1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 static const struct ctl_table module_sysctl_table[] = {
133 {
134 .procname = "modprobe",
135 .data = &modprobe_path,
136 .maxlen = KMOD_PATH_LEN,
137 .mode = 0644,
138 .proc_handler = proc_dostring,
139 },
140 {
141 .procname = "modules_disabled",
142 .data = &modules_disabled,
143 .maxlen = sizeof(int),
144 .mode = 0644,
145 /* only handle a transition from default "0" to "1" */
146 .proc_handler = proc_dointvec_minmax,
147 .extra1 = SYSCTL_ONE,
148 .extra2 = SYSCTL_ONE,
149 },
150 };
151
init_module_sysctl(void)152 static int __init init_module_sysctl(void)
153 {
154 register_sysctl_init("kernel", module_sysctl_table);
155 return 0;
156 }
157
158 subsys_initcall(init_module_sysctl);
159
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164
register_module_notifier(struct notifier_block * nb)165 int register_module_notifier(struct notifier_block *nb)
166 {
167 return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170
unregister_module_notifier(struct notifier_block * nb)171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176
177 /*
178 * We require a truly strong try_module_get(): 0 means success.
179 * Otherwise an error is returned due to ongoing or failed
180 * initialization etc.
181 */
strong_try_module_get(struct module * mod)182 static inline int strong_try_module_get(struct module *mod)
183 {
184 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 if (mod && mod->state == MODULE_STATE_COMING)
186 return -EBUSY;
187 if (try_module_get(mod))
188 return 0;
189 else
190 return -ENOENT;
191 }
192
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 enum lockdep_ok lockdep_ok)
195 {
196 add_taint(flag, lockdep_ok);
197 set_bit(flag, &mod->taints);
198 }
199
200 /*
201 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202 */
mod_strncmp(const char * str_a,const char * str_b,size_t n)203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 for (int i = 0; i < n; i++) {
206 char a = str_a[i];
207 char b = str_b[i];
208 int d;
209
210 if (a == '-') a = '_';
211 if (b == '-') b = '_';
212
213 d = a - b;
214 if (d)
215 return d;
216
217 if (!a)
218 break;
219 }
220
221 return 0;
222 }
223
224 /*
225 * A thread that wants to hold a reference to a module only while it
226 * is running can call this to safely exit.
227 */
__module_put_and_kthread_exit(struct module * mod,long code)228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 module_put(mod);
231 kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234
235 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 unsigned int i;
239
240 for (i = 1; i < info->hdr->e_shnum; i++) {
241 Elf_Shdr *shdr = &info->sechdrs[i];
242 /* Alloc bit cleared means "ignore it." */
243 if ((shdr->sh_flags & SHF_ALLOC)
244 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 return i;
246 }
247 return 0;
248 }
249
250 /**
251 * find_any_unique_sec() - Find a unique section index by name
252 * @info: Load info for the module to scan
253 * @name: Name of the section we're looking for
254 *
255 * Locates a unique section by name. Ignores SHF_ALLOC.
256 *
257 * Return: Section index if found uniquely, zero if absent, negative count
258 * of total instances if multiple were found.
259 */
find_any_unique_sec(const struct load_info * info,const char * name)260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 unsigned int idx;
263 unsigned int count = 0;
264 int i;
265
266 for (i = 1; i < info->hdr->e_shnum; i++) {
267 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 name) == 0) {
269 count++;
270 idx = i;
271 }
272 }
273 if (count == 1) {
274 return idx;
275 } else if (count == 0) {
276 return 0;
277 } else {
278 return -count;
279 }
280 }
281
282 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 /* Section 0 has sh_addr 0. */
286 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288
289 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)290 static void *section_objs(const struct load_info *info,
291 const char *name,
292 size_t object_size,
293 unsigned int *num)
294 {
295 unsigned int sec = find_sec(info, name);
296
297 /* Section 0 has sh_addr 0 and sh_size 0. */
298 *num = info->sechdrs[sec].sh_size / object_size;
299 return (void *)info->sechdrs[sec].sh_addr;
300 }
301
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 unsigned int i;
306
307 for (i = 1; i < info->hdr->e_shnum; i++) {
308 Elf_Shdr *shdr = &info->sechdrs[i];
309 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 return i;
311 }
312 return 0;
313 }
314
315 /*
316 * Find a module section, or NULL. Fill in number of "objects" in section.
317 * Ignores SHF_ALLOC flag.
318 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 const char *name,
321 size_t object_size,
322 unsigned int *num)
323 {
324 unsigned int sec = find_any_sec(info, name);
325
326 /* Section 0 has sh_addr 0 and sh_size 0. */
327 *num = info->sechdrs[sec].sh_size / object_size;
328 return (void *)info->sechdrs[sec].sh_addr;
329 }
330
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336
kernel_symbol_name(const struct kernel_symbol * sym)337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 return offset_to_ptr(&sym->name_offset);
341 #else
342 return sym->name;
343 #endif
344 }
345
kernel_symbol_namespace(const struct kernel_symbol * sym)346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 if (!sym->namespace_offset)
350 return NULL;
351 return offset_to_ptr(&sym->namespace_offset);
352 #else
353 return sym->namespace;
354 #endif
355 }
356
cmp_name(const void * name,const void * sym)357 int cmp_name(const void *name, const void *sym)
358 {
359 return strcmp(name, kernel_symbol_name(sym));
360 }
361
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 struct module *owner,
364 struct find_symbol_arg *fsa)
365 {
366 struct kernel_symbol *sym;
367
368 if (!fsa->gplok && syms->license == GPL_ONLY)
369 return false;
370
371 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 sizeof(struct kernel_symbol), cmp_name);
373 if (!sym)
374 return false;
375
376 fsa->owner = owner;
377 fsa->crc = symversion(syms->crcs, sym - syms->start);
378 fsa->sym = sym;
379 fsa->license = syms->license;
380
381 return true;
382 }
383
384 /*
385 * Find an exported symbol and return it, along with, (optional) crc and
386 * (optional) module which owns it. Needs RCU or module_mutex.
387 */
find_symbol(struct find_symbol_arg * fsa)388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 static const struct symsearch arr[] = {
391 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 NOT_GPL_ONLY },
393 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 __start___kcrctab_gpl,
395 GPL_ONLY },
396 };
397 struct module *mod;
398 unsigned int i;
399
400 for (i = 0; i < ARRAY_SIZE(arr); i++)
401 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 return true;
403
404 list_for_each_entry_rcu(mod, &modules, list,
405 lockdep_is_held(&module_mutex)) {
406 struct symsearch arr[] = {
407 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 NOT_GPL_ONLY },
409 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 mod->gpl_crcs,
411 GPL_ONLY },
412 };
413
414 if (mod->state == MODULE_STATE_UNFORMED)
415 continue;
416
417 for (i = 0; i < ARRAY_SIZE(arr); i++)
418 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 return true;
420 }
421
422 pr_debug("Failed to find symbol %s\n", fsa->name);
423 return false;
424 }
425
426 /*
427 * Search for module by name: must hold module_mutex (or RCU for read-only
428 * access).
429 */
find_module_all(const char * name,size_t len,bool even_unformed)430 struct module *find_module_all(const char *name, size_t len,
431 bool even_unformed)
432 {
433 struct module *mod;
434
435 list_for_each_entry_rcu(mod, &modules, list,
436 lockdep_is_held(&module_mutex)) {
437 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 continue;
439 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 return mod;
441 }
442 return NULL;
443 }
444
find_module(const char * name)445 struct module *find_module(const char *name)
446 {
447 return find_module_all(name, strlen(name), false);
448 }
449
450 #ifdef CONFIG_SMP
451
mod_percpu(struct module * mod)452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 return mod->percpu;
455 }
456
percpu_modalloc(struct module * mod,struct load_info * info)457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 unsigned long align = pcpusec->sh_addralign;
461
462 if (!pcpusec->sh_size)
463 return 0;
464
465 if (align > PAGE_SIZE) {
466 pr_warn("%s: per-cpu alignment %li > %li\n",
467 mod->name, align, PAGE_SIZE);
468 align = PAGE_SIZE;
469 }
470
471 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 if (!mod->percpu) {
473 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 mod->name, (unsigned long)pcpusec->sh_size);
475 return -ENOMEM;
476 }
477 mod->percpu_size = pcpusec->sh_size;
478 return 0;
479 }
480
percpu_modfree(struct module * mod)481 static void percpu_modfree(struct module *mod)
482 {
483 free_percpu(mod->percpu);
484 }
485
find_pcpusec(struct load_info * info)486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 return find_sec(info, ".data..percpu");
489 }
490
percpu_modcopy(struct module * mod,const void * from,unsigned long size)491 static void percpu_modcopy(struct module *mod,
492 const void *from, unsigned long size)
493 {
494 int cpu;
495
496 for_each_possible_cpu(cpu)
497 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 struct module *mod;
503 unsigned int cpu;
504
505 guard(rcu)();
506 list_for_each_entry_rcu(mod, &modules, list) {
507 if (mod->state == MODULE_STATE_UNFORMED)
508 continue;
509 if (!mod->percpu_size)
510 continue;
511 for_each_possible_cpu(cpu) {
512 void *start = per_cpu_ptr(mod->percpu, cpu);
513 void *va = (void *)addr;
514
515 if (va >= start && va < start + mod->percpu_size) {
516 if (can_addr) {
517 *can_addr = (unsigned long) (va - start);
518 *can_addr += (unsigned long)
519 per_cpu_ptr(mod->percpu,
520 get_boot_cpu_id());
521 }
522 return true;
523 }
524 }
525 }
526 return false;
527 }
528
529 /**
530 * is_module_percpu_address() - test whether address is from module static percpu
531 * @addr: address to test
532 *
533 * Test whether @addr belongs to module static percpu area.
534 *
535 * Return: %true if @addr is from module static percpu area
536 */
is_module_percpu_address(unsigned long addr)537 bool is_module_percpu_address(unsigned long addr)
538 {
539 return __is_module_percpu_address(addr, NULL);
540 }
541
542 #else /* ... !CONFIG_SMP */
543
mod_percpu(struct module * mod)544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 return NULL;
547 }
percpu_modalloc(struct module * mod,struct load_info * info)548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 return -ENOMEM;
553 return 0;
554 }
percpu_modfree(struct module * mod)555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
find_pcpusec(struct load_info * info)558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 return 0;
561 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)562 static inline void percpu_modcopy(struct module *mod,
563 const void *from, unsigned long size)
564 {
565 /* pcpusec should be 0, and size of that section should be 0. */
566 BUG_ON(size != 0);
567 }
is_module_percpu_address(unsigned long addr)568 bool is_module_percpu_address(unsigned long addr)
569 {
570 return false;
571 }
572
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 return false;
576 }
577
578 #endif /* CONFIG_SMP */
579
580 #define MODINFO_ATTR(field) \
581 static void setup_modinfo_##field(struct module *mod, const char *s) \
582 { \
583 mod->field = kstrdup(s, GFP_KERNEL); \
584 } \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 struct module_kobject *mk, char *buffer) \
587 { \
588 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
589 } \
590 static int modinfo_##field##_exists(struct module *mod) \
591 { \
592 return mod->field != NULL; \
593 } \
594 static void free_modinfo_##field(struct module *mod) \
595 { \
596 kfree(mod->field); \
597 mod->field = NULL; \
598 } \
599 static const struct module_attribute modinfo_##field = { \
600 .attr = { .name = __stringify(field), .mode = 0444 }, \
601 .show = show_modinfo_##field, \
602 .setup = setup_modinfo_##field, \
603 .test = modinfo_##field##_exists, \
604 .free = free_modinfo_##field, \
605 };
606
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609
610 static struct {
611 char name[MODULE_NAME_LEN + 1];
612 char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614
615 #ifdef CONFIG_MODULE_UNLOAD
616
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE 1
621
622 /* Init the unload section of the module. */
module_unload_init(struct module * mod)623 static int module_unload_init(struct module *mod)
624 {
625 /*
626 * Initialize reference counter to MODULE_REF_BASE.
627 * refcnt == 0 means module is going.
628 */
629 atomic_set(&mod->refcnt, MODULE_REF_BASE);
630
631 INIT_LIST_HEAD(&mod->source_list);
632 INIT_LIST_HEAD(&mod->target_list);
633
634 /* Hold reference count during initialization. */
635 atomic_inc(&mod->refcnt);
636
637 return 0;
638 }
639
640 /* Does a already use b? */
already_uses(struct module * a,struct module * b)641 static int already_uses(struct module *a, struct module *b)
642 {
643 struct module_use *use;
644
645 list_for_each_entry(use, &b->source_list, source_list) {
646 if (use->source == a)
647 return 1;
648 }
649 pr_debug("%s does not use %s!\n", a->name, b->name);
650 return 0;
651 }
652
653 /*
654 * Module a uses b
655 * - we add 'a' as a "source", 'b' as a "target" of module use
656 * - the module_use is added to the list of 'b' sources (so
657 * 'b' can walk the list to see who sourced them), and of 'a'
658 * targets (so 'a' can see what modules it targets).
659 */
add_module_usage(struct module * a,struct module * b)660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 struct module_use *use;
663
664 pr_debug("Allocating new usage for %s.\n", a->name);
665 use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 if (!use)
667 return -ENOMEM;
668
669 use->source = a;
670 use->target = b;
671 list_add(&use->source_list, &b->source_list);
672 list_add(&use->target_list, &a->target_list);
673 return 0;
674 }
675
676 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)677 static int ref_module(struct module *a, struct module *b)
678 {
679 int err;
680
681 if (b == NULL || already_uses(a, b))
682 return 0;
683
684 /* If module isn't available, we fail. */
685 err = strong_try_module_get(b);
686 if (err)
687 return err;
688
689 err = add_module_usage(a, b);
690 if (err) {
691 module_put(b);
692 return err;
693 }
694 return 0;
695 }
696
697 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)698 static void module_unload_free(struct module *mod)
699 {
700 struct module_use *use, *tmp;
701
702 mutex_lock(&module_mutex);
703 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 struct module *i = use->target;
705 pr_debug("%s unusing %s\n", mod->name, i->name);
706 module_put(i);
707 list_del(&use->source_list);
708 list_del(&use->target_list);
709 kfree(use);
710 }
711 mutex_unlock(&module_mutex);
712 }
713
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)715 static inline int try_force_unload(unsigned int flags)
716 {
717 int ret = (flags & O_TRUNC);
718 if (ret)
719 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 return ret;
721 }
722 #else
try_force_unload(unsigned int flags)723 static inline int try_force_unload(unsigned int flags)
724 {
725 return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728
729 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)730 static int try_release_module_ref(struct module *mod)
731 {
732 int ret;
733
734 /* Try to decrement refcnt which we set at loading */
735 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 BUG_ON(ret < 0);
737 if (ret)
738 /* Someone can put this right now, recover with checking */
739 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740
741 return ret;
742 }
743
try_stop_module(struct module * mod,int flags,int * forced)744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 /* If it's not unused, quit unless we're forcing. */
747 if (try_release_module_ref(mod) != 0) {
748 *forced = try_force_unload(flags);
749 if (!(*forced))
750 return -EWOULDBLOCK;
751 }
752
753 /* Mark it as dying. */
754 mod->state = MODULE_STATE_GOING;
755
756 return 0;
757 }
758
759 /**
760 * module_refcount() - return the refcount or -1 if unloading
761 * @mod: the module we're checking
762 *
763 * Return:
764 * -1 if the module is in the process of unloading
765 * otherwise the number of references in the kernel to the module
766 */
module_refcount(struct module * mod)767 int module_refcount(struct module *mod)
768 {
769 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 unsigned int, flags)
778 {
779 struct module *mod;
780 char name[MODULE_NAME_LEN];
781 char buf[MODULE_FLAGS_BUF_SIZE];
782 int ret, forced = 0;
783
784 if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 return -EPERM;
786
787 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
788 return -EFAULT;
789 name[MODULE_NAME_LEN-1] = '\0';
790
791 audit_log_kern_module(name);
792
793 if (mutex_lock_interruptible(&module_mutex) != 0)
794 return -EINTR;
795
796 mod = find_module(name);
797 if (!mod) {
798 ret = -ENOENT;
799 goto out;
800 }
801
802 if (!list_empty(&mod->source_list)) {
803 /* Other modules depend on us: get rid of them first. */
804 ret = -EWOULDBLOCK;
805 goto out;
806 }
807
808 /* Doing init or already dying? */
809 if (mod->state != MODULE_STATE_LIVE) {
810 /* FIXME: if (force), slam module count damn the torpedoes */
811 pr_debug("%s already dying\n", mod->name);
812 ret = -EBUSY;
813 goto out;
814 }
815
816 /* If it has an init func, it must have an exit func to unload */
817 if (mod->init && !mod->exit) {
818 forced = try_force_unload(flags);
819 if (!forced) {
820 /* This module can't be removed */
821 ret = -EBUSY;
822 goto out;
823 }
824 }
825
826 ret = try_stop_module(mod, flags, &forced);
827 if (ret != 0)
828 goto out;
829
830 mutex_unlock(&module_mutex);
831 /* Final destruction now no one is using it. */
832 if (mod->exit != NULL)
833 mod->exit();
834 blocking_notifier_call_chain(&module_notify_list,
835 MODULE_STATE_GOING, mod);
836 klp_module_going(mod);
837 ftrace_release_mod(mod);
838
839 async_synchronize_full();
840
841 /* Store the name and taints of the last unloaded module for diagnostic purposes */
842 strscpy(last_unloaded_module.name, mod->name);
843 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
844
845 free_module(mod);
846 /* someone could wait for the module in add_unformed_module() */
847 wake_up_all(&module_wq);
848 return 0;
849 out:
850 mutex_unlock(&module_mutex);
851 return ret;
852 }
853
__symbol_put(const char * symbol)854 void __symbol_put(const char *symbol)
855 {
856 struct find_symbol_arg fsa = {
857 .name = symbol,
858 .gplok = true,
859 };
860
861 guard(rcu)();
862 BUG_ON(!find_symbol(&fsa));
863 module_put(fsa.owner);
864 }
865 EXPORT_SYMBOL(__symbol_put);
866
867 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)868 void symbol_put_addr(void *addr)
869 {
870 struct module *modaddr;
871 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
872
873 if (core_kernel_text(a))
874 return;
875
876 /*
877 * Even though we hold a reference on the module; we still need to
878 * RCU read section in order to safely traverse the data structure.
879 */
880 guard(rcu)();
881 modaddr = __module_text_address(a);
882 BUG_ON(!modaddr);
883 module_put(modaddr);
884 }
885 EXPORT_SYMBOL_GPL(symbol_put_addr);
886
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)887 static ssize_t show_refcnt(const struct module_attribute *mattr,
888 struct module_kobject *mk, char *buffer)
889 {
890 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
891 }
892
893 static const struct module_attribute modinfo_refcnt =
894 __ATTR(refcnt, 0444, show_refcnt, NULL);
895
__module_get(struct module * module)896 void __module_get(struct module *module)
897 {
898 if (module) {
899 atomic_inc(&module->refcnt);
900 trace_module_get(module, _RET_IP_);
901 }
902 }
903 EXPORT_SYMBOL(__module_get);
904
try_module_get(struct module * module)905 bool try_module_get(struct module *module)
906 {
907 bool ret = true;
908
909 if (module) {
910 /* Note: here, we can fail to get a reference */
911 if (likely(module_is_live(module) &&
912 atomic_inc_not_zero(&module->refcnt) != 0))
913 trace_module_get(module, _RET_IP_);
914 else
915 ret = false;
916 }
917 return ret;
918 }
919 EXPORT_SYMBOL(try_module_get);
920
module_put(struct module * module)921 void module_put(struct module *module)
922 {
923 int ret;
924
925 if (module) {
926 ret = atomic_dec_if_positive(&module->refcnt);
927 WARN_ON(ret < 0); /* Failed to put refcount */
928 trace_module_put(module, _RET_IP_);
929 }
930 }
931 EXPORT_SYMBOL(module_put);
932
933 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)934 static inline void module_unload_free(struct module *mod)
935 {
936 }
937
ref_module(struct module * a,struct module * b)938 static int ref_module(struct module *a, struct module *b)
939 {
940 return strong_try_module_get(b);
941 }
942
module_unload_init(struct module * mod)943 static inline int module_unload_init(struct module *mod)
944 {
945 return 0;
946 }
947 #endif /* CONFIG_MODULE_UNLOAD */
948
module_flags_taint(unsigned long taints,char * buf)949 size_t module_flags_taint(unsigned long taints, char *buf)
950 {
951 size_t l = 0;
952 int i;
953
954 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
955 if (taint_flags[i].module && test_bit(i, &taints))
956 buf[l++] = taint_flags[i].c_true;
957 }
958
959 return l;
960 }
961
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)962 static ssize_t show_initstate(const struct module_attribute *mattr,
963 struct module_kobject *mk, char *buffer)
964 {
965 const char *state = "unknown";
966
967 switch (mk->mod->state) {
968 case MODULE_STATE_LIVE:
969 state = "live";
970 break;
971 case MODULE_STATE_COMING:
972 state = "coming";
973 break;
974 case MODULE_STATE_GOING:
975 state = "going";
976 break;
977 default:
978 BUG();
979 }
980 return sprintf(buffer, "%s\n", state);
981 }
982
983 static const struct module_attribute modinfo_initstate =
984 __ATTR(initstate, 0444, show_initstate, NULL);
985
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)986 static ssize_t store_uevent(const struct module_attribute *mattr,
987 struct module_kobject *mk,
988 const char *buffer, size_t count)
989 {
990 int rc;
991
992 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
993 return rc ? rc : count;
994 }
995
996 const struct module_attribute module_uevent =
997 __ATTR(uevent, 0200, NULL, store_uevent);
998
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)999 static ssize_t show_coresize(const struct module_attribute *mattr,
1000 struct module_kobject *mk, char *buffer)
1001 {
1002 unsigned int size = mk->mod->mem[MOD_TEXT].size;
1003
1004 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1005 for_class_mod_mem_type(type, core_data)
1006 size += mk->mod->mem[type].size;
1007 }
1008 return sprintf(buffer, "%u\n", size);
1009 }
1010
1011 static const struct module_attribute modinfo_coresize =
1012 __ATTR(coresize, 0444, show_coresize, NULL);
1013
1014 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1015 static ssize_t show_datasize(const struct module_attribute *mattr,
1016 struct module_kobject *mk, char *buffer)
1017 {
1018 unsigned int size = 0;
1019
1020 for_class_mod_mem_type(type, core_data)
1021 size += mk->mod->mem[type].size;
1022 return sprintf(buffer, "%u\n", size);
1023 }
1024
1025 static const struct module_attribute modinfo_datasize =
1026 __ATTR(datasize, 0444, show_datasize, NULL);
1027 #endif
1028
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1029 static ssize_t show_initsize(const struct module_attribute *mattr,
1030 struct module_kobject *mk, char *buffer)
1031 {
1032 unsigned int size = 0;
1033
1034 for_class_mod_mem_type(type, init)
1035 size += mk->mod->mem[type].size;
1036 return sprintf(buffer, "%u\n", size);
1037 }
1038
1039 static const struct module_attribute modinfo_initsize =
1040 __ATTR(initsize, 0444, show_initsize, NULL);
1041
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1042 static ssize_t show_taint(const struct module_attribute *mattr,
1043 struct module_kobject *mk, char *buffer)
1044 {
1045 size_t l;
1046
1047 l = module_flags_taint(mk->mod->taints, buffer);
1048 buffer[l++] = '\n';
1049 return l;
1050 }
1051
1052 static const struct module_attribute modinfo_taint =
1053 __ATTR(taint, 0444, show_taint, NULL);
1054
1055 const struct module_attribute *const modinfo_attrs[] = {
1056 &module_uevent,
1057 &modinfo_version,
1058 &modinfo_srcversion,
1059 &modinfo_initstate,
1060 &modinfo_coresize,
1061 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1062 &modinfo_datasize,
1063 #endif
1064 &modinfo_initsize,
1065 &modinfo_taint,
1066 #ifdef CONFIG_MODULE_UNLOAD
1067 &modinfo_refcnt,
1068 #endif
1069 NULL,
1070 };
1071
1072 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1073
1074 static const char vermagic[] = VERMAGIC_STRING;
1075
try_to_force_load(struct module * mod,const char * reason)1076 int try_to_force_load(struct module *mod, const char *reason)
1077 {
1078 #ifdef CONFIG_MODULE_FORCE_LOAD
1079 if (!test_taint(TAINT_FORCED_MODULE))
1080 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1081 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1082 return 0;
1083 #else
1084 return -ENOEXEC;
1085 #endif
1086 }
1087
1088 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1089 char *module_next_tag_pair(char *string, unsigned long *secsize)
1090 {
1091 /* Skip non-zero chars */
1092 while (string[0]) {
1093 string++;
1094 if ((*secsize)-- <= 1)
1095 return NULL;
1096 }
1097
1098 /* Skip any zero padding. */
1099 while (!string[0]) {
1100 string++;
1101 if ((*secsize)-- <= 1)
1102 return NULL;
1103 }
1104 return string;
1105 }
1106
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1107 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1108 char *prev)
1109 {
1110 char *p;
1111 unsigned int taglen = strlen(tag);
1112 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1113 unsigned long size = infosec->sh_size;
1114
1115 /*
1116 * get_modinfo() calls made before rewrite_section_headers()
1117 * must use sh_offset, as sh_addr isn't set!
1118 */
1119 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1120
1121 if (prev) {
1122 size -= prev - modinfo;
1123 modinfo = module_next_tag_pair(prev, &size);
1124 }
1125
1126 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1127 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1128 return p + taglen + 1;
1129 }
1130 return NULL;
1131 }
1132
get_modinfo(const struct load_info * info,const char * tag)1133 static char *get_modinfo(const struct load_info *info, const char *tag)
1134 {
1135 return get_next_modinfo(info, tag, NULL);
1136 }
1137
1138 /**
1139 * verify_module_namespace() - does @modname have access to this symbol's @namespace
1140 * @namespace: export symbol namespace
1141 * @modname: module name
1142 *
1143 * If @namespace is prefixed with "module:" to indicate it is a module namespace
1144 * then test if @modname matches any of the comma separated patterns.
1145 *
1146 * The patterns only support tail-glob.
1147 */
verify_module_namespace(const char * namespace,const char * modname)1148 static bool verify_module_namespace(const char *namespace, const char *modname)
1149 {
1150 size_t len, modlen = strlen(modname);
1151 const char *prefix = "module:";
1152 const char *sep;
1153 bool glob;
1154
1155 if (!strstarts(namespace, prefix))
1156 return false;
1157
1158 for (namespace += strlen(prefix); *namespace; namespace = sep) {
1159 sep = strchrnul(namespace, ',');
1160 len = sep - namespace;
1161
1162 glob = false;
1163 if (sep[-1] == '*') {
1164 len--;
1165 glob = true;
1166 }
1167
1168 if (*sep)
1169 sep++;
1170
1171 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1172 return true;
1173 }
1174
1175 return false;
1176 }
1177
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1178 static int verify_namespace_is_imported(const struct load_info *info,
1179 const struct kernel_symbol *sym,
1180 struct module *mod)
1181 {
1182 const char *namespace;
1183 char *imported_namespace;
1184
1185 namespace = kernel_symbol_namespace(sym);
1186 if (namespace && namespace[0]) {
1187
1188 if (verify_module_namespace(namespace, mod->name))
1189 return 0;
1190
1191 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1192 if (strcmp(namespace, imported_namespace) == 0)
1193 return 0;
1194 }
1195 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1196 pr_warn(
1197 #else
1198 pr_err(
1199 #endif
1200 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1201 mod->name, kernel_symbol_name(sym), namespace);
1202 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1203 return -EINVAL;
1204 #endif
1205 }
1206 return 0;
1207 }
1208
inherit_taint(struct module * mod,struct module * owner,const char * name)1209 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1210 {
1211 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1212 return true;
1213
1214 if (mod->using_gplonly_symbols) {
1215 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1216 mod->name, name, owner->name);
1217 return false;
1218 }
1219
1220 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1221 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1222 mod->name, name, owner->name);
1223 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1224 }
1225 return true;
1226 }
1227
1228 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1229 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1230 const struct load_info *info,
1231 const char *name,
1232 char ownername[])
1233 {
1234 struct find_symbol_arg fsa = {
1235 .name = name,
1236 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1237 .warn = true,
1238 };
1239 int err;
1240
1241 /*
1242 * The module_mutex should not be a heavily contended lock;
1243 * if we get the occasional sleep here, we'll go an extra iteration
1244 * in the wait_event_interruptible(), which is harmless.
1245 */
1246 sched_annotate_sleep();
1247 mutex_lock(&module_mutex);
1248 if (!find_symbol(&fsa))
1249 goto unlock;
1250
1251 if (fsa.license == GPL_ONLY)
1252 mod->using_gplonly_symbols = true;
1253
1254 if (!inherit_taint(mod, fsa.owner, name)) {
1255 fsa.sym = NULL;
1256 goto getname;
1257 }
1258
1259 if (!check_version(info, name, mod, fsa.crc)) {
1260 fsa.sym = ERR_PTR(-EINVAL);
1261 goto getname;
1262 }
1263
1264 err = verify_namespace_is_imported(info, fsa.sym, mod);
1265 if (err) {
1266 fsa.sym = ERR_PTR(err);
1267 goto getname;
1268 }
1269
1270 err = ref_module(mod, fsa.owner);
1271 if (err) {
1272 fsa.sym = ERR_PTR(err);
1273 goto getname;
1274 }
1275
1276 getname:
1277 /* We must make copy under the lock if we failed to get ref. */
1278 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1279 unlock:
1280 mutex_unlock(&module_mutex);
1281 return fsa.sym;
1282 }
1283
1284 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1285 resolve_symbol_wait(struct module *mod,
1286 const struct load_info *info,
1287 const char *name)
1288 {
1289 const struct kernel_symbol *ksym;
1290 char owner[MODULE_NAME_LEN];
1291
1292 if (wait_event_interruptible_timeout(module_wq,
1293 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1294 || PTR_ERR(ksym) != -EBUSY,
1295 30 * HZ) <= 0) {
1296 pr_warn("%s: gave up waiting for init of module %s.\n",
1297 mod->name, owner);
1298 }
1299 return ksym;
1300 }
1301
module_arch_cleanup(struct module * mod)1302 void __weak module_arch_cleanup(struct module *mod)
1303 {
1304 }
1305
module_arch_freeing_init(struct module * mod)1306 void __weak module_arch_freeing_init(struct module *mod)
1307 {
1308 }
1309
module_memory_alloc(struct module * mod,enum mod_mem_type type)1310 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1311 {
1312 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1313 enum execmem_type execmem_type;
1314 void *ptr;
1315
1316 mod->mem[type].size = size;
1317
1318 if (mod_mem_type_is_data(type))
1319 execmem_type = EXECMEM_MODULE_DATA;
1320 else
1321 execmem_type = EXECMEM_MODULE_TEXT;
1322
1323 ptr = execmem_alloc(execmem_type, size);
1324 if (!ptr)
1325 return -ENOMEM;
1326
1327 if (execmem_is_rox(execmem_type)) {
1328 int err = execmem_make_temp_rw(ptr, size);
1329
1330 if (err) {
1331 execmem_free(ptr);
1332 return -ENOMEM;
1333 }
1334
1335 mod->mem[type].is_rox = true;
1336 }
1337
1338 /*
1339 * The pointer to these blocks of memory are stored on the module
1340 * structure and we keep that around so long as the module is
1341 * around. We only free that memory when we unload the module.
1342 * Just mark them as not being a leak then. The .init* ELF
1343 * sections *do* get freed after boot so we *could* treat them
1344 * slightly differently with kmemleak_ignore() and only grey
1345 * them out as they work as typical memory allocations which
1346 * *do* eventually get freed, but let's just keep things simple
1347 * and avoid *any* false positives.
1348 */
1349 if (!mod->mem[type].is_rox)
1350 kmemleak_not_leak(ptr);
1351
1352 memset(ptr, 0, size);
1353 mod->mem[type].base = ptr;
1354
1355 return 0;
1356 }
1357
module_memory_restore_rox(struct module * mod)1358 static void module_memory_restore_rox(struct module *mod)
1359 {
1360 for_class_mod_mem_type(type, text) {
1361 struct module_memory *mem = &mod->mem[type];
1362
1363 if (mem->is_rox)
1364 execmem_restore_rox(mem->base, mem->size);
1365 }
1366 }
1367
module_memory_free(struct module * mod,enum mod_mem_type type)1368 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1369 {
1370 struct module_memory *mem = &mod->mem[type];
1371
1372 execmem_free(mem->base);
1373 }
1374
free_mod_mem(struct module * mod)1375 static void free_mod_mem(struct module *mod)
1376 {
1377 for_each_mod_mem_type(type) {
1378 struct module_memory *mod_mem = &mod->mem[type];
1379
1380 if (type == MOD_DATA)
1381 continue;
1382
1383 /* Free lock-classes; relies on the preceding sync_rcu(). */
1384 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1385 if (mod_mem->size)
1386 module_memory_free(mod, type);
1387 }
1388
1389 /* MOD_DATA hosts mod, so free it at last */
1390 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1391 module_memory_free(mod, MOD_DATA);
1392 }
1393
1394 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1395 static void free_module(struct module *mod)
1396 {
1397 trace_module_free(mod);
1398
1399 codetag_unload_module(mod);
1400
1401 mod_sysfs_teardown(mod);
1402
1403 /*
1404 * We leave it in list to prevent duplicate loads, but make sure
1405 * that noone uses it while it's being deconstructed.
1406 */
1407 mutex_lock(&module_mutex);
1408 mod->state = MODULE_STATE_UNFORMED;
1409 mutex_unlock(&module_mutex);
1410
1411 /* Arch-specific cleanup. */
1412 module_arch_cleanup(mod);
1413
1414 /* Module unload stuff */
1415 module_unload_free(mod);
1416
1417 /* Free any allocated parameters. */
1418 destroy_params(mod->kp, mod->num_kp);
1419
1420 if (is_livepatch_module(mod))
1421 free_module_elf(mod);
1422
1423 /* Now we can delete it from the lists */
1424 mutex_lock(&module_mutex);
1425 /* Unlink carefully: kallsyms could be walking list. */
1426 list_del_rcu(&mod->list);
1427 mod_tree_remove(mod);
1428 /* Remove this module from bug list, this uses list_del_rcu */
1429 module_bug_cleanup(mod);
1430 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1431 synchronize_rcu();
1432 if (try_add_tainted_module(mod))
1433 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1434 mod->name);
1435 mutex_unlock(&module_mutex);
1436
1437 /* This may be empty, but that's OK */
1438 module_arch_freeing_init(mod);
1439 kfree(mod->args);
1440 percpu_modfree(mod);
1441
1442 free_mod_mem(mod);
1443 }
1444
__symbol_get(const char * symbol)1445 void *__symbol_get(const char *symbol)
1446 {
1447 struct find_symbol_arg fsa = {
1448 .name = symbol,
1449 .gplok = true,
1450 .warn = true,
1451 };
1452
1453 scoped_guard(rcu) {
1454 if (!find_symbol(&fsa))
1455 return NULL;
1456 if (fsa.license != GPL_ONLY) {
1457 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1458 symbol);
1459 return NULL;
1460 }
1461 if (strong_try_module_get(fsa.owner))
1462 return NULL;
1463 }
1464 return (void *)kernel_symbol_value(fsa.sym);
1465 }
1466 EXPORT_SYMBOL_GPL(__symbol_get);
1467
1468 /*
1469 * Ensure that an exported symbol [global namespace] does not already exist
1470 * in the kernel or in some other module's exported symbol table.
1471 *
1472 * You must hold the module_mutex.
1473 */
verify_exported_symbols(struct module * mod)1474 static int verify_exported_symbols(struct module *mod)
1475 {
1476 unsigned int i;
1477 const struct kernel_symbol *s;
1478 struct {
1479 const struct kernel_symbol *sym;
1480 unsigned int num;
1481 } arr[] = {
1482 { mod->syms, mod->num_syms },
1483 { mod->gpl_syms, mod->num_gpl_syms },
1484 };
1485
1486 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1487 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1488 struct find_symbol_arg fsa = {
1489 .name = kernel_symbol_name(s),
1490 .gplok = true,
1491 };
1492 if (find_symbol(&fsa)) {
1493 pr_err("%s: exports duplicate symbol %s"
1494 " (owned by %s)\n",
1495 mod->name, kernel_symbol_name(s),
1496 module_name(fsa.owner));
1497 return -ENOEXEC;
1498 }
1499 }
1500 }
1501 return 0;
1502 }
1503
ignore_undef_symbol(Elf_Half emachine,const char * name)1504 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1505 {
1506 /*
1507 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1508 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1509 * i386 has a similar problem but may not deserve a fix.
1510 *
1511 * If we ever have to ignore many symbols, consider refactoring the code to
1512 * only warn if referenced by a relocation.
1513 */
1514 if (emachine == EM_386 || emachine == EM_X86_64)
1515 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1516 return false;
1517 }
1518
1519 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1520 static int simplify_symbols(struct module *mod, const struct load_info *info)
1521 {
1522 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1523 Elf_Sym *sym = (void *)symsec->sh_addr;
1524 unsigned long secbase;
1525 unsigned int i;
1526 int ret = 0;
1527 const struct kernel_symbol *ksym;
1528
1529 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1530 const char *name = info->strtab + sym[i].st_name;
1531
1532 switch (sym[i].st_shndx) {
1533 case SHN_COMMON:
1534 /* Ignore common symbols */
1535 if (!strncmp(name, "__gnu_lto", 9))
1536 break;
1537
1538 /*
1539 * We compiled with -fno-common. These are not
1540 * supposed to happen.
1541 */
1542 pr_debug("Common symbol: %s\n", name);
1543 pr_warn("%s: please compile with -fno-common\n",
1544 mod->name);
1545 ret = -ENOEXEC;
1546 break;
1547
1548 case SHN_ABS:
1549 /* Don't need to do anything */
1550 pr_debug("Absolute symbol: 0x%08lx %s\n",
1551 (long)sym[i].st_value, name);
1552 break;
1553
1554 case SHN_LIVEPATCH:
1555 /* Livepatch symbols are resolved by livepatch */
1556 break;
1557
1558 case SHN_UNDEF:
1559 ksym = resolve_symbol_wait(mod, info, name);
1560 /* Ok if resolved. */
1561 if (ksym && !IS_ERR(ksym)) {
1562 sym[i].st_value = kernel_symbol_value(ksym);
1563 break;
1564 }
1565
1566 /* Ok if weak or ignored. */
1567 if (!ksym &&
1568 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1569 ignore_undef_symbol(info->hdr->e_machine, name)))
1570 break;
1571
1572 ret = PTR_ERR(ksym) ?: -ENOENT;
1573 pr_warn("%s: Unknown symbol %s (err %d)\n",
1574 mod->name, name, ret);
1575 break;
1576
1577 default:
1578 /* Divert to percpu allocation if a percpu var. */
1579 if (sym[i].st_shndx == info->index.pcpu)
1580 secbase = (unsigned long)mod_percpu(mod);
1581 else
1582 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1583 sym[i].st_value += secbase;
1584 break;
1585 }
1586 }
1587
1588 return ret;
1589 }
1590
apply_relocations(struct module * mod,const struct load_info * info)1591 static int apply_relocations(struct module *mod, const struct load_info *info)
1592 {
1593 unsigned int i;
1594 int err = 0;
1595
1596 /* Now do relocations. */
1597 for (i = 1; i < info->hdr->e_shnum; i++) {
1598 unsigned int infosec = info->sechdrs[i].sh_info;
1599
1600 /* Not a valid relocation section? */
1601 if (infosec >= info->hdr->e_shnum)
1602 continue;
1603
1604 /*
1605 * Don't bother with non-allocated sections.
1606 * An exception is the percpu section, which has separate allocations
1607 * for individual CPUs. We relocate the percpu section in the initial
1608 * ELF template and subsequently copy it to the per-CPU destinations.
1609 */
1610 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1611 (!infosec || infosec != info->index.pcpu))
1612 continue;
1613
1614 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1615 err = klp_apply_section_relocs(mod, info->sechdrs,
1616 info->secstrings,
1617 info->strtab,
1618 info->index.sym, i,
1619 NULL);
1620 else if (info->sechdrs[i].sh_type == SHT_REL)
1621 err = apply_relocate(info->sechdrs, info->strtab,
1622 info->index.sym, i, mod);
1623 else if (info->sechdrs[i].sh_type == SHT_RELA)
1624 err = apply_relocate_add(info->sechdrs, info->strtab,
1625 info->index.sym, i, mod);
1626 if (err < 0)
1627 break;
1628 }
1629 return err;
1630 }
1631
1632 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1633 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1634 unsigned int section)
1635 {
1636 /* default implementation just returns zero */
1637 return 0;
1638 }
1639
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1640 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1641 Elf_Shdr *sechdr, unsigned int section)
1642 {
1643 long offset;
1644 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1645
1646 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1647 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1648 mod->mem[type].size = offset + sechdr->sh_size;
1649
1650 WARN_ON_ONCE(offset & mask);
1651 return offset | mask;
1652 }
1653
module_init_layout_section(const char * sname)1654 bool module_init_layout_section(const char *sname)
1655 {
1656 #ifndef CONFIG_MODULE_UNLOAD
1657 if (module_exit_section(sname))
1658 return true;
1659 #endif
1660 return module_init_section(sname);
1661 }
1662
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1663 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1664 {
1665 unsigned int m, i;
1666
1667 /*
1668 * { Mask of required section header flags,
1669 * Mask of excluded section header flags }
1670 */
1671 static const unsigned long masks[][2] = {
1672 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1673 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1674 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1675 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1676 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1677 };
1678 static const int core_m_to_mem_type[] = {
1679 MOD_TEXT,
1680 MOD_RODATA,
1681 MOD_RO_AFTER_INIT,
1682 MOD_DATA,
1683 MOD_DATA,
1684 };
1685 static const int init_m_to_mem_type[] = {
1686 MOD_INIT_TEXT,
1687 MOD_INIT_RODATA,
1688 MOD_INVALID,
1689 MOD_INIT_DATA,
1690 MOD_INIT_DATA,
1691 };
1692
1693 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1694 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1695
1696 for (i = 0; i < info->hdr->e_shnum; ++i) {
1697 Elf_Shdr *s = &info->sechdrs[i];
1698 const char *sname = info->secstrings + s->sh_name;
1699
1700 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1701 || (s->sh_flags & masks[m][1])
1702 || s->sh_entsize != ~0UL
1703 || is_init != module_init_layout_section(sname))
1704 continue;
1705
1706 if (WARN_ON_ONCE(type == MOD_INVALID))
1707 continue;
1708
1709 /*
1710 * Do not allocate codetag memory as we load it into
1711 * preallocated contiguous memory.
1712 */
1713 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1714 /*
1715 * s->sh_entsize won't be used but populate the
1716 * type field to avoid confusion.
1717 */
1718 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1719 << SH_ENTSIZE_TYPE_SHIFT;
1720 continue;
1721 }
1722
1723 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1724 pr_debug("\t%s\n", sname);
1725 }
1726 }
1727 }
1728
1729 /*
1730 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1731 * might -- code, read-only data, read-write data, small data. Tally
1732 * sizes, and place the offsets into sh_entsize fields: high bit means it
1733 * belongs in init.
1734 */
layout_sections(struct module * mod,struct load_info * info)1735 static void layout_sections(struct module *mod, struct load_info *info)
1736 {
1737 unsigned int i;
1738
1739 for (i = 0; i < info->hdr->e_shnum; i++)
1740 info->sechdrs[i].sh_entsize = ~0UL;
1741
1742 pr_debug("Core section allocation order for %s:\n", mod->name);
1743 __layout_sections(mod, info, false);
1744
1745 pr_debug("Init section allocation order for %s:\n", mod->name);
1746 __layout_sections(mod, info, true);
1747 }
1748
module_license_taint_check(struct module * mod,const char * license)1749 static void module_license_taint_check(struct module *mod, const char *license)
1750 {
1751 if (!license)
1752 license = "unspecified";
1753
1754 if (!license_is_gpl_compatible(license)) {
1755 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1756 pr_warn("%s: module license '%s' taints kernel.\n",
1757 mod->name, license);
1758 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1759 LOCKDEP_NOW_UNRELIABLE);
1760 }
1761 }
1762
setup_modinfo(struct module * mod,struct load_info * info)1763 static int setup_modinfo(struct module *mod, struct load_info *info)
1764 {
1765 const struct module_attribute *attr;
1766 char *imported_namespace;
1767 int i;
1768
1769 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1770 if (attr->setup)
1771 attr->setup(mod, get_modinfo(info, attr->attr.name));
1772 }
1773
1774 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1775 /*
1776 * 'module:' prefixed namespaces are implicit, disallow
1777 * explicit imports.
1778 */
1779 if (strstarts(imported_namespace, "module:")) {
1780 pr_err("%s: module tries to import module namespace: %s\n",
1781 mod->name, imported_namespace);
1782 return -EPERM;
1783 }
1784 }
1785
1786 return 0;
1787 }
1788
free_modinfo(struct module * mod)1789 static void free_modinfo(struct module *mod)
1790 {
1791 const struct module_attribute *attr;
1792 int i;
1793
1794 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1795 if (attr->free)
1796 attr->free(mod);
1797 }
1798 }
1799
module_init_section(const char * name)1800 bool __weak module_init_section(const char *name)
1801 {
1802 return strstarts(name, ".init");
1803 }
1804
module_exit_section(const char * name)1805 bool __weak module_exit_section(const char *name)
1806 {
1807 return strstarts(name, ".exit");
1808 }
1809
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1810 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1811 {
1812 #if defined(CONFIG_64BIT)
1813 unsigned long long secend;
1814 #else
1815 unsigned long secend;
1816 #endif
1817
1818 /*
1819 * Check for both overflow and offset/size being
1820 * too large.
1821 */
1822 secend = shdr->sh_offset + shdr->sh_size;
1823 if (secend < shdr->sh_offset || secend > info->len)
1824 return -ENOEXEC;
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * elf_validity_ehdr() - Checks an ELF header for module validity
1831 * @info: Load info containing the ELF header to check
1832 *
1833 * Checks whether an ELF header could belong to a valid module. Checks:
1834 *
1835 * * ELF header is within the data the user provided
1836 * * ELF magic is present
1837 * * It is relocatable (not final linked, not core file, etc.)
1838 * * The header's machine type matches what the architecture expects.
1839 * * Optional arch-specific hook for other properties
1840 * - module_elf_check_arch() is currently only used by PPC to check
1841 * ELF ABI version, but may be used by others in the future.
1842 *
1843 * Return: %0 if valid, %-ENOEXEC on failure.
1844 */
elf_validity_ehdr(const struct load_info * info)1845 static int elf_validity_ehdr(const struct load_info *info)
1846 {
1847 if (info->len < sizeof(*(info->hdr))) {
1848 pr_err("Invalid ELF header len %lu\n", info->len);
1849 return -ENOEXEC;
1850 }
1851 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1852 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1853 return -ENOEXEC;
1854 }
1855 if (info->hdr->e_type != ET_REL) {
1856 pr_err("Invalid ELF header type: %u != %u\n",
1857 info->hdr->e_type, ET_REL);
1858 return -ENOEXEC;
1859 }
1860 if (!elf_check_arch(info->hdr)) {
1861 pr_err("Invalid architecture in ELF header: %u\n",
1862 info->hdr->e_machine);
1863 return -ENOEXEC;
1864 }
1865 if (!module_elf_check_arch(info->hdr)) {
1866 pr_err("Invalid module architecture in ELF header: %u\n",
1867 info->hdr->e_machine);
1868 return -ENOEXEC;
1869 }
1870 return 0;
1871 }
1872
1873 /**
1874 * elf_validity_cache_sechdrs() - Cache section headers if valid
1875 * @info: Load info to compute section headers from
1876 *
1877 * Checks:
1878 *
1879 * * ELF header is valid (see elf_validity_ehdr())
1880 * * Section headers are the size we expect
1881 * * Section array fits in the user provided data
1882 * * Section index 0 is NULL
1883 * * Section contents are inbounds
1884 *
1885 * Then updates @info with a &load_info->sechdrs pointer if valid.
1886 *
1887 * Return: %0 if valid, negative error code if validation failed.
1888 */
elf_validity_cache_sechdrs(struct load_info * info)1889 static int elf_validity_cache_sechdrs(struct load_info *info)
1890 {
1891 Elf_Shdr *sechdrs;
1892 Elf_Shdr *shdr;
1893 int i;
1894 int err;
1895
1896 err = elf_validity_ehdr(info);
1897 if (err < 0)
1898 return err;
1899
1900 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1901 pr_err("Invalid ELF section header size\n");
1902 return -ENOEXEC;
1903 }
1904
1905 /*
1906 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1907 * known and small. So e_shnum * sizeof(Elf_Shdr)
1908 * will not overflow unsigned long on any platform.
1909 */
1910 if (info->hdr->e_shoff >= info->len
1911 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1912 info->len - info->hdr->e_shoff)) {
1913 pr_err("Invalid ELF section header overflow\n");
1914 return -ENOEXEC;
1915 }
1916
1917 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1918
1919 /*
1920 * The code assumes that section 0 has a length of zero and
1921 * an addr of zero, so check for it.
1922 */
1923 if (sechdrs[0].sh_type != SHT_NULL
1924 || sechdrs[0].sh_size != 0
1925 || sechdrs[0].sh_addr != 0) {
1926 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1927 sechdrs[0].sh_type);
1928 return -ENOEXEC;
1929 }
1930
1931 /* Validate contents are inbounds */
1932 for (i = 1; i < info->hdr->e_shnum; i++) {
1933 shdr = &sechdrs[i];
1934 switch (shdr->sh_type) {
1935 case SHT_NULL:
1936 case SHT_NOBITS:
1937 /* No contents, offset/size don't mean anything */
1938 continue;
1939 default:
1940 err = validate_section_offset(info, shdr);
1941 if (err < 0) {
1942 pr_err("Invalid ELF section in module (section %u type %u)\n",
1943 i, shdr->sh_type);
1944 return err;
1945 }
1946 }
1947 }
1948
1949 info->sechdrs = sechdrs;
1950
1951 return 0;
1952 }
1953
1954 /**
1955 * elf_validity_cache_secstrings() - Caches section names if valid
1956 * @info: Load info to cache section names from. Must have valid sechdrs.
1957 *
1958 * Specifically checks:
1959 *
1960 * * Section name table index is inbounds of section headers
1961 * * Section name table is not empty
1962 * * Section name table is NUL terminated
1963 * * All section name offsets are inbounds of the section
1964 *
1965 * Then updates @info with a &load_info->secstrings pointer if valid.
1966 *
1967 * Return: %0 if valid, negative error code if validation failed.
1968 */
elf_validity_cache_secstrings(struct load_info * info)1969 static int elf_validity_cache_secstrings(struct load_info *info)
1970 {
1971 Elf_Shdr *strhdr, *shdr;
1972 char *secstrings;
1973 int i;
1974
1975 /*
1976 * Verify if the section name table index is valid.
1977 */
1978 if (info->hdr->e_shstrndx == SHN_UNDEF
1979 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1980 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1981 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1982 info->hdr->e_shnum);
1983 return -ENOEXEC;
1984 }
1985
1986 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1987
1988 /*
1989 * The section name table must be NUL-terminated, as required
1990 * by the spec. This makes strcmp and pr_* calls that access
1991 * strings in the section safe.
1992 */
1993 secstrings = (void *)info->hdr + strhdr->sh_offset;
1994 if (strhdr->sh_size == 0) {
1995 pr_err("empty section name table\n");
1996 return -ENOEXEC;
1997 }
1998 if (secstrings[strhdr->sh_size - 1] != '\0') {
1999 pr_err("ELF Spec violation: section name table isn't null terminated\n");
2000 return -ENOEXEC;
2001 }
2002
2003 for (i = 0; i < info->hdr->e_shnum; i++) {
2004 shdr = &info->sechdrs[i];
2005 /* SHT_NULL means sh_name has an undefined value */
2006 if (shdr->sh_type == SHT_NULL)
2007 continue;
2008 if (shdr->sh_name >= strhdr->sh_size) {
2009 pr_err("Invalid ELF section name in module (section %u type %u)\n",
2010 i, shdr->sh_type);
2011 return -ENOEXEC;
2012 }
2013 }
2014
2015 info->secstrings = secstrings;
2016 return 0;
2017 }
2018
2019 /**
2020 * elf_validity_cache_index_info() - Validate and cache modinfo section
2021 * @info: Load info to populate the modinfo index on.
2022 * Must have &load_info->sechdrs and &load_info->secstrings populated
2023 *
2024 * Checks that if there is a .modinfo section, it is unique.
2025 * Then, it caches its index in &load_info->index.info.
2026 * Finally, it tries to populate the name to improve error messages.
2027 *
2028 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2029 */
elf_validity_cache_index_info(struct load_info * info)2030 static int elf_validity_cache_index_info(struct load_info *info)
2031 {
2032 int info_idx;
2033
2034 info_idx = find_any_unique_sec(info, ".modinfo");
2035
2036 if (info_idx == 0)
2037 /* Early return, no .modinfo */
2038 return 0;
2039
2040 if (info_idx < 0) {
2041 pr_err("Only one .modinfo section must exist.\n");
2042 return -ENOEXEC;
2043 }
2044
2045 info->index.info = info_idx;
2046 /* Try to find a name early so we can log errors with a module name */
2047 info->name = get_modinfo(info, "name");
2048
2049 return 0;
2050 }
2051
2052 /**
2053 * elf_validity_cache_index_mod() - Validates and caches this_module section
2054 * @info: Load info to cache this_module on.
2055 * Must have &load_info->sechdrs and &load_info->secstrings populated
2056 *
2057 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2058 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2059 * to &__this_module properly. The kernel's modpost declares it on each
2060 * modules's *.mod.c file. If the struct module of the kernel changes a full
2061 * kernel rebuild is required.
2062 *
2063 * We have a few expectations for this special section, this function
2064 * validates all this for us:
2065 *
2066 * * The section has contents
2067 * * The section is unique
2068 * * We expect the kernel to always have to allocate it: SHF_ALLOC
2069 * * The section size must match the kernel's run time's struct module
2070 * size
2071 *
2072 * If all checks pass, the index will be cached in &load_info->index.mod
2073 *
2074 * Return: %0 on validation success, %-ENOEXEC on failure
2075 */
elf_validity_cache_index_mod(struct load_info * info)2076 static int elf_validity_cache_index_mod(struct load_info *info)
2077 {
2078 Elf_Shdr *shdr;
2079 int mod_idx;
2080
2081 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2082 if (mod_idx <= 0) {
2083 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2084 info->name ?: "(missing .modinfo section or name field)");
2085 return -ENOEXEC;
2086 }
2087
2088 shdr = &info->sechdrs[mod_idx];
2089
2090 if (shdr->sh_type == SHT_NOBITS) {
2091 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2092 info->name ?: "(missing .modinfo section or name field)");
2093 return -ENOEXEC;
2094 }
2095
2096 if (!(shdr->sh_flags & SHF_ALLOC)) {
2097 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2098 info->name ?: "(missing .modinfo section or name field)");
2099 return -ENOEXEC;
2100 }
2101
2102 if (shdr->sh_size != sizeof(struct module)) {
2103 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2104 info->name ?: "(missing .modinfo section or name field)");
2105 return -ENOEXEC;
2106 }
2107
2108 info->index.mod = mod_idx;
2109
2110 return 0;
2111 }
2112
2113 /**
2114 * elf_validity_cache_index_sym() - Validate and cache symtab index
2115 * @info: Load info to cache symtab index in.
2116 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2117 *
2118 * Checks that there is exactly one symbol table, then caches its index in
2119 * &load_info->index.sym.
2120 *
2121 * Return: %0 if valid, %-ENOEXEC on failure.
2122 */
elf_validity_cache_index_sym(struct load_info * info)2123 static int elf_validity_cache_index_sym(struct load_info *info)
2124 {
2125 unsigned int sym_idx;
2126 unsigned int num_sym_secs = 0;
2127 int i;
2128
2129 for (i = 1; i < info->hdr->e_shnum; i++) {
2130 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2131 num_sym_secs++;
2132 sym_idx = i;
2133 }
2134 }
2135
2136 if (num_sym_secs != 1) {
2137 pr_warn("%s: module has no symbols (stripped?)\n",
2138 info->name ?: "(missing .modinfo section or name field)");
2139 return -ENOEXEC;
2140 }
2141
2142 info->index.sym = sym_idx;
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * elf_validity_cache_index_str() - Validate and cache strtab index
2149 * @info: Load info to cache strtab index in.
2150 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2151 * Must have &load_info->index.sym populated.
2152 *
2153 * Looks at the symbol table's associated string table, makes sure it is
2154 * in-bounds, and caches it.
2155 *
2156 * Return: %0 if valid, %-ENOEXEC on failure.
2157 */
elf_validity_cache_index_str(struct load_info * info)2158 static int elf_validity_cache_index_str(struct load_info *info)
2159 {
2160 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2161
2162 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2163 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2164 str_idx, str_idx, info->hdr->e_shnum);
2165 return -ENOEXEC;
2166 }
2167
2168 info->index.str = str_idx;
2169 return 0;
2170 }
2171
2172 /**
2173 * elf_validity_cache_index_versions() - Validate and cache version indices
2174 * @info: Load info to cache version indices in.
2175 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2176 * @flags: Load flags, relevant to suppress version loading, see
2177 * uapi/linux/module.h
2178 *
2179 * If we're ignoring modversions based on @flags, zero all version indices
2180 * and return validity. Othewrise check:
2181 *
2182 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2183 * * There is a name present for every crc
2184 *
2185 * Then populate:
2186 *
2187 * * &load_info->index.vers
2188 * * &load_info->index.vers_ext_crc
2189 * * &load_info->index.vers_ext_names
2190 *
2191 * if present.
2192 *
2193 * Return: %0 if valid, %-ENOEXEC on failure.
2194 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2195 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2196 {
2197 unsigned int vers_ext_crc;
2198 unsigned int vers_ext_name;
2199 size_t crc_count;
2200 size_t remaining_len;
2201 size_t name_size;
2202 char *name;
2203
2204 /* If modversions were suppressed, pretend we didn't find any */
2205 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2206 info->index.vers = 0;
2207 info->index.vers_ext_crc = 0;
2208 info->index.vers_ext_name = 0;
2209 return 0;
2210 }
2211
2212 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2213 vers_ext_name = find_sec(info, "__version_ext_names");
2214
2215 /* If we have one field, we must have the other */
2216 if (!!vers_ext_crc != !!vers_ext_name) {
2217 pr_err("extended version crc+name presence does not match");
2218 return -ENOEXEC;
2219 }
2220
2221 /*
2222 * If we have extended version information, we should have the same
2223 * number of entries in every section.
2224 */
2225 if (vers_ext_crc) {
2226 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2227 name = (void *)info->hdr +
2228 info->sechdrs[vers_ext_name].sh_offset;
2229 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2230
2231 while (crc_count--) {
2232 name_size = strnlen(name, remaining_len) + 1;
2233 if (name_size > remaining_len) {
2234 pr_err("more extended version crcs than names");
2235 return -ENOEXEC;
2236 }
2237 remaining_len -= name_size;
2238 name += name_size;
2239 }
2240 }
2241
2242 info->index.vers = find_sec(info, "__versions");
2243 info->index.vers_ext_crc = vers_ext_crc;
2244 info->index.vers_ext_name = vers_ext_name;
2245 return 0;
2246 }
2247
2248 /**
2249 * elf_validity_cache_index() - Resolve, validate, cache section indices
2250 * @info: Load info to read from and update.
2251 * &load_info->sechdrs and &load_info->secstrings must be populated.
2252 * @flags: Load flags, relevant to suppress version loading, see
2253 * uapi/linux/module.h
2254 *
2255 * Populates &load_info->index, validating as it goes.
2256 * See child functions for per-field validation:
2257 *
2258 * * elf_validity_cache_index_info()
2259 * * elf_validity_cache_index_mod()
2260 * * elf_validity_cache_index_sym()
2261 * * elf_validity_cache_index_str()
2262 * * elf_validity_cache_index_versions()
2263 *
2264 * If CONFIG_SMP is enabled, load the percpu section by name with no
2265 * validation.
2266 *
2267 * Return: 0 on success, negative error code if an index failed validation.
2268 */
elf_validity_cache_index(struct load_info * info,int flags)2269 static int elf_validity_cache_index(struct load_info *info, int flags)
2270 {
2271 int err;
2272
2273 err = elf_validity_cache_index_info(info);
2274 if (err < 0)
2275 return err;
2276 err = elf_validity_cache_index_mod(info);
2277 if (err < 0)
2278 return err;
2279 err = elf_validity_cache_index_sym(info);
2280 if (err < 0)
2281 return err;
2282 err = elf_validity_cache_index_str(info);
2283 if (err < 0)
2284 return err;
2285 err = elf_validity_cache_index_versions(info, flags);
2286 if (err < 0)
2287 return err;
2288
2289 info->index.pcpu = find_pcpusec(info);
2290
2291 return 0;
2292 }
2293
2294 /**
2295 * elf_validity_cache_strtab() - Validate and cache symbol string table
2296 * @info: Load info to read from and update.
2297 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2298 * Must have &load_info->index populated.
2299 *
2300 * Checks:
2301 *
2302 * * The string table is not empty.
2303 * * The string table starts and ends with NUL (required by ELF spec).
2304 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2305 * string table.
2306 *
2307 * And caches the pointer as &load_info->strtab in @info.
2308 *
2309 * Return: 0 on success, negative error code if a check failed.
2310 */
elf_validity_cache_strtab(struct load_info * info)2311 static int elf_validity_cache_strtab(struct load_info *info)
2312 {
2313 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2314 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2315 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2316 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2317 int i;
2318
2319 if (str_shdr->sh_size == 0) {
2320 pr_err("empty symbol string table\n");
2321 return -ENOEXEC;
2322 }
2323 if (strtab[0] != '\0') {
2324 pr_err("symbol string table missing leading NUL\n");
2325 return -ENOEXEC;
2326 }
2327 if (strtab[str_shdr->sh_size - 1] != '\0') {
2328 pr_err("symbol string table isn't NUL terminated\n");
2329 return -ENOEXEC;
2330 }
2331
2332 /*
2333 * Now that we know strtab is correctly structured, check symbol
2334 * starts are inbounds before they're used later.
2335 */
2336 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2337 if (syms[i].st_name >= str_shdr->sh_size) {
2338 pr_err("symbol name out of bounds in string table");
2339 return -ENOEXEC;
2340 }
2341 }
2342
2343 info->strtab = strtab;
2344 return 0;
2345 }
2346
2347 /*
2348 * Check userspace passed ELF module against our expectations, and cache
2349 * useful variables for further processing as we go.
2350 *
2351 * This does basic validity checks against section offsets and sizes, the
2352 * section name string table, and the indices used for it (sh_name).
2353 *
2354 * As a last step, since we're already checking the ELF sections we cache
2355 * useful variables which will be used later for our convenience:
2356 *
2357 * o pointers to section headers
2358 * o cache the modinfo symbol section
2359 * o cache the string symbol section
2360 * o cache the module section
2361 *
2362 * As a last step we set info->mod to the temporary copy of the module in
2363 * info->hdr. The final one will be allocated in move_module(). Any
2364 * modifications we make to our copy of the module will be carried over
2365 * to the final minted module.
2366 */
elf_validity_cache_copy(struct load_info * info,int flags)2367 static int elf_validity_cache_copy(struct load_info *info, int flags)
2368 {
2369 int err;
2370
2371 err = elf_validity_cache_sechdrs(info);
2372 if (err < 0)
2373 return err;
2374 err = elf_validity_cache_secstrings(info);
2375 if (err < 0)
2376 return err;
2377 err = elf_validity_cache_index(info, flags);
2378 if (err < 0)
2379 return err;
2380 err = elf_validity_cache_strtab(info);
2381 if (err < 0)
2382 return err;
2383
2384 /* This is temporary: point mod into copy of data. */
2385 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2386
2387 /*
2388 * If we didn't load the .modinfo 'name' field earlier, fall back to
2389 * on-disk struct mod 'name' field.
2390 */
2391 if (!info->name)
2392 info->name = info->mod->name;
2393
2394 return 0;
2395 }
2396
2397 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2398
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2399 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2400 {
2401 do {
2402 unsigned long n = min(len, COPY_CHUNK_SIZE);
2403
2404 if (copy_from_user(dst, usrc, n) != 0)
2405 return -EFAULT;
2406 cond_resched();
2407 dst += n;
2408 usrc += n;
2409 len -= n;
2410 } while (len);
2411 return 0;
2412 }
2413
check_modinfo_livepatch(struct module * mod,struct load_info * info)2414 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2415 {
2416 if (!get_modinfo(info, "livepatch"))
2417 /* Nothing more to do */
2418 return 0;
2419
2420 if (set_livepatch_module(mod))
2421 return 0;
2422
2423 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2424 mod->name);
2425 return -ENOEXEC;
2426 }
2427
check_modinfo_retpoline(struct module * mod,struct load_info * info)2428 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2429 {
2430 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2431 return;
2432
2433 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2434 mod->name);
2435 }
2436
2437 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2438 static int copy_module_from_user(const void __user *umod, unsigned long len,
2439 struct load_info *info)
2440 {
2441 int err;
2442
2443 info->len = len;
2444 if (info->len < sizeof(*(info->hdr)))
2445 return -ENOEXEC;
2446
2447 err = security_kernel_load_data(LOADING_MODULE, true);
2448 if (err)
2449 return err;
2450
2451 /* Suck in entire file: we'll want most of it. */
2452 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2453 if (!info->hdr)
2454 return -ENOMEM;
2455
2456 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2457 err = -EFAULT;
2458 goto out;
2459 }
2460
2461 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2462 LOADING_MODULE, "init_module");
2463 out:
2464 if (err)
2465 vfree(info->hdr);
2466
2467 return err;
2468 }
2469
free_copy(struct load_info * info,int flags)2470 static void free_copy(struct load_info *info, int flags)
2471 {
2472 if (flags & MODULE_INIT_COMPRESSED_FILE)
2473 module_decompress_cleanup(info);
2474 else
2475 vfree(info->hdr);
2476 }
2477
rewrite_section_headers(struct load_info * info,int flags)2478 static int rewrite_section_headers(struct load_info *info, int flags)
2479 {
2480 unsigned int i;
2481
2482 /* This should always be true, but let's be sure. */
2483 info->sechdrs[0].sh_addr = 0;
2484
2485 for (i = 1; i < info->hdr->e_shnum; i++) {
2486 Elf_Shdr *shdr = &info->sechdrs[i];
2487
2488 /*
2489 * Mark all sections sh_addr with their address in the
2490 * temporary image.
2491 */
2492 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2493
2494 }
2495
2496 /* Track but don't keep modinfo and version sections. */
2497 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2498 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2499 ~(unsigned long)SHF_ALLOC;
2500 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2501 ~(unsigned long)SHF_ALLOC;
2502 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2503
2504 return 0;
2505 }
2506
2507 static const char *const module_license_offenders[] = {
2508 /* driverloader was caught wrongly pretending to be under GPL */
2509 "driverloader",
2510
2511 /* lve claims to be GPL but upstream won't provide source */
2512 "lve",
2513 };
2514
2515 /*
2516 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2517 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2518 {
2519 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2520 size_t i;
2521
2522 if (!get_modinfo(info, "intree")) {
2523 if (!test_taint(TAINT_OOT_MODULE))
2524 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2525 mod->name);
2526 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2527 }
2528
2529 check_modinfo_retpoline(mod, info);
2530
2531 if (get_modinfo(info, "staging")) {
2532 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2533 pr_warn("%s: module is from the staging directory, the quality "
2534 "is unknown, you have been warned.\n", mod->name);
2535 }
2536
2537 if (is_livepatch_module(mod)) {
2538 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2539 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2540 mod->name);
2541 }
2542
2543 module_license_taint_check(mod, get_modinfo(info, "license"));
2544
2545 if (get_modinfo(info, "test")) {
2546 if (!test_taint(TAINT_TEST))
2547 pr_warn("%s: loading test module taints kernel.\n",
2548 mod->name);
2549 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2550 }
2551 #ifdef CONFIG_MODULE_SIG
2552 mod->sig_ok = info->sig_ok;
2553 if (!mod->sig_ok) {
2554 pr_notice_once("%s: module verification failed: signature "
2555 "and/or required key missing - tainting "
2556 "kernel\n", mod->name);
2557 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2558 }
2559 #endif
2560
2561 /*
2562 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2563 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2564 * using GPL-only symbols it needs.
2565 */
2566 if (strcmp(mod->name, "ndiswrapper") == 0)
2567 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2568
2569 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2570 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2571 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2572 LOCKDEP_NOW_UNRELIABLE);
2573 }
2574
2575 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2576 pr_warn("%s: module license taints kernel.\n", mod->name);
2577
2578 }
2579
check_modinfo(struct module * mod,struct load_info * info,int flags)2580 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2581 {
2582 const char *modmagic = get_modinfo(info, "vermagic");
2583 int err;
2584
2585 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2586 modmagic = NULL;
2587
2588 /* This is allowed: modprobe --force will invalidate it. */
2589 if (!modmagic) {
2590 err = try_to_force_load(mod, "bad vermagic");
2591 if (err)
2592 return err;
2593 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2594 pr_err("%s: version magic '%s' should be '%s'\n",
2595 info->name, modmagic, vermagic);
2596 return -ENOEXEC;
2597 }
2598
2599 err = check_modinfo_livepatch(mod, info);
2600 if (err)
2601 return err;
2602
2603 return 0;
2604 }
2605
find_module_sections(struct module * mod,struct load_info * info)2606 static int find_module_sections(struct module *mod, struct load_info *info)
2607 {
2608 mod->kp = section_objs(info, "__param",
2609 sizeof(*mod->kp), &mod->num_kp);
2610 mod->syms = section_objs(info, "__ksymtab",
2611 sizeof(*mod->syms), &mod->num_syms);
2612 mod->crcs = section_addr(info, "__kcrctab");
2613 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2614 sizeof(*mod->gpl_syms),
2615 &mod->num_gpl_syms);
2616 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2617
2618 #ifdef CONFIG_CONSTRUCTORS
2619 mod->ctors = section_objs(info, ".ctors",
2620 sizeof(*mod->ctors), &mod->num_ctors);
2621 if (!mod->ctors)
2622 mod->ctors = section_objs(info, ".init_array",
2623 sizeof(*mod->ctors), &mod->num_ctors);
2624 else if (find_sec(info, ".init_array")) {
2625 /*
2626 * This shouldn't happen with same compiler and binutils
2627 * building all parts of the module.
2628 */
2629 pr_warn("%s: has both .ctors and .init_array.\n",
2630 mod->name);
2631 return -EINVAL;
2632 }
2633 #endif
2634
2635 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2636 &mod->noinstr_text_size);
2637
2638 #ifdef CONFIG_TRACEPOINTS
2639 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2640 sizeof(*mod->tracepoints_ptrs),
2641 &mod->num_tracepoints);
2642 #endif
2643 #ifdef CONFIG_TREE_SRCU
2644 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2645 sizeof(*mod->srcu_struct_ptrs),
2646 &mod->num_srcu_structs);
2647 #endif
2648 #ifdef CONFIG_BPF_EVENTS
2649 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2650 sizeof(*mod->bpf_raw_events),
2651 &mod->num_bpf_raw_events);
2652 #endif
2653 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2654 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2655 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2656 &mod->btf_base_data_size);
2657 #endif
2658 #ifdef CONFIG_JUMP_LABEL
2659 mod->jump_entries = section_objs(info, "__jump_table",
2660 sizeof(*mod->jump_entries),
2661 &mod->num_jump_entries);
2662 #endif
2663 #ifdef CONFIG_EVENT_TRACING
2664 mod->trace_events = section_objs(info, "_ftrace_events",
2665 sizeof(*mod->trace_events),
2666 &mod->num_trace_events);
2667 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2668 sizeof(*mod->trace_evals),
2669 &mod->num_trace_evals);
2670 #endif
2671 #ifdef CONFIG_TRACING
2672 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2673 sizeof(*mod->trace_bprintk_fmt_start),
2674 &mod->num_trace_bprintk_fmt);
2675 #endif
2676 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2677 /* sechdrs[0].sh_size is always zero */
2678 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2679 sizeof(*mod->ftrace_callsites),
2680 &mod->num_ftrace_callsites);
2681 #endif
2682 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2683 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2684 sizeof(*mod->ei_funcs),
2685 &mod->num_ei_funcs);
2686 #endif
2687 #ifdef CONFIG_KPROBES
2688 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2689 &mod->kprobes_text_size);
2690 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2691 sizeof(unsigned long),
2692 &mod->num_kprobe_blacklist);
2693 #endif
2694 #ifdef CONFIG_PRINTK_INDEX
2695 mod->printk_index_start = section_objs(info, ".printk_index",
2696 sizeof(*mod->printk_index_start),
2697 &mod->printk_index_size);
2698 #endif
2699 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2700 mod->static_call_sites = section_objs(info, ".static_call_sites",
2701 sizeof(*mod->static_call_sites),
2702 &mod->num_static_call_sites);
2703 #endif
2704 #if IS_ENABLED(CONFIG_KUNIT)
2705 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2706 sizeof(*mod->kunit_suites),
2707 &mod->num_kunit_suites);
2708 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2709 sizeof(*mod->kunit_init_suites),
2710 &mod->num_kunit_init_suites);
2711 #endif
2712
2713 mod->extable = section_objs(info, "__ex_table",
2714 sizeof(*mod->extable), &mod->num_exentries);
2715
2716 if (section_addr(info, "__obsparm"))
2717 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2718
2719 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2720 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2721 sizeof(*mod->dyndbg_info.descs),
2722 &mod->dyndbg_info.num_descs);
2723 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2724 sizeof(*mod->dyndbg_info.classes),
2725 &mod->dyndbg_info.num_classes);
2726 #endif
2727
2728 return 0;
2729 }
2730
move_module(struct module * mod,struct load_info * info)2731 static int move_module(struct module *mod, struct load_info *info)
2732 {
2733 int i, ret;
2734 enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2735 bool codetag_section_found = false;
2736
2737 for_each_mod_mem_type(type) {
2738 if (!mod->mem[type].size) {
2739 mod->mem[type].base = NULL;
2740 continue;
2741 }
2742
2743 ret = module_memory_alloc(mod, type);
2744 if (ret) {
2745 t = type;
2746 goto out_err;
2747 }
2748 }
2749
2750 /* Transfer each section which specifies SHF_ALLOC */
2751 pr_debug("Final section addresses for %s:\n", mod->name);
2752 for (i = 0; i < info->hdr->e_shnum; i++) {
2753 void *dest;
2754 Elf_Shdr *shdr = &info->sechdrs[i];
2755 const char *sname;
2756
2757 if (!(shdr->sh_flags & SHF_ALLOC))
2758 continue;
2759
2760 sname = info->secstrings + shdr->sh_name;
2761 /*
2762 * Load codetag sections separately as they might still be used
2763 * after module unload.
2764 */
2765 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2766 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2767 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2768 if (WARN_ON(!dest)) {
2769 ret = -EINVAL;
2770 goto out_err;
2771 }
2772 if (IS_ERR(dest)) {
2773 ret = PTR_ERR(dest);
2774 goto out_err;
2775 }
2776 codetag_section_found = true;
2777 } else {
2778 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2779 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2780
2781 dest = mod->mem[type].base + offset;
2782 }
2783
2784 if (shdr->sh_type != SHT_NOBITS) {
2785 /*
2786 * Our ELF checker already validated this, but let's
2787 * be pedantic and make the goal clearer. We actually
2788 * end up copying over all modifications made to the
2789 * userspace copy of the entire struct module.
2790 */
2791 if (i == info->index.mod &&
2792 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2793 ret = -ENOEXEC;
2794 goto out_err;
2795 }
2796 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2797 }
2798 /*
2799 * Update the userspace copy's ELF section address to point to
2800 * our newly allocated memory as a pure convenience so that
2801 * users of info can keep taking advantage and using the newly
2802 * minted official memory area.
2803 */
2804 shdr->sh_addr = (unsigned long)dest;
2805 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2806 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2807 }
2808
2809 return 0;
2810 out_err:
2811 module_memory_restore_rox(mod);
2812 while (t--)
2813 module_memory_free(mod, t);
2814 if (codetag_section_found)
2815 codetag_free_module_sections(mod);
2816
2817 return ret;
2818 }
2819
check_export_symbol_versions(struct module * mod)2820 static int check_export_symbol_versions(struct module *mod)
2821 {
2822 #ifdef CONFIG_MODVERSIONS
2823 if ((mod->num_syms && !mod->crcs) ||
2824 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2825 return try_to_force_load(mod,
2826 "no versions for exported symbols");
2827 }
2828 #endif
2829 return 0;
2830 }
2831
flush_module_icache(const struct module * mod)2832 static void flush_module_icache(const struct module *mod)
2833 {
2834 /*
2835 * Flush the instruction cache, since we've played with text.
2836 * Do it before processing of module parameters, so the module
2837 * can provide parameter accessor functions of its own.
2838 */
2839 for_each_mod_mem_type(type) {
2840 const struct module_memory *mod_mem = &mod->mem[type];
2841
2842 if (mod_mem->size) {
2843 flush_icache_range((unsigned long)mod_mem->base,
2844 (unsigned long)mod_mem->base + mod_mem->size);
2845 }
2846 }
2847 }
2848
module_elf_check_arch(Elf_Ehdr * hdr)2849 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2850 {
2851 return true;
2852 }
2853
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2854 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2855 Elf_Shdr *sechdrs,
2856 char *secstrings,
2857 struct module *mod)
2858 {
2859 return 0;
2860 }
2861
2862 /* module_blacklist is a comma-separated list of module names */
2863 static char *module_blacklist;
blacklisted(const char * module_name)2864 static bool blacklisted(const char *module_name)
2865 {
2866 const char *p;
2867 size_t len;
2868
2869 if (!module_blacklist)
2870 return false;
2871
2872 for (p = module_blacklist; *p; p += len) {
2873 len = strcspn(p, ",");
2874 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2875 return true;
2876 if (p[len] == ',')
2877 len++;
2878 }
2879 return false;
2880 }
2881 core_param(module_blacklist, module_blacklist, charp, 0400);
2882
layout_and_allocate(struct load_info * info,int flags)2883 static struct module *layout_and_allocate(struct load_info *info, int flags)
2884 {
2885 struct module *mod;
2886 int err;
2887
2888 /* Allow arches to frob section contents and sizes. */
2889 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2890 info->secstrings, info->mod);
2891 if (err < 0)
2892 return ERR_PTR(err);
2893
2894 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2895 info->secstrings, info->mod);
2896 if (err < 0)
2897 return ERR_PTR(err);
2898
2899 /* We will do a special allocation for per-cpu sections later. */
2900 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2901
2902 /*
2903 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2904 * put them in the right place.
2905 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2906 */
2907 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2908
2909 /*
2910 * Determine total sizes, and put offsets in sh_entsize. For now
2911 * this is done generically; there doesn't appear to be any
2912 * special cases for the architectures.
2913 */
2914 layout_sections(info->mod, info);
2915 layout_symtab(info->mod, info);
2916
2917 /* Allocate and move to the final place */
2918 err = move_module(info->mod, info);
2919 if (err)
2920 return ERR_PTR(err);
2921
2922 /* Module has been copied to its final place now: return it. */
2923 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2924 kmemleak_load_module(mod, info);
2925 codetag_module_replaced(info->mod, mod);
2926
2927 return mod;
2928 }
2929
2930 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2931 static void module_deallocate(struct module *mod, struct load_info *info)
2932 {
2933 percpu_modfree(mod);
2934 module_arch_freeing_init(mod);
2935 codetag_free_module_sections(mod);
2936
2937 free_mod_mem(mod);
2938 }
2939
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2940 int __weak module_finalize(const Elf_Ehdr *hdr,
2941 const Elf_Shdr *sechdrs,
2942 struct module *me)
2943 {
2944 return 0;
2945 }
2946
post_relocation(struct module * mod,const struct load_info * info)2947 static int post_relocation(struct module *mod, const struct load_info *info)
2948 {
2949 /* Sort exception table now relocations are done. */
2950 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2951
2952 /* Copy relocated percpu area over. */
2953 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2954 info->sechdrs[info->index.pcpu].sh_size);
2955
2956 /* Setup kallsyms-specific fields. */
2957 add_kallsyms(mod, info);
2958
2959 /* Arch-specific module finalizing. */
2960 return module_finalize(info->hdr, info->sechdrs, mod);
2961 }
2962
2963 /* Call module constructors. */
do_mod_ctors(struct module * mod)2964 static void do_mod_ctors(struct module *mod)
2965 {
2966 #ifdef CONFIG_CONSTRUCTORS
2967 unsigned long i;
2968
2969 for (i = 0; i < mod->num_ctors; i++)
2970 mod->ctors[i]();
2971 #endif
2972 }
2973
2974 /* For freeing module_init on success, in case kallsyms traversing */
2975 struct mod_initfree {
2976 struct llist_node node;
2977 void *init_text;
2978 void *init_data;
2979 void *init_rodata;
2980 };
2981
do_free_init(struct work_struct * w)2982 static void do_free_init(struct work_struct *w)
2983 {
2984 struct llist_node *pos, *n, *list;
2985 struct mod_initfree *initfree;
2986
2987 list = llist_del_all(&init_free_list);
2988
2989 synchronize_rcu();
2990
2991 llist_for_each_safe(pos, n, list) {
2992 initfree = container_of(pos, struct mod_initfree, node);
2993 execmem_free(initfree->init_text);
2994 execmem_free(initfree->init_data);
2995 execmem_free(initfree->init_rodata);
2996 kfree(initfree);
2997 }
2998 }
2999
flush_module_init_free_work(void)3000 void flush_module_init_free_work(void)
3001 {
3002 flush_work(&init_free_wq);
3003 }
3004
3005 #undef MODULE_PARAM_PREFIX
3006 #define MODULE_PARAM_PREFIX "module."
3007 /* Default value for module->async_probe_requested */
3008 static bool async_probe;
3009 module_param(async_probe, bool, 0644);
3010
3011 /*
3012 * This is where the real work happens.
3013 *
3014 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3015 * helper command 'lx-symbols'.
3016 */
do_init_module(struct module * mod)3017 static noinline int do_init_module(struct module *mod)
3018 {
3019 int ret = 0;
3020 struct mod_initfree *freeinit;
3021 #if defined(CONFIG_MODULE_STATS)
3022 unsigned int text_size = 0, total_size = 0;
3023
3024 for_each_mod_mem_type(type) {
3025 const struct module_memory *mod_mem = &mod->mem[type];
3026 if (mod_mem->size) {
3027 total_size += mod_mem->size;
3028 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3029 text_size += mod_mem->size;
3030 }
3031 }
3032 #endif
3033
3034 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3035 if (!freeinit) {
3036 ret = -ENOMEM;
3037 goto fail;
3038 }
3039 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3040 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3041 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3042
3043 do_mod_ctors(mod);
3044 /* Start the module */
3045 if (mod->init != NULL)
3046 ret = do_one_initcall(mod->init);
3047 if (ret < 0) {
3048 goto fail_free_freeinit;
3049 }
3050 if (ret > 0) {
3051 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3052 "follow 0/-E convention\n"
3053 "%s: loading module anyway...\n",
3054 __func__, mod->name, ret, __func__);
3055 dump_stack();
3056 }
3057
3058 /* Now it's a first class citizen! */
3059 mod->state = MODULE_STATE_LIVE;
3060 blocking_notifier_call_chain(&module_notify_list,
3061 MODULE_STATE_LIVE, mod);
3062
3063 /* Delay uevent until module has finished its init routine */
3064 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3065
3066 /*
3067 * We need to finish all async code before the module init sequence
3068 * is done. This has potential to deadlock if synchronous module
3069 * loading is requested from async (which is not allowed!).
3070 *
3071 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3072 * request_module() from async workers") for more details.
3073 */
3074 if (!mod->async_probe_requested)
3075 async_synchronize_full();
3076
3077 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3078 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3079 mutex_lock(&module_mutex);
3080 /* Drop initial reference. */
3081 module_put(mod);
3082 trim_init_extable(mod);
3083 #ifdef CONFIG_KALLSYMS
3084 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3085 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3086 #endif
3087 ret = module_enable_rodata_ro_after_init(mod);
3088 if (ret)
3089 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3090 "ro_after_init data might still be writable\n",
3091 mod->name, ret);
3092
3093 mod_tree_remove_init(mod);
3094 module_arch_freeing_init(mod);
3095 for_class_mod_mem_type(type, init) {
3096 mod->mem[type].base = NULL;
3097 mod->mem[type].size = 0;
3098 }
3099
3100 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3101 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3102 mod->btf_data = NULL;
3103 mod->btf_base_data = NULL;
3104 #endif
3105 /*
3106 * We want to free module_init, but be aware that kallsyms may be
3107 * walking this within an RCU read section. In all the failure paths, we
3108 * call synchronize_rcu(), but we don't want to slow down the success
3109 * path. execmem_free() cannot be called in an interrupt, so do the
3110 * work and call synchronize_rcu() in a work queue.
3111 *
3112 * Note that execmem_alloc() on most architectures creates W+X page
3113 * mappings which won't be cleaned up until do_free_init() runs. Any
3114 * code such as mark_rodata_ro() which depends on those mappings to
3115 * be cleaned up needs to sync with the queued work by invoking
3116 * flush_module_init_free_work().
3117 */
3118 if (llist_add(&freeinit->node, &init_free_list))
3119 schedule_work(&init_free_wq);
3120
3121 mutex_unlock(&module_mutex);
3122 wake_up_all(&module_wq);
3123
3124 mod_stat_add_long(text_size, &total_text_size);
3125 mod_stat_add_long(total_size, &total_mod_size);
3126
3127 mod_stat_inc(&modcount);
3128
3129 return 0;
3130
3131 fail_free_freeinit:
3132 kfree(freeinit);
3133 fail:
3134 /* Try to protect us from buggy refcounters. */
3135 mod->state = MODULE_STATE_GOING;
3136 synchronize_rcu();
3137 module_put(mod);
3138 blocking_notifier_call_chain(&module_notify_list,
3139 MODULE_STATE_GOING, mod);
3140 klp_module_going(mod);
3141 ftrace_release_mod(mod);
3142 free_module(mod);
3143 wake_up_all(&module_wq);
3144
3145 return ret;
3146 }
3147
may_init_module(void)3148 static int may_init_module(void)
3149 {
3150 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3151 return -EPERM;
3152
3153 return 0;
3154 }
3155
3156 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3157 static bool finished_loading(const char *name)
3158 {
3159 struct module *mod;
3160 bool ret;
3161
3162 /*
3163 * The module_mutex should not be a heavily contended lock;
3164 * if we get the occasional sleep here, we'll go an extra iteration
3165 * in the wait_event_interruptible(), which is harmless.
3166 */
3167 sched_annotate_sleep();
3168 mutex_lock(&module_mutex);
3169 mod = find_module_all(name, strlen(name), true);
3170 ret = !mod || mod->state == MODULE_STATE_LIVE
3171 || mod->state == MODULE_STATE_GOING;
3172 mutex_unlock(&module_mutex);
3173
3174 return ret;
3175 }
3176
3177 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3178 static int module_patient_check_exists(const char *name,
3179 enum fail_dup_mod_reason reason)
3180 {
3181 struct module *old;
3182 int err = 0;
3183
3184 old = find_module_all(name, strlen(name), true);
3185 if (old == NULL)
3186 return 0;
3187
3188 if (old->state == MODULE_STATE_COMING ||
3189 old->state == MODULE_STATE_UNFORMED) {
3190 /* Wait in case it fails to load. */
3191 mutex_unlock(&module_mutex);
3192 err = wait_event_interruptible(module_wq,
3193 finished_loading(name));
3194 mutex_lock(&module_mutex);
3195 if (err)
3196 return err;
3197
3198 /* The module might have gone in the meantime. */
3199 old = find_module_all(name, strlen(name), true);
3200 }
3201
3202 if (try_add_failed_module(name, reason))
3203 pr_warn("Could not add fail-tracking for module: %s\n", name);
3204
3205 /*
3206 * We are here only when the same module was being loaded. Do
3207 * not try to load it again right now. It prevents long delays
3208 * caused by serialized module load failures. It might happen
3209 * when more devices of the same type trigger load of
3210 * a particular module.
3211 */
3212 if (old && old->state == MODULE_STATE_LIVE)
3213 return -EEXIST;
3214 return -EBUSY;
3215 }
3216
3217 /*
3218 * We try to place it in the list now to make sure it's unique before
3219 * we dedicate too many resources. In particular, temporary percpu
3220 * memory exhaustion.
3221 */
add_unformed_module(struct module * mod)3222 static int add_unformed_module(struct module *mod)
3223 {
3224 int err;
3225
3226 mod->state = MODULE_STATE_UNFORMED;
3227
3228 mutex_lock(&module_mutex);
3229 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3230 if (err)
3231 goto out;
3232
3233 mod_update_bounds(mod);
3234 list_add_rcu(&mod->list, &modules);
3235 mod_tree_insert(mod);
3236 err = 0;
3237
3238 out:
3239 mutex_unlock(&module_mutex);
3240 return err;
3241 }
3242
complete_formation(struct module * mod,struct load_info * info)3243 static int complete_formation(struct module *mod, struct load_info *info)
3244 {
3245 int err;
3246
3247 mutex_lock(&module_mutex);
3248
3249 /* Find duplicate symbols (must be called under lock). */
3250 err = verify_exported_symbols(mod);
3251 if (err < 0)
3252 goto out;
3253
3254 /* These rely on module_mutex for list integrity. */
3255 module_bug_finalize(info->hdr, info->sechdrs, mod);
3256 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3257
3258 err = module_enable_rodata_ro(mod);
3259 if (err)
3260 goto out_strict_rwx;
3261 err = module_enable_data_nx(mod);
3262 if (err)
3263 goto out_strict_rwx;
3264 err = module_enable_text_rox(mod);
3265 if (err)
3266 goto out_strict_rwx;
3267
3268 /*
3269 * Mark state as coming so strong_try_module_get() ignores us,
3270 * but kallsyms etc. can see us.
3271 */
3272 mod->state = MODULE_STATE_COMING;
3273 mutex_unlock(&module_mutex);
3274
3275 return 0;
3276
3277 out_strict_rwx:
3278 module_bug_cleanup(mod);
3279 out:
3280 mutex_unlock(&module_mutex);
3281 return err;
3282 }
3283
prepare_coming_module(struct module * mod)3284 static int prepare_coming_module(struct module *mod)
3285 {
3286 int err;
3287
3288 ftrace_module_enable(mod);
3289 err = klp_module_coming(mod);
3290 if (err)
3291 return err;
3292
3293 err = blocking_notifier_call_chain_robust(&module_notify_list,
3294 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3295 err = notifier_to_errno(err);
3296 if (err)
3297 klp_module_going(mod);
3298
3299 return err;
3300 }
3301
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3302 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3303 void *arg)
3304 {
3305 struct module *mod = arg;
3306 int ret;
3307
3308 if (strcmp(param, "async_probe") == 0) {
3309 if (kstrtobool(val, &mod->async_probe_requested))
3310 mod->async_probe_requested = true;
3311 return 0;
3312 }
3313
3314 /* Check for magic 'dyndbg' arg */
3315 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3316 if (ret != 0)
3317 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3318 return 0;
3319 }
3320
3321 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3322 static int early_mod_check(struct load_info *info, int flags)
3323 {
3324 int err;
3325
3326 /*
3327 * Now that we know we have the correct module name, check
3328 * if it's blacklisted.
3329 */
3330 if (blacklisted(info->name)) {
3331 pr_err("Module %s is blacklisted\n", info->name);
3332 return -EPERM;
3333 }
3334
3335 err = rewrite_section_headers(info, flags);
3336 if (err)
3337 return err;
3338
3339 /* Check module struct version now, before we try to use module. */
3340 if (!check_modstruct_version(info, info->mod))
3341 return -ENOEXEC;
3342
3343 err = check_modinfo(info->mod, info, flags);
3344 if (err)
3345 return err;
3346
3347 mutex_lock(&module_mutex);
3348 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3349 mutex_unlock(&module_mutex);
3350
3351 return err;
3352 }
3353
3354 /*
3355 * Allocate and load the module: note that size of section 0 is always
3356 * zero, and we rely on this for optional sections.
3357 */
load_module(struct load_info * info,const char __user * uargs,int flags)3358 static int load_module(struct load_info *info, const char __user *uargs,
3359 int flags)
3360 {
3361 struct module *mod;
3362 bool module_allocated = false;
3363 long err = 0;
3364 char *after_dashes;
3365
3366 /*
3367 * Do the signature check (if any) first. All that
3368 * the signature check needs is info->len, it does
3369 * not need any of the section info. That can be
3370 * set up later. This will minimize the chances
3371 * of a corrupt module causing problems before
3372 * we even get to the signature check.
3373 *
3374 * The check will also adjust info->len by stripping
3375 * off the sig length at the end of the module, making
3376 * checks against info->len more correct.
3377 */
3378 err = module_sig_check(info, flags);
3379 if (err)
3380 goto free_copy;
3381
3382 /*
3383 * Do basic sanity checks against the ELF header and
3384 * sections. Cache useful sections and set the
3385 * info->mod to the userspace passed struct module.
3386 */
3387 err = elf_validity_cache_copy(info, flags);
3388 if (err)
3389 goto free_copy;
3390
3391 err = early_mod_check(info, flags);
3392 if (err)
3393 goto free_copy;
3394
3395 /* Figure out module layout, and allocate all the memory. */
3396 mod = layout_and_allocate(info, flags);
3397 if (IS_ERR(mod)) {
3398 err = PTR_ERR(mod);
3399 goto free_copy;
3400 }
3401
3402 module_allocated = true;
3403
3404 audit_log_kern_module(info->name);
3405
3406 /* Reserve our place in the list. */
3407 err = add_unformed_module(mod);
3408 if (err)
3409 goto free_module;
3410
3411 /*
3412 * We are tainting your kernel if your module gets into
3413 * the modules linked list somehow.
3414 */
3415 module_augment_kernel_taints(mod, info);
3416
3417 /* To avoid stressing percpu allocator, do this once we're unique. */
3418 err = percpu_modalloc(mod, info);
3419 if (err)
3420 goto unlink_mod;
3421
3422 /* Now module is in final location, initialize linked lists, etc. */
3423 err = module_unload_init(mod);
3424 if (err)
3425 goto unlink_mod;
3426
3427 init_param_lock(mod);
3428
3429 /*
3430 * Now we've got everything in the final locations, we can
3431 * find optional sections.
3432 */
3433 err = find_module_sections(mod, info);
3434 if (err)
3435 goto free_unload;
3436
3437 err = check_export_symbol_versions(mod);
3438 if (err)
3439 goto free_unload;
3440
3441 /* Set up MODINFO_ATTR fields */
3442 err = setup_modinfo(mod, info);
3443 if (err)
3444 goto free_modinfo;
3445
3446 /* Fix up syms, so that st_value is a pointer to location. */
3447 err = simplify_symbols(mod, info);
3448 if (err < 0)
3449 goto free_modinfo;
3450
3451 err = apply_relocations(mod, info);
3452 if (err < 0)
3453 goto free_modinfo;
3454
3455 err = post_relocation(mod, info);
3456 if (err < 0)
3457 goto free_modinfo;
3458
3459 flush_module_icache(mod);
3460
3461 /* Now copy in args */
3462 mod->args = strndup_user(uargs, ~0UL >> 1);
3463 if (IS_ERR(mod->args)) {
3464 err = PTR_ERR(mod->args);
3465 goto free_arch_cleanup;
3466 }
3467
3468 init_build_id(mod, info);
3469
3470 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3471 ftrace_module_init(mod);
3472
3473 /* Finally it's fully formed, ready to start executing. */
3474 err = complete_formation(mod, info);
3475 if (err)
3476 goto ddebug_cleanup;
3477
3478 err = prepare_coming_module(mod);
3479 if (err)
3480 goto bug_cleanup;
3481
3482 mod->async_probe_requested = async_probe;
3483
3484 /* Module is ready to execute: parsing args may do that. */
3485 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3486 -32768, 32767, mod,
3487 unknown_module_param_cb);
3488 if (IS_ERR(after_dashes)) {
3489 err = PTR_ERR(after_dashes);
3490 goto coming_cleanup;
3491 } else if (after_dashes) {
3492 pr_warn("%s: parameters '%s' after `--' ignored\n",
3493 mod->name, after_dashes);
3494 }
3495
3496 /* Link in to sysfs. */
3497 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3498 if (err < 0)
3499 goto coming_cleanup;
3500
3501 if (is_livepatch_module(mod)) {
3502 err = copy_module_elf(mod, info);
3503 if (err < 0)
3504 goto sysfs_cleanup;
3505 }
3506
3507 if (codetag_load_module(mod))
3508 goto sysfs_cleanup;
3509
3510 /* Get rid of temporary copy. */
3511 free_copy(info, flags);
3512
3513 /* Done! */
3514 trace_module_load(mod);
3515
3516 return do_init_module(mod);
3517
3518 sysfs_cleanup:
3519 mod_sysfs_teardown(mod);
3520 coming_cleanup:
3521 mod->state = MODULE_STATE_GOING;
3522 destroy_params(mod->kp, mod->num_kp);
3523 blocking_notifier_call_chain(&module_notify_list,
3524 MODULE_STATE_GOING, mod);
3525 klp_module_going(mod);
3526 bug_cleanup:
3527 mod->state = MODULE_STATE_GOING;
3528 /* module_bug_cleanup needs module_mutex protection */
3529 mutex_lock(&module_mutex);
3530 module_bug_cleanup(mod);
3531 mutex_unlock(&module_mutex);
3532
3533 ddebug_cleanup:
3534 ftrace_release_mod(mod);
3535 synchronize_rcu();
3536 kfree(mod->args);
3537 free_arch_cleanup:
3538 module_arch_cleanup(mod);
3539 free_modinfo:
3540 free_modinfo(mod);
3541 free_unload:
3542 module_unload_free(mod);
3543 unlink_mod:
3544 mutex_lock(&module_mutex);
3545 /* Unlink carefully: kallsyms could be walking list. */
3546 list_del_rcu(&mod->list);
3547 mod_tree_remove(mod);
3548 wake_up_all(&module_wq);
3549 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3550 synchronize_rcu();
3551 mutex_unlock(&module_mutex);
3552 free_module:
3553 mod_stat_bump_invalid(info, flags);
3554 /* Free lock-classes; relies on the preceding sync_rcu() */
3555 for_class_mod_mem_type(type, core_data) {
3556 lockdep_free_key_range(mod->mem[type].base,
3557 mod->mem[type].size);
3558 }
3559
3560 module_memory_restore_rox(mod);
3561 module_deallocate(mod, info);
3562 free_copy:
3563 /*
3564 * The info->len is always set. We distinguish between
3565 * failures once the proper module was allocated and
3566 * before that.
3567 */
3568 if (!module_allocated) {
3569 audit_log_kern_module(info->name ? info->name : "?");
3570 mod_stat_bump_becoming(info, flags);
3571 }
3572 free_copy(info, flags);
3573 return err;
3574 }
3575
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3576 SYSCALL_DEFINE3(init_module, void __user *, umod,
3577 unsigned long, len, const char __user *, uargs)
3578 {
3579 int err;
3580 struct load_info info = { };
3581
3582 err = may_init_module();
3583 if (err)
3584 return err;
3585
3586 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3587 umod, len, uargs);
3588
3589 err = copy_module_from_user(umod, len, &info);
3590 if (err) {
3591 mod_stat_inc(&failed_kreads);
3592 mod_stat_add_long(len, &invalid_kread_bytes);
3593 return err;
3594 }
3595
3596 return load_module(&info, uargs, 0);
3597 }
3598
3599 struct idempotent {
3600 const void *cookie;
3601 struct hlist_node entry;
3602 struct completion complete;
3603 int ret;
3604 };
3605
3606 #define IDEM_HASH_BITS 8
3607 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3608 static DEFINE_SPINLOCK(idem_lock);
3609
idempotent(struct idempotent * u,const void * cookie)3610 static bool idempotent(struct idempotent *u, const void *cookie)
3611 {
3612 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3613 struct hlist_head *head = idem_hash + hash;
3614 struct idempotent *existing;
3615 bool first;
3616
3617 u->ret = -EINTR;
3618 u->cookie = cookie;
3619 init_completion(&u->complete);
3620
3621 spin_lock(&idem_lock);
3622 first = true;
3623 hlist_for_each_entry(existing, head, entry) {
3624 if (existing->cookie != cookie)
3625 continue;
3626 first = false;
3627 break;
3628 }
3629 hlist_add_head(&u->entry, idem_hash + hash);
3630 spin_unlock(&idem_lock);
3631
3632 return !first;
3633 }
3634
3635 /*
3636 * We were the first one with 'cookie' on the list, and we ended
3637 * up completing the operation. We now need to walk the list,
3638 * remove everybody - which includes ourselves - fill in the return
3639 * value, and then complete the operation.
3640 */
idempotent_complete(struct idempotent * u,int ret)3641 static int idempotent_complete(struct idempotent *u, int ret)
3642 {
3643 const void *cookie = u->cookie;
3644 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3645 struct hlist_head *head = idem_hash + hash;
3646 struct hlist_node *next;
3647 struct idempotent *pos;
3648
3649 spin_lock(&idem_lock);
3650 hlist_for_each_entry_safe(pos, next, head, entry) {
3651 if (pos->cookie != cookie)
3652 continue;
3653 hlist_del_init(&pos->entry);
3654 pos->ret = ret;
3655 complete(&pos->complete);
3656 }
3657 spin_unlock(&idem_lock);
3658 return ret;
3659 }
3660
3661 /*
3662 * Wait for the idempotent worker.
3663 *
3664 * If we get interrupted, we need to remove ourselves from the
3665 * the idempotent list, and the completion may still come in.
3666 *
3667 * The 'idem_lock' protects against the race, and 'idem.ret' was
3668 * initialized to -EINTR and is thus always the right return
3669 * value even if the idempotent work then completes between
3670 * the wait_for_completion and the cleanup.
3671 */
idempotent_wait_for_completion(struct idempotent * u)3672 static int idempotent_wait_for_completion(struct idempotent *u)
3673 {
3674 if (wait_for_completion_interruptible(&u->complete)) {
3675 spin_lock(&idem_lock);
3676 if (!hlist_unhashed(&u->entry))
3677 hlist_del(&u->entry);
3678 spin_unlock(&idem_lock);
3679 }
3680 return u->ret;
3681 }
3682
init_module_from_file(struct file * f,const char __user * uargs,int flags)3683 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3684 {
3685 struct load_info info = { };
3686 void *buf = NULL;
3687 int len;
3688
3689 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3690 if (len < 0) {
3691 mod_stat_inc(&failed_kreads);
3692 return len;
3693 }
3694
3695 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3696 int err = module_decompress(&info, buf, len);
3697 vfree(buf); /* compressed data is no longer needed */
3698 if (err) {
3699 mod_stat_inc(&failed_decompress);
3700 mod_stat_add_long(len, &invalid_decompress_bytes);
3701 return err;
3702 }
3703 } else {
3704 info.hdr = buf;
3705 info.len = len;
3706 }
3707
3708 return load_module(&info, uargs, flags);
3709 }
3710
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3711 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3712 {
3713 struct idempotent idem;
3714
3715 if (!(f->f_mode & FMODE_READ))
3716 return -EBADF;
3717
3718 /* Are we the winners of the race and get to do this? */
3719 if (!idempotent(&idem, file_inode(f))) {
3720 int ret = init_module_from_file(f, uargs, flags);
3721 return idempotent_complete(&idem, ret);
3722 }
3723
3724 /*
3725 * Somebody else won the race and is loading the module.
3726 */
3727 return idempotent_wait_for_completion(&idem);
3728 }
3729
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3730 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3731 {
3732 int err = may_init_module();
3733 if (err)
3734 return err;
3735
3736 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3737
3738 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3739 |MODULE_INIT_IGNORE_VERMAGIC
3740 |MODULE_INIT_COMPRESSED_FILE))
3741 return -EINVAL;
3742
3743 CLASS(fd, f)(fd);
3744 if (fd_empty(f))
3745 return -EBADF;
3746 return idempotent_init_module(fd_file(f), uargs, flags);
3747 }
3748
3749 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3750 char *module_flags(struct module *mod, char *buf, bool show_state)
3751 {
3752 int bx = 0;
3753
3754 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3755 if (!mod->taints && !show_state)
3756 goto out;
3757 if (mod->taints ||
3758 mod->state == MODULE_STATE_GOING ||
3759 mod->state == MODULE_STATE_COMING) {
3760 buf[bx++] = '(';
3761 bx += module_flags_taint(mod->taints, buf + bx);
3762 /* Show a - for module-is-being-unloaded */
3763 if (mod->state == MODULE_STATE_GOING && show_state)
3764 buf[bx++] = '-';
3765 /* Show a + for module-is-being-loaded */
3766 if (mod->state == MODULE_STATE_COMING && show_state)
3767 buf[bx++] = '+';
3768 buf[bx++] = ')';
3769 }
3770 out:
3771 buf[bx] = '\0';
3772
3773 return buf;
3774 }
3775
3776 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3777 const struct exception_table_entry *search_module_extables(unsigned long addr)
3778 {
3779 struct module *mod;
3780
3781 guard(rcu)();
3782 mod = __module_address(addr);
3783 if (!mod)
3784 return NULL;
3785
3786 if (!mod->num_exentries)
3787 return NULL;
3788 /*
3789 * The address passed here belongs to a module that is currently
3790 * invoked (we are running inside it). Therefore its module::refcnt
3791 * needs already be >0 to ensure that it is not removed at this stage.
3792 * All other user need to invoke this function within a RCU read
3793 * section.
3794 */
3795 return search_extable(mod->extable, mod->num_exentries, addr);
3796 }
3797
3798 /**
3799 * is_module_address() - is this address inside a module?
3800 * @addr: the address to check.
3801 *
3802 * See is_module_text_address() if you simply want to see if the address
3803 * is code (not data).
3804 */
is_module_address(unsigned long addr)3805 bool is_module_address(unsigned long addr)
3806 {
3807 guard(rcu)();
3808 return __module_address(addr) != NULL;
3809 }
3810
3811 /**
3812 * __module_address() - get the module which contains an address.
3813 * @addr: the address.
3814 *
3815 * Must be called within RCU read section or module mutex held so that
3816 * module doesn't get freed during this.
3817 */
__module_address(unsigned long addr)3818 struct module *__module_address(unsigned long addr)
3819 {
3820 struct module *mod;
3821
3822 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3823 goto lookup;
3824
3825 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3826 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3827 goto lookup;
3828 #endif
3829
3830 return NULL;
3831
3832 lookup:
3833 mod = mod_find(addr, &mod_tree);
3834 if (mod) {
3835 BUG_ON(!within_module(addr, mod));
3836 if (mod->state == MODULE_STATE_UNFORMED)
3837 mod = NULL;
3838 }
3839 return mod;
3840 }
3841
3842 /**
3843 * is_module_text_address() - is this address inside module code?
3844 * @addr: the address to check.
3845 *
3846 * See is_module_address() if you simply want to see if the address is
3847 * anywhere in a module. See kernel_text_address() for testing if an
3848 * address corresponds to kernel or module code.
3849 */
is_module_text_address(unsigned long addr)3850 bool is_module_text_address(unsigned long addr)
3851 {
3852 guard(rcu)();
3853 return __module_text_address(addr) != NULL;
3854 }
3855
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3856 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3857 {
3858 struct module *mod;
3859
3860 guard(rcu)();
3861 list_for_each_entry_rcu(mod, &modules, list) {
3862 if (mod->state == MODULE_STATE_UNFORMED)
3863 continue;
3864 if (func(mod, data))
3865 break;
3866 }
3867 }
3868
3869 /**
3870 * __module_text_address() - get the module whose code contains an address.
3871 * @addr: the address.
3872 *
3873 * Must be called within RCU read section or module mutex held so that
3874 * module doesn't get freed during this.
3875 */
__module_text_address(unsigned long addr)3876 struct module *__module_text_address(unsigned long addr)
3877 {
3878 struct module *mod = __module_address(addr);
3879 if (mod) {
3880 /* Make sure it's within the text section. */
3881 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3882 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3883 mod = NULL;
3884 }
3885 return mod;
3886 }
3887
3888 /* Don't grab lock, we're oopsing. */
print_modules(void)3889 void print_modules(void)
3890 {
3891 struct module *mod;
3892 char buf[MODULE_FLAGS_BUF_SIZE];
3893
3894 printk(KERN_DEFAULT "Modules linked in:");
3895 /* Most callers should already have preempt disabled, but make sure */
3896 guard(rcu)();
3897 list_for_each_entry_rcu(mod, &modules, list) {
3898 if (mod->state == MODULE_STATE_UNFORMED)
3899 continue;
3900 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3901 }
3902
3903 print_unloaded_tainted_modules();
3904 if (last_unloaded_module.name[0])
3905 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3906 last_unloaded_module.taints);
3907 pr_cont("\n");
3908 }
3909
3910 #ifdef CONFIG_MODULE_DEBUGFS
3911 struct dentry *mod_debugfs_root;
3912
module_debugfs_init(void)3913 static int module_debugfs_init(void)
3914 {
3915 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3916 return 0;
3917 }
3918 module_init(module_debugfs_init);
3919 #endif
3920