xref: /linux/arch/mips/kernel/smp-cps.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
25 #include <asm/smp.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 #define BEV_VEC_SIZE	0x500
31 #define BEV_VEC_ALIGN	0x1000
32 
33 enum label_id {
34 	label_not_nmi = 1,
35 };
36 
37 UASM_L_LA(_not_nmi)
38 
39 static u64 core_entry_reg;
40 static phys_addr_t cps_vec_pa;
41 
42 struct cluster_boot_config *mips_cps_cluster_bootcfg;
43 
power_up_other_cluster(unsigned int cluster)44 static void power_up_other_cluster(unsigned int cluster)
45 {
46 	u32 stat, seq_state;
47 	unsigned int timeout;
48 
49 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
50 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
51 	stat = read_cpc_co_stat_conf();
52 	mips_cm_unlock_other();
53 
54 	seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
55 	seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
56 	if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
57 		return;
58 
59 	/* Set endianness & power up the CM */
60 	mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
61 	write_cpc_redir_sys_config(IS_ENABLED(CONFIG_CPU_BIG_ENDIAN));
62 	write_cpc_redir_pwrup_ctl(1);
63 	mips_cm_unlock_other();
64 
65 	/* Wait for the CM to start up */
66 	timeout = 1000;
67 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
68 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
69 	while (1) {
70 		stat = read_cpc_co_stat_conf();
71 		seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
72 		seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
73 		if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
74 			break;
75 
76 		if (timeout) {
77 			mdelay(1);
78 			timeout--;
79 		} else {
80 			pr_warn("Waiting for cluster %u CM to power up... STAT_CONF=0x%x\n",
81 				cluster, stat);
82 			mdelay(1000);
83 		}
84 	}
85 
86 	mips_cm_unlock_other();
87 }
88 
core_vpe_count(unsigned int cluster,unsigned core)89 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
90 {
91 	return min(smp_max_threads, mips_cps_numvps(cluster, core));
92 }
93 
mips_cps_build_core_entry(void * addr)94 static void __init *mips_cps_build_core_entry(void *addr)
95 {
96 	extern void (*nmi_handler)(void);
97 	u32 *p = addr;
98 	u32 val;
99 	struct uasm_label labels[2];
100 	struct uasm_reloc relocs[2];
101 	struct uasm_label *l = labels;
102 	struct uasm_reloc *r = relocs;
103 
104 	memset(labels, 0, sizeof(labels));
105 	memset(relocs, 0, sizeof(relocs));
106 
107 	uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
108 	UASM_i_LA(&p, GPR_T9, ST0_NMI);
109 	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
110 
111 	uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
112 	uasm_i_nop(&p);
113 	UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
114 
115 	uasm_l_not_nmi(&l, p);
116 
117 	val = CAUSEF_IV;
118 	uasm_i_lui(&p, GPR_K0, val >> 16);
119 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
120 	uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
121 	val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
122 	uasm_i_lui(&p, GPR_K0, val >> 16);
123 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
124 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
125 	uasm_i_ehb(&p);
126 	uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
127 	UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
128 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
129 	UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
130 #else
131 	UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
132 #endif
133 	uasm_i_jr(&p, GPR_T9);
134 	uasm_i_nop(&p);
135 
136 	uasm_resolve_relocs(relocs, labels);
137 
138 	return p;
139 }
140 
check_64bit_reset(void)141 static bool __init check_64bit_reset(void)
142 {
143 	bool cx_64bit_reset = false;
144 
145 	mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
146 	write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE);
147 	if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) ==
148 	    CM_GCR_Cx_RESET64_BASE_BEVEXCBASE)
149 		cx_64bit_reset = true;
150 	mips_cm_unlock_other();
151 
152 	return cx_64bit_reset;
153 }
154 
allocate_cps_vecs(void)155 static int __init allocate_cps_vecs(void)
156 {
157 	/* Try to allocate in KSEG1 first */
158 	cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
159 						0x0, CSEGX_SIZE - 1);
160 
161 	if (cps_vec_pa)
162 		core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
163 					CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
164 
165 	if (!cps_vec_pa && mips_cm_is64) {
166 		phys_addr_t end;
167 
168 		if (check_64bit_reset()) {
169 			pr_info("VP Local Reset Exception Base support 47 bits address\n");
170 			end = MEMBLOCK_ALLOC_ANYWHERE;
171 		} else {
172 			end = SZ_4G - 1;
173 		}
174 		cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end);
175 		if (cps_vec_pa) {
176 			if (check_64bit_reset())
177 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
178 					CM_GCR_Cx_RESET_BASE_MODE;
179 			else
180 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
181 					CM_GCR_Cx_RESET_BASE_MODE;
182 		}
183 	}
184 
185 	if (!cps_vec_pa)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
setup_cps_vecs(void)191 static void __init setup_cps_vecs(void)
192 {
193 	void *cps_vec;
194 
195 	cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
196 	mips_cps_build_core_entry(cps_vec);
197 
198 	memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
199 	memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
200 	memcpy(cps_vec + 0x300, &excep_cache, 0x80);
201 	memcpy(cps_vec + 0x380, &excep_genex, 0x80);
202 	memcpy(cps_vec + 0x400, &excep_intex, 0x80);
203 	memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
204 
205 	/* Make sure no prefetched data in cache */
206 	blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
207 	bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
208 	__sync();
209 }
210 
cps_smp_setup(void)211 static void __init cps_smp_setup(void)
212 {
213 	unsigned int nclusters, ncores, nvpes, core_vpes;
214 	int cl, c, v;
215 
216 	/* Detect & record VPE topology */
217 	nvpes = 0;
218 	nclusters = mips_cps_numclusters();
219 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
220 	for (cl = 0; cl < nclusters; cl++) {
221 		if (cl > 0)
222 			pr_cont(",");
223 		pr_cont("{");
224 
225 		if (mips_cm_revision() >= CM_REV_CM3_5)
226 			power_up_other_cluster(cl);
227 
228 		ncores = mips_cps_numcores(cl);
229 		for (c = 0; c < ncores; c++) {
230 			core_vpes = core_vpe_count(cl, c);
231 
232 			if (c > 0)
233 				pr_cont(",");
234 			pr_cont("%u", core_vpes);
235 
236 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
237 			if (!cl && !c)
238 				smp_num_siblings = core_vpes;
239 			cpumask_set_cpu(nvpes, &__cpu_primary_thread_mask);
240 
241 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
242 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
243 				cpu_set_core(&cpu_data[nvpes + v], c);
244 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
245 			}
246 
247 			nvpes += core_vpes;
248 		}
249 
250 		pr_cont("}");
251 	}
252 	pr_cont(" total %u\n", nvpes);
253 
254 	/* Indicate present CPUs (CPU being synonymous with VPE) */
255 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
256 		set_cpu_possible(v, true);
257 		set_cpu_present(v, true);
258 		__cpu_number_map[v] = v;
259 		__cpu_logical_map[v] = v;
260 	}
261 
262 	/* Set a coherent default CCA (CWB) */
263 	change_c0_config(CONF_CM_CMASK, 0x5);
264 
265 	/* Initialise core 0 */
266 	mips_cps_core_init();
267 
268 	/* Make core 0 coherent with everything */
269 	write_gcr_cl_coherence(0xff);
270 
271 	if (allocate_cps_vecs())
272 		pr_err("Failed to allocate CPS vectors\n");
273 
274 	if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
275 		write_gcr_bev_base(core_entry_reg);
276 
277 #ifdef CONFIG_MIPS_MT_FPAFF
278 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
279 	if (cpu_has_fpu)
280 		cpumask_set_cpu(0, &mt_fpu_cpumask);
281 #endif /* CONFIG_MIPS_MT_FPAFF */
282 }
283 
calibrate_delay_is_known(void)284 unsigned long calibrate_delay_is_known(void)
285 {
286 	int first_cpu_cluster = 0;
287 
288 	/* The calibration has to be done on the primary CPU of the cluster */
289 	if (mips_cps_first_online_in_cluster(&first_cpu_cluster))
290 		return 0;
291 
292 	return cpu_data[first_cpu_cluster].udelay_val;
293 }
294 
cps_prepare_cpus(unsigned int max_cpus)295 static void __init cps_prepare_cpus(unsigned int max_cpus)
296 {
297 	unsigned int nclusters, ncores, core_vpes, nvpe = 0, c, cl, cca;
298 	bool cca_unsuitable, cores_limited;
299 	struct cluster_boot_config *cluster_bootcfg;
300 	struct core_boot_config *core_bootcfg;
301 
302 	mips_mt_set_cpuoptions();
303 
304 	if (!core_entry_reg) {
305 		pr_err("core_entry address unsuitable, disabling smp-cps\n");
306 		goto err_out;
307 	}
308 
309 	/* Detect whether the CCA is unsuited to multi-core SMP */
310 	cca = read_c0_config() & CONF_CM_CMASK;
311 	switch (cca) {
312 	case 0x4: /* CWBE */
313 	case 0x5: /* CWB */
314 		/* The CCA is coherent, multi-core is fine */
315 		cca_unsuitable = false;
316 		break;
317 
318 	default:
319 		/* CCA is not coherent, multi-core is not usable */
320 		cca_unsuitable = true;
321 	}
322 
323 	/* Warn the user if the CCA prevents multi-core */
324 	cores_limited = false;
325 	if (cca_unsuitable || cpu_has_dc_aliases) {
326 		for_each_present_cpu(c) {
327 			if (cpus_are_siblings(smp_processor_id(), c))
328 				continue;
329 
330 			set_cpu_present(c, false);
331 			cores_limited = true;
332 		}
333 	}
334 	if (cores_limited)
335 		pr_warn("Using only one core due to %s%s%s\n",
336 			cca_unsuitable ? "unsuitable CCA" : "",
337 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
338 			cpu_has_dc_aliases ? "dcache aliasing" : "");
339 
340 	setup_cps_vecs();
341 
342 	/* Allocate cluster boot configuration structs */
343 	nclusters = mips_cps_numclusters();
344 	mips_cps_cluster_bootcfg = kcalloc(nclusters,
345 					   sizeof(*mips_cps_cluster_bootcfg),
346 					   GFP_KERNEL);
347 	if (!mips_cps_cluster_bootcfg)
348 		goto err_out;
349 
350 	if (nclusters > 1)
351 		mips_cm_update_property();
352 
353 	for (cl = 0; cl < nclusters; cl++) {
354 		/* Allocate core boot configuration structs */
355 		ncores = mips_cps_numcores(cl);
356 		core_bootcfg = kcalloc(ncores, sizeof(*core_bootcfg),
357 					GFP_KERNEL);
358 		if (!core_bootcfg)
359 			goto err_out;
360 		mips_cps_cluster_bootcfg[cl].core_config = core_bootcfg;
361 
362 		mips_cps_cluster_bootcfg[cl].core_power =
363 			kcalloc(BITS_TO_LONGS(ncores), sizeof(unsigned long),
364 				GFP_KERNEL);
365 		if (!mips_cps_cluster_bootcfg[cl].core_power)
366 			goto err_out;
367 
368 		/* Allocate VPE boot configuration structs */
369 		for (c = 0; c < ncores; c++) {
370 			int v;
371 			core_vpes = core_vpe_count(cl, c);
372 			core_bootcfg[c].vpe_config = kcalloc(core_vpes,
373 					sizeof(*core_bootcfg[c].vpe_config),
374 					GFP_KERNEL);
375 			for (v = 0; v < core_vpes; v++)
376 				cpumask_set_cpu(nvpe++, &mips_cps_cluster_bootcfg[cl].cpumask);
377 			if (!core_bootcfg[c].vpe_config)
378 				goto err_out;
379 		}
380 	}
381 
382 	/* Mark this CPU as powered up & booted */
383 	cl = cpu_cluster(&current_cpu_data);
384 	c = cpu_core(&current_cpu_data);
385 	cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
386 	cpu_smt_set_num_threads(core_vpes, core_vpes);
387 	core_bootcfg = &cluster_bootcfg->core_config[c];
388 	bitmap_set(cluster_bootcfg->core_power, cpu_core(&current_cpu_data), 1);
389 	atomic_set(&core_bootcfg->vpe_mask, 1 << cpu_vpe_id(&current_cpu_data));
390 
391 	return;
392 err_out:
393 	/* Clean up allocations */
394 	if (mips_cps_cluster_bootcfg) {
395 		for (cl = 0; cl < nclusters; cl++) {
396 			cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
397 			ncores = mips_cps_numcores(cl);
398 			for (c = 0; c < ncores; c++) {
399 				core_bootcfg = &cluster_bootcfg->core_config[c];
400 				kfree(core_bootcfg->vpe_config);
401 			}
402 			kfree(mips_cps_cluster_bootcfg[c].core_config);
403 		}
404 		kfree(mips_cps_cluster_bootcfg);
405 		mips_cps_cluster_bootcfg = NULL;
406 	}
407 
408 	/* Effectively disable SMP by declaring CPUs not present */
409 	for_each_possible_cpu(c) {
410 		if (c == 0)
411 			continue;
412 		set_cpu_present(c, false);
413 	}
414 }
415 
init_cluster_l2(void)416 static void init_cluster_l2(void)
417 {
418 	u32 l2_cfg, l2sm_cop, result;
419 
420 	while (!mips_cm_is_l2_hci_broken) {
421 		l2_cfg = read_gcr_redir_l2_ram_config();
422 
423 		/* If HCI is not supported, use the state machine below */
424 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_PRESENT))
425 			break;
426 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_SUPPORTED))
427 			break;
428 
429 		/* If the HCI_DONE bit is set, we're finished */
430 		if (l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_DONE)
431 			return;
432 	}
433 
434 	l2sm_cop = read_gcr_redir_l2sm_cop();
435 	if (WARN(!(l2sm_cop & CM_GCR_L2SM_COP_PRESENT),
436 		 "L2 init not supported on this system yet"))
437 		return;
438 
439 	/* Clear L2 tag registers */
440 	write_gcr_redir_l2_tag_state(0);
441 	write_gcr_redir_l2_ecc(0);
442 
443 	/* Ensure the L2 tag writes complete before the state machine starts */
444 	mb();
445 
446 	/* Wait for the L2 state machine to be idle */
447 	do {
448 		l2sm_cop = read_gcr_redir_l2sm_cop();
449 	} while (l2sm_cop & CM_GCR_L2SM_COP_RUNNING);
450 
451 	/* Start a store tag operation */
452 	l2sm_cop = CM_GCR_L2SM_COP_TYPE_IDX_STORETAG;
453 	l2sm_cop <<= __ffs(CM_GCR_L2SM_COP_TYPE);
454 	l2sm_cop |= CM_GCR_L2SM_COP_CMD_START;
455 	write_gcr_redir_l2sm_cop(l2sm_cop);
456 
457 	/* Ensure the state machine starts before we poll for completion */
458 	mb();
459 
460 	/* Wait for the operation to be complete */
461 	do {
462 		l2sm_cop = read_gcr_redir_l2sm_cop();
463 		result = l2sm_cop & CM_GCR_L2SM_COP_RESULT;
464 		result >>= __ffs(CM_GCR_L2SM_COP_RESULT);
465 	} while (!result);
466 
467 	WARN(result != CM_GCR_L2SM_COP_RESULT_DONE_OK,
468 	     "L2 state machine failed cache init with error %u\n", result);
469 }
470 
boot_core(unsigned int cluster,unsigned int core,unsigned int vpe_id)471 static void boot_core(unsigned int cluster, unsigned int core,
472 		      unsigned int vpe_id)
473 {
474 	struct cluster_boot_config *cluster_cfg;
475 	u32 access, stat, seq_state;
476 	unsigned int timeout, ncores;
477 
478 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
479 	ncores = mips_cps_numcores(cluster);
480 
481 	if ((cluster != cpu_cluster(&current_cpu_data)) &&
482 	    bitmap_empty(cluster_cfg->core_power, ncores)) {
483 		power_up_other_cluster(cluster);
484 
485 		mips_cm_lock_other(cluster, core, 0,
486 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
487 
488 		/* Ensure cluster GCRs are where we expect */
489 		write_gcr_redir_base(read_gcr_base());
490 		write_gcr_redir_cpc_base(read_gcr_cpc_base());
491 		write_gcr_redir_gic_base(read_gcr_gic_base());
492 
493 		init_cluster_l2();
494 
495 		/* Mirror L2 configuration */
496 		write_gcr_redir_l2_only_sync_base(read_gcr_l2_only_sync_base());
497 		write_gcr_redir_l2_pft_control(read_gcr_l2_pft_control());
498 		write_gcr_redir_l2_pft_control_b(read_gcr_l2_pft_control_b());
499 
500 		/* Mirror ECC/parity setup */
501 		write_gcr_redir_err_control(read_gcr_err_control());
502 
503 		/* Set BEV base */
504 		write_gcr_redir_bev_base(core_entry_reg);
505 
506 		mips_cm_unlock_other();
507 	}
508 
509 	if (cluster != cpu_cluster(&current_cpu_data)) {
510 		mips_cm_lock_other(cluster, core, 0,
511 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
512 
513 		/* Ensure the core can access the GCRs */
514 		access = read_gcr_redir_access();
515 		access |= BIT(core);
516 		write_gcr_redir_access(access);
517 
518 		mips_cm_unlock_other();
519 	} else {
520 		/* Ensure the core can access the GCRs */
521 		access = read_gcr_access();
522 		access |= BIT(core);
523 		write_gcr_access(access);
524 	}
525 
526 	/* Select the appropriate core */
527 	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
528 
529 	/* Set its reset vector */
530 	if (mips_cm_is64)
531 		write_gcr_co_reset64_base(core_entry_reg);
532 	else
533 		write_gcr_co_reset_base(core_entry_reg);
534 
535 	/* Ensure its coherency is disabled */
536 	write_gcr_co_coherence(0);
537 
538 	/* Start it with the legacy memory map and exception base */
539 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
540 
541 	/* Ensure the core can access the GCRs */
542 	if (mips_cm_revision() < CM_REV_CM3)
543 		set_gcr_access(1 << core);
544 	else
545 		set_gcr_access_cm3(1 << core);
546 
547 	if (mips_cpc_present()) {
548 		/* Reset the core */
549 		mips_cpc_lock_other(core);
550 
551 		if (mips_cm_revision() >= CM_REV_CM3) {
552 			/* Run only the requested VP following the reset */
553 			write_cpc_co_vp_stop(0xf);
554 			write_cpc_co_vp_run(1 << vpe_id);
555 
556 			/*
557 			 * Ensure that the VP_RUN register is written before the
558 			 * core leaves reset.
559 			 */
560 			wmb();
561 		}
562 
563 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
564 
565 		timeout = 100;
566 		while (true) {
567 			stat = read_cpc_co_stat_conf();
568 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
569 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
570 
571 			/* U6 == coherent execution, ie. the core is up */
572 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
573 				break;
574 
575 			/* Delay a little while before we start warning */
576 			if (timeout) {
577 				timeout--;
578 				mdelay(10);
579 				continue;
580 			}
581 
582 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
583 				core, stat);
584 			mdelay(1000);
585 		}
586 
587 		mips_cpc_unlock_other();
588 	} else {
589 		/* Take the core out of reset */
590 		write_gcr_co_reset_release(0);
591 	}
592 
593 	mips_cm_unlock_other();
594 
595 	/* The core is now powered up */
596 	bitmap_set(cluster_cfg->core_power, core, 1);
597 
598 	/*
599 	 * Restore CM_PWRUP=0 so that the CM can power down if all the cores in
600 	 * the cluster do (eg. if they're all removed via hotplug.
601 	 */
602 	if (mips_cm_revision() >= CM_REV_CM3_5) {
603 		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
604 		write_cpc_redir_pwrup_ctl(0);
605 		mips_cm_unlock_other();
606 	}
607 }
608 
remote_vpe_boot(void * dummy)609 static void remote_vpe_boot(void *dummy)
610 {
611 	unsigned int cluster = cpu_cluster(&current_cpu_data);
612 	unsigned core = cpu_core(&current_cpu_data);
613 	struct cluster_boot_config *cluster_cfg =
614 		&mips_cps_cluster_bootcfg[cluster];
615 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
616 
617 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
618 }
619 
cps_boot_secondary(int cpu,struct task_struct * idle)620 static int cps_boot_secondary(int cpu, struct task_struct *idle)
621 {
622 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
623 	unsigned core = cpu_core(&cpu_data[cpu]);
624 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
625 	struct cluster_boot_config *cluster_cfg =
626 		&mips_cps_cluster_bootcfg[cluster];
627 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
628 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
629 	unsigned int remote;
630 	int err;
631 
632 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
633 	vpe_cfg->sp = __KSTK_TOS(idle);
634 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
635 
636 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
637 
638 	preempt_disable();
639 
640 	if (!test_bit(core, cluster_cfg->core_power)) {
641 		/* Boot a VPE on a powered down core */
642 		boot_core(cluster, core, vpe_id);
643 		goto out;
644 	}
645 
646 	if (cpu_has_vp) {
647 		mips_cm_lock_other(cluster, core, vpe_id,
648 				   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
649 		if (mips_cm_is64)
650 			write_gcr_co_reset64_base(core_entry_reg);
651 		else
652 			write_gcr_co_reset_base(core_entry_reg);
653 		mips_cm_unlock_other();
654 	}
655 
656 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
657 		/* Boot a VPE on another powered up core */
658 		for (remote = 0; remote < NR_CPUS; remote++) {
659 			if (!cpus_are_siblings(cpu, remote))
660 				continue;
661 			if (cpu_online(remote))
662 				break;
663 		}
664 		if (remote >= NR_CPUS) {
665 			pr_crit("No online CPU in core %u to start CPU%d\n",
666 				core, cpu);
667 			goto out;
668 		}
669 
670 		err = smp_call_function_single(remote, remote_vpe_boot,
671 					       NULL, 1);
672 		if (err)
673 			panic("Failed to call remote CPU\n");
674 		goto out;
675 	}
676 
677 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
678 
679 	/* Boot a VPE on this core */
680 	mips_cps_boot_vpes(core_cfg, vpe_id);
681 out:
682 	preempt_enable();
683 	return 0;
684 }
685 
cps_init_secondary(void)686 static void cps_init_secondary(void)
687 {
688 	int core = cpu_core(&current_cpu_data);
689 
690 	/* Disable MT - we only want to run 1 TC per VPE */
691 	if (cpu_has_mipsmt)
692 		dmt();
693 
694 	if (mips_cm_revision() >= CM_REV_CM3) {
695 		unsigned int ident = read_gic_vl_ident();
696 
697 		/*
698 		 * Ensure that our calculation of the VP ID matches up with
699 		 * what the GIC reports, otherwise we'll have configured
700 		 * interrupts incorrectly.
701 		 */
702 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
703 	}
704 
705 	if (core > 0 && !read_gcr_cl_coherence())
706 		pr_warn("Core %u is not in coherent domain\n", core);
707 
708 	if (cpu_has_veic)
709 		clear_c0_status(ST0_IM);
710 	else
711 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
712 					 STATUSF_IP4 | STATUSF_IP5 |
713 					 STATUSF_IP6 | STATUSF_IP7);
714 }
715 
cps_smp_finish(void)716 static void cps_smp_finish(void)
717 {
718 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
719 
720 #ifdef CONFIG_MIPS_MT_FPAFF
721 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
722 	if (cpu_has_fpu)
723 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
724 #endif /* CONFIG_MIPS_MT_FPAFF */
725 
726 	local_irq_enable();
727 }
728 
729 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
730 
731 enum cpu_death {
732 	CPU_DEATH_HALT,
733 	CPU_DEATH_POWER,
734 };
735 
cps_shutdown_this_cpu(enum cpu_death death)736 static void cps_shutdown_this_cpu(enum cpu_death death)
737 {
738 	unsigned int cpu, core, vpe_id;
739 
740 	cpu = smp_processor_id();
741 	core = cpu_core(&cpu_data[cpu]);
742 
743 	if (death == CPU_DEATH_HALT) {
744 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
745 
746 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
747 		if (cpu_has_mipsmt) {
748 			/* Halt this TC */
749 			write_c0_tchalt(TCHALT_H);
750 			instruction_hazard();
751 		} else if (cpu_has_vp) {
752 			write_cpc_cl_vp_stop(1 << vpe_id);
753 
754 			/* Ensure that the VP_STOP register is written */
755 			wmb();
756 		}
757 	} else {
758 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
759 			pr_debug("Gating power to core %d\n", core);
760 			/* Power down the core */
761 			cps_pm_enter_state(CPS_PM_POWER_GATED);
762 		}
763 	}
764 }
765 
766 #ifdef CONFIG_KEXEC_CORE
767 
cps_kexec_nonboot_cpu(void)768 static void cps_kexec_nonboot_cpu(void)
769 {
770 	if (cpu_has_mipsmt || cpu_has_vp)
771 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
772 	else
773 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
774 }
775 
776 #endif /* CONFIG_KEXEC_CORE */
777 
778 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
779 
780 #ifdef CONFIG_HOTPLUG_CPU
781 
cps_cpu_disable(void)782 static int cps_cpu_disable(void)
783 {
784 	unsigned cpu = smp_processor_id();
785 	struct cluster_boot_config *cluster_cfg;
786 	struct core_boot_config *core_cfg;
787 
788 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
789 		return -EINVAL;
790 
791 	cluster_cfg = &mips_cps_cluster_bootcfg[cpu_cluster(&current_cpu_data)];
792 	core_cfg = &cluster_cfg->core_config[cpu_core(&current_cpu_data)];
793 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
794 	smp_mb__after_atomic();
795 	set_cpu_online(cpu, false);
796 	calculate_cpu_foreign_map();
797 	irq_migrate_all_off_this_cpu();
798 
799 	return 0;
800 }
801 
802 static unsigned cpu_death_sibling;
803 static enum cpu_death cpu_death;
804 
play_dead(void)805 void play_dead(void)
806 {
807 	unsigned int cpu;
808 
809 	local_irq_disable();
810 	idle_task_exit();
811 	cpu = smp_processor_id();
812 	cpu_death = CPU_DEATH_POWER;
813 
814 	pr_debug("CPU%d going offline\n", cpu);
815 
816 	if (cpu_has_mipsmt || cpu_has_vp) {
817 		/* Look for another online VPE within the core */
818 		for_each_online_cpu(cpu_death_sibling) {
819 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
820 				continue;
821 
822 			/*
823 			 * There is an online VPE within the core. Just halt
824 			 * this TC and leave the core alone.
825 			 */
826 			cpu_death = CPU_DEATH_HALT;
827 			break;
828 		}
829 	}
830 
831 	cpuhp_ap_report_dead();
832 
833 	cps_shutdown_this_cpu(cpu_death);
834 
835 	/* This should never be reached */
836 	panic("Failed to offline CPU %u", cpu);
837 }
838 
wait_for_sibling_halt(void * ptr_cpu)839 static void wait_for_sibling_halt(void *ptr_cpu)
840 {
841 	unsigned cpu = (unsigned long)ptr_cpu;
842 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
843 	unsigned halted;
844 	unsigned long flags;
845 
846 	do {
847 		local_irq_save(flags);
848 		settc(vpe_id);
849 		halted = read_tc_c0_tchalt();
850 		local_irq_restore(flags);
851 	} while (!(halted & TCHALT_H));
852 }
853 
cps_cpu_die(unsigned int cpu)854 static void cps_cpu_die(unsigned int cpu) { }
855 
cps_cleanup_dead_cpu(unsigned cpu)856 static void cps_cleanup_dead_cpu(unsigned cpu)
857 {
858 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
859 	unsigned core = cpu_core(&cpu_data[cpu]);
860 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
861 	ktime_t fail_time;
862 	unsigned stat;
863 	int err;
864 	struct cluster_boot_config *cluster_cfg;
865 
866 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
867 
868 	/*
869 	 * Now wait for the CPU to actually offline. Without doing this that
870 	 * offlining may race with one or more of:
871 	 *
872 	 *   - Onlining the CPU again.
873 	 *   - Powering down the core if another VPE within it is offlined.
874 	 *   - A sibling VPE entering a non-coherent state.
875 	 *
876 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
877 	 * with which we could race, so do nothing.
878 	 */
879 	if (cpu_death == CPU_DEATH_POWER) {
880 		/*
881 		 * Wait for the core to enter a powered down or clock gated
882 		 * state, the latter happening when a JTAG probe is connected
883 		 * in which case the CPC will refuse to power down the core.
884 		 */
885 		fail_time = ktime_add_ms(ktime_get(), 2000);
886 		do {
887 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
888 			mips_cpc_lock_other(core);
889 			stat = read_cpc_co_stat_conf();
890 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
891 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
892 			mips_cpc_unlock_other();
893 			mips_cm_unlock_other();
894 
895 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
896 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
897 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
898 				break;
899 
900 			/*
901 			 * The core ought to have powered down, but didn't &
902 			 * now we don't really know what state it's in. It's
903 			 * likely that its _pwr_up pin has been wired to logic
904 			 * 1 & it powered back up as soon as we powered it
905 			 * down...
906 			 *
907 			 * The best we can do is warn the user & continue in
908 			 * the hope that the core is doing nothing harmful &
909 			 * might behave properly if we online it later.
910 			 */
911 			if (WARN(ktime_after(ktime_get(), fail_time),
912 				 "CPU%u hasn't powered down, seq. state %u\n",
913 				 cpu, stat))
914 				break;
915 		} while (1);
916 
917 		/* Indicate the core is powered off */
918 		bitmap_clear(cluster_cfg->core_power, core, 1);
919 	} else if (cpu_has_mipsmt) {
920 		/*
921 		 * Have a CPU with access to the offlined CPUs registers wait
922 		 * for its TC to halt.
923 		 */
924 		err = smp_call_function_single(cpu_death_sibling,
925 					       wait_for_sibling_halt,
926 					       (void *)(unsigned long)cpu, 1);
927 		if (err)
928 			panic("Failed to call remote sibling CPU\n");
929 	} else if (cpu_has_vp) {
930 		do {
931 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
932 			stat = read_cpc_co_vp_running();
933 			mips_cm_unlock_other();
934 		} while (stat & (1 << vpe_id));
935 	}
936 }
937 
938 #endif /* CONFIG_HOTPLUG_CPU */
939 
940 static const struct plat_smp_ops cps_smp_ops = {
941 	.smp_setup		= cps_smp_setup,
942 	.prepare_cpus		= cps_prepare_cpus,
943 	.boot_secondary		= cps_boot_secondary,
944 	.init_secondary		= cps_init_secondary,
945 	.smp_finish		= cps_smp_finish,
946 	.send_ipi_single	= mips_smp_send_ipi_single,
947 	.send_ipi_mask		= mips_smp_send_ipi_mask,
948 #ifdef CONFIG_HOTPLUG_CPU
949 	.cpu_disable		= cps_cpu_disable,
950 	.cpu_die		= cps_cpu_die,
951 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
952 #endif
953 #ifdef CONFIG_KEXEC_CORE
954 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
955 #endif
956 };
957 
mips_cps_smp_in_use(void)958 bool mips_cps_smp_in_use(void)
959 {
960 	extern const struct plat_smp_ops *mp_ops;
961 	return mp_ops == &cps_smp_ops;
962 }
963 
register_cps_smp_ops(void)964 int register_cps_smp_ops(void)
965 {
966 	if (!mips_cm_present()) {
967 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
968 		return -ENODEV;
969 	}
970 
971 	/* check we have a GIC - we need one for IPIs */
972 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
973 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
974 		return -ENODEV;
975 	}
976 
977 	register_smp_ops(&cps_smp_ops);
978 	return 0;
979 }
980