i < SSK_MODE_MAX; ++i) {
1366 send_info[i].ssk = NULL;
1367 send_info[i].linger_time = -1;
1368 }
1369
1370 mptcp_for_each_subflow(msk, subflow) {
1371 bool backup = subflow->backup || subflow->request_bkup;
1372
1373 trace_mptcp_subflow_get_send(subflow);
1374 ssk = mptcp_subflow_tcp_sock(subflow);
1375 if (!mptcp_subflow_active(subflow))
1376 continue;
1377
1378 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1379 nr_active += !backup;
1380 pace = subflow->avg_pacing_rate;
1381 if (unlikely(!pace)) {
1382 /* init pacing rate from socket */
1383 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1384 pace = subflow->avg_pacing_rate;
1385 if (!pace)
1386 continue;
1387 }
1388
1389 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1390 if (linger_time < send_info[backup].linger_time) {
1391 send_info[backup].ssk = ssk;
1392 send_info[backup].linger_time = linger_time;
1393 }
1394 }
1395 __mptcp_set_timeout(sk, tout);
1396
1397 /* pick the best backup if no other subflow is active */
1398 if (!nr_active)
1399 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1400
1401 /* According to the blest algorithm, to avoid HoL blocking for the
1402 * faster flow, we need to:
1403 * - estimate the faster flow linger time
1404 * - use the above to estimate the amount of byte transferred
1405 * by the faster flow
1406 * - check that the amount of queued data is greater than the above,
1407 * otherwise do not use the picked, slower, subflow
1408 * We select the subflow with the shorter estimated time to flush
1409 * the queued mem, which basically ensure the above. We just need
1410 * to check that subflow has a non empty cwin.
1411 */
1412 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1413 if (!ssk || !sk_stream_memory_free(ssk))
1414 return NULL;
1415
1416 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1417 wmem = READ_ONCE(ssk->sk_wmem_queued);
1418 if (!burst)
1419 return ssk;
1420
1421 subflow = mptcp_subflow_ctx(ssk);
1422 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1423 READ_ONCE(ssk->sk_pacing_rate) * burst,
1424 burst + wmem);
1425 msk->snd_burst = burst;
1426 return ssk;
1427 }
1428
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1429 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1430 {
1431 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1432 release_sock(ssk);
1433 }
1434
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1435 static void mptcp_update_post_push(struct mptcp_sock *msk,
1436 struct mptcp_data_frag *dfrag,
1437 u32 sent)
1438 {
1439 u64 snd_nxt_new = dfrag->data_seq;
1440
1441 dfrag->already_sent += sent;
1442
1443 msk->snd_burst -= sent;
1444
1445 snd_nxt_new += dfrag->already_sent;
1446
1447 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1448 * is recovering after a failover. In that event, this re-sends
1449 * old segments.
1450 *
1451 * Thus compute snd_nxt_new candidate based on
1452 * the dfrag->data_seq that was sent and the data
1453 * that has been handed to the subflow for transmission
1454 * and skip update in case it was old dfrag.
1455 */
1456 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1457 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1458 WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1459 }
1460 }
1461
mptcp_check_and_set_pending(struct sock * sk)1462 void mptcp_check_and_set_pending(struct sock *sk)
1463 {
1464 if (mptcp_send_head(sk)) {
1465 mptcp_data_lock(sk);
1466 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1467 mptcp_data_unlock(sk);
1468 }
1469 }
1470
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1471 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1472 struct mptcp_sendmsg_info *info)
1473 {
1474 struct mptcp_sock *msk = mptcp_sk(sk);
1475 struct mptcp_data_frag *dfrag;
1476 int len, copied = 0, err = 0;
1477
1478 while ((dfrag = mptcp_send_head(sk))) {
1479 info->sent = dfrag->already_sent;
1480 info->limit = dfrag->data_len;
1481 len = dfrag->data_len - dfrag->already_sent;
1482 while (len > 0) {
1483 int ret = 0;
1484
1485 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1486 if (ret <= 0) {
1487 err = copied ? : ret;
1488 goto out;
1489 }
1490
1491 info->sent += ret;
1492 copied += ret;
1493 len -= ret;
1494
1495 mptcp_update_post_push(msk, dfrag, ret);
1496 }
1497 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1498
1499 if (msk->snd_burst <= 0 ||
1500 !sk_stream_memory_free(ssk) ||
1501 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1502 err = copied;
1503 goto out;
1504 }
1505 mptcp_set_timeout(sk);
1506 }
1507 err = copied;
1508
1509 out:
1510 if (err > 0)
1511 msk->last_data_sent = tcp_jiffies32;
1512 return err;
1513 }
1514
__mptcp_push_pending(struct sock * sk,unsigned int flags)1515 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1516 {
1517 struct sock *prev_ssk = NULL, *ssk = NULL;
1518 struct mptcp_sock *msk = mptcp_sk(sk);
1519 struct mptcp_sendmsg_info info = {
1520 .flags = flags,
1521 };
1522 bool do_check_data_fin = false;
1523 int push_count = 1;
1524
1525 while (mptcp_send_head(sk) && (push_count > 0)) {
1526 struct mptcp_subflow_context *subflow;
1527 int ret = 0;
1528
1529 if (mptcp_sched_get_send(msk))
1530 break;
1531
1532 push_count = 0;
1533
1534 mptcp_for_each_subflow(msk, subflow) {
1535 if (READ_ONCE(subflow->scheduled)) {
1536 mptcp_subflow_set_scheduled(subflow, false);
1537
1538 prev_ssk = ssk;
1539 ssk = mptcp_subflow_tcp_sock(subflow);
1540 if (ssk != prev_ssk) {
1541 /* First check. If the ssk has changed since
1542 * the last round, release prev_ssk
1543 */
1544 if (prev_ssk)
1545 mptcp_push_release(prev_ssk, &info);
1546
1547 /* Need to lock the new subflow only if different
1548 * from the previous one, otherwise we are still
1549 * helding the relevant lock
1550 */
1551 lock_sock(ssk);
1552 }
1553
1554 push_count++;
1555
1556 ret = __subflow_push_pending(sk, ssk, &info);
1557 if (ret <= 0) {
1558 if (ret != -EAGAIN ||
1559 (1 << ssk->sk_state) &
1560 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1561 push_count--;
1562 continue;
1563 }
1564 do_check_data_fin = true;
1565 }
1566 }
1567 }
1568
1569 /* at this point we held the socket lock for the last subflow we used */
1570 if (ssk)
1571 mptcp_push_release(ssk, &info);
1572
1573 /* ensure the rtx timer is running */
1574 if (!mptcp_rtx_timer_pending(sk))
1575 mptcp_reset_rtx_timer(sk);
1576 if (do_check_data_fin)
1577 mptcp_check_send_data_fin(sk);
1578 }
1579
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1580 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1581 {
1582 struct mptcp_sock *msk = mptcp_sk(sk);
1583 struct mptcp_sendmsg_info info = {
1584 .data_lock_held = true,
1585 };
1586 bool keep_pushing = true;
1587 struct sock *xmit_ssk;
1588 int copied = 0;
1589
1590 info.flags = 0;
1591 while (mptcp_send_head(sk) && keep_pushing) {
1592 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1593 int ret = 0;
1594
1595 /* check for a different subflow usage only after
1596 * spooling the first chunk of data
1597 */
1598 if (first) {
1599 mptcp_subflow_set_scheduled(subflow, false);
1600 ret = __subflow_push_pending(sk, ssk, &info);
1601 first = false;
1602 if (ret <= 0)
1603 break;
1604 copied += ret;
1605 continue;
1606 }
1607
1608 if (mptcp_sched_get_send(msk))
1609 goto out;
1610
1611 if (READ_ONCE(subflow->scheduled)) {
1612 mptcp_subflow_set_scheduled(subflow, false);
1613 ret = __subflow_push_pending(sk, ssk, &info);
1614 if (ret <= 0)
1615 keep_pushing = false;
1616 copied += ret;
1617 }
1618
1619 mptcp_for_each_subflow(msk, subflow) {
1620 if (READ_ONCE(subflow->scheduled)) {
1621 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1622 if (xmit_ssk != ssk) {
1623 mptcp_subflow_delegate(subflow,
1624 MPTCP_DELEGATE_SEND);
1625 keep_pushing = false;
1626 }
1627 }
1628 }
1629 }
1630
1631 out:
1632 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1633 * not going to flush it via release_sock()
1634 */
1635 if (copied) {
1636 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1637 info.size_goal);
1638 if (!mptcp_rtx_timer_pending(sk))
1639 mptcp_reset_rtx_timer(sk);
1640
1641 if (msk->snd_data_fin_enable &&
1642 msk->snd_nxt + 1 == msk->write_seq)
1643 mptcp_schedule_work(sk);
1644 }
1645 }
1646
1647 static int mptcp_disconnect(struct sock *sk, int flags);
1648
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1649 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1650 size_t len, int *copied_syn)
1651 {
1652 unsigned int saved_flags = msg->msg_flags;
1653 struct mptcp_sock *msk = mptcp_sk(sk);
1654 struct sock *ssk;
1655 int ret;
1656
1657 /* on flags based fastopen the mptcp is supposed to create the
1658 * first subflow right now. Otherwise we are in the defer_connect
1659 * path, and the first subflow must be already present.
1660 * Since the defer_connect flag is cleared after the first succsful
1661 * fastopen attempt, no need to check for additional subflow status.
1662 */
1663 if (msg->msg_flags & MSG_FASTOPEN) {
1664 ssk = __mptcp_nmpc_sk(msk);
1665 if (IS_ERR(ssk))
1666 return PTR_ERR(ssk);
1667 }
1668 if (!msk->first)
1669 return -EINVAL;
1670
1671 ssk = msk->first;
1672
1673 lock_sock(ssk);
1674 msg->msg_flags |= MSG_DONTWAIT;
1675 msk->fastopening = 1;
1676 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1677 msk->fastopening = 0;
1678 msg->msg_flags = saved_flags;
1679 release_sock(ssk);
1680
1681 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1682 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1683 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1684 msg->msg_namelen, msg->msg_flags, 1);
1685
1686 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1687 * case of any error, except timeout or signal
1688 */
1689 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1690 *copied_syn = 0;
1691 } else if (ret && ret != -EINPROGRESS) {
1692 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1693 * __inet_stream_connect() can fail, due to looking check,
1694 * see mptcp_disconnect().
1695 * Attempt it again outside the problematic scope.
1696 */
1697 if (!mptcp_disconnect(sk, 0)) {
1698 sk->sk_disconnects++;
1699 sk->sk_socket->state = SS_UNCONNECTED;
1700 }
1701 }
1702 inet_clear_bit(DEFER_CONNECT, sk);
1703
1704 return ret;
1705 }
1706
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1707 static int do_copy_data_nocache(struct sock *sk, int copy,
1708 struct iov_iter *from, char *to)
1709 {
1710 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1711 if (!copy_from_iter_full_nocache(to, copy, from))
1712 return -EFAULT;
1713 } else if (!copy_from_iter_full(to, copy, from)) {
1714 return -EFAULT;
1715 }
1716 return 0;
1717 }
1718
1719 /* open-code sk_stream_memory_free() plus sent limit computation to
1720 * avoid indirect calls in fast-path.
1721 * Called under the msk socket lock, so we can avoid a bunch of ONCE
1722 * annotations.
1723 */
mptcp_send_limit(const struct sock * sk)1724 static u32 mptcp_send_limit(const struct sock *sk)
1725 {
1726 const struct mptcp_sock *msk = mptcp_sk(sk);
1727 u32 limit, not_sent;
1728
1729 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1730 return 0;
1731
1732 limit = mptcp_notsent_lowat(sk);
1733 if (limit == UINT_MAX)
1734 return UINT_MAX;
1735
1736 not_sent = msk->write_seq - msk->snd_nxt;
1737 if (not_sent >= limit)
1738 return 0;
1739
1740 return limit - not_sent;
1741 }
1742
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1743 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1744 {
1745 struct mptcp_sock *msk = mptcp_sk(sk);
1746 struct page_frag *pfrag;
1747 size_t copied = 0;
1748 int ret = 0;
1749 long timeo;
1750
1751 /* silently ignore everything else */
1752 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1753
1754 lock_sock(sk);
1755
1756 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1757 msg->msg_flags & MSG_FASTOPEN)) {
1758 int copied_syn = 0;
1759
1760 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1761 copied += copied_syn;
1762 if (ret == -EINPROGRESS && copied_syn > 0)
1763 goto out;
1764 else if (ret)
1765 goto do_error;
1766 }
1767
1768 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1769
1770 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1771 ret = sk_stream_wait_connect(sk, &timeo);
1772 if (ret)
1773 goto do_error;
1774 }
1775
1776 ret = -EPIPE;
1777 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1778 goto do_error;
1779
1780 pfrag = sk_page_frag(sk);
1781
1782 while (msg_data_left(msg)) {
1783 int total_ts, frag_truesize = 0;
1784 struct mptcp_data_frag *dfrag;
1785 bool dfrag_collapsed;
1786 size_t psize, offset;
1787 u32 copy_limit;
1788
1789 /* ensure fitting the notsent_lowat() constraint */
1790 copy_limit = mptcp_send_limit(sk);
1791 if (!copy_limit)
1792 goto wait_for_memory;
1793
1794 /* reuse tail pfrag, if possible, or carve a new one from the
1795 * page allocator
1796 */
1797 dfrag = mptcp_pending_tail(sk);
1798 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1799 if (!dfrag_collapsed) {
1800 if (!mptcp_page_frag_refill(sk, pfrag))
1801 goto wait_for_memory;
1802
1803 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1804 frag_truesize = dfrag->overhead;
1805 }
1806
1807 /* we do not bound vs wspace, to allow a single packet.
1808 * memory accounting will prevent execessive memory usage
1809 * anyway
1810 */
1811 offset = dfrag->offset + dfrag->data_len;
1812 psize = pfrag->size - offset;
1813 psize = min_t(size_t, psize, msg_data_left(msg));
1814 psize = min_t(size_t, psize, copy_limit);
1815 total_ts = psize + frag_truesize;
1816
1817 if (!sk_wmem_schedule(sk, total_ts))
1818 goto wait_for_memory;
1819
1820 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1821 page_address(dfrag->page) + offset);
1822 if (ret)
1823 goto do_error;
1824
1825 /* data successfully copied into the write queue */
1826 sk_forward_alloc_add(sk, -total_ts);
1827 copied += psize;
1828 dfrag->data_len += psize;
1829 frag_truesize += psize;
1830 pfrag->offset += frag_truesize;
1831 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1832
1833 /* charge data on mptcp pending queue to the msk socket
1834 * Note: we charge such data both to sk and ssk
1835 */
1836 sk_wmem_queued_add(sk, frag_truesize);
1837 if (!dfrag_collapsed) {
1838 get_page(dfrag->page);
1839 list_add_tail(&dfrag->list, &msk->rtx_queue);
1840 if (!msk->first_pending)
1841 WRITE_ONCE(msk->first_pending, dfrag);
1842 }
1843 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1844 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1845 !dfrag_collapsed);
1846
1847 continue;
1848
1849 wait_for_memory:
1850 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1851 __mptcp_push_pending(sk, msg->msg_flags);
1852 ret = sk_stream_wait_memory(sk, &timeo);
1853 if (ret)
1854 goto do_error;
1855 }
1856
1857 if (copied)
1858 __mptcp_push_pending(sk, msg->msg_flags);
1859
1860 out:
1861 release_sock(sk);
1862 return copied;
1863
1864 do_error:
1865 if (copied)
1866 goto out;
1867
1868 copied = sk_stream_error(sk, msg->msg_flags, ret);
1869 goto out;
1870 }
1871
1872 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1873
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1874 static int __mptcp_recvmsg_mskq(struct sock *sk,
1875 struct msghdr *msg,
1876 size_t len, int flags,
1877 struct scm_timestamping_internal *tss,
1878 int *cmsg_flags)
1879 {
1880 struct mptcp_sock *msk = mptcp_sk(sk);
1881 struct sk_buff *skb, *tmp;
1882 int copied = 0;
1883
1884 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1885 u32 offset = MPTCP_SKB_CB(skb)->offset;
1886 u32 data_len = skb->len - offset;
1887 u32 count = min_t(size_t, len - copied, data_len);
1888 int err;
1889
1890 if (!(flags & MSG_TRUNC)) {
1891 err = skb_copy_datagram_msg(skb, offset, msg, count);
1892 if (unlikely(err < 0)) {
1893 if (!copied)
1894 return err;
1895 break;
1896 }
1897 }
1898
1899 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1900 tcp_update_recv_tstamps(skb, tss);
1901 *cmsg_flags |= MPTCP_CMSG_TS;
1902 }
1903
1904 copied += count;
1905
1906 if (count < data_len) {
1907 if (!(flags & MSG_PEEK)) {
1908 MPTCP_SKB_CB(skb)->offset += count;
1909 MPTCP_SKB_CB(skb)->map_seq += count;
1910 msk->bytes_consumed += count;
1911 }
1912 break;
1913 }
1914
1915 if (!(flags & MSG_PEEK)) {
1916 /* avoid the indirect call, we know the destructor is sock_wfree */
1917 skb->destructor = NULL;
1918 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1919 sk_mem_uncharge(sk, skb->truesize);
1920 __skb_unlink(skb, &sk->sk_receive_queue);
1921 __kfree_skb(skb);
1922 msk->bytes_consumed += count;
1923 }
1924
1925 if (copied >= len)
1926 break;
1927 }
1928
1929 mptcp_rcv_space_adjust(msk, copied);
1930 return copied;
1931 }
1932
1933 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1934 *
1935 * Only difference: Use highest rtt estimate of the subflows in use.
1936 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1937 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1938 {
1939 struct mptcp_subflow_context *subflow;
1940 struct sock *sk = (struct sock *)msk;
1941 u8 scaling_ratio = U8_MAX;
1942 u32 time, advmss = 1;
1943 u64 rtt_us, mstamp;
1944
1945 msk_owned_by_me(msk);
1946
1947 if (copied <= 0)
1948 return;
1949
1950 if (!msk->rcvspace_init)
1951 mptcp_rcv_space_init(msk, msk->first);
1952
1953 msk->rcvq_space.copied += copied;
1954
1955 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1956 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1957
1958 rtt_us = msk->rcvq_space.rtt_us;
1959 if (rtt_us && time < (rtt_us >> 3))
1960 return;
1961
1962 rtt_us = 0;
1963 mptcp_for_each_subflow(msk, subflow) {
1964 const struct tcp_sock *tp;
1965 u64 sf_rtt_us;
1966 u32 sf_advmss;
1967
1968 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1969
1970 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1971 sf_advmss = READ_ONCE(tp->advmss);
1972
1973 rtt_us = max(sf_rtt_us, rtt_us);
1974 advmss = max(sf_advmss, advmss);
1975 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1976 }
1977
1978 msk->rcvq_space.rtt_us = rtt_us;
1979 msk->scaling_ratio = scaling_ratio;
1980 if (time < (rtt_us >> 3) || rtt_us == 0)
1981 return;
1982
1983 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1984 goto new_measure;
1985
1986 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1987 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1988 u64 rcvwin, grow;
1989 int rcvbuf;
1990
1991 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1992
1993 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1994
1995 do_div(grow, msk->rcvq_space.space);
1996 rcvwin += (grow << 1);
1997
1998 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1999 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2000
2001 if (rcvbuf > sk->sk_rcvbuf) {
2002 u32 window_clamp;
2003
2004 window_clamp = mptcp_win_from_space(sk, rcvbuf);
2005 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2006
2007 /* Make subflows follow along. If we do not do this, we
2008 * get drops at subflow level if skbs can't be moved to
2009 * the mptcp rx queue fast enough (announced rcv_win can
2010 * exceed ssk->sk_rcvbuf).
2011 */
2012 mptcp_for_each_subflow(msk, subflow) {
2013 struct sock *ssk;
2014 bool slow;
2015
2016 ssk = mptcp_subflow_tcp_sock(subflow);
2017 slow = lock_sock_fast(ssk);
2018 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2019 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2020 if (tcp_can_send_ack(ssk))
2021 tcp_cleanup_rbuf(ssk, 1);
2022 unlock_sock_fast(ssk, slow);
2023 }
2024 }
2025 }
2026
2027 msk->rcvq_space.space = msk->rcvq_space.copied;
2028 new_measure:
2029 msk->rcvq_space.copied = 0;
2030 msk->rcvq_space.time = mstamp;
2031 }
2032
2033 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2034 __mptcp_first_ready_from(struct mptcp_sock *msk,
2035 struct mptcp_subflow_context *subflow)
2036 {
2037 struct mptcp_subflow_context *start_subflow = subflow;
2038
2039 while (!READ_ONCE(subflow->data_avail)) {
2040 subflow = mptcp_next_subflow(msk, subflow);
2041 if (subflow == start_subflow)
2042 return NULL;
2043 }
2044 return subflow;
2045 }
2046
__mptcp_move_skbs(struct sock * sk)2047 static bool __mptcp_move_skbs(struct sock *sk)
2048 {
2049 struct mptcp_subflow_context *subflow;
2050 struct mptcp_sock *msk = mptcp_sk(sk);
2051 bool ret = false;
2052
2053 if (list_empty(&msk->conn_list))
2054 return false;
2055
2056 /* verify we can move any data from the subflow, eventually updating */
2057 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2058 mptcp_for_each_subflow(msk, subflow)
2059 __mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2060
2061 subflow = list_first_entry(&msk->conn_list,
2062 struct mptcp_subflow_context, node);
2063 for (;;) {
2064 struct sock *ssk;
2065 bool slowpath;
2066
2067 /*
2068 * As an optimization avoid traversing the subflows list
2069 * and ev. acquiring the subflow socket lock before baling out
2070 */
2071 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2072 break;
2073
2074 subflow = __mptcp_first_ready_from(msk, subflow);
2075 if (!subflow)
2076 break;
2077
2078 ssk = mptcp_subflow_tcp_sock(subflow);
2079 slowpath = lock_sock_fast(ssk);
2080 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2081 if (unlikely(ssk->sk_err))
2082 __mptcp_error_report(sk);
2083 unlock_sock_fast(ssk, slowpath);
2084
2085 subflow = mptcp_next_subflow(msk, subflow);
2086 }
2087
2088 __mptcp_ofo_queue(msk);
2089 if (ret)
2090 mptcp_check_data_fin((struct sock *)msk);
2091 return ret;
2092 }
2093
mptcp_inq_hint(const struct sock * sk)2094 static unsigned int mptcp_inq_hint(const struct sock *sk)
2095 {
2096 const struct mptcp_sock *msk = mptcp_sk(sk);
2097 const struct sk_buff *skb;
2098
2099 skb = skb_peek(&sk->sk_receive_queue);
2100 if (skb) {
2101 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2102
2103 if (hint_val >= INT_MAX)
2104 return INT_MAX;
2105
2106 return (unsigned int)hint_val;
2107 }
2108
2109 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2110 return 1;
2111
2112 return 0;
2113 }
2114
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2115 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2116 int flags, int *addr_len)
2117 {
2118 struct mptcp_sock *msk = mptcp_sk(sk);
2119 struct scm_timestamping_internal tss;
2120 int copied = 0, cmsg_flags = 0;
2121 int target;
2122 long timeo;
2123
2124 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2125 if (unlikely(flags & MSG_ERRQUEUE))
2126 return inet_recv_error(sk, msg, len, addr_len);
2127
2128 lock_sock(sk);
2129 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2130 copied = -ENOTCONN;
2131 goto out_err;
2132 }
2133
2134 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2135
2136 len = min_t(size_t, len, INT_MAX);
2137 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2138
2139 if (unlikely(msk->recvmsg_inq))
2140 cmsg_flags = MPTCP_CMSG_INQ;
2141
2142 while (copied < len) {
2143 int err, bytes_read;
2144
2145 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2146 if (unlikely(bytes_read < 0)) {
2147 if (!copied)
2148 copied = bytes_read;
2149 goto out_err;
2150 }
2151
2152 copied += bytes_read;
2153
2154 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2155 continue;
2156
2157 /* only the MPTCP socket status is relevant here. The exit
2158 * conditions mirror closely tcp_recvmsg()
2159 */
2160 if (copied >= target)
2161 break;
2162
2163 if (copied) {
2164 if (sk->sk_err ||
2165 sk->sk_state == TCP_CLOSE ||
2166 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2167 !timeo ||
2168 signal_pending(current))
2169 break;
2170 } else {
2171 if (sk->sk_err) {
2172 copied = sock_error(sk);
2173 break;
2174 }
2175
2176 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2177 /* race breaker: the shutdown could be after the
2178 * previous receive queue check
2179 */
2180 if (__mptcp_move_skbs(sk))
2181 continue;
2182 break;
2183 }
2184
2185 if (sk->sk_state == TCP_CLOSE) {
2186 copied = -ENOTCONN;
2187 break;
2188 }
2189
2190 if (!timeo) {
2191 copied = -EAGAIN;
2192 break;
2193 }
2194
2195 if (signal_pending(current)) {
2196 copied = sock_intr_errno(timeo);
2197 break;
2198 }
2199 }
2200
2201 pr_debug("block timeout %ld\n", timeo);
2202 mptcp_cleanup_rbuf(msk, copied);
2203 err = sk_wait_data(sk, &timeo, NULL);
2204 if (err < 0) {
2205 err = copied ? : err;
2206 goto out_err;
2207 }
2208 }
2209
2210 mptcp_cleanup_rbuf(msk, copied);
2211
2212 out_err:
2213 if (cmsg_flags && copied >= 0) {
2214 if (cmsg_flags & MPTCP_CMSG_TS)
2215 tcp_recv_timestamp(msg, sk, &tss);
2216
2217 if (cmsg_flags & MPTCP_CMSG_INQ) {
2218 unsigned int inq = mptcp_inq_hint(sk);
2219
2220 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2221 }
2222 }
2223
2224 pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2225 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2226
2227 release_sock(sk);
2228 return copied;
2229 }
2230
mptcp_retransmit_timer(struct timer_list * t)2231 static void mptcp_retransmit_timer(struct timer_list *t)
2232 {
2233 struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2234 icsk_retransmit_timer);
2235 struct sock *sk = &icsk->icsk_inet.sk;
2236 struct mptcp_sock *msk = mptcp_sk(sk);
2237
2238 bh_lock_sock(sk);
2239 if (!sock_owned_by_user(sk)) {
2240 /* we need a process context to retransmit */
2241 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2242 mptcp_schedule_work(sk);
2243 } else {
2244 /* delegate our work to tcp_release_cb() */
2245 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2246 }
2247 bh_unlock_sock(sk);
2248 sock_put(sk);
2249 }
2250
mptcp_tout_timer(struct timer_list * t)2251 static void mptcp_tout_timer(struct timer_list *t)
2252 {
2253 struct sock *sk = timer_container_of(sk, t, sk_timer);
2254
2255 mptcp_schedule_work(sk);
2256 sock_put(sk);
2257 }
2258
2259 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2260 * level.
2261 *
2262 * A backup subflow is returned only if that is the only kind available.
2263 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2264 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2265 {
2266 struct sock *backup = NULL, *pick = NULL;
2267 struct mptcp_subflow_context *subflow;
2268 int min_stale_count = INT_MAX;
2269
2270 mptcp_for_each_subflow(msk, subflow) {
2271 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2272
2273 if (!__mptcp_subflow_active(subflow))
2274 continue;
2275
2276 /* still data outstanding at TCP level? skip this */
2277 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2278 mptcp_pm_subflow_chk_stale(msk, ssk);
2279 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2280 continue;
2281 }
2282
2283 if (subflow->backup || subflow->request_bkup) {
2284 if (!backup)
2285 backup = ssk;
2286 continue;
2287 }
2288
2289 if (!pick)
2290 pick = ssk;
2291 }
2292
2293 if (pick)
2294 return pick;
2295
2296 /* use backup only if there are no progresses anywhere */
2297 return min_stale_count > 1 ? backup : NULL;
2298 }
2299
__mptcp_retransmit_pending_data(struct sock * sk)2300 bool __mptcp_retransmit_pending_data(struct sock *sk)
2301 {
2302 struct mptcp_data_frag *cur, *rtx_head;
2303 struct mptcp_sock *msk = mptcp_sk(sk);
2304
2305 if (__mptcp_check_fallback(msk))
2306 return false;
2307
2308 /* the closing socket has some data untransmitted and/or unacked:
2309 * some data in the mptcp rtx queue has not really xmitted yet.
2310 * keep it simple and re-inject the whole mptcp level rtx queue
2311 */
2312 mptcp_data_lock(sk);
2313 __mptcp_clean_una_wakeup(sk);
2314 rtx_head = mptcp_rtx_head(sk);
2315 if (!rtx_head) {
2316 mptcp_data_unlock(sk);
2317 return false;
2318 }
2319
2320 msk->recovery_snd_nxt = msk->snd_nxt;
2321 msk->recovery = true;
2322 mptcp_data_unlock(sk);
2323
2324 msk->first_pending = rtx_head;
2325 msk->snd_burst = 0;
2326
2327 /* be sure to clear the "sent status" on all re-injected fragments */
2328 list_for_each_entry(cur, &msk->rtx_queue, list) {
2329 if (!cur->already_sent)
2330 break;
2331 cur->already_sent = 0;
2332 }
2333
2334 return true;
2335 }
2336
2337 /* flags for __mptcp_close_ssk() */
2338 #define MPTCP_CF_PUSH BIT(1)
2339 #define MPTCP_CF_FASTCLOSE BIT(2)
2340
2341 /* be sure to send a reset only if the caller asked for it, also
2342 * clean completely the subflow status when the subflow reaches
2343 * TCP_CLOSE state
2344 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2345 static void __mptcp_subflow_disconnect(struct sock *ssk,
2346 struct mptcp_subflow_context *subflow,
2347 unsigned int flags)
2348 {
2349 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2350 (flags & MPTCP_CF_FASTCLOSE)) {
2351 /* The MPTCP code never wait on the subflow sockets, TCP-level
2352 * disconnect should never fail
2353 */
2354 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2355 mptcp_subflow_ctx_reset(subflow);
2356 } else {
2357 tcp_shutdown(ssk, SEND_SHUTDOWN);
2358 }
2359 }
2360
2361 /* subflow sockets can be either outgoing (connect) or incoming
2362 * (accept).
2363 *
2364 * Outgoing subflows use in-kernel sockets.
2365 * Incoming subflows do not have their own 'struct socket' allocated,
2366 * so we need to use tcp_close() after detaching them from the mptcp
2367 * parent socket.
2368 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2369 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2370 struct mptcp_subflow_context *subflow,
2371 unsigned int flags)
2372 {
2373 struct mptcp_sock *msk = mptcp_sk(sk);
2374 bool dispose_it, need_push = false;
2375
2376 /* If the first subflow moved to a close state before accept, e.g. due
2377 * to an incoming reset or listener shutdown, the subflow socket is
2378 * already deleted by inet_child_forget() and the mptcp socket can't
2379 * survive too.
2380 */
2381 if (msk->in_accept_queue && msk->first == ssk &&
2382 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2383 /* ensure later check in mptcp_worker() will dispose the msk */
2384 sock_set_flag(sk, SOCK_DEAD);
2385 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2386 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2387 mptcp_subflow_drop_ctx(ssk);
2388 goto out_release;
2389 }
2390
2391 dispose_it = msk->free_first || ssk != msk->first;
2392 if (dispose_it)
2393 list_del(&subflow->node);
2394
2395 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2396
2397 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2398 /* be sure to force the tcp_close path
2399 * to generate the egress reset
2400 */
2401 ssk->sk_lingertime = 0;
2402 sock_set_flag(ssk, SOCK_LINGER);
2403 subflow->send_fastclose = 1;
2404 }
2405
2406 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2407 if (!dispose_it) {
2408 __mptcp_subflow_disconnect(ssk, subflow, flags);
2409 release_sock(ssk);
2410
2411 goto out;
2412 }
2413
2414 subflow->disposable = 1;
2415
2416 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2417 * the ssk has been already destroyed, we just need to release the
2418 * reference owned by msk;
2419 */
2420 if (!inet_csk(ssk)->icsk_ulp_ops) {
2421 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2422 kfree_rcu(subflow, rcu);
2423 } else {
2424 /* otherwise tcp will dispose of the ssk and subflow ctx */
2425 __tcp_close(ssk, 0);
2426
2427 /* close acquired an extra ref */
2428 __sock_put(ssk);
2429 }
2430
2431 out_release:
2432 __mptcp_subflow_error_report(sk, ssk);
2433 release_sock(ssk);
2434
2435 sock_put(ssk);
2436
2437 if (ssk == msk->first)
2438 WRITE_ONCE(msk->first, NULL);
2439
2440 out:
2441 __mptcp_sync_sndbuf(sk);
2442 if (need_push)
2443 __mptcp_push_pending(sk, 0);
2444
2445 /* Catch every 'all subflows closed' scenario, including peers silently
2446 * closing them, e.g. due to timeout.
2447 * For established sockets, allow an additional timeout before closing,
2448 * as the protocol can still create more subflows.
2449 */
2450 if (list_is_singular(&msk->conn_list) && msk->first &&
2451 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2452 if (sk->sk_state != TCP_ESTABLISHED ||
2453 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2454 mptcp_set_state(sk, TCP_CLOSE);
2455 mptcp_close_wake_up(sk);
2456 } else {
2457 mptcp_start_tout_timer(sk);
2458 }
2459 }
2460 }
2461
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2462 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2463 struct mptcp_subflow_context *subflow)
2464 {
2465 /* The first subflow can already be closed and still in the list */
2466 if (subflow->close_event_done)
2467 return;
2468
2469 subflow->close_event_done = true;
2470
2471 if (sk->sk_state == TCP_ESTABLISHED)
2472 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2473
2474 /* subflow aborted before reaching the fully_established status
2475 * attempt the creation of the next subflow
2476 */
2477 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2478
2479 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2480 }
2481
mptcp_sync_mss(struct sock * sk,u32 pmtu)2482 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2483 {
2484 return 0;
2485 }
2486
__mptcp_close_subflow(struct sock * sk)2487 static void __mptcp_close_subflow(struct sock *sk)
2488 {
2489 struct mptcp_subflow_context *subflow, *tmp;
2490 struct mptcp_sock *msk = mptcp_sk(sk);
2491
2492 might_sleep();
2493
2494 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2495 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2496 int ssk_state = inet_sk_state_load(ssk);
2497
2498 if (ssk_state != TCP_CLOSE &&
2499 (ssk_state != TCP_CLOSE_WAIT ||
2500 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2501 continue;
2502
2503 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2504 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2505 continue;
2506
2507 mptcp_close_ssk(sk, ssk, subflow);
2508 }
2509
2510 }
2511
mptcp_close_tout_expired(const struct sock * sk)2512 static bool mptcp_close_tout_expired(const struct sock *sk)
2513 {
2514 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2515 sk->sk_state == TCP_CLOSE)
2516 return false;
2517
2518 return time_after32(tcp_jiffies32,
2519 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2520 }
2521
mptcp_check_fastclose(struct mptcp_sock * msk)2522 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2523 {
2524 struct mptcp_subflow_context *subflow, *tmp;
2525 struct sock *sk = (struct sock *)msk;
2526
2527 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2528 return;
2529
2530 mptcp_token_destroy(msk);
2531
2532 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2533 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2534 bool slow;
2535
2536 slow = lock_sock_fast(tcp_sk);
2537 if (tcp_sk->sk_state != TCP_CLOSE) {
2538 mptcp_send_active_reset_reason(tcp_sk);
2539 tcp_set_state(tcp_sk, TCP_CLOSE);
2540 }
2541 unlock_sock_fast(tcp_sk, slow);
2542 }
2543
2544 /* Mirror the tcp_reset() error propagation */
2545 switch (sk->sk_state) {
2546 case TCP_SYN_SENT:
2547 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2548 break;
2549 case TCP_CLOSE_WAIT:
2550 WRITE_ONCE(sk->sk_err, EPIPE);
2551 break;
2552 case TCP_CLOSE:
2553 return;
2554 default:
2555 WRITE_ONCE(sk->sk_err, ECONNRESET);
2556 }
2557
2558 mptcp_set_state(sk, TCP_CLOSE);
2559 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2560 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2561 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2562
2563 /* the calling mptcp_worker will properly destroy the socket */
2564 if (sock_flag(sk, SOCK_DEAD))
2565 return;
2566
2567 sk->sk_state_change(sk);
2568 sk_error_report(sk);
2569 }
2570
__mptcp_retrans(struct sock * sk)2571 static void __mptcp_retrans(struct sock *sk)
2572 {
2573 struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2574 struct mptcp_sock *msk = mptcp_sk(sk);
2575 struct mptcp_subflow_context *subflow;
2576 struct mptcp_data_frag *dfrag;
2577 struct sock *ssk;
2578 int ret, err;
2579 u16 len = 0;
2580
2581 mptcp_clean_una_wakeup(sk);
2582
2583 /* first check ssk: need to kick "stale" logic */
2584 err = mptcp_sched_get_retrans(msk);
2585 dfrag = mptcp_rtx_head(sk);
2586 if (!dfrag) {
2587 if (mptcp_data_fin_enabled(msk)) {
2588 struct inet_connection_sock *icsk = inet_csk(sk);
2589
2590 icsk->icsk_retransmits++;
2591 mptcp_set_datafin_timeout(sk);
2592 mptcp_send_ack(msk);
2593
2594 goto reset_timer;
2595 }
2596
2597 if (!mptcp_send_head(sk))
2598 return;
2599
2600 goto reset_timer;
2601 }
2602
2603 if (err)
2604 goto reset_timer;
2605
2606 mptcp_for_each_subflow(msk, subflow) {
2607 if (READ_ONCE(subflow->scheduled)) {
2608 u16 copied = 0;
2609
2610 mptcp_subflow_set_scheduled(subflow, false);
2611
2612 ssk = mptcp_subflow_tcp_sock(subflow);
2613
2614 lock_sock(ssk);
2615
2616 /* limit retransmission to the bytes already sent on some subflows */
2617 info.sent = 0;
2618 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2619 dfrag->already_sent;
2620
2621 /*
2622 * make the whole retrans decision, xmit, disallow
2623 * fallback atomic
2624 */
2625 spin_lock_bh(&msk->fallback_lock);
2626 if (__mptcp_check_fallback(msk)) {
2627 spin_unlock_bh(&msk->fallback_lock);
2628 release_sock(ssk);
2629 return;
2630 }
2631
2632 while (info.sent < info.limit) {
2633 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2634 if (ret <= 0)
2635 break;
2636
2637 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2638 copied += ret;
2639 info.sent += ret;
2640 }
2641 if (copied) {
2642 len = max(copied, len);
2643 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2644 info.size_goal);
2645 msk->allow_infinite_fallback = false;
2646 }
2647 spin_unlock_bh(&msk->fallback_lock);
2648
2649 release_sock(ssk);
2650 }
2651 }
2652
2653 msk->bytes_retrans += len;
2654 dfrag->already_sent = max(dfrag->already_sent, len);
2655
2656 reset_timer:
2657 mptcp_check_and_set_pending(sk);
2658
2659 if (!mptcp_rtx_timer_pending(sk))
2660 mptcp_reset_rtx_timer(sk);
2661 }
2662
2663 /* schedule the timeout timer for the relevant event: either close timeout
2664 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2665 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2666 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2667 {
2668 struct sock *sk = (struct sock *)msk;
2669 unsigned long timeout, close_timeout;
2670
2671 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2672 return;
2673
2674 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2675 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2676
2677 /* the close timeout takes precedence on the fail one, and here at least one of
2678 * them is active
2679 */
2680 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2681
2682 sk_reset_timer(sk, &sk->sk_timer, timeout);
2683 }
2684
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2685 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2686 {
2687 struct sock *ssk = msk->first;
2688 bool slow;
2689
2690 if (!ssk)
2691 return;
2692
2693 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2694
2695 slow = lock_sock_fast(ssk);
2696 mptcp_subflow_reset(ssk);
2697 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2698 unlock_sock_fast(ssk, slow);
2699 }
2700
mptcp_do_fastclose(struct sock * sk)2701 static void mptcp_do_fastclose(struct sock *sk)
2702 {
2703 struct mptcp_subflow_context *subflow, *tmp;
2704 struct mptcp_sock *msk = mptcp_sk(sk);
2705
2706 mptcp_set_state(sk, TCP_CLOSE);
2707 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2708 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2709 subflow, MPTCP_CF_FASTCLOSE);
2710 }
2711
mptcp_worker(struct work_struct * work)2712 static void mptcp_worker(struct work_struct *work)
2713 {
2714 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2715 struct sock *sk = (struct sock *)msk;
2716 unsigned long fail_tout;
2717 int state;
2718
2719 lock_sock(sk);
2720 state = sk->sk_state;
2721 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2722 goto unlock;
2723
2724 mptcp_check_fastclose(msk);
2725
2726 mptcp_pm_worker(msk);
2727
2728 mptcp_check_send_data_fin(sk);
2729 mptcp_check_data_fin_ack(sk);
2730 mptcp_check_data_fin(sk);
2731
2732 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2733 __mptcp_close_subflow(sk);
2734
2735 if (mptcp_close_tout_expired(sk)) {
2736 mptcp_do_fastclose(sk);
2737 mptcp_close_wake_up(sk);
2738 }
2739
2740 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2741 __mptcp_destroy_sock(sk);
2742 goto unlock;
2743 }
2744
2745 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2746 __mptcp_retrans(sk);
2747
2748 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2749 if (fail_tout && time_after(jiffies, fail_tout))
2750 mptcp_mp_fail_no_response(msk);
2751
2752 unlock:
2753 release_sock(sk);
2754 sock_put(sk);
2755 }
2756
__mptcp_init_sock(struct sock * sk)2757 static void __mptcp_init_sock(struct sock *sk)
2758 {
2759 struct mptcp_sock *msk = mptcp_sk(sk);
2760
2761 INIT_LIST_HEAD(&msk->conn_list);
2762 INIT_LIST_HEAD(&msk->join_list);
2763 INIT_LIST_HEAD(&msk->rtx_queue);
2764 INIT_WORK(&msk->work, mptcp_worker);
2765 msk->out_of_order_queue = RB_ROOT;
2766 msk->first_pending = NULL;
2767 msk->timer_ival = TCP_RTO_MIN;
2768 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2769
2770 WRITE_ONCE(msk->first, NULL);
2771 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2772 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2773 msk->allow_infinite_fallback = true;
2774 msk->allow_subflows = true;
2775 msk->recovery = false;
2776 msk->subflow_id = 1;
2777 msk->last_data_sent = tcp_jiffies32;
2778 msk->last_data_recv = tcp_jiffies32;
2779 msk->last_ack_recv = tcp_jiffies32;
2780
2781 mptcp_pm_data_init(msk);
2782 spin_lock_init(&msk->fallback_lock);
2783
2784 /* re-use the csk retrans timer for MPTCP-level retrans */
2785 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2786 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2787 }
2788
mptcp_ca_reset(struct sock * sk)2789 static void mptcp_ca_reset(struct sock *sk)
2790 {
2791 struct inet_connection_sock *icsk = inet_csk(sk);
2792
2793 tcp_assign_congestion_control(sk);
2794 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2795 sizeof(mptcp_sk(sk)->ca_name));
2796
2797 /* no need to keep a reference to the ops, the name will suffice */
2798 tcp_cleanup_congestion_control(sk);
2799 icsk->icsk_ca_ops = NULL;
2800 }
2801
mptcp_init_sock(struct sock * sk)2802 static int mptcp_init_sock(struct sock *sk)
2803 {
2804 struct net *net = sock_net(sk);
2805 int ret;
2806
2807 __mptcp_init_sock(sk);
2808
2809 if (!mptcp_is_enabled(net))
2810 return -ENOPROTOOPT;
2811
2812 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2813 return -ENOMEM;
2814
2815 rcu_read_lock();
2816 ret = mptcp_init_sched(mptcp_sk(sk),
2817 mptcp_sched_find(mptcp_get_scheduler(net)));
2818 rcu_read_unlock();
2819 if (ret)
2820 return ret;
2821
2822 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2823
2824 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2825 * propagate the correct value
2826 */
2827 mptcp_ca_reset(sk);
2828
2829 sk_sockets_allocated_inc(sk);
2830 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2831 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2832
2833 return 0;
2834 }
2835
__mptcp_clear_xmit(struct sock * sk)2836 static void __mptcp_clear_xmit(struct sock *sk)
2837 {
2838 struct mptcp_sock *msk = mptcp_sk(sk);
2839 struct mptcp_data_frag *dtmp, *dfrag;
2840
2841 WRITE_ONCE(msk->first_pending, NULL);
2842 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2843 dfrag_clear(sk, dfrag);
2844 }
2845
mptcp_cancel_work(struct sock * sk)2846 void mptcp_cancel_work(struct sock *sk)
2847 {
2848 struct mptcp_sock *msk = mptcp_sk(sk);
2849
2850 if (cancel_work_sync(&msk->work))
2851 __sock_put(sk);
2852 }
2853
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2854 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2855 {
2856 lock_sock(ssk);
2857
2858 switch (ssk->sk_state) {
2859 case TCP_LISTEN:
2860 if (!(how & RCV_SHUTDOWN))
2861 break;
2862 fallthrough;
2863 case TCP_SYN_SENT:
2864 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2865 break;
2866 default:
2867 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2868 pr_debug("Fallback\n");
2869 ssk->sk_shutdown |= how;
2870 tcp_shutdown(ssk, how);
2871
2872 /* simulate the data_fin ack reception to let the state
2873 * machine move forward
2874 */
2875 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2876 mptcp_schedule_work(sk);
2877 } else {
2878 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2879 tcp_send_ack(ssk);
2880 if (!mptcp_rtx_timer_pending(sk))
2881 mptcp_reset_rtx_timer(sk);
2882 }
2883 break;
2884 }
2885
2886 release_sock(ssk);
2887 }
2888
mptcp_set_state(struct sock * sk,int state)2889 void mptcp_set_state(struct sock *sk, int state)
2890 {
2891 int oldstate = sk->sk_state;
2892
2893 switch (state) {
2894 case TCP_ESTABLISHED:
2895 if (oldstate != TCP_ESTABLISHED)
2896 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2897 break;
2898 case TCP_CLOSE_WAIT:
2899 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2900 * MPTCP "accepted" sockets will be created later on. So no
2901 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2902 */
2903 break;
2904 default:
2905 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2906 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2907 }
2908
2909 inet_sk_state_store(sk, state);
2910 }
2911
2912 static const unsigned char new_state[16] = {
2913 /* current state: new state: action: */
2914 [0 /* (Invalid) */] = TCP_CLOSE,
2915 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2916 [TCP_SYN_SENT] = TCP_CLOSE,
2917 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2918 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2919 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2920 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2921 [TCP_CLOSE] = TCP_CLOSE,
2922 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2923 [TCP_LAST_ACK] = TCP_LAST_ACK,
2924 [TCP_LISTEN] = TCP_CLOSE,
2925 [TCP_CLOSING] = TCP_CLOSING,
2926 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2927 };
2928
mptcp_close_state(struct sock * sk)2929 static int mptcp_close_state(struct sock *sk)
2930 {
2931 int next = (int)new_state[sk->sk_state];
2932 int ns = next & TCP_STATE_MASK;
2933
2934 mptcp_set_state(sk, ns);
2935
2936 return next & TCP_ACTION_FIN;
2937 }
2938
mptcp_check_send_data_fin(struct sock * sk)2939 static void mptcp_check_send_data_fin(struct sock *sk)
2940 {
2941 struct mptcp_subflow_context *subflow;
2942 struct mptcp_sock *msk = mptcp_sk(sk);
2943
2944 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2945 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2946 msk->snd_nxt, msk->write_seq);
2947
2948 /* we still need to enqueue subflows or not really shutting down,
2949 * skip this
2950 */
2951 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2952 mptcp_send_head(sk))
2953 return;
2954
2955 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2956
2957 mptcp_for_each_subflow(msk, subflow) {
2958 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2959
2960 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2961 }
2962 }
2963
__mptcp_wr_shutdown(struct sock * sk)2964 static void __mptcp_wr_shutdown(struct sock *sk)
2965 {
2966 struct mptcp_sock *msk = mptcp_sk(sk);
2967
2968 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2969 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2970 !!mptcp_send_head(sk));
2971
2972 /* will be ignored by fallback sockets */
2973 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2974 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2975
2976 mptcp_check_send_data_fin(sk);
2977 }
2978
__mptcp_destroy_sock(struct sock * sk)2979 static void __mptcp_destroy_sock(struct sock *sk)
2980 {
2981 struct mptcp_sock *msk = mptcp_sk(sk);
2982
2983 pr_debug("msk=%p\n", msk);
2984
2985 might_sleep();
2986
2987 mptcp_stop_rtx_timer(sk);
2988 sk_stop_timer(sk, &sk->sk_timer);
2989 msk->pm.status = 0;
2990 mptcp_release_sched(msk);
2991
2992 sk->sk_prot->destroy(sk);
2993
2994 sk_stream_kill_queues(sk);
2995 xfrm_sk_free_policy(sk);
2996
2997 sock_put(sk);
2998 }
2999
__mptcp_unaccepted_force_close(struct sock * sk)3000 void __mptcp_unaccepted_force_close(struct sock *sk)
3001 {
3002 sock_set_flag(sk, SOCK_DEAD);
3003 mptcp_do_fastclose(sk);
3004 __mptcp_destroy_sock(sk);
3005 }
3006
mptcp_check_readable(struct sock * sk)3007 static __poll_t mptcp_check_readable(struct sock *sk)
3008 {
3009 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3010 }
3011
mptcp_check_listen_stop(struct sock * sk)3012 static void mptcp_check_listen_stop(struct sock *sk)
3013 {
3014 struct sock *ssk;
3015
3016 if (inet_sk_state_load(sk) != TCP_LISTEN)
3017 return;
3018
3019 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3020 ssk = mptcp_sk(sk)->first;
3021 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3022 return;
3023
3024 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3025 tcp_set_state(ssk, TCP_CLOSE);
3026 mptcp_subflow_queue_clean(sk, ssk);
3027 inet_csk_listen_stop(ssk);
3028 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3029 release_sock(ssk);
3030 }
3031
__mptcp_close(struct sock * sk,long timeout)3032 bool __mptcp_close(struct sock *sk, long timeout)
3033 {
3034 struct mptcp_subflow_context *subflow;
3035 struct mptcp_sock *msk = mptcp_sk(sk);
3036 bool do_cancel_work = false;
3037 int subflows_alive = 0;
3038
3039 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3040
3041 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3042 mptcp_check_listen_stop(sk);
3043 mptcp_set_state(sk, TCP_CLOSE);
3044 goto cleanup;
3045 }
3046
3047 if (mptcp_data_avail(msk) || timeout < 0) {
3048 /* If the msk has read data, or the caller explicitly ask it,
3049 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3050 */
3051 mptcp_do_fastclose(sk);
3052 timeout = 0;
3053 } else if (mptcp_close_state(sk)) {
3054 __mptcp_wr_shutdown(sk);
3055 }
3056
3057 sk_stream_wait_close(sk, timeout);
3058
3059 cleanup:
3060 /* orphan all the subflows */
3061 mptcp_for_each_subflow(msk, subflow) {
3062 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3063 bool slow = lock_sock_fast_nested(ssk);
3064
3065 subflows_alive += ssk->sk_state != TCP_CLOSE;
3066
3067 /* since the close timeout takes precedence on the fail one,
3068 * cancel the latter
3069 */
3070 if (ssk == msk->first)
3071 subflow->fail_tout = 0;
3072
3073 /* detach from the parent socket, but allow data_ready to
3074 * push incoming data into the mptcp stack, to properly ack it
3075 */
3076 ssk->sk_socket = NULL;
3077 ssk->sk_wq = NULL;
3078 unlock_sock_fast(ssk, slow);
3079 }
3080 sock_orphan(sk);
3081
3082 /* all the subflows are closed, only timeout can change the msk
3083 * state, let's not keep resources busy for no reasons
3084 */
3085 if (subflows_alive == 0)
3086 mptcp_set_state(sk, TCP_CLOSE);
3087
3088 sock_hold(sk);
3089 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3090 mptcp_pm_connection_closed(msk);
3091
3092 if (sk->sk_state == TCP_CLOSE) {
3093 __mptcp_destroy_sock(sk);
3094 do_cancel_work = true;
3095 } else {
3096 mptcp_start_tout_timer(sk);
3097 }
3098
3099 return do_cancel_work;
3100 }
3101
mptcp_close(struct sock * sk,long timeout)3102 static void mptcp_close(struct sock *sk, long timeout)
3103 {
3104 bool do_cancel_work;
3105
3106 lock_sock(sk);
3107
3108 do_cancel_work = __mptcp_close(sk, timeout);
3109 release_sock(sk);
3110 if (do_cancel_work)
3111 mptcp_cancel_work(sk);
3112
3113 sock_put(sk);
3114 }
3115
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3116 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3117 {
3118 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3119 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3120 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3121
3122 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3123 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3124
3125 if (msk6 && ssk6) {
3126 msk6->saddr = ssk6->saddr;
3127 msk6->flow_label = ssk6->flow_label;
3128 }
3129 #endif
3130
3131 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3132 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3133 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3134 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3135 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3136 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3137 }
3138
mptcp_disconnect(struct sock * sk,int flags)3139 static int mptcp_disconnect(struct sock *sk, int flags)
3140 {
3141 struct mptcp_sock *msk = mptcp_sk(sk);
3142
3143 /* We are on the fastopen error path. We can't call straight into the
3144 * subflows cleanup code due to lock nesting (we are already under
3145 * msk->firstsocket lock).
3146 */
3147 if (msk->fastopening)
3148 return -EBUSY;
3149
3150 mptcp_check_listen_stop(sk);
3151 mptcp_set_state(sk, TCP_CLOSE);
3152
3153 mptcp_stop_rtx_timer(sk);
3154 mptcp_stop_tout_timer(sk);
3155
3156 mptcp_pm_connection_closed(msk);
3157
3158 /* msk->subflow is still intact, the following will not free the first
3159 * subflow
3160 */
3161 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3162
3163 /* The first subflow is already in TCP_CLOSE status, the following
3164 * can't overlap with a fallback anymore
3165 */
3166 spin_lock_bh(&msk->fallback_lock);
3167 msk->allow_subflows = true;
3168 msk->allow_infinite_fallback = true;
3169 WRITE_ONCE(msk->flags, 0);
3170 spin_unlock_bh(&msk->fallback_lock);
3171
3172 msk->cb_flags = 0;
3173 msk->recovery = false;
3174 WRITE_ONCE(msk->can_ack, false);
3175 WRITE_ONCE(msk->fully_established, false);
3176 WRITE_ONCE(msk->rcv_data_fin, false);
3177 WRITE_ONCE(msk->snd_data_fin_enable, false);
3178 WRITE_ONCE(msk->rcv_fastclose, false);
3179 WRITE_ONCE(msk->use_64bit_ack, false);
3180 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3181 mptcp_pm_data_reset(msk);
3182 mptcp_ca_reset(sk);
3183 msk->bytes_consumed = 0;
3184 msk->bytes_acked = 0;
3185 msk->bytes_received = 0;
3186 msk->bytes_sent = 0;
3187 msk->bytes_retrans = 0;
3188 msk->rcvspace_init = 0;
3189
3190 WRITE_ONCE(sk->sk_shutdown, 0);
3191 sk_error_report(sk);
3192 return 0;
3193 }
3194
3195 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3196 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3197 {
3198 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3199
3200 return &msk6->np;
3201 }
3202
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3203 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3204 {
3205 const struct ipv6_pinfo *np = inet6_sk(sk);
3206 struct ipv6_txoptions *opt;
3207 struct ipv6_pinfo *newnp;
3208
3209 newnp = inet6_sk(newsk);
3210
3211 rcu_read_lock();
3212 opt = rcu_dereference(np->opt);
3213 if (opt) {
3214 opt = ipv6_dup_options(newsk, opt);
3215 if (!opt)
3216 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3217 }
3218 RCU_INIT_POINTER(newnp->opt, opt);
3219 rcu_read_unlock();
3220 }
3221 #endif
3222
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3223 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3224 {
3225 struct ip_options_rcu *inet_opt, *newopt = NULL;
3226 const struct inet_sock *inet = inet_sk(sk);
3227 struct inet_sock *newinet;
3228
3229 newinet = inet_sk(newsk);
3230
3231 rcu_read_lock();
3232 inet_opt = rcu_dereference(inet->inet_opt);
3233 if (inet_opt) {
3234 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3235 inet_opt->opt.optlen, GFP_ATOMIC);
3236 if (!newopt)
3237 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3238 }
3239 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3240 rcu_read_unlock();
3241 }
3242
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3243 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3244 const struct mptcp_options_received *mp_opt,
3245 struct sock *ssk,
3246 struct request_sock *req)
3247 {
3248 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3249 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3250 struct mptcp_subflow_context *subflow;
3251 struct mptcp_sock *msk;
3252
3253 if (!nsk)
3254 return NULL;
3255
3256 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3257 if (nsk->sk_family == AF_INET6)
3258 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3259 #endif
3260
3261 __mptcp_init_sock(nsk);
3262
3263 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3264 if (nsk->sk_family == AF_INET6)
3265 mptcp_copy_ip6_options(nsk, sk);
3266 else
3267 #endif
3268 mptcp_copy_ip_options(nsk, sk);
3269
3270 msk = mptcp_sk(nsk);
3271 WRITE_ONCE(msk->local_key, subflow_req->local_key);
3272 WRITE_ONCE(msk->token, subflow_req->token);
3273 msk->in_accept_queue = 1;
3274 WRITE_ONCE(msk->fully_established, false);
3275 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3276 WRITE_ONCE(msk->csum_enabled, true);
3277
3278 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3279 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3280 WRITE_ONCE(msk->snd_una, msk->write_seq);
3281 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3282 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3283 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3284
3285 /* passive msk is created after the first/MPC subflow */
3286 msk->subflow_id = 2;
3287
3288 sock_reset_flag(nsk, SOCK_RCU_FREE);
3289 security_inet_csk_clone(nsk, req);
3290
3291 /* this can't race with mptcp_close(), as the msk is
3292 * not yet exposted to user-space
3293 */
3294 mptcp_set_state(nsk, TCP_ESTABLISHED);
3295
3296 /* The msk maintain a ref to each subflow in the connections list */
3297 WRITE_ONCE(msk->first, ssk);
3298 subflow = mptcp_subflow_ctx(ssk);
3299 list_add(&subflow->node, &msk->conn_list);
3300 sock_hold(ssk);
3301
3302 /* new mpc subflow takes ownership of the newly
3303 * created mptcp socket
3304 */
3305 mptcp_token_accept(subflow_req, msk);
3306
3307 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3308 * uses the correct data
3309 */
3310 mptcp_copy_inaddrs(nsk, ssk);
3311 __mptcp_propagate_sndbuf(nsk, ssk);
3312
3313 mptcp_rcv_space_init(msk, ssk);
3314
3315 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3316 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3317 bh_unlock_sock(nsk);
3318
3319 /* note: the newly allocated socket refcount is 2 now */
3320 return nsk;
3321 }
3322
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3323 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3324 {
3325 const struct tcp_sock *tp = tcp_sk(ssk);
3326
3327 msk->rcvspace_init = 1;
3328 msk->rcvq_space.copied = 0;
3329 msk->rcvq_space.rtt_us = 0;
3330
3331 msk->rcvq_space.time = tp->tcp_mstamp;
3332
3333 /* initial rcv_space offering made to peer */
3334 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3335 TCP_INIT_CWND * tp->advmss);
3336 if (msk->rcvq_space.space == 0)
3337 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3338 }
3339
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3340 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3341 {
3342 struct mptcp_subflow_context *subflow, *tmp;
3343 struct sock *sk = (struct sock *)msk;
3344
3345 __mptcp_clear_xmit(sk);
3346
3347 /* join list will be eventually flushed (with rst) at sock lock release time */
3348 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3349 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3350
3351 __skb_queue_purge(&sk->sk_receive_queue);
3352 skb_rbtree_purge(&msk->out_of_order_queue);
3353
3354 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3355 * inet_sock_destruct() will dispose it
3356 */
3357 mptcp_token_destroy(msk);
3358 mptcp_pm_destroy(msk);
3359 }
3360
mptcp_destroy(struct sock * sk)3361 static void mptcp_destroy(struct sock *sk)
3362 {
3363 struct mptcp_sock *msk = mptcp_sk(sk);
3364
3365 /* allow the following to close even the initial subflow */
3366 msk->free_first = 1;
3367 mptcp_destroy_common(msk, 0);
3368 sk_sockets_allocated_dec(sk);
3369 }
3370
__mptcp_data_acked(struct sock * sk)3371 void __mptcp_data_acked(struct sock *sk)
3372 {
3373 if (!sock_owned_by_user(sk))
3374 __mptcp_clean_una(sk);
3375 else
3376 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3377 }
3378
__mptcp_check_push(struct sock * sk,struct sock * ssk)3379 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3380 {
3381 if (!mptcp_send_head(sk))
3382 return;
3383
3384 if (!sock_owned_by_user(sk))
3385 __mptcp_subflow_push_pending(sk, ssk, false);
3386 else
3387 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3388 }
3389
3390 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3391 BIT(MPTCP_RETRANSMIT) | \
3392 BIT(MPTCP_FLUSH_JOIN_LIST) | \
3393 BIT(MPTCP_DEQUEUE))
3394
3395 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3396 static void mptcp_release_cb(struct sock *sk)
3397 __must_hold(&sk->sk_lock.slock)
3398 {
3399 struct mptcp_sock *msk = mptcp_sk(sk);
3400
3401 for (;;) {
3402 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3403 struct list_head join_list;
3404
3405 if (!flags)
3406 break;
3407
3408 INIT_LIST_HEAD(&join_list);
3409 list_splice_init(&msk->join_list, &join_list);
3410
3411 /* the following actions acquire the subflow socket lock
3412 *
3413 * 1) can't be invoked in atomic scope
3414 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3415 * datapath acquires the msk socket spinlock while helding
3416 * the subflow socket lock
3417 */
3418 msk->cb_flags &= ~flags;
3419 spin_unlock_bh(&sk->sk_lock.slock);
3420
3421 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3422 __mptcp_flush_join_list(sk, &join_list);
3423 if (flags & BIT(MPTCP_PUSH_PENDING))
3424 __mptcp_push_pending(sk, 0);
3425 if (flags & BIT(MPTCP_RETRANSMIT))
3426 __mptcp_retrans(sk);
3427 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3428 /* notify ack seq update */
3429 mptcp_cleanup_rbuf(msk, 0);
3430 sk->sk_data_ready(sk);
3431 }
3432
3433 cond_resched();
3434 spin_lock_bh(&sk->sk_lock.slock);
3435 }
3436
3437 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3438 __mptcp_clean_una_wakeup(sk);
3439 if (unlikely(msk->cb_flags)) {
3440 /* be sure to sync the msk state before taking actions
3441 * depending on sk_state (MPTCP_ERROR_REPORT)
3442 * On sk release avoid actions depending on the first subflow
3443 */
3444 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3445 __mptcp_sync_state(sk, msk->pending_state);
3446 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3447 __mptcp_error_report(sk);
3448 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3449 __mptcp_sync_sndbuf(sk);
3450 }
3451 }
3452
3453 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3454 * TCP can't schedule delack timer before the subflow is fully established.
3455 * MPTCP uses the delack timer to do 3rd ack retransmissions
3456 */
schedule_3rdack_retransmission(struct sock * ssk)3457 static void schedule_3rdack_retransmission(struct sock *ssk)
3458 {
3459 struct inet_connection_sock *icsk = inet_csk(ssk);
3460 struct tcp_sock *tp = tcp_sk(ssk);
3461 unsigned long timeout;
3462
3463 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3464 return;
3465
3466 /* reschedule with a timeout above RTT, as we must look only for drop */
3467 if (tp->srtt_us)
3468 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3469 else
3470 timeout = TCP_TIMEOUT_INIT;
3471 timeout += jiffies;
3472
3473 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3474 smp_store_release(&icsk->icsk_ack.pending,
3475 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3476 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3477 }
3478
mptcp_subflow_process_delegated(struct sock * ssk,long status)3479 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3480 {
3481 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3482 struct sock *sk = subflow->conn;
3483
3484 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3485 mptcp_data_lock(sk);
3486 if (!sock_owned_by_user(sk))
3487 __mptcp_subflow_push_pending(sk, ssk, true);
3488 else
3489 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3490 mptcp_data_unlock(sk);
3491 }
3492 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3493 mptcp_data_lock(sk);
3494 if (!sock_owned_by_user(sk))
3495 __mptcp_sync_sndbuf(sk);
3496 else
3497 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3498 mptcp_data_unlock(sk);
3499 }
3500 if (status & BIT(MPTCP_DELEGATE_ACK))
3501 schedule_3rdack_retransmission(ssk);
3502 }
3503
mptcp_hash(struct sock * sk)3504 static int mptcp_hash(struct sock *sk)
3505 {
3506 /* should never be called,
3507 * we hash the TCP subflows not the MPTCP socket
3508 */
3509 WARN_ON_ONCE(1);
3510 return 0;
3511 }
3512
mptcp_unhash(struct sock * sk)3513 static void mptcp_unhash(struct sock *sk)
3514 {
3515 /* called from sk_common_release(), but nothing to do here */
3516 }
3517
mptcp_get_port(struct sock * sk,unsigned short snum)3518 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3519 {
3520 struct mptcp_sock *msk = mptcp_sk(sk);
3521
3522 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3523 if (WARN_ON_ONCE(!msk->first))
3524 return -EINVAL;
3525
3526 return inet_csk_get_port(msk->first, snum);
3527 }
3528
mptcp_finish_connect(struct sock * ssk)3529 void mptcp_finish_connect(struct sock *ssk)
3530 {
3531 struct mptcp_subflow_context *subflow;
3532 struct mptcp_sock *msk;
3533 struct sock *sk;
3534
3535 subflow = mptcp_subflow_ctx(ssk);
3536 sk = subflow->conn;
3537 msk = mptcp_sk(sk);
3538
3539 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3540
3541 subflow->map_seq = subflow->iasn;
3542 subflow->map_subflow_seq = 1;
3543
3544 /* the socket is not connected yet, no msk/subflow ops can access/race
3545 * accessing the field below
3546 */
3547 WRITE_ONCE(msk->local_key, subflow->local_key);
3548
3549 mptcp_pm_new_connection(msk, ssk, 0);
3550 }
3551
mptcp_sock_graft(struct sock * sk,struct socket * parent)3552 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3553 {
3554 write_lock_bh(&sk->sk_callback_lock);
3555 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3556 sk_set_socket(sk, parent);
3557 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
3558 write_unlock_bh(&sk->sk_callback_lock);
3559 }
3560
mptcp_finish_join(struct sock * ssk)3561 bool mptcp_finish_join(struct sock *ssk)
3562 {
3563 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3564 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3565 struct sock *parent = (void *)msk;
3566 bool ret = true;
3567
3568 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3569
3570 /* mptcp socket already closing? */
3571 if (!mptcp_is_fully_established(parent)) {
3572 subflow->reset_reason = MPTCP_RST_EMPTCP;
3573 return false;
3574 }
3575
3576 /* active subflow, already present inside the conn_list */
3577 if (!list_empty(&subflow->node)) {
3578 spin_lock_bh(&msk->fallback_lock);
3579 if (!msk->allow_subflows) {
3580 spin_unlock_bh(&msk->fallback_lock);
3581 return false;
3582 }
3583 mptcp_subflow_joined(msk, ssk);
3584 spin_unlock_bh(&msk->fallback_lock);
3585 mptcp_propagate_sndbuf(parent, ssk);
3586 return true;
3587 }
3588
3589 if (!mptcp_pm_allow_new_subflow(msk)) {
3590 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3591 goto err_prohibited;
3592 }
3593
3594 /* If we can't acquire msk socket lock here, let the release callback
3595 * handle it
3596 */
3597 mptcp_data_lock(parent);
3598 if (!sock_owned_by_user(parent)) {
3599 ret = __mptcp_finish_join(msk, ssk);
3600 if (ret) {
3601 sock_hold(ssk);
3602 list_add_tail(&subflow->node, &msk->conn_list);
3603 }
3604 } else {
3605 sock_hold(ssk);
3606 list_add_tail(&subflow->node, &msk->join_list);
3607 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3608 }
3609 mptcp_data_unlock(parent);
3610
3611 if (!ret) {
3612 err_prohibited:
3613 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3614 return false;
3615 }
3616
3617 return true;
3618 }
3619
mptcp_shutdown(struct sock * sk,int how)3620 static void mptcp_shutdown(struct sock *sk, int how)
3621 {
3622 pr_debug("sk=%p, how=%d\n", sk, how);
3623
3624 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3625 __mptcp_wr_shutdown(sk);
3626 }
3627
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3628 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3629 {
3630 const struct sock *sk = (void *)msk;
3631 u64 delta;
3632
3633 if (sk->sk_state == TCP_LISTEN)
3634 return -EINVAL;
3635
3636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3637 return 0;
3638
3639 delta = msk->write_seq - v;
3640 if (__mptcp_check_fallback(msk) && msk->first) {
3641 struct tcp_sock *tp = tcp_sk(msk->first);
3642
3643 /* the first subflow is disconnected after close - see
3644 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3645 * so ignore that status, too.
3646 */
3647 if (!((1 << msk->first->sk_state) &
3648 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3649 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3650 }
3651 if (delta > INT_MAX)
3652 delta = INT_MAX;
3653
3654 return (int)delta;
3655 }
3656
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3657 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3658 {
3659 struct mptcp_sock *msk = mptcp_sk(sk);
3660 bool slow;
3661
3662 switch (cmd) {
3663 case SIOCINQ:
3664 if (sk->sk_state == TCP_LISTEN)
3665 return -EINVAL;
3666
3667 lock_sock(sk);
3668 if (__mptcp_move_skbs(sk))
3669 mptcp_cleanup_rbuf(msk, 0);
3670 *karg = mptcp_inq_hint(sk);
3671 release_sock(sk);
3672 break;
3673 case SIOCOUTQ:
3674 slow = lock_sock_fast(sk);
3675 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3676 unlock_sock_fast(sk, slow);
3677 break;
3678 case SIOCOUTQNSD:
3679 slow = lock_sock_fast(sk);
3680 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3681 unlock_sock_fast(sk, slow);
3682 break;
3683 default:
3684 return -ENOIOCTLCMD;
3685 }
3686
3687 return 0;
3688 }
3689
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3690 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3691 {
3692 struct mptcp_subflow_context *subflow;
3693 struct mptcp_sock *msk = mptcp_sk(sk);
3694 int err = -EINVAL;
3695 struct sock *ssk;
3696
3697 ssk = __mptcp_nmpc_sk(msk);
3698 if (IS_ERR(ssk))
3699 return PTR_ERR(ssk);
3700
3701 mptcp_set_state(sk, TCP_SYN_SENT);
3702 subflow = mptcp_subflow_ctx(ssk);
3703 #ifdef CONFIG_TCP_MD5SIG
3704 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3705 * TCP option space.
3706 */
3707 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3708 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3709 #endif
3710 if (subflow->request_mptcp) {
3711 if (mptcp_active_should_disable(sk))
3712 mptcp_early_fallback(msk, subflow,
3713 MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3714 else if (mptcp_token_new_connect(ssk) < 0)
3715 mptcp_early_fallback(msk, subflow,
3716 MPTCP_MIB_TOKENFALLBACKINIT);
3717 }
3718
3719 WRITE_ONCE(msk->write_seq, subflow->idsn);
3720 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3721 WRITE_ONCE(msk->snd_una, subflow->idsn);
3722 if (likely(!__mptcp_check_fallback(msk)))
3723 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3724
3725 /* if reaching here via the fastopen/sendmsg path, the caller already
3726 * acquired the subflow socket lock, too.
3727 */
3728 if (!msk->fastopening)
3729 lock_sock(ssk);
3730
3731 /* the following mirrors closely a very small chunk of code from
3732 * __inet_stream_connect()
3733 */
3734 if (ssk->sk_state != TCP_CLOSE)
3735 goto out;
3736
3737 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3738 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3739 if (err)
3740 goto out;
3741 }
3742
3743 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3744 if (err < 0)
3745 goto out;
3746
3747 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3748
3749 out:
3750 if (!msk->fastopening)
3751 release_sock(ssk);
3752
3753 /* on successful connect, the msk state will be moved to established by
3754 * subflow_finish_connect()
3755 */
3756 if (unlikely(err)) {
3757 /* avoid leaving a dangling token in an unconnected socket */
3758 mptcp_token_destroy(msk);
3759 mptcp_set_state(sk, TCP_CLOSE);
3760 return err;
3761 }
3762
3763 mptcp_copy_inaddrs(sk, ssk);
3764 return 0;
3765 }
3766
3767 static struct proto mptcp_prot = {
3768 .name = "MPTCP",
3769 .owner = THIS_MODULE,
3770 .init = mptcp_init_sock,
3771 .connect = mptcp_connect,
3772 .disconnect = mptcp_disconnect,
3773 .close = mptcp_close,
3774 .setsockopt = mptcp_setsockopt,
3775 .getsockopt = mptcp_getsockopt,
3776 .shutdown = mptcp_shutdown,
3777 .destroy = mptcp_destroy,
3778 .sendmsg = mptcp_sendmsg,
3779 .ioctl = mptcp_ioctl,
3780 .recvmsg = mptcp_recvmsg,
3781 .release_cb = mptcp_release_cb,
3782 .hash = mptcp_hash,
3783 .unhash = mptcp_unhash,
3784 .get_port = mptcp_get_port,
3785 .stream_memory_free = mptcp_stream_memory_free,
3786 .sockets_allocated = &mptcp_sockets_allocated,
3787
3788 .memory_allocated = &net_aligned_data.tcp_memory_allocated,
3789 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3790
3791 .memory_pressure = &tcp_memory_pressure,
3792 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3793 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3794 .sysctl_mem = sysctl_tcp_mem,
3795 .obj_size = sizeof(struct mptcp_sock),
3796 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3797 .no_autobind = true,
3798 };
3799
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3800 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3801 {
3802 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3803 struct sock *ssk, *sk = sock->sk;
3804 int err = -EINVAL;
3805
3806 lock_sock(sk);
3807 ssk = __mptcp_nmpc_sk(msk);
3808 if (IS_ERR(ssk)) {
3809 err = PTR_ERR(ssk);
3810 goto unlock;
3811 }
3812
3813 if (sk->sk_family == AF_INET)
3814 err = inet_bind_sk(ssk, uaddr, addr_len);
3815 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3816 else if (sk->sk_family == AF_INET6)
3817 err = inet6_bind_sk(ssk, uaddr, addr_len);
3818 #endif
3819 if (!err)
3820 mptcp_copy_inaddrs(sk, ssk);
3821
3822 unlock:
3823 release_sock(sk);
3824 return err;
3825 }
3826
mptcp_listen(struct socket * sock,int backlog)3827 static int mptcp_listen(struct socket *sock, int backlog)
3828 {
3829 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3830 struct sock *sk = sock->sk;
3831 struct sock *ssk;
3832 int err;
3833
3834 pr_debug("msk=%p\n", msk);
3835
3836 lock_sock(sk);
3837
3838 err = -EINVAL;
3839 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3840 goto unlock;
3841
3842 ssk = __mptcp_nmpc_sk(msk);
3843 if (IS_ERR(ssk)) {
3844 err = PTR_ERR(ssk);
3845 goto unlock;
3846 }
3847
3848 mptcp_set_state(sk, TCP_LISTEN);
3849 sock_set_flag(sk, SOCK_RCU_FREE);
3850
3851 lock_sock(ssk);
3852 err = __inet_listen_sk(ssk, backlog);
3853 release_sock(ssk);
3854 mptcp_set_state(sk, inet_sk_state_load(ssk));
3855
3856 if (!err) {
3857 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3858 mptcp_copy_inaddrs(sk, ssk);
3859 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3860 }
3861
3862 unlock:
3863 release_sock(sk);
3864 return err;
3865 }
3866
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3867 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3868 struct proto_accept_arg *arg)
3869 {
3870 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3871 struct sock *ssk, *newsk;
3872
3873 pr_debug("msk=%p\n", msk);
3874
3875 /* Buggy applications can call accept on socket states other then LISTEN
3876 * but no need to allocate the first subflow just to error out.
3877 */
3878 ssk = READ_ONCE(msk->first);
3879 if (!ssk)
3880 return -EINVAL;
3881
3882 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3883 newsk = inet_csk_accept(ssk, arg);
3884 if (!newsk)
3885 return arg->err;
3886
3887 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3888 if (sk_is_mptcp(newsk)) {
3889 struct mptcp_subflow_context *subflow;
3890 struct sock *new_mptcp_sock;
3891
3892 subflow = mptcp_subflow_ctx(newsk);
3893 new_mptcp_sock = subflow->conn;
3894
3895 /* is_mptcp should be false if subflow->conn is missing, see
3896 * subflow_syn_recv_sock()
3897 */
3898 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3899 tcp_sk(newsk)->is_mptcp = 0;
3900 goto tcpfallback;
3901 }
3902
3903 newsk = new_mptcp_sock;
3904 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3905
3906 newsk->sk_kern_sock = arg->kern;
3907 lock_sock(newsk);
3908 __inet_accept(sock, newsock, newsk);
3909
3910 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3911 msk = mptcp_sk(newsk);
3912 msk->in_accept_queue = 0;
3913
3914 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3915 * This is needed so NOSPACE flag can be set from tcp stack.
3916 */
3917 mptcp_for_each_subflow(msk, subflow) {
3918 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3919
3920 if (!ssk->sk_socket)
3921 mptcp_sock_graft(ssk, newsock);
3922 }
3923
3924 /* Do late cleanup for the first subflow as necessary. Also
3925 * deal with bad peers not doing a complete shutdown.
3926 */
3927 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3928 __mptcp_close_ssk(newsk, msk->first,
3929 mptcp_subflow_ctx(msk->first), 0);
3930 if (unlikely(list_is_singular(&msk->conn_list)))
3931 mptcp_set_state(newsk, TCP_CLOSE);
3932 }
3933 } else {
3934 tcpfallback:
3935 newsk->sk_kern_sock = arg->kern;
3936 lock_sock(newsk);
3937 __inet_accept(sock, newsock, newsk);
3938 /* we are being invoked after accepting a non-mp-capable
3939 * flow: sk is a tcp_sk, not an mptcp one.
3940 *
3941 * Hand the socket over to tcp so all further socket ops
3942 * bypass mptcp.
3943 */
3944 WRITE_ONCE(newsock->sk->sk_socket->ops,
3945 mptcp_fallback_tcp_ops(newsock->sk));
3946 }
3947 release_sock(newsk);
3948
3949 return 0;
3950 }
3951
mptcp_check_writeable(struct mptcp_sock * msk)3952 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3953 {
3954 struct sock *sk = (struct sock *)msk;
3955
3956 if (__mptcp_stream_is_writeable(sk, 1))
3957 return EPOLLOUT | EPOLLWRNORM;
3958
3959 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3960 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3961 if (__mptcp_stream_is_writeable(sk, 1))
3962 return EPOLLOUT | EPOLLWRNORM;
3963
3964 return 0;
3965 }
3966
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3967 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3968 struct poll_table_struct *wait)
3969 {
3970 struct sock *sk = sock->sk;
3971 struct mptcp_sock *msk;
3972 __poll_t mask = 0;
3973 u8 shutdown;
3974 int state;
3975
3976 msk = mptcp_sk(sk);
3977 sock_poll_wait(file, sock, wait);
3978
3979 state = inet_sk_state_load(sk);
3980 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3981 if (state == TCP_LISTEN) {
3982 struct sock *ssk = READ_ONCE(msk->first);
3983
3984 if (WARN_ON_ONCE(!ssk))
3985 return 0;
3986
3987 return inet_csk_listen_poll(ssk);
3988 }
3989
3990 shutdown = READ_ONCE(sk->sk_shutdown);
3991 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3992 mask |= EPOLLHUP;
3993 if (shutdown & RCV_SHUTDOWN)
3994 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3995
3996 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3997 mask |= mptcp_check_readable(sk);
3998 if (shutdown & SEND_SHUTDOWN)
3999 mask |= EPOLLOUT | EPOLLWRNORM;
4000 else
4001 mask |= mptcp_check_writeable(msk);
4002 } else if (state == TCP_SYN_SENT &&
4003 inet_test_bit(DEFER_CONNECT, sk)) {
4004 /* cf tcp_poll() note about TFO */
4005 mask |= EPOLLOUT | EPOLLWRNORM;
4006 }
4007
4008 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4009 smp_rmb();
4010 if (READ_ONCE(sk->sk_err))
4011 mask |= EPOLLERR;
4012
4013 return mask;
4014 }
4015
4016 static const struct proto_ops mptcp_stream_ops = {
4017 .family = PF_INET,
4018 .owner = THIS_MODULE,
4019 .release = inet_release,
4020 .bind = mptcp_bind,
4021 .connect = inet_stream_connect,
4022 .socketpair = sock_no_socketpair,
4023 .accept = mptcp_stream_accept,
4024 .getname = inet_getname,
4025 .poll = mptcp_poll,
4026 .ioctl = inet_ioctl,
4027 .gettstamp = sock_gettstamp,
4028 .listen = mptcp_listen,
4029 .shutdown = inet_shutdown,
4030 .setsockopt = sock_common_setsockopt,
4031 .getsockopt = sock_common_getsockopt,
4032 .sendmsg = inet_sendmsg,
4033 .recvmsg = inet_recvmsg,
4034 .mmap = sock_no_mmap,
4035 .set_rcvlowat = mptcp_set_rcvlowat,
4036 };
4037
4038 static struct inet_protosw mptcp_protosw = {
4039 .type = SOCK_STREAM,
4040 .protocol = IPPROTO_MPTCP,
4041 .prot = &mptcp_prot,
4042 .ops = &mptcp_stream_ops,
4043 .flags = INET_PROTOSW_ICSK,
4044 };
4045
mptcp_napi_poll(struct napi_struct * napi,int budget)4046 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4047 {
4048 struct mptcp_delegated_action *delegated;
4049 struct mptcp_subflow_context *subflow;
4050 int work_done = 0;
4051
4052 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4053 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4054 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4055
4056 bh_lock_sock_nested(ssk);
4057 if (!sock_owned_by_user(ssk)) {
4058 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4059 } else {
4060 /* tcp_release_cb_override already processed
4061 * the action or will do at next release_sock().
4062 * In both case must dequeue the subflow here - on the same
4063 * CPU that scheduled it.
4064 */
4065 smp_wmb();
4066 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4067 }
4068 bh_unlock_sock(ssk);
4069 sock_put(ssk);
4070
4071 if (++work_done == budget)
4072 return budget;
4073 }
4074
4075 /* always provide a 0 'work_done' argument, so that napi_complete_done
4076 * will not try accessing the NULL napi->dev ptr
4077 */
4078 napi_complete_done(napi, 0);
4079 return work_done;
4080 }
4081
mptcp_proto_init(void)4082 void __init mptcp_proto_init(void)
4083 {
4084 struct mptcp_delegated_action *delegated;
4085 int cpu;
4086
4087 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4088
4089 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4090 panic("Failed to allocate MPTCP pcpu counter\n");
4091
4092 mptcp_napi_dev = alloc_netdev_dummy(0);
4093 if (!mptcp_napi_dev)
4094 panic("Failed to allocate MPTCP dummy netdev\n");
4095 for_each_possible_cpu(cpu) {
4096 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4097 INIT_LIST_HEAD(&delegated->head);
4098 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4099 mptcp_napi_poll);
4100 napi_enable(&delegated->napi);
4101 }
4102
4103 mptcp_subflow_init();
4104 mptcp_pm_init();
4105 mptcp_sched_init();
4106 mptcp_token_init();
4107
4108 if (proto_register(&mptcp_prot, 1) != 0)
4109 panic("Failed to register MPTCP proto.\n");
4110
4111 inet_register_protosw(&mptcp_protosw);
4112
4113 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4114 }
4115
4116 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4117 static const struct proto_ops mptcp_v6_stream_ops = {
4118 .family = PF_INET6,
4119 .owner = THIS_MODULE,
4120 .release = inet6_release,
4121 .bind = mptcp_bind,
4122 .connect = inet_stream_connect,
4123 .socketpair = sock_no_socketpair,
4124 .accept = mptcp_stream_accept,
4125 .getname = inet6_getname,
4126 .poll = mptcp_poll,
4127 .ioctl = inet6_ioctl,
4128 .gettstamp = sock_gettstamp,
4129 .listen = mptcp_listen,
4130 .shutdown = inet_shutdown,
4131 .setsockopt = sock_common_setsockopt,
4132 .getsockopt = sock_common_getsockopt,
4133 .sendmsg = inet6_sendmsg,
4134 .recvmsg = inet6_recvmsg,
4135 .mmap = sock_no_mmap,
4136 #ifdef CONFIG_COMPAT
4137 .compat_ioctl = inet6_compat_ioctl,
4138 #endif
4139 .set_rcvlowat = mptcp_set_rcvlowat,
4140 };
4141
4142 static struct proto mptcp_v6_prot;
4143
4144 static struct inet_protosw mptcp_v6_protosw = {
4145 .type = SOCK_STREAM,
4146 .protocol = IPPROTO_MPTCP,
4147 .prot = &mptcp_v6_prot,
4148 .ops = &mptcp_v6_stream_ops,
4149 .flags = INET_PROTOSW_ICSK,
4150 };
4151
mptcp_proto_v6_init(void)4152 int __init mptcp_proto_v6_init(void)
4153 {
4154 int err;
4155
4156 mptcp_v6_prot = mptcp_prot;
4157 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4158 mptcp_v6_prot.slab = NULL;
4159 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4160 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4161
4162 err = proto_register(&mptcp_v6_prot, 1);
4163 if (err)
4164 return err;
4165
4166 err = inet6_register_protosw(&mptcp_v6_protosw);
4167 if (err)
4168 proto_unregister(&mptcp_v6_prot);
4169
4170 return err;
4171 }
4172 #endif
4173