xref: /linux/kernel/module/main.c (revision 4b290aae788e06561754b28c6842e4080957d3f7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 static const struct ctl_table module_sysctl_table[] = {
133 	{
134 		.procname	= "modprobe",
135 		.data		= &modprobe_path,
136 		.maxlen		= KMOD_PATH_LEN,
137 		.mode		= 0644,
138 		.proc_handler	= proc_dostring,
139 	},
140 	{
141 		.procname	= "modules_disabled",
142 		.data		= &modules_disabled,
143 		.maxlen		= sizeof(int),
144 		.mode		= 0644,
145 		/* only handle a transition from default "0" to "1" */
146 		.proc_handler	= proc_dointvec_minmax,
147 		.extra1		= SYSCTL_ONE,
148 		.extra2		= SYSCTL_ONE,
149 	},
150 };
151 
init_module_sysctl(void)152 static int __init init_module_sysctl(void)
153 {
154 	register_sysctl_init("kernel", module_sysctl_table);
155 	return 0;
156 }
157 
158 subsys_initcall(init_module_sysctl);
159 
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162 
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164 
register_module_notifier(struct notifier_block * nb)165 int register_module_notifier(struct notifier_block *nb)
166 {
167 	return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170 
unregister_module_notifier(struct notifier_block * nb)171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176 
177 /*
178  * We require a truly strong try_module_get(): 0 means success.
179  * Otherwise an error is returned due to ongoing or failed
180  * initialization etc.
181  */
strong_try_module_get(struct module * mod)182 static inline int strong_try_module_get(struct module *mod)
183 {
184 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 	if (mod && mod->state == MODULE_STATE_COMING)
186 		return -EBUSY;
187 	if (try_module_get(mod))
188 		return 0;
189 	else
190 		return -ENOENT;
191 }
192 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 				    enum lockdep_ok lockdep_ok)
195 {
196 	add_taint(flag, lockdep_ok);
197 	set_bit(flag, &mod->taints);
198 }
199 
200 /*
201  * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202  */
mod_strncmp(const char * str_a,const char * str_b,size_t n)203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 	for (int i = 0; i < n; i++) {
206 		char a = str_a[i];
207 		char b = str_b[i];
208 		int d;
209 
210 		if (a == '-') a = '_';
211 		if (b == '-') b = '_';
212 
213 		d = a - b;
214 		if (d)
215 			return d;
216 
217 		if (!a)
218 			break;
219 	}
220 
221 	return 0;
222 }
223 
224 /*
225  * A thread that wants to hold a reference to a module only while it
226  * is running can call this to safely exit.
227  */
__module_put_and_kthread_exit(struct module * mod,long code)228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 	module_put(mod);
231 	kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234 
235 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 	unsigned int i;
239 
240 	for (i = 1; i < info->hdr->e_shnum; i++) {
241 		Elf_Shdr *shdr = &info->sechdrs[i];
242 		/* Alloc bit cleared means "ignore it." */
243 		if ((shdr->sh_flags & SHF_ALLOC)
244 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 			return i;
246 	}
247 	return 0;
248 }
249 
250 /**
251  * find_any_unique_sec() - Find a unique section index by name
252  * @info: Load info for the module to scan
253  * @name: Name of the section we're looking for
254  *
255  * Locates a unique section by name. Ignores SHF_ALLOC.
256  *
257  * Return: Section index if found uniquely, zero if absent, negative count
258  *         of total instances if multiple were found.
259  */
find_any_unique_sec(const struct load_info * info,const char * name)260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 	unsigned int idx;
263 	unsigned int count = 0;
264 	int i;
265 
266 	for (i = 1; i < info->hdr->e_shnum; i++) {
267 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 			   name) == 0) {
269 			count++;
270 			idx = i;
271 		}
272 	}
273 	if (count == 1) {
274 		return idx;
275 	} else if (count == 0) {
276 		return 0;
277 	} else {
278 		return -count;
279 	}
280 }
281 
282 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 	/* Section 0 has sh_addr 0. */
286 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288 
289 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)290 static void *section_objs(const struct load_info *info,
291 			  const char *name,
292 			  size_t object_size,
293 			  unsigned int *num)
294 {
295 	unsigned int sec = find_sec(info, name);
296 
297 	/* Section 0 has sh_addr 0 and sh_size 0. */
298 	*num = info->sechdrs[sec].sh_size / object_size;
299 	return (void *)info->sechdrs[sec].sh_addr;
300 }
301 
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 	unsigned int i;
306 
307 	for (i = 1; i < info->hdr->e_shnum; i++) {
308 		Elf_Shdr *shdr = &info->sechdrs[i];
309 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 			return i;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Find a module section, or NULL. Fill in number of "objects" in section.
317  * Ignores SHF_ALLOC flag.
318  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 					     const char *name,
321 					     size_t object_size,
322 					     unsigned int *num)
323 {
324 	unsigned int sec = find_any_sec(info, name);
325 
326 	/* Section 0 has sh_addr 0 and sh_size 0. */
327 	*num = info->sechdrs[sec].sh_size / object_size;
328 	return (void *)info->sechdrs[sec].sh_addr;
329 }
330 
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336 
kernel_symbol_name(const struct kernel_symbol * sym)337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 	return offset_to_ptr(&sym->name_offset);
341 #else
342 	return sym->name;
343 #endif
344 }
345 
kernel_symbol_namespace(const struct kernel_symbol * sym)346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 	if (!sym->namespace_offset)
350 		return NULL;
351 	return offset_to_ptr(&sym->namespace_offset);
352 #else
353 	return sym->namespace;
354 #endif
355 }
356 
cmp_name(const void * name,const void * sym)357 int cmp_name(const void *name, const void *sym)
358 {
359 	return strcmp(name, kernel_symbol_name(sym));
360 }
361 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 					    struct module *owner,
364 					    struct find_symbol_arg *fsa)
365 {
366 	struct kernel_symbol *sym;
367 
368 	if (!fsa->gplok && syms->license == GPL_ONLY)
369 		return false;
370 
371 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 			sizeof(struct kernel_symbol), cmp_name);
373 	if (!sym)
374 		return false;
375 
376 	fsa->owner = owner;
377 	fsa->crc = symversion(syms->crcs, sym - syms->start);
378 	fsa->sym = sym;
379 	fsa->license = syms->license;
380 
381 	return true;
382 }
383 
384 /*
385  * Find an exported symbol and return it, along with, (optional) crc and
386  * (optional) module which owns it. Needs RCU or module_mutex.
387  */
find_symbol(struct find_symbol_arg * fsa)388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 	static const struct symsearch arr[] = {
391 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 		  NOT_GPL_ONLY },
393 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 		  __start___kcrctab_gpl,
395 		  GPL_ONLY },
396 	};
397 	struct module *mod;
398 	unsigned int i;
399 
400 	for (i = 0; i < ARRAY_SIZE(arr); i++)
401 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 			return true;
403 
404 	list_for_each_entry_rcu(mod, &modules, list,
405 				lockdep_is_held(&module_mutex)) {
406 		struct symsearch arr[] = {
407 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 			  NOT_GPL_ONLY },
409 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 			  mod->gpl_crcs,
411 			  GPL_ONLY },
412 		};
413 
414 		if (mod->state == MODULE_STATE_UNFORMED)
415 			continue;
416 
417 		for (i = 0; i < ARRAY_SIZE(arr); i++)
418 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 				return true;
420 	}
421 
422 	pr_debug("Failed to find symbol %s\n", fsa->name);
423 	return false;
424 }
425 
426 /*
427  * Search for module by name: must hold module_mutex (or RCU for read-only
428  * access).
429  */
find_module_all(const char * name,size_t len,bool even_unformed)430 struct module *find_module_all(const char *name, size_t len,
431 			       bool even_unformed)
432 {
433 	struct module *mod;
434 
435 	list_for_each_entry_rcu(mod, &modules, list,
436 				lockdep_is_held(&module_mutex)) {
437 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 			continue;
439 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 			return mod;
441 	}
442 	return NULL;
443 }
444 
find_module(const char * name)445 struct module *find_module(const char *name)
446 {
447 	return find_module_all(name, strlen(name), false);
448 }
449 
450 #ifdef CONFIG_SMP
451 
mod_percpu(struct module * mod)452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 	return mod->percpu;
455 }
456 
percpu_modalloc(struct module * mod,struct load_info * info)457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 	unsigned long align = pcpusec->sh_addralign;
461 
462 	if (!pcpusec->sh_size)
463 		return 0;
464 
465 	if (align > PAGE_SIZE) {
466 		pr_warn("%s: per-cpu alignment %li > %li\n",
467 			mod->name, align, PAGE_SIZE);
468 		align = PAGE_SIZE;
469 	}
470 
471 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 	if (!mod->percpu) {
473 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 			mod->name, (unsigned long)pcpusec->sh_size);
475 		return -ENOMEM;
476 	}
477 	mod->percpu_size = pcpusec->sh_size;
478 	return 0;
479 }
480 
percpu_modfree(struct module * mod)481 static void percpu_modfree(struct module *mod)
482 {
483 	free_percpu(mod->percpu);
484 }
485 
find_pcpusec(struct load_info * info)486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 	return find_sec(info, ".data..percpu");
489 }
490 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)491 static void percpu_modcopy(struct module *mod,
492 			   const void *from, unsigned long size)
493 {
494 	int cpu;
495 
496 	for_each_possible_cpu(cpu)
497 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 	struct module *mod;
503 	unsigned int cpu;
504 
505 	guard(rcu)();
506 	list_for_each_entry_rcu(mod, &modules, list) {
507 		if (mod->state == MODULE_STATE_UNFORMED)
508 			continue;
509 		if (!mod->percpu_size)
510 			continue;
511 		for_each_possible_cpu(cpu) {
512 			void *start = per_cpu_ptr(mod->percpu, cpu);
513 			void *va = (void *)addr;
514 
515 			if (va >= start && va < start + mod->percpu_size) {
516 				if (can_addr) {
517 					*can_addr = (unsigned long) (va - start);
518 					*can_addr += (unsigned long)
519 						per_cpu_ptr(mod->percpu,
520 							    get_boot_cpu_id());
521 				}
522 				return true;
523 			}
524 		}
525 	}
526 	return false;
527 }
528 
529 /**
530  * is_module_percpu_address() - test whether address is from module static percpu
531  * @addr: address to test
532  *
533  * Test whether @addr belongs to module static percpu area.
534  *
535  * Return: %true if @addr is from module static percpu area
536  */
is_module_percpu_address(unsigned long addr)537 bool is_module_percpu_address(unsigned long addr)
538 {
539 	return __is_module_percpu_address(addr, NULL);
540 }
541 
542 #else /* ... !CONFIG_SMP */
543 
mod_percpu(struct module * mod)544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 	return NULL;
547 }
percpu_modalloc(struct module * mod,struct load_info * info)548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 		return -ENOMEM;
553 	return 0;
554 }
percpu_modfree(struct module * mod)555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
find_pcpusec(struct load_info * info)558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 	return 0;
561 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)562 static inline void percpu_modcopy(struct module *mod,
563 				  const void *from, unsigned long size)
564 {
565 	/* pcpusec should be 0, and size of that section should be 0. */
566 	BUG_ON(size != 0);
567 }
is_module_percpu_address(unsigned long addr)568 bool is_module_percpu_address(unsigned long addr)
569 {
570 	return false;
571 }
572 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 	return false;
576 }
577 
578 #endif /* CONFIG_SMP */
579 
580 #define MODINFO_ATTR(field)	\
581 static void setup_modinfo_##field(struct module *mod, const char *s)  \
582 {                                                                     \
583 	mod->field = kstrdup(s, GFP_KERNEL);                          \
584 }                                                                     \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 			struct module_kobject *mk, char *buffer)      \
587 {                                                                     \
588 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
589 }                                                                     \
590 static int modinfo_##field##_exists(struct module *mod)               \
591 {                                                                     \
592 	return mod->field != NULL;                                    \
593 }                                                                     \
594 static void free_modinfo_##field(struct module *mod)                  \
595 {                                                                     \
596 	kfree(mod->field);                                            \
597 	mod->field = NULL;                                            \
598 }                                                                     \
599 static const struct module_attribute modinfo_##field = {              \
600 	.attr = { .name = __stringify(field), .mode = 0444 },         \
601 	.show = show_modinfo_##field,                                 \
602 	.setup = setup_modinfo_##field,                               \
603 	.test = modinfo_##field##_exists,                             \
604 	.free = free_modinfo_##field,                                 \
605 };
606 
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609 
610 static struct {
611 	char name[MODULE_NAME_LEN + 1];
612 	char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614 
615 #ifdef CONFIG_MODULE_UNLOAD
616 
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618 
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE	1
621 
622 /* Init the unload section of the module. */
module_unload_init(struct module * mod)623 static int module_unload_init(struct module *mod)
624 {
625 	/*
626 	 * Initialize reference counter to MODULE_REF_BASE.
627 	 * refcnt == 0 means module is going.
628 	 */
629 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
630 
631 	INIT_LIST_HEAD(&mod->source_list);
632 	INIT_LIST_HEAD(&mod->target_list);
633 
634 	/* Hold reference count during initialization. */
635 	atomic_inc(&mod->refcnt);
636 
637 	return 0;
638 }
639 
640 /* Does a already use b? */
already_uses(struct module * a,struct module * b)641 static int already_uses(struct module *a, struct module *b)
642 {
643 	struct module_use *use;
644 
645 	list_for_each_entry(use, &b->source_list, source_list) {
646 		if (use->source == a)
647 			return 1;
648 	}
649 	pr_debug("%s does not use %s!\n", a->name, b->name);
650 	return 0;
651 }
652 
653 /*
654  * Module a uses b
655  *  - we add 'a' as a "source", 'b' as a "target" of module use
656  *  - the module_use is added to the list of 'b' sources (so
657  *    'b' can walk the list to see who sourced them), and of 'a'
658  *    targets (so 'a' can see what modules it targets).
659  */
add_module_usage(struct module * a,struct module * b)660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 	struct module_use *use;
663 
664 	pr_debug("Allocating new usage for %s.\n", a->name);
665 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 	if (!use)
667 		return -ENOMEM;
668 
669 	use->source = a;
670 	use->target = b;
671 	list_add(&use->source_list, &b->source_list);
672 	list_add(&use->target_list, &a->target_list);
673 	return 0;
674 }
675 
676 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)677 static int ref_module(struct module *a, struct module *b)
678 {
679 	int err;
680 
681 	if (b == NULL || already_uses(a, b))
682 		return 0;
683 
684 	/* If module isn't available, we fail. */
685 	err = strong_try_module_get(b);
686 	if (err)
687 		return err;
688 
689 	err = add_module_usage(a, b);
690 	if (err) {
691 		module_put(b);
692 		return err;
693 	}
694 	return 0;
695 }
696 
697 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)698 static void module_unload_free(struct module *mod)
699 {
700 	struct module_use *use, *tmp;
701 
702 	mutex_lock(&module_mutex);
703 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 		struct module *i = use->target;
705 		pr_debug("%s unusing %s\n", mod->name, i->name);
706 		module_put(i);
707 		list_del(&use->source_list);
708 		list_del(&use->target_list);
709 		kfree(use);
710 	}
711 	mutex_unlock(&module_mutex);
712 }
713 
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)715 static inline int try_force_unload(unsigned int flags)
716 {
717 	int ret = (flags & O_TRUNC);
718 	if (ret)
719 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 	return ret;
721 }
722 #else
try_force_unload(unsigned int flags)723 static inline int try_force_unload(unsigned int flags)
724 {
725 	return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728 
729 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)730 static int try_release_module_ref(struct module *mod)
731 {
732 	int ret;
733 
734 	/* Try to decrement refcnt which we set at loading */
735 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 	BUG_ON(ret < 0);
737 	if (ret)
738 		/* Someone can put this right now, recover with checking */
739 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740 
741 	return ret;
742 }
743 
try_stop_module(struct module * mod,int flags,int * forced)744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 	/* If it's not unused, quit unless we're forcing. */
747 	if (try_release_module_ref(mod) != 0) {
748 		*forced = try_force_unload(flags);
749 		if (!(*forced))
750 			return -EWOULDBLOCK;
751 	}
752 
753 	/* Mark it as dying. */
754 	mod->state = MODULE_STATE_GOING;
755 
756 	return 0;
757 }
758 
759 /**
760  * module_refcount() - return the refcount or -1 if unloading
761  * @mod:	the module we're checking
762  *
763  * Return:
764  *	-1 if the module is in the process of unloading
765  *	otherwise the number of references in the kernel to the module
766  */
module_refcount(struct module * mod)767 int module_refcount(struct module *mod)
768 {
769 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772 
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 		unsigned int, flags)
778 {
779 	struct module *mod;
780 	char name[MODULE_NAME_LEN];
781 	char buf[MODULE_FLAGS_BUF_SIZE];
782 	int ret, forced = 0;
783 
784 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 		return -EPERM;
786 
787 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
788 		return -EFAULT;
789 	name[MODULE_NAME_LEN-1] = '\0';
790 
791 	audit_log_kern_module(name);
792 
793 	if (mutex_lock_interruptible(&module_mutex) != 0)
794 		return -EINTR;
795 
796 	mod = find_module(name);
797 	if (!mod) {
798 		ret = -ENOENT;
799 		goto out;
800 	}
801 
802 	if (!list_empty(&mod->source_list)) {
803 		/* Other modules depend on us: get rid of them first. */
804 		ret = -EWOULDBLOCK;
805 		goto out;
806 	}
807 
808 	/* Doing init or already dying? */
809 	if (mod->state != MODULE_STATE_LIVE) {
810 		/* FIXME: if (force), slam module count damn the torpedoes */
811 		pr_debug("%s already dying\n", mod->name);
812 		ret = -EBUSY;
813 		goto out;
814 	}
815 
816 	/* If it has an init func, it must have an exit func to unload */
817 	if (mod->init && !mod->exit) {
818 		forced = try_force_unload(flags);
819 		if (!forced) {
820 			/* This module can't be removed */
821 			ret = -EBUSY;
822 			goto out;
823 		}
824 	}
825 
826 	ret = try_stop_module(mod, flags, &forced);
827 	if (ret != 0)
828 		goto out;
829 
830 	mutex_unlock(&module_mutex);
831 	/* Final destruction now no one is using it. */
832 	if (mod->exit != NULL)
833 		mod->exit();
834 	blocking_notifier_call_chain(&module_notify_list,
835 				     MODULE_STATE_GOING, mod);
836 	klp_module_going(mod);
837 	ftrace_release_mod(mod);
838 
839 	async_synchronize_full();
840 
841 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
842 	strscpy(last_unloaded_module.name, mod->name);
843 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
844 
845 	free_module(mod);
846 	/* someone could wait for the module in add_unformed_module() */
847 	wake_up_all(&module_wq);
848 	return 0;
849 out:
850 	mutex_unlock(&module_mutex);
851 	return ret;
852 }
853 
__symbol_put(const char * symbol)854 void __symbol_put(const char *symbol)
855 {
856 	struct find_symbol_arg fsa = {
857 		.name	= symbol,
858 		.gplok	= true,
859 	};
860 
861 	guard(rcu)();
862 	BUG_ON(!find_symbol(&fsa));
863 	module_put(fsa.owner);
864 }
865 EXPORT_SYMBOL(__symbol_put);
866 
867 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)868 void symbol_put_addr(void *addr)
869 {
870 	struct module *modaddr;
871 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
872 
873 	if (core_kernel_text(a))
874 		return;
875 
876 	/*
877 	 * Even though we hold a reference on the module; we still need to
878 	 * RCU read section in order to safely traverse the data structure.
879 	 */
880 	guard(rcu)();
881 	modaddr = __module_text_address(a);
882 	BUG_ON(!modaddr);
883 	module_put(modaddr);
884 }
885 EXPORT_SYMBOL_GPL(symbol_put_addr);
886 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)887 static ssize_t show_refcnt(const struct module_attribute *mattr,
888 			   struct module_kobject *mk, char *buffer)
889 {
890 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
891 }
892 
893 static const struct module_attribute modinfo_refcnt =
894 	__ATTR(refcnt, 0444, show_refcnt, NULL);
895 
__module_get(struct module * module)896 void __module_get(struct module *module)
897 {
898 	if (module) {
899 		atomic_inc(&module->refcnt);
900 		trace_module_get(module, _RET_IP_);
901 	}
902 }
903 EXPORT_SYMBOL(__module_get);
904 
try_module_get(struct module * module)905 bool try_module_get(struct module *module)
906 {
907 	bool ret = true;
908 
909 	if (module) {
910 		/* Note: here, we can fail to get a reference */
911 		if (likely(module_is_live(module) &&
912 			   atomic_inc_not_zero(&module->refcnt) != 0))
913 			trace_module_get(module, _RET_IP_);
914 		else
915 			ret = false;
916 	}
917 	return ret;
918 }
919 EXPORT_SYMBOL(try_module_get);
920 
module_put(struct module * module)921 void module_put(struct module *module)
922 {
923 	int ret;
924 
925 	if (module) {
926 		ret = atomic_dec_if_positive(&module->refcnt);
927 		WARN_ON(ret < 0);	/* Failed to put refcount */
928 		trace_module_put(module, _RET_IP_);
929 	}
930 }
931 EXPORT_SYMBOL(module_put);
932 
933 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)934 static inline void module_unload_free(struct module *mod)
935 {
936 }
937 
ref_module(struct module * a,struct module * b)938 static int ref_module(struct module *a, struct module *b)
939 {
940 	return strong_try_module_get(b);
941 }
942 
module_unload_init(struct module * mod)943 static inline int module_unload_init(struct module *mod)
944 {
945 	return 0;
946 }
947 #endif /* CONFIG_MODULE_UNLOAD */
948 
module_flags_taint(unsigned long taints,char * buf)949 size_t module_flags_taint(unsigned long taints, char *buf)
950 {
951 	size_t l = 0;
952 	int i;
953 
954 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
955 		if (taint_flags[i].module && test_bit(i, &taints))
956 			buf[l++] = taint_flags[i].c_true;
957 	}
958 
959 	return l;
960 }
961 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)962 static ssize_t show_initstate(const struct module_attribute *mattr,
963 			      struct module_kobject *mk, char *buffer)
964 {
965 	const char *state = "unknown";
966 
967 	switch (mk->mod->state) {
968 	case MODULE_STATE_LIVE:
969 		state = "live";
970 		break;
971 	case MODULE_STATE_COMING:
972 		state = "coming";
973 		break;
974 	case MODULE_STATE_GOING:
975 		state = "going";
976 		break;
977 	default:
978 		BUG();
979 	}
980 	return sprintf(buffer, "%s\n", state);
981 }
982 
983 static const struct module_attribute modinfo_initstate =
984 	__ATTR(initstate, 0444, show_initstate, NULL);
985 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)986 static ssize_t store_uevent(const struct module_attribute *mattr,
987 			    struct module_kobject *mk,
988 			    const char *buffer, size_t count)
989 {
990 	int rc;
991 
992 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
993 	return rc ? rc : count;
994 }
995 
996 const struct module_attribute module_uevent =
997 	__ATTR(uevent, 0200, NULL, store_uevent);
998 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)999 static ssize_t show_coresize(const struct module_attribute *mattr,
1000 			     struct module_kobject *mk, char *buffer)
1001 {
1002 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
1003 
1004 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1005 		for_class_mod_mem_type(type, core_data)
1006 			size += mk->mod->mem[type].size;
1007 	}
1008 	return sprintf(buffer, "%u\n", size);
1009 }
1010 
1011 static const struct module_attribute modinfo_coresize =
1012 	__ATTR(coresize, 0444, show_coresize, NULL);
1013 
1014 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1015 static ssize_t show_datasize(const struct module_attribute *mattr,
1016 			     struct module_kobject *mk, char *buffer)
1017 {
1018 	unsigned int size = 0;
1019 
1020 	for_class_mod_mem_type(type, core_data)
1021 		size += mk->mod->mem[type].size;
1022 	return sprintf(buffer, "%u\n", size);
1023 }
1024 
1025 static const struct module_attribute modinfo_datasize =
1026 	__ATTR(datasize, 0444, show_datasize, NULL);
1027 #endif
1028 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1029 static ssize_t show_initsize(const struct module_attribute *mattr,
1030 			     struct module_kobject *mk, char *buffer)
1031 {
1032 	unsigned int size = 0;
1033 
1034 	for_class_mod_mem_type(type, init)
1035 		size += mk->mod->mem[type].size;
1036 	return sprintf(buffer, "%u\n", size);
1037 }
1038 
1039 static const struct module_attribute modinfo_initsize =
1040 	__ATTR(initsize, 0444, show_initsize, NULL);
1041 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1042 static ssize_t show_taint(const struct module_attribute *mattr,
1043 			  struct module_kobject *mk, char *buffer)
1044 {
1045 	size_t l;
1046 
1047 	l = module_flags_taint(mk->mod->taints, buffer);
1048 	buffer[l++] = '\n';
1049 	return l;
1050 }
1051 
1052 static const struct module_attribute modinfo_taint =
1053 	__ATTR(taint, 0444, show_taint, NULL);
1054 
1055 const struct module_attribute *const modinfo_attrs[] = {
1056 	&module_uevent,
1057 	&modinfo_version,
1058 	&modinfo_srcversion,
1059 	&modinfo_initstate,
1060 	&modinfo_coresize,
1061 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1062 	&modinfo_datasize,
1063 #endif
1064 	&modinfo_initsize,
1065 	&modinfo_taint,
1066 #ifdef CONFIG_MODULE_UNLOAD
1067 	&modinfo_refcnt,
1068 #endif
1069 	NULL,
1070 };
1071 
1072 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1073 
1074 static const char vermagic[] = VERMAGIC_STRING;
1075 
try_to_force_load(struct module * mod,const char * reason)1076 int try_to_force_load(struct module *mod, const char *reason)
1077 {
1078 #ifdef CONFIG_MODULE_FORCE_LOAD
1079 	if (!test_taint(TAINT_FORCED_MODULE))
1080 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1081 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1082 	return 0;
1083 #else
1084 	return -ENOEXEC;
1085 #endif
1086 }
1087 
1088 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1089 char *module_next_tag_pair(char *string, unsigned long *secsize)
1090 {
1091 	/* Skip non-zero chars */
1092 	while (string[0]) {
1093 		string++;
1094 		if ((*secsize)-- <= 1)
1095 			return NULL;
1096 	}
1097 
1098 	/* Skip any zero padding. */
1099 	while (!string[0]) {
1100 		string++;
1101 		if ((*secsize)-- <= 1)
1102 			return NULL;
1103 	}
1104 	return string;
1105 }
1106 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1107 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1108 			      char *prev)
1109 {
1110 	char *p;
1111 	unsigned int taglen = strlen(tag);
1112 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1113 	unsigned long size = infosec->sh_size;
1114 
1115 	/*
1116 	 * get_modinfo() calls made before rewrite_section_headers()
1117 	 * must use sh_offset, as sh_addr isn't set!
1118 	 */
1119 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1120 
1121 	if (prev) {
1122 		size -= prev - modinfo;
1123 		modinfo = module_next_tag_pair(prev, &size);
1124 	}
1125 
1126 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1127 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1128 			return p + taglen + 1;
1129 	}
1130 	return NULL;
1131 }
1132 
get_modinfo(const struct load_info * info,const char * tag)1133 static char *get_modinfo(const struct load_info *info, const char *tag)
1134 {
1135 	return get_next_modinfo(info, tag, NULL);
1136 }
1137 
1138 /**
1139  * verify_module_namespace() - does @modname have access to this symbol's @namespace
1140  * @namespace: export symbol namespace
1141  * @modname: module name
1142  *
1143  * If @namespace is prefixed with "module:" to indicate it is a module namespace
1144  * then test if @modname matches any of the comma separated patterns.
1145  *
1146  * The patterns only support tail-glob.
1147  */
verify_module_namespace(const char * namespace,const char * modname)1148 static bool verify_module_namespace(const char *namespace, const char *modname)
1149 {
1150 	size_t len, modlen = strlen(modname);
1151 	const char *prefix = "module:";
1152 	const char *sep;
1153 	bool glob;
1154 
1155 	if (!strstarts(namespace, prefix))
1156 		return false;
1157 
1158 	for (namespace += strlen(prefix); *namespace; namespace = sep) {
1159 		sep = strchrnul(namespace, ',');
1160 		len = sep - namespace;
1161 
1162 		glob = false;
1163 		if (sep[-1] == '*') {
1164 			len--;
1165 			glob = true;
1166 		}
1167 
1168 		if (*sep)
1169 			sep++;
1170 
1171 		if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1172 			return true;
1173 	}
1174 
1175 	return false;
1176 }
1177 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1178 static int verify_namespace_is_imported(const struct load_info *info,
1179 					const struct kernel_symbol *sym,
1180 					struct module *mod)
1181 {
1182 	const char *namespace;
1183 	char *imported_namespace;
1184 
1185 	namespace = kernel_symbol_namespace(sym);
1186 	if (namespace && namespace[0]) {
1187 
1188 		if (verify_module_namespace(namespace, mod->name))
1189 			return 0;
1190 
1191 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1192 			if (strcmp(namespace, imported_namespace) == 0)
1193 				return 0;
1194 		}
1195 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1196 		pr_warn(
1197 #else
1198 		pr_err(
1199 #endif
1200 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1201 			mod->name, kernel_symbol_name(sym), namespace);
1202 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1203 		return -EINVAL;
1204 #endif
1205 	}
1206 	return 0;
1207 }
1208 
inherit_taint(struct module * mod,struct module * owner,const char * name)1209 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1210 {
1211 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1212 		return true;
1213 
1214 	if (mod->using_gplonly_symbols) {
1215 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1216 			mod->name, name, owner->name);
1217 		return false;
1218 	}
1219 
1220 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1221 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1222 			mod->name, name, owner->name);
1223 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1224 	}
1225 	return true;
1226 }
1227 
1228 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1229 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1230 						  const struct load_info *info,
1231 						  const char *name,
1232 						  char ownername[])
1233 {
1234 	struct find_symbol_arg fsa = {
1235 		.name	= name,
1236 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1237 		.warn	= true,
1238 	};
1239 	int err;
1240 
1241 	/*
1242 	 * The module_mutex should not be a heavily contended lock;
1243 	 * if we get the occasional sleep here, we'll go an extra iteration
1244 	 * in the wait_event_interruptible(), which is harmless.
1245 	 */
1246 	sched_annotate_sleep();
1247 	mutex_lock(&module_mutex);
1248 	if (!find_symbol(&fsa))
1249 		goto unlock;
1250 
1251 	if (fsa.license == GPL_ONLY)
1252 		mod->using_gplonly_symbols = true;
1253 
1254 	if (!inherit_taint(mod, fsa.owner, name)) {
1255 		fsa.sym = NULL;
1256 		goto getname;
1257 	}
1258 
1259 	if (!check_version(info, name, mod, fsa.crc)) {
1260 		fsa.sym = ERR_PTR(-EINVAL);
1261 		goto getname;
1262 	}
1263 
1264 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1265 	if (err) {
1266 		fsa.sym = ERR_PTR(err);
1267 		goto getname;
1268 	}
1269 
1270 	err = ref_module(mod, fsa.owner);
1271 	if (err) {
1272 		fsa.sym = ERR_PTR(err);
1273 		goto getname;
1274 	}
1275 
1276 getname:
1277 	/* We must make copy under the lock if we failed to get ref. */
1278 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1279 unlock:
1280 	mutex_unlock(&module_mutex);
1281 	return fsa.sym;
1282 }
1283 
1284 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1285 resolve_symbol_wait(struct module *mod,
1286 		    const struct load_info *info,
1287 		    const char *name)
1288 {
1289 	const struct kernel_symbol *ksym;
1290 	char owner[MODULE_NAME_LEN];
1291 
1292 	if (wait_event_interruptible_timeout(module_wq,
1293 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1294 			|| PTR_ERR(ksym) != -EBUSY,
1295 					     30 * HZ) <= 0) {
1296 		pr_warn("%s: gave up waiting for init of module %s.\n",
1297 			mod->name, owner);
1298 	}
1299 	return ksym;
1300 }
1301 
module_arch_cleanup(struct module * mod)1302 void __weak module_arch_cleanup(struct module *mod)
1303 {
1304 }
1305 
module_arch_freeing_init(struct module * mod)1306 void __weak module_arch_freeing_init(struct module *mod)
1307 {
1308 }
1309 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1310 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1311 {
1312 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1313 	enum execmem_type execmem_type;
1314 	void *ptr;
1315 
1316 	mod->mem[type].size = size;
1317 
1318 	if (mod_mem_type_is_data(type))
1319 		execmem_type = EXECMEM_MODULE_DATA;
1320 	else
1321 		execmem_type = EXECMEM_MODULE_TEXT;
1322 
1323 	ptr = execmem_alloc(execmem_type, size);
1324 	if (!ptr)
1325 		return -ENOMEM;
1326 
1327 	if (execmem_is_rox(execmem_type)) {
1328 		int err = execmem_make_temp_rw(ptr, size);
1329 
1330 		if (err) {
1331 			execmem_free(ptr);
1332 			return -ENOMEM;
1333 		}
1334 
1335 		mod->mem[type].is_rox = true;
1336 	}
1337 
1338 	/*
1339 	 * The pointer to these blocks of memory are stored on the module
1340 	 * structure and we keep that around so long as the module is
1341 	 * around. We only free that memory when we unload the module.
1342 	 * Just mark them as not being a leak then. The .init* ELF
1343 	 * sections *do* get freed after boot so we *could* treat them
1344 	 * slightly differently with kmemleak_ignore() and only grey
1345 	 * them out as they work as typical memory allocations which
1346 	 * *do* eventually get freed, but let's just keep things simple
1347 	 * and avoid *any* false positives.
1348 	 */
1349 	if (!mod->mem[type].is_rox)
1350 		kmemleak_not_leak(ptr);
1351 
1352 	memset(ptr, 0, size);
1353 	mod->mem[type].base = ptr;
1354 
1355 	return 0;
1356 }
1357 
module_memory_restore_rox(struct module * mod)1358 static void module_memory_restore_rox(struct module *mod)
1359 {
1360 	for_class_mod_mem_type(type, text) {
1361 		struct module_memory *mem = &mod->mem[type];
1362 
1363 		if (mem->is_rox)
1364 			execmem_restore_rox(mem->base, mem->size);
1365 	}
1366 }
1367 
module_memory_free(struct module * mod,enum mod_mem_type type)1368 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1369 {
1370 	struct module_memory *mem = &mod->mem[type];
1371 
1372 	execmem_free(mem->base);
1373 }
1374 
free_mod_mem(struct module * mod)1375 static void free_mod_mem(struct module *mod)
1376 {
1377 	for_each_mod_mem_type(type) {
1378 		struct module_memory *mod_mem = &mod->mem[type];
1379 
1380 		if (type == MOD_DATA)
1381 			continue;
1382 
1383 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1384 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1385 		if (mod_mem->size)
1386 			module_memory_free(mod, type);
1387 	}
1388 
1389 	/* MOD_DATA hosts mod, so free it at last */
1390 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1391 	module_memory_free(mod, MOD_DATA);
1392 }
1393 
1394 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1395 static void free_module(struct module *mod)
1396 {
1397 	trace_module_free(mod);
1398 
1399 	codetag_unload_module(mod);
1400 
1401 	mod_sysfs_teardown(mod);
1402 
1403 	/*
1404 	 * We leave it in list to prevent duplicate loads, but make sure
1405 	 * that noone uses it while it's being deconstructed.
1406 	 */
1407 	mutex_lock(&module_mutex);
1408 	mod->state = MODULE_STATE_UNFORMED;
1409 	mutex_unlock(&module_mutex);
1410 
1411 	/* Arch-specific cleanup. */
1412 	module_arch_cleanup(mod);
1413 
1414 	/* Module unload stuff */
1415 	module_unload_free(mod);
1416 
1417 	/* Free any allocated parameters. */
1418 	destroy_params(mod->kp, mod->num_kp);
1419 
1420 	if (is_livepatch_module(mod))
1421 		free_module_elf(mod);
1422 
1423 	/* Now we can delete it from the lists */
1424 	mutex_lock(&module_mutex);
1425 	/* Unlink carefully: kallsyms could be walking list. */
1426 	list_del_rcu(&mod->list);
1427 	mod_tree_remove(mod);
1428 	/* Remove this module from bug list, this uses list_del_rcu */
1429 	module_bug_cleanup(mod);
1430 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1431 	synchronize_rcu();
1432 	if (try_add_tainted_module(mod))
1433 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1434 		       mod->name);
1435 	mutex_unlock(&module_mutex);
1436 
1437 	/* This may be empty, but that's OK */
1438 	module_arch_freeing_init(mod);
1439 	kfree(mod->args);
1440 	percpu_modfree(mod);
1441 
1442 	free_mod_mem(mod);
1443 }
1444 
__symbol_get(const char * symbol)1445 void *__symbol_get(const char *symbol)
1446 {
1447 	struct find_symbol_arg fsa = {
1448 		.name	= symbol,
1449 		.gplok	= true,
1450 		.warn	= true,
1451 	};
1452 
1453 	scoped_guard(rcu) {
1454 		if (!find_symbol(&fsa))
1455 			return NULL;
1456 		if (fsa.license != GPL_ONLY) {
1457 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1458 				symbol);
1459 			return NULL;
1460 		}
1461 		if (strong_try_module_get(fsa.owner))
1462 			return NULL;
1463 	}
1464 	return (void *)kernel_symbol_value(fsa.sym);
1465 }
1466 EXPORT_SYMBOL_GPL(__symbol_get);
1467 
1468 /*
1469  * Ensure that an exported symbol [global namespace] does not already exist
1470  * in the kernel or in some other module's exported symbol table.
1471  *
1472  * You must hold the module_mutex.
1473  */
verify_exported_symbols(struct module * mod)1474 static int verify_exported_symbols(struct module *mod)
1475 {
1476 	unsigned int i;
1477 	const struct kernel_symbol *s;
1478 	struct {
1479 		const struct kernel_symbol *sym;
1480 		unsigned int num;
1481 	} arr[] = {
1482 		{ mod->syms, mod->num_syms },
1483 		{ mod->gpl_syms, mod->num_gpl_syms },
1484 	};
1485 
1486 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1487 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1488 			struct find_symbol_arg fsa = {
1489 				.name	= kernel_symbol_name(s),
1490 				.gplok	= true,
1491 			};
1492 			if (find_symbol(&fsa)) {
1493 				pr_err("%s: exports duplicate symbol %s"
1494 				       " (owned by %s)\n",
1495 				       mod->name, kernel_symbol_name(s),
1496 				       module_name(fsa.owner));
1497 				return -ENOEXEC;
1498 			}
1499 		}
1500 	}
1501 	return 0;
1502 }
1503 
ignore_undef_symbol(Elf_Half emachine,const char * name)1504 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1505 {
1506 	/*
1507 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1508 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1509 	 * i386 has a similar problem but may not deserve a fix.
1510 	 *
1511 	 * If we ever have to ignore many symbols, consider refactoring the code to
1512 	 * only warn if referenced by a relocation.
1513 	 */
1514 	if (emachine == EM_386 || emachine == EM_X86_64)
1515 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1516 	return false;
1517 }
1518 
1519 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1520 static int simplify_symbols(struct module *mod, const struct load_info *info)
1521 {
1522 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1523 	Elf_Sym *sym = (void *)symsec->sh_addr;
1524 	unsigned long secbase;
1525 	unsigned int i;
1526 	int ret = 0;
1527 	const struct kernel_symbol *ksym;
1528 
1529 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1530 		const char *name = info->strtab + sym[i].st_name;
1531 
1532 		switch (sym[i].st_shndx) {
1533 		case SHN_COMMON:
1534 			/* Ignore common symbols */
1535 			if (!strncmp(name, "__gnu_lto", 9))
1536 				break;
1537 
1538 			/*
1539 			 * We compiled with -fno-common.  These are not
1540 			 * supposed to happen.
1541 			 */
1542 			pr_debug("Common symbol: %s\n", name);
1543 			pr_warn("%s: please compile with -fno-common\n",
1544 			       mod->name);
1545 			ret = -ENOEXEC;
1546 			break;
1547 
1548 		case SHN_ABS:
1549 			/* Don't need to do anything */
1550 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1551 				 (long)sym[i].st_value, name);
1552 			break;
1553 
1554 		case SHN_LIVEPATCH:
1555 			/* Livepatch symbols are resolved by livepatch */
1556 			break;
1557 
1558 		case SHN_UNDEF:
1559 			ksym = resolve_symbol_wait(mod, info, name);
1560 			/* Ok if resolved.  */
1561 			if (ksym && !IS_ERR(ksym)) {
1562 				sym[i].st_value = kernel_symbol_value(ksym);
1563 				break;
1564 			}
1565 
1566 			/* Ok if weak or ignored.  */
1567 			if (!ksym &&
1568 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1569 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1570 				break;
1571 
1572 			ret = PTR_ERR(ksym) ?: -ENOENT;
1573 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1574 				mod->name, name, ret);
1575 			break;
1576 
1577 		default:
1578 			/* Divert to percpu allocation if a percpu var. */
1579 			if (sym[i].st_shndx == info->index.pcpu)
1580 				secbase = (unsigned long)mod_percpu(mod);
1581 			else
1582 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1583 			sym[i].st_value += secbase;
1584 			break;
1585 		}
1586 	}
1587 
1588 	return ret;
1589 }
1590 
apply_relocations(struct module * mod,const struct load_info * info)1591 static int apply_relocations(struct module *mod, const struct load_info *info)
1592 {
1593 	unsigned int i;
1594 	int err = 0;
1595 
1596 	/* Now do relocations. */
1597 	for (i = 1; i < info->hdr->e_shnum; i++) {
1598 		unsigned int infosec = info->sechdrs[i].sh_info;
1599 
1600 		/* Not a valid relocation section? */
1601 		if (infosec >= info->hdr->e_shnum)
1602 			continue;
1603 
1604 		/*
1605 		 * Don't bother with non-allocated sections.
1606 		 * An exception is the percpu section, which has separate allocations
1607 		 * for individual CPUs. We relocate the percpu section in the initial
1608 		 * ELF template and subsequently copy it to the per-CPU destinations.
1609 		 */
1610 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1611 		    (!infosec || infosec != info->index.pcpu))
1612 			continue;
1613 
1614 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1615 			err = klp_apply_section_relocs(mod, info->sechdrs,
1616 						       info->secstrings,
1617 						       info->strtab,
1618 						       info->index.sym, i,
1619 						       NULL);
1620 		else if (info->sechdrs[i].sh_type == SHT_REL)
1621 			err = apply_relocate(info->sechdrs, info->strtab,
1622 					     info->index.sym, i, mod);
1623 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1624 			err = apply_relocate_add(info->sechdrs, info->strtab,
1625 						 info->index.sym, i, mod);
1626 		if (err < 0)
1627 			break;
1628 	}
1629 	return err;
1630 }
1631 
1632 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1633 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1634 					     unsigned int section)
1635 {
1636 	/* default implementation just returns zero */
1637 	return 0;
1638 }
1639 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1640 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1641 				Elf_Shdr *sechdr, unsigned int section)
1642 {
1643 	long offset;
1644 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1645 
1646 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1647 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1648 	mod->mem[type].size = offset + sechdr->sh_size;
1649 
1650 	WARN_ON_ONCE(offset & mask);
1651 	return offset | mask;
1652 }
1653 
module_init_layout_section(const char * sname)1654 bool module_init_layout_section(const char *sname)
1655 {
1656 #ifndef CONFIG_MODULE_UNLOAD
1657 	if (module_exit_section(sname))
1658 		return true;
1659 #endif
1660 	return module_init_section(sname);
1661 }
1662 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1663 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1664 {
1665 	unsigned int m, i;
1666 
1667 	/*
1668 	 * { Mask of required section header flags,
1669 	 *   Mask of excluded section header flags }
1670 	 */
1671 	static const unsigned long masks[][2] = {
1672 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1673 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1674 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1675 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1676 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1677 	};
1678 	static const int core_m_to_mem_type[] = {
1679 		MOD_TEXT,
1680 		MOD_RODATA,
1681 		MOD_RO_AFTER_INIT,
1682 		MOD_DATA,
1683 		MOD_DATA,
1684 	};
1685 	static const int init_m_to_mem_type[] = {
1686 		MOD_INIT_TEXT,
1687 		MOD_INIT_RODATA,
1688 		MOD_INVALID,
1689 		MOD_INIT_DATA,
1690 		MOD_INIT_DATA,
1691 	};
1692 
1693 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1694 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1695 
1696 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1697 			Elf_Shdr *s = &info->sechdrs[i];
1698 			const char *sname = info->secstrings + s->sh_name;
1699 
1700 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1701 			    || (s->sh_flags & masks[m][1])
1702 			    || s->sh_entsize != ~0UL
1703 			    || is_init != module_init_layout_section(sname))
1704 				continue;
1705 
1706 			if (WARN_ON_ONCE(type == MOD_INVALID))
1707 				continue;
1708 
1709 			/*
1710 			 * Do not allocate codetag memory as we load it into
1711 			 * preallocated contiguous memory.
1712 			 */
1713 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1714 				/*
1715 				 * s->sh_entsize won't be used but populate the
1716 				 * type field to avoid confusion.
1717 				 */
1718 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1719 						<< SH_ENTSIZE_TYPE_SHIFT;
1720 				continue;
1721 			}
1722 
1723 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1724 			pr_debug("\t%s\n", sname);
1725 		}
1726 	}
1727 }
1728 
1729 /*
1730  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1731  * might -- code, read-only data, read-write data, small data.  Tally
1732  * sizes, and place the offsets into sh_entsize fields: high bit means it
1733  * belongs in init.
1734  */
layout_sections(struct module * mod,struct load_info * info)1735 static void layout_sections(struct module *mod, struct load_info *info)
1736 {
1737 	unsigned int i;
1738 
1739 	for (i = 0; i < info->hdr->e_shnum; i++)
1740 		info->sechdrs[i].sh_entsize = ~0UL;
1741 
1742 	pr_debug("Core section allocation order for %s:\n", mod->name);
1743 	__layout_sections(mod, info, false);
1744 
1745 	pr_debug("Init section allocation order for %s:\n", mod->name);
1746 	__layout_sections(mod, info, true);
1747 }
1748 
module_license_taint_check(struct module * mod,const char * license)1749 static void module_license_taint_check(struct module *mod, const char *license)
1750 {
1751 	if (!license)
1752 		license = "unspecified";
1753 
1754 	if (!license_is_gpl_compatible(license)) {
1755 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1756 			pr_warn("%s: module license '%s' taints kernel.\n",
1757 				mod->name, license);
1758 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1759 				 LOCKDEP_NOW_UNRELIABLE);
1760 	}
1761 }
1762 
setup_modinfo(struct module * mod,struct load_info * info)1763 static int setup_modinfo(struct module *mod, struct load_info *info)
1764 {
1765 	const struct module_attribute *attr;
1766 	char *imported_namespace;
1767 	int i;
1768 
1769 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1770 		if (attr->setup)
1771 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1772 	}
1773 
1774 	for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1775 		/*
1776 		 * 'module:' prefixed namespaces are implicit, disallow
1777 		 * explicit imports.
1778 		 */
1779 		if (strstarts(imported_namespace, "module:")) {
1780 			pr_err("%s: module tries to import module namespace: %s\n",
1781 			       mod->name, imported_namespace);
1782 			return -EPERM;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
free_modinfo(struct module * mod)1789 static void free_modinfo(struct module *mod)
1790 {
1791 	const struct module_attribute *attr;
1792 	int i;
1793 
1794 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1795 		if (attr->free)
1796 			attr->free(mod);
1797 	}
1798 }
1799 
module_init_section(const char * name)1800 bool __weak module_init_section(const char *name)
1801 {
1802 	return strstarts(name, ".init");
1803 }
1804 
module_exit_section(const char * name)1805 bool __weak module_exit_section(const char *name)
1806 {
1807 	return strstarts(name, ".exit");
1808 }
1809 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1810 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1811 {
1812 #if defined(CONFIG_64BIT)
1813 	unsigned long long secend;
1814 #else
1815 	unsigned long secend;
1816 #endif
1817 
1818 	/*
1819 	 * Check for both overflow and offset/size being
1820 	 * too large.
1821 	 */
1822 	secend = shdr->sh_offset + shdr->sh_size;
1823 	if (secend < shdr->sh_offset || secend > info->len)
1824 		return -ENOEXEC;
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * elf_validity_ehdr() - Checks an ELF header for module validity
1831  * @info: Load info containing the ELF header to check
1832  *
1833  * Checks whether an ELF header could belong to a valid module. Checks:
1834  *
1835  * * ELF header is within the data the user provided
1836  * * ELF magic is present
1837  * * It is relocatable (not final linked, not core file, etc.)
1838  * * The header's machine type matches what the architecture expects.
1839  * * Optional arch-specific hook for other properties
1840  *   - module_elf_check_arch() is currently only used by PPC to check
1841  *   ELF ABI version, but may be used by others in the future.
1842  *
1843  * Return: %0 if valid, %-ENOEXEC on failure.
1844  */
elf_validity_ehdr(const struct load_info * info)1845 static int elf_validity_ehdr(const struct load_info *info)
1846 {
1847 	if (info->len < sizeof(*(info->hdr))) {
1848 		pr_err("Invalid ELF header len %lu\n", info->len);
1849 		return -ENOEXEC;
1850 	}
1851 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1852 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1853 		return -ENOEXEC;
1854 	}
1855 	if (info->hdr->e_type != ET_REL) {
1856 		pr_err("Invalid ELF header type: %u != %u\n",
1857 		       info->hdr->e_type, ET_REL);
1858 		return -ENOEXEC;
1859 	}
1860 	if (!elf_check_arch(info->hdr)) {
1861 		pr_err("Invalid architecture in ELF header: %u\n",
1862 		       info->hdr->e_machine);
1863 		return -ENOEXEC;
1864 	}
1865 	if (!module_elf_check_arch(info->hdr)) {
1866 		pr_err("Invalid module architecture in ELF header: %u\n",
1867 		       info->hdr->e_machine);
1868 		return -ENOEXEC;
1869 	}
1870 	return 0;
1871 }
1872 
1873 /**
1874  * elf_validity_cache_sechdrs() - Cache section headers if valid
1875  * @info: Load info to compute section headers from
1876  *
1877  * Checks:
1878  *
1879  * * ELF header is valid (see elf_validity_ehdr())
1880  * * Section headers are the size we expect
1881  * * Section array fits in the user provided data
1882  * * Section index 0 is NULL
1883  * * Section contents are inbounds
1884  *
1885  * Then updates @info with a &load_info->sechdrs pointer if valid.
1886  *
1887  * Return: %0 if valid, negative error code if validation failed.
1888  */
elf_validity_cache_sechdrs(struct load_info * info)1889 static int elf_validity_cache_sechdrs(struct load_info *info)
1890 {
1891 	Elf_Shdr *sechdrs;
1892 	Elf_Shdr *shdr;
1893 	int i;
1894 	int err;
1895 
1896 	err = elf_validity_ehdr(info);
1897 	if (err < 0)
1898 		return err;
1899 
1900 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1901 		pr_err("Invalid ELF section header size\n");
1902 		return -ENOEXEC;
1903 	}
1904 
1905 	/*
1906 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1907 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1908 	 * will not overflow unsigned long on any platform.
1909 	 */
1910 	if (info->hdr->e_shoff >= info->len
1911 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1912 		info->len - info->hdr->e_shoff)) {
1913 		pr_err("Invalid ELF section header overflow\n");
1914 		return -ENOEXEC;
1915 	}
1916 
1917 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1918 
1919 	/*
1920 	 * The code assumes that section 0 has a length of zero and
1921 	 * an addr of zero, so check for it.
1922 	 */
1923 	if (sechdrs[0].sh_type != SHT_NULL
1924 	    || sechdrs[0].sh_size != 0
1925 	    || sechdrs[0].sh_addr != 0) {
1926 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1927 		       sechdrs[0].sh_type);
1928 		return -ENOEXEC;
1929 	}
1930 
1931 	/* Validate contents are inbounds */
1932 	for (i = 1; i < info->hdr->e_shnum; i++) {
1933 		shdr = &sechdrs[i];
1934 		switch (shdr->sh_type) {
1935 		case SHT_NULL:
1936 		case SHT_NOBITS:
1937 			/* No contents, offset/size don't mean anything */
1938 			continue;
1939 		default:
1940 			err = validate_section_offset(info, shdr);
1941 			if (err < 0) {
1942 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1943 				       i, shdr->sh_type);
1944 				return err;
1945 			}
1946 		}
1947 	}
1948 
1949 	info->sechdrs = sechdrs;
1950 
1951 	return 0;
1952 }
1953 
1954 /**
1955  * elf_validity_cache_secstrings() - Caches section names if valid
1956  * @info: Load info to cache section names from. Must have valid sechdrs.
1957  *
1958  * Specifically checks:
1959  *
1960  * * Section name table index is inbounds of section headers
1961  * * Section name table is not empty
1962  * * Section name table is NUL terminated
1963  * * All section name offsets are inbounds of the section
1964  *
1965  * Then updates @info with a &load_info->secstrings pointer if valid.
1966  *
1967  * Return: %0 if valid, negative error code if validation failed.
1968  */
elf_validity_cache_secstrings(struct load_info * info)1969 static int elf_validity_cache_secstrings(struct load_info *info)
1970 {
1971 	Elf_Shdr *strhdr, *shdr;
1972 	char *secstrings;
1973 	int i;
1974 
1975 	/*
1976 	 * Verify if the section name table index is valid.
1977 	 */
1978 	if (info->hdr->e_shstrndx == SHN_UNDEF
1979 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1980 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1981 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1982 		       info->hdr->e_shnum);
1983 		return -ENOEXEC;
1984 	}
1985 
1986 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1987 
1988 	/*
1989 	 * The section name table must be NUL-terminated, as required
1990 	 * by the spec. This makes strcmp and pr_* calls that access
1991 	 * strings in the section safe.
1992 	 */
1993 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1994 	if (strhdr->sh_size == 0) {
1995 		pr_err("empty section name table\n");
1996 		return -ENOEXEC;
1997 	}
1998 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1999 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
2000 		return -ENOEXEC;
2001 	}
2002 
2003 	for (i = 0; i < info->hdr->e_shnum; i++) {
2004 		shdr = &info->sechdrs[i];
2005 		/* SHT_NULL means sh_name has an undefined value */
2006 		if (shdr->sh_type == SHT_NULL)
2007 			continue;
2008 		if (shdr->sh_name >= strhdr->sh_size) {
2009 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
2010 			       i, shdr->sh_type);
2011 			return -ENOEXEC;
2012 		}
2013 	}
2014 
2015 	info->secstrings = secstrings;
2016 	return 0;
2017 }
2018 
2019 /**
2020  * elf_validity_cache_index_info() - Validate and cache modinfo section
2021  * @info: Load info to populate the modinfo index on.
2022  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2023  *
2024  * Checks that if there is a .modinfo section, it is unique.
2025  * Then, it caches its index in &load_info->index.info.
2026  * Finally, it tries to populate the name to improve error messages.
2027  *
2028  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2029  */
elf_validity_cache_index_info(struct load_info * info)2030 static int elf_validity_cache_index_info(struct load_info *info)
2031 {
2032 	int info_idx;
2033 
2034 	info_idx = find_any_unique_sec(info, ".modinfo");
2035 
2036 	if (info_idx == 0)
2037 		/* Early return, no .modinfo */
2038 		return 0;
2039 
2040 	if (info_idx < 0) {
2041 		pr_err("Only one .modinfo section must exist.\n");
2042 		return -ENOEXEC;
2043 	}
2044 
2045 	info->index.info = info_idx;
2046 	/* Try to find a name early so we can log errors with a module name */
2047 	info->name = get_modinfo(info, "name");
2048 
2049 	return 0;
2050 }
2051 
2052 /**
2053  * elf_validity_cache_index_mod() - Validates and caches this_module section
2054  * @info: Load info to cache this_module on.
2055  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2056  *
2057  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2058  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2059  * to &__this_module properly. The kernel's modpost declares it on each
2060  * modules's *.mod.c file. If the struct module of the kernel changes a full
2061  * kernel rebuild is required.
2062  *
2063  * We have a few expectations for this special section, this function
2064  * validates all this for us:
2065  *
2066  * * The section has contents
2067  * * The section is unique
2068  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2069  * * The section size must match the kernel's run time's struct module
2070  *   size
2071  *
2072  * If all checks pass, the index will be cached in &load_info->index.mod
2073  *
2074  * Return: %0 on validation success, %-ENOEXEC on failure
2075  */
elf_validity_cache_index_mod(struct load_info * info)2076 static int elf_validity_cache_index_mod(struct load_info *info)
2077 {
2078 	Elf_Shdr *shdr;
2079 	int mod_idx;
2080 
2081 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2082 	if (mod_idx <= 0) {
2083 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2084 		       info->name ?: "(missing .modinfo section or name field)");
2085 		return -ENOEXEC;
2086 	}
2087 
2088 	shdr = &info->sechdrs[mod_idx];
2089 
2090 	if (shdr->sh_type == SHT_NOBITS) {
2091 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2092 		       info->name ?: "(missing .modinfo section or name field)");
2093 		return -ENOEXEC;
2094 	}
2095 
2096 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2097 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2098 		       info->name ?: "(missing .modinfo section or name field)");
2099 		return -ENOEXEC;
2100 	}
2101 
2102 	if (shdr->sh_size != sizeof(struct module)) {
2103 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2104 		       info->name ?: "(missing .modinfo section or name field)");
2105 		return -ENOEXEC;
2106 	}
2107 
2108 	info->index.mod = mod_idx;
2109 
2110 	return 0;
2111 }
2112 
2113 /**
2114  * elf_validity_cache_index_sym() - Validate and cache symtab index
2115  * @info: Load info to cache symtab index in.
2116  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2117  *
2118  * Checks that there is exactly one symbol table, then caches its index in
2119  * &load_info->index.sym.
2120  *
2121  * Return: %0 if valid, %-ENOEXEC on failure.
2122  */
elf_validity_cache_index_sym(struct load_info * info)2123 static int elf_validity_cache_index_sym(struct load_info *info)
2124 {
2125 	unsigned int sym_idx;
2126 	unsigned int num_sym_secs = 0;
2127 	int i;
2128 
2129 	for (i = 1; i < info->hdr->e_shnum; i++) {
2130 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2131 			num_sym_secs++;
2132 			sym_idx = i;
2133 		}
2134 	}
2135 
2136 	if (num_sym_secs != 1) {
2137 		pr_warn("%s: module has no symbols (stripped?)\n",
2138 			info->name ?: "(missing .modinfo section or name field)");
2139 		return -ENOEXEC;
2140 	}
2141 
2142 	info->index.sym = sym_idx;
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * elf_validity_cache_index_str() - Validate and cache strtab index
2149  * @info: Load info to cache strtab index in.
2150  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2151  *        Must have &load_info->index.sym populated.
2152  *
2153  * Looks at the symbol table's associated string table, makes sure it is
2154  * in-bounds, and caches it.
2155  *
2156  * Return: %0 if valid, %-ENOEXEC on failure.
2157  */
elf_validity_cache_index_str(struct load_info * info)2158 static int elf_validity_cache_index_str(struct load_info *info)
2159 {
2160 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2161 
2162 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2163 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2164 		       str_idx, str_idx, info->hdr->e_shnum);
2165 		return -ENOEXEC;
2166 	}
2167 
2168 	info->index.str = str_idx;
2169 	return 0;
2170 }
2171 
2172 /**
2173  * elf_validity_cache_index_versions() - Validate and cache version indices
2174  * @info:  Load info to cache version indices in.
2175  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2176  * @flags: Load flags, relevant to suppress version loading, see
2177  *         uapi/linux/module.h
2178  *
2179  * If we're ignoring modversions based on @flags, zero all version indices
2180  * and return validity. Othewrise check:
2181  *
2182  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2183  * * There is a name present for every crc
2184  *
2185  * Then populate:
2186  *
2187  * * &load_info->index.vers
2188  * * &load_info->index.vers_ext_crc
2189  * * &load_info->index.vers_ext_names
2190  *
2191  * if present.
2192  *
2193  * Return: %0 if valid, %-ENOEXEC on failure.
2194  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2195 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2196 {
2197 	unsigned int vers_ext_crc;
2198 	unsigned int vers_ext_name;
2199 	size_t crc_count;
2200 	size_t remaining_len;
2201 	size_t name_size;
2202 	char *name;
2203 
2204 	/* If modversions were suppressed, pretend we didn't find any */
2205 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2206 		info->index.vers = 0;
2207 		info->index.vers_ext_crc = 0;
2208 		info->index.vers_ext_name = 0;
2209 		return 0;
2210 	}
2211 
2212 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2213 	vers_ext_name = find_sec(info, "__version_ext_names");
2214 
2215 	/* If we have one field, we must have the other */
2216 	if (!!vers_ext_crc != !!vers_ext_name) {
2217 		pr_err("extended version crc+name presence does not match");
2218 		return -ENOEXEC;
2219 	}
2220 
2221 	/*
2222 	 * If we have extended version information, we should have the same
2223 	 * number of entries in every section.
2224 	 */
2225 	if (vers_ext_crc) {
2226 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2227 		name = (void *)info->hdr +
2228 			info->sechdrs[vers_ext_name].sh_offset;
2229 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2230 
2231 		while (crc_count--) {
2232 			name_size = strnlen(name, remaining_len) + 1;
2233 			if (name_size > remaining_len) {
2234 				pr_err("more extended version crcs than names");
2235 				return -ENOEXEC;
2236 			}
2237 			remaining_len -= name_size;
2238 			name += name_size;
2239 		}
2240 	}
2241 
2242 	info->index.vers = find_sec(info, "__versions");
2243 	info->index.vers_ext_crc = vers_ext_crc;
2244 	info->index.vers_ext_name = vers_ext_name;
2245 	return 0;
2246 }
2247 
2248 /**
2249  * elf_validity_cache_index() - Resolve, validate, cache section indices
2250  * @info:  Load info to read from and update.
2251  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2252  * @flags: Load flags, relevant to suppress version loading, see
2253  *         uapi/linux/module.h
2254  *
2255  * Populates &load_info->index, validating as it goes.
2256  * See child functions for per-field validation:
2257  *
2258  * * elf_validity_cache_index_info()
2259  * * elf_validity_cache_index_mod()
2260  * * elf_validity_cache_index_sym()
2261  * * elf_validity_cache_index_str()
2262  * * elf_validity_cache_index_versions()
2263  *
2264  * If CONFIG_SMP is enabled, load the percpu section by name with no
2265  * validation.
2266  *
2267  * Return: 0 on success, negative error code if an index failed validation.
2268  */
elf_validity_cache_index(struct load_info * info,int flags)2269 static int elf_validity_cache_index(struct load_info *info, int flags)
2270 {
2271 	int err;
2272 
2273 	err = elf_validity_cache_index_info(info);
2274 	if (err < 0)
2275 		return err;
2276 	err = elf_validity_cache_index_mod(info);
2277 	if (err < 0)
2278 		return err;
2279 	err = elf_validity_cache_index_sym(info);
2280 	if (err < 0)
2281 		return err;
2282 	err = elf_validity_cache_index_str(info);
2283 	if (err < 0)
2284 		return err;
2285 	err = elf_validity_cache_index_versions(info, flags);
2286 	if (err < 0)
2287 		return err;
2288 
2289 	info->index.pcpu = find_pcpusec(info);
2290 
2291 	return 0;
2292 }
2293 
2294 /**
2295  * elf_validity_cache_strtab() - Validate and cache symbol string table
2296  * @info: Load info to read from and update.
2297  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2298  *        Must have &load_info->index populated.
2299  *
2300  * Checks:
2301  *
2302  * * The string table is not empty.
2303  * * The string table starts and ends with NUL (required by ELF spec).
2304  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2305  *   string table.
2306  *
2307  * And caches the pointer as &load_info->strtab in @info.
2308  *
2309  * Return: 0 on success, negative error code if a check failed.
2310  */
elf_validity_cache_strtab(struct load_info * info)2311 static int elf_validity_cache_strtab(struct load_info *info)
2312 {
2313 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2314 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2315 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2316 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2317 	int i;
2318 
2319 	if (str_shdr->sh_size == 0) {
2320 		pr_err("empty symbol string table\n");
2321 		return -ENOEXEC;
2322 	}
2323 	if (strtab[0] != '\0') {
2324 		pr_err("symbol string table missing leading NUL\n");
2325 		return -ENOEXEC;
2326 	}
2327 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2328 		pr_err("symbol string table isn't NUL terminated\n");
2329 		return -ENOEXEC;
2330 	}
2331 
2332 	/*
2333 	 * Now that we know strtab is correctly structured, check symbol
2334 	 * starts are inbounds before they're used later.
2335 	 */
2336 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2337 		if (syms[i].st_name >= str_shdr->sh_size) {
2338 			pr_err("symbol name out of bounds in string table");
2339 			return -ENOEXEC;
2340 		}
2341 	}
2342 
2343 	info->strtab = strtab;
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Check userspace passed ELF module against our expectations, and cache
2349  * useful variables for further processing as we go.
2350  *
2351  * This does basic validity checks against section offsets and sizes, the
2352  * section name string table, and the indices used for it (sh_name).
2353  *
2354  * As a last step, since we're already checking the ELF sections we cache
2355  * useful variables which will be used later for our convenience:
2356  *
2357  * 	o pointers to section headers
2358  * 	o cache the modinfo symbol section
2359  * 	o cache the string symbol section
2360  * 	o cache the module section
2361  *
2362  * As a last step we set info->mod to the temporary copy of the module in
2363  * info->hdr. The final one will be allocated in move_module(). Any
2364  * modifications we make to our copy of the module will be carried over
2365  * to the final minted module.
2366  */
elf_validity_cache_copy(struct load_info * info,int flags)2367 static int elf_validity_cache_copy(struct load_info *info, int flags)
2368 {
2369 	int err;
2370 
2371 	err = elf_validity_cache_sechdrs(info);
2372 	if (err < 0)
2373 		return err;
2374 	err = elf_validity_cache_secstrings(info);
2375 	if (err < 0)
2376 		return err;
2377 	err = elf_validity_cache_index(info, flags);
2378 	if (err < 0)
2379 		return err;
2380 	err = elf_validity_cache_strtab(info);
2381 	if (err < 0)
2382 		return err;
2383 
2384 	/* This is temporary: point mod into copy of data. */
2385 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2386 
2387 	/*
2388 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2389 	 * on-disk struct mod 'name' field.
2390 	 */
2391 	if (!info->name)
2392 		info->name = info->mod->name;
2393 
2394 	return 0;
2395 }
2396 
2397 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2398 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2399 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2400 {
2401 	do {
2402 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2403 
2404 		if (copy_from_user(dst, usrc, n) != 0)
2405 			return -EFAULT;
2406 		cond_resched();
2407 		dst += n;
2408 		usrc += n;
2409 		len -= n;
2410 	} while (len);
2411 	return 0;
2412 }
2413 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2414 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2415 {
2416 	if (!get_modinfo(info, "livepatch"))
2417 		/* Nothing more to do */
2418 		return 0;
2419 
2420 	if (set_livepatch_module(mod))
2421 		return 0;
2422 
2423 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2424 	       mod->name);
2425 	return -ENOEXEC;
2426 }
2427 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2428 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2429 {
2430 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2431 		return;
2432 
2433 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2434 		mod->name);
2435 }
2436 
2437 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2438 static int copy_module_from_user(const void __user *umod, unsigned long len,
2439 				  struct load_info *info)
2440 {
2441 	int err;
2442 
2443 	info->len = len;
2444 	if (info->len < sizeof(*(info->hdr)))
2445 		return -ENOEXEC;
2446 
2447 	err = security_kernel_load_data(LOADING_MODULE, true);
2448 	if (err)
2449 		return err;
2450 
2451 	/* Suck in entire file: we'll want most of it. */
2452 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2453 	if (!info->hdr)
2454 		return -ENOMEM;
2455 
2456 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2457 		err = -EFAULT;
2458 		goto out;
2459 	}
2460 
2461 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2462 					     LOADING_MODULE, "init_module");
2463 out:
2464 	if (err)
2465 		vfree(info->hdr);
2466 
2467 	return err;
2468 }
2469 
free_copy(struct load_info * info,int flags)2470 static void free_copy(struct load_info *info, int flags)
2471 {
2472 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2473 		module_decompress_cleanup(info);
2474 	else
2475 		vfree(info->hdr);
2476 }
2477 
rewrite_section_headers(struct load_info * info,int flags)2478 static int rewrite_section_headers(struct load_info *info, int flags)
2479 {
2480 	unsigned int i;
2481 
2482 	/* This should always be true, but let's be sure. */
2483 	info->sechdrs[0].sh_addr = 0;
2484 
2485 	for (i = 1; i < info->hdr->e_shnum; i++) {
2486 		Elf_Shdr *shdr = &info->sechdrs[i];
2487 
2488 		/*
2489 		 * Mark all sections sh_addr with their address in the
2490 		 * temporary image.
2491 		 */
2492 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2493 
2494 	}
2495 
2496 	/* Track but don't keep modinfo and version sections. */
2497 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2498 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2499 		~(unsigned long)SHF_ALLOC;
2500 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2501 		~(unsigned long)SHF_ALLOC;
2502 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2503 
2504 	return 0;
2505 }
2506 
2507 static const char *const module_license_offenders[] = {
2508 	/* driverloader was caught wrongly pretending to be under GPL */
2509 	"driverloader",
2510 
2511 	/* lve claims to be GPL but upstream won't provide source */
2512 	"lve",
2513 };
2514 
2515 /*
2516  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2517 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2518 {
2519 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2520 	size_t i;
2521 
2522 	if (!get_modinfo(info, "intree")) {
2523 		if (!test_taint(TAINT_OOT_MODULE))
2524 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2525 				mod->name);
2526 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2527 	}
2528 
2529 	check_modinfo_retpoline(mod, info);
2530 
2531 	if (get_modinfo(info, "staging")) {
2532 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2533 		pr_warn("%s: module is from the staging directory, the quality "
2534 			"is unknown, you have been warned.\n", mod->name);
2535 	}
2536 
2537 	if (is_livepatch_module(mod)) {
2538 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2539 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2540 				mod->name);
2541 	}
2542 
2543 	module_license_taint_check(mod, get_modinfo(info, "license"));
2544 
2545 	if (get_modinfo(info, "test")) {
2546 		if (!test_taint(TAINT_TEST))
2547 			pr_warn("%s: loading test module taints kernel.\n",
2548 				mod->name);
2549 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2550 	}
2551 #ifdef CONFIG_MODULE_SIG
2552 	mod->sig_ok = info->sig_ok;
2553 	if (!mod->sig_ok) {
2554 		pr_notice_once("%s: module verification failed: signature "
2555 			       "and/or required key missing - tainting "
2556 			       "kernel\n", mod->name);
2557 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2558 	}
2559 #endif
2560 
2561 	/*
2562 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2563 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2564 	 * using GPL-only symbols it needs.
2565 	 */
2566 	if (strcmp(mod->name, "ndiswrapper") == 0)
2567 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2568 
2569 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2570 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2571 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2572 					 LOCKDEP_NOW_UNRELIABLE);
2573 	}
2574 
2575 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2576 		pr_warn("%s: module license taints kernel.\n", mod->name);
2577 
2578 }
2579 
check_modinfo(struct module * mod,struct load_info * info,int flags)2580 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2581 {
2582 	const char *modmagic = get_modinfo(info, "vermagic");
2583 	int err;
2584 
2585 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2586 		modmagic = NULL;
2587 
2588 	/* This is allowed: modprobe --force will invalidate it. */
2589 	if (!modmagic) {
2590 		err = try_to_force_load(mod, "bad vermagic");
2591 		if (err)
2592 			return err;
2593 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2594 		pr_err("%s: version magic '%s' should be '%s'\n",
2595 		       info->name, modmagic, vermagic);
2596 		return -ENOEXEC;
2597 	}
2598 
2599 	err = check_modinfo_livepatch(mod, info);
2600 	if (err)
2601 		return err;
2602 
2603 	return 0;
2604 }
2605 
find_module_sections(struct module * mod,struct load_info * info)2606 static int find_module_sections(struct module *mod, struct load_info *info)
2607 {
2608 	mod->kp = section_objs(info, "__param",
2609 			       sizeof(*mod->kp), &mod->num_kp);
2610 	mod->syms = section_objs(info, "__ksymtab",
2611 				 sizeof(*mod->syms), &mod->num_syms);
2612 	mod->crcs = section_addr(info, "__kcrctab");
2613 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2614 				     sizeof(*mod->gpl_syms),
2615 				     &mod->num_gpl_syms);
2616 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2617 
2618 #ifdef CONFIG_CONSTRUCTORS
2619 	mod->ctors = section_objs(info, ".ctors",
2620 				  sizeof(*mod->ctors), &mod->num_ctors);
2621 	if (!mod->ctors)
2622 		mod->ctors = section_objs(info, ".init_array",
2623 				sizeof(*mod->ctors), &mod->num_ctors);
2624 	else if (find_sec(info, ".init_array")) {
2625 		/*
2626 		 * This shouldn't happen with same compiler and binutils
2627 		 * building all parts of the module.
2628 		 */
2629 		pr_warn("%s: has both .ctors and .init_array.\n",
2630 		       mod->name);
2631 		return -EINVAL;
2632 	}
2633 #endif
2634 
2635 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2636 						&mod->noinstr_text_size);
2637 
2638 #ifdef CONFIG_TRACEPOINTS
2639 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2640 					     sizeof(*mod->tracepoints_ptrs),
2641 					     &mod->num_tracepoints);
2642 #endif
2643 #ifdef CONFIG_TREE_SRCU
2644 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2645 					     sizeof(*mod->srcu_struct_ptrs),
2646 					     &mod->num_srcu_structs);
2647 #endif
2648 #ifdef CONFIG_BPF_EVENTS
2649 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2650 					   sizeof(*mod->bpf_raw_events),
2651 					   &mod->num_bpf_raw_events);
2652 #endif
2653 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2654 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2655 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2656 					      &mod->btf_base_data_size);
2657 #endif
2658 #ifdef CONFIG_JUMP_LABEL
2659 	mod->jump_entries = section_objs(info, "__jump_table",
2660 					sizeof(*mod->jump_entries),
2661 					&mod->num_jump_entries);
2662 #endif
2663 #ifdef CONFIG_EVENT_TRACING
2664 	mod->trace_events = section_objs(info, "_ftrace_events",
2665 					 sizeof(*mod->trace_events),
2666 					 &mod->num_trace_events);
2667 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2668 					sizeof(*mod->trace_evals),
2669 					&mod->num_trace_evals);
2670 #endif
2671 #ifdef CONFIG_TRACING
2672 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2673 					 sizeof(*mod->trace_bprintk_fmt_start),
2674 					 &mod->num_trace_bprintk_fmt);
2675 #endif
2676 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2677 	/* sechdrs[0].sh_size is always zero */
2678 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2679 					     sizeof(*mod->ftrace_callsites),
2680 					     &mod->num_ftrace_callsites);
2681 #endif
2682 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2683 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2684 					    sizeof(*mod->ei_funcs),
2685 					    &mod->num_ei_funcs);
2686 #endif
2687 #ifdef CONFIG_KPROBES
2688 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2689 						&mod->kprobes_text_size);
2690 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2691 						sizeof(unsigned long),
2692 						&mod->num_kprobe_blacklist);
2693 #endif
2694 #ifdef CONFIG_PRINTK_INDEX
2695 	mod->printk_index_start = section_objs(info, ".printk_index",
2696 					       sizeof(*mod->printk_index_start),
2697 					       &mod->printk_index_size);
2698 #endif
2699 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2700 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2701 					      sizeof(*mod->static_call_sites),
2702 					      &mod->num_static_call_sites);
2703 #endif
2704 #if IS_ENABLED(CONFIG_KUNIT)
2705 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2706 					      sizeof(*mod->kunit_suites),
2707 					      &mod->num_kunit_suites);
2708 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2709 					      sizeof(*mod->kunit_init_suites),
2710 					      &mod->num_kunit_init_suites);
2711 #endif
2712 
2713 	mod->extable = section_objs(info, "__ex_table",
2714 				    sizeof(*mod->extable), &mod->num_exentries);
2715 
2716 	if (section_addr(info, "__obsparm"))
2717 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2718 
2719 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2720 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2721 					      sizeof(*mod->dyndbg_info.descs),
2722 					      &mod->dyndbg_info.num_descs);
2723 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2724 						sizeof(*mod->dyndbg_info.classes),
2725 						&mod->dyndbg_info.num_classes);
2726 #endif
2727 
2728 	return 0;
2729 }
2730 
move_module(struct module * mod,struct load_info * info)2731 static int move_module(struct module *mod, struct load_info *info)
2732 {
2733 	int i, ret;
2734 	enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2735 	bool codetag_section_found = false;
2736 
2737 	for_each_mod_mem_type(type) {
2738 		if (!mod->mem[type].size) {
2739 			mod->mem[type].base = NULL;
2740 			continue;
2741 		}
2742 
2743 		ret = module_memory_alloc(mod, type);
2744 		if (ret) {
2745 			t = type;
2746 			goto out_err;
2747 		}
2748 	}
2749 
2750 	/* Transfer each section which specifies SHF_ALLOC */
2751 	pr_debug("Final section addresses for %s:\n", mod->name);
2752 	for (i = 0; i < info->hdr->e_shnum; i++) {
2753 		void *dest;
2754 		Elf_Shdr *shdr = &info->sechdrs[i];
2755 		const char *sname;
2756 
2757 		if (!(shdr->sh_flags & SHF_ALLOC))
2758 			continue;
2759 
2760 		sname = info->secstrings + shdr->sh_name;
2761 		/*
2762 		 * Load codetag sections separately as they might still be used
2763 		 * after module unload.
2764 		 */
2765 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2766 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2767 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2768 			if (WARN_ON(!dest)) {
2769 				ret = -EINVAL;
2770 				goto out_err;
2771 			}
2772 			if (IS_ERR(dest)) {
2773 				ret = PTR_ERR(dest);
2774 				goto out_err;
2775 			}
2776 			codetag_section_found = true;
2777 		} else {
2778 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2779 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2780 
2781 			dest = mod->mem[type].base + offset;
2782 		}
2783 
2784 		if (shdr->sh_type != SHT_NOBITS) {
2785 			/*
2786 			 * Our ELF checker already validated this, but let's
2787 			 * be pedantic and make the goal clearer. We actually
2788 			 * end up copying over all modifications made to the
2789 			 * userspace copy of the entire struct module.
2790 			 */
2791 			if (i == info->index.mod &&
2792 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2793 				ret = -ENOEXEC;
2794 				goto out_err;
2795 			}
2796 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2797 		}
2798 		/*
2799 		 * Update the userspace copy's ELF section address to point to
2800 		 * our newly allocated memory as a pure convenience so that
2801 		 * users of info can keep taking advantage and using the newly
2802 		 * minted official memory area.
2803 		 */
2804 		shdr->sh_addr = (unsigned long)dest;
2805 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2806 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2807 	}
2808 
2809 	return 0;
2810 out_err:
2811 	module_memory_restore_rox(mod);
2812 	while (t--)
2813 		module_memory_free(mod, t);
2814 	if (codetag_section_found)
2815 		codetag_free_module_sections(mod);
2816 
2817 	return ret;
2818 }
2819 
check_export_symbol_versions(struct module * mod)2820 static int check_export_symbol_versions(struct module *mod)
2821 {
2822 #ifdef CONFIG_MODVERSIONS
2823 	if ((mod->num_syms && !mod->crcs) ||
2824 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2825 		return try_to_force_load(mod,
2826 					 "no versions for exported symbols");
2827 	}
2828 #endif
2829 	return 0;
2830 }
2831 
flush_module_icache(const struct module * mod)2832 static void flush_module_icache(const struct module *mod)
2833 {
2834 	/*
2835 	 * Flush the instruction cache, since we've played with text.
2836 	 * Do it before processing of module parameters, so the module
2837 	 * can provide parameter accessor functions of its own.
2838 	 */
2839 	for_each_mod_mem_type(type) {
2840 		const struct module_memory *mod_mem = &mod->mem[type];
2841 
2842 		if (mod_mem->size) {
2843 			flush_icache_range((unsigned long)mod_mem->base,
2844 					   (unsigned long)mod_mem->base + mod_mem->size);
2845 		}
2846 	}
2847 }
2848 
module_elf_check_arch(Elf_Ehdr * hdr)2849 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2850 {
2851 	return true;
2852 }
2853 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2854 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2855 				     Elf_Shdr *sechdrs,
2856 				     char *secstrings,
2857 				     struct module *mod)
2858 {
2859 	return 0;
2860 }
2861 
2862 /* module_blacklist is a comma-separated list of module names */
2863 static char *module_blacklist;
blacklisted(const char * module_name)2864 static bool blacklisted(const char *module_name)
2865 {
2866 	const char *p;
2867 	size_t len;
2868 
2869 	if (!module_blacklist)
2870 		return false;
2871 
2872 	for (p = module_blacklist; *p; p += len) {
2873 		len = strcspn(p, ",");
2874 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2875 			return true;
2876 		if (p[len] == ',')
2877 			len++;
2878 	}
2879 	return false;
2880 }
2881 core_param(module_blacklist, module_blacklist, charp, 0400);
2882 
layout_and_allocate(struct load_info * info,int flags)2883 static struct module *layout_and_allocate(struct load_info *info, int flags)
2884 {
2885 	struct module *mod;
2886 	int err;
2887 
2888 	/* Allow arches to frob section contents and sizes.  */
2889 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2890 					info->secstrings, info->mod);
2891 	if (err < 0)
2892 		return ERR_PTR(err);
2893 
2894 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2895 					  info->secstrings, info->mod);
2896 	if (err < 0)
2897 		return ERR_PTR(err);
2898 
2899 	/* We will do a special allocation for per-cpu sections later. */
2900 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2901 
2902 	/*
2903 	 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2904 	 * put them in the right place.
2905 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2906 	 */
2907 	module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2908 
2909 	/*
2910 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2911 	 * this is done generically; there doesn't appear to be any
2912 	 * special cases for the architectures.
2913 	 */
2914 	layout_sections(info->mod, info);
2915 	layout_symtab(info->mod, info);
2916 
2917 	/* Allocate and move to the final place */
2918 	err = move_module(info->mod, info);
2919 	if (err)
2920 		return ERR_PTR(err);
2921 
2922 	/* Module has been copied to its final place now: return it. */
2923 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2924 	kmemleak_load_module(mod, info);
2925 	codetag_module_replaced(info->mod, mod);
2926 
2927 	return mod;
2928 }
2929 
2930 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2931 static void module_deallocate(struct module *mod, struct load_info *info)
2932 {
2933 	percpu_modfree(mod);
2934 	module_arch_freeing_init(mod);
2935 	codetag_free_module_sections(mod);
2936 
2937 	free_mod_mem(mod);
2938 }
2939 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2940 int __weak module_finalize(const Elf_Ehdr *hdr,
2941 			   const Elf_Shdr *sechdrs,
2942 			   struct module *me)
2943 {
2944 	return 0;
2945 }
2946 
post_relocation(struct module * mod,const struct load_info * info)2947 static int post_relocation(struct module *mod, const struct load_info *info)
2948 {
2949 	/* Sort exception table now relocations are done. */
2950 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2951 
2952 	/* Copy relocated percpu area over. */
2953 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2954 		       info->sechdrs[info->index.pcpu].sh_size);
2955 
2956 	/* Setup kallsyms-specific fields. */
2957 	add_kallsyms(mod, info);
2958 
2959 	/* Arch-specific module finalizing. */
2960 	return module_finalize(info->hdr, info->sechdrs, mod);
2961 }
2962 
2963 /* Call module constructors. */
do_mod_ctors(struct module * mod)2964 static void do_mod_ctors(struct module *mod)
2965 {
2966 #ifdef CONFIG_CONSTRUCTORS
2967 	unsigned long i;
2968 
2969 	for (i = 0; i < mod->num_ctors; i++)
2970 		mod->ctors[i]();
2971 #endif
2972 }
2973 
2974 /* For freeing module_init on success, in case kallsyms traversing */
2975 struct mod_initfree {
2976 	struct llist_node node;
2977 	void *init_text;
2978 	void *init_data;
2979 	void *init_rodata;
2980 };
2981 
do_free_init(struct work_struct * w)2982 static void do_free_init(struct work_struct *w)
2983 {
2984 	struct llist_node *pos, *n, *list;
2985 	struct mod_initfree *initfree;
2986 
2987 	list = llist_del_all(&init_free_list);
2988 
2989 	synchronize_rcu();
2990 
2991 	llist_for_each_safe(pos, n, list) {
2992 		initfree = container_of(pos, struct mod_initfree, node);
2993 		execmem_free(initfree->init_text);
2994 		execmem_free(initfree->init_data);
2995 		execmem_free(initfree->init_rodata);
2996 		kfree(initfree);
2997 	}
2998 }
2999 
flush_module_init_free_work(void)3000 void flush_module_init_free_work(void)
3001 {
3002 	flush_work(&init_free_wq);
3003 }
3004 
3005 #undef MODULE_PARAM_PREFIX
3006 #define MODULE_PARAM_PREFIX "module."
3007 /* Default value for module->async_probe_requested */
3008 static bool async_probe;
3009 module_param(async_probe, bool, 0644);
3010 
3011 /*
3012  * This is where the real work happens.
3013  *
3014  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3015  * helper command 'lx-symbols'.
3016  */
do_init_module(struct module * mod)3017 static noinline int do_init_module(struct module *mod)
3018 {
3019 	int ret = 0;
3020 	struct mod_initfree *freeinit;
3021 #if defined(CONFIG_MODULE_STATS)
3022 	unsigned int text_size = 0, total_size = 0;
3023 
3024 	for_each_mod_mem_type(type) {
3025 		const struct module_memory *mod_mem = &mod->mem[type];
3026 		if (mod_mem->size) {
3027 			total_size += mod_mem->size;
3028 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3029 				text_size += mod_mem->size;
3030 		}
3031 	}
3032 #endif
3033 
3034 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3035 	if (!freeinit) {
3036 		ret = -ENOMEM;
3037 		goto fail;
3038 	}
3039 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3040 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3041 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3042 
3043 	do_mod_ctors(mod);
3044 	/* Start the module */
3045 	if (mod->init != NULL)
3046 		ret = do_one_initcall(mod->init);
3047 	if (ret < 0) {
3048 		goto fail_free_freeinit;
3049 	}
3050 	if (ret > 0) {
3051 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3052 			"follow 0/-E convention\n"
3053 			"%s: loading module anyway...\n",
3054 			__func__, mod->name, ret, __func__);
3055 		dump_stack();
3056 	}
3057 
3058 	/* Now it's a first class citizen! */
3059 	mod->state = MODULE_STATE_LIVE;
3060 	blocking_notifier_call_chain(&module_notify_list,
3061 				     MODULE_STATE_LIVE, mod);
3062 
3063 	/* Delay uevent until module has finished its init routine */
3064 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3065 
3066 	/*
3067 	 * We need to finish all async code before the module init sequence
3068 	 * is done. This has potential to deadlock if synchronous module
3069 	 * loading is requested from async (which is not allowed!).
3070 	 *
3071 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3072 	 * request_module() from async workers") for more details.
3073 	 */
3074 	if (!mod->async_probe_requested)
3075 		async_synchronize_full();
3076 
3077 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3078 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3079 	mutex_lock(&module_mutex);
3080 	/* Drop initial reference. */
3081 	module_put(mod);
3082 	trim_init_extable(mod);
3083 #ifdef CONFIG_KALLSYMS
3084 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3085 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3086 #endif
3087 	ret = module_enable_rodata_ro_after_init(mod);
3088 	if (ret)
3089 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3090 			"ro_after_init data might still be writable\n",
3091 			mod->name, ret);
3092 
3093 	mod_tree_remove_init(mod);
3094 	module_arch_freeing_init(mod);
3095 	for_class_mod_mem_type(type, init) {
3096 		mod->mem[type].base = NULL;
3097 		mod->mem[type].size = 0;
3098 	}
3099 
3100 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3101 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3102 	mod->btf_data = NULL;
3103 	mod->btf_base_data = NULL;
3104 #endif
3105 	/*
3106 	 * We want to free module_init, but be aware that kallsyms may be
3107 	 * walking this within an RCU read section. In all the failure paths, we
3108 	 * call synchronize_rcu(), but we don't want to slow down the success
3109 	 * path. execmem_free() cannot be called in an interrupt, so do the
3110 	 * work and call synchronize_rcu() in a work queue.
3111 	 *
3112 	 * Note that execmem_alloc() on most architectures creates W+X page
3113 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3114 	 * code such as mark_rodata_ro() which depends on those mappings to
3115 	 * be cleaned up needs to sync with the queued work by invoking
3116 	 * flush_module_init_free_work().
3117 	 */
3118 	if (llist_add(&freeinit->node, &init_free_list))
3119 		schedule_work(&init_free_wq);
3120 
3121 	mutex_unlock(&module_mutex);
3122 	wake_up_all(&module_wq);
3123 
3124 	mod_stat_add_long(text_size, &total_text_size);
3125 	mod_stat_add_long(total_size, &total_mod_size);
3126 
3127 	mod_stat_inc(&modcount);
3128 
3129 	return 0;
3130 
3131 fail_free_freeinit:
3132 	kfree(freeinit);
3133 fail:
3134 	/* Try to protect us from buggy refcounters. */
3135 	mod->state = MODULE_STATE_GOING;
3136 	synchronize_rcu();
3137 	module_put(mod);
3138 	blocking_notifier_call_chain(&module_notify_list,
3139 				     MODULE_STATE_GOING, mod);
3140 	klp_module_going(mod);
3141 	ftrace_release_mod(mod);
3142 	free_module(mod);
3143 	wake_up_all(&module_wq);
3144 
3145 	return ret;
3146 }
3147 
may_init_module(void)3148 static int may_init_module(void)
3149 {
3150 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3151 		return -EPERM;
3152 
3153 	return 0;
3154 }
3155 
3156 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3157 static bool finished_loading(const char *name)
3158 {
3159 	struct module *mod;
3160 	bool ret;
3161 
3162 	/*
3163 	 * The module_mutex should not be a heavily contended lock;
3164 	 * if we get the occasional sleep here, we'll go an extra iteration
3165 	 * in the wait_event_interruptible(), which is harmless.
3166 	 */
3167 	sched_annotate_sleep();
3168 	mutex_lock(&module_mutex);
3169 	mod = find_module_all(name, strlen(name), true);
3170 	ret = !mod || mod->state == MODULE_STATE_LIVE
3171 		|| mod->state == MODULE_STATE_GOING;
3172 	mutex_unlock(&module_mutex);
3173 
3174 	return ret;
3175 }
3176 
3177 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3178 static int module_patient_check_exists(const char *name,
3179 				       enum fail_dup_mod_reason reason)
3180 {
3181 	struct module *old;
3182 	int err = 0;
3183 
3184 	old = find_module_all(name, strlen(name), true);
3185 	if (old == NULL)
3186 		return 0;
3187 
3188 	if (old->state == MODULE_STATE_COMING ||
3189 	    old->state == MODULE_STATE_UNFORMED) {
3190 		/* Wait in case it fails to load. */
3191 		mutex_unlock(&module_mutex);
3192 		err = wait_event_interruptible(module_wq,
3193 				       finished_loading(name));
3194 		mutex_lock(&module_mutex);
3195 		if (err)
3196 			return err;
3197 
3198 		/* The module might have gone in the meantime. */
3199 		old = find_module_all(name, strlen(name), true);
3200 	}
3201 
3202 	if (try_add_failed_module(name, reason))
3203 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3204 
3205 	/*
3206 	 * We are here only when the same module was being loaded. Do
3207 	 * not try to load it again right now. It prevents long delays
3208 	 * caused by serialized module load failures. It might happen
3209 	 * when more devices of the same type trigger load of
3210 	 * a particular module.
3211 	 */
3212 	if (old && old->state == MODULE_STATE_LIVE)
3213 		return -EEXIST;
3214 	return -EBUSY;
3215 }
3216 
3217 /*
3218  * We try to place it in the list now to make sure it's unique before
3219  * we dedicate too many resources.  In particular, temporary percpu
3220  * memory exhaustion.
3221  */
add_unformed_module(struct module * mod)3222 static int add_unformed_module(struct module *mod)
3223 {
3224 	int err;
3225 
3226 	mod->state = MODULE_STATE_UNFORMED;
3227 
3228 	mutex_lock(&module_mutex);
3229 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3230 	if (err)
3231 		goto out;
3232 
3233 	mod_update_bounds(mod);
3234 	list_add_rcu(&mod->list, &modules);
3235 	mod_tree_insert(mod);
3236 	err = 0;
3237 
3238 out:
3239 	mutex_unlock(&module_mutex);
3240 	return err;
3241 }
3242 
complete_formation(struct module * mod,struct load_info * info)3243 static int complete_formation(struct module *mod, struct load_info *info)
3244 {
3245 	int err;
3246 
3247 	mutex_lock(&module_mutex);
3248 
3249 	/* Find duplicate symbols (must be called under lock). */
3250 	err = verify_exported_symbols(mod);
3251 	if (err < 0)
3252 		goto out;
3253 
3254 	/* These rely on module_mutex for list integrity. */
3255 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3256 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3257 
3258 	err = module_enable_rodata_ro(mod);
3259 	if (err)
3260 		goto out_strict_rwx;
3261 	err = module_enable_data_nx(mod);
3262 	if (err)
3263 		goto out_strict_rwx;
3264 	err = module_enable_text_rox(mod);
3265 	if (err)
3266 		goto out_strict_rwx;
3267 
3268 	/*
3269 	 * Mark state as coming so strong_try_module_get() ignores us,
3270 	 * but kallsyms etc. can see us.
3271 	 */
3272 	mod->state = MODULE_STATE_COMING;
3273 	mutex_unlock(&module_mutex);
3274 
3275 	return 0;
3276 
3277 out_strict_rwx:
3278 	module_bug_cleanup(mod);
3279 out:
3280 	mutex_unlock(&module_mutex);
3281 	return err;
3282 }
3283 
prepare_coming_module(struct module * mod)3284 static int prepare_coming_module(struct module *mod)
3285 {
3286 	int err;
3287 
3288 	ftrace_module_enable(mod);
3289 	err = klp_module_coming(mod);
3290 	if (err)
3291 		return err;
3292 
3293 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3294 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3295 	err = notifier_to_errno(err);
3296 	if (err)
3297 		klp_module_going(mod);
3298 
3299 	return err;
3300 }
3301 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3302 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3303 				   void *arg)
3304 {
3305 	struct module *mod = arg;
3306 	int ret;
3307 
3308 	if (strcmp(param, "async_probe") == 0) {
3309 		if (kstrtobool(val, &mod->async_probe_requested))
3310 			mod->async_probe_requested = true;
3311 		return 0;
3312 	}
3313 
3314 	/* Check for magic 'dyndbg' arg */
3315 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3316 	if (ret != 0)
3317 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3318 	return 0;
3319 }
3320 
3321 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3322 static int early_mod_check(struct load_info *info, int flags)
3323 {
3324 	int err;
3325 
3326 	/*
3327 	 * Now that we know we have the correct module name, check
3328 	 * if it's blacklisted.
3329 	 */
3330 	if (blacklisted(info->name)) {
3331 		pr_err("Module %s is blacklisted\n", info->name);
3332 		return -EPERM;
3333 	}
3334 
3335 	err = rewrite_section_headers(info, flags);
3336 	if (err)
3337 		return err;
3338 
3339 	/* Check module struct version now, before we try to use module. */
3340 	if (!check_modstruct_version(info, info->mod))
3341 		return -ENOEXEC;
3342 
3343 	err = check_modinfo(info->mod, info, flags);
3344 	if (err)
3345 		return err;
3346 
3347 	mutex_lock(&module_mutex);
3348 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3349 	mutex_unlock(&module_mutex);
3350 
3351 	return err;
3352 }
3353 
3354 /*
3355  * Allocate and load the module: note that size of section 0 is always
3356  * zero, and we rely on this for optional sections.
3357  */
load_module(struct load_info * info,const char __user * uargs,int flags)3358 static int load_module(struct load_info *info, const char __user *uargs,
3359 		       int flags)
3360 {
3361 	struct module *mod;
3362 	bool module_allocated = false;
3363 	long err = 0;
3364 	char *after_dashes;
3365 
3366 	/*
3367 	 * Do the signature check (if any) first. All that
3368 	 * the signature check needs is info->len, it does
3369 	 * not need any of the section info. That can be
3370 	 * set up later. This will minimize the chances
3371 	 * of a corrupt module causing problems before
3372 	 * we even get to the signature check.
3373 	 *
3374 	 * The check will also adjust info->len by stripping
3375 	 * off the sig length at the end of the module, making
3376 	 * checks against info->len more correct.
3377 	 */
3378 	err = module_sig_check(info, flags);
3379 	if (err)
3380 		goto free_copy;
3381 
3382 	/*
3383 	 * Do basic sanity checks against the ELF header and
3384 	 * sections. Cache useful sections and set the
3385 	 * info->mod to the userspace passed struct module.
3386 	 */
3387 	err = elf_validity_cache_copy(info, flags);
3388 	if (err)
3389 		goto free_copy;
3390 
3391 	err = early_mod_check(info, flags);
3392 	if (err)
3393 		goto free_copy;
3394 
3395 	/* Figure out module layout, and allocate all the memory. */
3396 	mod = layout_and_allocate(info, flags);
3397 	if (IS_ERR(mod)) {
3398 		err = PTR_ERR(mod);
3399 		goto free_copy;
3400 	}
3401 
3402 	module_allocated = true;
3403 
3404 	audit_log_kern_module(info->name);
3405 
3406 	/* Reserve our place in the list. */
3407 	err = add_unformed_module(mod);
3408 	if (err)
3409 		goto free_module;
3410 
3411 	/*
3412 	 * We are tainting your kernel if your module gets into
3413 	 * the modules linked list somehow.
3414 	 */
3415 	module_augment_kernel_taints(mod, info);
3416 
3417 	/* To avoid stressing percpu allocator, do this once we're unique. */
3418 	err = percpu_modalloc(mod, info);
3419 	if (err)
3420 		goto unlink_mod;
3421 
3422 	/* Now module is in final location, initialize linked lists, etc. */
3423 	err = module_unload_init(mod);
3424 	if (err)
3425 		goto unlink_mod;
3426 
3427 	init_param_lock(mod);
3428 
3429 	/*
3430 	 * Now we've got everything in the final locations, we can
3431 	 * find optional sections.
3432 	 */
3433 	err = find_module_sections(mod, info);
3434 	if (err)
3435 		goto free_unload;
3436 
3437 	err = check_export_symbol_versions(mod);
3438 	if (err)
3439 		goto free_unload;
3440 
3441 	/* Set up MODINFO_ATTR fields */
3442 	err = setup_modinfo(mod, info);
3443 	if (err)
3444 		goto free_modinfo;
3445 
3446 	/* Fix up syms, so that st_value is a pointer to location. */
3447 	err = simplify_symbols(mod, info);
3448 	if (err < 0)
3449 		goto free_modinfo;
3450 
3451 	err = apply_relocations(mod, info);
3452 	if (err < 0)
3453 		goto free_modinfo;
3454 
3455 	err = post_relocation(mod, info);
3456 	if (err < 0)
3457 		goto free_modinfo;
3458 
3459 	flush_module_icache(mod);
3460 
3461 	/* Now copy in args */
3462 	mod->args = strndup_user(uargs, ~0UL >> 1);
3463 	if (IS_ERR(mod->args)) {
3464 		err = PTR_ERR(mod->args);
3465 		goto free_arch_cleanup;
3466 	}
3467 
3468 	init_build_id(mod, info);
3469 
3470 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3471 	ftrace_module_init(mod);
3472 
3473 	/* Finally it's fully formed, ready to start executing. */
3474 	err = complete_formation(mod, info);
3475 	if (err)
3476 		goto ddebug_cleanup;
3477 
3478 	err = prepare_coming_module(mod);
3479 	if (err)
3480 		goto bug_cleanup;
3481 
3482 	mod->async_probe_requested = async_probe;
3483 
3484 	/* Module is ready to execute: parsing args may do that. */
3485 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3486 				  -32768, 32767, mod,
3487 				  unknown_module_param_cb);
3488 	if (IS_ERR(after_dashes)) {
3489 		err = PTR_ERR(after_dashes);
3490 		goto coming_cleanup;
3491 	} else if (after_dashes) {
3492 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3493 		       mod->name, after_dashes);
3494 	}
3495 
3496 	/* Link in to sysfs. */
3497 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3498 	if (err < 0)
3499 		goto coming_cleanup;
3500 
3501 	if (is_livepatch_module(mod)) {
3502 		err = copy_module_elf(mod, info);
3503 		if (err < 0)
3504 			goto sysfs_cleanup;
3505 	}
3506 
3507 	if (codetag_load_module(mod))
3508 		goto sysfs_cleanup;
3509 
3510 	/* Get rid of temporary copy. */
3511 	free_copy(info, flags);
3512 
3513 	/* Done! */
3514 	trace_module_load(mod);
3515 
3516 	return do_init_module(mod);
3517 
3518  sysfs_cleanup:
3519 	mod_sysfs_teardown(mod);
3520  coming_cleanup:
3521 	mod->state = MODULE_STATE_GOING;
3522 	destroy_params(mod->kp, mod->num_kp);
3523 	blocking_notifier_call_chain(&module_notify_list,
3524 				     MODULE_STATE_GOING, mod);
3525 	klp_module_going(mod);
3526  bug_cleanup:
3527 	mod->state = MODULE_STATE_GOING;
3528 	/* module_bug_cleanup needs module_mutex protection */
3529 	mutex_lock(&module_mutex);
3530 	module_bug_cleanup(mod);
3531 	mutex_unlock(&module_mutex);
3532 
3533  ddebug_cleanup:
3534 	ftrace_release_mod(mod);
3535 	synchronize_rcu();
3536 	kfree(mod->args);
3537  free_arch_cleanup:
3538 	module_arch_cleanup(mod);
3539  free_modinfo:
3540 	free_modinfo(mod);
3541  free_unload:
3542 	module_unload_free(mod);
3543  unlink_mod:
3544 	mutex_lock(&module_mutex);
3545 	/* Unlink carefully: kallsyms could be walking list. */
3546 	list_del_rcu(&mod->list);
3547 	mod_tree_remove(mod);
3548 	wake_up_all(&module_wq);
3549 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3550 	synchronize_rcu();
3551 	mutex_unlock(&module_mutex);
3552  free_module:
3553 	mod_stat_bump_invalid(info, flags);
3554 	/* Free lock-classes; relies on the preceding sync_rcu() */
3555 	for_class_mod_mem_type(type, core_data) {
3556 		lockdep_free_key_range(mod->mem[type].base,
3557 				       mod->mem[type].size);
3558 	}
3559 
3560 	module_memory_restore_rox(mod);
3561 	module_deallocate(mod, info);
3562  free_copy:
3563 	/*
3564 	 * The info->len is always set. We distinguish between
3565 	 * failures once the proper module was allocated and
3566 	 * before that.
3567 	 */
3568 	if (!module_allocated) {
3569 		audit_log_kern_module(info->name ? info->name : "?");
3570 		mod_stat_bump_becoming(info, flags);
3571 	}
3572 	free_copy(info, flags);
3573 	return err;
3574 }
3575 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3576 SYSCALL_DEFINE3(init_module, void __user *, umod,
3577 		unsigned long, len, const char __user *, uargs)
3578 {
3579 	int err;
3580 	struct load_info info = { };
3581 
3582 	err = may_init_module();
3583 	if (err)
3584 		return err;
3585 
3586 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3587 	       umod, len, uargs);
3588 
3589 	err = copy_module_from_user(umod, len, &info);
3590 	if (err) {
3591 		mod_stat_inc(&failed_kreads);
3592 		mod_stat_add_long(len, &invalid_kread_bytes);
3593 		return err;
3594 	}
3595 
3596 	return load_module(&info, uargs, 0);
3597 }
3598 
3599 struct idempotent {
3600 	const void *cookie;
3601 	struct hlist_node entry;
3602 	struct completion complete;
3603 	int ret;
3604 };
3605 
3606 #define IDEM_HASH_BITS 8
3607 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3608 static DEFINE_SPINLOCK(idem_lock);
3609 
idempotent(struct idempotent * u,const void * cookie)3610 static bool idempotent(struct idempotent *u, const void *cookie)
3611 {
3612 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3613 	struct hlist_head *head = idem_hash + hash;
3614 	struct idempotent *existing;
3615 	bool first;
3616 
3617 	u->ret = -EINTR;
3618 	u->cookie = cookie;
3619 	init_completion(&u->complete);
3620 
3621 	spin_lock(&idem_lock);
3622 	first = true;
3623 	hlist_for_each_entry(existing, head, entry) {
3624 		if (existing->cookie != cookie)
3625 			continue;
3626 		first = false;
3627 		break;
3628 	}
3629 	hlist_add_head(&u->entry, idem_hash + hash);
3630 	spin_unlock(&idem_lock);
3631 
3632 	return !first;
3633 }
3634 
3635 /*
3636  * We were the first one with 'cookie' on the list, and we ended
3637  * up completing the operation. We now need to walk the list,
3638  * remove everybody - which includes ourselves - fill in the return
3639  * value, and then complete the operation.
3640  */
idempotent_complete(struct idempotent * u,int ret)3641 static int idempotent_complete(struct idempotent *u, int ret)
3642 {
3643 	const void *cookie = u->cookie;
3644 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3645 	struct hlist_head *head = idem_hash + hash;
3646 	struct hlist_node *next;
3647 	struct idempotent *pos;
3648 
3649 	spin_lock(&idem_lock);
3650 	hlist_for_each_entry_safe(pos, next, head, entry) {
3651 		if (pos->cookie != cookie)
3652 			continue;
3653 		hlist_del_init(&pos->entry);
3654 		pos->ret = ret;
3655 		complete(&pos->complete);
3656 	}
3657 	spin_unlock(&idem_lock);
3658 	return ret;
3659 }
3660 
3661 /*
3662  * Wait for the idempotent worker.
3663  *
3664  * If we get interrupted, we need to remove ourselves from the
3665  * the idempotent list, and the completion may still come in.
3666  *
3667  * The 'idem_lock' protects against the race, and 'idem.ret' was
3668  * initialized to -EINTR and is thus always the right return
3669  * value even if the idempotent work then completes between
3670  * the wait_for_completion and the cleanup.
3671  */
idempotent_wait_for_completion(struct idempotent * u)3672 static int idempotent_wait_for_completion(struct idempotent *u)
3673 {
3674 	if (wait_for_completion_interruptible(&u->complete)) {
3675 		spin_lock(&idem_lock);
3676 		if (!hlist_unhashed(&u->entry))
3677 			hlist_del(&u->entry);
3678 		spin_unlock(&idem_lock);
3679 	}
3680 	return u->ret;
3681 }
3682 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3683 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3684 {
3685 	struct load_info info = { };
3686 	void *buf = NULL;
3687 	int len;
3688 
3689 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3690 	if (len < 0) {
3691 		mod_stat_inc(&failed_kreads);
3692 		return len;
3693 	}
3694 
3695 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3696 		int err = module_decompress(&info, buf, len);
3697 		vfree(buf); /* compressed data is no longer needed */
3698 		if (err) {
3699 			mod_stat_inc(&failed_decompress);
3700 			mod_stat_add_long(len, &invalid_decompress_bytes);
3701 			return err;
3702 		}
3703 	} else {
3704 		info.hdr = buf;
3705 		info.len = len;
3706 	}
3707 
3708 	return load_module(&info, uargs, flags);
3709 }
3710 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3711 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3712 {
3713 	struct idempotent idem;
3714 
3715 	if (!(f->f_mode & FMODE_READ))
3716 		return -EBADF;
3717 
3718 	/* Are we the winners of the race and get to do this? */
3719 	if (!idempotent(&idem, file_inode(f))) {
3720 		int ret = init_module_from_file(f, uargs, flags);
3721 		return idempotent_complete(&idem, ret);
3722 	}
3723 
3724 	/*
3725 	 * Somebody else won the race and is loading the module.
3726 	 */
3727 	return idempotent_wait_for_completion(&idem);
3728 }
3729 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3730 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3731 {
3732 	int err = may_init_module();
3733 	if (err)
3734 		return err;
3735 
3736 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3737 
3738 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3739 		      |MODULE_INIT_IGNORE_VERMAGIC
3740 		      |MODULE_INIT_COMPRESSED_FILE))
3741 		return -EINVAL;
3742 
3743 	CLASS(fd, f)(fd);
3744 	if (fd_empty(f))
3745 		return -EBADF;
3746 	return idempotent_init_module(fd_file(f), uargs, flags);
3747 }
3748 
3749 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3750 char *module_flags(struct module *mod, char *buf, bool show_state)
3751 {
3752 	int bx = 0;
3753 
3754 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3755 	if (!mod->taints && !show_state)
3756 		goto out;
3757 	if (mod->taints ||
3758 	    mod->state == MODULE_STATE_GOING ||
3759 	    mod->state == MODULE_STATE_COMING) {
3760 		buf[bx++] = '(';
3761 		bx += module_flags_taint(mod->taints, buf + bx);
3762 		/* Show a - for module-is-being-unloaded */
3763 		if (mod->state == MODULE_STATE_GOING && show_state)
3764 			buf[bx++] = '-';
3765 		/* Show a + for module-is-being-loaded */
3766 		if (mod->state == MODULE_STATE_COMING && show_state)
3767 			buf[bx++] = '+';
3768 		buf[bx++] = ')';
3769 	}
3770 out:
3771 	buf[bx] = '\0';
3772 
3773 	return buf;
3774 }
3775 
3776 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3777 const struct exception_table_entry *search_module_extables(unsigned long addr)
3778 {
3779 	struct module *mod;
3780 
3781 	guard(rcu)();
3782 	mod = __module_address(addr);
3783 	if (!mod)
3784 		return NULL;
3785 
3786 	if (!mod->num_exentries)
3787 		return NULL;
3788 	/*
3789 	 * The address passed here belongs to a module that is currently
3790 	 * invoked (we are running inside it). Therefore its module::refcnt
3791 	 * needs already be >0 to ensure that it is not removed at this stage.
3792 	 * All other user need to invoke this function within a RCU read
3793 	 * section.
3794 	 */
3795 	return search_extable(mod->extable, mod->num_exentries, addr);
3796 }
3797 
3798 /**
3799  * is_module_address() - is this address inside a module?
3800  * @addr: the address to check.
3801  *
3802  * See is_module_text_address() if you simply want to see if the address
3803  * is code (not data).
3804  */
is_module_address(unsigned long addr)3805 bool is_module_address(unsigned long addr)
3806 {
3807 	guard(rcu)();
3808 	return __module_address(addr) != NULL;
3809 }
3810 
3811 /**
3812  * __module_address() - get the module which contains an address.
3813  * @addr: the address.
3814  *
3815  * Must be called within RCU read section or module mutex held so that
3816  * module doesn't get freed during this.
3817  */
__module_address(unsigned long addr)3818 struct module *__module_address(unsigned long addr)
3819 {
3820 	struct module *mod;
3821 
3822 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3823 		goto lookup;
3824 
3825 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3826 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3827 		goto lookup;
3828 #endif
3829 
3830 	return NULL;
3831 
3832 lookup:
3833 	mod = mod_find(addr, &mod_tree);
3834 	if (mod) {
3835 		BUG_ON(!within_module(addr, mod));
3836 		if (mod->state == MODULE_STATE_UNFORMED)
3837 			mod = NULL;
3838 	}
3839 	return mod;
3840 }
3841 
3842 /**
3843  * is_module_text_address() - is this address inside module code?
3844  * @addr: the address to check.
3845  *
3846  * See is_module_address() if you simply want to see if the address is
3847  * anywhere in a module.  See kernel_text_address() for testing if an
3848  * address corresponds to kernel or module code.
3849  */
is_module_text_address(unsigned long addr)3850 bool is_module_text_address(unsigned long addr)
3851 {
3852 	guard(rcu)();
3853 	return __module_text_address(addr) != NULL;
3854 }
3855 
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3856 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3857 {
3858 	struct module *mod;
3859 
3860 	guard(rcu)();
3861 	list_for_each_entry_rcu(mod, &modules, list) {
3862 		if (mod->state == MODULE_STATE_UNFORMED)
3863 			continue;
3864 		if (func(mod, data))
3865 			break;
3866 	}
3867 }
3868 
3869 /**
3870  * __module_text_address() - get the module whose code contains an address.
3871  * @addr: the address.
3872  *
3873  * Must be called within RCU read section or module mutex held so that
3874  * module doesn't get freed during this.
3875  */
__module_text_address(unsigned long addr)3876 struct module *__module_text_address(unsigned long addr)
3877 {
3878 	struct module *mod = __module_address(addr);
3879 	if (mod) {
3880 		/* Make sure it's within the text section. */
3881 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3882 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3883 			mod = NULL;
3884 	}
3885 	return mod;
3886 }
3887 
3888 /* Don't grab lock, we're oopsing. */
print_modules(void)3889 void print_modules(void)
3890 {
3891 	struct module *mod;
3892 	char buf[MODULE_FLAGS_BUF_SIZE];
3893 
3894 	printk(KERN_DEFAULT "Modules linked in:");
3895 	/* Most callers should already have preempt disabled, but make sure */
3896 	guard(rcu)();
3897 	list_for_each_entry_rcu(mod, &modules, list) {
3898 		if (mod->state == MODULE_STATE_UNFORMED)
3899 			continue;
3900 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3901 	}
3902 
3903 	print_unloaded_tainted_modules();
3904 	if (last_unloaded_module.name[0])
3905 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3906 			last_unloaded_module.taints);
3907 	pr_cont("\n");
3908 }
3909 
3910 #ifdef CONFIG_MODULE_DEBUGFS
3911 struct dentry *mod_debugfs_root;
3912 
module_debugfs_init(void)3913 static int module_debugfs_init(void)
3914 {
3915 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3916 	return 0;
3917 }
3918 module_init(module_debugfs_init);
3919 #endif
3920