xref: /linux/kernel/module/main.c (revision ba6ec09911b805778a2fed6d626bfe77b011a717)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable with preempt_disable),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
find_any_unique_sec(const struct load_info * info,const char * name)208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
kernel_symbol_name(const struct kernel_symbol * sym)285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
kernel_symbol_namespace(const struct kernel_symbol * sym)294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
cmp_name(const void * name,const void * sym)305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
335  */
find_symbol(struct find_symbol_arg * fsa)336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	module_assert_mutex_or_preempt();
349 
350 	for (i = 0; i < ARRAY_SIZE(arr); i++)
351 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 			return true;
353 
354 	list_for_each_entry_rcu(mod, &modules, list,
355 				lockdep_is_held(&module_mutex)) {
356 		struct symsearch arr[] = {
357 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 			  NOT_GPL_ONLY },
359 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 			  mod->gpl_crcs,
361 			  GPL_ONLY },
362 		};
363 
364 		if (mod->state == MODULE_STATE_UNFORMED)
365 			continue;
366 
367 		for (i = 0; i < ARRAY_SIZE(arr); i++)
368 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 				return true;
370 	}
371 
372 	pr_debug("Failed to find symbol %s\n", fsa->name);
373 	return false;
374 }
375 
376 /*
377  * Search for module by name: must hold module_mutex (or preempt disabled
378  * for read-only access).
379  */
find_module_all(const char * name,size_t len,bool even_unformed)380 struct module *find_module_all(const char *name, size_t len,
381 			       bool even_unformed)
382 {
383 	struct module *mod;
384 
385 	module_assert_mutex_or_preempt();
386 
387 	list_for_each_entry_rcu(mod, &modules, list,
388 				lockdep_is_held(&module_mutex)) {
389 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 			continue;
391 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 			return mod;
393 	}
394 	return NULL;
395 }
396 
find_module(const char * name)397 struct module *find_module(const char *name)
398 {
399 	return find_module_all(name, strlen(name), false);
400 }
401 
402 #ifdef CONFIG_SMP
403 
mod_percpu(struct module * mod)404 static inline void __percpu *mod_percpu(struct module *mod)
405 {
406 	return mod->percpu;
407 }
408 
percpu_modalloc(struct module * mod,struct load_info * info)409 static int percpu_modalloc(struct module *mod, struct load_info *info)
410 {
411 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 	unsigned long align = pcpusec->sh_addralign;
413 
414 	if (!pcpusec->sh_size)
415 		return 0;
416 
417 	if (align > PAGE_SIZE) {
418 		pr_warn("%s: per-cpu alignment %li > %li\n",
419 			mod->name, align, PAGE_SIZE);
420 		align = PAGE_SIZE;
421 	}
422 
423 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 	if (!mod->percpu) {
425 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 			mod->name, (unsigned long)pcpusec->sh_size);
427 		return -ENOMEM;
428 	}
429 	mod->percpu_size = pcpusec->sh_size;
430 	return 0;
431 }
432 
percpu_modfree(struct module * mod)433 static void percpu_modfree(struct module *mod)
434 {
435 	free_percpu(mod->percpu);
436 }
437 
find_pcpusec(struct load_info * info)438 static unsigned int find_pcpusec(struct load_info *info)
439 {
440 	return find_sec(info, ".data..percpu");
441 }
442 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)443 static void percpu_modcopy(struct module *mod,
444 			   const void *from, unsigned long size)
445 {
446 	int cpu;
447 
448 	for_each_possible_cpu(cpu)
449 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
450 }
451 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
453 {
454 	struct module *mod;
455 	unsigned int cpu;
456 
457 	preempt_disable();
458 
459 	list_for_each_entry_rcu(mod, &modules, list) {
460 		if (mod->state == MODULE_STATE_UNFORMED)
461 			continue;
462 		if (!mod->percpu_size)
463 			continue;
464 		for_each_possible_cpu(cpu) {
465 			void *start = per_cpu_ptr(mod->percpu, cpu);
466 			void *va = (void *)addr;
467 
468 			if (va >= start && va < start + mod->percpu_size) {
469 				if (can_addr) {
470 					*can_addr = (unsigned long) (va - start);
471 					*can_addr += (unsigned long)
472 						per_cpu_ptr(mod->percpu,
473 							    get_boot_cpu_id());
474 				}
475 				preempt_enable();
476 				return true;
477 			}
478 		}
479 	}
480 
481 	preempt_enable();
482 	return false;
483 }
484 
485 /**
486  * is_module_percpu_address() - test whether address is from module static percpu
487  * @addr: address to test
488  *
489  * Test whether @addr belongs to module static percpu area.
490  *
491  * Return: %true if @addr is from module static percpu area
492  */
is_module_percpu_address(unsigned long addr)493 bool is_module_percpu_address(unsigned long addr)
494 {
495 	return __is_module_percpu_address(addr, NULL);
496 }
497 
498 #else /* ... !CONFIG_SMP */
499 
mod_percpu(struct module * mod)500 static inline void __percpu *mod_percpu(struct module *mod)
501 {
502 	return NULL;
503 }
percpu_modalloc(struct module * mod,struct load_info * info)504 static int percpu_modalloc(struct module *mod, struct load_info *info)
505 {
506 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 		return -ENOMEM;
509 	return 0;
510 }
percpu_modfree(struct module * mod)511 static inline void percpu_modfree(struct module *mod)
512 {
513 }
find_pcpusec(struct load_info * info)514 static unsigned int find_pcpusec(struct load_info *info)
515 {
516 	return 0;
517 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)518 static inline void percpu_modcopy(struct module *mod,
519 				  const void *from, unsigned long size)
520 {
521 	/* pcpusec should be 0, and size of that section should be 0. */
522 	BUG_ON(size != 0);
523 }
is_module_percpu_address(unsigned long addr)524 bool is_module_percpu_address(unsigned long addr)
525 {
526 	return false;
527 }
528 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
530 {
531 	return false;
532 }
533 
534 #endif /* CONFIG_SMP */
535 
536 #define MODINFO_ATTR(field)	\
537 static void setup_modinfo_##field(struct module *mod, const char *s)  \
538 {                                                                     \
539 	mod->field = kstrdup(s, GFP_KERNEL);                          \
540 }                                                                     \
541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
542 			struct module_kobject *mk, char *buffer)      \
543 {                                                                     \
544 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
545 }                                                                     \
546 static int modinfo_##field##_exists(struct module *mod)               \
547 {                                                                     \
548 	return mod->field != NULL;                                    \
549 }                                                                     \
550 static void free_modinfo_##field(struct module *mod)                  \
551 {                                                                     \
552 	kfree(mod->field);                                            \
553 	mod->field = NULL;                                            \
554 }                                                                     \
555 static const struct module_attribute modinfo_##field = {              \
556 	.attr = { .name = __stringify(field), .mode = 0444 },         \
557 	.show = show_modinfo_##field,                                 \
558 	.setup = setup_modinfo_##field,                               \
559 	.test = modinfo_##field##_exists,                             \
560 	.free = free_modinfo_##field,                                 \
561 };
562 
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565 
566 static struct {
567 	char name[MODULE_NAME_LEN + 1];
568 	char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
570 
571 #ifdef CONFIG_MODULE_UNLOAD
572 
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
574 
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE	1
577 
578 /* Init the unload section of the module. */
module_unload_init(struct module * mod)579 static int module_unload_init(struct module *mod)
580 {
581 	/*
582 	 * Initialize reference counter to MODULE_REF_BASE.
583 	 * refcnt == 0 means module is going.
584 	 */
585 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
586 
587 	INIT_LIST_HEAD(&mod->source_list);
588 	INIT_LIST_HEAD(&mod->target_list);
589 
590 	/* Hold reference count during initialization. */
591 	atomic_inc(&mod->refcnt);
592 
593 	return 0;
594 }
595 
596 /* Does a already use b? */
already_uses(struct module * a,struct module * b)597 static int already_uses(struct module *a, struct module *b)
598 {
599 	struct module_use *use;
600 
601 	list_for_each_entry(use, &b->source_list, source_list) {
602 		if (use->source == a)
603 			return 1;
604 	}
605 	pr_debug("%s does not use %s!\n", a->name, b->name);
606 	return 0;
607 }
608 
609 /*
610  * Module a uses b
611  *  - we add 'a' as a "source", 'b' as a "target" of module use
612  *  - the module_use is added to the list of 'b' sources (so
613  *    'b' can walk the list to see who sourced them), and of 'a'
614  *    targets (so 'a' can see what modules it targets).
615  */
add_module_usage(struct module * a,struct module * b)616 static int add_module_usage(struct module *a, struct module *b)
617 {
618 	struct module_use *use;
619 
620 	pr_debug("Allocating new usage for %s.\n", a->name);
621 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 	if (!use)
623 		return -ENOMEM;
624 
625 	use->source = a;
626 	use->target = b;
627 	list_add(&use->source_list, &b->source_list);
628 	list_add(&use->target_list, &a->target_list);
629 	return 0;
630 }
631 
632 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)633 static int ref_module(struct module *a, struct module *b)
634 {
635 	int err;
636 
637 	if (b == NULL || already_uses(a, b))
638 		return 0;
639 
640 	/* If module isn't available, we fail. */
641 	err = strong_try_module_get(b);
642 	if (err)
643 		return err;
644 
645 	err = add_module_usage(a, b);
646 	if (err) {
647 		module_put(b);
648 		return err;
649 	}
650 	return 0;
651 }
652 
653 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)654 static void module_unload_free(struct module *mod)
655 {
656 	struct module_use *use, *tmp;
657 
658 	mutex_lock(&module_mutex);
659 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 		struct module *i = use->target;
661 		pr_debug("%s unusing %s\n", mod->name, i->name);
662 		module_put(i);
663 		list_del(&use->source_list);
664 		list_del(&use->target_list);
665 		kfree(use);
666 	}
667 	mutex_unlock(&module_mutex);
668 }
669 
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)671 static inline int try_force_unload(unsigned int flags)
672 {
673 	int ret = (flags & O_TRUNC);
674 	if (ret)
675 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 	return ret;
677 }
678 #else
try_force_unload(unsigned int flags)679 static inline int try_force_unload(unsigned int flags)
680 {
681 	return 0;
682 }
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
684 
685 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)686 static int try_release_module_ref(struct module *mod)
687 {
688 	int ret;
689 
690 	/* Try to decrement refcnt which we set at loading */
691 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 	BUG_ON(ret < 0);
693 	if (ret)
694 		/* Someone can put this right now, recover with checking */
695 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
696 
697 	return ret;
698 }
699 
try_stop_module(struct module * mod,int flags,int * forced)700 static int try_stop_module(struct module *mod, int flags, int *forced)
701 {
702 	/* If it's not unused, quit unless we're forcing. */
703 	if (try_release_module_ref(mod) != 0) {
704 		*forced = try_force_unload(flags);
705 		if (!(*forced))
706 			return -EWOULDBLOCK;
707 	}
708 
709 	/* Mark it as dying. */
710 	mod->state = MODULE_STATE_GOING;
711 
712 	return 0;
713 }
714 
715 /**
716  * module_refcount() - return the refcount or -1 if unloading
717  * @mod:	the module we're checking
718  *
719  * Return:
720  *	-1 if the module is in the process of unloading
721  *	otherwise the number of references in the kernel to the module
722  */
module_refcount(struct module * mod)723 int module_refcount(struct module *mod)
724 {
725 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
726 }
727 EXPORT_SYMBOL(module_refcount);
728 
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
731 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 		unsigned int, flags)
734 {
735 	struct module *mod;
736 	char name[MODULE_NAME_LEN];
737 	char buf[MODULE_FLAGS_BUF_SIZE];
738 	int ret, forced = 0;
739 
740 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 		return -EPERM;
742 
743 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 		return -EFAULT;
745 	name[MODULE_NAME_LEN-1] = '\0';
746 
747 	audit_log_kern_module(name);
748 
749 	if (mutex_lock_interruptible(&module_mutex) != 0)
750 		return -EINTR;
751 
752 	mod = find_module(name);
753 	if (!mod) {
754 		ret = -ENOENT;
755 		goto out;
756 	}
757 
758 	if (!list_empty(&mod->source_list)) {
759 		/* Other modules depend on us: get rid of them first. */
760 		ret = -EWOULDBLOCK;
761 		goto out;
762 	}
763 
764 	/* Doing init or already dying? */
765 	if (mod->state != MODULE_STATE_LIVE) {
766 		/* FIXME: if (force), slam module count damn the torpedoes */
767 		pr_debug("%s already dying\n", mod->name);
768 		ret = -EBUSY;
769 		goto out;
770 	}
771 
772 	/* If it has an init func, it must have an exit func to unload */
773 	if (mod->init && !mod->exit) {
774 		forced = try_force_unload(flags);
775 		if (!forced) {
776 			/* This module can't be removed */
777 			ret = -EBUSY;
778 			goto out;
779 		}
780 	}
781 
782 	ret = try_stop_module(mod, flags, &forced);
783 	if (ret != 0)
784 		goto out;
785 
786 	mutex_unlock(&module_mutex);
787 	/* Final destruction now no one is using it. */
788 	if (mod->exit != NULL)
789 		mod->exit();
790 	blocking_notifier_call_chain(&module_notify_list,
791 				     MODULE_STATE_GOING, mod);
792 	klp_module_going(mod);
793 	ftrace_release_mod(mod);
794 
795 	async_synchronize_full();
796 
797 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
798 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
800 
801 	free_module(mod);
802 	/* someone could wait for the module in add_unformed_module() */
803 	wake_up_all(&module_wq);
804 	return 0;
805 out:
806 	mutex_unlock(&module_mutex);
807 	return ret;
808 }
809 
__symbol_put(const char * symbol)810 void __symbol_put(const char *symbol)
811 {
812 	struct find_symbol_arg fsa = {
813 		.name	= symbol,
814 		.gplok	= true,
815 	};
816 
817 	preempt_disable();
818 	BUG_ON(!find_symbol(&fsa));
819 	module_put(fsa.owner);
820 	preempt_enable();
821 }
822 EXPORT_SYMBOL(__symbol_put);
823 
824 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)825 void symbol_put_addr(void *addr)
826 {
827 	struct module *modaddr;
828 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
829 
830 	if (core_kernel_text(a))
831 		return;
832 
833 	/*
834 	 * Even though we hold a reference on the module; we still need to
835 	 * disable preemption in order to safely traverse the data structure.
836 	 */
837 	preempt_disable();
838 	modaddr = __module_text_address(a);
839 	BUG_ON(!modaddr);
840 	module_put(modaddr);
841 	preempt_enable();
842 }
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
844 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)845 static ssize_t show_refcnt(const struct module_attribute *mattr,
846 			   struct module_kobject *mk, char *buffer)
847 {
848 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
849 }
850 
851 static const struct module_attribute modinfo_refcnt =
852 	__ATTR(refcnt, 0444, show_refcnt, NULL);
853 
__module_get(struct module * module)854 void __module_get(struct module *module)
855 {
856 	if (module) {
857 		atomic_inc(&module->refcnt);
858 		trace_module_get(module, _RET_IP_);
859 	}
860 }
861 EXPORT_SYMBOL(__module_get);
862 
try_module_get(struct module * module)863 bool try_module_get(struct module *module)
864 {
865 	bool ret = true;
866 
867 	if (module) {
868 		/* Note: here, we can fail to get a reference */
869 		if (likely(module_is_live(module) &&
870 			   atomic_inc_not_zero(&module->refcnt) != 0))
871 			trace_module_get(module, _RET_IP_);
872 		else
873 			ret = false;
874 	}
875 	return ret;
876 }
877 EXPORT_SYMBOL(try_module_get);
878 
module_put(struct module * module)879 void module_put(struct module *module)
880 {
881 	int ret;
882 
883 	if (module) {
884 		ret = atomic_dec_if_positive(&module->refcnt);
885 		WARN_ON(ret < 0);	/* Failed to put refcount */
886 		trace_module_put(module, _RET_IP_);
887 	}
888 }
889 EXPORT_SYMBOL(module_put);
890 
891 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)892 static inline void module_unload_free(struct module *mod)
893 {
894 }
895 
ref_module(struct module * a,struct module * b)896 static int ref_module(struct module *a, struct module *b)
897 {
898 	return strong_try_module_get(b);
899 }
900 
module_unload_init(struct module * mod)901 static inline int module_unload_init(struct module *mod)
902 {
903 	return 0;
904 }
905 #endif /* CONFIG_MODULE_UNLOAD */
906 
module_flags_taint(unsigned long taints,char * buf)907 size_t module_flags_taint(unsigned long taints, char *buf)
908 {
909 	size_t l = 0;
910 	int i;
911 
912 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 		if (taint_flags[i].module && test_bit(i, &taints))
914 			buf[l++] = taint_flags[i].c_true;
915 	}
916 
917 	return l;
918 }
919 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)920 static ssize_t show_initstate(const struct module_attribute *mattr,
921 			      struct module_kobject *mk, char *buffer)
922 {
923 	const char *state = "unknown";
924 
925 	switch (mk->mod->state) {
926 	case MODULE_STATE_LIVE:
927 		state = "live";
928 		break;
929 	case MODULE_STATE_COMING:
930 		state = "coming";
931 		break;
932 	case MODULE_STATE_GOING:
933 		state = "going";
934 		break;
935 	default:
936 		BUG();
937 	}
938 	return sprintf(buffer, "%s\n", state);
939 }
940 
941 static const struct module_attribute modinfo_initstate =
942 	__ATTR(initstate, 0444, show_initstate, NULL);
943 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)944 static ssize_t store_uevent(const struct module_attribute *mattr,
945 			    struct module_kobject *mk,
946 			    const char *buffer, size_t count)
947 {
948 	int rc;
949 
950 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 	return rc ? rc : count;
952 }
953 
954 const struct module_attribute module_uevent =
955 	__ATTR(uevent, 0200, NULL, store_uevent);
956 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)957 static ssize_t show_coresize(const struct module_attribute *mattr,
958 			     struct module_kobject *mk, char *buffer)
959 {
960 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
961 
962 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 		for_class_mod_mem_type(type, core_data)
964 			size += mk->mod->mem[type].size;
965 	}
966 	return sprintf(buffer, "%u\n", size);
967 }
968 
969 static const struct module_attribute modinfo_coresize =
970 	__ATTR(coresize, 0444, show_coresize, NULL);
971 
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)973 static ssize_t show_datasize(const struct module_attribute *mattr,
974 			     struct module_kobject *mk, char *buffer)
975 {
976 	unsigned int size = 0;
977 
978 	for_class_mod_mem_type(type, core_data)
979 		size += mk->mod->mem[type].size;
980 	return sprintf(buffer, "%u\n", size);
981 }
982 
983 static const struct module_attribute modinfo_datasize =
984 	__ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
986 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_initsize(const struct module_attribute *mattr,
988 			     struct module_kobject *mk, char *buffer)
989 {
990 	unsigned int size = 0;
991 
992 	for_class_mod_mem_type(type, init)
993 		size += mk->mod->mem[type].size;
994 	return sprintf(buffer, "%u\n", size);
995 }
996 
997 static const struct module_attribute modinfo_initsize =
998 	__ATTR(initsize, 0444, show_initsize, NULL);
999 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1000 static ssize_t show_taint(const struct module_attribute *mattr,
1001 			  struct module_kobject *mk, char *buffer)
1002 {
1003 	size_t l;
1004 
1005 	l = module_flags_taint(mk->mod->taints, buffer);
1006 	buffer[l++] = '\n';
1007 	return l;
1008 }
1009 
1010 static const struct module_attribute modinfo_taint =
1011 	__ATTR(taint, 0444, show_taint, NULL);
1012 
1013 const struct module_attribute *const modinfo_attrs[] = {
1014 	&module_uevent,
1015 	&modinfo_version,
1016 	&modinfo_srcversion,
1017 	&modinfo_initstate,
1018 	&modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 	&modinfo_datasize,
1021 #endif
1022 	&modinfo_initsize,
1023 	&modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 	&modinfo_refcnt,
1026 #endif
1027 	NULL,
1028 };
1029 
1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1031 
1032 static const char vermagic[] = VERMAGIC_STRING;
1033 
try_to_force_load(struct module * mod,const char * reason)1034 int try_to_force_load(struct module *mod, const char *reason)
1035 {
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 	if (!test_taint(TAINT_FORCED_MODULE))
1038 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 	return 0;
1041 #else
1042 	return -ENOEXEC;
1043 #endif
1044 }
1045 
1046 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1048 {
1049 	/* Skip non-zero chars */
1050 	while (string[0]) {
1051 		string++;
1052 		if ((*secsize)-- <= 1)
1053 			return NULL;
1054 	}
1055 
1056 	/* Skip any zero padding. */
1057 	while (!string[0]) {
1058 		string++;
1059 		if ((*secsize)-- <= 1)
1060 			return NULL;
1061 	}
1062 	return string;
1063 }
1064 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 			      char *prev)
1067 {
1068 	char *p;
1069 	unsigned int taglen = strlen(tag);
1070 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 	unsigned long size = infosec->sh_size;
1072 
1073 	/*
1074 	 * get_modinfo() calls made before rewrite_section_headers()
1075 	 * must use sh_offset, as sh_addr isn't set!
1076 	 */
1077 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1078 
1079 	if (prev) {
1080 		size -= prev - modinfo;
1081 		modinfo = module_next_tag_pair(prev, &size);
1082 	}
1083 
1084 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 			return p + taglen + 1;
1087 	}
1088 	return NULL;
1089 }
1090 
get_modinfo(const struct load_info * info,const char * tag)1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1092 {
1093 	return get_next_modinfo(info, tag, NULL);
1094 }
1095 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 					const struct kernel_symbol *sym,
1098 					struct module *mod)
1099 {
1100 	const char *namespace;
1101 	char *imported_namespace;
1102 
1103 	namespace = kernel_symbol_namespace(sym);
1104 	if (namespace && namespace[0]) {
1105 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 			if (strcmp(namespace, imported_namespace) == 0)
1107 				return 0;
1108 		}
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 		pr_warn(
1111 #else
1112 		pr_err(
1113 #endif
1114 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 			mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 		return -EINVAL;
1118 #endif
1119 	}
1120 	return 0;
1121 }
1122 
inherit_taint(struct module * mod,struct module * owner,const char * name)1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1124 {
1125 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 		return true;
1127 
1128 	if (mod->using_gplonly_symbols) {
1129 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 			mod->name, name, owner->name);
1131 		return false;
1132 	}
1133 
1134 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 			mod->name, name, owner->name);
1137 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1138 	}
1139 	return true;
1140 }
1141 
1142 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 						  const struct load_info *info,
1145 						  const char *name,
1146 						  char ownername[])
1147 {
1148 	struct find_symbol_arg fsa = {
1149 		.name	= name,
1150 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 		.warn	= true,
1152 	};
1153 	int err;
1154 
1155 	/*
1156 	 * The module_mutex should not be a heavily contended lock;
1157 	 * if we get the occasional sleep here, we'll go an extra iteration
1158 	 * in the wait_event_interruptible(), which is harmless.
1159 	 */
1160 	sched_annotate_sleep();
1161 	mutex_lock(&module_mutex);
1162 	if (!find_symbol(&fsa))
1163 		goto unlock;
1164 
1165 	if (fsa.license == GPL_ONLY)
1166 		mod->using_gplonly_symbols = true;
1167 
1168 	if (!inherit_taint(mod, fsa.owner, name)) {
1169 		fsa.sym = NULL;
1170 		goto getname;
1171 	}
1172 
1173 	if (!check_version(info, name, mod, fsa.crc)) {
1174 		fsa.sym = ERR_PTR(-EINVAL);
1175 		goto getname;
1176 	}
1177 
1178 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 	if (err) {
1180 		fsa.sym = ERR_PTR(err);
1181 		goto getname;
1182 	}
1183 
1184 	err = ref_module(mod, fsa.owner);
1185 	if (err) {
1186 		fsa.sym = ERR_PTR(err);
1187 		goto getname;
1188 	}
1189 
1190 getname:
1191 	/* We must make copy under the lock if we failed to get ref. */
1192 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 	mutex_unlock(&module_mutex);
1195 	return fsa.sym;
1196 }
1197 
1198 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1199 resolve_symbol_wait(struct module *mod,
1200 		    const struct load_info *info,
1201 		    const char *name)
1202 {
1203 	const struct kernel_symbol *ksym;
1204 	char owner[MODULE_NAME_LEN];
1205 
1206 	if (wait_event_interruptible_timeout(module_wq,
1207 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 			|| PTR_ERR(ksym) != -EBUSY,
1209 					     30 * HZ) <= 0) {
1210 		pr_warn("%s: gave up waiting for init of module %s.\n",
1211 			mod->name, owner);
1212 	}
1213 	return ksym;
1214 }
1215 
module_arch_cleanup(struct module * mod)1216 void __weak module_arch_cleanup(struct module *mod)
1217 {
1218 }
1219 
module_arch_freeing_init(struct module * mod)1220 void __weak module_arch_freeing_init(struct module *mod)
1221 {
1222 }
1223 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1225 {
1226 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1227 	enum execmem_type execmem_type;
1228 	void *ptr;
1229 
1230 	mod->mem[type].size = size;
1231 
1232 	if (mod_mem_type_is_data(type))
1233 		execmem_type = EXECMEM_MODULE_DATA;
1234 	else
1235 		execmem_type = EXECMEM_MODULE_TEXT;
1236 
1237 	ptr = execmem_alloc(execmem_type, size);
1238 	if (!ptr)
1239 		return -ENOMEM;
1240 
1241 	if (execmem_is_rox(execmem_type)) {
1242 		int err = execmem_make_temp_rw(ptr, size);
1243 
1244 		if (err) {
1245 			execmem_free(ptr);
1246 			return -ENOMEM;
1247 		}
1248 
1249 		mod->mem[type].is_rox = true;
1250 	}
1251 
1252 	/*
1253 	 * The pointer to these blocks of memory are stored on the module
1254 	 * structure and we keep that around so long as the module is
1255 	 * around. We only free that memory when we unload the module.
1256 	 * Just mark them as not being a leak then. The .init* ELF
1257 	 * sections *do* get freed after boot so we *could* treat them
1258 	 * slightly differently with kmemleak_ignore() and only grey
1259 	 * them out as they work as typical memory allocations which
1260 	 * *do* eventually get freed, but let's just keep things simple
1261 	 * and avoid *any* false positives.
1262 	 */
1263 	if (!mod->mem[type].is_rox)
1264 		kmemleak_not_leak(ptr);
1265 
1266 	memset(ptr, 0, size);
1267 	mod->mem[type].base = ptr;
1268 
1269 	return 0;
1270 }
1271 
module_memory_restore_rox(struct module * mod)1272 static void module_memory_restore_rox(struct module *mod)
1273 {
1274 	for_class_mod_mem_type(type, text) {
1275 		struct module_memory *mem = &mod->mem[type];
1276 
1277 		if (mem->is_rox)
1278 			execmem_restore_rox(mem->base, mem->size);
1279 	}
1280 }
1281 
module_memory_free(struct module * mod,enum mod_mem_type type)1282 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1283 {
1284 	struct module_memory *mem = &mod->mem[type];
1285 
1286 	execmem_free(mem->base);
1287 }
1288 
free_mod_mem(struct module * mod)1289 static void free_mod_mem(struct module *mod)
1290 {
1291 	for_each_mod_mem_type(type) {
1292 		struct module_memory *mod_mem = &mod->mem[type];
1293 
1294 		if (type == MOD_DATA)
1295 			continue;
1296 
1297 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1298 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1299 		if (mod_mem->size)
1300 			module_memory_free(mod, type);
1301 	}
1302 
1303 	/* MOD_DATA hosts mod, so free it at last */
1304 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1305 	module_memory_free(mod, MOD_DATA);
1306 }
1307 
1308 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1309 static void free_module(struct module *mod)
1310 {
1311 	trace_module_free(mod);
1312 
1313 	codetag_unload_module(mod);
1314 
1315 	mod_sysfs_teardown(mod);
1316 
1317 	/*
1318 	 * We leave it in list to prevent duplicate loads, but make sure
1319 	 * that noone uses it while it's being deconstructed.
1320 	 */
1321 	mutex_lock(&module_mutex);
1322 	mod->state = MODULE_STATE_UNFORMED;
1323 	mutex_unlock(&module_mutex);
1324 
1325 	/* Arch-specific cleanup. */
1326 	module_arch_cleanup(mod);
1327 
1328 	/* Module unload stuff */
1329 	module_unload_free(mod);
1330 
1331 	/* Free any allocated parameters. */
1332 	destroy_params(mod->kp, mod->num_kp);
1333 
1334 	if (is_livepatch_module(mod))
1335 		free_module_elf(mod);
1336 
1337 	/* Now we can delete it from the lists */
1338 	mutex_lock(&module_mutex);
1339 	/* Unlink carefully: kallsyms could be walking list. */
1340 	list_del_rcu(&mod->list);
1341 	mod_tree_remove(mod);
1342 	/* Remove this module from bug list, this uses list_del_rcu */
1343 	module_bug_cleanup(mod);
1344 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1345 	synchronize_rcu();
1346 	if (try_add_tainted_module(mod))
1347 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1348 		       mod->name);
1349 	mutex_unlock(&module_mutex);
1350 
1351 	/* This may be empty, but that's OK */
1352 	module_arch_freeing_init(mod);
1353 	kfree(mod->args);
1354 	percpu_modfree(mod);
1355 
1356 	free_mod_mem(mod);
1357 }
1358 
__symbol_get(const char * symbol)1359 void *__symbol_get(const char *symbol)
1360 {
1361 	struct find_symbol_arg fsa = {
1362 		.name	= symbol,
1363 		.gplok	= true,
1364 		.warn	= true,
1365 	};
1366 
1367 	preempt_disable();
1368 	if (!find_symbol(&fsa))
1369 		goto fail;
1370 	if (fsa.license != GPL_ONLY) {
1371 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1372 			symbol);
1373 		goto fail;
1374 	}
1375 	if (strong_try_module_get(fsa.owner))
1376 		goto fail;
1377 	preempt_enable();
1378 	return (void *)kernel_symbol_value(fsa.sym);
1379 fail:
1380 	preempt_enable();
1381 	return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__symbol_get);
1384 
1385 /*
1386  * Ensure that an exported symbol [global namespace] does not already exist
1387  * in the kernel or in some other module's exported symbol table.
1388  *
1389  * You must hold the module_mutex.
1390  */
verify_exported_symbols(struct module * mod)1391 static int verify_exported_symbols(struct module *mod)
1392 {
1393 	unsigned int i;
1394 	const struct kernel_symbol *s;
1395 	struct {
1396 		const struct kernel_symbol *sym;
1397 		unsigned int num;
1398 	} arr[] = {
1399 		{ mod->syms, mod->num_syms },
1400 		{ mod->gpl_syms, mod->num_gpl_syms },
1401 	};
1402 
1403 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1404 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1405 			struct find_symbol_arg fsa = {
1406 				.name	= kernel_symbol_name(s),
1407 				.gplok	= true,
1408 			};
1409 			if (find_symbol(&fsa)) {
1410 				pr_err("%s: exports duplicate symbol %s"
1411 				       " (owned by %s)\n",
1412 				       mod->name, kernel_symbol_name(s),
1413 				       module_name(fsa.owner));
1414 				return -ENOEXEC;
1415 			}
1416 		}
1417 	}
1418 	return 0;
1419 }
1420 
ignore_undef_symbol(Elf_Half emachine,const char * name)1421 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1422 {
1423 	/*
1424 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1425 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1426 	 * i386 has a similar problem but may not deserve a fix.
1427 	 *
1428 	 * If we ever have to ignore many symbols, consider refactoring the code to
1429 	 * only warn if referenced by a relocation.
1430 	 */
1431 	if (emachine == EM_386 || emachine == EM_X86_64)
1432 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1433 	return false;
1434 }
1435 
1436 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1437 static int simplify_symbols(struct module *mod, const struct load_info *info)
1438 {
1439 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1440 	Elf_Sym *sym = (void *)symsec->sh_addr;
1441 	unsigned long secbase;
1442 	unsigned int i;
1443 	int ret = 0;
1444 	const struct kernel_symbol *ksym;
1445 
1446 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1447 		const char *name = info->strtab + sym[i].st_name;
1448 
1449 		switch (sym[i].st_shndx) {
1450 		case SHN_COMMON:
1451 			/* Ignore common symbols */
1452 			if (!strncmp(name, "__gnu_lto", 9))
1453 				break;
1454 
1455 			/*
1456 			 * We compiled with -fno-common.  These are not
1457 			 * supposed to happen.
1458 			 */
1459 			pr_debug("Common symbol: %s\n", name);
1460 			pr_warn("%s: please compile with -fno-common\n",
1461 			       mod->name);
1462 			ret = -ENOEXEC;
1463 			break;
1464 
1465 		case SHN_ABS:
1466 			/* Don't need to do anything */
1467 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1468 				 (long)sym[i].st_value, name);
1469 			break;
1470 
1471 		case SHN_LIVEPATCH:
1472 			/* Livepatch symbols are resolved by livepatch */
1473 			break;
1474 
1475 		case SHN_UNDEF:
1476 			ksym = resolve_symbol_wait(mod, info, name);
1477 			/* Ok if resolved.  */
1478 			if (ksym && !IS_ERR(ksym)) {
1479 				sym[i].st_value = kernel_symbol_value(ksym);
1480 				break;
1481 			}
1482 
1483 			/* Ok if weak or ignored.  */
1484 			if (!ksym &&
1485 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1486 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1487 				break;
1488 
1489 			ret = PTR_ERR(ksym) ?: -ENOENT;
1490 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1491 				mod->name, name, ret);
1492 			break;
1493 
1494 		default:
1495 			/* Divert to percpu allocation if a percpu var. */
1496 			if (sym[i].st_shndx == info->index.pcpu)
1497 				secbase = (unsigned long)mod_percpu(mod);
1498 			else
1499 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1500 			sym[i].st_value += secbase;
1501 			break;
1502 		}
1503 	}
1504 
1505 	return ret;
1506 }
1507 
apply_relocations(struct module * mod,const struct load_info * info)1508 static int apply_relocations(struct module *mod, const struct load_info *info)
1509 {
1510 	unsigned int i;
1511 	int err = 0;
1512 
1513 	/* Now do relocations. */
1514 	for (i = 1; i < info->hdr->e_shnum; i++) {
1515 		unsigned int infosec = info->sechdrs[i].sh_info;
1516 
1517 		/* Not a valid relocation section? */
1518 		if (infosec >= info->hdr->e_shnum)
1519 			continue;
1520 
1521 		/* Don't bother with non-allocated sections */
1522 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1523 			continue;
1524 
1525 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1526 			err = klp_apply_section_relocs(mod, info->sechdrs,
1527 						       info->secstrings,
1528 						       info->strtab,
1529 						       info->index.sym, i,
1530 						       NULL);
1531 		else if (info->sechdrs[i].sh_type == SHT_REL)
1532 			err = apply_relocate(info->sechdrs, info->strtab,
1533 					     info->index.sym, i, mod);
1534 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1535 			err = apply_relocate_add(info->sechdrs, info->strtab,
1536 						 info->index.sym, i, mod);
1537 		if (err < 0)
1538 			break;
1539 	}
1540 	return err;
1541 }
1542 
1543 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1544 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1545 					     unsigned int section)
1546 {
1547 	/* default implementation just returns zero */
1548 	return 0;
1549 }
1550 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1551 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1552 				Elf_Shdr *sechdr, unsigned int section)
1553 {
1554 	long offset;
1555 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1556 
1557 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1558 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1559 	mod->mem[type].size = offset + sechdr->sh_size;
1560 
1561 	WARN_ON_ONCE(offset & mask);
1562 	return offset | mask;
1563 }
1564 
module_init_layout_section(const char * sname)1565 bool module_init_layout_section(const char *sname)
1566 {
1567 #ifndef CONFIG_MODULE_UNLOAD
1568 	if (module_exit_section(sname))
1569 		return true;
1570 #endif
1571 	return module_init_section(sname);
1572 }
1573 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1574 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1575 {
1576 	unsigned int m, i;
1577 
1578 	static const unsigned long masks[][2] = {
1579 		/*
1580 		 * NOTE: all executable code must be the first section
1581 		 * in this array; otherwise modify the text_size
1582 		 * finder in the two loops below
1583 		 */
1584 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1585 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1586 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1587 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1588 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1589 	};
1590 	static const int core_m_to_mem_type[] = {
1591 		MOD_TEXT,
1592 		MOD_RODATA,
1593 		MOD_RO_AFTER_INIT,
1594 		MOD_DATA,
1595 		MOD_DATA,
1596 	};
1597 	static const int init_m_to_mem_type[] = {
1598 		MOD_INIT_TEXT,
1599 		MOD_INIT_RODATA,
1600 		MOD_INVALID,
1601 		MOD_INIT_DATA,
1602 		MOD_INIT_DATA,
1603 	};
1604 
1605 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1606 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1607 
1608 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1609 			Elf_Shdr *s = &info->sechdrs[i];
1610 			const char *sname = info->secstrings + s->sh_name;
1611 
1612 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1613 			    || (s->sh_flags & masks[m][1])
1614 			    || s->sh_entsize != ~0UL
1615 			    || is_init != module_init_layout_section(sname))
1616 				continue;
1617 
1618 			if (WARN_ON_ONCE(type == MOD_INVALID))
1619 				continue;
1620 
1621 			/*
1622 			 * Do not allocate codetag memory as we load it into
1623 			 * preallocated contiguous memory.
1624 			 */
1625 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1626 				/*
1627 				 * s->sh_entsize won't be used but populate the
1628 				 * type field to avoid confusion.
1629 				 */
1630 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1631 						<< SH_ENTSIZE_TYPE_SHIFT;
1632 				continue;
1633 			}
1634 
1635 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1636 			pr_debug("\t%s\n", sname);
1637 		}
1638 	}
1639 }
1640 
1641 /*
1642  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1643  * might -- code, read-only data, read-write data, small data.  Tally
1644  * sizes, and place the offsets into sh_entsize fields: high bit means it
1645  * belongs in init.
1646  */
layout_sections(struct module * mod,struct load_info * info)1647 static void layout_sections(struct module *mod, struct load_info *info)
1648 {
1649 	unsigned int i;
1650 
1651 	for (i = 0; i < info->hdr->e_shnum; i++)
1652 		info->sechdrs[i].sh_entsize = ~0UL;
1653 
1654 	pr_debug("Core section allocation order for %s:\n", mod->name);
1655 	__layout_sections(mod, info, false);
1656 
1657 	pr_debug("Init section allocation order for %s:\n", mod->name);
1658 	__layout_sections(mod, info, true);
1659 }
1660 
module_license_taint_check(struct module * mod,const char * license)1661 static void module_license_taint_check(struct module *mod, const char *license)
1662 {
1663 	if (!license)
1664 		license = "unspecified";
1665 
1666 	if (!license_is_gpl_compatible(license)) {
1667 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1668 			pr_warn("%s: module license '%s' taints kernel.\n",
1669 				mod->name, license);
1670 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1671 				 LOCKDEP_NOW_UNRELIABLE);
1672 	}
1673 }
1674 
setup_modinfo(struct module * mod,struct load_info * info)1675 static void setup_modinfo(struct module *mod, struct load_info *info)
1676 {
1677 	const struct module_attribute *attr;
1678 	int i;
1679 
1680 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1681 		if (attr->setup)
1682 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1683 	}
1684 }
1685 
free_modinfo(struct module * mod)1686 static void free_modinfo(struct module *mod)
1687 {
1688 	const struct module_attribute *attr;
1689 	int i;
1690 
1691 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1692 		if (attr->free)
1693 			attr->free(mod);
1694 	}
1695 }
1696 
module_init_section(const char * name)1697 bool __weak module_init_section(const char *name)
1698 {
1699 	return strstarts(name, ".init");
1700 }
1701 
module_exit_section(const char * name)1702 bool __weak module_exit_section(const char *name)
1703 {
1704 	return strstarts(name, ".exit");
1705 }
1706 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1707 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1708 {
1709 #if defined(CONFIG_64BIT)
1710 	unsigned long long secend;
1711 #else
1712 	unsigned long secend;
1713 #endif
1714 
1715 	/*
1716 	 * Check for both overflow and offset/size being
1717 	 * too large.
1718 	 */
1719 	secend = shdr->sh_offset + shdr->sh_size;
1720 	if (secend < shdr->sh_offset || secend > info->len)
1721 		return -ENOEXEC;
1722 
1723 	return 0;
1724 }
1725 
1726 /**
1727  * elf_validity_ehdr() - Checks an ELF header for module validity
1728  * @info: Load info containing the ELF header to check
1729  *
1730  * Checks whether an ELF header could belong to a valid module. Checks:
1731  *
1732  * * ELF header is within the data the user provided
1733  * * ELF magic is present
1734  * * It is relocatable (not final linked, not core file, etc.)
1735  * * The header's machine type matches what the architecture expects.
1736  * * Optional arch-specific hook for other properties
1737  *   - module_elf_check_arch() is currently only used by PPC to check
1738  *   ELF ABI version, but may be used by others in the future.
1739  *
1740  * Return: %0 if valid, %-ENOEXEC on failure.
1741  */
elf_validity_ehdr(const struct load_info * info)1742 static int elf_validity_ehdr(const struct load_info *info)
1743 {
1744 	if (info->len < sizeof(*(info->hdr))) {
1745 		pr_err("Invalid ELF header len %lu\n", info->len);
1746 		return -ENOEXEC;
1747 	}
1748 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1749 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1750 		return -ENOEXEC;
1751 	}
1752 	if (info->hdr->e_type != ET_REL) {
1753 		pr_err("Invalid ELF header type: %u != %u\n",
1754 		       info->hdr->e_type, ET_REL);
1755 		return -ENOEXEC;
1756 	}
1757 	if (!elf_check_arch(info->hdr)) {
1758 		pr_err("Invalid architecture in ELF header: %u\n",
1759 		       info->hdr->e_machine);
1760 		return -ENOEXEC;
1761 	}
1762 	if (!module_elf_check_arch(info->hdr)) {
1763 		pr_err("Invalid module architecture in ELF header: %u\n",
1764 		       info->hdr->e_machine);
1765 		return -ENOEXEC;
1766 	}
1767 	return 0;
1768 }
1769 
1770 /**
1771  * elf_validity_cache_sechdrs() - Cache section headers if valid
1772  * @info: Load info to compute section headers from
1773  *
1774  * Checks:
1775  *
1776  * * ELF header is valid (see elf_validity_ehdr())
1777  * * Section headers are the size we expect
1778  * * Section array fits in the user provided data
1779  * * Section index 0 is NULL
1780  * * Section contents are inbounds
1781  *
1782  * Then updates @info with a &load_info->sechdrs pointer if valid.
1783  *
1784  * Return: %0 if valid, negative error code if validation failed.
1785  */
elf_validity_cache_sechdrs(struct load_info * info)1786 static int elf_validity_cache_sechdrs(struct load_info *info)
1787 {
1788 	Elf_Shdr *sechdrs;
1789 	Elf_Shdr *shdr;
1790 	int i;
1791 	int err;
1792 
1793 	err = elf_validity_ehdr(info);
1794 	if (err < 0)
1795 		return err;
1796 
1797 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1798 		pr_err("Invalid ELF section header size\n");
1799 		return -ENOEXEC;
1800 	}
1801 
1802 	/*
1803 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1804 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1805 	 * will not overflow unsigned long on any platform.
1806 	 */
1807 	if (info->hdr->e_shoff >= info->len
1808 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1809 		info->len - info->hdr->e_shoff)) {
1810 		pr_err("Invalid ELF section header overflow\n");
1811 		return -ENOEXEC;
1812 	}
1813 
1814 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1815 
1816 	/*
1817 	 * The code assumes that section 0 has a length of zero and
1818 	 * an addr of zero, so check for it.
1819 	 */
1820 	if (sechdrs[0].sh_type != SHT_NULL
1821 	    || sechdrs[0].sh_size != 0
1822 	    || sechdrs[0].sh_addr != 0) {
1823 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1824 		       sechdrs[0].sh_type);
1825 		return -ENOEXEC;
1826 	}
1827 
1828 	/* Validate contents are inbounds */
1829 	for (i = 1; i < info->hdr->e_shnum; i++) {
1830 		shdr = &sechdrs[i];
1831 		switch (shdr->sh_type) {
1832 		case SHT_NULL:
1833 		case SHT_NOBITS:
1834 			/* No contents, offset/size don't mean anything */
1835 			continue;
1836 		default:
1837 			err = validate_section_offset(info, shdr);
1838 			if (err < 0) {
1839 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1840 				       i, shdr->sh_type);
1841 				return err;
1842 			}
1843 		}
1844 	}
1845 
1846 	info->sechdrs = sechdrs;
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  * elf_validity_cache_secstrings() - Caches section names if valid
1853  * @info: Load info to cache section names from. Must have valid sechdrs.
1854  *
1855  * Specifically checks:
1856  *
1857  * * Section name table index is inbounds of section headers
1858  * * Section name table is not empty
1859  * * Section name table is NUL terminated
1860  * * All section name offsets are inbounds of the section
1861  *
1862  * Then updates @info with a &load_info->secstrings pointer if valid.
1863  *
1864  * Return: %0 if valid, negative error code if validation failed.
1865  */
elf_validity_cache_secstrings(struct load_info * info)1866 static int elf_validity_cache_secstrings(struct load_info *info)
1867 {
1868 	Elf_Shdr *strhdr, *shdr;
1869 	char *secstrings;
1870 	int i;
1871 
1872 	/*
1873 	 * Verify if the section name table index is valid.
1874 	 */
1875 	if (info->hdr->e_shstrndx == SHN_UNDEF
1876 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1877 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1878 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1879 		       info->hdr->e_shnum);
1880 		return -ENOEXEC;
1881 	}
1882 
1883 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1884 
1885 	/*
1886 	 * The section name table must be NUL-terminated, as required
1887 	 * by the spec. This makes strcmp and pr_* calls that access
1888 	 * strings in the section safe.
1889 	 */
1890 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1891 	if (strhdr->sh_size == 0) {
1892 		pr_err("empty section name table\n");
1893 		return -ENOEXEC;
1894 	}
1895 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1896 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1897 		return -ENOEXEC;
1898 	}
1899 
1900 	for (i = 0; i < info->hdr->e_shnum; i++) {
1901 		shdr = &info->sechdrs[i];
1902 		/* SHT_NULL means sh_name has an undefined value */
1903 		if (shdr->sh_type == SHT_NULL)
1904 			continue;
1905 		if (shdr->sh_name >= strhdr->sh_size) {
1906 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1907 			       i, shdr->sh_type);
1908 			return -ENOEXEC;
1909 		}
1910 	}
1911 
1912 	info->secstrings = secstrings;
1913 	return 0;
1914 }
1915 
1916 /**
1917  * elf_validity_cache_index_info() - Validate and cache modinfo section
1918  * @info: Load info to populate the modinfo index on.
1919  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1920  *
1921  * Checks that if there is a .modinfo section, it is unique.
1922  * Then, it caches its index in &load_info->index.info.
1923  * Finally, it tries to populate the name to improve error messages.
1924  *
1925  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1926  */
elf_validity_cache_index_info(struct load_info * info)1927 static int elf_validity_cache_index_info(struct load_info *info)
1928 {
1929 	int info_idx;
1930 
1931 	info_idx = find_any_unique_sec(info, ".modinfo");
1932 
1933 	if (info_idx == 0)
1934 		/* Early return, no .modinfo */
1935 		return 0;
1936 
1937 	if (info_idx < 0) {
1938 		pr_err("Only one .modinfo section must exist.\n");
1939 		return -ENOEXEC;
1940 	}
1941 
1942 	info->index.info = info_idx;
1943 	/* Try to find a name early so we can log errors with a module name */
1944 	info->name = get_modinfo(info, "name");
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  * elf_validity_cache_index_mod() - Validates and caches this_module section
1951  * @info: Load info to cache this_module on.
1952  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1953  *
1954  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1955  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1956  * to &__this_module properly. The kernel's modpost declares it on each
1957  * modules's *.mod.c file. If the struct module of the kernel changes a full
1958  * kernel rebuild is required.
1959  *
1960  * We have a few expectations for this special section, this function
1961  * validates all this for us:
1962  *
1963  * * The section has contents
1964  * * The section is unique
1965  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1966  * * The section size must match the kernel's run time's struct module
1967  *   size
1968  *
1969  * If all checks pass, the index will be cached in &load_info->index.mod
1970  *
1971  * Return: %0 on validation success, %-ENOEXEC on failure
1972  */
elf_validity_cache_index_mod(struct load_info * info)1973 static int elf_validity_cache_index_mod(struct load_info *info)
1974 {
1975 	Elf_Shdr *shdr;
1976 	int mod_idx;
1977 
1978 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1979 	if (mod_idx <= 0) {
1980 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1981 		       info->name ?: "(missing .modinfo section or name field)");
1982 		return -ENOEXEC;
1983 	}
1984 
1985 	shdr = &info->sechdrs[mod_idx];
1986 
1987 	if (shdr->sh_type == SHT_NOBITS) {
1988 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1989 		       info->name ?: "(missing .modinfo section or name field)");
1990 		return -ENOEXEC;
1991 	}
1992 
1993 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1994 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1995 		       info->name ?: "(missing .modinfo section or name field)");
1996 		return -ENOEXEC;
1997 	}
1998 
1999 	if (shdr->sh_size != sizeof(struct module)) {
2000 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2001 		       info->name ?: "(missing .modinfo section or name field)");
2002 		return -ENOEXEC;
2003 	}
2004 
2005 	info->index.mod = mod_idx;
2006 
2007 	return 0;
2008 }
2009 
2010 /**
2011  * elf_validity_cache_index_sym() - Validate and cache symtab index
2012  * @info: Load info to cache symtab index in.
2013  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2014  *
2015  * Checks that there is exactly one symbol table, then caches its index in
2016  * &load_info->index.sym.
2017  *
2018  * Return: %0 if valid, %-ENOEXEC on failure.
2019  */
elf_validity_cache_index_sym(struct load_info * info)2020 static int elf_validity_cache_index_sym(struct load_info *info)
2021 {
2022 	unsigned int sym_idx;
2023 	unsigned int num_sym_secs = 0;
2024 	int i;
2025 
2026 	for (i = 1; i < info->hdr->e_shnum; i++) {
2027 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2028 			num_sym_secs++;
2029 			sym_idx = i;
2030 		}
2031 	}
2032 
2033 	if (num_sym_secs != 1) {
2034 		pr_warn("%s: module has no symbols (stripped?)\n",
2035 			info->name ?: "(missing .modinfo section or name field)");
2036 		return -ENOEXEC;
2037 	}
2038 
2039 	info->index.sym = sym_idx;
2040 
2041 	return 0;
2042 }
2043 
2044 /**
2045  * elf_validity_cache_index_str() - Validate and cache strtab index
2046  * @info: Load info to cache strtab index in.
2047  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2048  *        Must have &load_info->index.sym populated.
2049  *
2050  * Looks at the symbol table's associated string table, makes sure it is
2051  * in-bounds, and caches it.
2052  *
2053  * Return: %0 if valid, %-ENOEXEC on failure.
2054  */
elf_validity_cache_index_str(struct load_info * info)2055 static int elf_validity_cache_index_str(struct load_info *info)
2056 {
2057 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2058 
2059 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2060 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2061 		       str_idx, str_idx, info->hdr->e_shnum);
2062 		return -ENOEXEC;
2063 	}
2064 
2065 	info->index.str = str_idx;
2066 	return 0;
2067 }
2068 
2069 /**
2070  * elf_validity_cache_index_versions() - Validate and cache version indices
2071  * @info:  Load info to cache version indices in.
2072  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2073  * @flags: Load flags, relevant to suppress version loading, see
2074  *         uapi/linux/module.h
2075  *
2076  * If we're ignoring modversions based on @flags, zero all version indices
2077  * and return validity. Othewrise check:
2078  *
2079  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2080  * * There is a name present for every crc
2081  *
2082  * Then populate:
2083  *
2084  * * &load_info->index.vers
2085  * * &load_info->index.vers_ext_crc
2086  * * &load_info->index.vers_ext_names
2087  *
2088  * if present.
2089  *
2090  * Return: %0 if valid, %-ENOEXEC on failure.
2091  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2092 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2093 {
2094 	unsigned int vers_ext_crc;
2095 	unsigned int vers_ext_name;
2096 	size_t crc_count;
2097 	size_t remaining_len;
2098 	size_t name_size;
2099 	char *name;
2100 
2101 	/* If modversions were suppressed, pretend we didn't find any */
2102 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2103 		info->index.vers = 0;
2104 		info->index.vers_ext_crc = 0;
2105 		info->index.vers_ext_name = 0;
2106 		return 0;
2107 	}
2108 
2109 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2110 	vers_ext_name = find_sec(info, "__version_ext_names");
2111 
2112 	/* If we have one field, we must have the other */
2113 	if (!!vers_ext_crc != !!vers_ext_name) {
2114 		pr_err("extended version crc+name presence does not match");
2115 		return -ENOEXEC;
2116 	}
2117 
2118 	/*
2119 	 * If we have extended version information, we should have the same
2120 	 * number of entries in every section.
2121 	 */
2122 	if (vers_ext_crc) {
2123 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2124 		name = (void *)info->hdr +
2125 			info->sechdrs[vers_ext_name].sh_offset;
2126 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2127 
2128 		while (crc_count--) {
2129 			name_size = strnlen(name, remaining_len) + 1;
2130 			if (name_size > remaining_len) {
2131 				pr_err("more extended version crcs than names");
2132 				return -ENOEXEC;
2133 			}
2134 			remaining_len -= name_size;
2135 			name += name_size;
2136 		}
2137 	}
2138 
2139 	info->index.vers = find_sec(info, "__versions");
2140 	info->index.vers_ext_crc = vers_ext_crc;
2141 	info->index.vers_ext_name = vers_ext_name;
2142 	return 0;
2143 }
2144 
2145 /**
2146  * elf_validity_cache_index() - Resolve, validate, cache section indices
2147  * @info:  Load info to read from and update.
2148  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2149  * @flags: Load flags, relevant to suppress version loading, see
2150  *         uapi/linux/module.h
2151  *
2152  * Populates &load_info->index, validating as it goes.
2153  * See child functions for per-field validation:
2154  *
2155  * * elf_validity_cache_index_info()
2156  * * elf_validity_cache_index_mod()
2157  * * elf_validity_cache_index_sym()
2158  * * elf_validity_cache_index_str()
2159  * * elf_validity_cache_index_versions()
2160  *
2161  * If CONFIG_SMP is enabled, load the percpu section by name with no
2162  * validation.
2163  *
2164  * Return: 0 on success, negative error code if an index failed validation.
2165  */
elf_validity_cache_index(struct load_info * info,int flags)2166 static int elf_validity_cache_index(struct load_info *info, int flags)
2167 {
2168 	int err;
2169 
2170 	err = elf_validity_cache_index_info(info);
2171 	if (err < 0)
2172 		return err;
2173 	err = elf_validity_cache_index_mod(info);
2174 	if (err < 0)
2175 		return err;
2176 	err = elf_validity_cache_index_sym(info);
2177 	if (err < 0)
2178 		return err;
2179 	err = elf_validity_cache_index_str(info);
2180 	if (err < 0)
2181 		return err;
2182 	err = elf_validity_cache_index_versions(info, flags);
2183 	if (err < 0)
2184 		return err;
2185 
2186 	info->index.pcpu = find_pcpusec(info);
2187 
2188 	return 0;
2189 }
2190 
2191 /**
2192  * elf_validity_cache_strtab() - Validate and cache symbol string table
2193  * @info: Load info to read from and update.
2194  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2195  *        Must have &load_info->index populated.
2196  *
2197  * Checks:
2198  *
2199  * * The string table is not empty.
2200  * * The string table starts and ends with NUL (required by ELF spec).
2201  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2202  *   string table.
2203  *
2204  * And caches the pointer as &load_info->strtab in @info.
2205  *
2206  * Return: 0 on success, negative error code if a check failed.
2207  */
elf_validity_cache_strtab(struct load_info * info)2208 static int elf_validity_cache_strtab(struct load_info *info)
2209 {
2210 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2211 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2212 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2213 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2214 	int i;
2215 
2216 	if (str_shdr->sh_size == 0) {
2217 		pr_err("empty symbol string table\n");
2218 		return -ENOEXEC;
2219 	}
2220 	if (strtab[0] != '\0') {
2221 		pr_err("symbol string table missing leading NUL\n");
2222 		return -ENOEXEC;
2223 	}
2224 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2225 		pr_err("symbol string table isn't NUL terminated\n");
2226 		return -ENOEXEC;
2227 	}
2228 
2229 	/*
2230 	 * Now that we know strtab is correctly structured, check symbol
2231 	 * starts are inbounds before they're used later.
2232 	 */
2233 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2234 		if (syms[i].st_name >= str_shdr->sh_size) {
2235 			pr_err("symbol name out of bounds in string table");
2236 			return -ENOEXEC;
2237 		}
2238 	}
2239 
2240 	info->strtab = strtab;
2241 	return 0;
2242 }
2243 
2244 /*
2245  * Check userspace passed ELF module against our expectations, and cache
2246  * useful variables for further processing as we go.
2247  *
2248  * This does basic validity checks against section offsets and sizes, the
2249  * section name string table, and the indices used for it (sh_name).
2250  *
2251  * As a last step, since we're already checking the ELF sections we cache
2252  * useful variables which will be used later for our convenience:
2253  *
2254  * 	o pointers to section headers
2255  * 	o cache the modinfo symbol section
2256  * 	o cache the string symbol section
2257  * 	o cache the module section
2258  *
2259  * As a last step we set info->mod to the temporary copy of the module in
2260  * info->hdr. The final one will be allocated in move_module(). Any
2261  * modifications we make to our copy of the module will be carried over
2262  * to the final minted module.
2263  */
elf_validity_cache_copy(struct load_info * info,int flags)2264 static int elf_validity_cache_copy(struct load_info *info, int flags)
2265 {
2266 	int err;
2267 
2268 	err = elf_validity_cache_sechdrs(info);
2269 	if (err < 0)
2270 		return err;
2271 	err = elf_validity_cache_secstrings(info);
2272 	if (err < 0)
2273 		return err;
2274 	err = elf_validity_cache_index(info, flags);
2275 	if (err < 0)
2276 		return err;
2277 	err = elf_validity_cache_strtab(info);
2278 	if (err < 0)
2279 		return err;
2280 
2281 	/* This is temporary: point mod into copy of data. */
2282 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2283 
2284 	/*
2285 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2286 	 * on-disk struct mod 'name' field.
2287 	 */
2288 	if (!info->name)
2289 		info->name = info->mod->name;
2290 
2291 	return 0;
2292 }
2293 
2294 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2295 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2296 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2297 {
2298 	do {
2299 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2300 
2301 		if (copy_from_user(dst, usrc, n) != 0)
2302 			return -EFAULT;
2303 		cond_resched();
2304 		dst += n;
2305 		usrc += n;
2306 		len -= n;
2307 	} while (len);
2308 	return 0;
2309 }
2310 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2311 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2312 {
2313 	if (!get_modinfo(info, "livepatch"))
2314 		/* Nothing more to do */
2315 		return 0;
2316 
2317 	if (set_livepatch_module(mod))
2318 		return 0;
2319 
2320 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2321 	       mod->name);
2322 	return -ENOEXEC;
2323 }
2324 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2325 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2326 {
2327 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2328 		return;
2329 
2330 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2331 		mod->name);
2332 }
2333 
2334 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2335 static int copy_module_from_user(const void __user *umod, unsigned long len,
2336 				  struct load_info *info)
2337 {
2338 	int err;
2339 
2340 	info->len = len;
2341 	if (info->len < sizeof(*(info->hdr)))
2342 		return -ENOEXEC;
2343 
2344 	err = security_kernel_load_data(LOADING_MODULE, true);
2345 	if (err)
2346 		return err;
2347 
2348 	/* Suck in entire file: we'll want most of it. */
2349 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2350 	if (!info->hdr)
2351 		return -ENOMEM;
2352 
2353 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2354 		err = -EFAULT;
2355 		goto out;
2356 	}
2357 
2358 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2359 					     LOADING_MODULE, "init_module");
2360 out:
2361 	if (err)
2362 		vfree(info->hdr);
2363 
2364 	return err;
2365 }
2366 
free_copy(struct load_info * info,int flags)2367 static void free_copy(struct load_info *info, int flags)
2368 {
2369 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2370 		module_decompress_cleanup(info);
2371 	else
2372 		vfree(info->hdr);
2373 }
2374 
rewrite_section_headers(struct load_info * info,int flags)2375 static int rewrite_section_headers(struct load_info *info, int flags)
2376 {
2377 	unsigned int i;
2378 
2379 	/* This should always be true, but let's be sure. */
2380 	info->sechdrs[0].sh_addr = 0;
2381 
2382 	for (i = 1; i < info->hdr->e_shnum; i++) {
2383 		Elf_Shdr *shdr = &info->sechdrs[i];
2384 
2385 		/*
2386 		 * Mark all sections sh_addr with their address in the
2387 		 * temporary image.
2388 		 */
2389 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2390 
2391 	}
2392 
2393 	/* Track but don't keep modinfo and version sections. */
2394 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2395 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2396 		~(unsigned long)SHF_ALLOC;
2397 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2398 		~(unsigned long)SHF_ALLOC;
2399 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2400 
2401 	return 0;
2402 }
2403 
2404 static const char *const module_license_offenders[] = {
2405 	/* driverloader was caught wrongly pretending to be under GPL */
2406 	"driverloader",
2407 
2408 	/* lve claims to be GPL but upstream won't provide source */
2409 	"lve",
2410 };
2411 
2412 /*
2413  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2414 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2415 {
2416 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2417 	size_t i;
2418 
2419 	if (!get_modinfo(info, "intree")) {
2420 		if (!test_taint(TAINT_OOT_MODULE))
2421 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2422 				mod->name);
2423 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2424 	}
2425 
2426 	check_modinfo_retpoline(mod, info);
2427 
2428 	if (get_modinfo(info, "staging")) {
2429 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2430 		pr_warn("%s: module is from the staging directory, the quality "
2431 			"is unknown, you have been warned.\n", mod->name);
2432 	}
2433 
2434 	if (is_livepatch_module(mod)) {
2435 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2436 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2437 				mod->name);
2438 	}
2439 
2440 	module_license_taint_check(mod, get_modinfo(info, "license"));
2441 
2442 	if (get_modinfo(info, "test")) {
2443 		if (!test_taint(TAINT_TEST))
2444 			pr_warn("%s: loading test module taints kernel.\n",
2445 				mod->name);
2446 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2447 	}
2448 #ifdef CONFIG_MODULE_SIG
2449 	mod->sig_ok = info->sig_ok;
2450 	if (!mod->sig_ok) {
2451 		pr_notice_once("%s: module verification failed: signature "
2452 			       "and/or required key missing - tainting "
2453 			       "kernel\n", mod->name);
2454 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2455 	}
2456 #endif
2457 
2458 	/*
2459 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2460 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2461 	 * using GPL-only symbols it needs.
2462 	 */
2463 	if (strcmp(mod->name, "ndiswrapper") == 0)
2464 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2465 
2466 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2467 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2468 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2469 					 LOCKDEP_NOW_UNRELIABLE);
2470 	}
2471 
2472 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2473 		pr_warn("%s: module license taints kernel.\n", mod->name);
2474 
2475 }
2476 
check_modinfo(struct module * mod,struct load_info * info,int flags)2477 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2478 {
2479 	const char *modmagic = get_modinfo(info, "vermagic");
2480 	int err;
2481 
2482 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2483 		modmagic = NULL;
2484 
2485 	/* This is allowed: modprobe --force will invalidate it. */
2486 	if (!modmagic) {
2487 		err = try_to_force_load(mod, "bad vermagic");
2488 		if (err)
2489 			return err;
2490 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2491 		pr_err("%s: version magic '%s' should be '%s'\n",
2492 		       info->name, modmagic, vermagic);
2493 		return -ENOEXEC;
2494 	}
2495 
2496 	err = check_modinfo_livepatch(mod, info);
2497 	if (err)
2498 		return err;
2499 
2500 	return 0;
2501 }
2502 
find_module_sections(struct module * mod,struct load_info * info)2503 static int find_module_sections(struct module *mod, struct load_info *info)
2504 {
2505 	mod->kp = section_objs(info, "__param",
2506 			       sizeof(*mod->kp), &mod->num_kp);
2507 	mod->syms = section_objs(info, "__ksymtab",
2508 				 sizeof(*mod->syms), &mod->num_syms);
2509 	mod->crcs = section_addr(info, "__kcrctab");
2510 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2511 				     sizeof(*mod->gpl_syms),
2512 				     &mod->num_gpl_syms);
2513 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2514 
2515 #ifdef CONFIG_CONSTRUCTORS
2516 	mod->ctors = section_objs(info, ".ctors",
2517 				  sizeof(*mod->ctors), &mod->num_ctors);
2518 	if (!mod->ctors)
2519 		mod->ctors = section_objs(info, ".init_array",
2520 				sizeof(*mod->ctors), &mod->num_ctors);
2521 	else if (find_sec(info, ".init_array")) {
2522 		/*
2523 		 * This shouldn't happen with same compiler and binutils
2524 		 * building all parts of the module.
2525 		 */
2526 		pr_warn("%s: has both .ctors and .init_array.\n",
2527 		       mod->name);
2528 		return -EINVAL;
2529 	}
2530 #endif
2531 
2532 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2533 						&mod->noinstr_text_size);
2534 
2535 #ifdef CONFIG_TRACEPOINTS
2536 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2537 					     sizeof(*mod->tracepoints_ptrs),
2538 					     &mod->num_tracepoints);
2539 #endif
2540 #ifdef CONFIG_TREE_SRCU
2541 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2542 					     sizeof(*mod->srcu_struct_ptrs),
2543 					     &mod->num_srcu_structs);
2544 #endif
2545 #ifdef CONFIG_BPF_EVENTS
2546 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2547 					   sizeof(*mod->bpf_raw_events),
2548 					   &mod->num_bpf_raw_events);
2549 #endif
2550 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2551 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2552 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2553 					      &mod->btf_base_data_size);
2554 #endif
2555 #ifdef CONFIG_JUMP_LABEL
2556 	mod->jump_entries = section_objs(info, "__jump_table",
2557 					sizeof(*mod->jump_entries),
2558 					&mod->num_jump_entries);
2559 #endif
2560 #ifdef CONFIG_EVENT_TRACING
2561 	mod->trace_events = section_objs(info, "_ftrace_events",
2562 					 sizeof(*mod->trace_events),
2563 					 &mod->num_trace_events);
2564 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2565 					sizeof(*mod->trace_evals),
2566 					&mod->num_trace_evals);
2567 #endif
2568 #ifdef CONFIG_TRACING
2569 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2570 					 sizeof(*mod->trace_bprintk_fmt_start),
2571 					 &mod->num_trace_bprintk_fmt);
2572 #endif
2573 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2574 	/* sechdrs[0].sh_size is always zero */
2575 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2576 					     sizeof(*mod->ftrace_callsites),
2577 					     &mod->num_ftrace_callsites);
2578 #endif
2579 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2580 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2581 					    sizeof(*mod->ei_funcs),
2582 					    &mod->num_ei_funcs);
2583 #endif
2584 #ifdef CONFIG_KPROBES
2585 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2586 						&mod->kprobes_text_size);
2587 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2588 						sizeof(unsigned long),
2589 						&mod->num_kprobe_blacklist);
2590 #endif
2591 #ifdef CONFIG_PRINTK_INDEX
2592 	mod->printk_index_start = section_objs(info, ".printk_index",
2593 					       sizeof(*mod->printk_index_start),
2594 					       &mod->printk_index_size);
2595 #endif
2596 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2597 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2598 					      sizeof(*mod->static_call_sites),
2599 					      &mod->num_static_call_sites);
2600 #endif
2601 #if IS_ENABLED(CONFIG_KUNIT)
2602 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2603 					      sizeof(*mod->kunit_suites),
2604 					      &mod->num_kunit_suites);
2605 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2606 					      sizeof(*mod->kunit_init_suites),
2607 					      &mod->num_kunit_init_suites);
2608 #endif
2609 
2610 	mod->extable = section_objs(info, "__ex_table",
2611 				    sizeof(*mod->extable), &mod->num_exentries);
2612 
2613 	if (section_addr(info, "__obsparm"))
2614 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2615 
2616 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2617 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2618 					      sizeof(*mod->dyndbg_info.descs),
2619 					      &mod->dyndbg_info.num_descs);
2620 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2621 						sizeof(*mod->dyndbg_info.classes),
2622 						&mod->dyndbg_info.num_classes);
2623 #endif
2624 
2625 	return 0;
2626 }
2627 
move_module(struct module * mod,struct load_info * info)2628 static int move_module(struct module *mod, struct load_info *info)
2629 {
2630 	int i;
2631 	enum mod_mem_type t = 0;
2632 	int ret = -ENOMEM;
2633 	bool codetag_section_found = false;
2634 
2635 	for_each_mod_mem_type(type) {
2636 		if (!mod->mem[type].size) {
2637 			mod->mem[type].base = NULL;
2638 			continue;
2639 		}
2640 
2641 		ret = module_memory_alloc(mod, type);
2642 		if (ret) {
2643 			t = type;
2644 			goto out_err;
2645 		}
2646 	}
2647 
2648 	/* Transfer each section which specifies SHF_ALLOC */
2649 	pr_debug("Final section addresses for %s:\n", mod->name);
2650 	for (i = 0; i < info->hdr->e_shnum; i++) {
2651 		void *dest;
2652 		Elf_Shdr *shdr = &info->sechdrs[i];
2653 		const char *sname;
2654 
2655 		if (!(shdr->sh_flags & SHF_ALLOC))
2656 			continue;
2657 
2658 		sname = info->secstrings + shdr->sh_name;
2659 		/*
2660 		 * Load codetag sections separately as they might still be used
2661 		 * after module unload.
2662 		 */
2663 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2664 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2665 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2666 			if (WARN_ON(!dest)) {
2667 				ret = -EINVAL;
2668 				goto out_err;
2669 			}
2670 			if (IS_ERR(dest)) {
2671 				ret = PTR_ERR(dest);
2672 				goto out_err;
2673 			}
2674 			codetag_section_found = true;
2675 		} else {
2676 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2677 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2678 
2679 			dest = mod->mem[type].base + offset;
2680 		}
2681 
2682 		if (shdr->sh_type != SHT_NOBITS) {
2683 			/*
2684 			 * Our ELF checker already validated this, but let's
2685 			 * be pedantic and make the goal clearer. We actually
2686 			 * end up copying over all modifications made to the
2687 			 * userspace copy of the entire struct module.
2688 			 */
2689 			if (i == info->index.mod &&
2690 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2691 				ret = -ENOEXEC;
2692 				goto out_err;
2693 			}
2694 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2695 		}
2696 		/*
2697 		 * Update the userspace copy's ELF section address to point to
2698 		 * our newly allocated memory as a pure convenience so that
2699 		 * users of info can keep taking advantage and using the newly
2700 		 * minted official memory area.
2701 		 */
2702 		shdr->sh_addr = (unsigned long)dest;
2703 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2704 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2705 	}
2706 
2707 	return 0;
2708 out_err:
2709 	module_memory_restore_rox(mod);
2710 	for (t--; t >= 0; t--)
2711 		module_memory_free(mod, t);
2712 	if (codetag_section_found)
2713 		codetag_free_module_sections(mod);
2714 
2715 	return ret;
2716 }
2717 
check_export_symbol_versions(struct module * mod)2718 static int check_export_symbol_versions(struct module *mod)
2719 {
2720 #ifdef CONFIG_MODVERSIONS
2721 	if ((mod->num_syms && !mod->crcs) ||
2722 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2723 		return try_to_force_load(mod,
2724 					 "no versions for exported symbols");
2725 	}
2726 #endif
2727 	return 0;
2728 }
2729 
flush_module_icache(const struct module * mod)2730 static void flush_module_icache(const struct module *mod)
2731 {
2732 	/*
2733 	 * Flush the instruction cache, since we've played with text.
2734 	 * Do it before processing of module parameters, so the module
2735 	 * can provide parameter accessor functions of its own.
2736 	 */
2737 	for_each_mod_mem_type(type) {
2738 		const struct module_memory *mod_mem = &mod->mem[type];
2739 
2740 		if (mod_mem->size) {
2741 			flush_icache_range((unsigned long)mod_mem->base,
2742 					   (unsigned long)mod_mem->base + mod_mem->size);
2743 		}
2744 	}
2745 }
2746 
module_elf_check_arch(Elf_Ehdr * hdr)2747 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2748 {
2749 	return true;
2750 }
2751 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2752 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2753 				     Elf_Shdr *sechdrs,
2754 				     char *secstrings,
2755 				     struct module *mod)
2756 {
2757 	return 0;
2758 }
2759 
2760 /* module_blacklist is a comma-separated list of module names */
2761 static char *module_blacklist;
blacklisted(const char * module_name)2762 static bool blacklisted(const char *module_name)
2763 {
2764 	const char *p;
2765 	size_t len;
2766 
2767 	if (!module_blacklist)
2768 		return false;
2769 
2770 	for (p = module_blacklist; *p; p += len) {
2771 		len = strcspn(p, ",");
2772 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2773 			return true;
2774 		if (p[len] == ',')
2775 			len++;
2776 	}
2777 	return false;
2778 }
2779 core_param(module_blacklist, module_blacklist, charp, 0400);
2780 
layout_and_allocate(struct load_info * info,int flags)2781 static struct module *layout_and_allocate(struct load_info *info, int flags)
2782 {
2783 	struct module *mod;
2784 	unsigned int ndx;
2785 	int err;
2786 
2787 	/* Allow arches to frob section contents and sizes.  */
2788 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2789 					info->secstrings, info->mod);
2790 	if (err < 0)
2791 		return ERR_PTR(err);
2792 
2793 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2794 					  info->secstrings, info->mod);
2795 	if (err < 0)
2796 		return ERR_PTR(err);
2797 
2798 	/* We will do a special allocation for per-cpu sections later. */
2799 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2800 
2801 	/*
2802 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2803 	 * layout_sections() can put it in the right place.
2804 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2805 	 */
2806 	ndx = find_sec(info, ".data..ro_after_init");
2807 	if (ndx)
2808 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2809 	/*
2810 	 * Mark the __jump_table section as ro_after_init as well: these data
2811 	 * structures are never modified, with the exception of entries that
2812 	 * refer to code in the __init section, which are annotated as such
2813 	 * at module load time.
2814 	 */
2815 	ndx = find_sec(info, "__jump_table");
2816 	if (ndx)
2817 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2818 
2819 	/*
2820 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2821 	 * this is done generically; there doesn't appear to be any
2822 	 * special cases for the architectures.
2823 	 */
2824 	layout_sections(info->mod, info);
2825 	layout_symtab(info->mod, info);
2826 
2827 	/* Allocate and move to the final place */
2828 	err = move_module(info->mod, info);
2829 	if (err)
2830 		return ERR_PTR(err);
2831 
2832 	/* Module has been copied to its final place now: return it. */
2833 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2834 	kmemleak_load_module(mod, info);
2835 	codetag_module_replaced(info->mod, mod);
2836 
2837 	return mod;
2838 }
2839 
2840 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2841 static void module_deallocate(struct module *mod, struct load_info *info)
2842 {
2843 	percpu_modfree(mod);
2844 	module_arch_freeing_init(mod);
2845 
2846 	free_mod_mem(mod);
2847 }
2848 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2849 int __weak module_finalize(const Elf_Ehdr *hdr,
2850 			   const Elf_Shdr *sechdrs,
2851 			   struct module *me)
2852 {
2853 	return 0;
2854 }
2855 
post_relocation(struct module * mod,const struct load_info * info)2856 static int post_relocation(struct module *mod, const struct load_info *info)
2857 {
2858 	/* Sort exception table now relocations are done. */
2859 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2860 
2861 	/* Copy relocated percpu area over. */
2862 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2863 		       info->sechdrs[info->index.pcpu].sh_size);
2864 
2865 	/* Setup kallsyms-specific fields. */
2866 	add_kallsyms(mod, info);
2867 
2868 	/* Arch-specific module finalizing. */
2869 	return module_finalize(info->hdr, info->sechdrs, mod);
2870 }
2871 
2872 /* Call module constructors. */
do_mod_ctors(struct module * mod)2873 static void do_mod_ctors(struct module *mod)
2874 {
2875 #ifdef CONFIG_CONSTRUCTORS
2876 	unsigned long i;
2877 
2878 	for (i = 0; i < mod->num_ctors; i++)
2879 		mod->ctors[i]();
2880 #endif
2881 }
2882 
2883 /* For freeing module_init on success, in case kallsyms traversing */
2884 struct mod_initfree {
2885 	struct llist_node node;
2886 	void *init_text;
2887 	void *init_data;
2888 	void *init_rodata;
2889 };
2890 
do_free_init(struct work_struct * w)2891 static void do_free_init(struct work_struct *w)
2892 {
2893 	struct llist_node *pos, *n, *list;
2894 	struct mod_initfree *initfree;
2895 
2896 	list = llist_del_all(&init_free_list);
2897 
2898 	synchronize_rcu();
2899 
2900 	llist_for_each_safe(pos, n, list) {
2901 		initfree = container_of(pos, struct mod_initfree, node);
2902 		execmem_free(initfree->init_text);
2903 		execmem_free(initfree->init_data);
2904 		execmem_free(initfree->init_rodata);
2905 		kfree(initfree);
2906 	}
2907 }
2908 
flush_module_init_free_work(void)2909 void flush_module_init_free_work(void)
2910 {
2911 	flush_work(&init_free_wq);
2912 }
2913 
2914 #undef MODULE_PARAM_PREFIX
2915 #define MODULE_PARAM_PREFIX "module."
2916 /* Default value for module->async_probe_requested */
2917 static bool async_probe;
2918 module_param(async_probe, bool, 0644);
2919 
2920 /*
2921  * This is where the real work happens.
2922  *
2923  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2924  * helper command 'lx-symbols'.
2925  */
do_init_module(struct module * mod)2926 static noinline int do_init_module(struct module *mod)
2927 {
2928 	int ret = 0;
2929 	struct mod_initfree *freeinit;
2930 #if defined(CONFIG_MODULE_STATS)
2931 	unsigned int text_size = 0, total_size = 0;
2932 
2933 	for_each_mod_mem_type(type) {
2934 		const struct module_memory *mod_mem = &mod->mem[type];
2935 		if (mod_mem->size) {
2936 			total_size += mod_mem->size;
2937 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2938 				text_size += mod_mem->size;
2939 		}
2940 	}
2941 #endif
2942 
2943 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2944 	if (!freeinit) {
2945 		ret = -ENOMEM;
2946 		goto fail;
2947 	}
2948 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2949 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2950 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2951 
2952 	do_mod_ctors(mod);
2953 	/* Start the module */
2954 	if (mod->init != NULL)
2955 		ret = do_one_initcall(mod->init);
2956 	if (ret < 0) {
2957 		goto fail_free_freeinit;
2958 	}
2959 	if (ret > 0) {
2960 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2961 			"follow 0/-E convention\n"
2962 			"%s: loading module anyway...\n",
2963 			__func__, mod->name, ret, __func__);
2964 		dump_stack();
2965 	}
2966 
2967 	/* Now it's a first class citizen! */
2968 	mod->state = MODULE_STATE_LIVE;
2969 	blocking_notifier_call_chain(&module_notify_list,
2970 				     MODULE_STATE_LIVE, mod);
2971 
2972 	/* Delay uevent until module has finished its init routine */
2973 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2974 
2975 	/*
2976 	 * We need to finish all async code before the module init sequence
2977 	 * is done. This has potential to deadlock if synchronous module
2978 	 * loading is requested from async (which is not allowed!).
2979 	 *
2980 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2981 	 * request_module() from async workers") for more details.
2982 	 */
2983 	if (!mod->async_probe_requested)
2984 		async_synchronize_full();
2985 
2986 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2987 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2988 	mutex_lock(&module_mutex);
2989 	/* Drop initial reference. */
2990 	module_put(mod);
2991 	trim_init_extable(mod);
2992 #ifdef CONFIG_KALLSYMS
2993 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2994 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2995 #endif
2996 	ret = module_enable_rodata_ro_after_init(mod);
2997 	if (ret)
2998 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2999 			"ro_after_init data might still be writable\n",
3000 			mod->name, ret);
3001 
3002 	mod_tree_remove_init(mod);
3003 	module_arch_freeing_init(mod);
3004 	for_class_mod_mem_type(type, init) {
3005 		mod->mem[type].base = NULL;
3006 		mod->mem[type].size = 0;
3007 	}
3008 
3009 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3010 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3011 	mod->btf_data = NULL;
3012 	mod->btf_base_data = NULL;
3013 #endif
3014 	/*
3015 	 * We want to free module_init, but be aware that kallsyms may be
3016 	 * walking this with preempt disabled.  In all the failure paths, we
3017 	 * call synchronize_rcu(), but we don't want to slow down the success
3018 	 * path. execmem_free() cannot be called in an interrupt, so do the
3019 	 * work and call synchronize_rcu() in a work queue.
3020 	 *
3021 	 * Note that execmem_alloc() on most architectures creates W+X page
3022 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3023 	 * code such as mark_rodata_ro() which depends on those mappings to
3024 	 * be cleaned up needs to sync with the queued work by invoking
3025 	 * flush_module_init_free_work().
3026 	 */
3027 	if (llist_add(&freeinit->node, &init_free_list))
3028 		schedule_work(&init_free_wq);
3029 
3030 	mutex_unlock(&module_mutex);
3031 	wake_up_all(&module_wq);
3032 
3033 	mod_stat_add_long(text_size, &total_text_size);
3034 	mod_stat_add_long(total_size, &total_mod_size);
3035 
3036 	mod_stat_inc(&modcount);
3037 
3038 	return 0;
3039 
3040 fail_free_freeinit:
3041 	kfree(freeinit);
3042 fail:
3043 	/* Try to protect us from buggy refcounters. */
3044 	mod->state = MODULE_STATE_GOING;
3045 	synchronize_rcu();
3046 	module_put(mod);
3047 	blocking_notifier_call_chain(&module_notify_list,
3048 				     MODULE_STATE_GOING, mod);
3049 	klp_module_going(mod);
3050 	ftrace_release_mod(mod);
3051 	free_module(mod);
3052 	wake_up_all(&module_wq);
3053 
3054 	return ret;
3055 }
3056 
may_init_module(void)3057 static int may_init_module(void)
3058 {
3059 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3060 		return -EPERM;
3061 
3062 	return 0;
3063 }
3064 
3065 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3066 static bool finished_loading(const char *name)
3067 {
3068 	struct module *mod;
3069 	bool ret;
3070 
3071 	/*
3072 	 * The module_mutex should not be a heavily contended lock;
3073 	 * if we get the occasional sleep here, we'll go an extra iteration
3074 	 * in the wait_event_interruptible(), which is harmless.
3075 	 */
3076 	sched_annotate_sleep();
3077 	mutex_lock(&module_mutex);
3078 	mod = find_module_all(name, strlen(name), true);
3079 	ret = !mod || mod->state == MODULE_STATE_LIVE
3080 		|| mod->state == MODULE_STATE_GOING;
3081 	mutex_unlock(&module_mutex);
3082 
3083 	return ret;
3084 }
3085 
3086 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3087 static int module_patient_check_exists(const char *name,
3088 				       enum fail_dup_mod_reason reason)
3089 {
3090 	struct module *old;
3091 	int err = 0;
3092 
3093 	old = find_module_all(name, strlen(name), true);
3094 	if (old == NULL)
3095 		return 0;
3096 
3097 	if (old->state == MODULE_STATE_COMING ||
3098 	    old->state == MODULE_STATE_UNFORMED) {
3099 		/* Wait in case it fails to load. */
3100 		mutex_unlock(&module_mutex);
3101 		err = wait_event_interruptible(module_wq,
3102 				       finished_loading(name));
3103 		mutex_lock(&module_mutex);
3104 		if (err)
3105 			return err;
3106 
3107 		/* The module might have gone in the meantime. */
3108 		old = find_module_all(name, strlen(name), true);
3109 	}
3110 
3111 	if (try_add_failed_module(name, reason))
3112 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3113 
3114 	/*
3115 	 * We are here only when the same module was being loaded. Do
3116 	 * not try to load it again right now. It prevents long delays
3117 	 * caused by serialized module load failures. It might happen
3118 	 * when more devices of the same type trigger load of
3119 	 * a particular module.
3120 	 */
3121 	if (old && old->state == MODULE_STATE_LIVE)
3122 		return -EEXIST;
3123 	return -EBUSY;
3124 }
3125 
3126 /*
3127  * We try to place it in the list now to make sure it's unique before
3128  * we dedicate too many resources.  In particular, temporary percpu
3129  * memory exhaustion.
3130  */
add_unformed_module(struct module * mod)3131 static int add_unformed_module(struct module *mod)
3132 {
3133 	int err;
3134 
3135 	mod->state = MODULE_STATE_UNFORMED;
3136 
3137 	mutex_lock(&module_mutex);
3138 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3139 	if (err)
3140 		goto out;
3141 
3142 	mod_update_bounds(mod);
3143 	list_add_rcu(&mod->list, &modules);
3144 	mod_tree_insert(mod);
3145 	err = 0;
3146 
3147 out:
3148 	mutex_unlock(&module_mutex);
3149 	return err;
3150 }
3151 
complete_formation(struct module * mod,struct load_info * info)3152 static int complete_formation(struct module *mod, struct load_info *info)
3153 {
3154 	int err;
3155 
3156 	mutex_lock(&module_mutex);
3157 
3158 	/* Find duplicate symbols (must be called under lock). */
3159 	err = verify_exported_symbols(mod);
3160 	if (err < 0)
3161 		goto out;
3162 
3163 	/* These rely on module_mutex for list integrity. */
3164 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3165 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3166 
3167 	err = module_enable_rodata_ro(mod);
3168 	if (err)
3169 		goto out_strict_rwx;
3170 	err = module_enable_data_nx(mod);
3171 	if (err)
3172 		goto out_strict_rwx;
3173 	err = module_enable_text_rox(mod);
3174 	if (err)
3175 		goto out_strict_rwx;
3176 
3177 	/*
3178 	 * Mark state as coming so strong_try_module_get() ignores us,
3179 	 * but kallsyms etc. can see us.
3180 	 */
3181 	mod->state = MODULE_STATE_COMING;
3182 	mutex_unlock(&module_mutex);
3183 
3184 	return 0;
3185 
3186 out_strict_rwx:
3187 	module_bug_cleanup(mod);
3188 out:
3189 	mutex_unlock(&module_mutex);
3190 	return err;
3191 }
3192 
prepare_coming_module(struct module * mod)3193 static int prepare_coming_module(struct module *mod)
3194 {
3195 	int err;
3196 
3197 	ftrace_module_enable(mod);
3198 	err = klp_module_coming(mod);
3199 	if (err)
3200 		return err;
3201 
3202 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3203 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3204 	err = notifier_to_errno(err);
3205 	if (err)
3206 		klp_module_going(mod);
3207 
3208 	return err;
3209 }
3210 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3211 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3212 				   void *arg)
3213 {
3214 	struct module *mod = arg;
3215 	int ret;
3216 
3217 	if (strcmp(param, "async_probe") == 0) {
3218 		if (kstrtobool(val, &mod->async_probe_requested))
3219 			mod->async_probe_requested = true;
3220 		return 0;
3221 	}
3222 
3223 	/* Check for magic 'dyndbg' arg */
3224 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3225 	if (ret != 0)
3226 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3227 	return 0;
3228 }
3229 
3230 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3231 static int early_mod_check(struct load_info *info, int flags)
3232 {
3233 	int err;
3234 
3235 	/*
3236 	 * Now that we know we have the correct module name, check
3237 	 * if it's blacklisted.
3238 	 */
3239 	if (blacklisted(info->name)) {
3240 		pr_err("Module %s is blacklisted\n", info->name);
3241 		return -EPERM;
3242 	}
3243 
3244 	err = rewrite_section_headers(info, flags);
3245 	if (err)
3246 		return err;
3247 
3248 	/* Check module struct version now, before we try to use module. */
3249 	if (!check_modstruct_version(info, info->mod))
3250 		return -ENOEXEC;
3251 
3252 	err = check_modinfo(info->mod, info, flags);
3253 	if (err)
3254 		return err;
3255 
3256 	mutex_lock(&module_mutex);
3257 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3258 	mutex_unlock(&module_mutex);
3259 
3260 	return err;
3261 }
3262 
3263 /*
3264  * Allocate and load the module: note that size of section 0 is always
3265  * zero, and we rely on this for optional sections.
3266  */
load_module(struct load_info * info,const char __user * uargs,int flags)3267 static int load_module(struct load_info *info, const char __user *uargs,
3268 		       int flags)
3269 {
3270 	struct module *mod;
3271 	bool module_allocated = false;
3272 	long err = 0;
3273 	char *after_dashes;
3274 
3275 	/*
3276 	 * Do the signature check (if any) first. All that
3277 	 * the signature check needs is info->len, it does
3278 	 * not need any of the section info. That can be
3279 	 * set up later. This will minimize the chances
3280 	 * of a corrupt module causing problems before
3281 	 * we even get to the signature check.
3282 	 *
3283 	 * The check will also adjust info->len by stripping
3284 	 * off the sig length at the end of the module, making
3285 	 * checks against info->len more correct.
3286 	 */
3287 	err = module_sig_check(info, flags);
3288 	if (err)
3289 		goto free_copy;
3290 
3291 	/*
3292 	 * Do basic sanity checks against the ELF header and
3293 	 * sections. Cache useful sections and set the
3294 	 * info->mod to the userspace passed struct module.
3295 	 */
3296 	err = elf_validity_cache_copy(info, flags);
3297 	if (err)
3298 		goto free_copy;
3299 
3300 	err = early_mod_check(info, flags);
3301 	if (err)
3302 		goto free_copy;
3303 
3304 	/* Figure out module layout, and allocate all the memory. */
3305 	mod = layout_and_allocate(info, flags);
3306 	if (IS_ERR(mod)) {
3307 		err = PTR_ERR(mod);
3308 		goto free_copy;
3309 	}
3310 
3311 	module_allocated = true;
3312 
3313 	audit_log_kern_module(mod->name);
3314 
3315 	/* Reserve our place in the list. */
3316 	err = add_unformed_module(mod);
3317 	if (err)
3318 		goto free_module;
3319 
3320 	/*
3321 	 * We are tainting your kernel if your module gets into
3322 	 * the modules linked list somehow.
3323 	 */
3324 	module_augment_kernel_taints(mod, info);
3325 
3326 	/* To avoid stressing percpu allocator, do this once we're unique. */
3327 	err = percpu_modalloc(mod, info);
3328 	if (err)
3329 		goto unlink_mod;
3330 
3331 	/* Now module is in final location, initialize linked lists, etc. */
3332 	err = module_unload_init(mod);
3333 	if (err)
3334 		goto unlink_mod;
3335 
3336 	init_param_lock(mod);
3337 
3338 	/*
3339 	 * Now we've got everything in the final locations, we can
3340 	 * find optional sections.
3341 	 */
3342 	err = find_module_sections(mod, info);
3343 	if (err)
3344 		goto free_unload;
3345 
3346 	err = check_export_symbol_versions(mod);
3347 	if (err)
3348 		goto free_unload;
3349 
3350 	/* Set up MODINFO_ATTR fields */
3351 	setup_modinfo(mod, info);
3352 
3353 	/* Fix up syms, so that st_value is a pointer to location. */
3354 	err = simplify_symbols(mod, info);
3355 	if (err < 0)
3356 		goto free_modinfo;
3357 
3358 	err = apply_relocations(mod, info);
3359 	if (err < 0)
3360 		goto free_modinfo;
3361 
3362 	err = post_relocation(mod, info);
3363 	if (err < 0)
3364 		goto free_modinfo;
3365 
3366 	flush_module_icache(mod);
3367 
3368 	/* Now copy in args */
3369 	mod->args = strndup_user(uargs, ~0UL >> 1);
3370 	if (IS_ERR(mod->args)) {
3371 		err = PTR_ERR(mod->args);
3372 		goto free_arch_cleanup;
3373 	}
3374 
3375 	init_build_id(mod, info);
3376 
3377 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3378 	ftrace_module_init(mod);
3379 
3380 	/* Finally it's fully formed, ready to start executing. */
3381 	err = complete_formation(mod, info);
3382 	if (err)
3383 		goto ddebug_cleanup;
3384 
3385 	err = prepare_coming_module(mod);
3386 	if (err)
3387 		goto bug_cleanup;
3388 
3389 	mod->async_probe_requested = async_probe;
3390 
3391 	/* Module is ready to execute: parsing args may do that. */
3392 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3393 				  -32768, 32767, mod,
3394 				  unknown_module_param_cb);
3395 	if (IS_ERR(after_dashes)) {
3396 		err = PTR_ERR(after_dashes);
3397 		goto coming_cleanup;
3398 	} else if (after_dashes) {
3399 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3400 		       mod->name, after_dashes);
3401 	}
3402 
3403 	/* Link in to sysfs. */
3404 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3405 	if (err < 0)
3406 		goto coming_cleanup;
3407 
3408 	if (is_livepatch_module(mod)) {
3409 		err = copy_module_elf(mod, info);
3410 		if (err < 0)
3411 			goto sysfs_cleanup;
3412 	}
3413 
3414 	/* Get rid of temporary copy. */
3415 	free_copy(info, flags);
3416 
3417 	codetag_load_module(mod);
3418 
3419 	/* Done! */
3420 	trace_module_load(mod);
3421 
3422 	return do_init_module(mod);
3423 
3424  sysfs_cleanup:
3425 	mod_sysfs_teardown(mod);
3426  coming_cleanup:
3427 	mod->state = MODULE_STATE_GOING;
3428 	destroy_params(mod->kp, mod->num_kp);
3429 	blocking_notifier_call_chain(&module_notify_list,
3430 				     MODULE_STATE_GOING, mod);
3431 	klp_module_going(mod);
3432  bug_cleanup:
3433 	mod->state = MODULE_STATE_GOING;
3434 	/* module_bug_cleanup needs module_mutex protection */
3435 	mutex_lock(&module_mutex);
3436 	module_bug_cleanup(mod);
3437 	mutex_unlock(&module_mutex);
3438 
3439  ddebug_cleanup:
3440 	ftrace_release_mod(mod);
3441 	synchronize_rcu();
3442 	kfree(mod->args);
3443  free_arch_cleanup:
3444 	module_arch_cleanup(mod);
3445  free_modinfo:
3446 	free_modinfo(mod);
3447  free_unload:
3448 	module_unload_free(mod);
3449  unlink_mod:
3450 	mutex_lock(&module_mutex);
3451 	/* Unlink carefully: kallsyms could be walking list. */
3452 	list_del_rcu(&mod->list);
3453 	mod_tree_remove(mod);
3454 	wake_up_all(&module_wq);
3455 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3456 	synchronize_rcu();
3457 	mutex_unlock(&module_mutex);
3458  free_module:
3459 	mod_stat_bump_invalid(info, flags);
3460 	/* Free lock-classes; relies on the preceding sync_rcu() */
3461 	for_class_mod_mem_type(type, core_data) {
3462 		lockdep_free_key_range(mod->mem[type].base,
3463 				       mod->mem[type].size);
3464 	}
3465 
3466 	module_memory_restore_rox(mod);
3467 	module_deallocate(mod, info);
3468  free_copy:
3469 	/*
3470 	 * The info->len is always set. We distinguish between
3471 	 * failures once the proper module was allocated and
3472 	 * before that.
3473 	 */
3474 	if (!module_allocated)
3475 		mod_stat_bump_becoming(info, flags);
3476 	free_copy(info, flags);
3477 	return err;
3478 }
3479 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3480 SYSCALL_DEFINE3(init_module, void __user *, umod,
3481 		unsigned long, len, const char __user *, uargs)
3482 {
3483 	int err;
3484 	struct load_info info = { };
3485 
3486 	err = may_init_module();
3487 	if (err)
3488 		return err;
3489 
3490 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3491 	       umod, len, uargs);
3492 
3493 	err = copy_module_from_user(umod, len, &info);
3494 	if (err) {
3495 		mod_stat_inc(&failed_kreads);
3496 		mod_stat_add_long(len, &invalid_kread_bytes);
3497 		return err;
3498 	}
3499 
3500 	return load_module(&info, uargs, 0);
3501 }
3502 
3503 struct idempotent {
3504 	const void *cookie;
3505 	struct hlist_node entry;
3506 	struct completion complete;
3507 	int ret;
3508 };
3509 
3510 #define IDEM_HASH_BITS 8
3511 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3512 static DEFINE_SPINLOCK(idem_lock);
3513 
idempotent(struct idempotent * u,const void * cookie)3514 static bool idempotent(struct idempotent *u, const void *cookie)
3515 {
3516 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3517 	struct hlist_head *head = idem_hash + hash;
3518 	struct idempotent *existing;
3519 	bool first;
3520 
3521 	u->ret = -EINTR;
3522 	u->cookie = cookie;
3523 	init_completion(&u->complete);
3524 
3525 	spin_lock(&idem_lock);
3526 	first = true;
3527 	hlist_for_each_entry(existing, head, entry) {
3528 		if (existing->cookie != cookie)
3529 			continue;
3530 		first = false;
3531 		break;
3532 	}
3533 	hlist_add_head(&u->entry, idem_hash + hash);
3534 	spin_unlock(&idem_lock);
3535 
3536 	return !first;
3537 }
3538 
3539 /*
3540  * We were the first one with 'cookie' on the list, and we ended
3541  * up completing the operation. We now need to walk the list,
3542  * remove everybody - which includes ourselves - fill in the return
3543  * value, and then complete the operation.
3544  */
idempotent_complete(struct idempotent * u,int ret)3545 static int idempotent_complete(struct idempotent *u, int ret)
3546 {
3547 	const void *cookie = u->cookie;
3548 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3549 	struct hlist_head *head = idem_hash + hash;
3550 	struct hlist_node *next;
3551 	struct idempotent *pos;
3552 
3553 	spin_lock(&idem_lock);
3554 	hlist_for_each_entry_safe(pos, next, head, entry) {
3555 		if (pos->cookie != cookie)
3556 			continue;
3557 		hlist_del_init(&pos->entry);
3558 		pos->ret = ret;
3559 		complete(&pos->complete);
3560 	}
3561 	spin_unlock(&idem_lock);
3562 	return ret;
3563 }
3564 
3565 /*
3566  * Wait for the idempotent worker.
3567  *
3568  * If we get interrupted, we need to remove ourselves from the
3569  * the idempotent list, and the completion may still come in.
3570  *
3571  * The 'idem_lock' protects against the race, and 'idem.ret' was
3572  * initialized to -EINTR and is thus always the right return
3573  * value even if the idempotent work then completes between
3574  * the wait_for_completion and the cleanup.
3575  */
idempotent_wait_for_completion(struct idempotent * u)3576 static int idempotent_wait_for_completion(struct idempotent *u)
3577 {
3578 	if (wait_for_completion_interruptible(&u->complete)) {
3579 		spin_lock(&idem_lock);
3580 		if (!hlist_unhashed(&u->entry))
3581 			hlist_del(&u->entry);
3582 		spin_unlock(&idem_lock);
3583 	}
3584 	return u->ret;
3585 }
3586 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3587 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3588 {
3589 	struct load_info info = { };
3590 	void *buf = NULL;
3591 	int len;
3592 
3593 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3594 	if (len < 0) {
3595 		mod_stat_inc(&failed_kreads);
3596 		return len;
3597 	}
3598 
3599 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3600 		int err = module_decompress(&info, buf, len);
3601 		vfree(buf); /* compressed data is no longer needed */
3602 		if (err) {
3603 			mod_stat_inc(&failed_decompress);
3604 			mod_stat_add_long(len, &invalid_decompress_bytes);
3605 			return err;
3606 		}
3607 	} else {
3608 		info.hdr = buf;
3609 		info.len = len;
3610 	}
3611 
3612 	return load_module(&info, uargs, flags);
3613 }
3614 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3615 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3616 {
3617 	struct idempotent idem;
3618 
3619 	if (!(f->f_mode & FMODE_READ))
3620 		return -EBADF;
3621 
3622 	/* Are we the winners of the race and get to do this? */
3623 	if (!idempotent(&idem, file_inode(f))) {
3624 		int ret = init_module_from_file(f, uargs, flags);
3625 		return idempotent_complete(&idem, ret);
3626 	}
3627 
3628 	/*
3629 	 * Somebody else won the race and is loading the module.
3630 	 */
3631 	return idempotent_wait_for_completion(&idem);
3632 }
3633 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3634 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3635 {
3636 	int err = may_init_module();
3637 	if (err)
3638 		return err;
3639 
3640 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3641 
3642 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3643 		      |MODULE_INIT_IGNORE_VERMAGIC
3644 		      |MODULE_INIT_COMPRESSED_FILE))
3645 		return -EINVAL;
3646 
3647 	CLASS(fd, f)(fd);
3648 	if (fd_empty(f))
3649 		return -EBADF;
3650 	return idempotent_init_module(fd_file(f), uargs, flags);
3651 }
3652 
3653 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3654 char *module_flags(struct module *mod, char *buf, bool show_state)
3655 {
3656 	int bx = 0;
3657 
3658 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3659 	if (!mod->taints && !show_state)
3660 		goto out;
3661 	if (mod->taints ||
3662 	    mod->state == MODULE_STATE_GOING ||
3663 	    mod->state == MODULE_STATE_COMING) {
3664 		buf[bx++] = '(';
3665 		bx += module_flags_taint(mod->taints, buf + bx);
3666 		/* Show a - for module-is-being-unloaded */
3667 		if (mod->state == MODULE_STATE_GOING && show_state)
3668 			buf[bx++] = '-';
3669 		/* Show a + for module-is-being-loaded */
3670 		if (mod->state == MODULE_STATE_COMING && show_state)
3671 			buf[bx++] = '+';
3672 		buf[bx++] = ')';
3673 	}
3674 out:
3675 	buf[bx] = '\0';
3676 
3677 	return buf;
3678 }
3679 
3680 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3681 const struct exception_table_entry *search_module_extables(unsigned long addr)
3682 {
3683 	const struct exception_table_entry *e = NULL;
3684 	struct module *mod;
3685 
3686 	preempt_disable();
3687 	mod = __module_address(addr);
3688 	if (!mod)
3689 		goto out;
3690 
3691 	if (!mod->num_exentries)
3692 		goto out;
3693 
3694 	e = search_extable(mod->extable,
3695 			   mod->num_exentries,
3696 			   addr);
3697 out:
3698 	preempt_enable();
3699 
3700 	/*
3701 	 * Now, if we found one, we are running inside it now, hence
3702 	 * we cannot unload the module, hence no refcnt needed.
3703 	 */
3704 	return e;
3705 }
3706 
3707 /**
3708  * is_module_address() - is this address inside a module?
3709  * @addr: the address to check.
3710  *
3711  * See is_module_text_address() if you simply want to see if the address
3712  * is code (not data).
3713  */
is_module_address(unsigned long addr)3714 bool is_module_address(unsigned long addr)
3715 {
3716 	bool ret;
3717 
3718 	preempt_disable();
3719 	ret = __module_address(addr) != NULL;
3720 	preempt_enable();
3721 
3722 	return ret;
3723 }
3724 
3725 /**
3726  * __module_address() - get the module which contains an address.
3727  * @addr: the address.
3728  *
3729  * Must be called with preempt disabled or module mutex held so that
3730  * module doesn't get freed during this.
3731  */
__module_address(unsigned long addr)3732 struct module *__module_address(unsigned long addr)
3733 {
3734 	struct module *mod;
3735 
3736 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3737 		goto lookup;
3738 
3739 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3740 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3741 		goto lookup;
3742 #endif
3743 
3744 	return NULL;
3745 
3746 lookup:
3747 	module_assert_mutex_or_preempt();
3748 
3749 	mod = mod_find(addr, &mod_tree);
3750 	if (mod) {
3751 		BUG_ON(!within_module(addr, mod));
3752 		if (mod->state == MODULE_STATE_UNFORMED)
3753 			mod = NULL;
3754 	}
3755 	return mod;
3756 }
3757 
3758 /**
3759  * is_module_text_address() - is this address inside module code?
3760  * @addr: the address to check.
3761  *
3762  * See is_module_address() if you simply want to see if the address is
3763  * anywhere in a module.  See kernel_text_address() for testing if an
3764  * address corresponds to kernel or module code.
3765  */
is_module_text_address(unsigned long addr)3766 bool is_module_text_address(unsigned long addr)
3767 {
3768 	bool ret;
3769 
3770 	preempt_disable();
3771 	ret = __module_text_address(addr) != NULL;
3772 	preempt_enable();
3773 
3774 	return ret;
3775 }
3776 
3777 /**
3778  * __module_text_address() - get the module whose code contains an address.
3779  * @addr: the address.
3780  *
3781  * Must be called with preempt disabled or module mutex held so that
3782  * module doesn't get freed during this.
3783  */
__module_text_address(unsigned long addr)3784 struct module *__module_text_address(unsigned long addr)
3785 {
3786 	struct module *mod = __module_address(addr);
3787 	if (mod) {
3788 		/* Make sure it's within the text section. */
3789 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3790 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3791 			mod = NULL;
3792 	}
3793 	return mod;
3794 }
3795 
3796 /* Don't grab lock, we're oopsing. */
print_modules(void)3797 void print_modules(void)
3798 {
3799 	struct module *mod;
3800 	char buf[MODULE_FLAGS_BUF_SIZE];
3801 
3802 	printk(KERN_DEFAULT "Modules linked in:");
3803 	/* Most callers should already have preempt disabled, but make sure */
3804 	preempt_disable();
3805 	list_for_each_entry_rcu(mod, &modules, list) {
3806 		if (mod->state == MODULE_STATE_UNFORMED)
3807 			continue;
3808 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3809 	}
3810 
3811 	print_unloaded_tainted_modules();
3812 	preempt_enable();
3813 	if (last_unloaded_module.name[0])
3814 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3815 			last_unloaded_module.taints);
3816 	pr_cont("\n");
3817 }
3818 
3819 #ifdef CONFIG_MODULE_DEBUGFS
3820 struct dentry *mod_debugfs_root;
3821 
module_debugfs_init(void)3822 static int module_debugfs_init(void)
3823 {
3824 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3825 	return 0;
3826 }
3827 module_init(module_debugfs_init);
3828 #endif
3829