1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && 106 is_rec_inuse(ni->mi.mrec) && 107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING)) 108 ni_delete_all(ni); 109 110 al_destroy(ni); 111 112 for (node = rb_first(&ni->mi_tree); node;) { 113 struct rb_node *next = rb_next(node); 114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 115 116 rb_erase(node, &ni->mi_tree); 117 mi_put(mi); 118 node = next; 119 } 120 121 /* Bad inode always has mode == S_IFREG. */ 122 if (ni->ni_flags & NI_FLAG_DIR) 123 indx_clear(&ni->dir); 124 else { 125 run_close(&ni->file.run); 126 #ifdef CONFIG_NTFS3_LZX_XPRESS 127 if (ni->file.offs_folio) { 128 /* On-demand allocated page for offsets. */ 129 folio_put(ni->file.offs_folio); 130 ni->file.offs_folio = NULL; 131 } 132 #endif 133 } 134 135 mi_clear(&ni->mi); 136 } 137 138 /* 139 * ni_load_mi_ex - Find mft_inode by record number. 140 */ 141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 142 { 143 int err; 144 struct mft_inode *r; 145 146 r = ni_find_mi(ni, rno); 147 if (r) 148 goto out; 149 150 err = mi_get(ni->mi.sbi, rno, &r); 151 if (err) { 152 _ntfs_bad_inode(&ni->vfs_inode); 153 return err; 154 } 155 156 ni_add_mi(ni, r); 157 158 out: 159 if (mi) 160 *mi = r; 161 return 0; 162 } 163 164 /* 165 * ni_load_mi - Load mft_inode corresponded list_entry. 166 */ 167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 168 struct mft_inode **mi) 169 { 170 CLST rno; 171 172 if (!le) { 173 *mi = &ni->mi; 174 return 0; 175 } 176 177 rno = ino_get(&le->ref); 178 if (rno == ni->mi.rno) { 179 *mi = &ni->mi; 180 return 0; 181 } 182 return ni_load_mi_ex(ni, rno, mi); 183 } 184 185 /* 186 * ni_find_attr 187 * 188 * Return: Attribute and record this attribute belongs to. 189 */ 190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 191 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 192 const __le16 *name, u8 name_len, const CLST *vcn, 193 struct mft_inode **mi) 194 { 195 struct ATTR_LIST_ENTRY *le; 196 struct mft_inode *m; 197 198 if (!ni->attr_list.size || 199 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 200 if (le_o) 201 *le_o = NULL; 202 if (mi) 203 *mi = &ni->mi; 204 205 /* Look for required attribute in primary record. */ 206 return mi_find_attr(ni, &ni->mi, attr, type, name, name_len, 207 NULL); 208 } 209 210 /* First look for list entry of required type. */ 211 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 212 if (!le) 213 return NULL; 214 215 if (le_o) 216 *le_o = le; 217 218 /* Load record that contains this attribute. */ 219 if (ni_load_mi(ni, le, &m)) 220 return NULL; 221 222 /* Look for required attribute. */ 223 attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id); 224 225 if (!attr) 226 goto out; 227 228 if (!attr->non_res) { 229 if (vcn && *vcn) 230 goto out; 231 } else if (!vcn) { 232 if (attr->nres.svcn) 233 goto out; 234 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 235 *vcn > le64_to_cpu(attr->nres.evcn)) { 236 goto out; 237 } 238 239 if (mi) 240 *mi = m; 241 return attr; 242 243 out: 244 _ntfs_bad_inode(&ni->vfs_inode); 245 return NULL; 246 } 247 248 /* 249 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 250 */ 251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 252 struct ATTR_LIST_ENTRY **le, 253 struct mft_inode **mi) 254 { 255 struct mft_inode *mi2; 256 struct ATTR_LIST_ENTRY *le2; 257 258 /* Do we have an attribute list? */ 259 if (!ni->attr_list.size) { 260 *le = NULL; 261 if (mi) 262 *mi = &ni->mi; 263 /* Enum attributes in primary record. */ 264 return mi_enum_attr(ni, &ni->mi, attr); 265 } 266 267 /* Get next list entry. */ 268 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 269 if (!le2) 270 return NULL; 271 272 /* Load record that contains the required attribute. */ 273 if (ni_load_mi(ni, le2, &mi2)) 274 return NULL; 275 276 if (mi) 277 *mi = mi2; 278 279 /* Find attribute in loaded record. */ 280 return rec_find_attr_le(ni, mi2, le2); 281 } 282 283 /* 284 * ni_load_all_mi - Load all subrecords. 285 */ 286 int ni_load_all_mi(struct ntfs_inode *ni) 287 { 288 int err; 289 struct ATTR_LIST_ENTRY *le; 290 291 if (!ni->attr_list.size) 292 return 0; 293 294 le = NULL; 295 296 while ((le = al_enumerate(ni, le))) { 297 CLST rno = ino_get(&le->ref); 298 299 if (rno == ni->mi.rno) 300 continue; 301 302 err = ni_load_mi_ex(ni, rno, NULL); 303 if (err) 304 return err; 305 } 306 307 return 0; 308 } 309 310 /* 311 * ni_add_subrecord - Allocate + format + attach a new subrecord. 312 */ 313 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 314 { 315 struct mft_inode *m; 316 317 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 318 if (!m) 319 return false; 320 321 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 322 mi_put(m); 323 return false; 324 } 325 326 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 327 328 *mi = ni_ins_mi(ni, &ni->mi_tree, m->rno, &m->node); 329 if (*mi != m) 330 mi_put(m); 331 332 return true; 333 } 334 335 /* 336 * ni_remove_attr - Remove all attributes for the given type/name/id. 337 */ 338 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 339 const __le16 *name, u8 name_len, bool base_only, 340 const __le16 *id) 341 { 342 int err; 343 struct ATTRIB *attr; 344 struct ATTR_LIST_ENTRY *le; 345 struct mft_inode *mi; 346 u32 type_in; 347 int diff; 348 349 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 350 attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len, 351 id); 352 if (!attr) 353 return -ENOENT; 354 355 mi_remove_attr(ni, &ni->mi, attr); 356 return 0; 357 } 358 359 type_in = le32_to_cpu(type); 360 le = NULL; 361 362 for (;;) { 363 le = al_enumerate(ni, le); 364 if (!le) 365 return 0; 366 367 next_le2: 368 diff = le32_to_cpu(le->type) - type_in; 369 if (diff < 0) 370 continue; 371 372 if (diff > 0) 373 return 0; 374 375 if (le->name_len != name_len) 376 continue; 377 378 if (name_len && 379 memcmp(le_name(le), name, name_len * sizeof(short))) 380 continue; 381 382 if (id && le->id != *id) 383 continue; 384 err = ni_load_mi(ni, le, &mi); 385 if (err) 386 return err; 387 388 al_remove_le(ni, le); 389 390 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id); 391 if (!attr) 392 return -ENOENT; 393 394 mi_remove_attr(ni, mi, attr); 395 396 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 397 return 0; 398 goto next_le2; 399 } 400 } 401 402 /* 403 * ni_ins_new_attr - Insert the attribute into record. 404 * 405 * Return: Not full constructed attribute or NULL if not possible to create. 406 */ 407 static struct ATTRIB * 408 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 409 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 410 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 411 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 412 { 413 int err; 414 struct ATTRIB *attr; 415 bool le_added = false; 416 struct MFT_REF ref; 417 418 mi_get_ref(mi, &ref); 419 420 if (type != ATTR_LIST && !le && ni->attr_list.size) { 421 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 422 &ref, &le); 423 if (err) { 424 /* No memory or no space. */ 425 return ERR_PTR(err); 426 } 427 le_added = true; 428 429 /* 430 * al_add_le -> attr_set_size (list) -> ni_expand_list 431 * which moves some attributes out of primary record 432 * this means that name may point into moved memory 433 * reinit 'name' from le. 434 */ 435 name = le->name; 436 } 437 438 attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off); 439 if (!attr) { 440 if (le_added) 441 al_remove_le(ni, le); 442 return NULL; 443 } 444 445 if (type == ATTR_LIST) { 446 /* Attr list is not in list entry array. */ 447 goto out; 448 } 449 450 if (!le) 451 goto out; 452 453 /* Update ATTRIB Id and record reference. */ 454 le->id = attr->id; 455 ni->attr_list.dirty = true; 456 le->ref = ref; 457 458 out: 459 if (ins_le) 460 *ins_le = le; 461 return attr; 462 } 463 464 /* 465 * ni_repack 466 * 467 * Random write access to sparsed or compressed file may result to 468 * not optimized packed runs. 469 * Here is the place to optimize it. 470 */ 471 static int ni_repack(struct ntfs_inode *ni) 472 { 473 #if 1 474 return 0; 475 #else 476 int err = 0; 477 struct ntfs_sb_info *sbi = ni->mi.sbi; 478 struct mft_inode *mi, *mi_p = NULL; 479 struct ATTRIB *attr = NULL, *attr_p; 480 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 481 CLST alloc = 0; 482 u8 cluster_bits = sbi->cluster_bits; 483 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 484 u32 roff, rs = sbi->record_size; 485 struct runs_tree run; 486 487 run_init(&run); 488 489 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 490 if (!attr->non_res) 491 continue; 492 493 svcn = le64_to_cpu(attr->nres.svcn); 494 if (svcn != le64_to_cpu(le->vcn)) { 495 err = -EINVAL; 496 break; 497 } 498 499 if (!svcn) { 500 alloc = le64_to_cpu(attr->nres.alloc_size) >> 501 cluster_bits; 502 mi_p = NULL; 503 } else if (svcn != evcn + 1) { 504 err = -EINVAL; 505 break; 506 } 507 508 evcn = le64_to_cpu(attr->nres.evcn); 509 510 if (svcn > evcn + 1) { 511 err = -EINVAL; 512 break; 513 } 514 515 if (!mi_p) { 516 /* Do not try if not enough free space. */ 517 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 518 continue; 519 520 /* Do not try if last attribute segment. */ 521 if (evcn + 1 == alloc) 522 continue; 523 run_close(&run); 524 } 525 526 roff = le16_to_cpu(attr->nres.run_off); 527 528 if (roff > le32_to_cpu(attr->size)) { 529 err = -EINVAL; 530 break; 531 } 532 533 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 534 Add2Ptr(attr, roff), 535 le32_to_cpu(attr->size) - roff); 536 if (err < 0) 537 break; 538 539 if (!mi_p) { 540 mi_p = mi; 541 attr_p = attr; 542 svcn_p = svcn; 543 evcn_p = evcn; 544 le_p = le; 545 err = 0; 546 continue; 547 } 548 549 /* 550 * Run contains data from two records: mi_p and mi 551 * Try to pack in one. 552 */ 553 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 554 if (err) 555 break; 556 557 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 558 559 if (next_svcn >= evcn + 1) { 560 /* We can remove this attribute segment. */ 561 al_remove_le(ni, le); 562 mi_remove_attr(NULL, mi, attr); 563 le = le_p; 564 continue; 565 } 566 567 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 568 mi->dirty = true; 569 ni->attr_list.dirty = true; 570 571 if (evcn + 1 == alloc) { 572 err = mi_pack_runs(mi, attr, &run, 573 evcn + 1 - next_svcn); 574 if (err) 575 break; 576 mi_p = NULL; 577 } else { 578 mi_p = mi; 579 attr_p = attr; 580 svcn_p = next_svcn; 581 evcn_p = evcn; 582 le_p = le; 583 run_truncate_head(&run, next_svcn); 584 } 585 } 586 587 if (err) { 588 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 589 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 590 591 /* Pack loaded but not packed runs. */ 592 if (mi_p) 593 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 594 } 595 596 run_close(&run); 597 return err; 598 #endif 599 } 600 601 /* 602 * ni_try_remove_attr_list 603 * 604 * Can we remove attribute list? 605 * Check the case when primary record contains enough space for all attributes. 606 */ 607 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 608 { 609 int err = 0; 610 struct ntfs_sb_info *sbi = ni->mi.sbi; 611 struct ATTRIB *attr, *attr_list, *attr_ins; 612 struct ATTR_LIST_ENTRY *le; 613 struct mft_inode *mi; 614 u32 asize, free; 615 struct MFT_REF ref; 616 struct MFT_REC *mrec; 617 __le16 id; 618 619 if (!ni->attr_list.dirty) 620 return 0; 621 622 err = ni_repack(ni); 623 if (err) 624 return err; 625 626 attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 627 if (!attr_list) 628 return 0; 629 630 asize = le32_to_cpu(attr_list->size); 631 632 /* Free space in primary record without attribute list. */ 633 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 634 mi_get_ref(&ni->mi, &ref); 635 636 le = NULL; 637 while ((le = al_enumerate(ni, le))) { 638 if (!memcmp(&le->ref, &ref, sizeof(ref))) 639 continue; 640 641 if (le->vcn) 642 return 0; 643 644 mi = ni_find_mi(ni, ino_get(&le->ref)); 645 if (!mi) 646 return 0; 647 648 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 649 le->name_len, &le->id); 650 if (!attr) 651 return 0; 652 653 asize = le32_to_cpu(attr->size); 654 if (asize > free) 655 return 0; 656 657 free -= asize; 658 } 659 660 /* Make a copy of primary record to restore if error. */ 661 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 662 if (!mrec) 663 return 0; /* Not critical. */ 664 665 /* It seems that attribute list can be removed from primary record. */ 666 mi_remove_attr(NULL, &ni->mi, attr_list); 667 668 /* 669 * Repeat the cycle above and copy all attributes to primary record. 670 * Do not remove original attributes from subrecords! 671 * It should be success! 672 */ 673 le = NULL; 674 while ((le = al_enumerate(ni, le))) { 675 if (!memcmp(&le->ref, &ref, sizeof(ref))) 676 continue; 677 678 mi = ni_find_mi(ni, ino_get(&le->ref)); 679 if (!mi) { 680 /* Should never happened, 'cause already checked. */ 681 goto out; 682 } 683 684 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 685 le->name_len, &le->id); 686 if (!attr) { 687 /* Should never happened, 'cause already checked. */ 688 goto out; 689 } 690 asize = le32_to_cpu(attr->size); 691 692 /* Insert into primary record. */ 693 attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le), 694 le->name_len, asize, 695 le16_to_cpu(attr->name_off)); 696 if (!attr_ins) { 697 /* 698 * No space in primary record (already checked). 699 */ 700 goto out; 701 } 702 703 /* Copy all except id. */ 704 id = attr_ins->id; 705 memcpy(attr_ins, attr, asize); 706 attr_ins->id = id; 707 } 708 709 /* 710 * Repeat the cycle above and remove all attributes from subrecords. 711 */ 712 le = NULL; 713 while ((le = al_enumerate(ni, le))) { 714 if (!memcmp(&le->ref, &ref, sizeof(ref))) 715 continue; 716 717 mi = ni_find_mi(ni, ino_get(&le->ref)); 718 if (!mi) 719 continue; 720 721 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le), 722 le->name_len, &le->id); 723 if (!attr) 724 continue; 725 726 /* Remove from original record. */ 727 mi_remove_attr(NULL, mi, attr); 728 } 729 730 run_deallocate(sbi, &ni->attr_list.run, true); 731 run_close(&ni->attr_list.run); 732 ni->attr_list.size = 0; 733 kvfree(ni->attr_list.le); 734 ni->attr_list.le = NULL; 735 ni->attr_list.dirty = false; 736 737 kfree(mrec); 738 return 0; 739 out: 740 /* Restore primary record. */ 741 swap(mrec, ni->mi.mrec); 742 kfree(mrec); 743 return 0; 744 } 745 746 /* 747 * ni_create_attr_list - Generates an attribute list for this primary record. 748 */ 749 int ni_create_attr_list(struct ntfs_inode *ni) 750 { 751 struct ntfs_sb_info *sbi = ni->mi.sbi; 752 int err; 753 u32 lsize; 754 struct ATTRIB *attr; 755 struct ATTRIB *arr_move[7]; 756 struct ATTR_LIST_ENTRY *le, *le_b[7]; 757 struct MFT_REC *rec; 758 bool is_mft; 759 CLST rno = 0; 760 struct mft_inode *mi; 761 u32 free_b, nb, to_free, rs; 762 u16 sz; 763 764 is_mft = ni->mi.rno == MFT_REC_MFT; 765 rec = ni->mi.mrec; 766 rs = sbi->record_size; 767 768 /* 769 * Skip estimating exact memory requirement. 770 * Looks like one record_size is always enough. 771 */ 772 le = kzalloc(al_aligned(rs), GFP_NOFS); 773 if (!le) 774 return -ENOMEM; 775 776 mi_get_ref(&ni->mi, &le->ref); 777 ni->attr_list.le = le; 778 779 attr = NULL; 780 nb = 0; 781 free_b = 0; 782 attr = NULL; 783 784 for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) { 785 sz = le_size(attr->name_len); 786 le->type = attr->type; 787 le->size = cpu_to_le16(sz); 788 le->name_len = attr->name_len; 789 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 790 le->vcn = 0; 791 if (le != ni->attr_list.le) 792 le->ref = ni->attr_list.le->ref; 793 le->id = attr->id; 794 795 if (attr->name_len) 796 memcpy(le->name, attr_name(attr), 797 sizeof(short) * attr->name_len); 798 else if (attr->type == ATTR_STD) 799 continue; 800 else if (attr->type == ATTR_LIST) 801 continue; 802 else if (is_mft && attr->type == ATTR_DATA) 803 continue; 804 805 if (!nb || nb < ARRAY_SIZE(arr_move)) { 806 le_b[nb] = le; 807 arr_move[nb++] = attr; 808 free_b += le32_to_cpu(attr->size); 809 } 810 } 811 812 lsize = PtrOffset(ni->attr_list.le, le); 813 ni->attr_list.size = lsize; 814 815 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 816 if (to_free <= rs) { 817 to_free = 0; 818 } else { 819 to_free -= rs; 820 821 if (to_free > free_b) { 822 err = -EINVAL; 823 goto out; 824 } 825 } 826 827 /* Allocate child MFT. */ 828 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 829 if (err) 830 goto out; 831 832 err = -EINVAL; 833 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 834 while (to_free > 0) { 835 struct ATTRIB *b = arr_move[--nb]; 836 u32 asize = le32_to_cpu(b->size); 837 u16 name_off = le16_to_cpu(b->name_off); 838 839 attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off), 840 b->name_len, asize, name_off); 841 if (!attr) 842 goto out; 843 844 mi_get_ref(mi, &le_b[nb]->ref); 845 le_b[nb]->id = attr->id; 846 847 /* Copy all except id. */ 848 memcpy(attr, b, asize); 849 attr->id = le_b[nb]->id; 850 851 /* Remove from primary record. */ 852 if (!mi_remove_attr(NULL, &ni->mi, b)) 853 goto out; 854 855 if (to_free <= asize) 856 break; 857 to_free -= asize; 858 if (!nb) 859 goto out; 860 } 861 862 attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0, 863 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 864 if (!attr) 865 goto out; 866 867 attr->non_res = 0; 868 attr->flags = 0; 869 attr->res.data_size = cpu_to_le32(lsize); 870 attr->res.data_off = SIZEOF_RESIDENT_LE; 871 attr->res.flags = 0; 872 attr->res.res = 0; 873 874 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 875 876 ni->attr_list.dirty = false; 877 878 mark_inode_dirty(&ni->vfs_inode); 879 return 0; 880 881 out: 882 kvfree(ni->attr_list.le); 883 ni->attr_list.le = NULL; 884 ni->attr_list.size = 0; 885 return err; 886 } 887 888 /* 889 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 890 */ 891 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 892 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 893 u32 asize, CLST svcn, u16 name_off, bool force_ext, 894 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 895 struct ATTR_LIST_ENTRY **ins_le) 896 { 897 struct ATTRIB *attr; 898 struct mft_inode *mi; 899 CLST rno; 900 u64 vbo; 901 struct rb_node *node; 902 int err; 903 bool is_mft, is_mft_data; 904 struct ntfs_sb_info *sbi = ni->mi.sbi; 905 906 is_mft = ni->mi.rno == MFT_REC_MFT; 907 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 908 909 if (asize > sbi->max_bytes_per_attr) { 910 err = -EINVAL; 911 goto out; 912 } 913 914 /* 915 * Standard information and attr_list cannot be made external. 916 * The Log File cannot have any external attributes. 917 */ 918 if (type == ATTR_STD || type == ATTR_LIST || 919 ni->mi.rno == MFT_REC_LOG) { 920 err = -EINVAL; 921 goto out; 922 } 923 924 /* Create attribute list if it is not already existed. */ 925 if (!ni->attr_list.size) { 926 err = ni_create_attr_list(ni); 927 if (err) 928 goto out; 929 } 930 931 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 932 933 if (force_ext) 934 goto insert_ext; 935 936 /* Load all subrecords into memory. */ 937 err = ni_load_all_mi(ni); 938 if (err) 939 goto out; 940 941 /* Check each of loaded subrecord. */ 942 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 943 mi = rb_entry(node, struct mft_inode, node); 944 945 if (is_mft_data && 946 (mi_enum_attr(ni, mi, NULL) || 947 vbo <= ((u64)mi->rno << sbi->record_bits))) { 948 /* We can't accept this record 'cause MFT's bootstrapping. */ 949 continue; 950 } 951 if (is_mft && 952 mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 953 /* 954 * This child record already has a ATTR_DATA. 955 * So it can't accept any other records. 956 */ 957 continue; 958 } 959 960 if ((type != ATTR_NAME || name_len) && 961 mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) { 962 /* Only indexed attributes can share same record. */ 963 continue; 964 } 965 966 /* 967 * Do not try to insert this attribute 968 * if there is no room in record. 969 */ 970 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 971 continue; 972 973 /* Try to insert attribute into this subrecord. */ 974 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 975 name_off, svcn, ins_le); 976 if (!attr) 977 continue; 978 if (IS_ERR(attr)) 979 return PTR_ERR(attr); 980 981 if (ins_attr) 982 *ins_attr = attr; 983 if (ins_mi) 984 *ins_mi = mi; 985 return 0; 986 } 987 988 insert_ext: 989 /* We have to allocate a new child subrecord. */ 990 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 991 if (err) 992 goto out; 993 994 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 995 err = -EINVAL; 996 goto out1; 997 } 998 999 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1000 name_off, svcn, ins_le); 1001 if (!attr) { 1002 err = -EINVAL; 1003 goto out2; 1004 } 1005 1006 if (IS_ERR(attr)) { 1007 err = PTR_ERR(attr); 1008 goto out2; 1009 } 1010 1011 if (ins_attr) 1012 *ins_attr = attr; 1013 if (ins_mi) 1014 *ins_mi = mi; 1015 1016 return 0; 1017 1018 out2: 1019 ni_remove_mi(ni, mi); 1020 1021 out1: 1022 mi_put(mi); 1023 ntfs_mark_rec_free(sbi, rno, is_mft); 1024 1025 out: 1026 return err; 1027 } 1028 1029 /* 1030 * ni_insert_attr - Insert an attribute into the file. 1031 * 1032 * If the primary record has room, it will just insert the attribute. 1033 * If not, it may make the attribute external. 1034 * For $MFT::Data it may make room for the attribute by 1035 * making other attributes external. 1036 * 1037 * NOTE: 1038 * The ATTR_LIST and ATTR_STD cannot be made external. 1039 * This function does not fill new attribute full. 1040 * It only fills 'size'/'type'/'id'/'name_len' fields. 1041 */ 1042 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1043 const __le16 *name, u8 name_len, u32 asize, 1044 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1045 struct mft_inode **ins_mi, 1046 struct ATTR_LIST_ENTRY **ins_le) 1047 { 1048 struct ntfs_sb_info *sbi = ni->mi.sbi; 1049 int err; 1050 struct ATTRIB *attr, *eattr; 1051 struct MFT_REC *rec; 1052 bool is_mft; 1053 struct ATTR_LIST_ENTRY *le; 1054 u32 list_reserve, max_free, free, used, t32; 1055 __le16 id; 1056 u16 t16; 1057 1058 is_mft = ni->mi.rno == MFT_REC_MFT; 1059 rec = ni->mi.mrec; 1060 1061 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1062 used = le32_to_cpu(rec->used); 1063 free = sbi->record_size - used; 1064 1065 if (is_mft && type != ATTR_LIST) { 1066 /* Reserve space for the ATTRIB list. */ 1067 if (free < list_reserve) 1068 free = 0; 1069 else 1070 free -= list_reserve; 1071 } 1072 1073 if (asize <= free) { 1074 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1075 asize, name_off, svcn, ins_le); 1076 if (IS_ERR(attr)) { 1077 err = PTR_ERR(attr); 1078 goto out; 1079 } 1080 1081 if (attr) { 1082 if (ins_attr) 1083 *ins_attr = attr; 1084 if (ins_mi) 1085 *ins_mi = &ni->mi; 1086 err = 0; 1087 goto out; 1088 } 1089 } 1090 1091 if (!is_mft || type != ATTR_DATA || svcn) { 1092 /* This ATTRIB will be external. */ 1093 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1094 svcn, name_off, false, ins_attr, ins_mi, 1095 ins_le); 1096 goto out; 1097 } 1098 1099 /* 1100 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1101 * 1102 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1103 * Evict as many other attributes as possible. 1104 */ 1105 max_free = free; 1106 1107 /* Estimate the result of moving all possible attributes away. */ 1108 attr = NULL; 1109 1110 while ((attr = mi_enum_attr(ni, &ni->mi, attr))) { 1111 if (attr->type == ATTR_STD) 1112 continue; 1113 if (attr->type == ATTR_LIST) 1114 continue; 1115 max_free += le32_to_cpu(attr->size); 1116 } 1117 1118 if (max_free < asize + list_reserve) { 1119 /* Impossible to insert this attribute into primary record. */ 1120 err = -EINVAL; 1121 goto out; 1122 } 1123 1124 /* Start real attribute moving. */ 1125 attr = NULL; 1126 1127 for (;;) { 1128 attr = mi_enum_attr(ni, &ni->mi, attr); 1129 if (!attr) { 1130 /* We should never be here 'cause we have already check this case. */ 1131 err = -EINVAL; 1132 goto out; 1133 } 1134 1135 /* Skip attributes that MUST be primary record. */ 1136 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1137 continue; 1138 1139 le = NULL; 1140 if (ni->attr_list.size) { 1141 le = al_find_le(ni, NULL, attr); 1142 if (!le) { 1143 /* Really this is a serious bug. */ 1144 err = -EINVAL; 1145 goto out; 1146 } 1147 } 1148 1149 t32 = le32_to_cpu(attr->size); 1150 t16 = le16_to_cpu(attr->name_off); 1151 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1152 attr->name_len, t32, attr_svcn(attr), t16, 1153 false, &eattr, NULL, NULL); 1154 if (err) 1155 return err; 1156 1157 id = eattr->id; 1158 memcpy(eattr, attr, t32); 1159 eattr->id = id; 1160 1161 /* Remove from primary record. */ 1162 mi_remove_attr(NULL, &ni->mi, attr); 1163 1164 /* attr now points to next attribute. */ 1165 if (attr->type == ATTR_END) 1166 goto out; 1167 } 1168 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1169 ; 1170 1171 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1172 name_off, svcn, ins_le); 1173 if (!attr) { 1174 err = -EINVAL; 1175 goto out; 1176 } 1177 1178 if (IS_ERR(attr)) { 1179 err = PTR_ERR(attr); 1180 goto out; 1181 } 1182 1183 if (ins_attr) 1184 *ins_attr = attr; 1185 if (ins_mi) 1186 *ins_mi = &ni->mi; 1187 1188 out: 1189 return err; 1190 } 1191 1192 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1193 static int ni_expand_mft_list(struct ntfs_inode *ni) 1194 { 1195 int err = 0; 1196 struct runs_tree *run = &ni->file.run; 1197 u32 asize, run_size, done = 0; 1198 struct ATTRIB *attr; 1199 struct rb_node *node; 1200 CLST mft_min, mft_new, svcn, evcn, plen; 1201 struct mft_inode *mi, *mi_min, *mi_new; 1202 struct ntfs_sb_info *sbi = ni->mi.sbi; 1203 1204 /* Find the nearest MFT. */ 1205 mft_min = 0; 1206 mft_new = 0; 1207 mi_min = NULL; 1208 1209 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1210 mi = rb_entry(node, struct mft_inode, node); 1211 1212 attr = mi_enum_attr(ni, mi, NULL); 1213 1214 if (!attr) { 1215 mft_min = mi->rno; 1216 mi_min = mi; 1217 break; 1218 } 1219 } 1220 1221 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1222 mft_new = 0; 1223 /* Really this is not critical. */ 1224 } else if (mft_min > mft_new) { 1225 mft_min = mft_new; 1226 mi_min = mi_new; 1227 } else { 1228 ntfs_mark_rec_free(sbi, mft_new, true); 1229 mft_new = 0; 1230 ni_remove_mi(ni, mi_new); 1231 } 1232 1233 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1234 if (!attr) { 1235 err = -EINVAL; 1236 goto out; 1237 } 1238 1239 asize = le32_to_cpu(attr->size); 1240 1241 evcn = le64_to_cpu(attr->nres.evcn); 1242 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1243 if (evcn + 1 >= svcn) { 1244 err = -EINVAL; 1245 goto out; 1246 } 1247 1248 /* 1249 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1250 * 1251 * Update first part of ATTR_DATA in 'primary MFT. 1252 */ 1253 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1254 asize - SIZEOF_NONRESIDENT, &plen); 1255 if (err < 0) 1256 goto out; 1257 1258 run_size = ALIGN(err, 8); 1259 err = 0; 1260 1261 if (plen < svcn) { 1262 err = -EINVAL; 1263 goto out; 1264 } 1265 1266 attr->nres.evcn = cpu_to_le64(svcn - 1); 1267 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1268 /* 'done' - How many bytes of primary MFT becomes free. */ 1269 done = asize - run_size - SIZEOF_NONRESIDENT; 1270 le32_sub_cpu(&ni->mi.mrec->used, done); 1271 1272 /* Estimate packed size (run_buf=NULL). */ 1273 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1274 &plen); 1275 if (err < 0) 1276 goto out; 1277 1278 run_size = ALIGN(err, 8); 1279 err = 0; 1280 1281 if (plen < evcn + 1 - svcn) { 1282 err = -EINVAL; 1283 goto out; 1284 } 1285 1286 /* 1287 * This function may implicitly call expand attr_list. 1288 * Insert second part of ATTR_DATA in 'mi_min'. 1289 */ 1290 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1291 SIZEOF_NONRESIDENT + run_size, 1292 SIZEOF_NONRESIDENT, svcn, NULL); 1293 if (!attr) { 1294 err = -EINVAL; 1295 goto out; 1296 } 1297 1298 if (IS_ERR(attr)) { 1299 err = PTR_ERR(attr); 1300 goto out; 1301 } 1302 1303 attr->non_res = 1; 1304 attr->name_off = SIZEOF_NONRESIDENT_LE; 1305 attr->flags = 0; 1306 1307 /* This function can't fail - cause already checked above. */ 1308 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1309 run_size, &plen); 1310 1311 attr->nres.svcn = cpu_to_le64(svcn); 1312 attr->nres.evcn = cpu_to_le64(evcn); 1313 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1314 1315 out: 1316 if (mft_new) { 1317 ntfs_mark_rec_free(sbi, mft_new, true); 1318 ni_remove_mi(ni, mi_new); 1319 } 1320 1321 return !err && !done ? -EOPNOTSUPP : err; 1322 } 1323 1324 /* 1325 * ni_expand_list - Move all possible attributes out of primary record. 1326 */ 1327 int ni_expand_list(struct ntfs_inode *ni) 1328 { 1329 int err = 0; 1330 u32 asize, done = 0; 1331 struct ATTRIB *attr, *ins_attr; 1332 struct ATTR_LIST_ENTRY *le; 1333 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1334 struct MFT_REF ref; 1335 1336 mi_get_ref(&ni->mi, &ref); 1337 le = NULL; 1338 1339 while ((le = al_enumerate(ni, le))) { 1340 if (le->type == ATTR_STD) 1341 continue; 1342 1343 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1344 continue; 1345 1346 if (is_mft && le->type == ATTR_DATA) 1347 continue; 1348 1349 /* Find attribute in primary record. */ 1350 attr = rec_find_attr_le(ni, &ni->mi, le); 1351 if (!attr) { 1352 err = -EINVAL; 1353 goto out; 1354 } 1355 1356 asize = le32_to_cpu(attr->size); 1357 1358 /* Always insert into new record to avoid collisions (deep recursive). */ 1359 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1360 attr->name_len, asize, attr_svcn(attr), 1361 le16_to_cpu(attr->name_off), true, 1362 &ins_attr, NULL, NULL); 1363 1364 if (err) 1365 goto out; 1366 1367 memcpy(ins_attr, attr, asize); 1368 ins_attr->id = le->id; 1369 /* Remove from primary record. */ 1370 mi_remove_attr(NULL, &ni->mi, attr); 1371 1372 done += asize; 1373 goto out; 1374 } 1375 1376 if (!is_mft) { 1377 err = -EFBIG; /* Attr list is too big(?) */ 1378 goto out; 1379 } 1380 1381 /* Split MFT data as much as possible. */ 1382 err = ni_expand_mft_list(ni); 1383 1384 out: 1385 return !err && !done ? -EOPNOTSUPP : err; 1386 } 1387 1388 /* 1389 * ni_insert_nonresident - Insert new nonresident attribute. 1390 */ 1391 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1392 const __le16 *name, u8 name_len, 1393 const struct runs_tree *run, CLST svcn, CLST len, 1394 __le16 flags, struct ATTRIB **new_attr, 1395 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1396 { 1397 int err; 1398 CLST plen; 1399 struct ATTRIB *attr; 1400 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1401 !svcn; 1402 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1403 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1404 u32 run_off = name_off + name_size; 1405 u32 run_size, asize; 1406 struct ntfs_sb_info *sbi = ni->mi.sbi; 1407 1408 /* Estimate packed size (run_buf=NULL). */ 1409 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1410 &plen); 1411 if (err < 0) 1412 goto out; 1413 1414 run_size = ALIGN(err, 8); 1415 1416 if (plen < len) { 1417 err = -EINVAL; 1418 goto out; 1419 } 1420 1421 asize = run_off + run_size; 1422 1423 if (asize > sbi->max_bytes_per_attr) { 1424 err = -EINVAL; 1425 goto out; 1426 } 1427 1428 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1429 &attr, mi, le); 1430 1431 if (err) 1432 goto out; 1433 1434 attr->non_res = 1; 1435 attr->name_off = cpu_to_le16(name_off); 1436 attr->flags = flags; 1437 1438 /* This function can't fail - cause already checked above. */ 1439 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1440 1441 attr->nres.svcn = cpu_to_le64(svcn); 1442 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1443 1444 if (new_attr) 1445 *new_attr = attr; 1446 1447 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1448 1449 attr->nres.alloc_size = 1450 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1451 attr->nres.data_size = attr->nres.alloc_size; 1452 attr->nres.valid_size = attr->nres.alloc_size; 1453 1454 if (is_ext) { 1455 if (flags & ATTR_FLAG_COMPRESSED) 1456 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1457 attr->nres.total_size = attr->nres.alloc_size; 1458 } 1459 1460 out: 1461 return err; 1462 } 1463 1464 /* 1465 * ni_insert_resident - Inserts new resident attribute. 1466 */ 1467 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1468 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1469 struct ATTRIB **new_attr, struct mft_inode **mi, 1470 struct ATTR_LIST_ENTRY **le) 1471 { 1472 int err; 1473 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1474 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1475 struct ATTRIB *attr; 1476 1477 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1478 0, &attr, mi, le); 1479 if (err) 1480 return err; 1481 1482 attr->non_res = 0; 1483 attr->flags = 0; 1484 1485 attr->res.data_size = cpu_to_le32(data_size); 1486 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1487 if (type == ATTR_NAME) { 1488 attr->res.flags = RESIDENT_FLAG_INDEXED; 1489 1490 /* is_attr_indexed(attr)) == true */ 1491 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1492 ni->mi.dirty = true; 1493 } 1494 attr->res.res = 0; 1495 1496 if (new_attr) 1497 *new_attr = attr; 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * ni_remove_attr_le - Remove attribute from record. 1504 */ 1505 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1506 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1507 { 1508 mi_remove_attr(ni, mi, attr); 1509 1510 if (le) 1511 al_remove_le(ni, le); 1512 } 1513 1514 /* 1515 * ni_delete_all - Remove all attributes and frees allocates space. 1516 * 1517 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1518 */ 1519 int ni_delete_all(struct ntfs_inode *ni) 1520 { 1521 int err; 1522 struct ATTR_LIST_ENTRY *le = NULL; 1523 struct ATTRIB *attr = NULL; 1524 struct rb_node *node; 1525 u16 roff; 1526 u32 asize; 1527 CLST svcn, evcn; 1528 struct ntfs_sb_info *sbi = ni->mi.sbi; 1529 bool nt3 = is_ntfs3(sbi); 1530 struct MFT_REF ref; 1531 1532 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1533 if (!nt3 || attr->name_len) { 1534 ; 1535 } else if (attr->type == ATTR_REPARSE) { 1536 mi_get_ref(&ni->mi, &ref); 1537 ntfs_remove_reparse(sbi, 0, &ref); 1538 } else if (attr->type == ATTR_ID && !attr->non_res && 1539 le32_to_cpu(attr->res.data_size) >= 1540 sizeof(struct GUID)) { 1541 ntfs_objid_remove(sbi, resident_data(attr)); 1542 } 1543 1544 if (!attr->non_res) 1545 continue; 1546 1547 svcn = le64_to_cpu(attr->nres.svcn); 1548 evcn = le64_to_cpu(attr->nres.evcn); 1549 1550 if (evcn + 1 <= svcn) 1551 continue; 1552 1553 asize = le32_to_cpu(attr->size); 1554 roff = le16_to_cpu(attr->nres.run_off); 1555 1556 if (roff > asize) { 1557 /* ni_enum_attr_ex checks this case. */ 1558 continue; 1559 } 1560 1561 /* run==1 means unpack and deallocate. */ 1562 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1563 Add2Ptr(attr, roff), asize - roff); 1564 } 1565 1566 if (ni->attr_list.size) { 1567 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1568 al_destroy(ni); 1569 } 1570 1571 /* Free all subrecords. */ 1572 for (node = rb_first(&ni->mi_tree); node;) { 1573 struct rb_node *next = rb_next(node); 1574 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1575 1576 clear_rec_inuse(mi->mrec); 1577 mi->dirty = true; 1578 mi_write(mi, 0); 1579 1580 ntfs_mark_rec_free(sbi, mi->rno, false); 1581 ni_remove_mi(ni, mi); 1582 mi_put(mi); 1583 node = next; 1584 } 1585 1586 /* Free base record. */ 1587 clear_rec_inuse(ni->mi.mrec); 1588 ni->mi.dirty = true; 1589 err = mi_write(&ni->mi, 0); 1590 1591 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1592 1593 return err; 1594 } 1595 1596 /* ni_fname_name 1597 * 1598 * Return: File name attribute by its value. 1599 */ 1600 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1601 const struct le_str *uni, 1602 const struct MFT_REF *home_dir, 1603 struct mft_inode **mi, 1604 struct ATTR_LIST_ENTRY **le) 1605 { 1606 struct ATTRIB *attr = NULL; 1607 struct ATTR_FILE_NAME *fname; 1608 1609 if (le) 1610 *le = NULL; 1611 1612 /* Enumerate all names. */ 1613 next: 1614 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1615 if (!attr) 1616 return NULL; 1617 1618 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1619 if (!fname) 1620 goto next; 1621 1622 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1623 goto next; 1624 1625 if (!uni) 1626 return fname; 1627 1628 if (uni->len != fname->name_len) 1629 goto next; 1630 1631 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, 1632 false)) 1633 goto next; 1634 return fname; 1635 } 1636 1637 /* 1638 * ni_fname_type 1639 * 1640 * Return: File name attribute with given type. 1641 */ 1642 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1643 struct mft_inode **mi, 1644 struct ATTR_LIST_ENTRY **le) 1645 { 1646 struct ATTRIB *attr = NULL; 1647 struct ATTR_FILE_NAME *fname; 1648 1649 *le = NULL; 1650 1651 if (name_type == FILE_NAME_POSIX) 1652 return NULL; 1653 1654 /* Enumerate all names. */ 1655 for (;;) { 1656 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1657 if (!attr) 1658 return NULL; 1659 1660 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1661 if (fname && name_type == fname->type) 1662 return fname; 1663 } 1664 } 1665 1666 /* 1667 * ni_new_attr_flags 1668 * 1669 * Process compressed/sparsed in special way. 1670 * NOTE: You need to set ni->std_fa = new_fa 1671 * after this function to keep internal structures in consistency. 1672 */ 1673 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1674 { 1675 struct ATTRIB *attr; 1676 struct mft_inode *mi; 1677 __le16 new_aflags; 1678 u32 new_asize; 1679 1680 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1681 if (!attr) 1682 return -EINVAL; 1683 1684 new_aflags = attr->flags; 1685 1686 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1687 new_aflags |= ATTR_FLAG_SPARSED; 1688 else 1689 new_aflags &= ~ATTR_FLAG_SPARSED; 1690 1691 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1692 new_aflags |= ATTR_FLAG_COMPRESSED; 1693 else 1694 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1695 1696 if (new_aflags == attr->flags) 1697 return 0; 1698 1699 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1700 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1701 ntfs_inode_warn(&ni->vfs_inode, 1702 "file can't be sparsed and compressed"); 1703 return -EOPNOTSUPP; 1704 } 1705 1706 if (!attr->non_res) 1707 goto out; 1708 1709 if (attr->nres.data_size) { 1710 ntfs_inode_warn( 1711 &ni->vfs_inode, 1712 "one can change sparsed/compressed only for empty files"); 1713 return -EOPNOTSUPP; 1714 } 1715 1716 /* Resize nonresident empty attribute in-place only. */ 1717 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1718 (SIZEOF_NONRESIDENT_EX + 8) : 1719 (SIZEOF_NONRESIDENT + 8); 1720 1721 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1722 return -EOPNOTSUPP; 1723 1724 if (new_aflags & ATTR_FLAG_SPARSED) { 1725 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1726 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1727 attr->nres.c_unit = 0; 1728 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1729 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1730 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1731 /* The only allowed: 16 clusters per frame. */ 1732 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1733 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1734 } else { 1735 attr->name_off = SIZEOF_NONRESIDENT_LE; 1736 /* Normal files. */ 1737 attr->nres.c_unit = 0; 1738 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1739 } 1740 attr->nres.run_off = attr->name_off; 1741 out: 1742 attr->flags = new_aflags; 1743 mi->dirty = true; 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * ni_parse_reparse 1750 * 1751 * buffer - memory for reparse buffer header 1752 */ 1753 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1754 struct REPARSE_DATA_BUFFER *buffer) 1755 { 1756 const struct REPARSE_DATA_BUFFER *rp = NULL; 1757 u8 bits; 1758 u16 len; 1759 typeof(rp->CompressReparseBuffer) *cmpr; 1760 1761 /* Try to estimate reparse point. */ 1762 if (!attr->non_res) { 1763 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1764 } else if (le64_to_cpu(attr->nres.data_size) >= 1765 sizeof(struct REPARSE_DATA_BUFFER)) { 1766 struct runs_tree run; 1767 1768 run_init(&run); 1769 1770 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1771 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1772 sizeof(struct REPARSE_DATA_BUFFER), 1773 NULL)) { 1774 rp = buffer; 1775 } 1776 1777 run_close(&run); 1778 } 1779 1780 if (!rp) 1781 return REPARSE_NONE; 1782 1783 len = le16_to_cpu(rp->ReparseDataLength); 1784 switch (rp->ReparseTag) { 1785 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1786 break; /* Symbolic link. */ 1787 case IO_REPARSE_TAG_MOUNT_POINT: 1788 break; /* Mount points and junctions. */ 1789 case IO_REPARSE_TAG_SYMLINK: 1790 break; 1791 case IO_REPARSE_TAG_COMPRESS: 1792 /* 1793 * WOF - Windows Overlay Filter - Used to compress files with 1794 * LZX/Xpress. 1795 * 1796 * Unlike native NTFS file compression, the Windows 1797 * Overlay Filter supports only read operations. This means 1798 * that it doesn't need to sector-align each compressed chunk, 1799 * so the compressed data can be packed more tightly together. 1800 * If you open the file for writing, the WOF just decompresses 1801 * the entire file, turning it back into a plain file. 1802 * 1803 * Ntfs3 driver decompresses the entire file only on write or 1804 * change size requests. 1805 */ 1806 1807 cmpr = &rp->CompressReparseBuffer; 1808 if (len < sizeof(*cmpr) || 1809 cmpr->WofVersion != WOF_CURRENT_VERSION || 1810 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1811 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1812 return REPARSE_NONE; 1813 } 1814 1815 switch (cmpr->CompressionFormat) { 1816 case WOF_COMPRESSION_XPRESS4K: 1817 bits = 0xc; // 4k 1818 break; 1819 case WOF_COMPRESSION_XPRESS8K: 1820 bits = 0xd; // 8k 1821 break; 1822 case WOF_COMPRESSION_XPRESS16K: 1823 bits = 0xe; // 16k 1824 break; 1825 case WOF_COMPRESSION_LZX32K: 1826 bits = 0xf; // 32k 1827 break; 1828 default: 1829 bits = 0x10; // 64k 1830 break; 1831 } 1832 ni_set_ext_compress_bits(ni, bits); 1833 return REPARSE_COMPRESSED; 1834 1835 case IO_REPARSE_TAG_DEDUP: 1836 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1837 return REPARSE_DEDUPLICATED; 1838 1839 default: 1840 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1841 break; 1842 1843 return REPARSE_NONE; 1844 } 1845 1846 if (buffer != rp) 1847 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1848 1849 /* Looks like normal symlink. */ 1850 return REPARSE_LINK; 1851 } 1852 1853 /* 1854 * ni_fiemap - Helper for file_fiemap(). 1855 * 1856 * Assumed ni_lock. 1857 * TODO: Less aggressive locks. 1858 */ 1859 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1860 __u64 vbo, __u64 len) 1861 { 1862 int err = 0; 1863 struct ntfs_sb_info *sbi = ni->mi.sbi; 1864 u8 cluster_bits = sbi->cluster_bits; 1865 struct runs_tree run; 1866 struct ATTRIB *attr; 1867 CLST vcn = vbo >> cluster_bits; 1868 CLST lcn, clen; 1869 u64 valid = ni->i_valid; 1870 u64 lbo, bytes; 1871 u64 end, alloc_size; 1872 size_t idx = -1; 1873 u32 flags; 1874 bool ok; 1875 1876 run_init(&run); 1877 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1878 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1879 ARRAY_SIZE(I30_NAME), NULL, NULL); 1880 } else { 1881 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1882 NULL); 1883 if (!attr) { 1884 err = -EINVAL; 1885 goto out; 1886 } 1887 if (is_attr_compressed(attr)) { 1888 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1889 err = -EOPNOTSUPP; 1890 ntfs_inode_warn( 1891 &ni->vfs_inode, 1892 "fiemap is not supported for compressed file (cp -r)"); 1893 goto out; 1894 } 1895 } 1896 1897 if (!attr || !attr->non_res) { 1898 err = fiemap_fill_next_extent( 1899 fieinfo, 0, 0, 1900 attr ? le32_to_cpu(attr->res.data_size) : 0, 1901 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1902 FIEMAP_EXTENT_MERGED); 1903 goto out; 1904 } 1905 1906 end = vbo + len; 1907 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1908 if (end > alloc_size) 1909 end = alloc_size; 1910 1911 while (vbo < end) { 1912 if (idx == -1) { 1913 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1914 } else { 1915 CLST vcn_next = vcn; 1916 1917 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) && 1918 vcn == vcn_next; 1919 if (!ok) 1920 vcn = vcn_next; 1921 } 1922 1923 if (!ok) { 1924 err = attr_load_runs_vcn(ni, attr->type, 1925 attr_name(attr), 1926 attr->name_len, &run, vcn); 1927 1928 if (err) 1929 break; 1930 1931 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx); 1932 1933 if (!ok) { 1934 err = -EINVAL; 1935 break; 1936 } 1937 } 1938 1939 if (!clen) { 1940 err = -EINVAL; // ? 1941 break; 1942 } 1943 1944 if (lcn == SPARSE_LCN) { 1945 vcn += clen; 1946 vbo = (u64)vcn << cluster_bits; 1947 continue; 1948 } 1949 1950 flags = FIEMAP_EXTENT_MERGED; 1951 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1952 ; 1953 } else if (is_attr_compressed(attr)) { 1954 CLST clst_data; 1955 1956 err = attr_is_frame_compressed(ni, attr, 1957 vcn >> attr->nres.c_unit, 1958 &clst_data, &run); 1959 if (err) 1960 break; 1961 if (clst_data < NTFS_LZNT_CLUSTERS) 1962 flags |= FIEMAP_EXTENT_ENCODED; 1963 } else if (is_attr_encrypted(attr)) { 1964 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1965 } 1966 1967 vbo = (u64)vcn << cluster_bits; 1968 bytes = (u64)clen << cluster_bits; 1969 lbo = (u64)lcn << cluster_bits; 1970 1971 vcn += clen; 1972 1973 if (vbo + bytes >= end) 1974 bytes = end - vbo; 1975 1976 if (vbo + bytes <= valid) { 1977 ; 1978 } else if (vbo >= valid) { 1979 flags |= FIEMAP_EXTENT_UNWRITTEN; 1980 } else { 1981 /* vbo < valid && valid < vbo + bytes */ 1982 u64 dlen = valid - vbo; 1983 1984 if (vbo + dlen >= end) 1985 flags |= FIEMAP_EXTENT_LAST; 1986 1987 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 1988 flags); 1989 1990 if (err < 0) 1991 break; 1992 if (err == 1) { 1993 err = 0; 1994 break; 1995 } 1996 1997 vbo = valid; 1998 bytes -= dlen; 1999 if (!bytes) 2000 continue; 2001 2002 lbo += dlen; 2003 flags |= FIEMAP_EXTENT_UNWRITTEN; 2004 } 2005 2006 if (vbo + bytes >= end) 2007 flags |= FIEMAP_EXTENT_LAST; 2008 2009 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2010 if (err < 0) 2011 break; 2012 if (err == 1) { 2013 err = 0; 2014 break; 2015 } 2016 2017 vbo += bytes; 2018 } 2019 2020 out: 2021 run_close(&run); 2022 return err; 2023 } 2024 2025 static struct page *ntfs_lock_new_page(struct address_space *mapping, 2026 pgoff_t index, gfp_t gfp) 2027 { 2028 struct folio *folio = __filemap_get_folio(mapping, index, 2029 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 2030 struct page *page; 2031 2032 if (IS_ERR(folio)) 2033 return ERR_CAST(folio); 2034 2035 if (!folio_test_uptodate(folio)) 2036 return folio_file_page(folio, index); 2037 2038 /* Use a temporary page to avoid data corruption */ 2039 folio_unlock(folio); 2040 folio_put(folio); 2041 page = alloc_page(gfp); 2042 if (!page) 2043 return ERR_PTR(-ENOMEM); 2044 __SetPageLocked(page); 2045 return page; 2046 } 2047 2048 /* 2049 * ni_readpage_cmpr 2050 * 2051 * When decompressing, we typically obtain more than one page per reference. 2052 * We inject the additional pages into the page cache. 2053 */ 2054 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio) 2055 { 2056 int err; 2057 struct ntfs_sb_info *sbi = ni->mi.sbi; 2058 struct address_space *mapping = folio->mapping; 2059 pgoff_t index = folio->index; 2060 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2061 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2062 u8 frame_bits; 2063 CLST frame; 2064 u32 i, idx, frame_size, pages_per_frame; 2065 gfp_t gfp_mask; 2066 struct page *pg; 2067 2068 if (vbo >= i_size_read(&ni->vfs_inode)) { 2069 folio_zero_range(folio, 0, folio_size(folio)); 2070 folio_mark_uptodate(folio); 2071 err = 0; 2072 goto out; 2073 } 2074 2075 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2076 /* Xpress or LZX. */ 2077 frame_bits = ni_ext_compress_bits(ni); 2078 } else { 2079 /* LZNT compression. */ 2080 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2081 } 2082 frame_size = 1u << frame_bits; 2083 frame = vbo >> frame_bits; 2084 frame_vbo = (u64)frame << frame_bits; 2085 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2086 2087 pages_per_frame = frame_size >> PAGE_SHIFT; 2088 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2089 if (!pages) { 2090 err = -ENOMEM; 2091 goto out; 2092 } 2093 2094 pages[idx] = &folio->page; 2095 index = frame_vbo >> PAGE_SHIFT; 2096 gfp_mask = mapping_gfp_mask(mapping); 2097 2098 for (i = 0; i < pages_per_frame; i++, index++) { 2099 if (i == idx) 2100 continue; 2101 2102 pg = ntfs_lock_new_page(mapping, index, gfp_mask); 2103 if (IS_ERR(pg)) { 2104 err = PTR_ERR(pg); 2105 goto out1; 2106 } 2107 pages[i] = pg; 2108 } 2109 2110 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame, 0); 2111 2112 out1: 2113 for (i = 0; i < pages_per_frame; i++) { 2114 pg = pages[i]; 2115 if (i == idx || !pg) 2116 continue; 2117 unlock_page(pg); 2118 put_page(pg); 2119 } 2120 2121 out: 2122 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2123 kfree(pages); 2124 folio_unlock(folio); 2125 2126 return err; 2127 } 2128 2129 #ifdef CONFIG_NTFS3_LZX_XPRESS 2130 /* 2131 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2132 * 2133 * Remove ATTR_DATA::WofCompressedData. 2134 * Remove ATTR_REPARSE. 2135 */ 2136 int ni_decompress_file(struct ntfs_inode *ni) 2137 { 2138 struct ntfs_sb_info *sbi = ni->mi.sbi; 2139 struct inode *inode = &ni->vfs_inode; 2140 loff_t i_size = i_size_read(inode); 2141 struct address_space *mapping = inode->i_mapping; 2142 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2143 struct page **pages = NULL; 2144 struct ATTR_LIST_ENTRY *le; 2145 struct ATTRIB *attr; 2146 CLST vcn, cend, lcn, clen, end; 2147 pgoff_t index; 2148 u64 vbo; 2149 u8 frame_bits; 2150 u32 i, frame_size, pages_per_frame, bytes; 2151 struct mft_inode *mi; 2152 int err; 2153 2154 /* Clusters for decompressed data. */ 2155 cend = bytes_to_cluster(sbi, i_size); 2156 2157 if (!i_size) 2158 goto remove_wof; 2159 2160 /* Check in advance. */ 2161 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2162 err = -ENOSPC; 2163 goto out; 2164 } 2165 2166 frame_bits = ni_ext_compress_bits(ni); 2167 frame_size = 1u << frame_bits; 2168 pages_per_frame = frame_size >> PAGE_SHIFT; 2169 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2170 if (!pages) { 2171 err = -ENOMEM; 2172 goto out; 2173 } 2174 2175 /* 2176 * Step 1: Decompress data and copy to new allocated clusters. 2177 */ 2178 index = 0; 2179 for (vbo = 0; vbo < i_size; vbo += bytes) { 2180 bool new; 2181 2182 bytes = vbo + frame_size > i_size ? (i_size - vbo) : frame_size; 2183 end = bytes_to_cluster(sbi, vbo + bytes); 2184 2185 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2186 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2187 &clen, &new, false); 2188 if (err) 2189 goto out; 2190 } 2191 2192 for (i = 0; i < pages_per_frame; i++, index++) { 2193 struct page *pg; 2194 2195 pg = ntfs_lock_new_page(mapping, index, gfp_mask); 2196 if (IS_ERR(pg)) { 2197 while (i--) { 2198 unlock_page(pages[i]); 2199 put_page(pages[i]); 2200 } 2201 err = PTR_ERR(pg); 2202 goto out; 2203 } 2204 pages[i] = pg; 2205 } 2206 2207 err = ni_read_frame(ni, vbo, pages, pages_per_frame, 1); 2208 2209 for (i = 0; i < pages_per_frame; i++) { 2210 unlock_page(pages[i]); 2211 put_page(pages[i]); 2212 } 2213 2214 if (err) 2215 goto out; 2216 2217 cond_resched(); 2218 } 2219 2220 remove_wof: 2221 /* 2222 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2223 * and ATTR_REPARSE. 2224 */ 2225 attr = NULL; 2226 le = NULL; 2227 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2228 CLST svcn, evcn; 2229 u32 asize, roff; 2230 2231 if (attr->type == ATTR_REPARSE) { 2232 struct MFT_REF ref; 2233 2234 mi_get_ref(&ni->mi, &ref); 2235 ntfs_remove_reparse(sbi, 0, &ref); 2236 } 2237 2238 if (!attr->non_res) 2239 continue; 2240 2241 if (attr->type != ATTR_REPARSE && 2242 (attr->type != ATTR_DATA || 2243 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2244 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2245 continue; 2246 2247 svcn = le64_to_cpu(attr->nres.svcn); 2248 evcn = le64_to_cpu(attr->nres.evcn); 2249 2250 if (evcn + 1 <= svcn) 2251 continue; 2252 2253 asize = le32_to_cpu(attr->size); 2254 roff = le16_to_cpu(attr->nres.run_off); 2255 2256 if (roff > asize) { 2257 err = -EINVAL; 2258 goto out; 2259 } 2260 2261 /*run==1 Means unpack and deallocate. */ 2262 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2263 Add2Ptr(attr, roff), asize - roff); 2264 } 2265 2266 /* 2267 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2268 */ 2269 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2270 false, NULL); 2271 if (err) 2272 goto out; 2273 2274 /* 2275 * Step 4: Remove ATTR_REPARSE. 2276 */ 2277 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2278 if (err) 2279 goto out; 2280 2281 /* 2282 * Step 5: Remove sparse flag from data attribute. 2283 */ 2284 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2285 if (!attr) { 2286 err = -EINVAL; 2287 goto out; 2288 } 2289 2290 if (attr->non_res && is_attr_sparsed(attr)) { 2291 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2292 struct MFT_REC *rec = mi->mrec; 2293 u32 used = le32_to_cpu(rec->used); 2294 u32 asize = le32_to_cpu(attr->size); 2295 u16 roff = le16_to_cpu(attr->nres.run_off); 2296 char *rbuf = Add2Ptr(attr, roff); 2297 2298 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2299 attr->size = cpu_to_le32(asize - 8); 2300 attr->flags &= ~ATTR_FLAG_SPARSED; 2301 attr->nres.run_off = cpu_to_le16(roff - 8); 2302 attr->nres.c_unit = 0; 2303 rec->used = cpu_to_le32(used - 8); 2304 mi->dirty = true; 2305 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2306 FILE_ATTRIBUTE_REPARSE_POINT); 2307 2308 mark_inode_dirty(inode); 2309 } 2310 2311 /* Clear cached flag. */ 2312 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2313 if (ni->file.offs_folio) { 2314 folio_put(ni->file.offs_folio); 2315 ni->file.offs_folio = NULL; 2316 } 2317 mapping->a_ops = &ntfs_aops; 2318 2319 out: 2320 kfree(pages); 2321 if (err) 2322 _ntfs_bad_inode(inode); 2323 2324 return err; 2325 } 2326 2327 /* 2328 * decompress_lzx_xpress - External compression LZX/Xpress. 2329 */ 2330 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2331 size_t cmpr_size, void *unc, size_t unc_size, 2332 u32 frame_size) 2333 { 2334 int err; 2335 void *ctx; 2336 2337 if (cmpr_size == unc_size) { 2338 /* Frame not compressed. */ 2339 memcpy(unc, cmpr, unc_size); 2340 return 0; 2341 } 2342 2343 err = 0; 2344 if (frame_size == 0x8000) { 2345 mutex_lock(&sbi->compress.mtx_lzx); 2346 /* LZX: Frame compressed. */ 2347 ctx = sbi->compress.lzx; 2348 if (!ctx) { 2349 /* Lazy initialize LZX decompress context. */ 2350 ctx = lzx_allocate_decompressor(); 2351 if (!ctx) { 2352 err = -ENOMEM; 2353 goto out1; 2354 } 2355 2356 sbi->compress.lzx = ctx; 2357 } 2358 2359 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2360 /* Treat all errors as "invalid argument". */ 2361 err = -EINVAL; 2362 } 2363 out1: 2364 mutex_unlock(&sbi->compress.mtx_lzx); 2365 } else { 2366 /* XPRESS: Frame compressed. */ 2367 mutex_lock(&sbi->compress.mtx_xpress); 2368 ctx = sbi->compress.xpress; 2369 if (!ctx) { 2370 /* Lazy initialize Xpress decompress context. */ 2371 ctx = xpress_allocate_decompressor(); 2372 if (!ctx) { 2373 err = -ENOMEM; 2374 goto out2; 2375 } 2376 2377 sbi->compress.xpress = ctx; 2378 } 2379 2380 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2381 /* Treat all errors as "invalid argument". */ 2382 err = -EINVAL; 2383 } 2384 out2: 2385 mutex_unlock(&sbi->compress.mtx_xpress); 2386 } 2387 return err; 2388 } 2389 #endif 2390 2391 /* 2392 * ni_read_frame 2393 * 2394 * Pages - Array of locked pages. 2395 */ 2396 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2397 u32 pages_per_frame, int copy) 2398 { 2399 int err; 2400 struct ntfs_sb_info *sbi = ni->mi.sbi; 2401 u8 cluster_bits = sbi->cluster_bits; 2402 char *frame_ondisk = NULL; 2403 char *frame_mem = NULL; 2404 struct ATTR_LIST_ENTRY *le = NULL; 2405 struct runs_tree *run = &ni->file.run; 2406 u64 valid_size = ni->i_valid; 2407 u64 vbo_disk; 2408 size_t unc_size; 2409 u32 frame_size, i, ondisk_size; 2410 struct page *pg; 2411 struct ATTRIB *attr; 2412 CLST frame, clst_data; 2413 2414 /* 2415 * To simplify decompress algorithm do vmap for source 2416 * and target pages. 2417 */ 2418 frame_size = pages_per_frame << PAGE_SHIFT; 2419 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2420 if (!frame_mem) { 2421 err = -ENOMEM; 2422 goto out; 2423 } 2424 2425 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2426 if (!attr) { 2427 err = -ENOENT; 2428 goto out1; 2429 } 2430 2431 if (!attr->non_res) { 2432 u32 data_size = le32_to_cpu(attr->res.data_size); 2433 2434 memset(frame_mem, 0, frame_size); 2435 if (frame_vbo < data_size) { 2436 ondisk_size = data_size - frame_vbo; 2437 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2438 min(ondisk_size, frame_size)); 2439 } 2440 err = 0; 2441 goto out1; 2442 } 2443 2444 if (frame_vbo >= valid_size) { 2445 memset(frame_mem, 0, frame_size); 2446 err = 0; 2447 goto out1; 2448 } 2449 2450 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2451 #ifndef CONFIG_NTFS3_LZX_XPRESS 2452 err = -EOPNOTSUPP; 2453 goto out1; 2454 #else 2455 loff_t i_size = i_size_read(&ni->vfs_inode); 2456 u32 frame_bits = ni_ext_compress_bits(ni); 2457 u64 frame64 = frame_vbo >> frame_bits; 2458 u64 frames, vbo_data; 2459 2460 if (frame_size != (1u << frame_bits)) { 2461 err = -EINVAL; 2462 goto out1; 2463 } 2464 switch (frame_size) { 2465 case 0x1000: 2466 case 0x2000: 2467 case 0x4000: 2468 case 0x8000: 2469 break; 2470 default: 2471 /* Unknown compression. */ 2472 err = -EOPNOTSUPP; 2473 goto out1; 2474 } 2475 2476 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2477 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2478 if (!attr) { 2479 ntfs_inode_err( 2480 &ni->vfs_inode, 2481 "external compressed file should contains data attribute \"WofCompressedData\""); 2482 err = -EINVAL; 2483 goto out1; 2484 } 2485 2486 if (!attr->non_res) { 2487 run = NULL; 2488 } else { 2489 run = run_alloc(); 2490 if (!run) { 2491 err = -ENOMEM; 2492 goto out1; 2493 } 2494 } 2495 2496 frames = (i_size - 1) >> frame_bits; 2497 2498 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2499 frame_bits, &ondisk_size, &vbo_data); 2500 if (err) 2501 goto out1; 2502 2503 if (frame64 == frames) { 2504 unc_size = 1 + ((i_size - 1) & (frame_size - 1)); 2505 ondisk_size = attr_size(attr) - vbo_data; 2506 } else { 2507 unc_size = frame_size; 2508 } 2509 2510 if (ondisk_size > frame_size) { 2511 err = -EINVAL; 2512 goto out1; 2513 } 2514 2515 if (!attr->non_res) { 2516 if (vbo_data + ondisk_size > 2517 le32_to_cpu(attr->res.data_size)) { 2518 err = -EINVAL; 2519 goto out1; 2520 } 2521 2522 err = decompress_lzx_xpress( 2523 sbi, Add2Ptr(resident_data(attr), vbo_data), 2524 ondisk_size, frame_mem, unc_size, frame_size); 2525 goto out1; 2526 } 2527 vbo_disk = vbo_data; 2528 /* Load all runs to read [vbo_disk-vbo_to). */ 2529 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2530 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2531 vbo_data + ondisk_size); 2532 if (err) 2533 goto out1; 2534 #endif 2535 } else if (is_attr_compressed(attr)) { 2536 /* LZNT compression. */ 2537 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2538 err = -EOPNOTSUPP; 2539 goto out1; 2540 } 2541 2542 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2543 err = -EOPNOTSUPP; 2544 goto out1; 2545 } 2546 2547 down_write(&ni->file.run_lock); 2548 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2549 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2550 err = attr_is_frame_compressed(ni, attr, frame, &clst_data, 2551 run); 2552 up_write(&ni->file.run_lock); 2553 if (err) 2554 goto out1; 2555 2556 if (!clst_data) { 2557 memset(frame_mem, 0, frame_size); 2558 goto out1; 2559 } 2560 2561 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2562 ondisk_size = clst_data << cluster_bits; 2563 2564 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2565 /* Frame is not compressed. */ 2566 down_read(&ni->file.run_lock); 2567 err = ntfs_read_run(sbi, run, frame_mem, frame_vbo, 2568 ondisk_size); 2569 up_read(&ni->file.run_lock); 2570 goto out1; 2571 } 2572 vbo_disk = frame_vbo; 2573 } else { 2574 __builtin_unreachable(); 2575 err = -EINVAL; 2576 goto out1; 2577 } 2578 2579 /* Allocate memory to read compressed data to. */ 2580 frame_ondisk = kvmalloc(ondisk_size, GFP_KERNEL); 2581 if (!frame_ondisk) { 2582 err = -ENOMEM; 2583 goto out1; 2584 } 2585 2586 /* Read 'ondisk_size' bytes from disk. */ 2587 down_read(&ni->file.run_lock); 2588 err = ntfs_read_run(sbi, run, frame_ondisk, vbo_disk, ondisk_size); 2589 up_read(&ni->file.run_lock); 2590 if (err) 2591 goto out2; 2592 2593 #ifdef CONFIG_NTFS3_LZX_XPRESS 2594 if (run != &ni->file.run) { 2595 /* LZX or XPRESS */ 2596 err = decompress_lzx_xpress(sbi, frame_ondisk, ondisk_size, 2597 frame_mem, unc_size, frame_size); 2598 } else 2599 #endif 2600 { 2601 /* LZNT - Native NTFS compression. */ 2602 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2603 frame_size); 2604 if ((ssize_t)unc_size < 0) 2605 err = unc_size; 2606 else if (!unc_size || unc_size > frame_size) 2607 err = -EINVAL; 2608 } 2609 if (!err && valid_size < frame_vbo + frame_size) { 2610 size_t ok = valid_size - frame_vbo; 2611 2612 memset(frame_mem + ok, 0, frame_size - ok); 2613 } 2614 2615 out2: 2616 kvfree(frame_ondisk); 2617 out1: 2618 #ifdef CONFIG_NTFS3_LZX_XPRESS 2619 if (run != &ni->file.run) 2620 run_free(run); 2621 if (!err && copy) { 2622 /* We are called from 'ni_decompress_file' */ 2623 /* Copy decompressed LZX or XPRESS data into new place. */ 2624 down_read(&ni->file.run_lock); 2625 err = ntfs_write_run(sbi, &ni->file.run, frame_mem, frame_vbo, 2626 frame_size); 2627 up_read(&ni->file.run_lock); 2628 } 2629 #endif 2630 vunmap(frame_mem); 2631 out: 2632 for (i = 0; i < pages_per_frame; i++) { 2633 pg = pages[i]; 2634 SetPageUptodate(pg); 2635 } 2636 2637 return err; 2638 } 2639 2640 /* 2641 * ni_write_frame 2642 * 2643 * Pages - Array of locked pages. 2644 */ 2645 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2646 u32 pages_per_frame) 2647 { 2648 int err; 2649 struct ntfs_sb_info *sbi = ni->mi.sbi; 2650 struct folio *folio = page_folio(pages[0]); 2651 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2652 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2653 u64 frame_vbo = folio_pos(folio); 2654 CLST frame = frame_vbo >> frame_bits; 2655 char *frame_ondisk = NULL; 2656 struct ATTR_LIST_ENTRY *le = NULL; 2657 char *frame_mem; 2658 struct ATTRIB *attr; 2659 struct mft_inode *mi; 2660 size_t compr_size, ondisk_size; 2661 struct lznt *lznt; 2662 2663 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2664 if (!attr) { 2665 err = -ENOENT; 2666 goto out; 2667 } 2668 2669 if (WARN_ON(!is_attr_compressed(attr))) { 2670 err = -EINVAL; 2671 goto out; 2672 } 2673 2674 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2675 err = -EOPNOTSUPP; 2676 goto out; 2677 } 2678 2679 if (!attr->non_res) { 2680 down_write(&ni->file.run_lock); 2681 err = attr_make_nonresident(ni, attr, le, mi, 2682 le32_to_cpu(attr->res.data_size), 2683 &ni->file.run, &attr, pages[0]); 2684 up_write(&ni->file.run_lock); 2685 if (err) 2686 goto out; 2687 } 2688 2689 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2690 err = -EOPNOTSUPP; 2691 goto out; 2692 } 2693 2694 /* Allocate memory to write compressed data to. */ 2695 frame_ondisk = kvmalloc(frame_size, GFP_KERNEL); 2696 if (!frame_ondisk) { 2697 err = -ENOMEM; 2698 goto out; 2699 } 2700 2701 /* Map in-memory frame for read-only. */ 2702 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2703 if (!frame_mem) { 2704 err = -ENOMEM; 2705 goto out1; 2706 } 2707 2708 mutex_lock(&sbi->compress.mtx_lznt); 2709 lznt = NULL; 2710 if (!sbi->compress.lznt) { 2711 /* 2712 * LZNT implements two levels of compression: 2713 * 0 - Standard compression 2714 * 1 - Best compression, requires a lot of cpu 2715 * use mount option? 2716 */ 2717 lznt = get_lznt_ctx(0); 2718 if (!lznt) { 2719 mutex_unlock(&sbi->compress.mtx_lznt); 2720 err = -ENOMEM; 2721 goto out2; 2722 } 2723 2724 sbi->compress.lznt = lznt; 2725 lznt = NULL; 2726 } 2727 2728 /* Compress: frame_mem -> frame_ondisk */ 2729 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2730 frame_size, sbi->compress.lznt); 2731 mutex_unlock(&sbi->compress.mtx_lznt); 2732 kfree(lznt); 2733 2734 if (compr_size + sbi->cluster_size > frame_size) { 2735 /* Frame is not compressed. */ 2736 compr_size = frame_size; 2737 ondisk_size = frame_size; 2738 } else if (compr_size) { 2739 /* Frame is compressed. */ 2740 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2741 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2742 } else { 2743 /* Frame is sparsed. */ 2744 ondisk_size = 0; 2745 } 2746 2747 down_write(&ni->file.run_lock); 2748 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2749 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2750 up_write(&ni->file.run_lock); 2751 if (err) 2752 goto out2; 2753 2754 if (!ondisk_size) 2755 goto out2; 2756 2757 down_read(&ni->file.run_lock); 2758 err = ntfs_write_run(sbi, &ni->file.run, 2759 ondisk_size < frame_size ? frame_ondisk : 2760 frame_mem, 2761 frame_vbo, ondisk_size); 2762 up_read(&ni->file.run_lock); 2763 2764 out2: 2765 vunmap(frame_mem); 2766 out1: 2767 kvfree(frame_ondisk); 2768 out: 2769 return err; 2770 } 2771 2772 /* 2773 * ni_remove_name - Removes name 'de' from MFT and from directory. 2774 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2775 */ 2776 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2777 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2778 { 2779 int err; 2780 struct ntfs_sb_info *sbi = ni->mi.sbi; 2781 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2782 struct ATTR_FILE_NAME *fname; 2783 struct ATTR_LIST_ENTRY *le; 2784 struct mft_inode *mi; 2785 u16 de_key_size = le16_to_cpu(de->key_size); 2786 u8 name_type; 2787 2788 *undo_step = 0; 2789 2790 /* Find name in record. */ 2791 mi_get_ref(&dir_ni->mi, &de_name->home); 2792 2793 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, 2794 &de_name->home, &mi, &le); 2795 if (!fname) 2796 return -ENOENT; 2797 2798 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2799 name_type = paired_name(fname->type); 2800 2801 /* Mark ntfs as dirty. It will be cleared at umount. */ 2802 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2803 2804 /* Step 1: Remove name from directory. */ 2805 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2806 if (err) 2807 return err; 2808 2809 /* Step 2: Remove name from MFT. */ 2810 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2811 2812 *undo_step = 2; 2813 2814 /* Get paired name. */ 2815 fname = ni_fname_type(ni, name_type, &mi, &le); 2816 if (fname) { 2817 u16 de2_key_size = fname_full_size(fname); 2818 2819 *de2 = Add2Ptr(de, 1024); 2820 (*de2)->key_size = cpu_to_le16(de2_key_size); 2821 2822 memcpy(*de2 + 1, fname, de2_key_size); 2823 2824 /* Step 3: Remove paired name from directory. */ 2825 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2826 de2_key_size, sbi); 2827 if (err) 2828 return err; 2829 2830 /* Step 4: Remove paired name from MFT. */ 2831 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2832 2833 *undo_step = 4; 2834 } 2835 return 0; 2836 } 2837 2838 /* 2839 * ni_remove_name_undo - Paired function for ni_remove_name. 2840 * 2841 * Return: True if ok 2842 */ 2843 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2844 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2845 { 2846 struct ntfs_sb_info *sbi = ni->mi.sbi; 2847 struct ATTRIB *attr; 2848 u16 de_key_size; 2849 2850 switch (undo_step) { 2851 case 4: 2852 de_key_size = le16_to_cpu(de2->key_size); 2853 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2854 &attr, NULL, NULL)) 2855 return false; 2856 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2857 2858 mi_get_ref(&ni->mi, &de2->ref); 2859 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2860 sizeof(struct NTFS_DE)); 2861 de2->flags = 0; 2862 de2->res = 0; 2863 2864 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 2865 return false; 2866 fallthrough; 2867 2868 case 2: 2869 de_key_size = le16_to_cpu(de->key_size); 2870 2871 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2872 &attr, NULL, NULL)) 2873 return false; 2874 2875 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2876 mi_get_ref(&ni->mi, &de->ref); 2877 2878 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2879 return false; 2880 } 2881 2882 return true; 2883 } 2884 2885 /* 2886 * ni_add_name - Add new name into MFT and into directory. 2887 */ 2888 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2889 struct NTFS_DE *de) 2890 { 2891 int err; 2892 struct ntfs_sb_info *sbi = ni->mi.sbi; 2893 struct ATTRIB *attr; 2894 struct ATTR_LIST_ENTRY *le; 2895 struct mft_inode *mi; 2896 struct ATTR_FILE_NAME *fname; 2897 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2898 u16 de_key_size = le16_to_cpu(de->key_size); 2899 2900 if (sbi->options->windows_names && 2901 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 2902 return -EINVAL; 2903 2904 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 2905 if (ni->mi.sbi->options->hide_dot_files) { 2906 if (de_name->name_len > 0 && 2907 le16_to_cpu(de_name->name[0]) == '.') 2908 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 2909 else 2910 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 2911 } 2912 2913 mi_get_ref(&ni->mi, &de->ref); 2914 mi_get_ref(&dir_ni->mi, &de_name->home); 2915 2916 /* Fill duplicate from any ATTR_NAME. */ 2917 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 2918 if (fname) 2919 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 2920 de_name->dup.fa = ni->std_fa; 2921 2922 /* Insert new name into MFT. */ 2923 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 2924 &mi, &le); 2925 if (err) 2926 return err; 2927 2928 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 2929 2930 /* Insert new name into directory. */ 2931 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 2932 if (err) 2933 ni_remove_attr_le(ni, attr, mi, le); 2934 2935 return err; 2936 } 2937 2938 /* 2939 * ni_rename - Remove one name and insert new name. 2940 */ 2941 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 2942 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de) 2943 { 2944 int err; 2945 struct NTFS_DE *de2 = NULL; 2946 int undo = 0; 2947 2948 /* 2949 * There are two possible ways to rename: 2950 * 1) Add new name and remove old name. 2951 * 2) Remove old name and add new name. 2952 * 2953 * In most cases (not all!) adding new name into MFT and into directory can 2954 * allocate additional cluster(s). 2955 * Second way may result to bad inode if we can't add new name 2956 * and then can't restore (add) old name. 2957 */ 2958 2959 /* 2960 * Way 1 - Add new + remove old. 2961 */ 2962 err = ni_add_name(new_dir_ni, ni, new_de); 2963 if (!err) { 2964 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2965 WARN_ON(err && 2966 ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)); 2967 } 2968 2969 /* 2970 * Way 2 - Remove old + add new. 2971 */ 2972 /* 2973 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2974 * if (!err) { 2975 * err = ni_add_name(new_dir_ni, ni, new_de); 2976 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 2977 * *is_bad = true; 2978 * } 2979 */ 2980 2981 return err; 2982 } 2983 2984 /* 2985 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 2986 */ 2987 bool ni_is_dirty(struct inode *inode) 2988 { 2989 struct ntfs_inode *ni = ntfs_i(inode); 2990 struct rb_node *node; 2991 2992 if (ni->mi.dirty || ni->attr_list.dirty || 2993 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 2994 return true; 2995 2996 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 2997 if (rb_entry(node, struct mft_inode, node)->dirty) 2998 return true; 2999 } 3000 3001 return false; 3002 } 3003 3004 /* 3005 * ni_update_parent 3006 * 3007 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3008 */ 3009 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3010 int sync) 3011 { 3012 struct ATTRIB *attr; 3013 struct mft_inode *mi; 3014 struct ATTR_LIST_ENTRY *le = NULL; 3015 struct ntfs_sb_info *sbi = ni->mi.sbi; 3016 struct super_block *sb = sbi->sb; 3017 bool re_dirty = false; 3018 3019 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3020 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3021 attr = NULL; 3022 dup->alloc_size = 0; 3023 dup->data_size = 0; 3024 } else { 3025 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3026 3027 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3028 &mi); 3029 if (!attr) { 3030 dup->alloc_size = dup->data_size = 0; 3031 } else if (!attr->non_res) { 3032 u32 data_size = le32_to_cpu(attr->res.data_size); 3033 3034 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3035 dup->data_size = cpu_to_le64(data_size); 3036 } else { 3037 u64 new_valid = ni->i_valid; 3038 u64 data_size = le64_to_cpu(attr->nres.data_size); 3039 __le64 valid_le; 3040 3041 dup->alloc_size = is_attr_ext(attr) ? 3042 attr->nres.total_size : 3043 attr->nres.alloc_size; 3044 dup->data_size = attr->nres.data_size; 3045 3046 if (new_valid > data_size) 3047 new_valid = data_size; 3048 3049 valid_le = cpu_to_le64(new_valid); 3050 if (valid_le != attr->nres.valid_size) { 3051 attr->nres.valid_size = valid_le; 3052 mi->dirty = true; 3053 } 3054 } 3055 } 3056 3057 dup->extend_data = 0; 3058 3059 if (dup->fa & FILE_ATTRIBUTE_REPARSE_POINT) { 3060 attr = ni_find_attr(ni, NULL, NULL, ATTR_REPARSE, NULL, 0, NULL, 3061 NULL); 3062 3063 if (attr) { 3064 const struct REPARSE_POINT *rp; 3065 3066 rp = resident_data_ex(attr, 3067 sizeof(struct REPARSE_POINT)); 3068 /* If ATTR_REPARSE exists 'rp' can't be NULL. */ 3069 if (rp) 3070 dup->extend_data = rp->ReparseTag; 3071 } 3072 } else if (ni->ni_flags & NI_FLAG_EA) { 3073 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3074 NULL); 3075 if (attr) { 3076 const struct EA_INFO *info; 3077 3078 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3079 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3080 if (info) 3081 dup->extend_data = info->size; 3082 } 3083 } 3084 3085 attr = NULL; 3086 le = NULL; 3087 3088 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3089 &mi))) { 3090 struct inode *dir; 3091 struct ATTR_FILE_NAME *fname; 3092 3093 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3094 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3095 continue; 3096 3097 /* Check simple case when parent inode equals current inode. */ 3098 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { 3099 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3100 continue; 3101 } 3102 3103 /* ntfs_iget5 may sleep. */ 3104 dir = ntfs_iget5(sb, &fname->home, NULL); 3105 if (IS_ERR(dir)) { 3106 ntfs_inode_warn( 3107 &ni->vfs_inode, 3108 "failed to open parent directory r=%lx to update", 3109 (long)ino_get(&fname->home)); 3110 continue; 3111 } 3112 3113 if (!is_bad_inode(dir)) { 3114 struct ntfs_inode *dir_ni = ntfs_i(dir); 3115 3116 if (!ni_trylock(dir_ni)) { 3117 re_dirty = true; 3118 } else { 3119 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3120 ni_unlock(dir_ni); 3121 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3122 mi->dirty = true; 3123 } 3124 } 3125 iput(dir); 3126 } 3127 3128 return re_dirty; 3129 } 3130 3131 /* 3132 * ni_write_inode - Write MFT base record and all subrecords to disk. 3133 */ 3134 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3135 { 3136 int err = 0, err2; 3137 struct ntfs_inode *ni = ntfs_i(inode); 3138 struct super_block *sb = inode->i_sb; 3139 struct ntfs_sb_info *sbi = sb->s_fs_info; 3140 bool re_dirty = false; 3141 struct ATTR_STD_INFO *std; 3142 struct rb_node *node, *next; 3143 struct NTFS_DUP_INFO dup; 3144 3145 if (is_bad_inode(inode) || sb_rdonly(sb)) 3146 return 0; 3147 3148 /* Avoid any operation if inode is bad. */ 3149 if (unlikely(is_bad_ni(ni))) 3150 return -EINVAL; 3151 3152 if (unlikely(ntfs3_forced_shutdown(sb))) 3153 return -EIO; 3154 3155 if (!ni_trylock(ni)) { 3156 /* 'ni' is under modification, skip for now. */ 3157 mark_inode_dirty_sync(inode); 3158 return 0; 3159 } 3160 3161 if (!ni->mi.mrec) 3162 goto out; 3163 3164 if (is_rec_inuse(ni->mi.mrec) && 3165 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3166 bool modified = false; 3167 struct timespec64 ts; 3168 3169 /* Update times in standard attribute. */ 3170 std = ni_std(ni); 3171 if (!std) { 3172 err = -EINVAL; 3173 goto out; 3174 } 3175 3176 /* Update the access times if they have changed. */ 3177 ts = inode_get_mtime(inode); 3178 dup.m_time = kernel2nt(&ts); 3179 if (std->m_time != dup.m_time) { 3180 std->m_time = dup.m_time; 3181 modified = true; 3182 } 3183 3184 ts = inode_get_ctime(inode); 3185 dup.c_time = kernel2nt(&ts); 3186 if (std->c_time != dup.c_time) { 3187 std->c_time = dup.c_time; 3188 modified = true; 3189 } 3190 3191 ts = inode_get_atime(inode); 3192 dup.a_time = kernel2nt(&ts); 3193 if (std->a_time != dup.a_time) { 3194 std->a_time = dup.a_time; 3195 modified = true; 3196 } 3197 3198 dup.fa = ni->std_fa; 3199 if (std->fa != dup.fa) { 3200 std->fa = dup.fa; 3201 modified = true; 3202 } 3203 3204 /* std attribute is always in primary MFT record. */ 3205 if (modified) 3206 ni->mi.dirty = true; 3207 3208 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3209 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3210 /* Avoid __wait_on_freeing_inode(inode). */ 3211 && (sb->s_flags & SB_ACTIVE)) { 3212 dup.cr_time = std->cr_time; 3213 /* Not critical if this function fail. */ 3214 re_dirty = ni_update_parent(ni, &dup, sync); 3215 3216 if (re_dirty) 3217 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3218 else 3219 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3220 } 3221 3222 /* Update attribute list. */ 3223 if (ni->attr_list.size && ni->attr_list.dirty) { 3224 if (inode->i_ino != MFT_REC_MFT || sync) { 3225 err = ni_try_remove_attr_list(ni); 3226 if (err) 3227 goto out; 3228 } 3229 3230 err = al_update(ni, sync); 3231 if (err) 3232 goto out; 3233 } 3234 } 3235 3236 for (node = rb_first(&ni->mi_tree); node; node = next) { 3237 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3238 bool is_empty; 3239 3240 next = rb_next(node); 3241 3242 if (!mi->dirty) 3243 continue; 3244 3245 is_empty = !mi_enum_attr(ni, mi, NULL); 3246 3247 if (is_empty) 3248 clear_rec_inuse(mi->mrec); 3249 3250 err2 = mi_write(mi, sync); 3251 if (!err && err2) 3252 err = err2; 3253 3254 if (is_empty) { 3255 ntfs_mark_rec_free(sbi, mi->rno, false); 3256 rb_erase(node, &ni->mi_tree); 3257 mi_put(mi); 3258 } 3259 } 3260 3261 if (ni->mi.dirty) { 3262 err2 = mi_write(&ni->mi, sync); 3263 if (!err && err2) 3264 err = err2; 3265 } 3266 out: 3267 ni_unlock(ni); 3268 3269 if (err) { 3270 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3271 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3272 return err; 3273 } 3274 3275 if (re_dirty) 3276 mark_inode_dirty_sync(inode); 3277 3278 return 0; 3279 } 3280