xref: /linux/mm/mm_init.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38 
39 #include <asm/setup.h>
40 
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44 
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48 
49 /*
50  * high_memory defines the upper bound on direct map memory, then end
51  * of ZONE_NORMAL.
52  */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55 
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58 
59 /* The zonelists are simply reported, validation is manual. */
60 void __init mminit_verify_zonelist(void)
61 {
62 	int nid;
63 
64 	if (mminit_loglevel < MMINIT_VERIFY)
65 		return;
66 
67 	for_each_online_node(nid) {
68 		pg_data_t *pgdat = NODE_DATA(nid);
69 		struct zone *zone;
70 		struct zoneref *z;
71 		struct zonelist *zonelist;
72 		int i, listid, zoneid;
73 
74 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75 
76 			/* Identify the zone and nodelist */
77 			zoneid = i % MAX_NR_ZONES;
78 			listid = i / MAX_NR_ZONES;
79 			zonelist = &pgdat->node_zonelists[listid];
80 			zone = &pgdat->node_zones[zoneid];
81 			if (!populated_zone(zone))
82 				continue;
83 
84 			/* Print information about the zonelist */
85 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 				listid > 0 ? "thisnode" : "general", nid,
87 				zone->name);
88 
89 			/* Iterate the zonelist */
90 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 			pr_cont("\n");
93 		}
94 	}
95 }
96 
97 void __init mminit_verify_pageflags_layout(void)
98 {
99 	int shift, width;
100 	unsigned long or_mask, add_mask;
101 
102 	shift = BITS_PER_LONG;
103 	width = shift - NR_NON_PAGEFLAG_BITS;
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 		SECTIONS_WIDTH,
107 		NODES_WIDTH,
108 		ZONES_WIDTH,
109 		LAST_CPUPID_WIDTH,
110 		KASAN_TAG_WIDTH,
111 		LRU_GEN_WIDTH,
112 		LRU_REFS_WIDTH,
113 		NR_PAGEFLAGS);
114 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 		SECTIONS_SHIFT,
117 		NODES_SHIFT,
118 		ZONES_SHIFT,
119 		LAST_CPUPID_SHIFT,
120 		KASAN_TAG_WIDTH);
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 		(unsigned long)SECTIONS_PGSHIFT,
124 		(unsigned long)NODES_PGSHIFT,
125 		(unsigned long)ZONES_PGSHIFT,
126 		(unsigned long)LAST_CPUPID_PGSHIFT,
127 		(unsigned long)KASAN_TAG_PGSHIFT);
128 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 		"Node/Zone ID: %lu -> %lu\n",
130 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 		(unsigned long)ZONEID_PGOFF);
132 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 		"Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 		"Last cpupid not in page flags");
142 #endif
143 
144 	if (SECTIONS_WIDTH) {
145 		shift -= SECTIONS_WIDTH;
146 		BUG_ON(shift != SECTIONS_PGSHIFT);
147 	}
148 	if (NODES_WIDTH) {
149 		shift -= NODES_WIDTH;
150 		BUG_ON(shift != NODES_PGSHIFT);
151 	}
152 	if (ZONES_WIDTH) {
153 		shift -= ZONES_WIDTH;
154 		BUG_ON(shift != ZONES_PGSHIFT);
155 	}
156 
157 	/* Check for bitmask overlaps */
158 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 			(NODES_MASK << NODES_PGSHIFT) |
160 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
161 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 			(NODES_MASK << NODES_PGSHIFT) +
163 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
164 	BUG_ON(or_mask != add_mask);
165 }
166 
167 static __init int set_mminit_loglevel(char *str)
168 {
169 	get_option(&str, &mminit_loglevel);
170 	return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174 
175 struct kobject *mm_kobj;
176 
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179 
180 void mm_compute_batch(int overcommit_policy)
181 {
182 	u64 memsized_batch;
183 	s32 nr = num_present_cpus();
184 	s32 batch = max_t(s32, nr*2, 32);
185 	unsigned long ram_pages = totalram_pages();
186 
187 	/*
188 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 	 * (total memory/#cpus), and lift it to 25% for other policies
190 	 * to easy the possible lock contention for percpu_counter
191 	 * vm_committed_as, while the max limit is INT_MAX
192 	 */
193 	if (overcommit_policy == OVERCOMMIT_NEVER)
194 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 	else
196 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197 
198 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200 
201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 					unsigned long action, void *arg)
203 {
204 	switch (action) {
205 	case MEM_ONLINE:
206 	case MEM_OFFLINE:
207 		mm_compute_batch(sysctl_overcommit_memory);
208 		break;
209 	default:
210 		break;
211 	}
212 	return NOTIFY_OK;
213 }
214 
215 static int __init mm_compute_batch_init(void)
216 {
217 	mm_compute_batch(sysctl_overcommit_memory);
218 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 	return 0;
220 }
221 
222 __initcall(mm_compute_batch_init);
223 
224 #endif
225 
226 static int __init mm_sysfs_init(void)
227 {
228 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 	if (!mm_kobj)
230 		return -ENOMEM;
231 
232 	return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235 
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239 
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244 
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247 
248 static bool deferred_struct_pages __meminitdata;
249 
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251 
252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 				     unsigned long *percent)
254 {
255 	unsigned long long coremem;
256 	char *endptr;
257 
258 	if (!p)
259 		return -EINVAL;
260 
261 	/* Value may be a percentage of total memory, otherwise bytes */
262 	coremem = simple_strtoull(p, &endptr, 0);
263 	if (*endptr == '%') {
264 		/* Paranoid check for percent values greater than 100 */
265 		WARN_ON(coremem > 100);
266 
267 		*percent = coremem;
268 	} else {
269 		coremem = memparse(p, &p);
270 		/* Paranoid check that UL is enough for the coremem value */
271 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272 
273 		*core = coremem >> PAGE_SHIFT;
274 		*percent = 0UL;
275 	}
276 	return 0;
277 }
278 
279 bool mirrored_kernelcore __initdata_memblock;
280 
281 /*
282  * kernelcore=size sets the amount of memory for use for allocations that
283  * cannot be reclaimed or migrated.
284  */
285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 	/* parse kernelcore=mirror */
288 	if (parse_option_str(p, "mirror")) {
289 		mirrored_kernelcore = true;
290 		return 0;
291 	}
292 
293 	return cmdline_parse_core(p, &required_kernelcore,
294 				  &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297 
298 /*
299  * movablecore=size sets the amount of memory for use for allocations that
300  * can be reclaimed or migrated.
301  */
302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 	return cmdline_parse_core(p, &required_movablecore,
305 				  &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308 
309 /*
310  * early_calculate_totalpages()
311  * Sum pages in active regions for movable zone.
312  * Populate N_MEMORY for calculating usable_nodes.
313  */
314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 	unsigned long totalpages = 0;
317 	unsigned long start_pfn, end_pfn;
318 	int i, nid;
319 
320 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 		unsigned long pages = end_pfn - start_pfn;
322 
323 		totalpages += pages;
324 		if (pages)
325 			node_set_state(nid, N_MEMORY);
326 	}
327 	return totalpages;
328 }
329 
330 /*
331  * This finds a zone that can be used for ZONE_MOVABLE pages. The
332  * assumption is made that zones within a node are ordered in monotonic
333  * increasing memory addresses so that the "highest" populated zone is used
334  */
335 static void __init find_usable_zone_for_movable(void)
336 {
337 	int zone_index;
338 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 		if (zone_index == ZONE_MOVABLE)
340 			continue;
341 
342 		if (arch_zone_highest_possible_pfn[zone_index] >
343 				arch_zone_lowest_possible_pfn[zone_index])
344 			break;
345 	}
346 
347 	VM_BUG_ON(zone_index == -1);
348 	movable_zone = zone_index;
349 }
350 
351 /*
352  * Find the PFN the Movable zone begins in each node. Kernel memory
353  * is spread evenly between nodes as long as the nodes have enough
354  * memory. When they don't, some nodes will have more kernelcore than
355  * others
356  */
357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 	int i, nid;
360 	unsigned long usable_startpfn;
361 	unsigned long kernelcore_node, kernelcore_remaining;
362 	/* save the state before borrow the nodemask */
363 	nodemask_t saved_node_state = node_states[N_MEMORY];
364 	unsigned long totalpages = early_calculate_totalpages();
365 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 	struct memblock_region *r;
367 
368 	/* Need to find movable_zone earlier when movable_node is specified. */
369 	find_usable_zone_for_movable();
370 
371 	/*
372 	 * If movable_node is specified, ignore kernelcore and movablecore
373 	 * options.
374 	 */
375 	if (movable_node_is_enabled()) {
376 		for_each_mem_region(r) {
377 			if (!memblock_is_hotpluggable(r))
378 				continue;
379 
380 			nid = memblock_get_region_node(r);
381 
382 			usable_startpfn = memblock_region_memory_base_pfn(r);
383 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 				min(usable_startpfn, zone_movable_pfn[nid]) :
385 				usable_startpfn;
386 		}
387 
388 		goto out2;
389 	}
390 
391 	/*
392 	 * If kernelcore=mirror is specified, ignore movablecore option
393 	 */
394 	if (mirrored_kernelcore) {
395 		bool mem_below_4gb_not_mirrored = false;
396 
397 		if (!memblock_has_mirror()) {
398 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 			goto out;
400 		}
401 
402 		if (is_kdump_kernel()) {
403 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 			goto out;
405 		}
406 
407 		for_each_mem_region(r) {
408 			if (memblock_is_mirror(r))
409 				continue;
410 
411 			nid = memblock_get_region_node(r);
412 
413 			usable_startpfn = memblock_region_memory_base_pfn(r);
414 
415 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 				mem_below_4gb_not_mirrored = true;
417 				continue;
418 			}
419 
420 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 				min(usable_startpfn, zone_movable_pfn[nid]) :
422 				usable_startpfn;
423 		}
424 
425 		if (mem_below_4gb_not_mirrored)
426 			pr_warn("This configuration results in unmirrored kernel memory.\n");
427 
428 		goto out2;
429 	}
430 
431 	/*
432 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 	 * amount of necessary memory.
434 	 */
435 	if (required_kernelcore_percent)
436 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 				       10000UL;
438 	if (required_movablecore_percent)
439 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 					10000UL;
441 
442 	/*
443 	 * If movablecore= was specified, calculate what size of
444 	 * kernelcore that corresponds so that memory usable for
445 	 * any allocation type is evenly spread. If both kernelcore
446 	 * and movablecore are specified, then the value of kernelcore
447 	 * will be used for required_kernelcore if it's greater than
448 	 * what movablecore would have allowed.
449 	 */
450 	if (required_movablecore) {
451 		unsigned long corepages;
452 
453 		/*
454 		 * Round-up so that ZONE_MOVABLE is at least as large as what
455 		 * was requested by the user
456 		 */
457 		required_movablecore =
458 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 		required_movablecore = min(totalpages, required_movablecore);
460 		corepages = totalpages - required_movablecore;
461 
462 		required_kernelcore = max(required_kernelcore, corepages);
463 	}
464 
465 	/*
466 	 * If kernelcore was not specified or kernelcore size is larger
467 	 * than totalpages, there is no ZONE_MOVABLE.
468 	 */
469 	if (!required_kernelcore || required_kernelcore >= totalpages)
470 		goto out;
471 
472 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474 
475 restart:
476 	/* Spread kernelcore memory as evenly as possible throughout nodes */
477 	kernelcore_node = required_kernelcore / usable_nodes;
478 	for_each_node_state(nid, N_MEMORY) {
479 		unsigned long start_pfn, end_pfn;
480 
481 		/*
482 		 * Recalculate kernelcore_node if the division per node
483 		 * now exceeds what is necessary to satisfy the requested
484 		 * amount of memory for the kernel
485 		 */
486 		if (required_kernelcore < kernelcore_node)
487 			kernelcore_node = required_kernelcore / usable_nodes;
488 
489 		/*
490 		 * As the map is walked, we track how much memory is usable
491 		 * by the kernel using kernelcore_remaining. When it is
492 		 * 0, the rest of the node is usable by ZONE_MOVABLE
493 		 */
494 		kernelcore_remaining = kernelcore_node;
495 
496 		/* Go through each range of PFNs within this node */
497 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 			unsigned long size_pages;
499 
500 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 			if (start_pfn >= end_pfn)
502 				continue;
503 
504 			/* Account for what is only usable for kernelcore */
505 			if (start_pfn < usable_startpfn) {
506 				unsigned long kernel_pages;
507 				kernel_pages = min(end_pfn, usable_startpfn)
508 								- start_pfn;
509 
510 				kernelcore_remaining -= min(kernel_pages,
511 							kernelcore_remaining);
512 				required_kernelcore -= min(kernel_pages,
513 							required_kernelcore);
514 
515 				/* Continue if range is now fully accounted */
516 				if (end_pfn <= usable_startpfn) {
517 
518 					/*
519 					 * Push zone_movable_pfn to the end so
520 					 * that if we have to rebalance
521 					 * kernelcore across nodes, we will
522 					 * not double account here
523 					 */
524 					zone_movable_pfn[nid] = end_pfn;
525 					continue;
526 				}
527 				start_pfn = usable_startpfn;
528 			}
529 
530 			/*
531 			 * The usable PFN range for ZONE_MOVABLE is from
532 			 * start_pfn->end_pfn. Calculate size_pages as the
533 			 * number of pages used as kernelcore
534 			 */
535 			size_pages = end_pfn - start_pfn;
536 			if (size_pages > kernelcore_remaining)
537 				size_pages = kernelcore_remaining;
538 			zone_movable_pfn[nid] = start_pfn + size_pages;
539 
540 			/*
541 			 * Some kernelcore has been met, update counts and
542 			 * break if the kernelcore for this node has been
543 			 * satisfied
544 			 */
545 			required_kernelcore -= min(required_kernelcore,
546 								size_pages);
547 			kernelcore_remaining -= size_pages;
548 			if (!kernelcore_remaining)
549 				break;
550 		}
551 	}
552 
553 	/*
554 	 * If there is still required_kernelcore, we do another pass with one
555 	 * less node in the count. This will push zone_movable_pfn[nid] further
556 	 * along on the nodes that still have memory until kernelcore is
557 	 * satisfied
558 	 */
559 	usable_nodes--;
560 	if (usable_nodes && required_kernelcore > usable_nodes)
561 		goto restart;
562 
563 out2:
564 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 	for_each_node_state(nid, N_MEMORY) {
566 		unsigned long start_pfn, end_pfn;
567 
568 		zone_movable_pfn[nid] =
569 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570 
571 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 		if (zone_movable_pfn[nid] >= end_pfn)
573 			zone_movable_pfn[nid] = 0;
574 	}
575 
576 out:
577 	/* restore the node_state */
578 	node_states[N_MEMORY] = saved_node_state;
579 }
580 
581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 				unsigned long zone, int nid)
583 {
584 	mm_zero_struct_page(page);
585 	set_page_links(page, zone, nid, pfn);
586 	init_page_count(page);
587 	atomic_set(&page->_mapcount, -1);
588 	page_cpupid_reset_last(page);
589 	page_kasan_tag_reset(page);
590 
591 	INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 	if (!is_highmem_idx(zone))
595 		set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598 
599 #ifdef CONFIG_NUMA
600 /*
601  * During memory init memblocks map pfns to nids. The search is expensive and
602  * this caches recent lookups. The implementation of __early_pfn_to_nid
603  * treats start/end as pfns.
604  */
605 struct mminit_pfnnid_cache {
606 	unsigned long last_start;
607 	unsigned long last_end;
608 	int last_nid;
609 };
610 
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612 
613 /*
614  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615  */
616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 					struct mminit_pfnnid_cache *state)
618 {
619 	unsigned long start_pfn, end_pfn;
620 	int nid;
621 
622 	if (state->last_start <= pfn && pfn < state->last_end)
623 		return state->last_nid;
624 
625 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 	if (nid != NUMA_NO_NODE) {
627 		state->last_start = start_pfn;
628 		state->last_end = end_pfn;
629 		state->last_nid = nid;
630 	}
631 
632 	return nid;
633 }
634 
635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 	static DEFINE_SPINLOCK(early_pfn_lock);
638 	int nid;
639 
640 	spin_lock(&early_pfn_lock);
641 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 	if (nid < 0)
643 		nid = first_online_node;
644 	spin_unlock(&early_pfn_lock);
645 
646 	return nid;
647 }
648 
649 int hashdist = HASHDIST_DEFAULT;
650 
651 static int __init set_hashdist(char *str)
652 {
653 	if (!str)
654 		return 0;
655 	hashdist = simple_strtoul(str, &str, 0);
656 	return 1;
657 }
658 __setup("hashdist=", set_hashdist);
659 
660 static inline void fixup_hashdist(void)
661 {
662 	if (num_node_state(N_MEMORY) == 1)
663 		hashdist = 0;
664 }
665 #else
666 static inline void fixup_hashdist(void) {}
667 #endif /* CONFIG_NUMA */
668 
669 /*
670  * Initialize a reserved page unconditionally, finding its zone first.
671  */
672 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
673 {
674 	pg_data_t *pgdat;
675 	int zid;
676 
677 	pgdat = NODE_DATA(nid);
678 
679 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
680 		struct zone *zone = &pgdat->node_zones[zid];
681 
682 		if (zone_spans_pfn(zone, pfn))
683 			break;
684 	}
685 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
686 
687 	if (pageblock_aligned(pfn))
688 		init_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE,
689 				false);
690 }
691 
692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
693 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
694 {
695 	pgdat->first_deferred_pfn = ULONG_MAX;
696 }
697 
698 /* Returns true if the struct page for the pfn is initialised */
699 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
700 {
701 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
702 		return false;
703 
704 	return true;
705 }
706 
707 /*
708  * Returns true when the remaining initialisation should be deferred until
709  * later in the boot cycle when it can be parallelised.
710  */
711 static bool __meminit
712 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
713 {
714 	static unsigned long prev_end_pfn, nr_initialised;
715 
716 	if (early_page_ext_enabled())
717 		return false;
718 
719 	/* Always populate low zones for address-constrained allocations */
720 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
721 		return false;
722 
723 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
724 		return true;
725 
726 	/*
727 	 * prev_end_pfn static that contains the end of previous zone
728 	 * No need to protect because called very early in boot before smp_init.
729 	 */
730 	if (prev_end_pfn != end_pfn) {
731 		prev_end_pfn = end_pfn;
732 		nr_initialised = 0;
733 	}
734 
735 	/*
736 	 * We start only with one section of pages, more pages are added as
737 	 * needed until the rest of deferred pages are initialized.
738 	 */
739 	nr_initialised++;
740 	if ((nr_initialised > PAGES_PER_SECTION) &&
741 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
742 		NODE_DATA(nid)->first_deferred_pfn = pfn;
743 		return true;
744 	}
745 	return false;
746 }
747 
748 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
749 {
750 	if (early_page_initialised(pfn, nid))
751 		return;
752 
753 	__init_page_from_nid(pfn, nid);
754 }
755 #else
756 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
757 
758 static inline bool early_page_initialised(unsigned long pfn, int nid)
759 {
760 	return true;
761 }
762 
763 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
764 {
765 	return false;
766 }
767 
768 static inline void __init_deferred_page(unsigned long pfn, int nid)
769 {
770 }
771 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
772 
773 void __meminit init_deferred_page(unsigned long pfn, int nid)
774 {
775 	__init_deferred_page(pfn, nid);
776 }
777 
778 /*
779  * Initialised pages do not have PageReserved set. This function is
780  * called for each range allocated by the bootmem allocator and
781  * marks the pages PageReserved. The remaining valid pages are later
782  * sent to the buddy page allocator.
783  */
784 void __meminit reserve_bootmem_region(phys_addr_t start,
785 				      phys_addr_t end, int nid)
786 {
787 	unsigned long pfn;
788 
789 	for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
790 		struct page *page = pfn_to_page(pfn);
791 
792 		__init_deferred_page(pfn, nid);
793 
794 		/*
795 		 * no need for atomic set_bit because the struct
796 		 * page is not visible yet so nobody should
797 		 * access it yet.
798 		 */
799 		__SetPageReserved(page);
800 	}
801 }
802 
803 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
804 static bool __meminit
805 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
806 {
807 	static struct memblock_region *r;
808 
809 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
810 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
811 			for_each_mem_region(r) {
812 				if (*pfn < memblock_region_memory_end_pfn(r))
813 					break;
814 			}
815 		}
816 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
817 		    memblock_is_mirror(r)) {
818 			*pfn = memblock_region_memory_end_pfn(r);
819 			return true;
820 		}
821 	}
822 	return false;
823 }
824 
825 /*
826  * Only struct pages that correspond to ranges defined by memblock.memory
827  * are zeroed and initialized by going through __init_single_page() during
828  * memmap_init_zone_range().
829  *
830  * But, there could be struct pages that correspond to holes in
831  * memblock.memory. This can happen because of the following reasons:
832  * - physical memory bank size is not necessarily the exact multiple of the
833  *   arbitrary section size
834  * - early reserved memory may not be listed in memblock.memory
835  * - non-memory regions covered by the contiguous flatmem mapping
836  * - memory layouts defined with memmap= kernel parameter may not align
837  *   nicely with memmap sections
838  *
839  * Explicitly initialize those struct pages so that:
840  * - PG_Reserved is set
841  * - zone and node links point to zone and node that span the page if the
842  *   hole is in the middle of a zone
843  * - zone and node links point to adjacent zone/node if the hole falls on
844  *   the zone boundary; the pages in such holes will be prepended to the
845  *   zone/node above the hole except for the trailing pages in the last
846  *   section that will be appended to the zone/node below.
847  */
848 static void __init init_unavailable_range(unsigned long spfn,
849 					  unsigned long epfn,
850 					  int zone, int node)
851 {
852 	unsigned long pfn;
853 	u64 pgcnt = 0;
854 
855 	for_each_valid_pfn(pfn, spfn, epfn) {
856 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
857 		__SetPageReserved(pfn_to_page(pfn));
858 		pgcnt++;
859 	}
860 
861 	if (pgcnt)
862 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
863 			node, zone_names[zone], pgcnt);
864 }
865 
866 /*
867  * Initially all pages are reserved - free ones are freed
868  * up by memblock_free_all() once the early boot process is
869  * done. Non-atomic initialization, single-pass.
870  *
871  * All aligned pageblocks are initialized to the specified migratetype
872  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
873  * zone stats (e.g., nr_isolate_pageblock) are touched.
874  */
875 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
876 		unsigned long start_pfn, unsigned long zone_end_pfn,
877 		enum meminit_context context,
878 		struct vmem_altmap *altmap, int migratetype,
879 		bool isolate_pageblock)
880 {
881 	unsigned long pfn, end_pfn = start_pfn + size;
882 	struct page *page;
883 
884 	if (highest_memmap_pfn < end_pfn - 1)
885 		highest_memmap_pfn = end_pfn - 1;
886 
887 #ifdef CONFIG_ZONE_DEVICE
888 	/*
889 	 * Honor reservation requested by the driver for this ZONE_DEVICE
890 	 * memory. We limit the total number of pages to initialize to just
891 	 * those that might contain the memory mapping. We will defer the
892 	 * ZONE_DEVICE page initialization until after we have released
893 	 * the hotplug lock.
894 	 */
895 	if (zone == ZONE_DEVICE) {
896 		if (!altmap)
897 			return;
898 
899 		if (start_pfn == altmap->base_pfn)
900 			start_pfn += altmap->reserve;
901 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
902 	}
903 #endif
904 
905 	for (pfn = start_pfn; pfn < end_pfn; ) {
906 		/*
907 		 * There can be holes in boot-time mem_map[]s handed to this
908 		 * function.  They do not exist on hotplugged memory.
909 		 */
910 		if (context == MEMINIT_EARLY) {
911 			if (overlap_memmap_init(zone, &pfn))
912 				continue;
913 			if (defer_init(nid, pfn, zone_end_pfn)) {
914 				deferred_struct_pages = true;
915 				break;
916 			}
917 		}
918 
919 		page = pfn_to_page(pfn);
920 		__init_single_page(page, pfn, zone, nid);
921 		if (context == MEMINIT_HOTPLUG) {
922 #ifdef CONFIG_ZONE_DEVICE
923 			if (zone == ZONE_DEVICE)
924 				__SetPageReserved(page);
925 			else
926 #endif
927 				__SetPageOffline(page);
928 		}
929 
930 		/*
931 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
932 		 * such that unmovable allocations won't be scattered all
933 		 * over the place during system boot.
934 		 */
935 		if (pageblock_aligned(pfn)) {
936 			init_pageblock_migratetype(page, migratetype,
937 					isolate_pageblock);
938 			cond_resched();
939 		}
940 		pfn++;
941 	}
942 }
943 
944 static void __init memmap_init_zone_range(struct zone *zone,
945 					  unsigned long start_pfn,
946 					  unsigned long end_pfn,
947 					  unsigned long *hole_pfn)
948 {
949 	unsigned long zone_start_pfn = zone->zone_start_pfn;
950 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
951 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
952 
953 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
954 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
955 
956 	if (start_pfn >= end_pfn)
957 		return;
958 
959 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
960 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE,
961 			  false);
962 
963 	if (*hole_pfn < start_pfn)
964 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
965 
966 	*hole_pfn = end_pfn;
967 }
968 
969 static void __init memmap_init(void)
970 {
971 	unsigned long start_pfn, end_pfn;
972 	unsigned long hole_pfn = 0;
973 	int i, j, zone_id = 0, nid;
974 
975 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
976 		struct pglist_data *node = NODE_DATA(nid);
977 
978 		for (j = 0; j < MAX_NR_ZONES; j++) {
979 			struct zone *zone = node->node_zones + j;
980 
981 			if (!populated_zone(zone))
982 				continue;
983 
984 			memmap_init_zone_range(zone, start_pfn, end_pfn,
985 					       &hole_pfn);
986 			zone_id = j;
987 		}
988 	}
989 
990 	/*
991 	 * Initialize the memory map for hole in the range [memory_end,
992 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
993 	 * for FLATMEM.
994 	 * Append the pages in this hole to the highest zone in the last
995 	 * node.
996 	 */
997 #ifdef CONFIG_SPARSEMEM
998 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
999 #else
1000 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
1001 #endif
1002 	if (hole_pfn < end_pfn)
1003 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1004 }
1005 
1006 #ifdef CONFIG_ZONE_DEVICE
1007 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1008 					  unsigned long zone_idx, int nid,
1009 					  struct dev_pagemap *pgmap)
1010 {
1011 
1012 	__init_single_page(page, pfn, zone_idx, nid);
1013 
1014 	/*
1015 	 * Mark page reserved as it will need to wait for onlining
1016 	 * phase for it to be fully associated with a zone.
1017 	 *
1018 	 * We can use the non-atomic __set_bit operation for setting
1019 	 * the flag as we are still initializing the pages.
1020 	 */
1021 	__SetPageReserved(page);
1022 
1023 	/*
1024 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1025 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1026 	 * ever freed or placed on a driver-private list.
1027 	 */
1028 	page_folio(page)->pgmap = pgmap;
1029 	page->zone_device_data = NULL;
1030 
1031 	/*
1032 	 * Mark the block movable so that blocks are reserved for
1033 	 * movable at startup. This will force kernel allocations
1034 	 * to reserve their blocks rather than leaking throughout
1035 	 * the address space during boot when many long-lived
1036 	 * kernel allocations are made.
1037 	 *
1038 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1039 	 * because this is done early in section_activate()
1040 	 */
1041 	if (pageblock_aligned(pfn)) {
1042 		init_pageblock_migratetype(page, MIGRATE_MOVABLE, false);
1043 		cond_resched();
1044 	}
1045 
1046 	/*
1047 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1048 	 * directly to the driver page allocator which will set the page count
1049 	 * to 1 when allocating the page.
1050 	 *
1051 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1052 	 * their refcount reset to one whenever they are freed (ie. after
1053 	 * their refcount drops to 0).
1054 	 */
1055 	switch (pgmap->type) {
1056 	case MEMORY_DEVICE_FS_DAX:
1057 	case MEMORY_DEVICE_PRIVATE:
1058 	case MEMORY_DEVICE_COHERENT:
1059 	case MEMORY_DEVICE_PCI_P2PDMA:
1060 		set_page_count(page, 0);
1061 		break;
1062 
1063 	case MEMORY_DEVICE_GENERIC:
1064 		break;
1065 	}
1066 }
1067 
1068 /*
1069  * With compound page geometry and when struct pages are stored in ram most
1070  * tail pages are reused. Consequently, the amount of unique struct pages to
1071  * initialize is a lot smaller that the total amount of struct pages being
1072  * mapped. This is a paired / mild layering violation with explicit knowledge
1073  * of how the sparse_vmemmap internals handle compound pages in the lack
1074  * of an altmap. See vmemmap_populate_compound_pages().
1075  */
1076 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1077 					      struct dev_pagemap *pgmap)
1078 {
1079 	if (!vmemmap_can_optimize(altmap, pgmap))
1080 		return pgmap_vmemmap_nr(pgmap);
1081 
1082 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1083 }
1084 
1085 static void __ref memmap_init_compound(struct page *head,
1086 				       unsigned long head_pfn,
1087 				       unsigned long zone_idx, int nid,
1088 				       struct dev_pagemap *pgmap,
1089 				       unsigned long nr_pages)
1090 {
1091 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1092 	unsigned int order = pgmap->vmemmap_shift;
1093 
1094 	__SetPageHead(head);
1095 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1096 		struct page *page = pfn_to_page(pfn);
1097 
1098 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1099 		prep_compound_tail(head, pfn - head_pfn);
1100 		set_page_count(page, 0);
1101 
1102 		/*
1103 		 * The first tail page stores important compound page info.
1104 		 * Call prep_compound_head() after the first tail page has
1105 		 * been initialized, to not have the data overwritten.
1106 		 */
1107 		if (pfn == head_pfn + 1)
1108 			prep_compound_head(head, order);
1109 	}
1110 }
1111 
1112 void __ref memmap_init_zone_device(struct zone *zone,
1113 				   unsigned long start_pfn,
1114 				   unsigned long nr_pages,
1115 				   struct dev_pagemap *pgmap)
1116 {
1117 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1118 	struct pglist_data *pgdat = zone->zone_pgdat;
1119 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1120 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1121 	unsigned long zone_idx = zone_idx(zone);
1122 	unsigned long start = jiffies;
1123 	int nid = pgdat->node_id;
1124 
1125 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1126 		return;
1127 
1128 	/*
1129 	 * The call to memmap_init should have already taken care
1130 	 * of the pages reserved for the memmap, so we can just jump to
1131 	 * the end of that region and start processing the device pages.
1132 	 */
1133 	if (altmap) {
1134 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1135 		nr_pages = end_pfn - start_pfn;
1136 	}
1137 
1138 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1139 		struct page *page = pfn_to_page(pfn);
1140 
1141 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1142 
1143 		if (pfns_per_compound == 1)
1144 			continue;
1145 
1146 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1147 				     compound_nr_pages(altmap, pgmap));
1148 	}
1149 
1150 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1151 		nr_pages, jiffies_to_msecs(jiffies - start));
1152 }
1153 #endif
1154 
1155 /*
1156  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1157  * because it is sized independent of architecture. Unlike the other zones,
1158  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1159  * in each node depending on the size of each node and how evenly kernelcore
1160  * is distributed. This helper function adjusts the zone ranges
1161  * provided by the architecture for a given node by using the end of the
1162  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1163  * zones within a node are in order of monotonic increases memory addresses
1164  */
1165 static void __init adjust_zone_range_for_zone_movable(int nid,
1166 					unsigned long zone_type,
1167 					unsigned long node_end_pfn,
1168 					unsigned long *zone_start_pfn,
1169 					unsigned long *zone_end_pfn)
1170 {
1171 	/* Only adjust if ZONE_MOVABLE is on this node */
1172 	if (zone_movable_pfn[nid]) {
1173 		/* Size ZONE_MOVABLE */
1174 		if (zone_type == ZONE_MOVABLE) {
1175 			*zone_start_pfn = zone_movable_pfn[nid];
1176 			*zone_end_pfn = min(node_end_pfn,
1177 				arch_zone_highest_possible_pfn[movable_zone]);
1178 
1179 		/* Adjust for ZONE_MOVABLE starting within this range */
1180 		} else if (!mirrored_kernelcore &&
1181 			*zone_start_pfn < zone_movable_pfn[nid] &&
1182 			*zone_end_pfn > zone_movable_pfn[nid]) {
1183 			*zone_end_pfn = zone_movable_pfn[nid];
1184 
1185 		/* Check if this whole range is within ZONE_MOVABLE */
1186 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1187 			*zone_start_pfn = *zone_end_pfn;
1188 	}
1189 }
1190 
1191 /*
1192  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1193  * then all holes in the requested range will be accounted for.
1194  */
1195 static unsigned long __init __absent_pages_in_range(int nid,
1196 				unsigned long range_start_pfn,
1197 				unsigned long range_end_pfn)
1198 {
1199 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1200 	unsigned long start_pfn, end_pfn;
1201 	int i;
1202 
1203 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1204 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1205 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1206 		nr_absent -= end_pfn - start_pfn;
1207 	}
1208 	return nr_absent;
1209 }
1210 
1211 /**
1212  * absent_pages_in_range - Return number of page frames in holes within a range
1213  * @start_pfn: The start PFN to start searching for holes
1214  * @end_pfn: The end PFN to stop searching for holes
1215  *
1216  * Return: the number of pages frames in memory holes within a range.
1217  */
1218 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1219 							unsigned long end_pfn)
1220 {
1221 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1222 }
1223 
1224 /* Return the number of page frames in holes in a zone on a node */
1225 static unsigned long __init zone_absent_pages_in_node(int nid,
1226 					unsigned long zone_type,
1227 					unsigned long zone_start_pfn,
1228 					unsigned long zone_end_pfn)
1229 {
1230 	unsigned long nr_absent;
1231 
1232 	/* zone is empty, we don't have any absent pages */
1233 	if (zone_start_pfn == zone_end_pfn)
1234 		return 0;
1235 
1236 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1237 
1238 	/*
1239 	 * ZONE_MOVABLE handling.
1240 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1241 	 * and vice versa.
1242 	 */
1243 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1244 		unsigned long start_pfn, end_pfn;
1245 		struct memblock_region *r;
1246 
1247 		for_each_mem_region(r) {
1248 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1249 					  zone_start_pfn, zone_end_pfn);
1250 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1251 					zone_start_pfn, zone_end_pfn);
1252 
1253 			if (zone_type == ZONE_MOVABLE &&
1254 			    memblock_is_mirror(r))
1255 				nr_absent += end_pfn - start_pfn;
1256 
1257 			if (zone_type == ZONE_NORMAL &&
1258 			    !memblock_is_mirror(r))
1259 				nr_absent += end_pfn - start_pfn;
1260 		}
1261 	}
1262 
1263 	return nr_absent;
1264 }
1265 
1266 /*
1267  * Return the number of pages a zone spans in a node, including holes
1268  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1269  */
1270 static unsigned long __init zone_spanned_pages_in_node(int nid,
1271 					unsigned long zone_type,
1272 					unsigned long node_start_pfn,
1273 					unsigned long node_end_pfn,
1274 					unsigned long *zone_start_pfn,
1275 					unsigned long *zone_end_pfn)
1276 {
1277 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1278 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1279 
1280 	/* Get the start and end of the zone */
1281 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1282 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1283 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1284 					   zone_start_pfn, zone_end_pfn);
1285 
1286 	/* Check that this node has pages within the zone's required range */
1287 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1288 		return 0;
1289 
1290 	/* Move the zone boundaries inside the node if necessary */
1291 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1292 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1293 
1294 	/* Return the spanned pages */
1295 	return *zone_end_pfn - *zone_start_pfn;
1296 }
1297 
1298 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1299 {
1300 	struct zone *z;
1301 
1302 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1303 		z->zone_start_pfn = 0;
1304 		z->spanned_pages = 0;
1305 		z->present_pages = 0;
1306 #if defined(CONFIG_MEMORY_HOTPLUG)
1307 		z->present_early_pages = 0;
1308 #endif
1309 	}
1310 
1311 	pgdat->node_spanned_pages = 0;
1312 	pgdat->node_present_pages = 0;
1313 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1314 }
1315 
1316 static void __init calc_nr_kernel_pages(void)
1317 {
1318 	unsigned long start_pfn, end_pfn;
1319 	phys_addr_t start_addr, end_addr;
1320 	u64 u;
1321 #ifdef CONFIG_HIGHMEM
1322 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1323 #endif
1324 
1325 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1326 		start_pfn = PFN_UP(start_addr);
1327 		end_pfn   = PFN_DOWN(end_addr);
1328 
1329 		if (start_pfn < end_pfn) {
1330 			nr_all_pages += end_pfn - start_pfn;
1331 #ifdef CONFIG_HIGHMEM
1332 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1333 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1334 #endif
1335 			nr_kernel_pages += end_pfn - start_pfn;
1336 		}
1337 	}
1338 }
1339 
1340 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1341 						unsigned long node_start_pfn,
1342 						unsigned long node_end_pfn)
1343 {
1344 	unsigned long realtotalpages = 0, totalpages = 0;
1345 	enum zone_type i;
1346 
1347 	for (i = 0; i < MAX_NR_ZONES; i++) {
1348 		struct zone *zone = pgdat->node_zones + i;
1349 		unsigned long zone_start_pfn, zone_end_pfn;
1350 		unsigned long spanned, absent;
1351 		unsigned long real_size;
1352 
1353 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1354 						     node_start_pfn,
1355 						     node_end_pfn,
1356 						     &zone_start_pfn,
1357 						     &zone_end_pfn);
1358 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1359 						   zone_start_pfn,
1360 						   zone_end_pfn);
1361 
1362 		real_size = spanned - absent;
1363 
1364 		if (spanned)
1365 			zone->zone_start_pfn = zone_start_pfn;
1366 		else
1367 			zone->zone_start_pfn = 0;
1368 		zone->spanned_pages = spanned;
1369 		zone->present_pages = real_size;
1370 #if defined(CONFIG_MEMORY_HOTPLUG)
1371 		zone->present_early_pages = real_size;
1372 #endif
1373 
1374 		totalpages += spanned;
1375 		realtotalpages += real_size;
1376 	}
1377 
1378 	pgdat->node_spanned_pages = totalpages;
1379 	pgdat->node_present_pages = realtotalpages;
1380 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1381 }
1382 
1383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1384 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1385 {
1386 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1387 
1388 	spin_lock_init(&ds_queue->split_queue_lock);
1389 	INIT_LIST_HEAD(&ds_queue->split_queue);
1390 	ds_queue->split_queue_len = 0;
1391 }
1392 #else
1393 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1394 #endif
1395 
1396 #ifdef CONFIG_COMPACTION
1397 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1398 {
1399 	init_waitqueue_head(&pgdat->kcompactd_wait);
1400 }
1401 #else
1402 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1403 #endif
1404 
1405 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1406 {
1407 	int i;
1408 
1409 	pgdat_resize_init(pgdat);
1410 	pgdat_kswapd_lock_init(pgdat);
1411 
1412 	pgdat_init_split_queue(pgdat);
1413 	pgdat_init_kcompactd(pgdat);
1414 
1415 	init_waitqueue_head(&pgdat->kswapd_wait);
1416 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1417 
1418 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1419 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1420 
1421 	pgdat_page_ext_init(pgdat);
1422 	lruvec_init(&pgdat->__lruvec);
1423 }
1424 
1425 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1426 							unsigned long remaining_pages)
1427 {
1428 	atomic_long_set(&zone->managed_pages, remaining_pages);
1429 	zone_set_nid(zone, nid);
1430 	zone->name = zone_names[idx];
1431 	zone->zone_pgdat = NODE_DATA(nid);
1432 	spin_lock_init(&zone->lock);
1433 	zone_seqlock_init(zone);
1434 	zone_pcp_init(zone);
1435 }
1436 
1437 static void __meminit zone_init_free_lists(struct zone *zone)
1438 {
1439 	unsigned int order, t;
1440 	for_each_migratetype_order(order, t) {
1441 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1442 		zone->free_area[order].nr_free = 0;
1443 	}
1444 
1445 #ifdef CONFIG_UNACCEPTED_MEMORY
1446 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1447 #endif
1448 }
1449 
1450 void __meminit init_currently_empty_zone(struct zone *zone,
1451 					unsigned long zone_start_pfn,
1452 					unsigned long size)
1453 {
1454 	struct pglist_data *pgdat = zone->zone_pgdat;
1455 	int zone_idx = zone_idx(zone) + 1;
1456 
1457 	if (zone_idx > pgdat->nr_zones)
1458 		pgdat->nr_zones = zone_idx;
1459 
1460 	zone->zone_start_pfn = zone_start_pfn;
1461 
1462 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1463 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1464 			pgdat->node_id,
1465 			(unsigned long)zone_idx(zone),
1466 			zone_start_pfn, (zone_start_pfn + size));
1467 
1468 	zone_init_free_lists(zone);
1469 	zone->initialized = 1;
1470 }
1471 
1472 #ifndef CONFIG_SPARSEMEM
1473 /*
1474  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1475  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1476  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1477  * round what is now in bits to nearest long in bits, then return it in
1478  * bytes.
1479  */
1480 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1481 {
1482 	unsigned long usemapsize;
1483 
1484 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1485 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1486 	usemapsize = usemapsize >> pageblock_order;
1487 	usemapsize *= NR_PAGEBLOCK_BITS;
1488 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1489 
1490 	return usemapsize / BITS_PER_BYTE;
1491 }
1492 
1493 static void __ref setup_usemap(struct zone *zone)
1494 {
1495 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1496 					       zone->spanned_pages);
1497 	zone->pageblock_flags = NULL;
1498 	if (usemapsize) {
1499 		zone->pageblock_flags =
1500 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1501 					    zone_to_nid(zone));
1502 		if (!zone->pageblock_flags)
1503 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1504 			      usemapsize, zone->name, zone_to_nid(zone));
1505 	}
1506 }
1507 #else
1508 static inline void setup_usemap(struct zone *zone) {}
1509 #endif /* CONFIG_SPARSEMEM */
1510 
1511 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1512 
1513 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1514 void __init set_pageblock_order(void)
1515 {
1516 	unsigned int order = PAGE_BLOCK_MAX_ORDER;
1517 
1518 	/* Check that pageblock_nr_pages has not already been setup */
1519 	if (pageblock_order)
1520 		return;
1521 
1522 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1523 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1524 		order = HUGETLB_PAGE_ORDER;
1525 
1526 	/*
1527 	 * Assume the largest contiguous order of interest is a huge page.
1528 	 * This value may be variable depending on boot parameters on powerpc.
1529 	 */
1530 	pageblock_order = order;
1531 }
1532 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1533 
1534 /*
1535  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1536  * is unused as pageblock_order is set at compile-time. See
1537  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1538  * the kernel config
1539  */
1540 void __init set_pageblock_order(void)
1541 {
1542 }
1543 
1544 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1545 
1546 /*
1547  * Set up the zone data structures
1548  * - init pgdat internals
1549  * - init all zones belonging to this node
1550  *
1551  * NOTE: this function is only called during memory hotplug
1552  */
1553 #ifdef CONFIG_MEMORY_HOTPLUG
1554 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1555 {
1556 	int nid = pgdat->node_id;
1557 	enum zone_type z;
1558 	int cpu;
1559 
1560 	pgdat_init_internals(pgdat);
1561 
1562 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1563 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1564 
1565 	/*
1566 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1567 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1568 	 * when it starts in the near future.
1569 	 */
1570 	pgdat->nr_zones = 0;
1571 	pgdat->kswapd_order = 0;
1572 	pgdat->kswapd_highest_zoneidx = 0;
1573 	pgdat->node_start_pfn = 0;
1574 	pgdat->node_present_pages = 0;
1575 
1576 	for_each_online_cpu(cpu) {
1577 		struct per_cpu_nodestat *p;
1578 
1579 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1580 		memset(p, 0, sizeof(*p));
1581 	}
1582 
1583 	/*
1584 	 * When memory is hot-added, all the memory is in offline state. So
1585 	 * clear all zones' present_pages and managed_pages because they will
1586 	 * be updated in online_pages() and offline_pages().
1587 	 */
1588 	for (z = 0; z < MAX_NR_ZONES; z++) {
1589 		struct zone *zone = pgdat->node_zones + z;
1590 
1591 		zone->present_pages = 0;
1592 		zone_init_internals(zone, z, nid, 0);
1593 	}
1594 }
1595 #endif
1596 
1597 static void __init free_area_init_core(struct pglist_data *pgdat)
1598 {
1599 	enum zone_type j;
1600 	int nid = pgdat->node_id;
1601 
1602 	pgdat_init_internals(pgdat);
1603 	pgdat->per_cpu_nodestats = &boot_nodestats;
1604 
1605 	for (j = 0; j < MAX_NR_ZONES; j++) {
1606 		struct zone *zone = pgdat->node_zones + j;
1607 		unsigned long size = zone->spanned_pages;
1608 
1609 		/*
1610 		 * Initialize zone->managed_pages as 0 , it will be reset
1611 		 * when memblock allocator frees pages into buddy system.
1612 		 */
1613 		zone_init_internals(zone, j, nid, zone->present_pages);
1614 
1615 		if (!size)
1616 			continue;
1617 
1618 		setup_usemap(zone);
1619 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1620 	}
1621 }
1622 
1623 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1624 			  phys_addr_t min_addr, int nid, bool exact_nid)
1625 {
1626 	void *ptr;
1627 
1628 	/*
1629 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1630 	 * `struct *page`,so memblock does not need to be added to the scan list.
1631 	 */
1632 	if (exact_nid)
1633 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1634 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1635 						   nid);
1636 	else
1637 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1638 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1639 						 nid);
1640 
1641 	if (ptr && size > 0)
1642 		page_init_poison(ptr, size);
1643 
1644 	return ptr;
1645 }
1646 
1647 #ifdef CONFIG_FLATMEM
1648 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1649 {
1650 	unsigned long start, offset, size, end;
1651 	struct page *map;
1652 
1653 	/* Skip empty nodes */
1654 	if (!pgdat->node_spanned_pages)
1655 		return;
1656 
1657 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1658 	offset = pgdat->node_start_pfn - start;
1659 	/*
1660 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1661 	 * aligned but the node_mem_map endpoints must be in order
1662 	 * for the buddy allocator to function correctly.
1663 	 */
1664 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1665 	size =  (end - start) * sizeof(struct page);
1666 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1667 			   pgdat->node_id, false);
1668 	if (!map)
1669 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1670 		      size, pgdat->node_id);
1671 	pgdat->node_mem_map = map + offset;
1672 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1673 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1674 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1675 		 (unsigned long)pgdat->node_mem_map);
1676 
1677 	/* the global mem_map is just set as node 0's */
1678 	WARN_ON(pgdat != NODE_DATA(0));
1679 
1680 	mem_map = pgdat->node_mem_map;
1681 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1682 		mem_map -= offset;
1683 
1684 	max_mapnr = end - start;
1685 }
1686 #else
1687 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1688 #endif /* CONFIG_FLATMEM */
1689 
1690 /**
1691  * get_pfn_range_for_nid - Return the start and end page frames for a node
1692  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1693  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1694  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1695  *
1696  * It returns the start and end page frame of a node based on information
1697  * provided by memblock_set_node(). If called for a node
1698  * with no available memory, the start and end PFNs will be 0.
1699  */
1700 void __init get_pfn_range_for_nid(unsigned int nid,
1701 			unsigned long *start_pfn, unsigned long *end_pfn)
1702 {
1703 	unsigned long this_start_pfn, this_end_pfn;
1704 	int i;
1705 
1706 	*start_pfn = -1UL;
1707 	*end_pfn = 0;
1708 
1709 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1710 		*start_pfn = min(*start_pfn, this_start_pfn);
1711 		*end_pfn = max(*end_pfn, this_end_pfn);
1712 	}
1713 
1714 	if (*start_pfn == -1UL)
1715 		*start_pfn = 0;
1716 }
1717 
1718 static void __init free_area_init_node(int nid)
1719 {
1720 	pg_data_t *pgdat = NODE_DATA(nid);
1721 	unsigned long start_pfn = 0;
1722 	unsigned long end_pfn = 0;
1723 
1724 	/* pg_data_t should be reset to zero when it's allocated */
1725 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1726 
1727 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1728 
1729 	pgdat->node_id = nid;
1730 	pgdat->node_start_pfn = start_pfn;
1731 	pgdat->per_cpu_nodestats = NULL;
1732 
1733 	if (start_pfn != end_pfn) {
1734 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1735 			(u64)start_pfn << PAGE_SHIFT,
1736 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1737 
1738 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1739 	} else {
1740 		pr_info("Initmem setup node %d as memoryless\n", nid);
1741 
1742 		reset_memoryless_node_totalpages(pgdat);
1743 	}
1744 
1745 	alloc_node_mem_map(pgdat);
1746 	pgdat_set_deferred_range(pgdat);
1747 
1748 	free_area_init_core(pgdat);
1749 	lru_gen_init_pgdat(pgdat);
1750 }
1751 
1752 /* Any regular or high memory on that node ? */
1753 static void __init check_for_memory(pg_data_t *pgdat)
1754 {
1755 	enum zone_type zone_type;
1756 
1757 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1758 		struct zone *zone = &pgdat->node_zones[zone_type];
1759 		if (populated_zone(zone)) {
1760 			if (IS_ENABLED(CONFIG_HIGHMEM))
1761 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1762 			if (zone_type <= ZONE_NORMAL)
1763 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1764 			break;
1765 		}
1766 	}
1767 }
1768 
1769 #if MAX_NUMNODES > 1
1770 /*
1771  * Figure out the number of possible node ids.
1772  */
1773 void __init setup_nr_node_ids(void)
1774 {
1775 	unsigned int highest;
1776 
1777 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1778 	nr_node_ids = highest + 1;
1779 }
1780 #endif
1781 
1782 /*
1783  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1784  * such cases we allow max_zone_pfn sorted in the descending order
1785  */
1786 static bool arch_has_descending_max_zone_pfns(void)
1787 {
1788 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1789 }
1790 
1791 static void __init set_high_memory(void)
1792 {
1793 	phys_addr_t highmem = memblock_end_of_DRAM();
1794 
1795 	/*
1796 	 * Some architectures (e.g. ARM) set high_memory very early and
1797 	 * use it in arch setup code.
1798 	 * If an architecture already set high_memory don't overwrite it
1799 	 */
1800 	if (high_memory)
1801 		return;
1802 
1803 #ifdef CONFIG_HIGHMEM
1804 	if (arch_has_descending_max_zone_pfns() ||
1805 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1806 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1807 #endif
1808 
1809 	high_memory = phys_to_virt(highmem - 1) + 1;
1810 }
1811 
1812 /**
1813  * free_area_init - Initialise all pg_data_t and zone data
1814  * @max_zone_pfn: an array of max PFNs for each zone
1815  *
1816  * This will call free_area_init_node() for each active node in the system.
1817  * Using the page ranges provided by memblock_set_node(), the size of each
1818  * zone in each node and their holes is calculated. If the maximum PFN
1819  * between two adjacent zones match, it is assumed that the zone is empty.
1820  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1821  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1822  * starts where the previous one ended. For example, ZONE_DMA32 starts
1823  * at arch_max_dma_pfn.
1824  */
1825 void __init free_area_init(unsigned long *max_zone_pfn)
1826 {
1827 	unsigned long start_pfn, end_pfn;
1828 	int i, nid, zone;
1829 	bool descending;
1830 
1831 	/* Record where the zone boundaries are */
1832 	memset(arch_zone_lowest_possible_pfn, 0,
1833 				sizeof(arch_zone_lowest_possible_pfn));
1834 	memset(arch_zone_highest_possible_pfn, 0,
1835 				sizeof(arch_zone_highest_possible_pfn));
1836 
1837 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1838 	descending = arch_has_descending_max_zone_pfns();
1839 
1840 	for (i = 0; i < MAX_NR_ZONES; i++) {
1841 		if (descending)
1842 			zone = MAX_NR_ZONES - i - 1;
1843 		else
1844 			zone = i;
1845 
1846 		if (zone == ZONE_MOVABLE)
1847 			continue;
1848 
1849 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1850 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1851 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1852 
1853 		start_pfn = end_pfn;
1854 	}
1855 
1856 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1857 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1858 	find_zone_movable_pfns_for_nodes();
1859 
1860 	/* Print out the zone ranges */
1861 	pr_info("Zone ranges:\n");
1862 	for (i = 0; i < MAX_NR_ZONES; i++) {
1863 		if (i == ZONE_MOVABLE)
1864 			continue;
1865 		pr_info("  %-8s ", zone_names[i]);
1866 		if (arch_zone_lowest_possible_pfn[i] ==
1867 				arch_zone_highest_possible_pfn[i])
1868 			pr_cont("empty\n");
1869 		else
1870 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1871 				(u64)arch_zone_lowest_possible_pfn[i]
1872 					<< PAGE_SHIFT,
1873 				((u64)arch_zone_highest_possible_pfn[i]
1874 					<< PAGE_SHIFT) - 1);
1875 	}
1876 
1877 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1878 	pr_info("Movable zone start for each node\n");
1879 	for (i = 0; i < MAX_NUMNODES; i++) {
1880 		if (zone_movable_pfn[i])
1881 			pr_info("  Node %d: %#018Lx\n", i,
1882 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1883 	}
1884 
1885 	/*
1886 	 * Print out the early node map, and initialize the
1887 	 * subsection-map relative to active online memory ranges to
1888 	 * enable future "sub-section" extensions of the memory map.
1889 	 */
1890 	pr_info("Early memory node ranges\n");
1891 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1892 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1893 			(u64)start_pfn << PAGE_SHIFT,
1894 			((u64)end_pfn << PAGE_SHIFT) - 1);
1895 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1896 	}
1897 
1898 	/* Initialise every node */
1899 	mminit_verify_pageflags_layout();
1900 	setup_nr_node_ids();
1901 	set_pageblock_order();
1902 
1903 	for_each_node(nid) {
1904 		pg_data_t *pgdat;
1905 
1906 		if (!node_online(nid))
1907 			alloc_offline_node_data(nid);
1908 
1909 		pgdat = NODE_DATA(nid);
1910 		free_area_init_node(nid);
1911 
1912 		/*
1913 		 * No sysfs hierarchy will be created via register_one_node()
1914 		 *for memory-less node because here it's not marked as N_MEMORY
1915 		 *and won't be set online later. The benefit is userspace
1916 		 *program won't be confused by sysfs files/directories of
1917 		 *memory-less node. The pgdat will get fully initialized by
1918 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1919 		 */
1920 		if (pgdat->node_present_pages) {
1921 			node_set_state(nid, N_MEMORY);
1922 			check_for_memory(pgdat);
1923 		}
1924 	}
1925 
1926 	for_each_node_state(nid, N_MEMORY)
1927 		sparse_vmemmap_init_nid_late(nid);
1928 
1929 	calc_nr_kernel_pages();
1930 	memmap_init();
1931 
1932 	/* disable hash distribution for systems with a single node */
1933 	fixup_hashdist();
1934 
1935 	set_high_memory();
1936 }
1937 
1938 /**
1939  * node_map_pfn_alignment - determine the maximum internode alignment
1940  *
1941  * This function should be called after node map is populated and sorted.
1942  * It calculates the maximum power of two alignment which can distinguish
1943  * all the nodes.
1944  *
1945  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1946  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1947  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1948  * shifted, 1GiB is enough and this function will indicate so.
1949  *
1950  * This is used to test whether pfn -> nid mapping of the chosen memory
1951  * model has fine enough granularity to avoid incorrect mapping for the
1952  * populated node map.
1953  *
1954  * Return: the determined alignment in pfn's.  0 if there is no alignment
1955  * requirement (single node).
1956  */
1957 unsigned long __init node_map_pfn_alignment(void)
1958 {
1959 	unsigned long accl_mask = 0, last_end = 0;
1960 	unsigned long start, end, mask;
1961 	int last_nid = NUMA_NO_NODE;
1962 	int i, nid;
1963 
1964 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1965 		if (!start || last_nid < 0 || last_nid == nid) {
1966 			last_nid = nid;
1967 			last_end = end;
1968 			continue;
1969 		}
1970 
1971 		/*
1972 		 * Start with a mask granular enough to pin-point to the
1973 		 * start pfn and tick off bits one-by-one until it becomes
1974 		 * too coarse to separate the current node from the last.
1975 		 */
1976 		mask = ~((1 << __ffs(start)) - 1);
1977 		while (mask && last_end <= (start & (mask << 1)))
1978 			mask <<= 1;
1979 
1980 		/* accumulate all internode masks */
1981 		accl_mask |= mask;
1982 	}
1983 
1984 	/* convert mask to number of pages */
1985 	return ~accl_mask + 1;
1986 }
1987 
1988 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1989 static void __init deferred_free_pages(unsigned long pfn,
1990 		unsigned long nr_pages)
1991 {
1992 	struct page *page;
1993 	unsigned long i;
1994 
1995 	if (!nr_pages)
1996 		return;
1997 
1998 	page = pfn_to_page(pfn);
1999 
2000 	/* Free a large naturally-aligned chunk if possible */
2001 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
2002 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
2003 			init_pageblock_migratetype(page + i, MIGRATE_MOVABLE,
2004 					false);
2005 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2006 		return;
2007 	}
2008 
2009 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2010 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2011 
2012 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2013 		if (pageblock_aligned(pfn))
2014 			init_pageblock_migratetype(page, MIGRATE_MOVABLE,
2015 					false);
2016 		__free_pages_core(page, 0, MEMINIT_EARLY);
2017 	}
2018 }
2019 
2020 /* Completion tracking for deferred_init_memmap() threads */
2021 static atomic_t pgdat_init_n_undone __initdata;
2022 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2023 
2024 static inline void __init pgdat_init_report_one_done(void)
2025 {
2026 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2027 		complete(&pgdat_init_all_done_comp);
2028 }
2029 
2030 /*
2031  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2032  * by performing it only once every MAX_ORDER_NR_PAGES.
2033  * Return number of pages initialized.
2034  */
2035 static unsigned long __init deferred_init_pages(struct zone *zone,
2036 		unsigned long pfn, unsigned long end_pfn)
2037 {
2038 	int nid = zone_to_nid(zone);
2039 	unsigned long nr_pages = end_pfn - pfn;
2040 	int zid = zone_idx(zone);
2041 	struct page *page = pfn_to_page(pfn);
2042 
2043 	for (; pfn < end_pfn; pfn++, page++)
2044 		__init_single_page(page, pfn, zid, nid);
2045 	return nr_pages;
2046 }
2047 
2048 /*
2049  * This function is meant to pre-load the iterator for the zone init from
2050  * a given point.
2051  * Specifically it walks through the ranges starting with initial index
2052  * passed to it until we are caught up to the first_init_pfn value and
2053  * exits there. If we never encounter the value we return false indicating
2054  * there are no valid ranges left.
2055  */
2056 static bool __init
2057 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2058 				    unsigned long *spfn, unsigned long *epfn,
2059 				    unsigned long first_init_pfn)
2060 {
2061 	u64 j = *i;
2062 
2063 	if (j == 0)
2064 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2065 
2066 	/*
2067 	 * Start out by walking through the ranges in this zone that have
2068 	 * already been initialized. We don't need to do anything with them
2069 	 * so we just need to flush them out of the system.
2070 	 */
2071 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2072 		if (*epfn <= first_init_pfn)
2073 			continue;
2074 		if (*spfn < first_init_pfn)
2075 			*spfn = first_init_pfn;
2076 		*i = j;
2077 		return true;
2078 	}
2079 
2080 	return false;
2081 }
2082 
2083 /*
2084  * Initialize and free pages. We do it in two loops: first we initialize
2085  * struct page, then free to buddy allocator, because while we are
2086  * freeing pages we can access pages that are ahead (computing buddy
2087  * page in __free_one_page()).
2088  *
2089  * In order to try and keep some memory in the cache we have the loop
2090  * broken along max page order boundaries. This way we will not cause
2091  * any issues with the buddy page computation.
2092  */
2093 static unsigned long __init
2094 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2095 		       unsigned long *end_pfn)
2096 {
2097 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2098 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2099 	unsigned long nr_pages = 0;
2100 	u64 j = *i;
2101 
2102 	/* First we loop through and initialize the page values */
2103 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2104 		unsigned long t;
2105 
2106 		if (mo_pfn <= *start_pfn)
2107 			break;
2108 
2109 		t = min(mo_pfn, *end_pfn);
2110 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2111 
2112 		if (mo_pfn < *end_pfn) {
2113 			*start_pfn = mo_pfn;
2114 			break;
2115 		}
2116 	}
2117 
2118 	/* Reset values and now loop through freeing pages as needed */
2119 	swap(j, *i);
2120 
2121 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2122 		unsigned long t;
2123 
2124 		if (mo_pfn <= spfn)
2125 			break;
2126 
2127 		t = min(mo_pfn, epfn);
2128 		deferred_free_pages(spfn, t - spfn);
2129 
2130 		if (mo_pfn <= epfn)
2131 			break;
2132 	}
2133 
2134 	return nr_pages;
2135 }
2136 
2137 static void __init
2138 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2139 			   void *arg)
2140 {
2141 	unsigned long spfn, epfn;
2142 	struct zone *zone = arg;
2143 	u64 i = 0;
2144 
2145 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2146 
2147 	/*
2148 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2149 	 * we can avoid introducing any issues with the buddy allocator.
2150 	 */
2151 	while (spfn < end_pfn) {
2152 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2153 		cond_resched();
2154 	}
2155 }
2156 
2157 static unsigned int __init
2158 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2159 {
2160 	return max(cpumask_weight(node_cpumask), 1U);
2161 }
2162 
2163 /* Initialise remaining memory on a node */
2164 static int __init deferred_init_memmap(void *data)
2165 {
2166 	pg_data_t *pgdat = data;
2167 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2168 	unsigned long spfn = 0, epfn = 0;
2169 	unsigned long first_init_pfn, flags;
2170 	unsigned long start = jiffies;
2171 	struct zone *zone;
2172 	int max_threads;
2173 	u64 i = 0;
2174 
2175 	/* Bind memory initialisation thread to a local node if possible */
2176 	if (!cpumask_empty(cpumask))
2177 		set_cpus_allowed_ptr(current, cpumask);
2178 
2179 	pgdat_resize_lock(pgdat, &flags);
2180 	first_init_pfn = pgdat->first_deferred_pfn;
2181 	if (first_init_pfn == ULONG_MAX) {
2182 		pgdat_resize_unlock(pgdat, &flags);
2183 		pgdat_init_report_one_done();
2184 		return 0;
2185 	}
2186 
2187 	/* Sanity check boundaries */
2188 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2189 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2190 	pgdat->first_deferred_pfn = ULONG_MAX;
2191 
2192 	/*
2193 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2194 	 * interrupt thread must allocate this early in boot, zone must be
2195 	 * pre-grown prior to start of deferred page initialization.
2196 	 */
2197 	pgdat_resize_unlock(pgdat, &flags);
2198 
2199 	/* Only the highest zone is deferred */
2200 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2201 
2202 	max_threads = deferred_page_init_max_threads(cpumask);
2203 
2204 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2205 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2206 		struct padata_mt_job job = {
2207 			.thread_fn   = deferred_init_memmap_chunk,
2208 			.fn_arg      = zone,
2209 			.start       = spfn,
2210 			.size        = first_init_pfn - spfn,
2211 			.align       = PAGES_PER_SECTION,
2212 			.min_chunk   = PAGES_PER_SECTION,
2213 			.max_threads = max_threads,
2214 			.numa_aware  = false,
2215 		};
2216 
2217 		padata_do_multithreaded(&job);
2218 	}
2219 
2220 	/* Sanity check that the next zone really is unpopulated */
2221 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2222 
2223 	pr_info("node %d deferred pages initialised in %ums\n",
2224 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2225 
2226 	pgdat_init_report_one_done();
2227 	return 0;
2228 }
2229 
2230 /*
2231  * If this zone has deferred pages, try to grow it by initializing enough
2232  * deferred pages to satisfy the allocation specified by order, rounded up to
2233  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2234  * of SECTION_SIZE bytes by initializing struct pages in increments of
2235  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2236  *
2237  * Return true when zone was grown, otherwise return false. We return true even
2238  * when we grow less than requested, to let the caller decide if there are
2239  * enough pages to satisfy the allocation.
2240  */
2241 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2242 {
2243 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2244 	pg_data_t *pgdat = zone->zone_pgdat;
2245 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2246 	unsigned long spfn, epfn, flags;
2247 	unsigned long nr_pages = 0;
2248 	u64 i = 0;
2249 
2250 	/* Only the last zone may have deferred pages */
2251 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2252 		return false;
2253 
2254 	pgdat_resize_lock(pgdat, &flags);
2255 
2256 	/*
2257 	 * If someone grew this zone while we were waiting for spinlock, return
2258 	 * true, as there might be enough pages already.
2259 	 */
2260 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2261 		pgdat_resize_unlock(pgdat, &flags);
2262 		return true;
2263 	}
2264 
2265 	/* If the zone is empty somebody else may have cleared out the zone */
2266 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2267 						 first_deferred_pfn)) {
2268 		pgdat->first_deferred_pfn = ULONG_MAX;
2269 		pgdat_resize_unlock(pgdat, &flags);
2270 		/* Retry only once. */
2271 		return first_deferred_pfn != ULONG_MAX;
2272 	}
2273 
2274 	/*
2275 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2276 	 * that we can avoid introducing any issues with the buddy
2277 	 * allocator.
2278 	 */
2279 	while (spfn < epfn) {
2280 		/* update our first deferred PFN for this section */
2281 		first_deferred_pfn = spfn;
2282 
2283 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2284 		touch_nmi_watchdog();
2285 
2286 		/* We should only stop along section boundaries */
2287 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2288 			continue;
2289 
2290 		/* If our quota has been met we can stop here */
2291 		if (nr_pages >= nr_pages_needed)
2292 			break;
2293 	}
2294 
2295 	pgdat->first_deferred_pfn = spfn;
2296 	pgdat_resize_unlock(pgdat, &flags);
2297 
2298 	return nr_pages > 0;
2299 }
2300 
2301 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2302 
2303 #ifdef CONFIG_CMA
2304 void __init init_cma_reserved_pageblock(struct page *page)
2305 {
2306 	unsigned i = pageblock_nr_pages;
2307 	struct page *p = page;
2308 
2309 	do {
2310 		__ClearPageReserved(p);
2311 		set_page_count(p, 0);
2312 	} while (++p, --i);
2313 
2314 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2315 	set_page_refcounted(page);
2316 	/* pages were reserved and not allocated */
2317 	clear_page_tag_ref(page);
2318 	__free_pages(page, pageblock_order);
2319 
2320 	adjust_managed_page_count(page, pageblock_nr_pages);
2321 	page_zone(page)->cma_pages += pageblock_nr_pages;
2322 }
2323 /*
2324  * Similar to above, but only set the migrate type and stats.
2325  */
2326 void __init init_cma_pageblock(struct page *page)
2327 {
2328 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2329 	adjust_managed_page_count(page, pageblock_nr_pages);
2330 	page_zone(page)->cma_pages += pageblock_nr_pages;
2331 }
2332 #endif
2333 
2334 void set_zone_contiguous(struct zone *zone)
2335 {
2336 	unsigned long block_start_pfn = zone->zone_start_pfn;
2337 	unsigned long block_end_pfn;
2338 
2339 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2340 	for (; block_start_pfn < zone_end_pfn(zone);
2341 			block_start_pfn = block_end_pfn,
2342 			 block_end_pfn += pageblock_nr_pages) {
2343 
2344 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2345 
2346 		if (!__pageblock_pfn_to_page(block_start_pfn,
2347 					     block_end_pfn, zone))
2348 			return;
2349 		cond_resched();
2350 	}
2351 
2352 	/* We confirm that there is no hole */
2353 	zone->contiguous = true;
2354 }
2355 
2356 /*
2357  * Check if a PFN range intersects multiple zones on one or more
2358  * NUMA nodes. Specify the @nid argument if it is known that this
2359  * PFN range is on one node, NUMA_NO_NODE otherwise.
2360  */
2361 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2362 			   unsigned long nr_pages)
2363 {
2364 	struct zone *zone, *izone = NULL;
2365 
2366 	for_each_zone(zone) {
2367 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2368 			continue;
2369 
2370 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2371 			if (izone != NULL)
2372 				return true;
2373 			izone = zone;
2374 		}
2375 
2376 	}
2377 
2378 	return false;
2379 }
2380 
2381 static void __init mem_init_print_info(void);
2382 void __init page_alloc_init_late(void)
2383 {
2384 	struct zone *zone;
2385 	int nid;
2386 
2387 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2388 
2389 	/* There will be num_node_state(N_MEMORY) threads */
2390 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2391 	for_each_node_state(nid, N_MEMORY) {
2392 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2393 	}
2394 
2395 	/* Block until all are initialised */
2396 	wait_for_completion(&pgdat_init_all_done_comp);
2397 
2398 	/*
2399 	 * We initialized the rest of the deferred pages.  Permanently disable
2400 	 * on-demand struct page initialization.
2401 	 */
2402 	static_branch_disable(&deferred_pages);
2403 
2404 	/* Reinit limits that are based on free pages after the kernel is up */
2405 	files_maxfiles_init();
2406 #endif
2407 
2408 	/* Accounting of total+free memory is stable at this point. */
2409 	mem_init_print_info();
2410 	buffer_init();
2411 
2412 	/* Discard memblock private memory */
2413 	memblock_discard();
2414 
2415 	for_each_node_state(nid, N_MEMORY)
2416 		shuffle_free_memory(NODE_DATA(nid));
2417 
2418 	for_each_populated_zone(zone)
2419 		set_zone_contiguous(zone);
2420 
2421 	/* Initialize page ext after all struct pages are initialized. */
2422 	if (deferred_struct_pages)
2423 		page_ext_init();
2424 
2425 	page_alloc_sysctl_init();
2426 }
2427 
2428 /*
2429  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2430  * machines. As memory size is increased the scale is also increased but at
2431  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2432  * quadruples the scale is increased by one, which means the size of hash table
2433  * only doubles, instead of quadrupling as well.
2434  * Because 32-bit systems cannot have large physical memory, where this scaling
2435  * makes sense, it is disabled on such platforms.
2436  */
2437 #if __BITS_PER_LONG > 32
2438 #define ADAPT_SCALE_BASE	(64ul << 30)
2439 #define ADAPT_SCALE_SHIFT	2
2440 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2441 #endif
2442 
2443 /*
2444  * allocate a large system hash table from bootmem
2445  * - it is assumed that the hash table must contain an exact power-of-2
2446  *   quantity of entries
2447  * - limit is the number of hash buckets, not the total allocation size
2448  */
2449 void *__init alloc_large_system_hash(const char *tablename,
2450 				     unsigned long bucketsize,
2451 				     unsigned long numentries,
2452 				     int scale,
2453 				     int flags,
2454 				     unsigned int *_hash_shift,
2455 				     unsigned int *_hash_mask,
2456 				     unsigned long low_limit,
2457 				     unsigned long high_limit)
2458 {
2459 	unsigned long long max = high_limit;
2460 	unsigned long log2qty, size;
2461 	void *table;
2462 	gfp_t gfp_flags;
2463 	bool virt;
2464 	bool huge;
2465 
2466 	/* allow the kernel cmdline to have a say */
2467 	if (!numentries) {
2468 		/* round applicable memory size up to nearest megabyte */
2469 		numentries = nr_kernel_pages;
2470 
2471 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2472 		if (PAGE_SIZE < SZ_1M)
2473 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2474 
2475 #if __BITS_PER_LONG > 32
2476 		if (!high_limit) {
2477 			unsigned long adapt;
2478 
2479 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2480 			     adapt <<= ADAPT_SCALE_SHIFT)
2481 				scale++;
2482 		}
2483 #endif
2484 
2485 		/* limit to 1 bucket per 2^scale bytes of low memory */
2486 		if (scale > PAGE_SHIFT)
2487 			numentries >>= (scale - PAGE_SHIFT);
2488 		else
2489 			numentries <<= (PAGE_SHIFT - scale);
2490 
2491 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2492 			numentries = PAGE_SIZE / bucketsize;
2493 	}
2494 	numentries = roundup_pow_of_two(numentries);
2495 
2496 	/* limit allocation size to 1/16 total memory by default */
2497 	if (max == 0) {
2498 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2499 		do_div(max, bucketsize);
2500 	}
2501 	max = min(max, 0x80000000ULL);
2502 
2503 	if (numentries < low_limit)
2504 		numentries = low_limit;
2505 	if (numentries > max)
2506 		numentries = max;
2507 
2508 	log2qty = ilog2(numentries);
2509 
2510 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2511 	do {
2512 		virt = false;
2513 		size = bucketsize << log2qty;
2514 		if (flags & HASH_EARLY) {
2515 			if (flags & HASH_ZERO)
2516 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2517 			else
2518 				table = memblock_alloc_raw(size,
2519 							   SMP_CACHE_BYTES);
2520 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2521 			table = vmalloc_huge(size, gfp_flags);
2522 			virt = true;
2523 			if (table)
2524 				huge = is_vm_area_hugepages(table);
2525 		} else {
2526 			/*
2527 			 * If bucketsize is not a power-of-two, we may free
2528 			 * some pages at the end of hash table which
2529 			 * alloc_pages_exact() automatically does
2530 			 */
2531 			table = alloc_pages_exact(size, gfp_flags);
2532 			kmemleak_alloc(table, size, 1, gfp_flags);
2533 		}
2534 	} while (!table && size > PAGE_SIZE && --log2qty);
2535 
2536 	if (!table)
2537 		panic("Failed to allocate %s hash table\n", tablename);
2538 
2539 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2540 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2541 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2542 
2543 	if (_hash_shift)
2544 		*_hash_shift = log2qty;
2545 	if (_hash_mask)
2546 		*_hash_mask = (1 << log2qty) - 1;
2547 
2548 	return table;
2549 }
2550 
2551 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2552 							unsigned int order)
2553 {
2554 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2555 		int nid = early_pfn_to_nid(pfn);
2556 
2557 		if (!early_page_initialised(pfn, nid))
2558 			return;
2559 	}
2560 
2561 	if (!kmsan_memblock_free_pages(page, order)) {
2562 		/* KMSAN will take care of these pages. */
2563 		return;
2564 	}
2565 
2566 	/* pages were reserved and not allocated */
2567 	clear_page_tag_ref(page);
2568 	__free_pages_core(page, order, MEMINIT_EARLY);
2569 }
2570 
2571 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2572 EXPORT_SYMBOL(init_on_alloc);
2573 
2574 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2575 EXPORT_SYMBOL(init_on_free);
2576 
2577 static bool _init_on_alloc_enabled_early __read_mostly
2578 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2579 static int __init early_init_on_alloc(char *buf)
2580 {
2581 
2582 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2583 }
2584 early_param("init_on_alloc", early_init_on_alloc);
2585 
2586 static bool _init_on_free_enabled_early __read_mostly
2587 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2588 static int __init early_init_on_free(char *buf)
2589 {
2590 	return kstrtobool(buf, &_init_on_free_enabled_early);
2591 }
2592 early_param("init_on_free", early_init_on_free);
2593 
2594 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2595 
2596 /*
2597  * Enable static keys related to various memory debugging and hardening options.
2598  * Some override others, and depend on early params that are evaluated in the
2599  * order of appearance. So we need to first gather the full picture of what was
2600  * enabled, and then make decisions.
2601  */
2602 static void __init mem_debugging_and_hardening_init(void)
2603 {
2604 	bool page_poisoning_requested = false;
2605 	bool want_check_pages = false;
2606 
2607 #ifdef CONFIG_PAGE_POISONING
2608 	/*
2609 	 * Page poisoning is debug page alloc for some arches. If
2610 	 * either of those options are enabled, enable poisoning.
2611 	 */
2612 	if (page_poisoning_enabled() ||
2613 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2614 	      debug_pagealloc_enabled())) {
2615 		static_branch_enable(&_page_poisoning_enabled);
2616 		page_poisoning_requested = true;
2617 		want_check_pages = true;
2618 	}
2619 #endif
2620 
2621 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2622 	    page_poisoning_requested) {
2623 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2624 			"will take precedence over init_on_alloc and init_on_free\n");
2625 		_init_on_alloc_enabled_early = false;
2626 		_init_on_free_enabled_early = false;
2627 	}
2628 
2629 	if (_init_on_alloc_enabled_early) {
2630 		want_check_pages = true;
2631 		static_branch_enable(&init_on_alloc);
2632 	} else {
2633 		static_branch_disable(&init_on_alloc);
2634 	}
2635 
2636 	if (_init_on_free_enabled_early) {
2637 		want_check_pages = true;
2638 		static_branch_enable(&init_on_free);
2639 	} else {
2640 		static_branch_disable(&init_on_free);
2641 	}
2642 
2643 	if (IS_ENABLED(CONFIG_KMSAN) &&
2644 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2645 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2646 
2647 #ifdef CONFIG_DEBUG_PAGEALLOC
2648 	if (debug_pagealloc_enabled()) {
2649 		want_check_pages = true;
2650 		static_branch_enable(&_debug_pagealloc_enabled);
2651 
2652 		if (debug_guardpage_minorder())
2653 			static_branch_enable(&_debug_guardpage_enabled);
2654 	}
2655 #endif
2656 
2657 	/*
2658 	 * Any page debugging or hardening option also enables sanity checking
2659 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2660 	 * enabled already.
2661 	 */
2662 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2663 		static_branch_enable(&check_pages_enabled);
2664 }
2665 
2666 /* Report memory auto-initialization states for this boot. */
2667 static void __init report_meminit(void)
2668 {
2669 	const char *stack;
2670 
2671 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2672 		stack = "all(pattern)";
2673 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2674 		stack = "all(zero)";
2675 	else
2676 		stack = "off";
2677 
2678 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2679 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2680 		str_on_off(want_init_on_free()));
2681 	if (want_init_on_free())
2682 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2683 }
2684 
2685 static void __init mem_init_print_info(void)
2686 {
2687 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2688 	unsigned long init_code_size, init_data_size;
2689 
2690 	physpages = get_num_physpages();
2691 	codesize = _etext - _stext;
2692 	datasize = _edata - _sdata;
2693 	rosize = __end_rodata - __start_rodata;
2694 	bss_size = __bss_stop - __bss_start;
2695 	init_data_size = __init_end - __init_begin;
2696 	init_code_size = _einittext - _sinittext;
2697 
2698 	/*
2699 	 * Detect special cases and adjust section sizes accordingly:
2700 	 * 1) .init.* may be embedded into .data sections
2701 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2702 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2703 	 * 3) .rodata.* may be embedded into .text or .data sections.
2704 	 */
2705 #define adj_init_size(start, end, size, pos, adj) \
2706 	do { \
2707 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2708 			size -= adj; \
2709 	} while (0)
2710 
2711 	adj_init_size(__init_begin, __init_end, init_data_size,
2712 		     _sinittext, init_code_size);
2713 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2714 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2715 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2716 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2717 
2718 #undef	adj_init_size
2719 
2720 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2721 #ifdef	CONFIG_HIGHMEM
2722 		", %luK highmem"
2723 #endif
2724 		")\n",
2725 		K(nr_free_pages()), K(physpages),
2726 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2727 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2728 		K(physpages - totalram_pages() - totalcma_pages),
2729 		K(totalcma_pages)
2730 #ifdef	CONFIG_HIGHMEM
2731 		, K(totalhigh_pages())
2732 #endif
2733 		);
2734 }
2735 
2736 void __init __weak arch_mm_preinit(void)
2737 {
2738 }
2739 
2740 void __init __weak mem_init(void)
2741 {
2742 }
2743 
2744 /*
2745  * Set up kernel memory allocators
2746  */
2747 void __init mm_core_init(void)
2748 {
2749 	arch_mm_preinit();
2750 	hugetlb_bootmem_alloc();
2751 
2752 	/* Initializations relying on SMP setup */
2753 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2754 	build_all_zonelists(NULL);
2755 	page_alloc_init_cpuhp();
2756 	alloc_tag_sec_init();
2757 	/*
2758 	 * page_ext requires contiguous pages,
2759 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2760 	 */
2761 	page_ext_init_flatmem();
2762 	mem_debugging_and_hardening_init();
2763 	kfence_alloc_pool_and_metadata();
2764 	report_meminit();
2765 	kmsan_init_shadow();
2766 	stack_depot_early_init();
2767 
2768 	/*
2769 	 * KHO memory setup must happen while memblock is still active, but
2770 	 * as close as possible to buddy initialization
2771 	 */
2772 	kho_memory_init();
2773 
2774 	memblock_free_all();
2775 	mem_init();
2776 	kmem_cache_init();
2777 	/*
2778 	 * page_owner must be initialized after buddy is ready, and also after
2779 	 * slab is ready so that stack_depot_init() works properly
2780 	 */
2781 	page_ext_init_flatmem_late();
2782 	kmemleak_init();
2783 	ptlock_cache_init();
2784 	pgtable_cache_init();
2785 	debug_objects_mem_init();
2786 	vmalloc_init();
2787 	/* If no deferred init page_ext now, as vmap is fully initialized */
2788 	if (!deferred_struct_pages)
2789 		page_ext_init();
2790 	/* Should be run before the first non-init thread is created */
2791 	init_espfix_bsp();
2792 	/* Should be run after espfix64 is set up. */
2793 	pti_init();
2794 	kmsan_init_runtime();
2795 	mm_cache_init();
2796 	execmem_init();
2797 }
2798