1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable with preempt_disable),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148
149 /*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
163 }
164
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167 {
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
170 }
171
172 /*
173 * A thread that wants to hold a reference to a module only while it
174 * is running can call this to safely exit.
175 */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 module_put(mod);
179 kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 unsigned int i;
187
188 for (i = 1; i < info->hdr->e_shnum; i++) {
189 Elf_Shdr *shdr = &info->sechdrs[i];
190 /* Alloc bit cleared means "ignore it." */
191 if ((shdr->sh_flags & SHF_ALLOC)
192 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 return i;
194 }
195 return 0;
196 }
197
198 /**
199 * find_any_unique_sec() - Find a unique section index by name
200 * @info: Load info for the module to scan
201 * @name: Name of the section we're looking for
202 *
203 * Locates a unique section by name. Ignores SHF_ALLOC.
204 *
205 * Return: Section index if found uniquely, zero if absent, negative count
206 * of total instances if multiple were found.
207 */
find_any_unique_sec(const struct load_info * info,const char * name)208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 unsigned int idx;
211 unsigned int count = 0;
212 int i;
213
214 for (i = 1; i < info->hdr->e_shnum; i++) {
215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 name) == 0) {
217 count++;
218 idx = i;
219 }
220 }
221 if (count == 1) {
222 return idx;
223 } else if (count == 0) {
224 return 0;
225 } else {
226 return -count;
227 }
228 }
229
230 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 /* Section 0 has sh_addr 0. */
234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236
237 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)238 static void *section_objs(const struct load_info *info,
239 const char *name,
240 size_t object_size,
241 unsigned int *num)
242 {
243 unsigned int sec = find_sec(info, name);
244
245 /* Section 0 has sh_addr 0 and sh_size 0. */
246 *num = info->sechdrs[sec].sh_size / object_size;
247 return (void *)info->sechdrs[sec].sh_addr;
248 }
249
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 unsigned int i;
254
255 for (i = 1; i < info->hdr->e_shnum; i++) {
256 Elf_Shdr *shdr = &info->sechdrs[i];
257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 return i;
259 }
260 return 0;
261 }
262
263 /*
264 * Find a module section, or NULL. Fill in number of "objects" in section.
265 * Ignores SHF_ALLOC flag.
266 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 const char *name,
269 size_t object_size,
270 unsigned int *num)
271 {
272 unsigned int sec = find_any_sec(info, name);
273
274 /* Section 0 has sh_addr 0 and sh_size 0. */
275 *num = info->sechdrs[sec].sh_size / object_size;
276 return (void *)info->sechdrs[sec].sh_addr;
277 }
278
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284
kernel_symbol_name(const struct kernel_symbol * sym)285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 return offset_to_ptr(&sym->name_offset);
289 #else
290 return sym->name;
291 #endif
292 }
293
kernel_symbol_namespace(const struct kernel_symbol * sym)294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 if (!sym->namespace_offset)
298 return NULL;
299 return offset_to_ptr(&sym->namespace_offset);
300 #else
301 return sym->namespace;
302 #endif
303 }
304
cmp_name(const void * name,const void * sym)305 int cmp_name(const void *name, const void *sym)
306 {
307 return strcmp(name, kernel_symbol_name(sym));
308 }
309
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 struct module *owner,
312 struct find_symbol_arg *fsa)
313 {
314 struct kernel_symbol *sym;
315
316 if (!fsa->gplok && syms->license == GPL_ONLY)
317 return false;
318
319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 sizeof(struct kernel_symbol), cmp_name);
321 if (!sym)
322 return false;
323
324 fsa->owner = owner;
325 fsa->crc = symversion(syms->crcs, sym - syms->start);
326 fsa->sym = sym;
327 fsa->license = syms->license;
328
329 return true;
330 }
331
332 /*
333 * Find an exported symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it. Needs preempt disabled or module_mutex.
335 */
find_symbol(struct find_symbol_arg * fsa)336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 static const struct symsearch arr[] = {
339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 NOT_GPL_ONLY },
341 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 __start___kcrctab_gpl,
343 GPL_ONLY },
344 };
345 struct module *mod;
346 unsigned int i;
347
348 module_assert_mutex_or_preempt();
349
350 for (i = 0; i < ARRAY_SIZE(arr); i++)
351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 return true;
353
354 list_for_each_entry_rcu(mod, &modules, list,
355 lockdep_is_held(&module_mutex)) {
356 struct symsearch arr[] = {
357 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 NOT_GPL_ONLY },
359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 mod->gpl_crcs,
361 GPL_ONLY },
362 };
363
364 if (mod->state == MODULE_STATE_UNFORMED)
365 continue;
366
367 for (i = 0; i < ARRAY_SIZE(arr); i++)
368 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 return true;
370 }
371
372 pr_debug("Failed to find symbol %s\n", fsa->name);
373 return false;
374 }
375
376 /*
377 * Search for module by name: must hold module_mutex (or preempt disabled
378 * for read-only access).
379 */
find_module_all(const char * name,size_t len,bool even_unformed)380 struct module *find_module_all(const char *name, size_t len,
381 bool even_unformed)
382 {
383 struct module *mod;
384
385 module_assert_mutex_or_preempt();
386
387 list_for_each_entry_rcu(mod, &modules, list,
388 lockdep_is_held(&module_mutex)) {
389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 continue;
391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 return mod;
393 }
394 return NULL;
395 }
396
find_module(const char * name)397 struct module *find_module(const char *name)
398 {
399 return find_module_all(name, strlen(name), false);
400 }
401
402 #ifdef CONFIG_SMP
403
mod_percpu(struct module * mod)404 static inline void __percpu *mod_percpu(struct module *mod)
405 {
406 return mod->percpu;
407 }
408
percpu_modalloc(struct module * mod,struct load_info * info)409 static int percpu_modalloc(struct module *mod, struct load_info *info)
410 {
411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 unsigned long align = pcpusec->sh_addralign;
413
414 if (!pcpusec->sh_size)
415 return 0;
416
417 if (align > PAGE_SIZE) {
418 pr_warn("%s: per-cpu alignment %li > %li\n",
419 mod->name, align, PAGE_SIZE);
420 align = PAGE_SIZE;
421 }
422
423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 if (!mod->percpu) {
425 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 mod->name, (unsigned long)pcpusec->sh_size);
427 return -ENOMEM;
428 }
429 mod->percpu_size = pcpusec->sh_size;
430 return 0;
431 }
432
percpu_modfree(struct module * mod)433 static void percpu_modfree(struct module *mod)
434 {
435 free_percpu(mod->percpu);
436 }
437
find_pcpusec(struct load_info * info)438 static unsigned int find_pcpusec(struct load_info *info)
439 {
440 return find_sec(info, ".data..percpu");
441 }
442
percpu_modcopy(struct module * mod,const void * from,unsigned long size)443 static void percpu_modcopy(struct module *mod,
444 const void *from, unsigned long size)
445 {
446 int cpu;
447
448 for_each_possible_cpu(cpu)
449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
450 }
451
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
453 {
454 struct module *mod;
455 unsigned int cpu;
456
457 preempt_disable();
458
459 list_for_each_entry_rcu(mod, &modules, list) {
460 if (mod->state == MODULE_STATE_UNFORMED)
461 continue;
462 if (!mod->percpu_size)
463 continue;
464 for_each_possible_cpu(cpu) {
465 void *start = per_cpu_ptr(mod->percpu, cpu);
466 void *va = (void *)addr;
467
468 if (va >= start && va < start + mod->percpu_size) {
469 if (can_addr) {
470 *can_addr = (unsigned long) (va - start);
471 *can_addr += (unsigned long)
472 per_cpu_ptr(mod->percpu,
473 get_boot_cpu_id());
474 }
475 preempt_enable();
476 return true;
477 }
478 }
479 }
480
481 preempt_enable();
482 return false;
483 }
484
485 /**
486 * is_module_percpu_address() - test whether address is from module static percpu
487 * @addr: address to test
488 *
489 * Test whether @addr belongs to module static percpu area.
490 *
491 * Return: %true if @addr is from module static percpu area
492 */
is_module_percpu_address(unsigned long addr)493 bool is_module_percpu_address(unsigned long addr)
494 {
495 return __is_module_percpu_address(addr, NULL);
496 }
497
498 #else /* ... !CONFIG_SMP */
499
mod_percpu(struct module * mod)500 static inline void __percpu *mod_percpu(struct module *mod)
501 {
502 return NULL;
503 }
percpu_modalloc(struct module * mod,struct load_info * info)504 static int percpu_modalloc(struct module *mod, struct load_info *info)
505 {
506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 return -ENOMEM;
509 return 0;
510 }
percpu_modfree(struct module * mod)511 static inline void percpu_modfree(struct module *mod)
512 {
513 }
find_pcpusec(struct load_info * info)514 static unsigned int find_pcpusec(struct load_info *info)
515 {
516 return 0;
517 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)518 static inline void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 /* pcpusec should be 0, and size of that section should be 0. */
522 BUG_ON(size != 0);
523 }
is_module_percpu_address(unsigned long addr)524 bool is_module_percpu_address(unsigned long addr)
525 {
526 return false;
527 }
528
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
530 {
531 return false;
532 }
533
534 #endif /* CONFIG_SMP */
535
536 #define MODINFO_ATTR(field) \
537 static void setup_modinfo_##field(struct module *mod, const char *s) \
538 { \
539 mod->field = kstrdup(s, GFP_KERNEL); \
540 } \
541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
542 struct module_kobject *mk, char *buffer) \
543 { \
544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
545 } \
546 static int modinfo_##field##_exists(struct module *mod) \
547 { \
548 return mod->field != NULL; \
549 } \
550 static void free_modinfo_##field(struct module *mod) \
551 { \
552 kfree(mod->field); \
553 mod->field = NULL; \
554 } \
555 static const struct module_attribute modinfo_##field = { \
556 .attr = { .name = __stringify(field), .mode = 0444 }, \
557 .show = show_modinfo_##field, \
558 .setup = setup_modinfo_##field, \
559 .test = modinfo_##field##_exists, \
560 .free = free_modinfo_##field, \
561 };
562
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565
566 static struct {
567 char name[MODULE_NAME_LEN + 1];
568 char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
570
571 #ifdef CONFIG_MODULE_UNLOAD
572
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
574
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE 1
577
578 /* Init the unload section of the module. */
module_unload_init(struct module * mod)579 static int module_unload_init(struct module *mod)
580 {
581 /*
582 * Initialize reference counter to MODULE_REF_BASE.
583 * refcnt == 0 means module is going.
584 */
585 atomic_set(&mod->refcnt, MODULE_REF_BASE);
586
587 INIT_LIST_HEAD(&mod->source_list);
588 INIT_LIST_HEAD(&mod->target_list);
589
590 /* Hold reference count during initialization. */
591 atomic_inc(&mod->refcnt);
592
593 return 0;
594 }
595
596 /* Does a already use b? */
already_uses(struct module * a,struct module * b)597 static int already_uses(struct module *a, struct module *b)
598 {
599 struct module_use *use;
600
601 list_for_each_entry(use, &b->source_list, source_list) {
602 if (use->source == a)
603 return 1;
604 }
605 pr_debug("%s does not use %s!\n", a->name, b->name);
606 return 0;
607 }
608
609 /*
610 * Module a uses b
611 * - we add 'a' as a "source", 'b' as a "target" of module use
612 * - the module_use is added to the list of 'b' sources (so
613 * 'b' can walk the list to see who sourced them), and of 'a'
614 * targets (so 'a' can see what modules it targets).
615 */
add_module_usage(struct module * a,struct module * b)616 static int add_module_usage(struct module *a, struct module *b)
617 {
618 struct module_use *use;
619
620 pr_debug("Allocating new usage for %s.\n", a->name);
621 use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 if (!use)
623 return -ENOMEM;
624
625 use->source = a;
626 use->target = b;
627 list_add(&use->source_list, &b->source_list);
628 list_add(&use->target_list, &a->target_list);
629 return 0;
630 }
631
632 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)633 static int ref_module(struct module *a, struct module *b)
634 {
635 int err;
636
637 if (b == NULL || already_uses(a, b))
638 return 0;
639
640 /* If module isn't available, we fail. */
641 err = strong_try_module_get(b);
642 if (err)
643 return err;
644
645 err = add_module_usage(a, b);
646 if (err) {
647 module_put(b);
648 return err;
649 }
650 return 0;
651 }
652
653 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)654 static void module_unload_free(struct module *mod)
655 {
656 struct module_use *use, *tmp;
657
658 mutex_lock(&module_mutex);
659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 struct module *i = use->target;
661 pr_debug("%s unusing %s\n", mod->name, i->name);
662 module_put(i);
663 list_del(&use->source_list);
664 list_del(&use->target_list);
665 kfree(use);
666 }
667 mutex_unlock(&module_mutex);
668 }
669
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)671 static inline int try_force_unload(unsigned int flags)
672 {
673 int ret = (flags & O_TRUNC);
674 if (ret)
675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 return ret;
677 }
678 #else
try_force_unload(unsigned int flags)679 static inline int try_force_unload(unsigned int flags)
680 {
681 return 0;
682 }
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
684
685 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)686 static int try_release_module_ref(struct module *mod)
687 {
688 int ret;
689
690 /* Try to decrement refcnt which we set at loading */
691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 BUG_ON(ret < 0);
693 if (ret)
694 /* Someone can put this right now, recover with checking */
695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
696
697 return ret;
698 }
699
try_stop_module(struct module * mod,int flags,int * forced)700 static int try_stop_module(struct module *mod, int flags, int *forced)
701 {
702 /* If it's not unused, quit unless we're forcing. */
703 if (try_release_module_ref(mod) != 0) {
704 *forced = try_force_unload(flags);
705 if (!(*forced))
706 return -EWOULDBLOCK;
707 }
708
709 /* Mark it as dying. */
710 mod->state = MODULE_STATE_GOING;
711
712 return 0;
713 }
714
715 /**
716 * module_refcount() - return the refcount or -1 if unloading
717 * @mod: the module we're checking
718 *
719 * Return:
720 * -1 if the module is in the process of unloading
721 * otherwise the number of references in the kernel to the module
722 */
module_refcount(struct module * mod)723 int module_refcount(struct module *mod)
724 {
725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
726 }
727 EXPORT_SYMBOL(module_refcount);
728
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
731
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 unsigned int, flags)
734 {
735 struct module *mod;
736 char name[MODULE_NAME_LEN];
737 char buf[MODULE_FLAGS_BUF_SIZE];
738 int ret, forced = 0;
739
740 if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 return -EPERM;
742
743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 return -EFAULT;
745 name[MODULE_NAME_LEN-1] = '\0';
746
747 audit_log_kern_module(name);
748
749 if (mutex_lock_interruptible(&module_mutex) != 0)
750 return -EINTR;
751
752 mod = find_module(name);
753 if (!mod) {
754 ret = -ENOENT;
755 goto out;
756 }
757
758 if (!list_empty(&mod->source_list)) {
759 /* Other modules depend on us: get rid of them first. */
760 ret = -EWOULDBLOCK;
761 goto out;
762 }
763
764 /* Doing init or already dying? */
765 if (mod->state != MODULE_STATE_LIVE) {
766 /* FIXME: if (force), slam module count damn the torpedoes */
767 pr_debug("%s already dying\n", mod->name);
768 ret = -EBUSY;
769 goto out;
770 }
771
772 /* If it has an init func, it must have an exit func to unload */
773 if (mod->init && !mod->exit) {
774 forced = try_force_unload(flags);
775 if (!forced) {
776 /* This module can't be removed */
777 ret = -EBUSY;
778 goto out;
779 }
780 }
781
782 ret = try_stop_module(mod, flags, &forced);
783 if (ret != 0)
784 goto out;
785
786 mutex_unlock(&module_mutex);
787 /* Final destruction now no one is using it. */
788 if (mod->exit != NULL)
789 mod->exit();
790 blocking_notifier_call_chain(&module_notify_list,
791 MODULE_STATE_GOING, mod);
792 klp_module_going(mod);
793 ftrace_release_mod(mod);
794
795 async_synchronize_full();
796
797 /* Store the name and taints of the last unloaded module for diagnostic purposes */
798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
800
801 free_module(mod);
802 /* someone could wait for the module in add_unformed_module() */
803 wake_up_all(&module_wq);
804 return 0;
805 out:
806 mutex_unlock(&module_mutex);
807 return ret;
808 }
809
__symbol_put(const char * symbol)810 void __symbol_put(const char *symbol)
811 {
812 struct find_symbol_arg fsa = {
813 .name = symbol,
814 .gplok = true,
815 };
816
817 preempt_disable();
818 BUG_ON(!find_symbol(&fsa));
819 module_put(fsa.owner);
820 preempt_enable();
821 }
822 EXPORT_SYMBOL(__symbol_put);
823
824 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)825 void symbol_put_addr(void *addr)
826 {
827 struct module *modaddr;
828 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
829
830 if (core_kernel_text(a))
831 return;
832
833 /*
834 * Even though we hold a reference on the module; we still need to
835 * disable preemption in order to safely traverse the data structure.
836 */
837 preempt_disable();
838 modaddr = __module_text_address(a);
839 BUG_ON(!modaddr);
840 module_put(modaddr);
841 preempt_enable();
842 }
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
844
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)845 static ssize_t show_refcnt(const struct module_attribute *mattr,
846 struct module_kobject *mk, char *buffer)
847 {
848 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
849 }
850
851 static const struct module_attribute modinfo_refcnt =
852 __ATTR(refcnt, 0444, show_refcnt, NULL);
853
__module_get(struct module * module)854 void __module_get(struct module *module)
855 {
856 if (module) {
857 atomic_inc(&module->refcnt);
858 trace_module_get(module, _RET_IP_);
859 }
860 }
861 EXPORT_SYMBOL(__module_get);
862
try_module_get(struct module * module)863 bool try_module_get(struct module *module)
864 {
865 bool ret = true;
866
867 if (module) {
868 /* Note: here, we can fail to get a reference */
869 if (likely(module_is_live(module) &&
870 atomic_inc_not_zero(&module->refcnt) != 0))
871 trace_module_get(module, _RET_IP_);
872 else
873 ret = false;
874 }
875 return ret;
876 }
877 EXPORT_SYMBOL(try_module_get);
878
module_put(struct module * module)879 void module_put(struct module *module)
880 {
881 int ret;
882
883 if (module) {
884 ret = atomic_dec_if_positive(&module->refcnt);
885 WARN_ON(ret < 0); /* Failed to put refcount */
886 trace_module_put(module, _RET_IP_);
887 }
888 }
889 EXPORT_SYMBOL(module_put);
890
891 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)892 static inline void module_unload_free(struct module *mod)
893 {
894 }
895
ref_module(struct module * a,struct module * b)896 static int ref_module(struct module *a, struct module *b)
897 {
898 return strong_try_module_get(b);
899 }
900
module_unload_init(struct module * mod)901 static inline int module_unload_init(struct module *mod)
902 {
903 return 0;
904 }
905 #endif /* CONFIG_MODULE_UNLOAD */
906
module_flags_taint(unsigned long taints,char * buf)907 size_t module_flags_taint(unsigned long taints, char *buf)
908 {
909 size_t l = 0;
910 int i;
911
912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 if (taint_flags[i].module && test_bit(i, &taints))
914 buf[l++] = taint_flags[i].c_true;
915 }
916
917 return l;
918 }
919
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)920 static ssize_t show_initstate(const struct module_attribute *mattr,
921 struct module_kobject *mk, char *buffer)
922 {
923 const char *state = "unknown";
924
925 switch (mk->mod->state) {
926 case MODULE_STATE_LIVE:
927 state = "live";
928 break;
929 case MODULE_STATE_COMING:
930 state = "coming";
931 break;
932 case MODULE_STATE_GOING:
933 state = "going";
934 break;
935 default:
936 BUG();
937 }
938 return sprintf(buffer, "%s\n", state);
939 }
940
941 static const struct module_attribute modinfo_initstate =
942 __ATTR(initstate, 0444, show_initstate, NULL);
943
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)944 static ssize_t store_uevent(const struct module_attribute *mattr,
945 struct module_kobject *mk,
946 const char *buffer, size_t count)
947 {
948 int rc;
949
950 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 return rc ? rc : count;
952 }
953
954 const struct module_attribute module_uevent =
955 __ATTR(uevent, 0200, NULL, store_uevent);
956
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)957 static ssize_t show_coresize(const struct module_attribute *mattr,
958 struct module_kobject *mk, char *buffer)
959 {
960 unsigned int size = mk->mod->mem[MOD_TEXT].size;
961
962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 for_class_mod_mem_type(type, core_data)
964 size += mk->mod->mem[type].size;
965 }
966 return sprintf(buffer, "%u\n", size);
967 }
968
969 static const struct module_attribute modinfo_coresize =
970 __ATTR(coresize, 0444, show_coresize, NULL);
971
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)973 static ssize_t show_datasize(const struct module_attribute *mattr,
974 struct module_kobject *mk, char *buffer)
975 {
976 unsigned int size = 0;
977
978 for_class_mod_mem_type(type, core_data)
979 size += mk->mod->mem[type].size;
980 return sprintf(buffer, "%u\n", size);
981 }
982
983 static const struct module_attribute modinfo_datasize =
984 __ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
986
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_initsize(const struct module_attribute *mattr,
988 struct module_kobject *mk, char *buffer)
989 {
990 unsigned int size = 0;
991
992 for_class_mod_mem_type(type, init)
993 size += mk->mod->mem[type].size;
994 return sprintf(buffer, "%u\n", size);
995 }
996
997 static const struct module_attribute modinfo_initsize =
998 __ATTR(initsize, 0444, show_initsize, NULL);
999
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1000 static ssize_t show_taint(const struct module_attribute *mattr,
1001 struct module_kobject *mk, char *buffer)
1002 {
1003 size_t l;
1004
1005 l = module_flags_taint(mk->mod->taints, buffer);
1006 buffer[l++] = '\n';
1007 return l;
1008 }
1009
1010 static const struct module_attribute modinfo_taint =
1011 __ATTR(taint, 0444, show_taint, NULL);
1012
1013 const struct module_attribute *const modinfo_attrs[] = {
1014 &module_uevent,
1015 &modinfo_version,
1016 &modinfo_srcversion,
1017 &modinfo_initstate,
1018 &modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 &modinfo_datasize,
1021 #endif
1022 &modinfo_initsize,
1023 &modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 &modinfo_refcnt,
1026 #endif
1027 NULL,
1028 };
1029
1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1031
1032 static const char vermagic[] = VERMAGIC_STRING;
1033
try_to_force_load(struct module * mod,const char * reason)1034 int try_to_force_load(struct module *mod, const char *reason)
1035 {
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 if (!test_taint(TAINT_FORCED_MODULE))
1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 return 0;
1041 #else
1042 return -ENOEXEC;
1043 #endif
1044 }
1045
1046 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1048 {
1049 /* Skip non-zero chars */
1050 while (string[0]) {
1051 string++;
1052 if ((*secsize)-- <= 1)
1053 return NULL;
1054 }
1055
1056 /* Skip any zero padding. */
1057 while (!string[0]) {
1058 string++;
1059 if ((*secsize)-- <= 1)
1060 return NULL;
1061 }
1062 return string;
1063 }
1064
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 char *prev)
1067 {
1068 char *p;
1069 unsigned int taglen = strlen(tag);
1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 unsigned long size = infosec->sh_size;
1072
1073 /*
1074 * get_modinfo() calls made before rewrite_section_headers()
1075 * must use sh_offset, as sh_addr isn't set!
1076 */
1077 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1078
1079 if (prev) {
1080 size -= prev - modinfo;
1081 modinfo = module_next_tag_pair(prev, &size);
1082 }
1083
1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 return p + taglen + 1;
1087 }
1088 return NULL;
1089 }
1090
get_modinfo(const struct load_info * info,const char * tag)1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1092 {
1093 return get_next_modinfo(info, tag, NULL);
1094 }
1095
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 const struct kernel_symbol *sym,
1098 struct module *mod)
1099 {
1100 const char *namespace;
1101 char *imported_namespace;
1102
1103 namespace = kernel_symbol_namespace(sym);
1104 if (namespace && namespace[0]) {
1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 if (strcmp(namespace, imported_namespace) == 0)
1107 return 0;
1108 }
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 pr_warn(
1111 #else
1112 pr_err(
1113 #endif
1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 return -EINVAL;
1118 #endif
1119 }
1120 return 0;
1121 }
1122
inherit_taint(struct module * mod,struct module * owner,const char * name)1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1124 {
1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 return true;
1127
1128 if (mod->using_gplonly_symbols) {
1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 mod->name, name, owner->name);
1131 return false;
1132 }
1133
1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 mod->name, name, owner->name);
1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1138 }
1139 return true;
1140 }
1141
1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 const struct load_info *info,
1145 const char *name,
1146 char ownername[])
1147 {
1148 struct find_symbol_arg fsa = {
1149 .name = name,
1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 .warn = true,
1152 };
1153 int err;
1154
1155 /*
1156 * The module_mutex should not be a heavily contended lock;
1157 * if we get the occasional sleep here, we'll go an extra iteration
1158 * in the wait_event_interruptible(), which is harmless.
1159 */
1160 sched_annotate_sleep();
1161 mutex_lock(&module_mutex);
1162 if (!find_symbol(&fsa))
1163 goto unlock;
1164
1165 if (fsa.license == GPL_ONLY)
1166 mod->using_gplonly_symbols = true;
1167
1168 if (!inherit_taint(mod, fsa.owner, name)) {
1169 fsa.sym = NULL;
1170 goto getname;
1171 }
1172
1173 if (!check_version(info, name, mod, fsa.crc)) {
1174 fsa.sym = ERR_PTR(-EINVAL);
1175 goto getname;
1176 }
1177
1178 err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 if (err) {
1180 fsa.sym = ERR_PTR(err);
1181 goto getname;
1182 }
1183
1184 err = ref_module(mod, fsa.owner);
1185 if (err) {
1186 fsa.sym = ERR_PTR(err);
1187 goto getname;
1188 }
1189
1190 getname:
1191 /* We must make copy under the lock if we failed to get ref. */
1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 mutex_unlock(&module_mutex);
1195 return fsa.sym;
1196 }
1197
1198 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1199 resolve_symbol_wait(struct module *mod,
1200 const struct load_info *info,
1201 const char *name)
1202 {
1203 const struct kernel_symbol *ksym;
1204 char owner[MODULE_NAME_LEN];
1205
1206 if (wait_event_interruptible_timeout(module_wq,
1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 || PTR_ERR(ksym) != -EBUSY,
1209 30 * HZ) <= 0) {
1210 pr_warn("%s: gave up waiting for init of module %s.\n",
1211 mod->name, owner);
1212 }
1213 return ksym;
1214 }
1215
module_arch_cleanup(struct module * mod)1216 void __weak module_arch_cleanup(struct module *mod)
1217 {
1218 }
1219
module_arch_freeing_init(struct module * mod)1220 void __weak module_arch_freeing_init(struct module *mod)
1221 {
1222 }
1223
module_memory_alloc(struct module * mod,enum mod_mem_type type)1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1225 {
1226 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1227 enum execmem_type execmem_type;
1228 void *ptr;
1229
1230 mod->mem[type].size = size;
1231
1232 if (mod_mem_type_is_data(type))
1233 execmem_type = EXECMEM_MODULE_DATA;
1234 else
1235 execmem_type = EXECMEM_MODULE_TEXT;
1236
1237 ptr = execmem_alloc(execmem_type, size);
1238 if (!ptr)
1239 return -ENOMEM;
1240
1241 if (execmem_is_rox(execmem_type)) {
1242 int err = execmem_make_temp_rw(ptr, size);
1243
1244 if (err) {
1245 execmem_free(ptr);
1246 return -ENOMEM;
1247 }
1248
1249 mod->mem[type].is_rox = true;
1250 }
1251
1252 /*
1253 * The pointer to these blocks of memory are stored on the module
1254 * structure and we keep that around so long as the module is
1255 * around. We only free that memory when we unload the module.
1256 * Just mark them as not being a leak then. The .init* ELF
1257 * sections *do* get freed after boot so we *could* treat them
1258 * slightly differently with kmemleak_ignore() and only grey
1259 * them out as they work as typical memory allocations which
1260 * *do* eventually get freed, but let's just keep things simple
1261 * and avoid *any* false positives.
1262 */
1263 if (!mod->mem[type].is_rox)
1264 kmemleak_not_leak(ptr);
1265
1266 memset(ptr, 0, size);
1267 mod->mem[type].base = ptr;
1268
1269 return 0;
1270 }
1271
module_memory_restore_rox(struct module * mod)1272 static void module_memory_restore_rox(struct module *mod)
1273 {
1274 for_class_mod_mem_type(type, text) {
1275 struct module_memory *mem = &mod->mem[type];
1276
1277 if (mem->is_rox)
1278 execmem_restore_rox(mem->base, mem->size);
1279 }
1280 }
1281
module_memory_free(struct module * mod,enum mod_mem_type type)1282 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1283 {
1284 struct module_memory *mem = &mod->mem[type];
1285
1286 execmem_free(mem->base);
1287 }
1288
free_mod_mem(struct module * mod)1289 static void free_mod_mem(struct module *mod)
1290 {
1291 for_each_mod_mem_type(type) {
1292 struct module_memory *mod_mem = &mod->mem[type];
1293
1294 if (type == MOD_DATA)
1295 continue;
1296
1297 /* Free lock-classes; relies on the preceding sync_rcu(). */
1298 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1299 if (mod_mem->size)
1300 module_memory_free(mod, type);
1301 }
1302
1303 /* MOD_DATA hosts mod, so free it at last */
1304 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1305 module_memory_free(mod, MOD_DATA);
1306 }
1307
1308 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1309 static void free_module(struct module *mod)
1310 {
1311 trace_module_free(mod);
1312
1313 codetag_unload_module(mod);
1314
1315 mod_sysfs_teardown(mod);
1316
1317 /*
1318 * We leave it in list to prevent duplicate loads, but make sure
1319 * that noone uses it while it's being deconstructed.
1320 */
1321 mutex_lock(&module_mutex);
1322 mod->state = MODULE_STATE_UNFORMED;
1323 mutex_unlock(&module_mutex);
1324
1325 /* Arch-specific cleanup. */
1326 module_arch_cleanup(mod);
1327
1328 /* Module unload stuff */
1329 module_unload_free(mod);
1330
1331 /* Free any allocated parameters. */
1332 destroy_params(mod->kp, mod->num_kp);
1333
1334 if (is_livepatch_module(mod))
1335 free_module_elf(mod);
1336
1337 /* Now we can delete it from the lists */
1338 mutex_lock(&module_mutex);
1339 /* Unlink carefully: kallsyms could be walking list. */
1340 list_del_rcu(&mod->list);
1341 mod_tree_remove(mod);
1342 /* Remove this module from bug list, this uses list_del_rcu */
1343 module_bug_cleanup(mod);
1344 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1345 synchronize_rcu();
1346 if (try_add_tainted_module(mod))
1347 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1348 mod->name);
1349 mutex_unlock(&module_mutex);
1350
1351 /* This may be empty, but that's OK */
1352 module_arch_freeing_init(mod);
1353 kfree(mod->args);
1354 percpu_modfree(mod);
1355
1356 free_mod_mem(mod);
1357 }
1358
__symbol_get(const char * symbol)1359 void *__symbol_get(const char *symbol)
1360 {
1361 struct find_symbol_arg fsa = {
1362 .name = symbol,
1363 .gplok = true,
1364 .warn = true,
1365 };
1366
1367 preempt_disable();
1368 if (!find_symbol(&fsa))
1369 goto fail;
1370 if (fsa.license != GPL_ONLY) {
1371 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1372 symbol);
1373 goto fail;
1374 }
1375 if (strong_try_module_get(fsa.owner))
1376 goto fail;
1377 preempt_enable();
1378 return (void *)kernel_symbol_value(fsa.sym);
1379 fail:
1380 preempt_enable();
1381 return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__symbol_get);
1384
1385 /*
1386 * Ensure that an exported symbol [global namespace] does not already exist
1387 * in the kernel or in some other module's exported symbol table.
1388 *
1389 * You must hold the module_mutex.
1390 */
verify_exported_symbols(struct module * mod)1391 static int verify_exported_symbols(struct module *mod)
1392 {
1393 unsigned int i;
1394 const struct kernel_symbol *s;
1395 struct {
1396 const struct kernel_symbol *sym;
1397 unsigned int num;
1398 } arr[] = {
1399 { mod->syms, mod->num_syms },
1400 { mod->gpl_syms, mod->num_gpl_syms },
1401 };
1402
1403 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1404 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1405 struct find_symbol_arg fsa = {
1406 .name = kernel_symbol_name(s),
1407 .gplok = true,
1408 };
1409 if (find_symbol(&fsa)) {
1410 pr_err("%s: exports duplicate symbol %s"
1411 " (owned by %s)\n",
1412 mod->name, kernel_symbol_name(s),
1413 module_name(fsa.owner));
1414 return -ENOEXEC;
1415 }
1416 }
1417 }
1418 return 0;
1419 }
1420
ignore_undef_symbol(Elf_Half emachine,const char * name)1421 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1422 {
1423 /*
1424 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1425 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1426 * i386 has a similar problem but may not deserve a fix.
1427 *
1428 * If we ever have to ignore many symbols, consider refactoring the code to
1429 * only warn if referenced by a relocation.
1430 */
1431 if (emachine == EM_386 || emachine == EM_X86_64)
1432 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1433 return false;
1434 }
1435
1436 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1437 static int simplify_symbols(struct module *mod, const struct load_info *info)
1438 {
1439 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1440 Elf_Sym *sym = (void *)symsec->sh_addr;
1441 unsigned long secbase;
1442 unsigned int i;
1443 int ret = 0;
1444 const struct kernel_symbol *ksym;
1445
1446 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1447 const char *name = info->strtab + sym[i].st_name;
1448
1449 switch (sym[i].st_shndx) {
1450 case SHN_COMMON:
1451 /* Ignore common symbols */
1452 if (!strncmp(name, "__gnu_lto", 9))
1453 break;
1454
1455 /*
1456 * We compiled with -fno-common. These are not
1457 * supposed to happen.
1458 */
1459 pr_debug("Common symbol: %s\n", name);
1460 pr_warn("%s: please compile with -fno-common\n",
1461 mod->name);
1462 ret = -ENOEXEC;
1463 break;
1464
1465 case SHN_ABS:
1466 /* Don't need to do anything */
1467 pr_debug("Absolute symbol: 0x%08lx %s\n",
1468 (long)sym[i].st_value, name);
1469 break;
1470
1471 case SHN_LIVEPATCH:
1472 /* Livepatch symbols are resolved by livepatch */
1473 break;
1474
1475 case SHN_UNDEF:
1476 ksym = resolve_symbol_wait(mod, info, name);
1477 /* Ok if resolved. */
1478 if (ksym && !IS_ERR(ksym)) {
1479 sym[i].st_value = kernel_symbol_value(ksym);
1480 break;
1481 }
1482
1483 /* Ok if weak or ignored. */
1484 if (!ksym &&
1485 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1486 ignore_undef_symbol(info->hdr->e_machine, name)))
1487 break;
1488
1489 ret = PTR_ERR(ksym) ?: -ENOENT;
1490 pr_warn("%s: Unknown symbol %s (err %d)\n",
1491 mod->name, name, ret);
1492 break;
1493
1494 default:
1495 /* Divert to percpu allocation if a percpu var. */
1496 if (sym[i].st_shndx == info->index.pcpu)
1497 secbase = (unsigned long)mod_percpu(mod);
1498 else
1499 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1500 sym[i].st_value += secbase;
1501 break;
1502 }
1503 }
1504
1505 return ret;
1506 }
1507
apply_relocations(struct module * mod,const struct load_info * info)1508 static int apply_relocations(struct module *mod, const struct load_info *info)
1509 {
1510 unsigned int i;
1511 int err = 0;
1512
1513 /* Now do relocations. */
1514 for (i = 1; i < info->hdr->e_shnum; i++) {
1515 unsigned int infosec = info->sechdrs[i].sh_info;
1516
1517 /* Not a valid relocation section? */
1518 if (infosec >= info->hdr->e_shnum)
1519 continue;
1520
1521 /* Don't bother with non-allocated sections */
1522 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1523 continue;
1524
1525 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1526 err = klp_apply_section_relocs(mod, info->sechdrs,
1527 info->secstrings,
1528 info->strtab,
1529 info->index.sym, i,
1530 NULL);
1531 else if (info->sechdrs[i].sh_type == SHT_REL)
1532 err = apply_relocate(info->sechdrs, info->strtab,
1533 info->index.sym, i, mod);
1534 else if (info->sechdrs[i].sh_type == SHT_RELA)
1535 err = apply_relocate_add(info->sechdrs, info->strtab,
1536 info->index.sym, i, mod);
1537 if (err < 0)
1538 break;
1539 }
1540 return err;
1541 }
1542
1543 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1544 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1545 unsigned int section)
1546 {
1547 /* default implementation just returns zero */
1548 return 0;
1549 }
1550
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1551 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1552 Elf_Shdr *sechdr, unsigned int section)
1553 {
1554 long offset;
1555 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1556
1557 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1558 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1559 mod->mem[type].size = offset + sechdr->sh_size;
1560
1561 WARN_ON_ONCE(offset & mask);
1562 return offset | mask;
1563 }
1564
module_init_layout_section(const char * sname)1565 bool module_init_layout_section(const char *sname)
1566 {
1567 #ifndef CONFIG_MODULE_UNLOAD
1568 if (module_exit_section(sname))
1569 return true;
1570 #endif
1571 return module_init_section(sname);
1572 }
1573
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1574 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1575 {
1576 unsigned int m, i;
1577
1578 static const unsigned long masks[][2] = {
1579 /*
1580 * NOTE: all executable code must be the first section
1581 * in this array; otherwise modify the text_size
1582 * finder in the two loops below
1583 */
1584 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1585 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1586 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1587 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1588 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1589 };
1590 static const int core_m_to_mem_type[] = {
1591 MOD_TEXT,
1592 MOD_RODATA,
1593 MOD_RO_AFTER_INIT,
1594 MOD_DATA,
1595 MOD_DATA,
1596 };
1597 static const int init_m_to_mem_type[] = {
1598 MOD_INIT_TEXT,
1599 MOD_INIT_RODATA,
1600 MOD_INVALID,
1601 MOD_INIT_DATA,
1602 MOD_INIT_DATA,
1603 };
1604
1605 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1606 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1607
1608 for (i = 0; i < info->hdr->e_shnum; ++i) {
1609 Elf_Shdr *s = &info->sechdrs[i];
1610 const char *sname = info->secstrings + s->sh_name;
1611
1612 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1613 || (s->sh_flags & masks[m][1])
1614 || s->sh_entsize != ~0UL
1615 || is_init != module_init_layout_section(sname))
1616 continue;
1617
1618 if (WARN_ON_ONCE(type == MOD_INVALID))
1619 continue;
1620
1621 /*
1622 * Do not allocate codetag memory as we load it into
1623 * preallocated contiguous memory.
1624 */
1625 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1626 /*
1627 * s->sh_entsize won't be used but populate the
1628 * type field to avoid confusion.
1629 */
1630 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1631 << SH_ENTSIZE_TYPE_SHIFT;
1632 continue;
1633 }
1634
1635 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1636 pr_debug("\t%s\n", sname);
1637 }
1638 }
1639 }
1640
1641 /*
1642 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1643 * might -- code, read-only data, read-write data, small data. Tally
1644 * sizes, and place the offsets into sh_entsize fields: high bit means it
1645 * belongs in init.
1646 */
layout_sections(struct module * mod,struct load_info * info)1647 static void layout_sections(struct module *mod, struct load_info *info)
1648 {
1649 unsigned int i;
1650
1651 for (i = 0; i < info->hdr->e_shnum; i++)
1652 info->sechdrs[i].sh_entsize = ~0UL;
1653
1654 pr_debug("Core section allocation order for %s:\n", mod->name);
1655 __layout_sections(mod, info, false);
1656
1657 pr_debug("Init section allocation order for %s:\n", mod->name);
1658 __layout_sections(mod, info, true);
1659 }
1660
module_license_taint_check(struct module * mod,const char * license)1661 static void module_license_taint_check(struct module *mod, const char *license)
1662 {
1663 if (!license)
1664 license = "unspecified";
1665
1666 if (!license_is_gpl_compatible(license)) {
1667 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1668 pr_warn("%s: module license '%s' taints kernel.\n",
1669 mod->name, license);
1670 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1671 LOCKDEP_NOW_UNRELIABLE);
1672 }
1673 }
1674
setup_modinfo(struct module * mod,struct load_info * info)1675 static void setup_modinfo(struct module *mod, struct load_info *info)
1676 {
1677 const struct module_attribute *attr;
1678 int i;
1679
1680 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1681 if (attr->setup)
1682 attr->setup(mod, get_modinfo(info, attr->attr.name));
1683 }
1684 }
1685
free_modinfo(struct module * mod)1686 static void free_modinfo(struct module *mod)
1687 {
1688 const struct module_attribute *attr;
1689 int i;
1690
1691 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1692 if (attr->free)
1693 attr->free(mod);
1694 }
1695 }
1696
module_init_section(const char * name)1697 bool __weak module_init_section(const char *name)
1698 {
1699 return strstarts(name, ".init");
1700 }
1701
module_exit_section(const char * name)1702 bool __weak module_exit_section(const char *name)
1703 {
1704 return strstarts(name, ".exit");
1705 }
1706
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1707 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1708 {
1709 #if defined(CONFIG_64BIT)
1710 unsigned long long secend;
1711 #else
1712 unsigned long secend;
1713 #endif
1714
1715 /*
1716 * Check for both overflow and offset/size being
1717 * too large.
1718 */
1719 secend = shdr->sh_offset + shdr->sh_size;
1720 if (secend < shdr->sh_offset || secend > info->len)
1721 return -ENOEXEC;
1722
1723 return 0;
1724 }
1725
1726 /**
1727 * elf_validity_ehdr() - Checks an ELF header for module validity
1728 * @info: Load info containing the ELF header to check
1729 *
1730 * Checks whether an ELF header could belong to a valid module. Checks:
1731 *
1732 * * ELF header is within the data the user provided
1733 * * ELF magic is present
1734 * * It is relocatable (not final linked, not core file, etc.)
1735 * * The header's machine type matches what the architecture expects.
1736 * * Optional arch-specific hook for other properties
1737 * - module_elf_check_arch() is currently only used by PPC to check
1738 * ELF ABI version, but may be used by others in the future.
1739 *
1740 * Return: %0 if valid, %-ENOEXEC on failure.
1741 */
elf_validity_ehdr(const struct load_info * info)1742 static int elf_validity_ehdr(const struct load_info *info)
1743 {
1744 if (info->len < sizeof(*(info->hdr))) {
1745 pr_err("Invalid ELF header len %lu\n", info->len);
1746 return -ENOEXEC;
1747 }
1748 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1749 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1750 return -ENOEXEC;
1751 }
1752 if (info->hdr->e_type != ET_REL) {
1753 pr_err("Invalid ELF header type: %u != %u\n",
1754 info->hdr->e_type, ET_REL);
1755 return -ENOEXEC;
1756 }
1757 if (!elf_check_arch(info->hdr)) {
1758 pr_err("Invalid architecture in ELF header: %u\n",
1759 info->hdr->e_machine);
1760 return -ENOEXEC;
1761 }
1762 if (!module_elf_check_arch(info->hdr)) {
1763 pr_err("Invalid module architecture in ELF header: %u\n",
1764 info->hdr->e_machine);
1765 return -ENOEXEC;
1766 }
1767 return 0;
1768 }
1769
1770 /**
1771 * elf_validity_cache_sechdrs() - Cache section headers if valid
1772 * @info: Load info to compute section headers from
1773 *
1774 * Checks:
1775 *
1776 * * ELF header is valid (see elf_validity_ehdr())
1777 * * Section headers are the size we expect
1778 * * Section array fits in the user provided data
1779 * * Section index 0 is NULL
1780 * * Section contents are inbounds
1781 *
1782 * Then updates @info with a &load_info->sechdrs pointer if valid.
1783 *
1784 * Return: %0 if valid, negative error code if validation failed.
1785 */
elf_validity_cache_sechdrs(struct load_info * info)1786 static int elf_validity_cache_sechdrs(struct load_info *info)
1787 {
1788 Elf_Shdr *sechdrs;
1789 Elf_Shdr *shdr;
1790 int i;
1791 int err;
1792
1793 err = elf_validity_ehdr(info);
1794 if (err < 0)
1795 return err;
1796
1797 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1798 pr_err("Invalid ELF section header size\n");
1799 return -ENOEXEC;
1800 }
1801
1802 /*
1803 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1804 * known and small. So e_shnum * sizeof(Elf_Shdr)
1805 * will not overflow unsigned long on any platform.
1806 */
1807 if (info->hdr->e_shoff >= info->len
1808 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1809 info->len - info->hdr->e_shoff)) {
1810 pr_err("Invalid ELF section header overflow\n");
1811 return -ENOEXEC;
1812 }
1813
1814 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1815
1816 /*
1817 * The code assumes that section 0 has a length of zero and
1818 * an addr of zero, so check for it.
1819 */
1820 if (sechdrs[0].sh_type != SHT_NULL
1821 || sechdrs[0].sh_size != 0
1822 || sechdrs[0].sh_addr != 0) {
1823 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1824 sechdrs[0].sh_type);
1825 return -ENOEXEC;
1826 }
1827
1828 /* Validate contents are inbounds */
1829 for (i = 1; i < info->hdr->e_shnum; i++) {
1830 shdr = &sechdrs[i];
1831 switch (shdr->sh_type) {
1832 case SHT_NULL:
1833 case SHT_NOBITS:
1834 /* No contents, offset/size don't mean anything */
1835 continue;
1836 default:
1837 err = validate_section_offset(info, shdr);
1838 if (err < 0) {
1839 pr_err("Invalid ELF section in module (section %u type %u)\n",
1840 i, shdr->sh_type);
1841 return err;
1842 }
1843 }
1844 }
1845
1846 info->sechdrs = sechdrs;
1847
1848 return 0;
1849 }
1850
1851 /**
1852 * elf_validity_cache_secstrings() - Caches section names if valid
1853 * @info: Load info to cache section names from. Must have valid sechdrs.
1854 *
1855 * Specifically checks:
1856 *
1857 * * Section name table index is inbounds of section headers
1858 * * Section name table is not empty
1859 * * Section name table is NUL terminated
1860 * * All section name offsets are inbounds of the section
1861 *
1862 * Then updates @info with a &load_info->secstrings pointer if valid.
1863 *
1864 * Return: %0 if valid, negative error code if validation failed.
1865 */
elf_validity_cache_secstrings(struct load_info * info)1866 static int elf_validity_cache_secstrings(struct load_info *info)
1867 {
1868 Elf_Shdr *strhdr, *shdr;
1869 char *secstrings;
1870 int i;
1871
1872 /*
1873 * Verify if the section name table index is valid.
1874 */
1875 if (info->hdr->e_shstrndx == SHN_UNDEF
1876 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1877 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1878 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1879 info->hdr->e_shnum);
1880 return -ENOEXEC;
1881 }
1882
1883 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1884
1885 /*
1886 * The section name table must be NUL-terminated, as required
1887 * by the spec. This makes strcmp and pr_* calls that access
1888 * strings in the section safe.
1889 */
1890 secstrings = (void *)info->hdr + strhdr->sh_offset;
1891 if (strhdr->sh_size == 0) {
1892 pr_err("empty section name table\n");
1893 return -ENOEXEC;
1894 }
1895 if (secstrings[strhdr->sh_size - 1] != '\0') {
1896 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1897 return -ENOEXEC;
1898 }
1899
1900 for (i = 0; i < info->hdr->e_shnum; i++) {
1901 shdr = &info->sechdrs[i];
1902 /* SHT_NULL means sh_name has an undefined value */
1903 if (shdr->sh_type == SHT_NULL)
1904 continue;
1905 if (shdr->sh_name >= strhdr->sh_size) {
1906 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1907 i, shdr->sh_type);
1908 return -ENOEXEC;
1909 }
1910 }
1911
1912 info->secstrings = secstrings;
1913 return 0;
1914 }
1915
1916 /**
1917 * elf_validity_cache_index_info() - Validate and cache modinfo section
1918 * @info: Load info to populate the modinfo index on.
1919 * Must have &load_info->sechdrs and &load_info->secstrings populated
1920 *
1921 * Checks that if there is a .modinfo section, it is unique.
1922 * Then, it caches its index in &load_info->index.info.
1923 * Finally, it tries to populate the name to improve error messages.
1924 *
1925 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1926 */
elf_validity_cache_index_info(struct load_info * info)1927 static int elf_validity_cache_index_info(struct load_info *info)
1928 {
1929 int info_idx;
1930
1931 info_idx = find_any_unique_sec(info, ".modinfo");
1932
1933 if (info_idx == 0)
1934 /* Early return, no .modinfo */
1935 return 0;
1936
1937 if (info_idx < 0) {
1938 pr_err("Only one .modinfo section must exist.\n");
1939 return -ENOEXEC;
1940 }
1941
1942 info->index.info = info_idx;
1943 /* Try to find a name early so we can log errors with a module name */
1944 info->name = get_modinfo(info, "name");
1945
1946 return 0;
1947 }
1948
1949 /**
1950 * elf_validity_cache_index_mod() - Validates and caches this_module section
1951 * @info: Load info to cache this_module on.
1952 * Must have &load_info->sechdrs and &load_info->secstrings populated
1953 *
1954 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1955 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1956 * to &__this_module properly. The kernel's modpost declares it on each
1957 * modules's *.mod.c file. If the struct module of the kernel changes a full
1958 * kernel rebuild is required.
1959 *
1960 * We have a few expectations for this special section, this function
1961 * validates all this for us:
1962 *
1963 * * The section has contents
1964 * * The section is unique
1965 * * We expect the kernel to always have to allocate it: SHF_ALLOC
1966 * * The section size must match the kernel's run time's struct module
1967 * size
1968 *
1969 * If all checks pass, the index will be cached in &load_info->index.mod
1970 *
1971 * Return: %0 on validation success, %-ENOEXEC on failure
1972 */
elf_validity_cache_index_mod(struct load_info * info)1973 static int elf_validity_cache_index_mod(struct load_info *info)
1974 {
1975 Elf_Shdr *shdr;
1976 int mod_idx;
1977
1978 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1979 if (mod_idx <= 0) {
1980 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1981 info->name ?: "(missing .modinfo section or name field)");
1982 return -ENOEXEC;
1983 }
1984
1985 shdr = &info->sechdrs[mod_idx];
1986
1987 if (shdr->sh_type == SHT_NOBITS) {
1988 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1989 info->name ?: "(missing .modinfo section or name field)");
1990 return -ENOEXEC;
1991 }
1992
1993 if (!(shdr->sh_flags & SHF_ALLOC)) {
1994 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1995 info->name ?: "(missing .modinfo section or name field)");
1996 return -ENOEXEC;
1997 }
1998
1999 if (shdr->sh_size != sizeof(struct module)) {
2000 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2001 info->name ?: "(missing .modinfo section or name field)");
2002 return -ENOEXEC;
2003 }
2004
2005 info->index.mod = mod_idx;
2006
2007 return 0;
2008 }
2009
2010 /**
2011 * elf_validity_cache_index_sym() - Validate and cache symtab index
2012 * @info: Load info to cache symtab index in.
2013 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2014 *
2015 * Checks that there is exactly one symbol table, then caches its index in
2016 * &load_info->index.sym.
2017 *
2018 * Return: %0 if valid, %-ENOEXEC on failure.
2019 */
elf_validity_cache_index_sym(struct load_info * info)2020 static int elf_validity_cache_index_sym(struct load_info *info)
2021 {
2022 unsigned int sym_idx;
2023 unsigned int num_sym_secs = 0;
2024 int i;
2025
2026 for (i = 1; i < info->hdr->e_shnum; i++) {
2027 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2028 num_sym_secs++;
2029 sym_idx = i;
2030 }
2031 }
2032
2033 if (num_sym_secs != 1) {
2034 pr_warn("%s: module has no symbols (stripped?)\n",
2035 info->name ?: "(missing .modinfo section or name field)");
2036 return -ENOEXEC;
2037 }
2038
2039 info->index.sym = sym_idx;
2040
2041 return 0;
2042 }
2043
2044 /**
2045 * elf_validity_cache_index_str() - Validate and cache strtab index
2046 * @info: Load info to cache strtab index in.
2047 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2048 * Must have &load_info->index.sym populated.
2049 *
2050 * Looks at the symbol table's associated string table, makes sure it is
2051 * in-bounds, and caches it.
2052 *
2053 * Return: %0 if valid, %-ENOEXEC on failure.
2054 */
elf_validity_cache_index_str(struct load_info * info)2055 static int elf_validity_cache_index_str(struct load_info *info)
2056 {
2057 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2058
2059 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2060 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2061 str_idx, str_idx, info->hdr->e_shnum);
2062 return -ENOEXEC;
2063 }
2064
2065 info->index.str = str_idx;
2066 return 0;
2067 }
2068
2069 /**
2070 * elf_validity_cache_index_versions() - Validate and cache version indices
2071 * @info: Load info to cache version indices in.
2072 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2073 * @flags: Load flags, relevant to suppress version loading, see
2074 * uapi/linux/module.h
2075 *
2076 * If we're ignoring modversions based on @flags, zero all version indices
2077 * and return validity. Othewrise check:
2078 *
2079 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2080 * * There is a name present for every crc
2081 *
2082 * Then populate:
2083 *
2084 * * &load_info->index.vers
2085 * * &load_info->index.vers_ext_crc
2086 * * &load_info->index.vers_ext_names
2087 *
2088 * if present.
2089 *
2090 * Return: %0 if valid, %-ENOEXEC on failure.
2091 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2092 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2093 {
2094 unsigned int vers_ext_crc;
2095 unsigned int vers_ext_name;
2096 size_t crc_count;
2097 size_t remaining_len;
2098 size_t name_size;
2099 char *name;
2100
2101 /* If modversions were suppressed, pretend we didn't find any */
2102 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2103 info->index.vers = 0;
2104 info->index.vers_ext_crc = 0;
2105 info->index.vers_ext_name = 0;
2106 return 0;
2107 }
2108
2109 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2110 vers_ext_name = find_sec(info, "__version_ext_names");
2111
2112 /* If we have one field, we must have the other */
2113 if (!!vers_ext_crc != !!vers_ext_name) {
2114 pr_err("extended version crc+name presence does not match");
2115 return -ENOEXEC;
2116 }
2117
2118 /*
2119 * If we have extended version information, we should have the same
2120 * number of entries in every section.
2121 */
2122 if (vers_ext_crc) {
2123 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2124 name = (void *)info->hdr +
2125 info->sechdrs[vers_ext_name].sh_offset;
2126 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2127
2128 while (crc_count--) {
2129 name_size = strnlen(name, remaining_len) + 1;
2130 if (name_size > remaining_len) {
2131 pr_err("more extended version crcs than names");
2132 return -ENOEXEC;
2133 }
2134 remaining_len -= name_size;
2135 name += name_size;
2136 }
2137 }
2138
2139 info->index.vers = find_sec(info, "__versions");
2140 info->index.vers_ext_crc = vers_ext_crc;
2141 info->index.vers_ext_name = vers_ext_name;
2142 return 0;
2143 }
2144
2145 /**
2146 * elf_validity_cache_index() - Resolve, validate, cache section indices
2147 * @info: Load info to read from and update.
2148 * &load_info->sechdrs and &load_info->secstrings must be populated.
2149 * @flags: Load flags, relevant to suppress version loading, see
2150 * uapi/linux/module.h
2151 *
2152 * Populates &load_info->index, validating as it goes.
2153 * See child functions for per-field validation:
2154 *
2155 * * elf_validity_cache_index_info()
2156 * * elf_validity_cache_index_mod()
2157 * * elf_validity_cache_index_sym()
2158 * * elf_validity_cache_index_str()
2159 * * elf_validity_cache_index_versions()
2160 *
2161 * If CONFIG_SMP is enabled, load the percpu section by name with no
2162 * validation.
2163 *
2164 * Return: 0 on success, negative error code if an index failed validation.
2165 */
elf_validity_cache_index(struct load_info * info,int flags)2166 static int elf_validity_cache_index(struct load_info *info, int flags)
2167 {
2168 int err;
2169
2170 err = elf_validity_cache_index_info(info);
2171 if (err < 0)
2172 return err;
2173 err = elf_validity_cache_index_mod(info);
2174 if (err < 0)
2175 return err;
2176 err = elf_validity_cache_index_sym(info);
2177 if (err < 0)
2178 return err;
2179 err = elf_validity_cache_index_str(info);
2180 if (err < 0)
2181 return err;
2182 err = elf_validity_cache_index_versions(info, flags);
2183 if (err < 0)
2184 return err;
2185
2186 info->index.pcpu = find_pcpusec(info);
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * elf_validity_cache_strtab() - Validate and cache symbol string table
2193 * @info: Load info to read from and update.
2194 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2195 * Must have &load_info->index populated.
2196 *
2197 * Checks:
2198 *
2199 * * The string table is not empty.
2200 * * The string table starts and ends with NUL (required by ELF spec).
2201 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2202 * string table.
2203 *
2204 * And caches the pointer as &load_info->strtab in @info.
2205 *
2206 * Return: 0 on success, negative error code if a check failed.
2207 */
elf_validity_cache_strtab(struct load_info * info)2208 static int elf_validity_cache_strtab(struct load_info *info)
2209 {
2210 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2211 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2212 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2213 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2214 int i;
2215
2216 if (str_shdr->sh_size == 0) {
2217 pr_err("empty symbol string table\n");
2218 return -ENOEXEC;
2219 }
2220 if (strtab[0] != '\0') {
2221 pr_err("symbol string table missing leading NUL\n");
2222 return -ENOEXEC;
2223 }
2224 if (strtab[str_shdr->sh_size - 1] != '\0') {
2225 pr_err("symbol string table isn't NUL terminated\n");
2226 return -ENOEXEC;
2227 }
2228
2229 /*
2230 * Now that we know strtab is correctly structured, check symbol
2231 * starts are inbounds before they're used later.
2232 */
2233 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2234 if (syms[i].st_name >= str_shdr->sh_size) {
2235 pr_err("symbol name out of bounds in string table");
2236 return -ENOEXEC;
2237 }
2238 }
2239
2240 info->strtab = strtab;
2241 return 0;
2242 }
2243
2244 /*
2245 * Check userspace passed ELF module against our expectations, and cache
2246 * useful variables for further processing as we go.
2247 *
2248 * This does basic validity checks against section offsets and sizes, the
2249 * section name string table, and the indices used for it (sh_name).
2250 *
2251 * As a last step, since we're already checking the ELF sections we cache
2252 * useful variables which will be used later for our convenience:
2253 *
2254 * o pointers to section headers
2255 * o cache the modinfo symbol section
2256 * o cache the string symbol section
2257 * o cache the module section
2258 *
2259 * As a last step we set info->mod to the temporary copy of the module in
2260 * info->hdr. The final one will be allocated in move_module(). Any
2261 * modifications we make to our copy of the module will be carried over
2262 * to the final minted module.
2263 */
elf_validity_cache_copy(struct load_info * info,int flags)2264 static int elf_validity_cache_copy(struct load_info *info, int flags)
2265 {
2266 int err;
2267
2268 err = elf_validity_cache_sechdrs(info);
2269 if (err < 0)
2270 return err;
2271 err = elf_validity_cache_secstrings(info);
2272 if (err < 0)
2273 return err;
2274 err = elf_validity_cache_index(info, flags);
2275 if (err < 0)
2276 return err;
2277 err = elf_validity_cache_strtab(info);
2278 if (err < 0)
2279 return err;
2280
2281 /* This is temporary: point mod into copy of data. */
2282 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2283
2284 /*
2285 * If we didn't load the .modinfo 'name' field earlier, fall back to
2286 * on-disk struct mod 'name' field.
2287 */
2288 if (!info->name)
2289 info->name = info->mod->name;
2290
2291 return 0;
2292 }
2293
2294 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2295
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2296 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2297 {
2298 do {
2299 unsigned long n = min(len, COPY_CHUNK_SIZE);
2300
2301 if (copy_from_user(dst, usrc, n) != 0)
2302 return -EFAULT;
2303 cond_resched();
2304 dst += n;
2305 usrc += n;
2306 len -= n;
2307 } while (len);
2308 return 0;
2309 }
2310
check_modinfo_livepatch(struct module * mod,struct load_info * info)2311 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2312 {
2313 if (!get_modinfo(info, "livepatch"))
2314 /* Nothing more to do */
2315 return 0;
2316
2317 if (set_livepatch_module(mod))
2318 return 0;
2319
2320 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2321 mod->name);
2322 return -ENOEXEC;
2323 }
2324
check_modinfo_retpoline(struct module * mod,struct load_info * info)2325 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2326 {
2327 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2328 return;
2329
2330 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2331 mod->name);
2332 }
2333
2334 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2335 static int copy_module_from_user(const void __user *umod, unsigned long len,
2336 struct load_info *info)
2337 {
2338 int err;
2339
2340 info->len = len;
2341 if (info->len < sizeof(*(info->hdr)))
2342 return -ENOEXEC;
2343
2344 err = security_kernel_load_data(LOADING_MODULE, true);
2345 if (err)
2346 return err;
2347
2348 /* Suck in entire file: we'll want most of it. */
2349 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2350 if (!info->hdr)
2351 return -ENOMEM;
2352
2353 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2354 err = -EFAULT;
2355 goto out;
2356 }
2357
2358 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2359 LOADING_MODULE, "init_module");
2360 out:
2361 if (err)
2362 vfree(info->hdr);
2363
2364 return err;
2365 }
2366
free_copy(struct load_info * info,int flags)2367 static void free_copy(struct load_info *info, int flags)
2368 {
2369 if (flags & MODULE_INIT_COMPRESSED_FILE)
2370 module_decompress_cleanup(info);
2371 else
2372 vfree(info->hdr);
2373 }
2374
rewrite_section_headers(struct load_info * info,int flags)2375 static int rewrite_section_headers(struct load_info *info, int flags)
2376 {
2377 unsigned int i;
2378
2379 /* This should always be true, but let's be sure. */
2380 info->sechdrs[0].sh_addr = 0;
2381
2382 for (i = 1; i < info->hdr->e_shnum; i++) {
2383 Elf_Shdr *shdr = &info->sechdrs[i];
2384
2385 /*
2386 * Mark all sections sh_addr with their address in the
2387 * temporary image.
2388 */
2389 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2390
2391 }
2392
2393 /* Track but don't keep modinfo and version sections. */
2394 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2395 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2396 ~(unsigned long)SHF_ALLOC;
2397 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2398 ~(unsigned long)SHF_ALLOC;
2399 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2400
2401 return 0;
2402 }
2403
2404 static const char *const module_license_offenders[] = {
2405 /* driverloader was caught wrongly pretending to be under GPL */
2406 "driverloader",
2407
2408 /* lve claims to be GPL but upstream won't provide source */
2409 "lve",
2410 };
2411
2412 /*
2413 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2414 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2415 {
2416 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2417 size_t i;
2418
2419 if (!get_modinfo(info, "intree")) {
2420 if (!test_taint(TAINT_OOT_MODULE))
2421 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2422 mod->name);
2423 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2424 }
2425
2426 check_modinfo_retpoline(mod, info);
2427
2428 if (get_modinfo(info, "staging")) {
2429 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2430 pr_warn("%s: module is from the staging directory, the quality "
2431 "is unknown, you have been warned.\n", mod->name);
2432 }
2433
2434 if (is_livepatch_module(mod)) {
2435 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2436 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2437 mod->name);
2438 }
2439
2440 module_license_taint_check(mod, get_modinfo(info, "license"));
2441
2442 if (get_modinfo(info, "test")) {
2443 if (!test_taint(TAINT_TEST))
2444 pr_warn("%s: loading test module taints kernel.\n",
2445 mod->name);
2446 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2447 }
2448 #ifdef CONFIG_MODULE_SIG
2449 mod->sig_ok = info->sig_ok;
2450 if (!mod->sig_ok) {
2451 pr_notice_once("%s: module verification failed: signature "
2452 "and/or required key missing - tainting "
2453 "kernel\n", mod->name);
2454 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2455 }
2456 #endif
2457
2458 /*
2459 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2460 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2461 * using GPL-only symbols it needs.
2462 */
2463 if (strcmp(mod->name, "ndiswrapper") == 0)
2464 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2465
2466 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2467 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2468 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2469 LOCKDEP_NOW_UNRELIABLE);
2470 }
2471
2472 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2473 pr_warn("%s: module license taints kernel.\n", mod->name);
2474
2475 }
2476
check_modinfo(struct module * mod,struct load_info * info,int flags)2477 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2478 {
2479 const char *modmagic = get_modinfo(info, "vermagic");
2480 int err;
2481
2482 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2483 modmagic = NULL;
2484
2485 /* This is allowed: modprobe --force will invalidate it. */
2486 if (!modmagic) {
2487 err = try_to_force_load(mod, "bad vermagic");
2488 if (err)
2489 return err;
2490 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2491 pr_err("%s: version magic '%s' should be '%s'\n",
2492 info->name, modmagic, vermagic);
2493 return -ENOEXEC;
2494 }
2495
2496 err = check_modinfo_livepatch(mod, info);
2497 if (err)
2498 return err;
2499
2500 return 0;
2501 }
2502
find_module_sections(struct module * mod,struct load_info * info)2503 static int find_module_sections(struct module *mod, struct load_info *info)
2504 {
2505 mod->kp = section_objs(info, "__param",
2506 sizeof(*mod->kp), &mod->num_kp);
2507 mod->syms = section_objs(info, "__ksymtab",
2508 sizeof(*mod->syms), &mod->num_syms);
2509 mod->crcs = section_addr(info, "__kcrctab");
2510 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2511 sizeof(*mod->gpl_syms),
2512 &mod->num_gpl_syms);
2513 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2514
2515 #ifdef CONFIG_CONSTRUCTORS
2516 mod->ctors = section_objs(info, ".ctors",
2517 sizeof(*mod->ctors), &mod->num_ctors);
2518 if (!mod->ctors)
2519 mod->ctors = section_objs(info, ".init_array",
2520 sizeof(*mod->ctors), &mod->num_ctors);
2521 else if (find_sec(info, ".init_array")) {
2522 /*
2523 * This shouldn't happen with same compiler and binutils
2524 * building all parts of the module.
2525 */
2526 pr_warn("%s: has both .ctors and .init_array.\n",
2527 mod->name);
2528 return -EINVAL;
2529 }
2530 #endif
2531
2532 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2533 &mod->noinstr_text_size);
2534
2535 #ifdef CONFIG_TRACEPOINTS
2536 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2537 sizeof(*mod->tracepoints_ptrs),
2538 &mod->num_tracepoints);
2539 #endif
2540 #ifdef CONFIG_TREE_SRCU
2541 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2542 sizeof(*mod->srcu_struct_ptrs),
2543 &mod->num_srcu_structs);
2544 #endif
2545 #ifdef CONFIG_BPF_EVENTS
2546 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2547 sizeof(*mod->bpf_raw_events),
2548 &mod->num_bpf_raw_events);
2549 #endif
2550 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2551 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2552 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2553 &mod->btf_base_data_size);
2554 #endif
2555 #ifdef CONFIG_JUMP_LABEL
2556 mod->jump_entries = section_objs(info, "__jump_table",
2557 sizeof(*mod->jump_entries),
2558 &mod->num_jump_entries);
2559 #endif
2560 #ifdef CONFIG_EVENT_TRACING
2561 mod->trace_events = section_objs(info, "_ftrace_events",
2562 sizeof(*mod->trace_events),
2563 &mod->num_trace_events);
2564 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2565 sizeof(*mod->trace_evals),
2566 &mod->num_trace_evals);
2567 #endif
2568 #ifdef CONFIG_TRACING
2569 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2570 sizeof(*mod->trace_bprintk_fmt_start),
2571 &mod->num_trace_bprintk_fmt);
2572 #endif
2573 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2574 /* sechdrs[0].sh_size is always zero */
2575 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2576 sizeof(*mod->ftrace_callsites),
2577 &mod->num_ftrace_callsites);
2578 #endif
2579 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2580 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2581 sizeof(*mod->ei_funcs),
2582 &mod->num_ei_funcs);
2583 #endif
2584 #ifdef CONFIG_KPROBES
2585 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2586 &mod->kprobes_text_size);
2587 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2588 sizeof(unsigned long),
2589 &mod->num_kprobe_blacklist);
2590 #endif
2591 #ifdef CONFIG_PRINTK_INDEX
2592 mod->printk_index_start = section_objs(info, ".printk_index",
2593 sizeof(*mod->printk_index_start),
2594 &mod->printk_index_size);
2595 #endif
2596 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2597 mod->static_call_sites = section_objs(info, ".static_call_sites",
2598 sizeof(*mod->static_call_sites),
2599 &mod->num_static_call_sites);
2600 #endif
2601 #if IS_ENABLED(CONFIG_KUNIT)
2602 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2603 sizeof(*mod->kunit_suites),
2604 &mod->num_kunit_suites);
2605 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2606 sizeof(*mod->kunit_init_suites),
2607 &mod->num_kunit_init_suites);
2608 #endif
2609
2610 mod->extable = section_objs(info, "__ex_table",
2611 sizeof(*mod->extable), &mod->num_exentries);
2612
2613 if (section_addr(info, "__obsparm"))
2614 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2615
2616 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2617 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2618 sizeof(*mod->dyndbg_info.descs),
2619 &mod->dyndbg_info.num_descs);
2620 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2621 sizeof(*mod->dyndbg_info.classes),
2622 &mod->dyndbg_info.num_classes);
2623 #endif
2624
2625 return 0;
2626 }
2627
move_module(struct module * mod,struct load_info * info)2628 static int move_module(struct module *mod, struct load_info *info)
2629 {
2630 int i;
2631 enum mod_mem_type t = 0;
2632 int ret = -ENOMEM;
2633 bool codetag_section_found = false;
2634
2635 for_each_mod_mem_type(type) {
2636 if (!mod->mem[type].size) {
2637 mod->mem[type].base = NULL;
2638 continue;
2639 }
2640
2641 ret = module_memory_alloc(mod, type);
2642 if (ret) {
2643 t = type;
2644 goto out_err;
2645 }
2646 }
2647
2648 /* Transfer each section which specifies SHF_ALLOC */
2649 pr_debug("Final section addresses for %s:\n", mod->name);
2650 for (i = 0; i < info->hdr->e_shnum; i++) {
2651 void *dest;
2652 Elf_Shdr *shdr = &info->sechdrs[i];
2653 const char *sname;
2654
2655 if (!(shdr->sh_flags & SHF_ALLOC))
2656 continue;
2657
2658 sname = info->secstrings + shdr->sh_name;
2659 /*
2660 * Load codetag sections separately as they might still be used
2661 * after module unload.
2662 */
2663 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2664 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2665 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2666 if (WARN_ON(!dest)) {
2667 ret = -EINVAL;
2668 goto out_err;
2669 }
2670 if (IS_ERR(dest)) {
2671 ret = PTR_ERR(dest);
2672 goto out_err;
2673 }
2674 codetag_section_found = true;
2675 } else {
2676 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2677 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2678
2679 dest = mod->mem[type].base + offset;
2680 }
2681
2682 if (shdr->sh_type != SHT_NOBITS) {
2683 /*
2684 * Our ELF checker already validated this, but let's
2685 * be pedantic and make the goal clearer. We actually
2686 * end up copying over all modifications made to the
2687 * userspace copy of the entire struct module.
2688 */
2689 if (i == info->index.mod &&
2690 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2691 ret = -ENOEXEC;
2692 goto out_err;
2693 }
2694 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2695 }
2696 /*
2697 * Update the userspace copy's ELF section address to point to
2698 * our newly allocated memory as a pure convenience so that
2699 * users of info can keep taking advantage and using the newly
2700 * minted official memory area.
2701 */
2702 shdr->sh_addr = (unsigned long)dest;
2703 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2704 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2705 }
2706
2707 return 0;
2708 out_err:
2709 module_memory_restore_rox(mod);
2710 for (t--; t >= 0; t--)
2711 module_memory_free(mod, t);
2712 if (codetag_section_found)
2713 codetag_free_module_sections(mod);
2714
2715 return ret;
2716 }
2717
check_export_symbol_versions(struct module * mod)2718 static int check_export_symbol_versions(struct module *mod)
2719 {
2720 #ifdef CONFIG_MODVERSIONS
2721 if ((mod->num_syms && !mod->crcs) ||
2722 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2723 return try_to_force_load(mod,
2724 "no versions for exported symbols");
2725 }
2726 #endif
2727 return 0;
2728 }
2729
flush_module_icache(const struct module * mod)2730 static void flush_module_icache(const struct module *mod)
2731 {
2732 /*
2733 * Flush the instruction cache, since we've played with text.
2734 * Do it before processing of module parameters, so the module
2735 * can provide parameter accessor functions of its own.
2736 */
2737 for_each_mod_mem_type(type) {
2738 const struct module_memory *mod_mem = &mod->mem[type];
2739
2740 if (mod_mem->size) {
2741 flush_icache_range((unsigned long)mod_mem->base,
2742 (unsigned long)mod_mem->base + mod_mem->size);
2743 }
2744 }
2745 }
2746
module_elf_check_arch(Elf_Ehdr * hdr)2747 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2748 {
2749 return true;
2750 }
2751
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2752 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2753 Elf_Shdr *sechdrs,
2754 char *secstrings,
2755 struct module *mod)
2756 {
2757 return 0;
2758 }
2759
2760 /* module_blacklist is a comma-separated list of module names */
2761 static char *module_blacklist;
blacklisted(const char * module_name)2762 static bool blacklisted(const char *module_name)
2763 {
2764 const char *p;
2765 size_t len;
2766
2767 if (!module_blacklist)
2768 return false;
2769
2770 for (p = module_blacklist; *p; p += len) {
2771 len = strcspn(p, ",");
2772 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2773 return true;
2774 if (p[len] == ',')
2775 len++;
2776 }
2777 return false;
2778 }
2779 core_param(module_blacklist, module_blacklist, charp, 0400);
2780
layout_and_allocate(struct load_info * info,int flags)2781 static struct module *layout_and_allocate(struct load_info *info, int flags)
2782 {
2783 struct module *mod;
2784 unsigned int ndx;
2785 int err;
2786
2787 /* Allow arches to frob section contents and sizes. */
2788 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2789 info->secstrings, info->mod);
2790 if (err < 0)
2791 return ERR_PTR(err);
2792
2793 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2794 info->secstrings, info->mod);
2795 if (err < 0)
2796 return ERR_PTR(err);
2797
2798 /* We will do a special allocation for per-cpu sections later. */
2799 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2800
2801 /*
2802 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2803 * layout_sections() can put it in the right place.
2804 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2805 */
2806 ndx = find_sec(info, ".data..ro_after_init");
2807 if (ndx)
2808 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2809 /*
2810 * Mark the __jump_table section as ro_after_init as well: these data
2811 * structures are never modified, with the exception of entries that
2812 * refer to code in the __init section, which are annotated as such
2813 * at module load time.
2814 */
2815 ndx = find_sec(info, "__jump_table");
2816 if (ndx)
2817 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2818
2819 /*
2820 * Determine total sizes, and put offsets in sh_entsize. For now
2821 * this is done generically; there doesn't appear to be any
2822 * special cases for the architectures.
2823 */
2824 layout_sections(info->mod, info);
2825 layout_symtab(info->mod, info);
2826
2827 /* Allocate and move to the final place */
2828 err = move_module(info->mod, info);
2829 if (err)
2830 return ERR_PTR(err);
2831
2832 /* Module has been copied to its final place now: return it. */
2833 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2834 kmemleak_load_module(mod, info);
2835 codetag_module_replaced(info->mod, mod);
2836
2837 return mod;
2838 }
2839
2840 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2841 static void module_deallocate(struct module *mod, struct load_info *info)
2842 {
2843 percpu_modfree(mod);
2844 module_arch_freeing_init(mod);
2845
2846 free_mod_mem(mod);
2847 }
2848
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2849 int __weak module_finalize(const Elf_Ehdr *hdr,
2850 const Elf_Shdr *sechdrs,
2851 struct module *me)
2852 {
2853 return 0;
2854 }
2855
post_relocation(struct module * mod,const struct load_info * info)2856 static int post_relocation(struct module *mod, const struct load_info *info)
2857 {
2858 /* Sort exception table now relocations are done. */
2859 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2860
2861 /* Copy relocated percpu area over. */
2862 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2863 info->sechdrs[info->index.pcpu].sh_size);
2864
2865 /* Setup kallsyms-specific fields. */
2866 add_kallsyms(mod, info);
2867
2868 /* Arch-specific module finalizing. */
2869 return module_finalize(info->hdr, info->sechdrs, mod);
2870 }
2871
2872 /* Call module constructors. */
do_mod_ctors(struct module * mod)2873 static void do_mod_ctors(struct module *mod)
2874 {
2875 #ifdef CONFIG_CONSTRUCTORS
2876 unsigned long i;
2877
2878 for (i = 0; i < mod->num_ctors; i++)
2879 mod->ctors[i]();
2880 #endif
2881 }
2882
2883 /* For freeing module_init on success, in case kallsyms traversing */
2884 struct mod_initfree {
2885 struct llist_node node;
2886 void *init_text;
2887 void *init_data;
2888 void *init_rodata;
2889 };
2890
do_free_init(struct work_struct * w)2891 static void do_free_init(struct work_struct *w)
2892 {
2893 struct llist_node *pos, *n, *list;
2894 struct mod_initfree *initfree;
2895
2896 list = llist_del_all(&init_free_list);
2897
2898 synchronize_rcu();
2899
2900 llist_for_each_safe(pos, n, list) {
2901 initfree = container_of(pos, struct mod_initfree, node);
2902 execmem_free(initfree->init_text);
2903 execmem_free(initfree->init_data);
2904 execmem_free(initfree->init_rodata);
2905 kfree(initfree);
2906 }
2907 }
2908
flush_module_init_free_work(void)2909 void flush_module_init_free_work(void)
2910 {
2911 flush_work(&init_free_wq);
2912 }
2913
2914 #undef MODULE_PARAM_PREFIX
2915 #define MODULE_PARAM_PREFIX "module."
2916 /* Default value for module->async_probe_requested */
2917 static bool async_probe;
2918 module_param(async_probe, bool, 0644);
2919
2920 /*
2921 * This is where the real work happens.
2922 *
2923 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2924 * helper command 'lx-symbols'.
2925 */
do_init_module(struct module * mod)2926 static noinline int do_init_module(struct module *mod)
2927 {
2928 int ret = 0;
2929 struct mod_initfree *freeinit;
2930 #if defined(CONFIG_MODULE_STATS)
2931 unsigned int text_size = 0, total_size = 0;
2932
2933 for_each_mod_mem_type(type) {
2934 const struct module_memory *mod_mem = &mod->mem[type];
2935 if (mod_mem->size) {
2936 total_size += mod_mem->size;
2937 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2938 text_size += mod_mem->size;
2939 }
2940 }
2941 #endif
2942
2943 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2944 if (!freeinit) {
2945 ret = -ENOMEM;
2946 goto fail;
2947 }
2948 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2949 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2950 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2951
2952 do_mod_ctors(mod);
2953 /* Start the module */
2954 if (mod->init != NULL)
2955 ret = do_one_initcall(mod->init);
2956 if (ret < 0) {
2957 goto fail_free_freeinit;
2958 }
2959 if (ret > 0) {
2960 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2961 "follow 0/-E convention\n"
2962 "%s: loading module anyway...\n",
2963 __func__, mod->name, ret, __func__);
2964 dump_stack();
2965 }
2966
2967 /* Now it's a first class citizen! */
2968 mod->state = MODULE_STATE_LIVE;
2969 blocking_notifier_call_chain(&module_notify_list,
2970 MODULE_STATE_LIVE, mod);
2971
2972 /* Delay uevent until module has finished its init routine */
2973 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2974
2975 /*
2976 * We need to finish all async code before the module init sequence
2977 * is done. This has potential to deadlock if synchronous module
2978 * loading is requested from async (which is not allowed!).
2979 *
2980 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2981 * request_module() from async workers") for more details.
2982 */
2983 if (!mod->async_probe_requested)
2984 async_synchronize_full();
2985
2986 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2987 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2988 mutex_lock(&module_mutex);
2989 /* Drop initial reference. */
2990 module_put(mod);
2991 trim_init_extable(mod);
2992 #ifdef CONFIG_KALLSYMS
2993 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2994 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2995 #endif
2996 ret = module_enable_rodata_ro_after_init(mod);
2997 if (ret)
2998 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2999 "ro_after_init data might still be writable\n",
3000 mod->name, ret);
3001
3002 mod_tree_remove_init(mod);
3003 module_arch_freeing_init(mod);
3004 for_class_mod_mem_type(type, init) {
3005 mod->mem[type].base = NULL;
3006 mod->mem[type].size = 0;
3007 }
3008
3009 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3010 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3011 mod->btf_data = NULL;
3012 mod->btf_base_data = NULL;
3013 #endif
3014 /*
3015 * We want to free module_init, but be aware that kallsyms may be
3016 * walking this with preempt disabled. In all the failure paths, we
3017 * call synchronize_rcu(), but we don't want to slow down the success
3018 * path. execmem_free() cannot be called in an interrupt, so do the
3019 * work and call synchronize_rcu() in a work queue.
3020 *
3021 * Note that execmem_alloc() on most architectures creates W+X page
3022 * mappings which won't be cleaned up until do_free_init() runs. Any
3023 * code such as mark_rodata_ro() which depends on those mappings to
3024 * be cleaned up needs to sync with the queued work by invoking
3025 * flush_module_init_free_work().
3026 */
3027 if (llist_add(&freeinit->node, &init_free_list))
3028 schedule_work(&init_free_wq);
3029
3030 mutex_unlock(&module_mutex);
3031 wake_up_all(&module_wq);
3032
3033 mod_stat_add_long(text_size, &total_text_size);
3034 mod_stat_add_long(total_size, &total_mod_size);
3035
3036 mod_stat_inc(&modcount);
3037
3038 return 0;
3039
3040 fail_free_freeinit:
3041 kfree(freeinit);
3042 fail:
3043 /* Try to protect us from buggy refcounters. */
3044 mod->state = MODULE_STATE_GOING;
3045 synchronize_rcu();
3046 module_put(mod);
3047 blocking_notifier_call_chain(&module_notify_list,
3048 MODULE_STATE_GOING, mod);
3049 klp_module_going(mod);
3050 ftrace_release_mod(mod);
3051 free_module(mod);
3052 wake_up_all(&module_wq);
3053
3054 return ret;
3055 }
3056
may_init_module(void)3057 static int may_init_module(void)
3058 {
3059 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3060 return -EPERM;
3061
3062 return 0;
3063 }
3064
3065 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3066 static bool finished_loading(const char *name)
3067 {
3068 struct module *mod;
3069 bool ret;
3070
3071 /*
3072 * The module_mutex should not be a heavily contended lock;
3073 * if we get the occasional sleep here, we'll go an extra iteration
3074 * in the wait_event_interruptible(), which is harmless.
3075 */
3076 sched_annotate_sleep();
3077 mutex_lock(&module_mutex);
3078 mod = find_module_all(name, strlen(name), true);
3079 ret = !mod || mod->state == MODULE_STATE_LIVE
3080 || mod->state == MODULE_STATE_GOING;
3081 mutex_unlock(&module_mutex);
3082
3083 return ret;
3084 }
3085
3086 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3087 static int module_patient_check_exists(const char *name,
3088 enum fail_dup_mod_reason reason)
3089 {
3090 struct module *old;
3091 int err = 0;
3092
3093 old = find_module_all(name, strlen(name), true);
3094 if (old == NULL)
3095 return 0;
3096
3097 if (old->state == MODULE_STATE_COMING ||
3098 old->state == MODULE_STATE_UNFORMED) {
3099 /* Wait in case it fails to load. */
3100 mutex_unlock(&module_mutex);
3101 err = wait_event_interruptible(module_wq,
3102 finished_loading(name));
3103 mutex_lock(&module_mutex);
3104 if (err)
3105 return err;
3106
3107 /* The module might have gone in the meantime. */
3108 old = find_module_all(name, strlen(name), true);
3109 }
3110
3111 if (try_add_failed_module(name, reason))
3112 pr_warn("Could not add fail-tracking for module: %s\n", name);
3113
3114 /*
3115 * We are here only when the same module was being loaded. Do
3116 * not try to load it again right now. It prevents long delays
3117 * caused by serialized module load failures. It might happen
3118 * when more devices of the same type trigger load of
3119 * a particular module.
3120 */
3121 if (old && old->state == MODULE_STATE_LIVE)
3122 return -EEXIST;
3123 return -EBUSY;
3124 }
3125
3126 /*
3127 * We try to place it in the list now to make sure it's unique before
3128 * we dedicate too many resources. In particular, temporary percpu
3129 * memory exhaustion.
3130 */
add_unformed_module(struct module * mod)3131 static int add_unformed_module(struct module *mod)
3132 {
3133 int err;
3134
3135 mod->state = MODULE_STATE_UNFORMED;
3136
3137 mutex_lock(&module_mutex);
3138 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3139 if (err)
3140 goto out;
3141
3142 mod_update_bounds(mod);
3143 list_add_rcu(&mod->list, &modules);
3144 mod_tree_insert(mod);
3145 err = 0;
3146
3147 out:
3148 mutex_unlock(&module_mutex);
3149 return err;
3150 }
3151
complete_formation(struct module * mod,struct load_info * info)3152 static int complete_formation(struct module *mod, struct load_info *info)
3153 {
3154 int err;
3155
3156 mutex_lock(&module_mutex);
3157
3158 /* Find duplicate symbols (must be called under lock). */
3159 err = verify_exported_symbols(mod);
3160 if (err < 0)
3161 goto out;
3162
3163 /* These rely on module_mutex for list integrity. */
3164 module_bug_finalize(info->hdr, info->sechdrs, mod);
3165 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3166
3167 err = module_enable_rodata_ro(mod);
3168 if (err)
3169 goto out_strict_rwx;
3170 err = module_enable_data_nx(mod);
3171 if (err)
3172 goto out_strict_rwx;
3173 err = module_enable_text_rox(mod);
3174 if (err)
3175 goto out_strict_rwx;
3176
3177 /*
3178 * Mark state as coming so strong_try_module_get() ignores us,
3179 * but kallsyms etc. can see us.
3180 */
3181 mod->state = MODULE_STATE_COMING;
3182 mutex_unlock(&module_mutex);
3183
3184 return 0;
3185
3186 out_strict_rwx:
3187 module_bug_cleanup(mod);
3188 out:
3189 mutex_unlock(&module_mutex);
3190 return err;
3191 }
3192
prepare_coming_module(struct module * mod)3193 static int prepare_coming_module(struct module *mod)
3194 {
3195 int err;
3196
3197 ftrace_module_enable(mod);
3198 err = klp_module_coming(mod);
3199 if (err)
3200 return err;
3201
3202 err = blocking_notifier_call_chain_robust(&module_notify_list,
3203 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3204 err = notifier_to_errno(err);
3205 if (err)
3206 klp_module_going(mod);
3207
3208 return err;
3209 }
3210
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3211 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3212 void *arg)
3213 {
3214 struct module *mod = arg;
3215 int ret;
3216
3217 if (strcmp(param, "async_probe") == 0) {
3218 if (kstrtobool(val, &mod->async_probe_requested))
3219 mod->async_probe_requested = true;
3220 return 0;
3221 }
3222
3223 /* Check for magic 'dyndbg' arg */
3224 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3225 if (ret != 0)
3226 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3227 return 0;
3228 }
3229
3230 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3231 static int early_mod_check(struct load_info *info, int flags)
3232 {
3233 int err;
3234
3235 /*
3236 * Now that we know we have the correct module name, check
3237 * if it's blacklisted.
3238 */
3239 if (blacklisted(info->name)) {
3240 pr_err("Module %s is blacklisted\n", info->name);
3241 return -EPERM;
3242 }
3243
3244 err = rewrite_section_headers(info, flags);
3245 if (err)
3246 return err;
3247
3248 /* Check module struct version now, before we try to use module. */
3249 if (!check_modstruct_version(info, info->mod))
3250 return -ENOEXEC;
3251
3252 err = check_modinfo(info->mod, info, flags);
3253 if (err)
3254 return err;
3255
3256 mutex_lock(&module_mutex);
3257 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3258 mutex_unlock(&module_mutex);
3259
3260 return err;
3261 }
3262
3263 /*
3264 * Allocate and load the module: note that size of section 0 is always
3265 * zero, and we rely on this for optional sections.
3266 */
load_module(struct load_info * info,const char __user * uargs,int flags)3267 static int load_module(struct load_info *info, const char __user *uargs,
3268 int flags)
3269 {
3270 struct module *mod;
3271 bool module_allocated = false;
3272 long err = 0;
3273 char *after_dashes;
3274
3275 /*
3276 * Do the signature check (if any) first. All that
3277 * the signature check needs is info->len, it does
3278 * not need any of the section info. That can be
3279 * set up later. This will minimize the chances
3280 * of a corrupt module causing problems before
3281 * we even get to the signature check.
3282 *
3283 * The check will also adjust info->len by stripping
3284 * off the sig length at the end of the module, making
3285 * checks against info->len more correct.
3286 */
3287 err = module_sig_check(info, flags);
3288 if (err)
3289 goto free_copy;
3290
3291 /*
3292 * Do basic sanity checks against the ELF header and
3293 * sections. Cache useful sections and set the
3294 * info->mod to the userspace passed struct module.
3295 */
3296 err = elf_validity_cache_copy(info, flags);
3297 if (err)
3298 goto free_copy;
3299
3300 err = early_mod_check(info, flags);
3301 if (err)
3302 goto free_copy;
3303
3304 /* Figure out module layout, and allocate all the memory. */
3305 mod = layout_and_allocate(info, flags);
3306 if (IS_ERR(mod)) {
3307 err = PTR_ERR(mod);
3308 goto free_copy;
3309 }
3310
3311 module_allocated = true;
3312
3313 audit_log_kern_module(mod->name);
3314
3315 /* Reserve our place in the list. */
3316 err = add_unformed_module(mod);
3317 if (err)
3318 goto free_module;
3319
3320 /*
3321 * We are tainting your kernel if your module gets into
3322 * the modules linked list somehow.
3323 */
3324 module_augment_kernel_taints(mod, info);
3325
3326 /* To avoid stressing percpu allocator, do this once we're unique. */
3327 err = percpu_modalloc(mod, info);
3328 if (err)
3329 goto unlink_mod;
3330
3331 /* Now module is in final location, initialize linked lists, etc. */
3332 err = module_unload_init(mod);
3333 if (err)
3334 goto unlink_mod;
3335
3336 init_param_lock(mod);
3337
3338 /*
3339 * Now we've got everything in the final locations, we can
3340 * find optional sections.
3341 */
3342 err = find_module_sections(mod, info);
3343 if (err)
3344 goto free_unload;
3345
3346 err = check_export_symbol_versions(mod);
3347 if (err)
3348 goto free_unload;
3349
3350 /* Set up MODINFO_ATTR fields */
3351 setup_modinfo(mod, info);
3352
3353 /* Fix up syms, so that st_value is a pointer to location. */
3354 err = simplify_symbols(mod, info);
3355 if (err < 0)
3356 goto free_modinfo;
3357
3358 err = apply_relocations(mod, info);
3359 if (err < 0)
3360 goto free_modinfo;
3361
3362 err = post_relocation(mod, info);
3363 if (err < 0)
3364 goto free_modinfo;
3365
3366 flush_module_icache(mod);
3367
3368 /* Now copy in args */
3369 mod->args = strndup_user(uargs, ~0UL >> 1);
3370 if (IS_ERR(mod->args)) {
3371 err = PTR_ERR(mod->args);
3372 goto free_arch_cleanup;
3373 }
3374
3375 init_build_id(mod, info);
3376
3377 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3378 ftrace_module_init(mod);
3379
3380 /* Finally it's fully formed, ready to start executing. */
3381 err = complete_formation(mod, info);
3382 if (err)
3383 goto ddebug_cleanup;
3384
3385 err = prepare_coming_module(mod);
3386 if (err)
3387 goto bug_cleanup;
3388
3389 mod->async_probe_requested = async_probe;
3390
3391 /* Module is ready to execute: parsing args may do that. */
3392 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3393 -32768, 32767, mod,
3394 unknown_module_param_cb);
3395 if (IS_ERR(after_dashes)) {
3396 err = PTR_ERR(after_dashes);
3397 goto coming_cleanup;
3398 } else if (after_dashes) {
3399 pr_warn("%s: parameters '%s' after `--' ignored\n",
3400 mod->name, after_dashes);
3401 }
3402
3403 /* Link in to sysfs. */
3404 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3405 if (err < 0)
3406 goto coming_cleanup;
3407
3408 if (is_livepatch_module(mod)) {
3409 err = copy_module_elf(mod, info);
3410 if (err < 0)
3411 goto sysfs_cleanup;
3412 }
3413
3414 /* Get rid of temporary copy. */
3415 free_copy(info, flags);
3416
3417 codetag_load_module(mod);
3418
3419 /* Done! */
3420 trace_module_load(mod);
3421
3422 return do_init_module(mod);
3423
3424 sysfs_cleanup:
3425 mod_sysfs_teardown(mod);
3426 coming_cleanup:
3427 mod->state = MODULE_STATE_GOING;
3428 destroy_params(mod->kp, mod->num_kp);
3429 blocking_notifier_call_chain(&module_notify_list,
3430 MODULE_STATE_GOING, mod);
3431 klp_module_going(mod);
3432 bug_cleanup:
3433 mod->state = MODULE_STATE_GOING;
3434 /* module_bug_cleanup needs module_mutex protection */
3435 mutex_lock(&module_mutex);
3436 module_bug_cleanup(mod);
3437 mutex_unlock(&module_mutex);
3438
3439 ddebug_cleanup:
3440 ftrace_release_mod(mod);
3441 synchronize_rcu();
3442 kfree(mod->args);
3443 free_arch_cleanup:
3444 module_arch_cleanup(mod);
3445 free_modinfo:
3446 free_modinfo(mod);
3447 free_unload:
3448 module_unload_free(mod);
3449 unlink_mod:
3450 mutex_lock(&module_mutex);
3451 /* Unlink carefully: kallsyms could be walking list. */
3452 list_del_rcu(&mod->list);
3453 mod_tree_remove(mod);
3454 wake_up_all(&module_wq);
3455 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3456 synchronize_rcu();
3457 mutex_unlock(&module_mutex);
3458 free_module:
3459 mod_stat_bump_invalid(info, flags);
3460 /* Free lock-classes; relies on the preceding sync_rcu() */
3461 for_class_mod_mem_type(type, core_data) {
3462 lockdep_free_key_range(mod->mem[type].base,
3463 mod->mem[type].size);
3464 }
3465
3466 module_memory_restore_rox(mod);
3467 module_deallocate(mod, info);
3468 free_copy:
3469 /*
3470 * The info->len is always set. We distinguish between
3471 * failures once the proper module was allocated and
3472 * before that.
3473 */
3474 if (!module_allocated)
3475 mod_stat_bump_becoming(info, flags);
3476 free_copy(info, flags);
3477 return err;
3478 }
3479
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3480 SYSCALL_DEFINE3(init_module, void __user *, umod,
3481 unsigned long, len, const char __user *, uargs)
3482 {
3483 int err;
3484 struct load_info info = { };
3485
3486 err = may_init_module();
3487 if (err)
3488 return err;
3489
3490 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3491 umod, len, uargs);
3492
3493 err = copy_module_from_user(umod, len, &info);
3494 if (err) {
3495 mod_stat_inc(&failed_kreads);
3496 mod_stat_add_long(len, &invalid_kread_bytes);
3497 return err;
3498 }
3499
3500 return load_module(&info, uargs, 0);
3501 }
3502
3503 struct idempotent {
3504 const void *cookie;
3505 struct hlist_node entry;
3506 struct completion complete;
3507 int ret;
3508 };
3509
3510 #define IDEM_HASH_BITS 8
3511 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3512 static DEFINE_SPINLOCK(idem_lock);
3513
idempotent(struct idempotent * u,const void * cookie)3514 static bool idempotent(struct idempotent *u, const void *cookie)
3515 {
3516 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3517 struct hlist_head *head = idem_hash + hash;
3518 struct idempotent *existing;
3519 bool first;
3520
3521 u->ret = -EINTR;
3522 u->cookie = cookie;
3523 init_completion(&u->complete);
3524
3525 spin_lock(&idem_lock);
3526 first = true;
3527 hlist_for_each_entry(existing, head, entry) {
3528 if (existing->cookie != cookie)
3529 continue;
3530 first = false;
3531 break;
3532 }
3533 hlist_add_head(&u->entry, idem_hash + hash);
3534 spin_unlock(&idem_lock);
3535
3536 return !first;
3537 }
3538
3539 /*
3540 * We were the first one with 'cookie' on the list, and we ended
3541 * up completing the operation. We now need to walk the list,
3542 * remove everybody - which includes ourselves - fill in the return
3543 * value, and then complete the operation.
3544 */
idempotent_complete(struct idempotent * u,int ret)3545 static int idempotent_complete(struct idempotent *u, int ret)
3546 {
3547 const void *cookie = u->cookie;
3548 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3549 struct hlist_head *head = idem_hash + hash;
3550 struct hlist_node *next;
3551 struct idempotent *pos;
3552
3553 spin_lock(&idem_lock);
3554 hlist_for_each_entry_safe(pos, next, head, entry) {
3555 if (pos->cookie != cookie)
3556 continue;
3557 hlist_del_init(&pos->entry);
3558 pos->ret = ret;
3559 complete(&pos->complete);
3560 }
3561 spin_unlock(&idem_lock);
3562 return ret;
3563 }
3564
3565 /*
3566 * Wait for the idempotent worker.
3567 *
3568 * If we get interrupted, we need to remove ourselves from the
3569 * the idempotent list, and the completion may still come in.
3570 *
3571 * The 'idem_lock' protects against the race, and 'idem.ret' was
3572 * initialized to -EINTR and is thus always the right return
3573 * value even if the idempotent work then completes between
3574 * the wait_for_completion and the cleanup.
3575 */
idempotent_wait_for_completion(struct idempotent * u)3576 static int idempotent_wait_for_completion(struct idempotent *u)
3577 {
3578 if (wait_for_completion_interruptible(&u->complete)) {
3579 spin_lock(&idem_lock);
3580 if (!hlist_unhashed(&u->entry))
3581 hlist_del(&u->entry);
3582 spin_unlock(&idem_lock);
3583 }
3584 return u->ret;
3585 }
3586
init_module_from_file(struct file * f,const char __user * uargs,int flags)3587 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3588 {
3589 struct load_info info = { };
3590 void *buf = NULL;
3591 int len;
3592
3593 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3594 if (len < 0) {
3595 mod_stat_inc(&failed_kreads);
3596 return len;
3597 }
3598
3599 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3600 int err = module_decompress(&info, buf, len);
3601 vfree(buf); /* compressed data is no longer needed */
3602 if (err) {
3603 mod_stat_inc(&failed_decompress);
3604 mod_stat_add_long(len, &invalid_decompress_bytes);
3605 return err;
3606 }
3607 } else {
3608 info.hdr = buf;
3609 info.len = len;
3610 }
3611
3612 return load_module(&info, uargs, flags);
3613 }
3614
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3615 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3616 {
3617 struct idempotent idem;
3618
3619 if (!(f->f_mode & FMODE_READ))
3620 return -EBADF;
3621
3622 /* Are we the winners of the race and get to do this? */
3623 if (!idempotent(&idem, file_inode(f))) {
3624 int ret = init_module_from_file(f, uargs, flags);
3625 return idempotent_complete(&idem, ret);
3626 }
3627
3628 /*
3629 * Somebody else won the race and is loading the module.
3630 */
3631 return idempotent_wait_for_completion(&idem);
3632 }
3633
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3634 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3635 {
3636 int err = may_init_module();
3637 if (err)
3638 return err;
3639
3640 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3641
3642 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3643 |MODULE_INIT_IGNORE_VERMAGIC
3644 |MODULE_INIT_COMPRESSED_FILE))
3645 return -EINVAL;
3646
3647 CLASS(fd, f)(fd);
3648 if (fd_empty(f))
3649 return -EBADF;
3650 return idempotent_init_module(fd_file(f), uargs, flags);
3651 }
3652
3653 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3654 char *module_flags(struct module *mod, char *buf, bool show_state)
3655 {
3656 int bx = 0;
3657
3658 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3659 if (!mod->taints && !show_state)
3660 goto out;
3661 if (mod->taints ||
3662 mod->state == MODULE_STATE_GOING ||
3663 mod->state == MODULE_STATE_COMING) {
3664 buf[bx++] = '(';
3665 bx += module_flags_taint(mod->taints, buf + bx);
3666 /* Show a - for module-is-being-unloaded */
3667 if (mod->state == MODULE_STATE_GOING && show_state)
3668 buf[bx++] = '-';
3669 /* Show a + for module-is-being-loaded */
3670 if (mod->state == MODULE_STATE_COMING && show_state)
3671 buf[bx++] = '+';
3672 buf[bx++] = ')';
3673 }
3674 out:
3675 buf[bx] = '\0';
3676
3677 return buf;
3678 }
3679
3680 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3681 const struct exception_table_entry *search_module_extables(unsigned long addr)
3682 {
3683 const struct exception_table_entry *e = NULL;
3684 struct module *mod;
3685
3686 preempt_disable();
3687 mod = __module_address(addr);
3688 if (!mod)
3689 goto out;
3690
3691 if (!mod->num_exentries)
3692 goto out;
3693
3694 e = search_extable(mod->extable,
3695 mod->num_exentries,
3696 addr);
3697 out:
3698 preempt_enable();
3699
3700 /*
3701 * Now, if we found one, we are running inside it now, hence
3702 * we cannot unload the module, hence no refcnt needed.
3703 */
3704 return e;
3705 }
3706
3707 /**
3708 * is_module_address() - is this address inside a module?
3709 * @addr: the address to check.
3710 *
3711 * See is_module_text_address() if you simply want to see if the address
3712 * is code (not data).
3713 */
is_module_address(unsigned long addr)3714 bool is_module_address(unsigned long addr)
3715 {
3716 bool ret;
3717
3718 preempt_disable();
3719 ret = __module_address(addr) != NULL;
3720 preempt_enable();
3721
3722 return ret;
3723 }
3724
3725 /**
3726 * __module_address() - get the module which contains an address.
3727 * @addr: the address.
3728 *
3729 * Must be called with preempt disabled or module mutex held so that
3730 * module doesn't get freed during this.
3731 */
__module_address(unsigned long addr)3732 struct module *__module_address(unsigned long addr)
3733 {
3734 struct module *mod;
3735
3736 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3737 goto lookup;
3738
3739 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3740 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3741 goto lookup;
3742 #endif
3743
3744 return NULL;
3745
3746 lookup:
3747 module_assert_mutex_or_preempt();
3748
3749 mod = mod_find(addr, &mod_tree);
3750 if (mod) {
3751 BUG_ON(!within_module(addr, mod));
3752 if (mod->state == MODULE_STATE_UNFORMED)
3753 mod = NULL;
3754 }
3755 return mod;
3756 }
3757
3758 /**
3759 * is_module_text_address() - is this address inside module code?
3760 * @addr: the address to check.
3761 *
3762 * See is_module_address() if you simply want to see if the address is
3763 * anywhere in a module. See kernel_text_address() for testing if an
3764 * address corresponds to kernel or module code.
3765 */
is_module_text_address(unsigned long addr)3766 bool is_module_text_address(unsigned long addr)
3767 {
3768 bool ret;
3769
3770 preempt_disable();
3771 ret = __module_text_address(addr) != NULL;
3772 preempt_enable();
3773
3774 return ret;
3775 }
3776
3777 /**
3778 * __module_text_address() - get the module whose code contains an address.
3779 * @addr: the address.
3780 *
3781 * Must be called with preempt disabled or module mutex held so that
3782 * module doesn't get freed during this.
3783 */
__module_text_address(unsigned long addr)3784 struct module *__module_text_address(unsigned long addr)
3785 {
3786 struct module *mod = __module_address(addr);
3787 if (mod) {
3788 /* Make sure it's within the text section. */
3789 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3790 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3791 mod = NULL;
3792 }
3793 return mod;
3794 }
3795
3796 /* Don't grab lock, we're oopsing. */
print_modules(void)3797 void print_modules(void)
3798 {
3799 struct module *mod;
3800 char buf[MODULE_FLAGS_BUF_SIZE];
3801
3802 printk(KERN_DEFAULT "Modules linked in:");
3803 /* Most callers should already have preempt disabled, but make sure */
3804 preempt_disable();
3805 list_for_each_entry_rcu(mod, &modules, list) {
3806 if (mod->state == MODULE_STATE_UNFORMED)
3807 continue;
3808 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3809 }
3810
3811 print_unloaded_tainted_modules();
3812 preempt_enable();
3813 if (last_unloaded_module.name[0])
3814 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3815 last_unloaded_module.taints);
3816 pr_cont("\n");
3817 }
3818
3819 #ifdef CONFIG_MODULE_DEBUGFS
3820 struct dentry *mod_debugfs_root;
3821
module_debugfs_init(void)3822 static int module_debugfs_init(void)
3823 {
3824 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3825 return 0;
3826 }
3827 module_init(module_debugfs_init);
3828 #endif
3829