1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include "md.h"
69 #include "md-bitmap.h"
70 #include "md-cluster.h"
71
72 static const char *action_name[NR_SYNC_ACTIONS] = {
73 [ACTION_RESYNC] = "resync",
74 [ACTION_RECOVER] = "recover",
75 [ACTION_CHECK] = "check",
76 [ACTION_REPAIR] = "repair",
77 [ACTION_RESHAPE] = "reshape",
78 [ACTION_FROZEN] = "frozen",
79 [ACTION_IDLE] = "idle",
80 };
81
82 static DEFINE_XARRAY(md_submodule);
83
84 static const struct kobj_type md_ktype;
85
86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
87 static struct workqueue_struct *md_wq;
88
89 /*
90 * This workqueue is used for sync_work to register new sync_thread, and for
91 * del_work to remove rdev, and for event_work that is only set by dm-raid.
92 *
93 * Noted that sync_work will grab reconfig_mutex, hence never flush this
94 * workqueue whith reconfig_mutex grabbed.
95 */
96 static struct workqueue_struct *md_misc_wq;
97 struct workqueue_struct *md_bitmap_wq;
98
99 static int remove_and_add_spares(struct mddev *mddev,
100 struct md_rdev *this);
101 static void mddev_detach(struct mddev *mddev);
102 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev);
103 static void md_wakeup_thread_directly(struct md_thread __rcu *thread);
104
105 /*
106 * Default number of read corrections we'll attempt on an rdev
107 * before ejecting it from the array. We divide the read error
108 * count by 2 for every hour elapsed between read errors.
109 */
110 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
111 /* Default safemode delay: 200 msec */
112 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
113 /*
114 * Current RAID-1,4,5,6,10 parallel reconstruction 'guaranteed speed limit'
115 * is sysctl_speed_limit_min, 1000 KB/sec by default, so the extra system load
116 * does not show up that much. Increase it if you want to have more guaranteed
117 * speed. Note that the RAID driver will use the maximum bandwidth
118 * sysctl_speed_limit_max, 200 MB/sec by default, if the IO subsystem is idle.
119 *
120 * Background sync IO speed control:
121 *
122 * - below speed min:
123 * no limit;
124 * - above speed min and below speed max:
125 * a) if mddev is idle, then no limit;
126 * b) if mddev is busy handling normal IO, then limit inflight sync IO
127 * to sync_io_depth;
128 * - above speed max:
129 * sync IO can't be issued;
130 *
131 * Following configurations can be changed via /proc/sys/dev/raid/ for system
132 * or /sys/block/mdX/md/ for one array.
133 */
134 static int sysctl_speed_limit_min = 1000;
135 static int sysctl_speed_limit_max = 200000;
136 static int sysctl_sync_io_depth = 32;
137
speed_min(struct mddev * mddev)138 static int speed_min(struct mddev *mddev)
139 {
140 return mddev->sync_speed_min ?
141 mddev->sync_speed_min : sysctl_speed_limit_min;
142 }
143
speed_max(struct mddev * mddev)144 static int speed_max(struct mddev *mddev)
145 {
146 return mddev->sync_speed_max ?
147 mddev->sync_speed_max : sysctl_speed_limit_max;
148 }
149
sync_io_depth(struct mddev * mddev)150 static int sync_io_depth(struct mddev *mddev)
151 {
152 return mddev->sync_io_depth ?
153 mddev->sync_io_depth : sysctl_sync_io_depth;
154 }
155
rdev_uninit_serial(struct md_rdev * rdev)156 static void rdev_uninit_serial(struct md_rdev *rdev)
157 {
158 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
159 return;
160
161 kvfree(rdev->serial);
162 rdev->serial = NULL;
163 }
164
rdevs_uninit_serial(struct mddev * mddev)165 static void rdevs_uninit_serial(struct mddev *mddev)
166 {
167 struct md_rdev *rdev;
168
169 rdev_for_each(rdev, mddev)
170 rdev_uninit_serial(rdev);
171 }
172
rdev_init_serial(struct md_rdev * rdev)173 static int rdev_init_serial(struct md_rdev *rdev)
174 {
175 /* serial_nums equals with BARRIER_BUCKETS_NR */
176 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
177 struct serial_in_rdev *serial = NULL;
178
179 if (test_bit(CollisionCheck, &rdev->flags))
180 return 0;
181
182 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
183 GFP_KERNEL);
184 if (!serial)
185 return -ENOMEM;
186
187 for (i = 0; i < serial_nums; i++) {
188 struct serial_in_rdev *serial_tmp = &serial[i];
189
190 spin_lock_init(&serial_tmp->serial_lock);
191 serial_tmp->serial_rb = RB_ROOT_CACHED;
192 init_waitqueue_head(&serial_tmp->serial_io_wait);
193 }
194
195 rdev->serial = serial;
196 set_bit(CollisionCheck, &rdev->flags);
197
198 return 0;
199 }
200
rdevs_init_serial(struct mddev * mddev)201 static int rdevs_init_serial(struct mddev *mddev)
202 {
203 struct md_rdev *rdev;
204 int ret = 0;
205
206 rdev_for_each(rdev, mddev) {
207 ret = rdev_init_serial(rdev);
208 if (ret)
209 break;
210 }
211
212 /* Free all resources if pool is not existed */
213 if (ret && !mddev->serial_info_pool)
214 rdevs_uninit_serial(mddev);
215
216 return ret;
217 }
218
219 /*
220 * rdev needs to enable serial stuffs if it meets the conditions:
221 * 1. it is multi-queue device flaged with writemostly.
222 * 2. the write-behind mode is enabled.
223 */
rdev_need_serial(struct md_rdev * rdev)224 static int rdev_need_serial(struct md_rdev *rdev)
225 {
226 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
227 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
228 test_bit(WriteMostly, &rdev->flags));
229 }
230
231 /*
232 * Init resource for rdev(s), then create serial_info_pool if:
233 * 1. rdev is the first device which return true from rdev_enable_serial.
234 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
235 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev)236 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev)
237 {
238 int ret = 0;
239
240 if (rdev && !rdev_need_serial(rdev) &&
241 !test_bit(CollisionCheck, &rdev->flags))
242 return;
243
244 if (!rdev)
245 ret = rdevs_init_serial(mddev);
246 else
247 ret = rdev_init_serial(rdev);
248 if (ret)
249 return;
250
251 if (mddev->serial_info_pool == NULL) {
252 /*
253 * already in memalloc noio context by
254 * mddev_suspend()
255 */
256 mddev->serial_info_pool =
257 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
258 sizeof(struct serial_info));
259 if (!mddev->serial_info_pool) {
260 rdevs_uninit_serial(mddev);
261 pr_err("can't alloc memory pool for serialization\n");
262 }
263 }
264 }
265
266 /*
267 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
268 * 1. rdev is the last device flaged with CollisionCheck.
269 * 2. when bitmap is destroyed while policy is not enabled.
270 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
271 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev)272 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev)
273 {
274 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
275 return;
276
277 if (mddev->serial_info_pool) {
278 struct md_rdev *temp;
279 int num = 0; /* used to track if other rdevs need the pool */
280
281 rdev_for_each(temp, mddev) {
282 if (!rdev) {
283 if (!mddev->serialize_policy ||
284 !rdev_need_serial(temp))
285 rdev_uninit_serial(temp);
286 else
287 num++;
288 } else if (temp != rdev &&
289 test_bit(CollisionCheck, &temp->flags))
290 num++;
291 }
292
293 if (rdev)
294 rdev_uninit_serial(rdev);
295
296 if (num)
297 pr_info("The mempool could be used by other devices\n");
298 else {
299 mempool_destroy(mddev->serial_info_pool);
300 mddev->serial_info_pool = NULL;
301 }
302 }
303 }
304
305 static struct ctl_table_header *raid_table_header;
306
307 static const struct ctl_table raid_table[] = {
308 {
309 .procname = "speed_limit_min",
310 .data = &sysctl_speed_limit_min,
311 .maxlen = sizeof(int),
312 .mode = 0644,
313 .proc_handler = proc_dointvec,
314 },
315 {
316 .procname = "speed_limit_max",
317 .data = &sysctl_speed_limit_max,
318 .maxlen = sizeof(int),
319 .mode = 0644,
320 .proc_handler = proc_dointvec,
321 },
322 {
323 .procname = "sync_io_depth",
324 .data = &sysctl_sync_io_depth,
325 .maxlen = sizeof(int),
326 .mode = 0644,
327 .proc_handler = proc_dointvec,
328 },
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342 static bool legacy_async_del_gendisk = true;
343
344 /*
345 * We have a system wide 'event count' that is incremented
346 * on any 'interesting' event, and readers of /proc/mdstat
347 * can use 'poll' or 'select' to find out when the event
348 * count increases.
349 *
350 * Events are:
351 * start array, stop array, error, add device, remove device,
352 * start build, activate spare
353 */
354 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
355 static atomic_t md_event_count;
md_new_event(void)356 void md_new_event(void)
357 {
358 atomic_inc(&md_event_count);
359 wake_up(&md_event_waiters);
360 }
361 EXPORT_SYMBOL_GPL(md_new_event);
362
363 /*
364 * Enables to iterate over all existing md arrays
365 * all_mddevs_lock protects this list.
366 */
367 static LIST_HEAD(all_mddevs);
368 static DEFINE_SPINLOCK(all_mddevs_lock);
369
is_md_suspended(struct mddev * mddev)370 static bool is_md_suspended(struct mddev *mddev)
371 {
372 return percpu_ref_is_dying(&mddev->active_io);
373 }
374 /* Rather than calling directly into the personality make_request function,
375 * IO requests come here first so that we can check if the device is
376 * being suspended pending a reconfiguration.
377 * We hold a refcount over the call to ->make_request. By the time that
378 * call has finished, the bio has been linked into some internal structure
379 * and so is visible to ->quiesce(), so we don't need the refcount any more.
380 */
is_suspended(struct mddev * mddev,struct bio * bio)381 static bool is_suspended(struct mddev *mddev, struct bio *bio)
382 {
383 if (is_md_suspended(mddev))
384 return true;
385 if (bio_data_dir(bio) != WRITE)
386 return false;
387 if (READ_ONCE(mddev->suspend_lo) >= READ_ONCE(mddev->suspend_hi))
388 return false;
389 if (bio->bi_iter.bi_sector >= READ_ONCE(mddev->suspend_hi))
390 return false;
391 if (bio_end_sector(bio) < READ_ONCE(mddev->suspend_lo))
392 return false;
393 return true;
394 }
395
md_handle_request(struct mddev * mddev,struct bio * bio)396 bool md_handle_request(struct mddev *mddev, struct bio *bio)
397 {
398 check_suspended:
399 if (is_suspended(mddev, bio)) {
400 DEFINE_WAIT(__wait);
401 /* Bail out if REQ_NOWAIT is set for the bio */
402 if (bio->bi_opf & REQ_NOWAIT) {
403 bio_wouldblock_error(bio);
404 return true;
405 }
406 for (;;) {
407 prepare_to_wait(&mddev->sb_wait, &__wait,
408 TASK_UNINTERRUPTIBLE);
409 if (!is_suspended(mddev, bio))
410 break;
411 schedule();
412 }
413 finish_wait(&mddev->sb_wait, &__wait);
414 }
415 if (!percpu_ref_tryget_live(&mddev->active_io))
416 goto check_suspended;
417
418 if (!mddev->pers->make_request(mddev, bio)) {
419 percpu_ref_put(&mddev->active_io);
420 if (!mddev->gendisk && mddev->pers->prepare_suspend)
421 return false;
422 goto check_suspended;
423 }
424
425 percpu_ref_put(&mddev->active_io);
426 return true;
427 }
428 EXPORT_SYMBOL(md_handle_request);
429
md_submit_bio(struct bio * bio)430 static void md_submit_bio(struct bio *bio)
431 {
432 const int rw = bio_data_dir(bio);
433 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
434
435 if (mddev == NULL || mddev->pers == NULL) {
436 bio_io_error(bio);
437 return;
438 }
439
440 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
441 bio_io_error(bio);
442 return;
443 }
444
445 bio = bio_split_to_limits(bio);
446 if (!bio)
447 return;
448
449 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
450 if (bio_sectors(bio) != 0)
451 bio->bi_status = BLK_STS_IOERR;
452 bio_endio(bio);
453 return;
454 }
455
456 /* bio could be mergeable after passing to underlayer */
457 bio->bi_opf &= ~REQ_NOMERGE;
458
459 md_handle_request(mddev, bio);
460 }
461
462 /*
463 * Make sure no new requests are submitted to the device, and any requests that
464 * have been submitted are completely handled.
465 */
mddev_suspend(struct mddev * mddev,bool interruptible)466 int mddev_suspend(struct mddev *mddev, bool interruptible)
467 {
468 int err = 0;
469
470 /*
471 * hold reconfig_mutex to wait for normal io will deadlock, because
472 * other context can't update super_block, and normal io can rely on
473 * updating super_block.
474 */
475 lockdep_assert_not_held(&mddev->reconfig_mutex);
476
477 if (interruptible)
478 err = mutex_lock_interruptible(&mddev->suspend_mutex);
479 else
480 mutex_lock(&mddev->suspend_mutex);
481 if (err)
482 return err;
483
484 if (mddev->suspended) {
485 WRITE_ONCE(mddev->suspended, mddev->suspended + 1);
486 mutex_unlock(&mddev->suspend_mutex);
487 return 0;
488 }
489
490 percpu_ref_kill(&mddev->active_io);
491 if (interruptible)
492 err = wait_event_interruptible(mddev->sb_wait,
493 percpu_ref_is_zero(&mddev->active_io));
494 else
495 wait_event(mddev->sb_wait,
496 percpu_ref_is_zero(&mddev->active_io));
497 if (err) {
498 percpu_ref_resurrect(&mddev->active_io);
499 mutex_unlock(&mddev->suspend_mutex);
500 return err;
501 }
502
503 /*
504 * For raid456, io might be waiting for reshape to make progress,
505 * allow new reshape to start while waiting for io to be done to
506 * prevent deadlock.
507 */
508 WRITE_ONCE(mddev->suspended, mddev->suspended + 1);
509
510 /* restrict memory reclaim I/O during raid array is suspend */
511 mddev->noio_flag = memalloc_noio_save();
512
513 mutex_unlock(&mddev->suspend_mutex);
514 return 0;
515 }
516 EXPORT_SYMBOL_GPL(mddev_suspend);
517
__mddev_resume(struct mddev * mddev,bool recovery_needed)518 static void __mddev_resume(struct mddev *mddev, bool recovery_needed)
519 {
520 lockdep_assert_not_held(&mddev->reconfig_mutex);
521
522 mutex_lock(&mddev->suspend_mutex);
523 WRITE_ONCE(mddev->suspended, mddev->suspended - 1);
524 if (mddev->suspended) {
525 mutex_unlock(&mddev->suspend_mutex);
526 return;
527 }
528
529 /* entred the memalloc scope from mddev_suspend() */
530 memalloc_noio_restore(mddev->noio_flag);
531
532 percpu_ref_resurrect(&mddev->active_io);
533 wake_up(&mddev->sb_wait);
534
535 if (recovery_needed)
536 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
537 md_wakeup_thread(mddev->thread);
538 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
539
540 mutex_unlock(&mddev->suspend_mutex);
541 }
542
mddev_resume(struct mddev * mddev)543 void mddev_resume(struct mddev *mddev)
544 {
545 return __mddev_resume(mddev, true);
546 }
547 EXPORT_SYMBOL_GPL(mddev_resume);
548
549 /* sync bdev before setting device to readonly or stopping raid*/
mddev_set_closing_and_sync_blockdev(struct mddev * mddev,int opener_num)550 static int mddev_set_closing_and_sync_blockdev(struct mddev *mddev, int opener_num)
551 {
552 mutex_lock(&mddev->open_mutex);
553 if (mddev->pers && atomic_read(&mddev->openers) > opener_num) {
554 mutex_unlock(&mddev->open_mutex);
555 return -EBUSY;
556 }
557 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
558 mutex_unlock(&mddev->open_mutex);
559 return -EBUSY;
560 }
561 mutex_unlock(&mddev->open_mutex);
562
563 sync_blockdev(mddev->gendisk->part0);
564 return 0;
565 }
566
567 /*
568 * The only difference from bio_chain_endio() is that the current
569 * bi_status of bio does not affect the bi_status of parent.
570 */
md_end_flush(struct bio * bio)571 static void md_end_flush(struct bio *bio)
572 {
573 struct bio *parent = bio->bi_private;
574
575 /*
576 * If any flush io error before the power failure,
577 * disk data may be lost.
578 */
579 if (bio->bi_status)
580 pr_err("md: %pg flush io error %d\n", bio->bi_bdev,
581 blk_status_to_errno(bio->bi_status));
582
583 bio_put(bio);
584 bio_endio(parent);
585 }
586
md_flush_request(struct mddev * mddev,struct bio * bio)587 bool md_flush_request(struct mddev *mddev, struct bio *bio)
588 {
589 struct md_rdev *rdev;
590 struct bio *new;
591
592 /*
593 * md_flush_reqeust() should be called under md_handle_request() and
594 * 'active_io' is already grabbed. Hence it's safe to get rdev directly
595 * without rcu protection.
596 */
597 WARN_ON(percpu_ref_is_zero(&mddev->active_io));
598
599 rdev_for_each(rdev, mddev) {
600 if (rdev->raid_disk < 0 || test_bit(Faulty, &rdev->flags))
601 continue;
602
603 new = bio_alloc_bioset(rdev->bdev, 0,
604 REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO,
605 &mddev->bio_set);
606 new->bi_private = bio;
607 new->bi_end_io = md_end_flush;
608 bio_inc_remaining(bio);
609 submit_bio(new);
610 }
611
612 if (bio_sectors(bio) == 0) {
613 bio_endio(bio);
614 return true;
615 }
616
617 bio->bi_opf &= ~REQ_PREFLUSH;
618 return false;
619 }
620 EXPORT_SYMBOL(md_flush_request);
621
mddev_get(struct mddev * mddev)622 static inline struct mddev *mddev_get(struct mddev *mddev)
623 {
624 lockdep_assert_held(&all_mddevs_lock);
625
626 if (test_bit(MD_DELETED, &mddev->flags))
627 return NULL;
628 atomic_inc(&mddev->active);
629 return mddev;
630 }
631
632 static void mddev_delayed_delete(struct work_struct *ws);
633
__mddev_put(struct mddev * mddev)634 static void __mddev_put(struct mddev *mddev)
635 {
636 if (mddev->raid_disks || !list_empty(&mddev->disks) ||
637 mddev->ctime || mddev->hold_active)
638 return;
639
640 /*
641 * If array is freed by stopping array, MD_DELETED is set by
642 * do_md_stop(), MD_DELETED is still set here in case mddev is freed
643 * directly by closing a mddev that is created by create_on_open.
644 */
645 set_bit(MD_DELETED, &mddev->flags);
646 /*
647 * Call queue_work inside the spinlock so that flush_workqueue() after
648 * mddev_find will succeed in waiting for the work to be done.
649 */
650 queue_work(md_misc_wq, &mddev->del_work);
651 }
652
mddev_put_locked(struct mddev * mddev)653 static void mddev_put_locked(struct mddev *mddev)
654 {
655 if (atomic_dec_and_test(&mddev->active))
656 __mddev_put(mddev);
657 }
658
mddev_put(struct mddev * mddev)659 void mddev_put(struct mddev *mddev)
660 {
661 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
662 return;
663
664 __mddev_put(mddev);
665 spin_unlock(&all_mddevs_lock);
666 }
667
668 static void md_safemode_timeout(struct timer_list *t);
669 static void md_start_sync(struct work_struct *ws);
670
active_io_release(struct percpu_ref * ref)671 static void active_io_release(struct percpu_ref *ref)
672 {
673 struct mddev *mddev = container_of(ref, struct mddev, active_io);
674
675 wake_up(&mddev->sb_wait);
676 }
677
no_op(struct percpu_ref * r)678 static void no_op(struct percpu_ref *r) {}
679
mddev_init(struct mddev * mddev)680 int mddev_init(struct mddev *mddev)
681 {
682
683 if (percpu_ref_init(&mddev->active_io, active_io_release,
684 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
685 return -ENOMEM;
686
687 if (percpu_ref_init(&mddev->writes_pending, no_op,
688 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
689 percpu_ref_exit(&mddev->active_io);
690 return -ENOMEM;
691 }
692
693 /* We want to start with the refcount at zero */
694 percpu_ref_put(&mddev->writes_pending);
695
696 mutex_init(&mddev->open_mutex);
697 mutex_init(&mddev->reconfig_mutex);
698 mutex_init(&mddev->suspend_mutex);
699 mutex_init(&mddev->bitmap_info.mutex);
700 INIT_LIST_HEAD(&mddev->disks);
701 INIT_LIST_HEAD(&mddev->all_mddevs);
702 INIT_LIST_HEAD(&mddev->deleting);
703 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
704 atomic_set(&mddev->active, 1);
705 atomic_set(&mddev->openers, 0);
706 atomic_set(&mddev->sync_seq, 0);
707 spin_lock_init(&mddev->lock);
708 init_waitqueue_head(&mddev->sb_wait);
709 init_waitqueue_head(&mddev->recovery_wait);
710 mddev->reshape_position = MaxSector;
711 mddev->reshape_backwards = 0;
712 mddev->last_sync_action = ACTION_IDLE;
713 mddev->resync_min = 0;
714 mddev->resync_max = MaxSector;
715 mddev->level = LEVEL_NONE;
716 mddev_set_bitmap_ops(mddev);
717
718 INIT_WORK(&mddev->sync_work, md_start_sync);
719 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
720
721 return 0;
722 }
723 EXPORT_SYMBOL_GPL(mddev_init);
724
mddev_destroy(struct mddev * mddev)725 void mddev_destroy(struct mddev *mddev)
726 {
727 percpu_ref_exit(&mddev->active_io);
728 percpu_ref_exit(&mddev->writes_pending);
729 }
730 EXPORT_SYMBOL_GPL(mddev_destroy);
731
mddev_find_locked(dev_t unit)732 static struct mddev *mddev_find_locked(dev_t unit)
733 {
734 struct mddev *mddev;
735
736 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
737 if (mddev->unit == unit)
738 return mddev;
739
740 return NULL;
741 }
742
743 /* find an unused unit number */
mddev_alloc_unit(void)744 static dev_t mddev_alloc_unit(void)
745 {
746 static int next_minor = 512;
747 int start = next_minor;
748 bool is_free = 0;
749 dev_t dev = 0;
750
751 while (!is_free) {
752 dev = MKDEV(MD_MAJOR, next_minor);
753 next_minor++;
754 if (next_minor > MINORMASK)
755 next_minor = 0;
756 if (next_minor == start)
757 return 0; /* Oh dear, all in use. */
758 is_free = !mddev_find_locked(dev);
759 }
760
761 return dev;
762 }
763
mddev_alloc(dev_t unit)764 static struct mddev *mddev_alloc(dev_t unit)
765 {
766 struct mddev *new;
767 int error;
768
769 if (unit && MAJOR(unit) != MD_MAJOR)
770 unit &= ~((1 << MdpMinorShift) - 1);
771
772 new = kzalloc(sizeof(*new), GFP_KERNEL);
773 if (!new)
774 return ERR_PTR(-ENOMEM);
775
776 error = mddev_init(new);
777 if (error)
778 goto out_free_new;
779
780 spin_lock(&all_mddevs_lock);
781 if (unit) {
782 error = -EEXIST;
783 if (mddev_find_locked(unit))
784 goto out_destroy_new;
785 new->unit = unit;
786 if (MAJOR(unit) == MD_MAJOR)
787 new->md_minor = MINOR(unit);
788 else
789 new->md_minor = MINOR(unit) >> MdpMinorShift;
790 new->hold_active = UNTIL_IOCTL;
791 } else {
792 error = -ENODEV;
793 new->unit = mddev_alloc_unit();
794 if (!new->unit)
795 goto out_destroy_new;
796 new->md_minor = MINOR(new->unit);
797 new->hold_active = UNTIL_STOP;
798 }
799
800 list_add(&new->all_mddevs, &all_mddevs);
801 spin_unlock(&all_mddevs_lock);
802 return new;
803
804 out_destroy_new:
805 spin_unlock(&all_mddevs_lock);
806 mddev_destroy(new);
807 out_free_new:
808 kfree(new);
809 return ERR_PTR(error);
810 }
811
mddev_free(struct mddev * mddev)812 static void mddev_free(struct mddev *mddev)
813 {
814 spin_lock(&all_mddevs_lock);
815 list_del(&mddev->all_mddevs);
816 spin_unlock(&all_mddevs_lock);
817
818 mddev_destroy(mddev);
819 kfree(mddev);
820 }
821
822 static const struct attribute_group md_redundancy_group;
823
mddev_unlock(struct mddev * mddev)824 void mddev_unlock(struct mddev *mddev)
825 {
826 struct md_rdev *rdev;
827 struct md_rdev *tmp;
828 LIST_HEAD(delete);
829
830 if (!list_empty(&mddev->deleting))
831 list_splice_init(&mddev->deleting, &delete);
832
833 if (mddev->to_remove) {
834 /* These cannot be removed under reconfig_mutex as
835 * an access to the files will try to take reconfig_mutex
836 * while holding the file unremovable, which leads to
837 * a deadlock.
838 * So hold set sysfs_active while the remove in happeing,
839 * and anything else which might set ->to_remove or my
840 * otherwise change the sysfs namespace will fail with
841 * -EBUSY if sysfs_active is still set.
842 * We set sysfs_active under reconfig_mutex and elsewhere
843 * test it under the same mutex to ensure its correct value
844 * is seen.
845 */
846 const struct attribute_group *to_remove = mddev->to_remove;
847 mddev->to_remove = NULL;
848 mddev->sysfs_active = 1;
849 mutex_unlock(&mddev->reconfig_mutex);
850
851 if (mddev->kobj.sd) {
852 if (to_remove != &md_redundancy_group)
853 sysfs_remove_group(&mddev->kobj, to_remove);
854 if (mddev->pers == NULL ||
855 mddev->pers->sync_request == NULL) {
856 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
857 if (mddev->sysfs_action)
858 sysfs_put(mddev->sysfs_action);
859 if (mddev->sysfs_completed)
860 sysfs_put(mddev->sysfs_completed);
861 if (mddev->sysfs_degraded)
862 sysfs_put(mddev->sysfs_degraded);
863 mddev->sysfs_action = NULL;
864 mddev->sysfs_completed = NULL;
865 mddev->sysfs_degraded = NULL;
866 }
867 }
868 mddev->sysfs_active = 0;
869 } else
870 mutex_unlock(&mddev->reconfig_mutex);
871
872 md_wakeup_thread(mddev->thread);
873 wake_up(&mddev->sb_wait);
874
875 list_for_each_entry_safe(rdev, tmp, &delete, same_set) {
876 list_del_init(&rdev->same_set);
877 kobject_del(&rdev->kobj);
878 export_rdev(rdev, mddev);
879 }
880
881 if (!legacy_async_del_gendisk) {
882 /*
883 * Call del_gendisk after release reconfig_mutex to avoid
884 * deadlock (e.g. call del_gendisk under the lock and an
885 * access to sysfs files waits the lock)
886 * And MD_DELETED is only used for md raid which is set in
887 * do_md_stop. dm raid only uses md_stop to stop. So dm raid
888 * doesn't need to check MD_DELETED when getting reconfig lock
889 */
890 if (test_bit(MD_DELETED, &mddev->flags))
891 del_gendisk(mddev->gendisk);
892 }
893 }
894 EXPORT_SYMBOL_GPL(mddev_unlock);
895
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)896 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
897 {
898 struct md_rdev *rdev;
899
900 rdev_for_each_rcu(rdev, mddev)
901 if (rdev->desc_nr == nr)
902 return rdev;
903
904 return NULL;
905 }
906 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
907
find_rdev(struct mddev * mddev,dev_t dev)908 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
909 {
910 struct md_rdev *rdev;
911
912 rdev_for_each(rdev, mddev)
913 if (rdev->bdev->bd_dev == dev)
914 return rdev;
915
916 return NULL;
917 }
918
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)919 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
920 {
921 struct md_rdev *rdev;
922
923 rdev_for_each_rcu(rdev, mddev)
924 if (rdev->bdev->bd_dev == dev)
925 return rdev;
926
927 return NULL;
928 }
929 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
930
get_pers(int level,char * clevel)931 static struct md_personality *get_pers(int level, char *clevel)
932 {
933 struct md_personality *ret = NULL;
934 struct md_submodule_head *head;
935 unsigned long i;
936
937 xa_lock(&md_submodule);
938 xa_for_each(&md_submodule, i, head) {
939 if (head->type != MD_PERSONALITY)
940 continue;
941 if ((level != LEVEL_NONE && head->id == level) ||
942 !strcmp(head->name, clevel)) {
943 if (try_module_get(head->owner))
944 ret = (void *)head;
945 break;
946 }
947 }
948 xa_unlock(&md_submodule);
949
950 if (!ret) {
951 if (level != LEVEL_NONE)
952 pr_warn("md: personality for level %d is not loaded!\n",
953 level);
954 else
955 pr_warn("md: personality for level %s is not loaded!\n",
956 clevel);
957 }
958
959 return ret;
960 }
961
put_pers(struct md_personality * pers)962 static void put_pers(struct md_personality *pers)
963 {
964 module_put(pers->head.owner);
965 }
966
967 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)968 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
969 {
970 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
971 }
972
alloc_disk_sb(struct md_rdev * rdev)973 static int alloc_disk_sb(struct md_rdev *rdev)
974 {
975 rdev->sb_page = alloc_page(GFP_KERNEL);
976 if (!rdev->sb_page)
977 return -ENOMEM;
978 return 0;
979 }
980
md_rdev_clear(struct md_rdev * rdev)981 void md_rdev_clear(struct md_rdev *rdev)
982 {
983 if (rdev->sb_page) {
984 put_page(rdev->sb_page);
985 rdev->sb_loaded = 0;
986 rdev->sb_page = NULL;
987 rdev->sb_start = 0;
988 rdev->sectors = 0;
989 }
990 if (rdev->bb_page) {
991 put_page(rdev->bb_page);
992 rdev->bb_page = NULL;
993 }
994 badblocks_exit(&rdev->badblocks);
995 }
996 EXPORT_SYMBOL_GPL(md_rdev_clear);
997
super_written(struct bio * bio)998 static void super_written(struct bio *bio)
999 {
1000 struct md_rdev *rdev = bio->bi_private;
1001 struct mddev *mddev = rdev->mddev;
1002
1003 if (bio->bi_status) {
1004 pr_err("md: %s gets error=%d\n", __func__,
1005 blk_status_to_errno(bio->bi_status));
1006 md_error(mddev, rdev);
1007 if (!test_bit(Faulty, &rdev->flags)
1008 && (bio->bi_opf & MD_FAILFAST)) {
1009 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
1010 set_bit(LastDev, &rdev->flags);
1011 }
1012 } else
1013 clear_bit(LastDev, &rdev->flags);
1014
1015 bio_put(bio);
1016
1017 rdev_dec_pending(rdev, mddev);
1018
1019 if (atomic_dec_and_test(&mddev->pending_writes))
1020 wake_up(&mddev->sb_wait);
1021 }
1022
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)1023 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
1024 sector_t sector, int size, struct page *page)
1025 {
1026 /* write first size bytes of page to sector of rdev
1027 * Increment mddev->pending_writes before returning
1028 * and decrement it on completion, waking up sb_wait
1029 * if zero is reached.
1030 * If an error occurred, call md_error
1031 */
1032 struct bio *bio;
1033
1034 if (!page)
1035 return;
1036
1037 if (test_bit(Faulty, &rdev->flags))
1038 return;
1039
1040 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
1041 1,
1042 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META
1043 | REQ_PREFLUSH | REQ_FUA,
1044 GFP_NOIO, &mddev->sync_set);
1045
1046 atomic_inc(&rdev->nr_pending);
1047
1048 bio->bi_iter.bi_sector = sector;
1049 __bio_add_page(bio, page, size, 0);
1050 bio->bi_private = rdev;
1051 bio->bi_end_io = super_written;
1052
1053 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
1054 test_bit(FailFast, &rdev->flags) &&
1055 !test_bit(LastDev, &rdev->flags))
1056 bio->bi_opf |= MD_FAILFAST;
1057
1058 atomic_inc(&mddev->pending_writes);
1059 submit_bio(bio);
1060 }
1061
md_super_wait(struct mddev * mddev)1062 int md_super_wait(struct mddev *mddev)
1063 {
1064 /* wait for all superblock writes that were scheduled to complete */
1065 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1066 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1067 return -EAGAIN;
1068 return 0;
1069 }
1070
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)1071 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1072 struct page *page, blk_opf_t opf, bool metadata_op)
1073 {
1074 struct bio bio;
1075 struct bio_vec bvec;
1076
1077 if (metadata_op && rdev->meta_bdev)
1078 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
1079 else
1080 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
1081
1082 if (metadata_op)
1083 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1084 else if (rdev->mddev->reshape_position != MaxSector &&
1085 (rdev->mddev->reshape_backwards ==
1086 (sector >= rdev->mddev->reshape_position)))
1087 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1088 else
1089 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1090 __bio_add_page(&bio, page, size, 0);
1091
1092 submit_bio_wait(&bio);
1093
1094 return !bio.bi_status;
1095 }
1096 EXPORT_SYMBOL_GPL(sync_page_io);
1097
read_disk_sb(struct md_rdev * rdev,int size)1098 static int read_disk_sb(struct md_rdev *rdev, int size)
1099 {
1100 if (rdev->sb_loaded)
1101 return 0;
1102
1103 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
1104 goto fail;
1105 rdev->sb_loaded = 1;
1106 return 0;
1107
1108 fail:
1109 pr_err("md: disabled device %pg, could not read superblock.\n",
1110 rdev->bdev);
1111 return -EINVAL;
1112 }
1113
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1114 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1115 {
1116 return sb1->set_uuid0 == sb2->set_uuid0 &&
1117 sb1->set_uuid1 == sb2->set_uuid1 &&
1118 sb1->set_uuid2 == sb2->set_uuid2 &&
1119 sb1->set_uuid3 == sb2->set_uuid3;
1120 }
1121
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1122 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1123 {
1124 int ret;
1125 mdp_super_t *tmp1, *tmp2;
1126
1127 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1128 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1129
1130 if (!tmp1 || !tmp2) {
1131 ret = 0;
1132 goto abort;
1133 }
1134
1135 *tmp1 = *sb1;
1136 *tmp2 = *sb2;
1137
1138 /*
1139 * nr_disks is not constant
1140 */
1141 tmp1->nr_disks = 0;
1142 tmp2->nr_disks = 0;
1143
1144 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1145 abort:
1146 kfree(tmp1);
1147 kfree(tmp2);
1148 return ret;
1149 }
1150
md_csum_fold(u32 csum)1151 static u32 md_csum_fold(u32 csum)
1152 {
1153 csum = (csum & 0xffff) + (csum >> 16);
1154 return (csum & 0xffff) + (csum >> 16);
1155 }
1156
calc_sb_csum(mdp_super_t * sb)1157 static unsigned int calc_sb_csum(mdp_super_t *sb)
1158 {
1159 u64 newcsum = 0;
1160 u32 *sb32 = (u32*)sb;
1161 int i;
1162 unsigned int disk_csum, csum;
1163
1164 disk_csum = sb->sb_csum;
1165 sb->sb_csum = 0;
1166
1167 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1168 newcsum += sb32[i];
1169 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1170
1171 #ifdef CONFIG_ALPHA
1172 /* This used to use csum_partial, which was wrong for several
1173 * reasons including that different results are returned on
1174 * different architectures. It isn't critical that we get exactly
1175 * the same return value as before (we always csum_fold before
1176 * testing, and that removes any differences). However as we
1177 * know that csum_partial always returned a 16bit value on
1178 * alphas, do a fold to maximise conformity to previous behaviour.
1179 */
1180 sb->sb_csum = md_csum_fold(disk_csum);
1181 #else
1182 sb->sb_csum = disk_csum;
1183 #endif
1184 return csum;
1185 }
1186
1187 /*
1188 * Handle superblock details.
1189 * We want to be able to handle multiple superblock formats
1190 * so we have a common interface to them all, and an array of
1191 * different handlers.
1192 * We rely on user-space to write the initial superblock, and support
1193 * reading and updating of superblocks.
1194 * Interface methods are:
1195 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1196 * loads and validates a superblock on dev.
1197 * if refdev != NULL, compare superblocks on both devices
1198 * Return:
1199 * 0 - dev has a superblock that is compatible with refdev
1200 * 1 - dev has a superblock that is compatible and newer than refdev
1201 * so dev should be used as the refdev in future
1202 * -EINVAL superblock incompatible or invalid
1203 * -othererror e.g. -EIO
1204 *
1205 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1206 * Verify that dev is acceptable into mddev.
1207 * The first time, mddev->raid_disks will be 0, and data from
1208 * dev should be merged in. Subsequent calls check that dev
1209 * is new enough. Return 0 or -EINVAL
1210 *
1211 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1212 * Update the superblock for rdev with data in mddev
1213 * This does not write to disc.
1214 *
1215 */
1216
1217 struct super_type {
1218 char *name;
1219 struct module *owner;
1220 int (*load_super)(struct md_rdev *rdev,
1221 struct md_rdev *refdev,
1222 int minor_version);
1223 int (*validate_super)(struct mddev *mddev,
1224 struct md_rdev *freshest,
1225 struct md_rdev *rdev);
1226 void (*sync_super)(struct mddev *mddev,
1227 struct md_rdev *rdev);
1228 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1229 sector_t num_sectors);
1230 int (*allow_new_offset)(struct md_rdev *rdev,
1231 unsigned long long new_offset);
1232 };
1233
1234 /*
1235 * Check that the given mddev has no bitmap.
1236 *
1237 * This function is called from the run method of all personalities that do not
1238 * support bitmaps. It prints an error message and returns non-zero if mddev
1239 * has a bitmap. Otherwise, it returns 0.
1240 *
1241 */
md_check_no_bitmap(struct mddev * mddev)1242 int md_check_no_bitmap(struct mddev *mddev)
1243 {
1244 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1245 return 0;
1246 pr_warn("%s: bitmaps are not supported for %s\n",
1247 mdname(mddev), mddev->pers->head.name);
1248 return 1;
1249 }
1250 EXPORT_SYMBOL(md_check_no_bitmap);
1251
1252 /*
1253 * load_super for 0.90.0
1254 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1255 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1256 {
1257 mdp_super_t *sb;
1258 int ret;
1259 bool spare_disk = true;
1260
1261 /*
1262 * Calculate the position of the superblock (512byte sectors),
1263 * it's at the end of the disk.
1264 *
1265 * It also happens to be a multiple of 4Kb.
1266 */
1267 rdev->sb_start = calc_dev_sboffset(rdev);
1268
1269 ret = read_disk_sb(rdev, MD_SB_BYTES);
1270 if (ret)
1271 return ret;
1272
1273 ret = -EINVAL;
1274
1275 sb = page_address(rdev->sb_page);
1276
1277 if (sb->md_magic != MD_SB_MAGIC) {
1278 pr_warn("md: invalid raid superblock magic on %pg\n",
1279 rdev->bdev);
1280 goto abort;
1281 }
1282
1283 if (sb->major_version != 0 ||
1284 sb->minor_version < 90 ||
1285 sb->minor_version > 91) {
1286 pr_warn("Bad version number %d.%d on %pg\n",
1287 sb->major_version, sb->minor_version, rdev->bdev);
1288 goto abort;
1289 }
1290
1291 if (sb->raid_disks <= 0)
1292 goto abort;
1293
1294 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1295 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1296 goto abort;
1297 }
1298
1299 rdev->preferred_minor = sb->md_minor;
1300 rdev->data_offset = 0;
1301 rdev->new_data_offset = 0;
1302 rdev->sb_size = MD_SB_BYTES;
1303 rdev->badblocks.shift = -1;
1304
1305 rdev->desc_nr = sb->this_disk.number;
1306
1307 /* not spare disk */
1308 if (rdev->desc_nr >= 0 && rdev->desc_nr < MD_SB_DISKS &&
1309 sb->disks[rdev->desc_nr].state & ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1310 spare_disk = false;
1311
1312 if (!refdev) {
1313 if (!spare_disk)
1314 ret = 1;
1315 else
1316 ret = 0;
1317 } else {
1318 __u64 ev1, ev2;
1319 mdp_super_t *refsb = page_address(refdev->sb_page);
1320 if (!md_uuid_equal(refsb, sb)) {
1321 pr_warn("md: %pg has different UUID to %pg\n",
1322 rdev->bdev, refdev->bdev);
1323 goto abort;
1324 }
1325 if (!md_sb_equal(refsb, sb)) {
1326 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1327 rdev->bdev, refdev->bdev);
1328 goto abort;
1329 }
1330 ev1 = md_event(sb);
1331 ev2 = md_event(refsb);
1332
1333 if (!spare_disk && ev1 > ev2)
1334 ret = 1;
1335 else
1336 ret = 0;
1337 }
1338 rdev->sectors = rdev->sb_start;
1339 /* Limit to 4TB as metadata cannot record more than that.
1340 * (not needed for Linear and RAID0 as metadata doesn't
1341 * record this size)
1342 */
1343 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1344 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1345
1346 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1347 /* "this cannot possibly happen" ... */
1348 ret = -EINVAL;
1349
1350 abort:
1351 return ret;
1352 }
1353
md_bitmap_events_cleared(struct mddev * mddev)1354 static u64 md_bitmap_events_cleared(struct mddev *mddev)
1355 {
1356 struct md_bitmap_stats stats;
1357 int err;
1358
1359 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1360 if (err)
1361 return 0;
1362
1363 return stats.events_cleared;
1364 }
1365
1366 /*
1367 * validate_super for 0.90.0
1368 * note: we are not using "freshest" for 0.9 superblock
1369 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1370 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1371 {
1372 mdp_disk_t *desc;
1373 mdp_super_t *sb = page_address(rdev->sb_page);
1374 __u64 ev1 = md_event(sb);
1375
1376 rdev->raid_disk = -1;
1377 clear_bit(Faulty, &rdev->flags);
1378 clear_bit(In_sync, &rdev->flags);
1379 clear_bit(Bitmap_sync, &rdev->flags);
1380 clear_bit(WriteMostly, &rdev->flags);
1381
1382 if (mddev->raid_disks == 0) {
1383 mddev->major_version = 0;
1384 mddev->minor_version = sb->minor_version;
1385 mddev->patch_version = sb->patch_version;
1386 mddev->external = 0;
1387 mddev->chunk_sectors = sb->chunk_size >> 9;
1388 mddev->ctime = sb->ctime;
1389 mddev->utime = sb->utime;
1390 mddev->level = sb->level;
1391 mddev->clevel[0] = 0;
1392 mddev->layout = sb->layout;
1393 mddev->raid_disks = sb->raid_disks;
1394 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1395 mddev->events = ev1;
1396 mddev->bitmap_info.offset = 0;
1397 mddev->bitmap_info.space = 0;
1398 /* bitmap can use 60 K after the 4K superblocks */
1399 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1400 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1401 mddev->reshape_backwards = 0;
1402
1403 if (mddev->minor_version >= 91) {
1404 mddev->reshape_position = sb->reshape_position;
1405 mddev->delta_disks = sb->delta_disks;
1406 mddev->new_level = sb->new_level;
1407 mddev->new_layout = sb->new_layout;
1408 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1409 if (mddev->delta_disks < 0)
1410 mddev->reshape_backwards = 1;
1411 } else {
1412 mddev->reshape_position = MaxSector;
1413 mddev->delta_disks = 0;
1414 mddev->new_level = mddev->level;
1415 mddev->new_layout = mddev->layout;
1416 mddev->new_chunk_sectors = mddev->chunk_sectors;
1417 }
1418 if (mddev->level == 0)
1419 mddev->layout = -1;
1420
1421 if (sb->state & (1<<MD_SB_CLEAN))
1422 mddev->resync_offset = MaxSector;
1423 else {
1424 if (sb->events_hi == sb->cp_events_hi &&
1425 sb->events_lo == sb->cp_events_lo) {
1426 mddev->resync_offset = sb->recovery_cp;
1427 } else
1428 mddev->resync_offset = 0;
1429 }
1430
1431 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1432 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1433 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1434 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1435
1436 mddev->max_disks = MD_SB_DISKS;
1437
1438 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1439 mddev->bitmap_info.file == NULL) {
1440 mddev->bitmap_info.offset =
1441 mddev->bitmap_info.default_offset;
1442 mddev->bitmap_info.space =
1443 mddev->bitmap_info.default_space;
1444 }
1445
1446 } else if (mddev->pers == NULL) {
1447 /* Insist on good event counter while assembling, except
1448 * for spares (which don't need an event count) */
1449 ++ev1;
1450 if (sb->disks[rdev->desc_nr].state & (
1451 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1452 if (ev1 < mddev->events)
1453 return -EINVAL;
1454 } else if (mddev->bitmap) {
1455 /* if adding to array with a bitmap, then we can accept an
1456 * older device ... but not too old.
1457 */
1458 if (ev1 < md_bitmap_events_cleared(mddev))
1459 return 0;
1460 if (ev1 < mddev->events)
1461 set_bit(Bitmap_sync, &rdev->flags);
1462 } else {
1463 if (ev1 < mddev->events)
1464 /* just a hot-add of a new device, leave raid_disk at -1 */
1465 return 0;
1466 }
1467
1468 desc = sb->disks + rdev->desc_nr;
1469
1470 if (desc->state & (1<<MD_DISK_FAULTY))
1471 set_bit(Faulty, &rdev->flags);
1472 else if (desc->state & (1<<MD_DISK_SYNC)) {
1473 set_bit(In_sync, &rdev->flags);
1474 rdev->raid_disk = desc->raid_disk;
1475 rdev->saved_raid_disk = desc->raid_disk;
1476 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1477 /* active but not in sync implies recovery up to
1478 * reshape position. We don't know exactly where
1479 * that is, so set to zero for now
1480 */
1481 if (mddev->minor_version >= 91) {
1482 rdev->recovery_offset = 0;
1483 rdev->raid_disk = desc->raid_disk;
1484 }
1485 }
1486 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1487 set_bit(WriteMostly, &rdev->flags);
1488 if (desc->state & (1<<MD_DISK_FAILFAST))
1489 set_bit(FailFast, &rdev->flags);
1490 return 0;
1491 }
1492
1493 /*
1494 * sync_super for 0.90.0
1495 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1496 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1497 {
1498 mdp_super_t *sb;
1499 struct md_rdev *rdev2;
1500 int next_spare = mddev->raid_disks;
1501
1502 /* make rdev->sb match mddev data..
1503 *
1504 * 1/ zero out disks
1505 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1506 * 3/ any empty disks < next_spare become removed
1507 *
1508 * disks[0] gets initialised to REMOVED because
1509 * we cannot be sure from other fields if it has
1510 * been initialised or not.
1511 */
1512 int i;
1513 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1514
1515 rdev->sb_size = MD_SB_BYTES;
1516
1517 sb = page_address(rdev->sb_page);
1518
1519 memset(sb, 0, sizeof(*sb));
1520
1521 sb->md_magic = MD_SB_MAGIC;
1522 sb->major_version = mddev->major_version;
1523 sb->patch_version = mddev->patch_version;
1524 sb->gvalid_words = 0; /* ignored */
1525 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1526 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1527 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1528 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1529
1530 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1531 sb->level = mddev->level;
1532 sb->size = mddev->dev_sectors / 2;
1533 sb->raid_disks = mddev->raid_disks;
1534 sb->md_minor = mddev->md_minor;
1535 sb->not_persistent = 0;
1536 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1537 sb->state = 0;
1538 sb->events_hi = (mddev->events>>32);
1539 sb->events_lo = (u32)mddev->events;
1540
1541 if (mddev->reshape_position == MaxSector)
1542 sb->minor_version = 90;
1543 else {
1544 sb->minor_version = 91;
1545 sb->reshape_position = mddev->reshape_position;
1546 sb->new_level = mddev->new_level;
1547 sb->delta_disks = mddev->delta_disks;
1548 sb->new_layout = mddev->new_layout;
1549 sb->new_chunk = mddev->new_chunk_sectors << 9;
1550 }
1551 mddev->minor_version = sb->minor_version;
1552 if (mddev->in_sync)
1553 {
1554 sb->recovery_cp = mddev->resync_offset;
1555 sb->cp_events_hi = (mddev->events>>32);
1556 sb->cp_events_lo = (u32)mddev->events;
1557 if (mddev->resync_offset == MaxSector)
1558 sb->state = (1<< MD_SB_CLEAN);
1559 } else
1560 sb->recovery_cp = 0;
1561
1562 sb->layout = mddev->layout;
1563 sb->chunk_size = mddev->chunk_sectors << 9;
1564
1565 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1566 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1567
1568 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1569 rdev_for_each(rdev2, mddev) {
1570 mdp_disk_t *d;
1571 int desc_nr;
1572 int is_active = test_bit(In_sync, &rdev2->flags);
1573
1574 if (rdev2->raid_disk >= 0 &&
1575 sb->minor_version >= 91)
1576 /* we have nowhere to store the recovery_offset,
1577 * but if it is not below the reshape_position,
1578 * we can piggy-back on that.
1579 */
1580 is_active = 1;
1581 if (rdev2->raid_disk < 0 ||
1582 test_bit(Faulty, &rdev2->flags))
1583 is_active = 0;
1584 if (is_active)
1585 desc_nr = rdev2->raid_disk;
1586 else
1587 desc_nr = next_spare++;
1588 rdev2->desc_nr = desc_nr;
1589 d = &sb->disks[rdev2->desc_nr];
1590 nr_disks++;
1591 d->number = rdev2->desc_nr;
1592 d->major = MAJOR(rdev2->bdev->bd_dev);
1593 d->minor = MINOR(rdev2->bdev->bd_dev);
1594 if (is_active)
1595 d->raid_disk = rdev2->raid_disk;
1596 else
1597 d->raid_disk = rdev2->desc_nr; /* compatibility */
1598 if (test_bit(Faulty, &rdev2->flags))
1599 d->state = (1<<MD_DISK_FAULTY);
1600 else if (is_active) {
1601 d->state = (1<<MD_DISK_ACTIVE);
1602 if (test_bit(In_sync, &rdev2->flags))
1603 d->state |= (1<<MD_DISK_SYNC);
1604 active++;
1605 working++;
1606 } else {
1607 d->state = 0;
1608 spare++;
1609 working++;
1610 }
1611 if (test_bit(WriteMostly, &rdev2->flags))
1612 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1613 if (test_bit(FailFast, &rdev2->flags))
1614 d->state |= (1<<MD_DISK_FAILFAST);
1615 }
1616 /* now set the "removed" and "faulty" bits on any missing devices */
1617 for (i=0 ; i < mddev->raid_disks ; i++) {
1618 mdp_disk_t *d = &sb->disks[i];
1619 if (d->state == 0 && d->number == 0) {
1620 d->number = i;
1621 d->raid_disk = i;
1622 d->state = (1<<MD_DISK_REMOVED);
1623 d->state |= (1<<MD_DISK_FAULTY);
1624 failed++;
1625 }
1626 }
1627 sb->nr_disks = nr_disks;
1628 sb->active_disks = active;
1629 sb->working_disks = working;
1630 sb->failed_disks = failed;
1631 sb->spare_disks = spare;
1632
1633 sb->this_disk = sb->disks[rdev->desc_nr];
1634 sb->sb_csum = calc_sb_csum(sb);
1635 }
1636
1637 /*
1638 * rdev_size_change for 0.90.0
1639 */
1640 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1641 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1642 {
1643 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1644 return 0; /* component must fit device */
1645 if (rdev->mddev->bitmap_info.offset)
1646 return 0; /* can't move bitmap */
1647 rdev->sb_start = calc_dev_sboffset(rdev);
1648 if (!num_sectors || num_sectors > rdev->sb_start)
1649 num_sectors = rdev->sb_start;
1650 /* Limit to 4TB as metadata cannot record more than that.
1651 * 4TB == 2^32 KB, or 2*2^32 sectors.
1652 */
1653 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1654 num_sectors = (sector_t)(2ULL << 32) - 2;
1655 do {
1656 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1657 rdev->sb_page);
1658 } while (md_super_wait(rdev->mddev) < 0);
1659 return num_sectors;
1660 }
1661
1662 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1663 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1664 {
1665 /* non-zero offset changes not possible with v0.90 */
1666 return new_offset == 0;
1667 }
1668
1669 /*
1670 * version 1 superblock
1671 */
1672
calc_sb_1_csum(struct mdp_superblock_1 * sb)1673 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1674 {
1675 __le32 disk_csum;
1676 u32 csum;
1677 unsigned long long newcsum;
1678 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1679 __le32 *isuper = (__le32*)sb;
1680
1681 disk_csum = sb->sb_csum;
1682 sb->sb_csum = 0;
1683 newcsum = 0;
1684 for (; size >= 4; size -= 4)
1685 newcsum += le32_to_cpu(*isuper++);
1686
1687 if (size == 2)
1688 newcsum += le16_to_cpu(*(__le16*) isuper);
1689
1690 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1691 sb->sb_csum = disk_csum;
1692 return cpu_to_le32(csum);
1693 }
1694
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1695 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1696 {
1697 struct mdp_superblock_1 *sb;
1698 int ret;
1699 sector_t sb_start;
1700 sector_t sectors;
1701 int bmask;
1702 bool spare_disk = true;
1703
1704 /*
1705 * Calculate the position of the superblock in 512byte sectors.
1706 * It is always aligned to a 4K boundary and
1707 * depeding on minor_version, it can be:
1708 * 0: At least 8K, but less than 12K, from end of device
1709 * 1: At start of device
1710 * 2: 4K from start of device.
1711 */
1712 switch(minor_version) {
1713 case 0:
1714 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1715 sb_start &= ~(sector_t)(4*2-1);
1716 break;
1717 case 1:
1718 sb_start = 0;
1719 break;
1720 case 2:
1721 sb_start = 8;
1722 break;
1723 default:
1724 return -EINVAL;
1725 }
1726 rdev->sb_start = sb_start;
1727
1728 /* superblock is rarely larger than 1K, but it can be larger,
1729 * and it is safe to read 4k, so we do that
1730 */
1731 ret = read_disk_sb(rdev, 4096);
1732 if (ret) return ret;
1733
1734 sb = page_address(rdev->sb_page);
1735
1736 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1737 sb->major_version != cpu_to_le32(1) ||
1738 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1739 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1740 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1741 return -EINVAL;
1742
1743 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1744 pr_warn("md: invalid superblock checksum on %pg\n",
1745 rdev->bdev);
1746 return -EINVAL;
1747 }
1748 if (le64_to_cpu(sb->data_size) < 10) {
1749 pr_warn("md: data_size too small on %pg\n",
1750 rdev->bdev);
1751 return -EINVAL;
1752 }
1753 if (sb->pad0 ||
1754 sb->pad3[0] ||
1755 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1756 /* Some padding is non-zero, might be a new feature */
1757 return -EINVAL;
1758
1759 rdev->preferred_minor = 0xffff;
1760 rdev->data_offset = le64_to_cpu(sb->data_offset);
1761 rdev->new_data_offset = rdev->data_offset;
1762 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1763 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1764 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1765 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1766
1767 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1768 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1769 if (rdev->sb_size & bmask)
1770 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1771
1772 if (minor_version
1773 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1774 return -EINVAL;
1775 if (minor_version
1776 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1777 return -EINVAL;
1778
1779 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1780
1781 if (!rdev->bb_page) {
1782 rdev->bb_page = alloc_page(GFP_KERNEL);
1783 if (!rdev->bb_page)
1784 return -ENOMEM;
1785 }
1786 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1787 rdev->badblocks.count == 0) {
1788 /* need to load the bad block list.
1789 * Currently we limit it to one page.
1790 */
1791 s32 offset;
1792 sector_t bb_sector;
1793 __le64 *bbp;
1794 int i;
1795 int sectors = le16_to_cpu(sb->bblog_size);
1796 if (sectors > (PAGE_SIZE / 512))
1797 return -EINVAL;
1798 offset = le32_to_cpu(sb->bblog_offset);
1799 if (offset == 0)
1800 return -EINVAL;
1801 bb_sector = (long long)offset;
1802 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1803 rdev->bb_page, REQ_OP_READ, true))
1804 return -EIO;
1805 bbp = (__le64 *)page_address(rdev->bb_page);
1806 rdev->badblocks.shift = sb->bblog_shift;
1807 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1808 u64 bb = le64_to_cpu(*bbp);
1809 int count = bb & (0x3ff);
1810 u64 sector = bb >> 10;
1811 sector <<= sb->bblog_shift;
1812 count <<= sb->bblog_shift;
1813 if (bb + 1 == 0)
1814 break;
1815 if (!badblocks_set(&rdev->badblocks, sector, count, 1))
1816 return -EINVAL;
1817 }
1818 } else if (sb->bblog_offset != 0)
1819 rdev->badblocks.shift = 0;
1820
1821 if ((le32_to_cpu(sb->feature_map) &
1822 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1823 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1824 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1825 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1826 }
1827
1828 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1829 sb->level != 0)
1830 return -EINVAL;
1831
1832 /* not spare disk */
1833 if (rdev->desc_nr >= 0 && rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1834 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1835 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1836 spare_disk = false;
1837
1838 if (!refdev) {
1839 if (!spare_disk)
1840 ret = 1;
1841 else
1842 ret = 0;
1843 } else {
1844 __u64 ev1, ev2;
1845 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1846
1847 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1848 sb->level != refsb->level ||
1849 sb->layout != refsb->layout ||
1850 sb->chunksize != refsb->chunksize) {
1851 pr_warn("md: %pg has strangely different superblock to %pg\n",
1852 rdev->bdev,
1853 refdev->bdev);
1854 return -EINVAL;
1855 }
1856 ev1 = le64_to_cpu(sb->events);
1857 ev2 = le64_to_cpu(refsb->events);
1858
1859 if (!spare_disk && ev1 > ev2)
1860 ret = 1;
1861 else
1862 ret = 0;
1863 }
1864 if (minor_version)
1865 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1866 else
1867 sectors = rdev->sb_start;
1868 if (sectors < le64_to_cpu(sb->data_size))
1869 return -EINVAL;
1870 rdev->sectors = le64_to_cpu(sb->data_size);
1871 return ret;
1872 }
1873
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1874 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1875 {
1876 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1877 __u64 ev1 = le64_to_cpu(sb->events);
1878 int role;
1879
1880 rdev->raid_disk = -1;
1881 clear_bit(Faulty, &rdev->flags);
1882 clear_bit(In_sync, &rdev->flags);
1883 clear_bit(Bitmap_sync, &rdev->flags);
1884 clear_bit(WriteMostly, &rdev->flags);
1885
1886 if (mddev->raid_disks == 0) {
1887 mddev->major_version = 1;
1888 mddev->patch_version = 0;
1889 mddev->external = 0;
1890 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1891 mddev->ctime = le64_to_cpu(sb->ctime);
1892 mddev->utime = le64_to_cpu(sb->utime);
1893 mddev->level = le32_to_cpu(sb->level);
1894 mddev->clevel[0] = 0;
1895 mddev->layout = le32_to_cpu(sb->layout);
1896 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1897 mddev->dev_sectors = le64_to_cpu(sb->size);
1898 mddev->events = ev1;
1899 mddev->bitmap_info.offset = 0;
1900 mddev->bitmap_info.space = 0;
1901 /* Default location for bitmap is 1K after superblock
1902 * using 3K - total of 4K
1903 */
1904 mddev->bitmap_info.default_offset = 1024 >> 9;
1905 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1906 mddev->reshape_backwards = 0;
1907
1908 mddev->resync_offset = le64_to_cpu(sb->resync_offset);
1909 memcpy(mddev->uuid, sb->set_uuid, 16);
1910
1911 mddev->max_disks = (4096-256)/2;
1912
1913 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1914 mddev->bitmap_info.file == NULL) {
1915 mddev->bitmap_info.offset =
1916 (__s32)le32_to_cpu(sb->bitmap_offset);
1917 /* Metadata doesn't record how much space is available.
1918 * For 1.0, we assume we can use up to the superblock
1919 * if before, else to 4K beyond superblock.
1920 * For others, assume no change is possible.
1921 */
1922 if (mddev->minor_version > 0)
1923 mddev->bitmap_info.space = 0;
1924 else if (mddev->bitmap_info.offset > 0)
1925 mddev->bitmap_info.space =
1926 8 - mddev->bitmap_info.offset;
1927 else
1928 mddev->bitmap_info.space =
1929 -mddev->bitmap_info.offset;
1930 }
1931
1932 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1933 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1934 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1935 mddev->new_level = le32_to_cpu(sb->new_level);
1936 mddev->new_layout = le32_to_cpu(sb->new_layout);
1937 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1938 if (mddev->delta_disks < 0 ||
1939 (mddev->delta_disks == 0 &&
1940 (le32_to_cpu(sb->feature_map)
1941 & MD_FEATURE_RESHAPE_BACKWARDS)))
1942 mddev->reshape_backwards = 1;
1943 } else {
1944 mddev->reshape_position = MaxSector;
1945 mddev->delta_disks = 0;
1946 mddev->new_level = mddev->level;
1947 mddev->new_layout = mddev->layout;
1948 mddev->new_chunk_sectors = mddev->chunk_sectors;
1949 }
1950
1951 if (mddev->level == 0 &&
1952 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1953 mddev->layout = -1;
1954
1955 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1956 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1957
1958 if (le32_to_cpu(sb->feature_map) &
1959 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1960 if (le32_to_cpu(sb->feature_map) &
1961 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1962 return -EINVAL;
1963 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1964 (le32_to_cpu(sb->feature_map) &
1965 MD_FEATURE_MULTIPLE_PPLS))
1966 return -EINVAL;
1967 set_bit(MD_HAS_PPL, &mddev->flags);
1968 }
1969 } else if (mddev->pers == NULL) {
1970 /* Insist of good event counter while assembling, except for
1971 * spares (which don't need an event count).
1972 * Similar to mdadm, we allow event counter difference of 1
1973 * from the freshest device.
1974 */
1975 if (rdev->desc_nr >= 0 &&
1976 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1977 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1978 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1979 if (ev1 + 1 < mddev->events)
1980 return -EINVAL;
1981 } else if (mddev->bitmap) {
1982 /* If adding to array with a bitmap, then we can accept an
1983 * older device, but not too old.
1984 */
1985 if (ev1 < md_bitmap_events_cleared(mddev))
1986 return 0;
1987 if (ev1 < mddev->events)
1988 set_bit(Bitmap_sync, &rdev->flags);
1989 } else {
1990 if (ev1 < mddev->events)
1991 /* just a hot-add of a new device, leave raid_disk at -1 */
1992 return 0;
1993 }
1994
1995 if (rdev->desc_nr < 0 ||
1996 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1997 role = MD_DISK_ROLE_SPARE;
1998 rdev->desc_nr = -1;
1999 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
2000 /*
2001 * If we are assembling, and our event counter is smaller than the
2002 * highest event counter, we cannot trust our superblock about the role.
2003 * It could happen that our rdev was marked as Faulty, and all other
2004 * superblocks were updated with +1 event counter.
2005 * Then, before the next superblock update, which typically happens when
2006 * remove_and_add_spares() removes the device from the array, there was
2007 * a crash or reboot.
2008 * If we allow current rdev without consulting the freshest superblock,
2009 * we could cause data corruption.
2010 * Note that in this case our event counter is smaller by 1 than the
2011 * highest, otherwise, this rdev would not be allowed into array;
2012 * both kernel and mdadm allow event counter difference of 1.
2013 */
2014 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
2015 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
2016
2017 if (rdev->desc_nr >= freshest_max_dev) {
2018 /* this is unexpected, better not proceed */
2019 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
2020 mdname(mddev), rdev->bdev, rdev->desc_nr,
2021 freshest->bdev, freshest_max_dev);
2022 return -EUCLEAN;
2023 }
2024
2025 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
2026 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
2027 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
2028 } else {
2029 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2030 }
2031 switch (role) {
2032 case MD_DISK_ROLE_SPARE: /* spare */
2033 break;
2034 case MD_DISK_ROLE_FAULTY: /* faulty */
2035 set_bit(Faulty, &rdev->flags);
2036 break;
2037 case MD_DISK_ROLE_JOURNAL: /* journal device */
2038 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
2039 /* journal device without journal feature */
2040 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
2041 return -EINVAL;
2042 }
2043 set_bit(Journal, &rdev->flags);
2044 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
2045 rdev->raid_disk = 0;
2046 break;
2047 default:
2048 rdev->saved_raid_disk = role;
2049 if ((le32_to_cpu(sb->feature_map) &
2050 MD_FEATURE_RECOVERY_OFFSET)) {
2051 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
2052 if (!(le32_to_cpu(sb->feature_map) &
2053 MD_FEATURE_RECOVERY_BITMAP))
2054 rdev->saved_raid_disk = -1;
2055 } else {
2056 /*
2057 * If the array is FROZEN, then the device can't
2058 * be in_sync with rest of array.
2059 */
2060 if (!test_bit(MD_RECOVERY_FROZEN,
2061 &mddev->recovery))
2062 set_bit(In_sync, &rdev->flags);
2063 }
2064 rdev->raid_disk = role;
2065 break;
2066 }
2067 if (sb->devflags & WriteMostly1)
2068 set_bit(WriteMostly, &rdev->flags);
2069 if (sb->devflags & FailFast1)
2070 set_bit(FailFast, &rdev->flags);
2071 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2072 set_bit(Replacement, &rdev->flags);
2073
2074 return 0;
2075 }
2076
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2077 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2078 {
2079 struct mdp_superblock_1 *sb;
2080 struct md_rdev *rdev2;
2081 int max_dev, i;
2082 /* make rdev->sb match mddev and rdev data. */
2083
2084 sb = page_address(rdev->sb_page);
2085
2086 sb->feature_map = 0;
2087 sb->pad0 = 0;
2088 sb->recovery_offset = cpu_to_le64(0);
2089 memset(sb->pad3, 0, sizeof(sb->pad3));
2090
2091 sb->utime = cpu_to_le64((__u64)mddev->utime);
2092 sb->events = cpu_to_le64(mddev->events);
2093 if (mddev->in_sync)
2094 sb->resync_offset = cpu_to_le64(mddev->resync_offset);
2095 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2096 sb->resync_offset = cpu_to_le64(MaxSector);
2097 else
2098 sb->resync_offset = cpu_to_le64(0);
2099
2100 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2101
2102 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2103 sb->size = cpu_to_le64(mddev->dev_sectors);
2104 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2105 sb->level = cpu_to_le32(mddev->level);
2106 sb->layout = cpu_to_le32(mddev->layout);
2107 if (test_bit(FailFast, &rdev->flags))
2108 sb->devflags |= FailFast1;
2109 else
2110 sb->devflags &= ~FailFast1;
2111
2112 if (test_bit(WriteMostly, &rdev->flags))
2113 sb->devflags |= WriteMostly1;
2114 else
2115 sb->devflags &= ~WriteMostly1;
2116 sb->data_offset = cpu_to_le64(rdev->data_offset);
2117 sb->data_size = cpu_to_le64(rdev->sectors);
2118
2119 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2120 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2121 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2122 }
2123
2124 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2125 !test_bit(In_sync, &rdev->flags)) {
2126 sb->feature_map |=
2127 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2128 sb->recovery_offset =
2129 cpu_to_le64(rdev->recovery_offset);
2130 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2131 sb->feature_map |=
2132 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2133 }
2134 /* Note: recovery_offset and journal_tail share space */
2135 if (test_bit(Journal, &rdev->flags))
2136 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2137 if (test_bit(Replacement, &rdev->flags))
2138 sb->feature_map |=
2139 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2140
2141 if (mddev->reshape_position != MaxSector) {
2142 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2143 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2144 sb->new_layout = cpu_to_le32(mddev->new_layout);
2145 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2146 sb->new_level = cpu_to_le32(mddev->new_level);
2147 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2148 if (mddev->delta_disks == 0 &&
2149 mddev->reshape_backwards)
2150 sb->feature_map
2151 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2152 if (rdev->new_data_offset != rdev->data_offset) {
2153 sb->feature_map
2154 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2155 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2156 - rdev->data_offset));
2157 }
2158 }
2159
2160 if (mddev_is_clustered(mddev))
2161 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2162
2163 if (rdev->badblocks.count == 0)
2164 /* Nothing to do for bad blocks*/ ;
2165 else if (sb->bblog_offset == 0)
2166 /* Cannot record bad blocks on this device */
2167 md_error(mddev, rdev);
2168 else {
2169 struct badblocks *bb = &rdev->badblocks;
2170 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2171 u64 *p = bb->page;
2172 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2173 if (bb->changed) {
2174 unsigned seq;
2175
2176 retry:
2177 seq = read_seqbegin(&bb->lock);
2178
2179 memset(bbp, 0xff, PAGE_SIZE);
2180
2181 for (i = 0 ; i < bb->count ; i++) {
2182 u64 internal_bb = p[i];
2183 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2184 | BB_LEN(internal_bb));
2185 bbp[i] = cpu_to_le64(store_bb);
2186 }
2187 bb->changed = 0;
2188 if (read_seqretry(&bb->lock, seq))
2189 goto retry;
2190
2191 bb->sector = (rdev->sb_start +
2192 (int)le32_to_cpu(sb->bblog_offset));
2193 bb->size = le16_to_cpu(sb->bblog_size);
2194 }
2195 }
2196
2197 max_dev = 0;
2198 rdev_for_each(rdev2, mddev)
2199 if (rdev2->desc_nr+1 > max_dev)
2200 max_dev = rdev2->desc_nr+1;
2201
2202 if (max_dev > le32_to_cpu(sb->max_dev)) {
2203 int bmask;
2204 sb->max_dev = cpu_to_le32(max_dev);
2205 rdev->sb_size = max_dev * 2 + 256;
2206 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2207 if (rdev->sb_size & bmask)
2208 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2209 } else
2210 max_dev = le32_to_cpu(sb->max_dev);
2211
2212 for (i=0; i<max_dev;i++)
2213 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2214
2215 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2216 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2217
2218 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2219 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2220 sb->feature_map |=
2221 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2222 else
2223 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2224 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2225 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2226 }
2227
2228 rdev_for_each(rdev2, mddev) {
2229 i = rdev2->desc_nr;
2230 if (test_bit(Faulty, &rdev2->flags))
2231 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2232 else if (test_bit(In_sync, &rdev2->flags))
2233 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2234 else if (test_bit(Journal, &rdev2->flags))
2235 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2236 else if (rdev2->raid_disk >= 0)
2237 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2238 else
2239 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2240 }
2241
2242 sb->sb_csum = calc_sb_1_csum(sb);
2243 }
2244
super_1_choose_bm_space(sector_t dev_size)2245 static sector_t super_1_choose_bm_space(sector_t dev_size)
2246 {
2247 sector_t bm_space;
2248
2249 /* if the device is bigger than 8Gig, save 64k for bitmap
2250 * usage, if bigger than 200Gig, save 128k
2251 */
2252 if (dev_size < 64*2)
2253 bm_space = 0;
2254 else if (dev_size - 64*2 >= 200*1024*1024*2)
2255 bm_space = 128*2;
2256 else if (dev_size - 4*2 > 8*1024*1024*2)
2257 bm_space = 64*2;
2258 else
2259 bm_space = 4*2;
2260 return bm_space;
2261 }
2262
2263 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2264 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2265 {
2266 struct mdp_superblock_1 *sb;
2267 sector_t max_sectors;
2268 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2269 return 0; /* component must fit device */
2270 if (rdev->data_offset != rdev->new_data_offset)
2271 return 0; /* too confusing */
2272 if (rdev->sb_start < rdev->data_offset) {
2273 /* minor versions 1 and 2; superblock before data */
2274 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2275 if (!num_sectors || num_sectors > max_sectors)
2276 num_sectors = max_sectors;
2277 } else if (rdev->mddev->bitmap_info.offset) {
2278 /* minor version 0 with bitmap we can't move */
2279 return 0;
2280 } else {
2281 /* minor version 0; superblock after data */
2282 sector_t sb_start, bm_space;
2283 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2284
2285 /* 8K is for superblock */
2286 sb_start = dev_size - 8*2;
2287 sb_start &= ~(sector_t)(4*2 - 1);
2288
2289 bm_space = super_1_choose_bm_space(dev_size);
2290
2291 /* Space that can be used to store date needs to decrease
2292 * superblock bitmap space and bad block space(4K)
2293 */
2294 max_sectors = sb_start - bm_space - 4*2;
2295
2296 if (!num_sectors || num_sectors > max_sectors)
2297 num_sectors = max_sectors;
2298 rdev->sb_start = sb_start;
2299 }
2300 sb = page_address(rdev->sb_page);
2301 sb->data_size = cpu_to_le64(num_sectors);
2302 sb->super_offset = cpu_to_le64(rdev->sb_start);
2303 sb->sb_csum = calc_sb_1_csum(sb);
2304 do {
2305 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2306 rdev->sb_page);
2307 } while (md_super_wait(rdev->mddev) < 0);
2308 return num_sectors;
2309
2310 }
2311
2312 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2313 super_1_allow_new_offset(struct md_rdev *rdev,
2314 unsigned long long new_offset)
2315 {
2316 /* All necessary checks on new >= old have been done */
2317 if (new_offset >= rdev->data_offset)
2318 return 1;
2319
2320 /* with 1.0 metadata, there is no metadata to tread on
2321 * so we can always move back */
2322 if (rdev->mddev->minor_version == 0)
2323 return 1;
2324
2325 /* otherwise we must be sure not to step on
2326 * any metadata, so stay:
2327 * 36K beyond start of superblock
2328 * beyond end of badblocks
2329 * beyond write-intent bitmap
2330 */
2331 if (rdev->sb_start + (32+4)*2 > new_offset)
2332 return 0;
2333
2334 if (!rdev->mddev->bitmap_info.file) {
2335 struct mddev *mddev = rdev->mddev;
2336 struct md_bitmap_stats stats;
2337 int err;
2338
2339 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
2340 if (!err && rdev->sb_start + mddev->bitmap_info.offset +
2341 stats.file_pages * (PAGE_SIZE >> 9) > new_offset)
2342 return 0;
2343 }
2344
2345 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2346 return 0;
2347
2348 return 1;
2349 }
2350
2351 static struct super_type super_types[] = {
2352 [0] = {
2353 .name = "0.90.0",
2354 .owner = THIS_MODULE,
2355 .load_super = super_90_load,
2356 .validate_super = super_90_validate,
2357 .sync_super = super_90_sync,
2358 .rdev_size_change = super_90_rdev_size_change,
2359 .allow_new_offset = super_90_allow_new_offset,
2360 },
2361 [1] = {
2362 .name = "md-1",
2363 .owner = THIS_MODULE,
2364 .load_super = super_1_load,
2365 .validate_super = super_1_validate,
2366 .sync_super = super_1_sync,
2367 .rdev_size_change = super_1_rdev_size_change,
2368 .allow_new_offset = super_1_allow_new_offset,
2369 },
2370 };
2371
sync_super(struct mddev * mddev,struct md_rdev * rdev)2372 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2373 {
2374 if (mddev->sync_super) {
2375 mddev->sync_super(mddev, rdev);
2376 return;
2377 }
2378
2379 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2380
2381 super_types[mddev->major_version].sync_super(mddev, rdev);
2382 }
2383
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2384 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2385 {
2386 struct md_rdev *rdev, *rdev2;
2387
2388 rcu_read_lock();
2389 rdev_for_each_rcu(rdev, mddev1) {
2390 if (test_bit(Faulty, &rdev->flags) ||
2391 test_bit(Journal, &rdev->flags) ||
2392 rdev->raid_disk == -1)
2393 continue;
2394 rdev_for_each_rcu(rdev2, mddev2) {
2395 if (test_bit(Faulty, &rdev2->flags) ||
2396 test_bit(Journal, &rdev2->flags) ||
2397 rdev2->raid_disk == -1)
2398 continue;
2399 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2400 rcu_read_unlock();
2401 return 1;
2402 }
2403 }
2404 }
2405 rcu_read_unlock();
2406 return 0;
2407 }
2408
2409 static LIST_HEAD(pending_raid_disks);
2410
2411 /*
2412 * Try to register data integrity profile for an mddev
2413 *
2414 * This is called when an array is started and after a disk has been kicked
2415 * from the array. It only succeeds if all working and active component devices
2416 * are integrity capable with matching profiles.
2417 */
md_integrity_register(struct mddev * mddev)2418 int md_integrity_register(struct mddev *mddev)
2419 {
2420 if (list_empty(&mddev->disks))
2421 return 0; /* nothing to do */
2422 if (mddev_is_dm(mddev) || !blk_get_integrity(mddev->gendisk))
2423 return 0; /* shouldn't register */
2424
2425 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2426 return 0;
2427 }
2428 EXPORT_SYMBOL(md_integrity_register);
2429
rdev_read_only(struct md_rdev * rdev)2430 static bool rdev_read_only(struct md_rdev *rdev)
2431 {
2432 return bdev_read_only(rdev->bdev) ||
2433 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2434 }
2435
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2436 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2437 {
2438 char b[BDEVNAME_SIZE];
2439 int err;
2440
2441 /* prevent duplicates */
2442 if (find_rdev(mddev, rdev->bdev->bd_dev))
2443 return -EEXIST;
2444
2445 if (rdev_read_only(rdev) && mddev->pers)
2446 return -EROFS;
2447
2448 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2449 if (!test_bit(Journal, &rdev->flags) &&
2450 rdev->sectors &&
2451 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2452 if (mddev->pers) {
2453 /* Cannot change size, so fail
2454 * If mddev->level <= 0, then we don't care
2455 * about aligning sizes (e.g. linear)
2456 */
2457 if (mddev->level > 0)
2458 return -ENOSPC;
2459 } else
2460 mddev->dev_sectors = rdev->sectors;
2461 }
2462
2463 /* Verify rdev->desc_nr is unique.
2464 * If it is -1, assign a free number, else
2465 * check number is not in use
2466 */
2467 rcu_read_lock();
2468 if (rdev->desc_nr < 0) {
2469 int choice = 0;
2470 if (mddev->pers)
2471 choice = mddev->raid_disks;
2472 while (md_find_rdev_nr_rcu(mddev, choice))
2473 choice++;
2474 rdev->desc_nr = choice;
2475 } else {
2476 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2477 rcu_read_unlock();
2478 return -EBUSY;
2479 }
2480 }
2481 rcu_read_unlock();
2482 if (!test_bit(Journal, &rdev->flags) &&
2483 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2484 pr_warn("md: %s: array is limited to %d devices\n",
2485 mdname(mddev), mddev->max_disks);
2486 return -EBUSY;
2487 }
2488 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2489 strreplace(b, '/', '!');
2490
2491 rdev->mddev = mddev;
2492 pr_debug("md: bind<%s>\n", b);
2493
2494 if (mddev->raid_disks)
2495 mddev_create_serial_pool(mddev, rdev);
2496
2497 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2498 goto fail;
2499
2500 /* failure here is OK */
2501 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2502 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2503 rdev->sysfs_unack_badblocks =
2504 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2505 rdev->sysfs_badblocks =
2506 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2507
2508 list_add_rcu(&rdev->same_set, &mddev->disks);
2509 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2510
2511 /* May as well allow recovery to be retried once */
2512 mddev->recovery_disabled++;
2513
2514 return 0;
2515
2516 fail:
2517 pr_warn("md: failed to register dev-%s for %s\n",
2518 b, mdname(mddev));
2519 mddev_destroy_serial_pool(mddev, rdev);
2520 return err;
2521 }
2522
2523 void md_autodetect_dev(dev_t dev);
2524
2525 /* just for claiming the bdev */
2526 static struct md_rdev claim_rdev;
2527
export_rdev(struct md_rdev * rdev,struct mddev * mddev)2528 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev)
2529 {
2530 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2531 md_rdev_clear(rdev);
2532 #ifndef MODULE
2533 if (test_bit(AutoDetected, &rdev->flags))
2534 md_autodetect_dev(rdev->bdev->bd_dev);
2535 #endif
2536 fput(rdev->bdev_file);
2537 rdev->bdev = NULL;
2538 kobject_put(&rdev->kobj);
2539 }
2540
md_kick_rdev_from_array(struct md_rdev * rdev)2541 static void md_kick_rdev_from_array(struct md_rdev *rdev)
2542 {
2543 struct mddev *mddev = rdev->mddev;
2544
2545 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2546 list_del_rcu(&rdev->same_set);
2547 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2548 mddev_destroy_serial_pool(rdev->mddev, rdev);
2549 WRITE_ONCE(rdev->mddev, NULL);
2550 sysfs_remove_link(&rdev->kobj, "block");
2551 sysfs_put(rdev->sysfs_state);
2552 sysfs_put(rdev->sysfs_unack_badblocks);
2553 sysfs_put(rdev->sysfs_badblocks);
2554 rdev->sysfs_state = NULL;
2555 rdev->sysfs_unack_badblocks = NULL;
2556 rdev->sysfs_badblocks = NULL;
2557 rdev->badblocks.count = 0;
2558
2559 synchronize_rcu();
2560
2561 /*
2562 * kobject_del() will wait for all in progress writers to be done, where
2563 * reconfig_mutex is held, hence it can't be called under
2564 * reconfig_mutex and it's delayed to mddev_unlock().
2565 */
2566 list_add(&rdev->same_set, &mddev->deleting);
2567 }
2568
export_array(struct mddev * mddev)2569 static void export_array(struct mddev *mddev)
2570 {
2571 struct md_rdev *rdev;
2572
2573 while (!list_empty(&mddev->disks)) {
2574 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2575 same_set);
2576 md_kick_rdev_from_array(rdev);
2577 }
2578 mddev->raid_disks = 0;
2579 mddev->major_version = 0;
2580 }
2581
set_in_sync(struct mddev * mddev)2582 static bool set_in_sync(struct mddev *mddev)
2583 {
2584 lockdep_assert_held(&mddev->lock);
2585 if (!mddev->in_sync) {
2586 mddev->sync_checkers++;
2587 spin_unlock(&mddev->lock);
2588 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2589 spin_lock(&mddev->lock);
2590 if (!mddev->in_sync &&
2591 percpu_ref_is_zero(&mddev->writes_pending)) {
2592 mddev->in_sync = 1;
2593 /*
2594 * Ensure ->in_sync is visible before we clear
2595 * ->sync_checkers.
2596 */
2597 smp_mb();
2598 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2599 sysfs_notify_dirent_safe(mddev->sysfs_state);
2600 }
2601 if (--mddev->sync_checkers == 0)
2602 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2603 }
2604 if (mddev->safemode == 1)
2605 mddev->safemode = 0;
2606 return mddev->in_sync;
2607 }
2608
sync_sbs(struct mddev * mddev,int nospares)2609 static void sync_sbs(struct mddev *mddev, int nospares)
2610 {
2611 /* Update each superblock (in-memory image), but
2612 * if we are allowed to, skip spares which already
2613 * have the right event counter, or have one earlier
2614 * (which would mean they aren't being marked as dirty
2615 * with the rest of the array)
2616 */
2617 struct md_rdev *rdev;
2618 rdev_for_each(rdev, mddev) {
2619 if (rdev->sb_events == mddev->events ||
2620 (nospares &&
2621 rdev->raid_disk < 0 &&
2622 rdev->sb_events+1 == mddev->events)) {
2623 /* Don't update this superblock */
2624 rdev->sb_loaded = 2;
2625 } else {
2626 sync_super(mddev, rdev);
2627 rdev->sb_loaded = 1;
2628 }
2629 }
2630 }
2631
does_sb_need_changing(struct mddev * mddev)2632 static bool does_sb_need_changing(struct mddev *mddev)
2633 {
2634 struct md_rdev *rdev = NULL, *iter;
2635 struct mdp_superblock_1 *sb;
2636 int role;
2637
2638 /* Find a good rdev */
2639 rdev_for_each(iter, mddev)
2640 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2641 rdev = iter;
2642 break;
2643 }
2644
2645 /* No good device found. */
2646 if (!rdev)
2647 return false;
2648
2649 sb = page_address(rdev->sb_page);
2650 /* Check if a device has become faulty or a spare become active */
2651 rdev_for_each(rdev, mddev) {
2652 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2653 /* Device activated? */
2654 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2655 !test_bit(Faulty, &rdev->flags))
2656 return true;
2657 /* Device turned faulty? */
2658 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2659 return true;
2660 }
2661
2662 /* Check if any mddev parameters have changed */
2663 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2664 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2665 (mddev->layout != le32_to_cpu(sb->layout)) ||
2666 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2667 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2668 return true;
2669
2670 return false;
2671 }
2672
md_update_sb(struct mddev * mddev,int force_change)2673 void md_update_sb(struct mddev *mddev, int force_change)
2674 {
2675 struct md_rdev *rdev;
2676 int sync_req;
2677 int nospares = 0;
2678 int any_badblocks_changed = 0;
2679 int ret = -1;
2680
2681 if (!md_is_rdwr(mddev)) {
2682 if (force_change)
2683 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2684 return;
2685 }
2686
2687 repeat:
2688 if (mddev_is_clustered(mddev)) {
2689 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2690 force_change = 1;
2691 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2692 nospares = 1;
2693 ret = mddev->cluster_ops->metadata_update_start(mddev);
2694 /* Has someone else has updated the sb */
2695 if (!does_sb_need_changing(mddev)) {
2696 if (ret == 0)
2697 mddev->cluster_ops->metadata_update_cancel(mddev);
2698 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2699 BIT(MD_SB_CHANGE_DEVS) |
2700 BIT(MD_SB_CHANGE_CLEAN));
2701 return;
2702 }
2703 }
2704
2705 /*
2706 * First make sure individual recovery_offsets are correct
2707 * curr_resync_completed can only be used during recovery.
2708 * During reshape/resync it might use array-addresses rather
2709 * that device addresses.
2710 */
2711 rdev_for_each(rdev, mddev) {
2712 if (rdev->raid_disk >= 0 &&
2713 mddev->delta_disks >= 0 &&
2714 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2715 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2716 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2717 !test_bit(Journal, &rdev->flags) &&
2718 !test_bit(In_sync, &rdev->flags) &&
2719 mddev->curr_resync_completed > rdev->recovery_offset)
2720 rdev->recovery_offset = mddev->curr_resync_completed;
2721
2722 }
2723 if (!mddev->persistent) {
2724 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2725 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2726 if (!mddev->external) {
2727 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2728 rdev_for_each(rdev, mddev) {
2729 if (rdev->badblocks.changed) {
2730 rdev->badblocks.changed = 0;
2731 ack_all_badblocks(&rdev->badblocks);
2732 md_error(mddev, rdev);
2733 }
2734 clear_bit(Blocked, &rdev->flags);
2735 clear_bit(BlockedBadBlocks, &rdev->flags);
2736 wake_up(&rdev->blocked_wait);
2737 }
2738 }
2739 wake_up(&mddev->sb_wait);
2740 return;
2741 }
2742
2743 spin_lock(&mddev->lock);
2744
2745 mddev->utime = ktime_get_real_seconds();
2746
2747 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2748 force_change = 1;
2749 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2750 /* just a clean<-> dirty transition, possibly leave spares alone,
2751 * though if events isn't the right even/odd, we will have to do
2752 * spares after all
2753 */
2754 nospares = 1;
2755 if (force_change)
2756 nospares = 0;
2757 if (mddev->degraded)
2758 /* If the array is degraded, then skipping spares is both
2759 * dangerous and fairly pointless.
2760 * Dangerous because a device that was removed from the array
2761 * might have a event_count that still looks up-to-date,
2762 * so it can be re-added without a resync.
2763 * Pointless because if there are any spares to skip,
2764 * then a recovery will happen and soon that array won't
2765 * be degraded any more and the spare can go back to sleep then.
2766 */
2767 nospares = 0;
2768
2769 sync_req = mddev->in_sync;
2770
2771 /* If this is just a dirty<->clean transition, and the array is clean
2772 * and 'events' is odd, we can roll back to the previous clean state */
2773 if (nospares
2774 && (mddev->in_sync && mddev->resync_offset == MaxSector)
2775 && mddev->can_decrease_events
2776 && mddev->events != 1) {
2777 mddev->events--;
2778 mddev->can_decrease_events = 0;
2779 } else {
2780 /* otherwise we have to go forward and ... */
2781 mddev->events ++;
2782 mddev->can_decrease_events = nospares;
2783 }
2784
2785 /*
2786 * This 64-bit counter should never wrap.
2787 * Either we are in around ~1 trillion A.C., assuming
2788 * 1 reboot per second, or we have a bug...
2789 */
2790 WARN_ON(mddev->events == 0);
2791
2792 rdev_for_each(rdev, mddev) {
2793 if (rdev->badblocks.changed)
2794 any_badblocks_changed++;
2795 if (test_bit(Faulty, &rdev->flags))
2796 set_bit(FaultRecorded, &rdev->flags);
2797 }
2798
2799 sync_sbs(mddev, nospares);
2800 spin_unlock(&mddev->lock);
2801
2802 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2803 mdname(mddev), mddev->in_sync);
2804
2805 mddev_add_trace_msg(mddev, "md md_update_sb");
2806 rewrite:
2807 mddev->bitmap_ops->update_sb(mddev->bitmap);
2808 rdev_for_each(rdev, mddev) {
2809 if (rdev->sb_loaded != 1)
2810 continue; /* no noise on spare devices */
2811
2812 if (!test_bit(Faulty, &rdev->flags)) {
2813 md_super_write(mddev,rdev,
2814 rdev->sb_start, rdev->sb_size,
2815 rdev->sb_page);
2816 pr_debug("md: (write) %pg's sb offset: %llu\n",
2817 rdev->bdev,
2818 (unsigned long long)rdev->sb_start);
2819 rdev->sb_events = mddev->events;
2820 if (rdev->badblocks.size) {
2821 md_super_write(mddev, rdev,
2822 rdev->badblocks.sector,
2823 rdev->badblocks.size << 9,
2824 rdev->bb_page);
2825 rdev->badblocks.size = 0;
2826 }
2827
2828 } else
2829 pr_debug("md: %pg (skipping faulty)\n",
2830 rdev->bdev);
2831 }
2832 if (md_super_wait(mddev) < 0)
2833 goto rewrite;
2834 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2835
2836 if (mddev_is_clustered(mddev) && ret == 0)
2837 mddev->cluster_ops->metadata_update_finish(mddev);
2838
2839 if (mddev->in_sync != sync_req ||
2840 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2841 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2842 /* have to write it out again */
2843 goto repeat;
2844 wake_up(&mddev->sb_wait);
2845 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2846 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2847
2848 rdev_for_each(rdev, mddev) {
2849 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2850 clear_bit(Blocked, &rdev->flags);
2851
2852 if (any_badblocks_changed)
2853 ack_all_badblocks(&rdev->badblocks);
2854 clear_bit(BlockedBadBlocks, &rdev->flags);
2855 wake_up(&rdev->blocked_wait);
2856 }
2857 }
2858 EXPORT_SYMBOL(md_update_sb);
2859
add_bound_rdev(struct md_rdev * rdev)2860 static int add_bound_rdev(struct md_rdev *rdev)
2861 {
2862 struct mddev *mddev = rdev->mddev;
2863 int err = 0;
2864 bool add_journal = test_bit(Journal, &rdev->flags);
2865
2866 if (!mddev->pers->hot_remove_disk || add_journal) {
2867 /* If there is hot_add_disk but no hot_remove_disk
2868 * then added disks for geometry changes,
2869 * and should be added immediately.
2870 */
2871 super_types[mddev->major_version].
2872 validate_super(mddev, NULL/*freshest*/, rdev);
2873 err = mddev->pers->hot_add_disk(mddev, rdev);
2874 if (err) {
2875 md_kick_rdev_from_array(rdev);
2876 return err;
2877 }
2878 }
2879 sysfs_notify_dirent_safe(rdev->sysfs_state);
2880
2881 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2882 if (mddev->degraded)
2883 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2884 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2885 md_new_event();
2886 return 0;
2887 }
2888
2889 /* words written to sysfs files may, or may not, be \n terminated.
2890 * We want to accept with case. For this we use cmd_match.
2891 */
cmd_match(const char * cmd,const char * str)2892 static int cmd_match(const char *cmd, const char *str)
2893 {
2894 /* See if cmd, written into a sysfs file, matches
2895 * str. They must either be the same, or cmd can
2896 * have a trailing newline
2897 */
2898 while (*cmd && *str && *cmd == *str) {
2899 cmd++;
2900 str++;
2901 }
2902 if (*cmd == '\n')
2903 cmd++;
2904 if (*str || *cmd)
2905 return 0;
2906 return 1;
2907 }
2908
2909 struct rdev_sysfs_entry {
2910 struct attribute attr;
2911 ssize_t (*show)(struct md_rdev *, char *);
2912 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2913 };
2914
2915 static ssize_t
state_show(struct md_rdev * rdev,char * page)2916 state_show(struct md_rdev *rdev, char *page)
2917 {
2918 char *sep = ",";
2919 size_t len = 0;
2920 unsigned long flags = READ_ONCE(rdev->flags);
2921
2922 if (test_bit(Faulty, &flags) ||
2923 (!test_bit(ExternalBbl, &flags) &&
2924 rdev->badblocks.unacked_exist))
2925 len += sprintf(page+len, "faulty%s", sep);
2926 if (test_bit(In_sync, &flags))
2927 len += sprintf(page+len, "in_sync%s", sep);
2928 if (test_bit(Journal, &flags))
2929 len += sprintf(page+len, "journal%s", sep);
2930 if (test_bit(WriteMostly, &flags))
2931 len += sprintf(page+len, "write_mostly%s", sep);
2932 if (test_bit(Blocked, &flags) ||
2933 (rdev->badblocks.unacked_exist
2934 && !test_bit(Faulty, &flags)))
2935 len += sprintf(page+len, "blocked%s", sep);
2936 if (!test_bit(Faulty, &flags) &&
2937 !test_bit(Journal, &flags) &&
2938 !test_bit(In_sync, &flags))
2939 len += sprintf(page+len, "spare%s", sep);
2940 if (test_bit(WriteErrorSeen, &flags))
2941 len += sprintf(page+len, "write_error%s", sep);
2942 if (test_bit(WantReplacement, &flags))
2943 len += sprintf(page+len, "want_replacement%s", sep);
2944 if (test_bit(Replacement, &flags))
2945 len += sprintf(page+len, "replacement%s", sep);
2946 if (test_bit(ExternalBbl, &flags))
2947 len += sprintf(page+len, "external_bbl%s", sep);
2948 if (test_bit(FailFast, &flags))
2949 len += sprintf(page+len, "failfast%s", sep);
2950
2951 if (len)
2952 len -= strlen(sep);
2953
2954 return len+sprintf(page+len, "\n");
2955 }
2956
2957 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2958 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2959 {
2960 /* can write
2961 * faulty - simulates an error
2962 * remove - disconnects the device
2963 * writemostly - sets write_mostly
2964 * -writemostly - clears write_mostly
2965 * blocked - sets the Blocked flags
2966 * -blocked - clears the Blocked and possibly simulates an error
2967 * insync - sets Insync providing device isn't active
2968 * -insync - clear Insync for a device with a slot assigned,
2969 * so that it gets rebuilt based on bitmap
2970 * write_error - sets WriteErrorSeen
2971 * -write_error - clears WriteErrorSeen
2972 * {,-}failfast - set/clear FailFast
2973 */
2974
2975 struct mddev *mddev = rdev->mddev;
2976 int err = -EINVAL;
2977 bool need_update_sb = false;
2978
2979 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2980 md_error(rdev->mddev, rdev);
2981
2982 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2983 err = -EBUSY;
2984 else
2985 err = 0;
2986 } else if (cmd_match(buf, "remove")) {
2987 if (rdev->mddev->pers) {
2988 clear_bit(Blocked, &rdev->flags);
2989 remove_and_add_spares(rdev->mddev, rdev);
2990 }
2991 if (rdev->raid_disk >= 0)
2992 err = -EBUSY;
2993 else {
2994 err = 0;
2995 if (mddev_is_clustered(mddev))
2996 err = mddev->cluster_ops->remove_disk(mddev, rdev);
2997
2998 if (err == 0) {
2999 md_kick_rdev_from_array(rdev);
3000 if (mddev->pers)
3001 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3002 md_new_event();
3003 }
3004 }
3005 } else if (cmd_match(buf, "writemostly")) {
3006 set_bit(WriteMostly, &rdev->flags);
3007 mddev_create_serial_pool(rdev->mddev, rdev);
3008 need_update_sb = true;
3009 err = 0;
3010 } else if (cmd_match(buf, "-writemostly")) {
3011 mddev_destroy_serial_pool(rdev->mddev, rdev);
3012 clear_bit(WriteMostly, &rdev->flags);
3013 need_update_sb = true;
3014 err = 0;
3015 } else if (cmd_match(buf, "blocked")) {
3016 set_bit(Blocked, &rdev->flags);
3017 err = 0;
3018 } else if (cmd_match(buf, "-blocked")) {
3019 if (!test_bit(Faulty, &rdev->flags) &&
3020 !test_bit(ExternalBbl, &rdev->flags) &&
3021 rdev->badblocks.unacked_exist) {
3022 /* metadata handler doesn't understand badblocks,
3023 * so we need to fail the device
3024 */
3025 md_error(rdev->mddev, rdev);
3026 }
3027 clear_bit(Blocked, &rdev->flags);
3028 clear_bit(BlockedBadBlocks, &rdev->flags);
3029 wake_up(&rdev->blocked_wait);
3030 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3031
3032 err = 0;
3033 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3034 set_bit(In_sync, &rdev->flags);
3035 err = 0;
3036 } else if (cmd_match(buf, "failfast")) {
3037 set_bit(FailFast, &rdev->flags);
3038 need_update_sb = true;
3039 err = 0;
3040 } else if (cmd_match(buf, "-failfast")) {
3041 clear_bit(FailFast, &rdev->flags);
3042 need_update_sb = true;
3043 err = 0;
3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3045 !test_bit(Journal, &rdev->flags)) {
3046 if (rdev->mddev->pers == NULL) {
3047 clear_bit(In_sync, &rdev->flags);
3048 rdev->saved_raid_disk = rdev->raid_disk;
3049 rdev->raid_disk = -1;
3050 err = 0;
3051 }
3052 } else if (cmd_match(buf, "write_error")) {
3053 set_bit(WriteErrorSeen, &rdev->flags);
3054 err = 0;
3055 } else if (cmd_match(buf, "-write_error")) {
3056 clear_bit(WriteErrorSeen, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "want_replacement")) {
3059 /* Any non-spare device that is not a replacement can
3060 * become want_replacement at any time, but we then need to
3061 * check if recovery is needed.
3062 */
3063 if (rdev->raid_disk >= 0 &&
3064 !test_bit(Journal, &rdev->flags) &&
3065 !test_bit(Replacement, &rdev->flags))
3066 set_bit(WantReplacement, &rdev->flags);
3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3068 err = 0;
3069 } else if (cmd_match(buf, "-want_replacement")) {
3070 /* Clearing 'want_replacement' is always allowed.
3071 * Once replacements starts it is too late though.
3072 */
3073 err = 0;
3074 clear_bit(WantReplacement, &rdev->flags);
3075 } else if (cmd_match(buf, "replacement")) {
3076 /* Can only set a device as a replacement when array has not
3077 * yet been started. Once running, replacement is automatic
3078 * from spares, or by assigning 'slot'.
3079 */
3080 if (rdev->mddev->pers)
3081 err = -EBUSY;
3082 else {
3083 set_bit(Replacement, &rdev->flags);
3084 err = 0;
3085 }
3086 } else if (cmd_match(buf, "-replacement")) {
3087 /* Similarly, can only clear Replacement before start */
3088 if (rdev->mddev->pers)
3089 err = -EBUSY;
3090 else {
3091 clear_bit(Replacement, &rdev->flags);
3092 err = 0;
3093 }
3094 } else if (cmd_match(buf, "re-add")) {
3095 if (!rdev->mddev->pers)
3096 err = -EINVAL;
3097 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3098 rdev->saved_raid_disk >= 0) {
3099 /* clear_bit is performed _after_ all the devices
3100 * have their local Faulty bit cleared. If any writes
3101 * happen in the meantime in the local node, they
3102 * will land in the local bitmap, which will be synced
3103 * by this node eventually
3104 */
3105 if (!mddev_is_clustered(rdev->mddev) ||
3106 (err = mddev->cluster_ops->gather_bitmaps(rdev)) == 0) {
3107 clear_bit(Faulty, &rdev->flags);
3108 err = add_bound_rdev(rdev);
3109 }
3110 } else
3111 err = -EBUSY;
3112 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3113 set_bit(ExternalBbl, &rdev->flags);
3114 rdev->badblocks.shift = 0;
3115 err = 0;
3116 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3117 clear_bit(ExternalBbl, &rdev->flags);
3118 err = 0;
3119 }
3120 if (need_update_sb)
3121 md_update_sb(mddev, 1);
3122 if (!err)
3123 sysfs_notify_dirent_safe(rdev->sysfs_state);
3124 return err ? err : len;
3125 }
3126 static struct rdev_sysfs_entry rdev_state =
3127 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3128
3129 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3130 errors_show(struct md_rdev *rdev, char *page)
3131 {
3132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3133 }
3134
3135 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3136 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3137 {
3138 unsigned int n;
3139 int rv;
3140
3141 rv = kstrtouint(buf, 10, &n);
3142 if (rv < 0)
3143 return rv;
3144 atomic_set(&rdev->corrected_errors, n);
3145 return len;
3146 }
3147 static struct rdev_sysfs_entry rdev_errors =
3148 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3149
3150 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3151 slot_show(struct md_rdev *rdev, char *page)
3152 {
3153 if (test_bit(Journal, &rdev->flags))
3154 return sprintf(page, "journal\n");
3155 else if (rdev->raid_disk < 0)
3156 return sprintf(page, "none\n");
3157 else
3158 return sprintf(page, "%d\n", rdev->raid_disk);
3159 }
3160
3161 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3162 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3163 {
3164 int slot;
3165 int err;
3166
3167 if (test_bit(Journal, &rdev->flags))
3168 return -EBUSY;
3169 if (strncmp(buf, "none", 4)==0)
3170 slot = -1;
3171 else {
3172 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3173 if (err < 0)
3174 return err;
3175 if (slot < 0)
3176 /* overflow */
3177 return -ENOSPC;
3178 }
3179 if (rdev->mddev->pers && slot == -1) {
3180 /* Setting 'slot' on an active array requires also
3181 * updating the 'rd%d' link, and communicating
3182 * with the personality with ->hot_*_disk.
3183 * For now we only support removing
3184 * failed/spare devices. This normally happens automatically,
3185 * but not when the metadata is externally managed.
3186 */
3187 if (rdev->raid_disk == -1)
3188 return -EEXIST;
3189 /* personality does all needed checks */
3190 if (rdev->mddev->pers->hot_remove_disk == NULL)
3191 return -EINVAL;
3192 clear_bit(Blocked, &rdev->flags);
3193 remove_and_add_spares(rdev->mddev, rdev);
3194 if (rdev->raid_disk >= 0)
3195 return -EBUSY;
3196 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3197 } else if (rdev->mddev->pers) {
3198 /* Activating a spare .. or possibly reactivating
3199 * if we ever get bitmaps working here.
3200 */
3201 int err;
3202
3203 if (rdev->raid_disk != -1)
3204 return -EBUSY;
3205
3206 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3207 return -EBUSY;
3208
3209 if (rdev->mddev->pers->hot_add_disk == NULL)
3210 return -EINVAL;
3211
3212 if (slot >= rdev->mddev->raid_disks &&
3213 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3214 return -ENOSPC;
3215
3216 rdev->raid_disk = slot;
3217 if (test_bit(In_sync, &rdev->flags))
3218 rdev->saved_raid_disk = slot;
3219 else
3220 rdev->saved_raid_disk = -1;
3221 clear_bit(In_sync, &rdev->flags);
3222 clear_bit(Bitmap_sync, &rdev->flags);
3223 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3224 if (err) {
3225 rdev->raid_disk = -1;
3226 return err;
3227 } else
3228 sysfs_notify_dirent_safe(rdev->sysfs_state);
3229 /* failure here is OK */;
3230 sysfs_link_rdev(rdev->mddev, rdev);
3231 /* don't wakeup anyone, leave that to userspace. */
3232 } else {
3233 if (slot >= rdev->mddev->raid_disks &&
3234 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3235 return -ENOSPC;
3236 rdev->raid_disk = slot;
3237 /* assume it is working */
3238 clear_bit(Faulty, &rdev->flags);
3239 clear_bit(WriteMostly, &rdev->flags);
3240 set_bit(In_sync, &rdev->flags);
3241 sysfs_notify_dirent_safe(rdev->sysfs_state);
3242 }
3243 return len;
3244 }
3245
3246 static struct rdev_sysfs_entry rdev_slot =
3247 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3248
3249 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3250 offset_show(struct md_rdev *rdev, char *page)
3251 {
3252 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3253 }
3254
3255 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3256 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3257 {
3258 unsigned long long offset;
3259 if (kstrtoull(buf, 10, &offset) < 0)
3260 return -EINVAL;
3261 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3262 return -EBUSY;
3263 if (rdev->sectors && rdev->mddev->external)
3264 /* Must set offset before size, so overlap checks
3265 * can be sane */
3266 return -EBUSY;
3267 rdev->data_offset = offset;
3268 rdev->new_data_offset = offset;
3269 return len;
3270 }
3271
3272 static struct rdev_sysfs_entry rdev_offset =
3273 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3274
new_offset_show(struct md_rdev * rdev,char * page)3275 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3276 {
3277 return sprintf(page, "%llu\n",
3278 (unsigned long long)rdev->new_data_offset);
3279 }
3280
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3281 static ssize_t new_offset_store(struct md_rdev *rdev,
3282 const char *buf, size_t len)
3283 {
3284 unsigned long long new_offset;
3285 struct mddev *mddev = rdev->mddev;
3286
3287 if (kstrtoull(buf, 10, &new_offset) < 0)
3288 return -EINVAL;
3289
3290 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3291 return -EBUSY;
3292 if (new_offset == rdev->data_offset)
3293 /* reset is always permitted */
3294 ;
3295 else if (new_offset > rdev->data_offset) {
3296 /* must not push array size beyond rdev_sectors */
3297 if (new_offset - rdev->data_offset
3298 + mddev->dev_sectors > rdev->sectors)
3299 return -E2BIG;
3300 }
3301 /* Metadata worries about other space details. */
3302
3303 /* decreasing the offset is inconsistent with a backwards
3304 * reshape.
3305 */
3306 if (new_offset < rdev->data_offset &&
3307 mddev->reshape_backwards)
3308 return -EINVAL;
3309 /* Increasing offset is inconsistent with forwards
3310 * reshape. reshape_direction should be set to
3311 * 'backwards' first.
3312 */
3313 if (new_offset > rdev->data_offset &&
3314 !mddev->reshape_backwards)
3315 return -EINVAL;
3316
3317 if (mddev->pers && mddev->persistent &&
3318 !super_types[mddev->major_version]
3319 .allow_new_offset(rdev, new_offset))
3320 return -E2BIG;
3321 rdev->new_data_offset = new_offset;
3322 if (new_offset > rdev->data_offset)
3323 mddev->reshape_backwards = 1;
3324 else if (new_offset < rdev->data_offset)
3325 mddev->reshape_backwards = 0;
3326
3327 return len;
3328 }
3329 static struct rdev_sysfs_entry rdev_new_offset =
3330 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3331
3332 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3333 rdev_size_show(struct md_rdev *rdev, char *page)
3334 {
3335 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3336 }
3337
md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3338 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3339 {
3340 /* check if two start/length pairs overlap */
3341 if (a->data_offset + a->sectors <= b->data_offset)
3342 return false;
3343 if (b->data_offset + b->sectors <= a->data_offset)
3344 return false;
3345 return true;
3346 }
3347
md_rdev_overlaps(struct md_rdev * rdev)3348 static bool md_rdev_overlaps(struct md_rdev *rdev)
3349 {
3350 struct mddev *mddev;
3351 struct md_rdev *rdev2;
3352
3353 spin_lock(&all_mddevs_lock);
3354 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3355 if (test_bit(MD_DELETED, &mddev->flags))
3356 continue;
3357 rdev_for_each(rdev2, mddev) {
3358 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3359 md_rdevs_overlap(rdev, rdev2)) {
3360 spin_unlock(&all_mddevs_lock);
3361 return true;
3362 }
3363 }
3364 }
3365 spin_unlock(&all_mddevs_lock);
3366 return false;
3367 }
3368
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3369 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3370 {
3371 unsigned long long blocks;
3372 sector_t new;
3373
3374 if (kstrtoull(buf, 10, &blocks) < 0)
3375 return -EINVAL;
3376
3377 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3378 return -EINVAL; /* sector conversion overflow */
3379
3380 new = blocks * 2;
3381 if (new != blocks * 2)
3382 return -EINVAL; /* unsigned long long to sector_t overflow */
3383
3384 *sectors = new;
3385 return 0;
3386 }
3387
3388 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3389 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3390 {
3391 struct mddev *my_mddev = rdev->mddev;
3392 sector_t oldsectors = rdev->sectors;
3393 sector_t sectors;
3394
3395 if (test_bit(Journal, &rdev->flags))
3396 return -EBUSY;
3397 if (strict_blocks_to_sectors(buf, §ors) < 0)
3398 return -EINVAL;
3399 if (rdev->data_offset != rdev->new_data_offset)
3400 return -EINVAL; /* too confusing */
3401 if (my_mddev->pers && rdev->raid_disk >= 0) {
3402 if (my_mddev->persistent) {
3403 sectors = super_types[my_mddev->major_version].
3404 rdev_size_change(rdev, sectors);
3405 if (!sectors)
3406 return -EBUSY;
3407 } else if (!sectors)
3408 sectors = bdev_nr_sectors(rdev->bdev) -
3409 rdev->data_offset;
3410 if (!my_mddev->pers->resize)
3411 /* Cannot change size for RAID0 or Linear etc */
3412 return -EINVAL;
3413 }
3414 if (sectors < my_mddev->dev_sectors)
3415 return -EINVAL; /* component must fit device */
3416
3417 rdev->sectors = sectors;
3418
3419 /*
3420 * Check that all other rdevs with the same bdev do not overlap. This
3421 * check does not provide a hard guarantee, it just helps avoid
3422 * dangerous mistakes.
3423 */
3424 if (sectors > oldsectors && my_mddev->external &&
3425 md_rdev_overlaps(rdev)) {
3426 /*
3427 * Someone else could have slipped in a size change here, but
3428 * doing so is just silly. We put oldsectors back because we
3429 * know it is safe, and trust userspace not to race with itself.
3430 */
3431 rdev->sectors = oldsectors;
3432 return -EBUSY;
3433 }
3434 return len;
3435 }
3436
3437 static struct rdev_sysfs_entry rdev_size =
3438 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3439
recovery_start_show(struct md_rdev * rdev,char * page)3440 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3441 {
3442 unsigned long long recovery_start = rdev->recovery_offset;
3443
3444 if (test_bit(In_sync, &rdev->flags) ||
3445 recovery_start == MaxSector)
3446 return sprintf(page, "none\n");
3447
3448 return sprintf(page, "%llu\n", recovery_start);
3449 }
3450
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3451 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3452 {
3453 unsigned long long recovery_start;
3454
3455 if (cmd_match(buf, "none"))
3456 recovery_start = MaxSector;
3457 else if (kstrtoull(buf, 10, &recovery_start))
3458 return -EINVAL;
3459
3460 if (rdev->mddev->pers &&
3461 rdev->raid_disk >= 0)
3462 return -EBUSY;
3463
3464 rdev->recovery_offset = recovery_start;
3465 if (recovery_start == MaxSector)
3466 set_bit(In_sync, &rdev->flags);
3467 else
3468 clear_bit(In_sync, &rdev->flags);
3469 return len;
3470 }
3471
3472 static struct rdev_sysfs_entry rdev_recovery_start =
3473 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3474
3475 /* sysfs access to bad-blocks list.
3476 * We present two files.
3477 * 'bad-blocks' lists sector numbers and lengths of ranges that
3478 * are recorded as bad. The list is truncated to fit within
3479 * the one-page limit of sysfs.
3480 * Writing "sector length" to this file adds an acknowledged
3481 * bad block list.
3482 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3483 * been acknowledged. Writing to this file adds bad blocks
3484 * without acknowledging them. This is largely for testing.
3485 */
bb_show(struct md_rdev * rdev,char * page)3486 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3487 {
3488 return badblocks_show(&rdev->badblocks, page, 0);
3489 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3490 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3491 {
3492 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3493 /* Maybe that ack was all we needed */
3494 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3495 wake_up(&rdev->blocked_wait);
3496 return rv;
3497 }
3498 static struct rdev_sysfs_entry rdev_bad_blocks =
3499 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3500
ubb_show(struct md_rdev * rdev,char * page)3501 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3502 {
3503 return badblocks_show(&rdev->badblocks, page, 1);
3504 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3505 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3506 {
3507 return badblocks_store(&rdev->badblocks, page, len, 1);
3508 }
3509 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3510 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3511
3512 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3513 ppl_sector_show(struct md_rdev *rdev, char *page)
3514 {
3515 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3516 }
3517
3518 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3519 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3520 {
3521 unsigned long long sector;
3522
3523 if (kstrtoull(buf, 10, §or) < 0)
3524 return -EINVAL;
3525 if (sector != (sector_t)sector)
3526 return -EINVAL;
3527
3528 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3529 rdev->raid_disk >= 0)
3530 return -EBUSY;
3531
3532 if (rdev->mddev->persistent) {
3533 if (rdev->mddev->major_version == 0)
3534 return -EINVAL;
3535 if ((sector > rdev->sb_start &&
3536 sector - rdev->sb_start > S16_MAX) ||
3537 (sector < rdev->sb_start &&
3538 rdev->sb_start - sector > -S16_MIN))
3539 return -EINVAL;
3540 rdev->ppl.offset = sector - rdev->sb_start;
3541 } else if (!rdev->mddev->external) {
3542 return -EBUSY;
3543 }
3544 rdev->ppl.sector = sector;
3545 return len;
3546 }
3547
3548 static struct rdev_sysfs_entry rdev_ppl_sector =
3549 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3550
3551 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3552 ppl_size_show(struct md_rdev *rdev, char *page)
3553 {
3554 return sprintf(page, "%u\n", rdev->ppl.size);
3555 }
3556
3557 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3558 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3559 {
3560 unsigned int size;
3561
3562 if (kstrtouint(buf, 10, &size) < 0)
3563 return -EINVAL;
3564
3565 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3566 rdev->raid_disk >= 0)
3567 return -EBUSY;
3568
3569 if (rdev->mddev->persistent) {
3570 if (rdev->mddev->major_version == 0)
3571 return -EINVAL;
3572 if (size > U16_MAX)
3573 return -EINVAL;
3574 } else if (!rdev->mddev->external) {
3575 return -EBUSY;
3576 }
3577 rdev->ppl.size = size;
3578 return len;
3579 }
3580
3581 static struct rdev_sysfs_entry rdev_ppl_size =
3582 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3583
3584 static struct attribute *rdev_default_attrs[] = {
3585 &rdev_state.attr,
3586 &rdev_errors.attr,
3587 &rdev_slot.attr,
3588 &rdev_offset.attr,
3589 &rdev_new_offset.attr,
3590 &rdev_size.attr,
3591 &rdev_recovery_start.attr,
3592 &rdev_bad_blocks.attr,
3593 &rdev_unack_bad_blocks.attr,
3594 &rdev_ppl_sector.attr,
3595 &rdev_ppl_size.attr,
3596 NULL,
3597 };
3598 ATTRIBUTE_GROUPS(rdev_default);
3599 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3600 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3601 {
3602 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3603 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3604
3605 if (!entry->show)
3606 return -EIO;
3607 if (!rdev->mddev)
3608 return -ENODEV;
3609 return entry->show(rdev, page);
3610 }
3611
3612 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3613 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3614 const char *page, size_t length)
3615 {
3616 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3617 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3618 struct kernfs_node *kn = NULL;
3619 bool suspend = false;
3620 ssize_t rv;
3621 struct mddev *mddev = READ_ONCE(rdev->mddev);
3622
3623 if (!entry->store)
3624 return -EIO;
3625 if (!capable(CAP_SYS_ADMIN))
3626 return -EACCES;
3627 if (!mddev)
3628 return -ENODEV;
3629
3630 if (entry->store == state_store) {
3631 if (cmd_match(page, "remove"))
3632 kn = sysfs_break_active_protection(kobj, attr);
3633 if (cmd_match(page, "remove") || cmd_match(page, "re-add") ||
3634 cmd_match(page, "writemostly") ||
3635 cmd_match(page, "-writemostly"))
3636 suspend = true;
3637 }
3638
3639 rv = suspend ? mddev_suspend_and_lock(mddev) : mddev_lock(mddev);
3640 if (!rv) {
3641 if (rdev->mddev == NULL)
3642 rv = -ENODEV;
3643 else
3644 rv = entry->store(rdev, page, length);
3645 suspend ? mddev_unlock_and_resume(mddev) : mddev_unlock(mddev);
3646 }
3647
3648 if (kn)
3649 sysfs_unbreak_active_protection(kn);
3650
3651 return rv;
3652 }
3653
rdev_free(struct kobject * ko)3654 static void rdev_free(struct kobject *ko)
3655 {
3656 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3657 kfree(rdev);
3658 }
3659 static const struct sysfs_ops rdev_sysfs_ops = {
3660 .show = rdev_attr_show,
3661 .store = rdev_attr_store,
3662 };
3663 static const struct kobj_type rdev_ktype = {
3664 .release = rdev_free,
3665 .sysfs_ops = &rdev_sysfs_ops,
3666 .default_groups = rdev_default_groups,
3667 };
3668
md_rdev_init(struct md_rdev * rdev)3669 int md_rdev_init(struct md_rdev *rdev)
3670 {
3671 rdev->desc_nr = -1;
3672 rdev->saved_raid_disk = -1;
3673 rdev->raid_disk = -1;
3674 rdev->flags = 0;
3675 rdev->data_offset = 0;
3676 rdev->new_data_offset = 0;
3677 rdev->sb_events = 0;
3678 rdev->last_read_error = 0;
3679 rdev->sb_loaded = 0;
3680 rdev->bb_page = NULL;
3681 atomic_set(&rdev->nr_pending, 0);
3682 atomic_set(&rdev->read_errors, 0);
3683 atomic_set(&rdev->corrected_errors, 0);
3684
3685 INIT_LIST_HEAD(&rdev->same_set);
3686 init_waitqueue_head(&rdev->blocked_wait);
3687
3688 /* Add space to store bad block list.
3689 * This reserves the space even on arrays where it cannot
3690 * be used - I wonder if that matters
3691 */
3692 return badblocks_init(&rdev->badblocks, 0);
3693 }
3694 EXPORT_SYMBOL_GPL(md_rdev_init);
3695
3696 /*
3697 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3698 *
3699 * mark the device faulty if:
3700 *
3701 * - the device is nonexistent (zero size)
3702 * - the device has no valid superblock
3703 *
3704 * a faulty rdev _never_ has rdev->sb set.
3705 */
md_import_device(dev_t newdev,int super_format,int super_minor)3706 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3707 {
3708 struct md_rdev *rdev;
3709 sector_t size;
3710 int err;
3711
3712 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3713 if (!rdev)
3714 return ERR_PTR(-ENOMEM);
3715
3716 err = md_rdev_init(rdev);
3717 if (err)
3718 goto out_free_rdev;
3719 err = alloc_disk_sb(rdev);
3720 if (err)
3721 goto out_clear_rdev;
3722
3723 rdev->bdev_file = bdev_file_open_by_dev(newdev,
3724 BLK_OPEN_READ | BLK_OPEN_WRITE,
3725 super_format == -2 ? &claim_rdev : rdev, NULL);
3726 if (IS_ERR(rdev->bdev_file)) {
3727 pr_warn("md: could not open device unknown-block(%u,%u).\n",
3728 MAJOR(newdev), MINOR(newdev));
3729 err = PTR_ERR(rdev->bdev_file);
3730 goto out_clear_rdev;
3731 }
3732 rdev->bdev = file_bdev(rdev->bdev_file);
3733
3734 kobject_init(&rdev->kobj, &rdev_ktype);
3735
3736 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3737 if (!size) {
3738 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3739 rdev->bdev);
3740 err = -EINVAL;
3741 goto out_blkdev_put;
3742 }
3743
3744 if (super_format >= 0) {
3745 err = super_types[super_format].
3746 load_super(rdev, NULL, super_minor);
3747 if (err == -EINVAL) {
3748 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3749 rdev->bdev,
3750 super_format, super_minor);
3751 goto out_blkdev_put;
3752 }
3753 if (err < 0) {
3754 pr_warn("md: could not read %pg's sb, not importing!\n",
3755 rdev->bdev);
3756 goto out_blkdev_put;
3757 }
3758 }
3759
3760 return rdev;
3761
3762 out_blkdev_put:
3763 fput(rdev->bdev_file);
3764 out_clear_rdev:
3765 md_rdev_clear(rdev);
3766 out_free_rdev:
3767 kfree(rdev);
3768 return ERR_PTR(err);
3769 }
3770
3771 /*
3772 * Check a full RAID array for plausibility
3773 */
3774
analyze_sbs(struct mddev * mddev)3775 static int analyze_sbs(struct mddev *mddev)
3776 {
3777 int i;
3778 struct md_rdev *rdev, *freshest, *tmp;
3779
3780 freshest = NULL;
3781 rdev_for_each_safe(rdev, tmp, mddev)
3782 switch (super_types[mddev->major_version].
3783 load_super(rdev, freshest, mddev->minor_version)) {
3784 case 1:
3785 freshest = rdev;
3786 break;
3787 case 0:
3788 break;
3789 default:
3790 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3791 rdev->bdev);
3792 md_kick_rdev_from_array(rdev);
3793 }
3794
3795 /* Cannot find a valid fresh disk */
3796 if (!freshest) {
3797 pr_warn("md: cannot find a valid disk\n");
3798 return -EINVAL;
3799 }
3800
3801 super_types[mddev->major_version].
3802 validate_super(mddev, NULL/*freshest*/, freshest);
3803
3804 i = 0;
3805 rdev_for_each_safe(rdev, tmp, mddev) {
3806 if (mddev->max_disks &&
3807 (rdev->desc_nr >= mddev->max_disks ||
3808 i > mddev->max_disks)) {
3809 pr_warn("md: %s: %pg: only %d devices permitted\n",
3810 mdname(mddev), rdev->bdev,
3811 mddev->max_disks);
3812 md_kick_rdev_from_array(rdev);
3813 continue;
3814 }
3815 if (rdev != freshest) {
3816 if (super_types[mddev->major_version].
3817 validate_super(mddev, freshest, rdev)) {
3818 pr_warn("md: kicking non-fresh %pg from array!\n",
3819 rdev->bdev);
3820 md_kick_rdev_from_array(rdev);
3821 continue;
3822 }
3823 }
3824 if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3825 !test_bit(Journal, &rdev->flags)) {
3826 rdev->raid_disk = -1;
3827 clear_bit(In_sync, &rdev->flags);
3828 }
3829 }
3830
3831 return 0;
3832 }
3833
3834 /* Read a fixed-point number.
3835 * Numbers in sysfs attributes should be in "standard" units where
3836 * possible, so time should be in seconds.
3837 * However we internally use a a much smaller unit such as
3838 * milliseconds or jiffies.
3839 * This function takes a decimal number with a possible fractional
3840 * component, and produces an integer which is the result of
3841 * multiplying that number by 10^'scale'.
3842 * all without any floating-point arithmetic.
3843 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3844 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3845 {
3846 unsigned long result = 0;
3847 long decimals = -1;
3848 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3849 if (*cp == '.')
3850 decimals = 0;
3851 else if (decimals < scale) {
3852 unsigned int value;
3853 value = *cp - '0';
3854 result = result * 10 + value;
3855 if (decimals >= 0)
3856 decimals++;
3857 }
3858 cp++;
3859 }
3860 if (*cp == '\n')
3861 cp++;
3862 if (*cp)
3863 return -EINVAL;
3864 if (decimals < 0)
3865 decimals = 0;
3866 *res = result * int_pow(10, scale - decimals);
3867 return 0;
3868 }
3869
3870 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3871 safe_delay_show(struct mddev *mddev, char *page)
3872 {
3873 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3874
3875 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3876 }
3877 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3878 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3879 {
3880 unsigned long msec;
3881
3882 if (mddev_is_clustered(mddev)) {
3883 pr_warn("md: Safemode is disabled for clustered mode\n");
3884 return -EINVAL;
3885 }
3886
3887 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3888 return -EINVAL;
3889 if (msec == 0)
3890 mddev->safemode_delay = 0;
3891 else {
3892 unsigned long old_delay = mddev->safemode_delay;
3893 unsigned long new_delay = (msec*HZ)/1000;
3894
3895 if (new_delay == 0)
3896 new_delay = 1;
3897 mddev->safemode_delay = new_delay;
3898 if (new_delay < old_delay || old_delay == 0)
3899 mod_timer(&mddev->safemode_timer, jiffies+1);
3900 }
3901 return len;
3902 }
3903 static struct md_sysfs_entry md_safe_delay =
3904 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3905
3906 static ssize_t
level_show(struct mddev * mddev,char * page)3907 level_show(struct mddev *mddev, char *page)
3908 {
3909 struct md_personality *p;
3910 int ret;
3911 spin_lock(&mddev->lock);
3912 p = mddev->pers;
3913 if (p)
3914 ret = sprintf(page, "%s\n", p->head.name);
3915 else if (mddev->clevel[0])
3916 ret = sprintf(page, "%s\n", mddev->clevel);
3917 else if (mddev->level != LEVEL_NONE)
3918 ret = sprintf(page, "%d\n", mddev->level);
3919 else
3920 ret = 0;
3921 spin_unlock(&mddev->lock);
3922 return ret;
3923 }
3924
3925 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3926 level_store(struct mddev *mddev, const char *buf, size_t len)
3927 {
3928 char clevel[16];
3929 ssize_t rv;
3930 size_t slen = len;
3931 struct md_personality *pers, *oldpers;
3932 long level;
3933 void *priv, *oldpriv;
3934 struct md_rdev *rdev;
3935
3936 if (slen == 0 || slen >= sizeof(clevel))
3937 return -EINVAL;
3938
3939 rv = mddev_suspend_and_lock(mddev);
3940 if (rv)
3941 return rv;
3942
3943 if (mddev->pers == NULL) {
3944 memcpy(mddev->clevel, buf, slen);
3945 if (mddev->clevel[slen-1] == '\n')
3946 slen--;
3947 mddev->clevel[slen] = 0;
3948 mddev->level = LEVEL_NONE;
3949 rv = len;
3950 goto out_unlock;
3951 }
3952 rv = -EROFS;
3953 if (!md_is_rdwr(mddev))
3954 goto out_unlock;
3955
3956 /* request to change the personality. Need to ensure:
3957 * - array is not engaged in resync/recovery/reshape
3958 * - old personality can be suspended
3959 * - new personality will access other array.
3960 */
3961
3962 rv = -EBUSY;
3963 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3964 mddev->reshape_position != MaxSector ||
3965 mddev->sysfs_active)
3966 goto out_unlock;
3967
3968 rv = -EINVAL;
3969 if (!mddev->pers->quiesce) {
3970 pr_warn("md: %s: %s does not support online personality change\n",
3971 mdname(mddev), mddev->pers->head.name);
3972 goto out_unlock;
3973 }
3974
3975 /* Now find the new personality */
3976 memcpy(clevel, buf, slen);
3977 if (clevel[slen-1] == '\n')
3978 slen--;
3979 clevel[slen] = 0;
3980 if (kstrtol(clevel, 10, &level))
3981 level = LEVEL_NONE;
3982
3983 if (request_module("md-%s", clevel) != 0)
3984 request_module("md-level-%s", clevel);
3985 pers = get_pers(level, clevel);
3986 if (!pers) {
3987 rv = -EINVAL;
3988 goto out_unlock;
3989 }
3990
3991 if (pers == mddev->pers) {
3992 /* Nothing to do! */
3993 put_pers(pers);
3994 rv = len;
3995 goto out_unlock;
3996 }
3997 if (!pers->takeover) {
3998 put_pers(pers);
3999 pr_warn("md: %s: %s does not support personality takeover\n",
4000 mdname(mddev), clevel);
4001 rv = -EINVAL;
4002 goto out_unlock;
4003 }
4004
4005 rdev_for_each(rdev, mddev)
4006 rdev->new_raid_disk = rdev->raid_disk;
4007
4008 /* ->takeover must set new_* and/or delta_disks
4009 * if it succeeds, and may set them when it fails.
4010 */
4011 priv = pers->takeover(mddev);
4012 if (IS_ERR(priv)) {
4013 mddev->new_level = mddev->level;
4014 mddev->new_layout = mddev->layout;
4015 mddev->new_chunk_sectors = mddev->chunk_sectors;
4016 mddev->raid_disks -= mddev->delta_disks;
4017 mddev->delta_disks = 0;
4018 mddev->reshape_backwards = 0;
4019 put_pers(pers);
4020 pr_warn("md: %s: %s would not accept array\n",
4021 mdname(mddev), clevel);
4022 rv = PTR_ERR(priv);
4023 goto out_unlock;
4024 }
4025
4026 /* Looks like we have a winner */
4027 mddev_detach(mddev);
4028
4029 spin_lock(&mddev->lock);
4030 oldpers = mddev->pers;
4031 oldpriv = mddev->private;
4032 mddev->pers = pers;
4033 mddev->private = priv;
4034 strscpy(mddev->clevel, pers->head.name, sizeof(mddev->clevel));
4035 mddev->level = mddev->new_level;
4036 mddev->layout = mddev->new_layout;
4037 mddev->chunk_sectors = mddev->new_chunk_sectors;
4038 mddev->delta_disks = 0;
4039 mddev->reshape_backwards = 0;
4040 mddev->degraded = 0;
4041 spin_unlock(&mddev->lock);
4042
4043 if (oldpers->sync_request == NULL &&
4044 mddev->external) {
4045 /* We are converting from a no-redundancy array
4046 * to a redundancy array and metadata is managed
4047 * externally so we need to be sure that writes
4048 * won't block due to a need to transition
4049 * clean->dirty
4050 * until external management is started.
4051 */
4052 mddev->in_sync = 0;
4053 mddev->safemode_delay = 0;
4054 mddev->safemode = 0;
4055 }
4056
4057 oldpers->free(mddev, oldpriv);
4058
4059 if (oldpers->sync_request == NULL &&
4060 pers->sync_request != NULL) {
4061 /* need to add the md_redundancy_group */
4062 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4063 pr_warn("md: cannot register extra attributes for %s\n",
4064 mdname(mddev));
4065 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4066 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4067 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4068 }
4069 if (oldpers->sync_request != NULL &&
4070 pers->sync_request == NULL) {
4071 /* need to remove the md_redundancy_group */
4072 if (mddev->to_remove == NULL)
4073 mddev->to_remove = &md_redundancy_group;
4074 }
4075
4076 put_pers(oldpers);
4077
4078 rdev_for_each(rdev, mddev) {
4079 if (rdev->raid_disk < 0)
4080 continue;
4081 if (rdev->new_raid_disk >= mddev->raid_disks)
4082 rdev->new_raid_disk = -1;
4083 if (rdev->new_raid_disk == rdev->raid_disk)
4084 continue;
4085 sysfs_unlink_rdev(mddev, rdev);
4086 }
4087 rdev_for_each(rdev, mddev) {
4088 if (rdev->raid_disk < 0)
4089 continue;
4090 if (rdev->new_raid_disk == rdev->raid_disk)
4091 continue;
4092 rdev->raid_disk = rdev->new_raid_disk;
4093 if (rdev->raid_disk < 0)
4094 clear_bit(In_sync, &rdev->flags);
4095 else {
4096 if (sysfs_link_rdev(mddev, rdev))
4097 pr_warn("md: cannot register rd%d for %s after level change\n",
4098 rdev->raid_disk, mdname(mddev));
4099 }
4100 }
4101
4102 if (pers->sync_request == NULL) {
4103 /* this is now an array without redundancy, so
4104 * it must always be in_sync
4105 */
4106 mddev->in_sync = 1;
4107 timer_delete_sync(&mddev->safemode_timer);
4108 }
4109 pers->run(mddev);
4110 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4111 if (!mddev->thread)
4112 md_update_sb(mddev, 1);
4113 sysfs_notify_dirent_safe(mddev->sysfs_level);
4114 md_new_event();
4115 rv = len;
4116 out_unlock:
4117 mddev_unlock_and_resume(mddev);
4118 return rv;
4119 }
4120
4121 static struct md_sysfs_entry md_level =
4122 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4123
4124 static ssize_t
new_level_show(struct mddev * mddev,char * page)4125 new_level_show(struct mddev *mddev, char *page)
4126 {
4127 return sprintf(page, "%d\n", mddev->new_level);
4128 }
4129
4130 static ssize_t
new_level_store(struct mddev * mddev,const char * buf,size_t len)4131 new_level_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 unsigned int n;
4134 int err;
4135
4136 err = kstrtouint(buf, 10, &n);
4137 if (err < 0)
4138 return err;
4139 err = mddev_lock(mddev);
4140 if (err)
4141 return err;
4142
4143 mddev->new_level = n;
4144 md_update_sb(mddev, 1);
4145
4146 mddev_unlock(mddev);
4147 return len;
4148 }
4149 static struct md_sysfs_entry md_new_level =
4150 __ATTR(new_level, 0664, new_level_show, new_level_store);
4151
4152 static ssize_t
layout_show(struct mddev * mddev,char * page)4153 layout_show(struct mddev *mddev, char *page)
4154 {
4155 /* just a number, not meaningful for all levels */
4156 if (mddev->reshape_position != MaxSector &&
4157 mddev->layout != mddev->new_layout)
4158 return sprintf(page, "%d (%d)\n",
4159 mddev->new_layout, mddev->layout);
4160 return sprintf(page, "%d\n", mddev->layout);
4161 }
4162
4163 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4164 layout_store(struct mddev *mddev, const char *buf, size_t len)
4165 {
4166 unsigned int n;
4167 int err;
4168
4169 err = kstrtouint(buf, 10, &n);
4170 if (err < 0)
4171 return err;
4172 err = mddev_lock(mddev);
4173 if (err)
4174 return err;
4175
4176 if (mddev->pers) {
4177 if (mddev->pers->check_reshape == NULL)
4178 err = -EBUSY;
4179 else if (!md_is_rdwr(mddev))
4180 err = -EROFS;
4181 else {
4182 mddev->new_layout = n;
4183 err = mddev->pers->check_reshape(mddev);
4184 if (err)
4185 mddev->new_layout = mddev->layout;
4186 }
4187 } else {
4188 mddev->new_layout = n;
4189 if (mddev->reshape_position == MaxSector)
4190 mddev->layout = n;
4191 }
4192 mddev_unlock(mddev);
4193 return err ?: len;
4194 }
4195 static struct md_sysfs_entry md_layout =
4196 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4197
4198 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4199 raid_disks_show(struct mddev *mddev, char *page)
4200 {
4201 if (mddev->raid_disks == 0)
4202 return 0;
4203 if (mddev->reshape_position != MaxSector &&
4204 mddev->delta_disks != 0)
4205 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4206 mddev->raid_disks - mddev->delta_disks);
4207 return sprintf(page, "%d\n", mddev->raid_disks);
4208 }
4209
4210 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4211
4212 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4213 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4214 {
4215 unsigned int n;
4216 int err;
4217
4218 err = kstrtouint(buf, 10, &n);
4219 if (err < 0)
4220 return err;
4221
4222 err = mddev_lock(mddev);
4223 if (err)
4224 return err;
4225 if (mddev->pers)
4226 err = update_raid_disks(mddev, n);
4227 else if (mddev->reshape_position != MaxSector) {
4228 struct md_rdev *rdev;
4229 int olddisks = mddev->raid_disks - mddev->delta_disks;
4230
4231 err = -EINVAL;
4232 rdev_for_each(rdev, mddev) {
4233 if (olddisks < n &&
4234 rdev->data_offset < rdev->new_data_offset)
4235 goto out_unlock;
4236 if (olddisks > n &&
4237 rdev->data_offset > rdev->new_data_offset)
4238 goto out_unlock;
4239 }
4240 err = 0;
4241 mddev->delta_disks = n - olddisks;
4242 mddev->raid_disks = n;
4243 mddev->reshape_backwards = (mddev->delta_disks < 0);
4244 } else
4245 mddev->raid_disks = n;
4246 out_unlock:
4247 mddev_unlock(mddev);
4248 return err ? err : len;
4249 }
4250 static struct md_sysfs_entry md_raid_disks =
4251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4252
4253 static ssize_t
uuid_show(struct mddev * mddev,char * page)4254 uuid_show(struct mddev *mddev, char *page)
4255 {
4256 return sprintf(page, "%pU\n", mddev->uuid);
4257 }
4258 static struct md_sysfs_entry md_uuid =
4259 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4260
4261 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4262 chunk_size_show(struct mddev *mddev, char *page)
4263 {
4264 if (mddev->reshape_position != MaxSector &&
4265 mddev->chunk_sectors != mddev->new_chunk_sectors)
4266 return sprintf(page, "%d (%d)\n",
4267 mddev->new_chunk_sectors << 9,
4268 mddev->chunk_sectors << 9);
4269 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4270 }
4271
4272 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4273 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4274 {
4275 unsigned long n;
4276 int err;
4277
4278 err = kstrtoul(buf, 10, &n);
4279 if (err < 0)
4280 return err;
4281
4282 err = mddev_lock(mddev);
4283 if (err)
4284 return err;
4285 if (mddev->pers) {
4286 if (mddev->pers->check_reshape == NULL)
4287 err = -EBUSY;
4288 else if (!md_is_rdwr(mddev))
4289 err = -EROFS;
4290 else {
4291 mddev->new_chunk_sectors = n >> 9;
4292 err = mddev->pers->check_reshape(mddev);
4293 if (err)
4294 mddev->new_chunk_sectors = mddev->chunk_sectors;
4295 }
4296 } else {
4297 mddev->new_chunk_sectors = n >> 9;
4298 if (mddev->reshape_position == MaxSector)
4299 mddev->chunk_sectors = n >> 9;
4300 }
4301 mddev_unlock(mddev);
4302 return err ?: len;
4303 }
4304 static struct md_sysfs_entry md_chunk_size =
4305 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4306
4307 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4308 resync_start_show(struct mddev *mddev, char *page)
4309 {
4310 if (mddev->resync_offset == MaxSector)
4311 return sprintf(page, "none\n");
4312 return sprintf(page, "%llu\n", (unsigned long long)mddev->resync_offset);
4313 }
4314
4315 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4316 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4317 {
4318 unsigned long long n;
4319 int err;
4320
4321 if (cmd_match(buf, "none"))
4322 n = MaxSector;
4323 else {
4324 err = kstrtoull(buf, 10, &n);
4325 if (err < 0)
4326 return err;
4327 if (n != (sector_t)n)
4328 return -EINVAL;
4329 }
4330
4331 err = mddev_lock(mddev);
4332 if (err)
4333 return err;
4334 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4335 err = -EBUSY;
4336
4337 if (!err) {
4338 mddev->resync_offset = n;
4339 if (mddev->pers)
4340 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4341 }
4342 mddev_unlock(mddev);
4343 return err ?: len;
4344 }
4345 static struct md_sysfs_entry md_resync_start =
4346 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4347 resync_start_show, resync_start_store);
4348
4349 /*
4350 * The array state can be:
4351 *
4352 * clear
4353 * No devices, no size, no level
4354 * Equivalent to STOP_ARRAY ioctl
4355 * inactive
4356 * May have some settings, but array is not active
4357 * all IO results in error
4358 * When written, doesn't tear down array, but just stops it
4359 * suspended (not supported yet)
4360 * All IO requests will block. The array can be reconfigured.
4361 * Writing this, if accepted, will block until array is quiescent
4362 * readonly
4363 * no resync can happen. no superblocks get written.
4364 * write requests fail
4365 * read-auto
4366 * like readonly, but behaves like 'clean' on a write request.
4367 *
4368 * clean - no pending writes, but otherwise active.
4369 * When written to inactive array, starts without resync
4370 * If a write request arrives then
4371 * if metadata is known, mark 'dirty' and switch to 'active'.
4372 * if not known, block and switch to write-pending
4373 * If written to an active array that has pending writes, then fails.
4374 * active
4375 * fully active: IO and resync can be happening.
4376 * When written to inactive array, starts with resync
4377 *
4378 * write-pending
4379 * clean, but writes are blocked waiting for 'active' to be written.
4380 *
4381 * active-idle
4382 * like active, but no writes have been seen for a while (100msec).
4383 *
4384 * broken
4385 * Array is failed. It's useful because mounted-arrays aren't stopped
4386 * when array is failed, so this state will at least alert the user that
4387 * something is wrong.
4388 */
4389 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4390 write_pending, active_idle, broken, bad_word};
4391 static char *array_states[] = {
4392 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4393 "write-pending", "active-idle", "broken", NULL };
4394
match_word(const char * word,char ** list)4395 static int match_word(const char *word, char **list)
4396 {
4397 int n;
4398 for (n=0; list[n]; n++)
4399 if (cmd_match(word, list[n]))
4400 break;
4401 return n;
4402 }
4403
4404 static ssize_t
array_state_show(struct mddev * mddev,char * page)4405 array_state_show(struct mddev *mddev, char *page)
4406 {
4407 enum array_state st = inactive;
4408
4409 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4410 switch(mddev->ro) {
4411 case MD_RDONLY:
4412 st = readonly;
4413 break;
4414 case MD_AUTO_READ:
4415 st = read_auto;
4416 break;
4417 case MD_RDWR:
4418 spin_lock(&mddev->lock);
4419 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4420 st = write_pending;
4421 else if (mddev->in_sync)
4422 st = clean;
4423 else if (mddev->safemode)
4424 st = active_idle;
4425 else
4426 st = active;
4427 spin_unlock(&mddev->lock);
4428 }
4429
4430 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4431 st = broken;
4432 } else {
4433 if (list_empty(&mddev->disks) &&
4434 mddev->raid_disks == 0 &&
4435 mddev->dev_sectors == 0)
4436 st = clear;
4437 else
4438 st = inactive;
4439 }
4440 return sprintf(page, "%s\n", array_states[st]);
4441 }
4442
4443 static int do_md_stop(struct mddev *mddev, int ro);
4444 static int md_set_readonly(struct mddev *mddev);
4445 static int restart_array(struct mddev *mddev);
4446
4447 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4448 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4449 {
4450 int err = 0;
4451 enum array_state st = match_word(buf, array_states);
4452
4453 /* No lock dependent actions */
4454 switch (st) {
4455 case suspended: /* not supported yet */
4456 case write_pending: /* cannot be set */
4457 case active_idle: /* cannot be set */
4458 case broken: /* cannot be set */
4459 case bad_word:
4460 return -EINVAL;
4461 case clear:
4462 case readonly:
4463 case inactive:
4464 case read_auto:
4465 if (!mddev->pers || !md_is_rdwr(mddev))
4466 break;
4467 /* write sysfs will not open mddev and opener should be 0 */
4468 err = mddev_set_closing_and_sync_blockdev(mddev, 0);
4469 if (err)
4470 return err;
4471 break;
4472 default:
4473 break;
4474 }
4475
4476 if (mddev->pers && (st == active || st == clean) &&
4477 mddev->ro != MD_RDONLY) {
4478 /* don't take reconfig_mutex when toggling between
4479 * clean and active
4480 */
4481 spin_lock(&mddev->lock);
4482 if (st == active) {
4483 restart_array(mddev);
4484 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4485 md_wakeup_thread(mddev->thread);
4486 wake_up(&mddev->sb_wait);
4487 } else /* st == clean */ {
4488 restart_array(mddev);
4489 if (!set_in_sync(mddev))
4490 err = -EBUSY;
4491 }
4492 if (!err)
4493 sysfs_notify_dirent_safe(mddev->sysfs_state);
4494 spin_unlock(&mddev->lock);
4495 return err ?: len;
4496 }
4497 err = mddev_lock(mddev);
4498 if (err)
4499 return err;
4500
4501 switch (st) {
4502 case inactive:
4503 /* stop an active array, return 0 otherwise */
4504 if (mddev->pers)
4505 err = do_md_stop(mddev, 2);
4506 break;
4507 case clear:
4508 err = do_md_stop(mddev, 0);
4509 break;
4510 case readonly:
4511 if (mddev->pers)
4512 err = md_set_readonly(mddev);
4513 else {
4514 mddev->ro = MD_RDONLY;
4515 set_disk_ro(mddev->gendisk, 1);
4516 err = do_md_run(mddev);
4517 }
4518 break;
4519 case read_auto:
4520 if (mddev->pers) {
4521 if (md_is_rdwr(mddev))
4522 err = md_set_readonly(mddev);
4523 else if (mddev->ro == MD_RDONLY)
4524 err = restart_array(mddev);
4525 if (err == 0) {
4526 mddev->ro = MD_AUTO_READ;
4527 set_disk_ro(mddev->gendisk, 0);
4528 }
4529 } else {
4530 mddev->ro = MD_AUTO_READ;
4531 err = do_md_run(mddev);
4532 }
4533 break;
4534 case clean:
4535 if (mddev->pers) {
4536 err = restart_array(mddev);
4537 if (err)
4538 break;
4539 spin_lock(&mddev->lock);
4540 if (!set_in_sync(mddev))
4541 err = -EBUSY;
4542 spin_unlock(&mddev->lock);
4543 } else
4544 err = -EINVAL;
4545 break;
4546 case active:
4547 if (mddev->pers) {
4548 err = restart_array(mddev);
4549 if (err)
4550 break;
4551 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4552 wake_up(&mddev->sb_wait);
4553 err = 0;
4554 } else {
4555 mddev->ro = MD_RDWR;
4556 set_disk_ro(mddev->gendisk, 0);
4557 err = do_md_run(mddev);
4558 }
4559 break;
4560 default:
4561 err = -EINVAL;
4562 break;
4563 }
4564
4565 if (!err) {
4566 if (mddev->hold_active == UNTIL_IOCTL)
4567 mddev->hold_active = 0;
4568 sysfs_notify_dirent_safe(mddev->sysfs_state);
4569 }
4570 mddev_unlock(mddev);
4571
4572 if (st == readonly || st == read_auto || st == inactive ||
4573 (err && st == clear))
4574 clear_bit(MD_CLOSING, &mddev->flags);
4575
4576 return err ?: len;
4577 }
4578 static struct md_sysfs_entry md_array_state =
4579 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4580
4581 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4582 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4583 return sprintf(page, "%d\n",
4584 atomic_read(&mddev->max_corr_read_errors));
4585 }
4586
4587 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4588 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4589 {
4590 unsigned int n;
4591 int rv;
4592
4593 rv = kstrtouint(buf, 10, &n);
4594 if (rv < 0)
4595 return rv;
4596 if (n > INT_MAX)
4597 return -EINVAL;
4598 atomic_set(&mddev->max_corr_read_errors, n);
4599 return len;
4600 }
4601
4602 static struct md_sysfs_entry max_corr_read_errors =
4603 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4604 max_corrected_read_errors_store);
4605
4606 static ssize_t
null_show(struct mddev * mddev,char * page)4607 null_show(struct mddev *mddev, char *page)
4608 {
4609 return -EINVAL;
4610 }
4611
4612 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4613 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4614 {
4615 /* buf must be %d:%d\n? giving major and minor numbers */
4616 /* The new device is added to the array.
4617 * If the array has a persistent superblock, we read the
4618 * superblock to initialise info and check validity.
4619 * Otherwise, only checking done is that in bind_rdev_to_array,
4620 * which mainly checks size.
4621 */
4622 char *e;
4623 int major = simple_strtoul(buf, &e, 10);
4624 int minor;
4625 dev_t dev;
4626 struct md_rdev *rdev;
4627 int err;
4628
4629 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4630 return -EINVAL;
4631 minor = simple_strtoul(e+1, &e, 10);
4632 if (*e && *e != '\n')
4633 return -EINVAL;
4634 dev = MKDEV(major, minor);
4635 if (major != MAJOR(dev) ||
4636 minor != MINOR(dev))
4637 return -EOVERFLOW;
4638
4639 err = mddev_suspend_and_lock(mddev);
4640 if (err)
4641 return err;
4642 if (mddev->persistent) {
4643 rdev = md_import_device(dev, mddev->major_version,
4644 mddev->minor_version);
4645 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4646 struct md_rdev *rdev0
4647 = list_entry(mddev->disks.next,
4648 struct md_rdev, same_set);
4649 err = super_types[mddev->major_version]
4650 .load_super(rdev, rdev0, mddev->minor_version);
4651 if (err < 0)
4652 goto out;
4653 }
4654 } else if (mddev->external)
4655 rdev = md_import_device(dev, -2, -1);
4656 else
4657 rdev = md_import_device(dev, -1, -1);
4658
4659 if (IS_ERR(rdev)) {
4660 mddev_unlock_and_resume(mddev);
4661 return PTR_ERR(rdev);
4662 }
4663 err = bind_rdev_to_array(rdev, mddev);
4664 out:
4665 if (err)
4666 export_rdev(rdev, mddev);
4667 mddev_unlock_and_resume(mddev);
4668 if (!err)
4669 md_new_event();
4670 return err ? err : len;
4671 }
4672
4673 static struct md_sysfs_entry md_new_device =
4674 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4675
4676 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4677 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4678 {
4679 char *end;
4680 unsigned long chunk, end_chunk;
4681 int err;
4682
4683 err = mddev_lock(mddev);
4684 if (err)
4685 return err;
4686 if (!mddev->bitmap)
4687 goto out;
4688 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4689 while (*buf) {
4690 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4691 if (buf == end)
4692 break;
4693
4694 if (*end == '-') { /* range */
4695 buf = end + 1;
4696 end_chunk = simple_strtoul(buf, &end, 0);
4697 if (buf == end)
4698 break;
4699 }
4700
4701 if (*end && !isspace(*end))
4702 break;
4703
4704 mddev->bitmap_ops->dirty_bits(mddev, chunk, end_chunk);
4705 buf = skip_spaces(end);
4706 }
4707 mddev->bitmap_ops->unplug(mddev, true); /* flush the bits to disk */
4708 out:
4709 mddev_unlock(mddev);
4710 return len;
4711 }
4712
4713 static struct md_sysfs_entry md_bitmap =
4714 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4715
4716 static ssize_t
size_show(struct mddev * mddev,char * page)4717 size_show(struct mddev *mddev, char *page)
4718 {
4719 return sprintf(page, "%llu\n",
4720 (unsigned long long)mddev->dev_sectors / 2);
4721 }
4722
4723 static int update_size(struct mddev *mddev, sector_t num_sectors);
4724
4725 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4726 size_store(struct mddev *mddev, const char *buf, size_t len)
4727 {
4728 /* If array is inactive, we can reduce the component size, but
4729 * not increase it (except from 0).
4730 * If array is active, we can try an on-line resize
4731 */
4732 sector_t sectors;
4733 int err = strict_blocks_to_sectors(buf, §ors);
4734
4735 if (err < 0)
4736 return err;
4737 err = mddev_lock(mddev);
4738 if (err)
4739 return err;
4740 if (mddev->pers) {
4741 err = update_size(mddev, sectors);
4742 if (err == 0)
4743 md_update_sb(mddev, 1);
4744 } else {
4745 if (mddev->dev_sectors == 0 ||
4746 mddev->dev_sectors > sectors)
4747 mddev->dev_sectors = sectors;
4748 else
4749 err = -ENOSPC;
4750 }
4751 mddev_unlock(mddev);
4752 return err ? err : len;
4753 }
4754
4755 static struct md_sysfs_entry md_size =
4756 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4757
4758 /* Metadata version.
4759 * This is one of
4760 * 'none' for arrays with no metadata (good luck...)
4761 * 'external' for arrays with externally managed metadata,
4762 * or N.M for internally known formats
4763 */
4764 static ssize_t
metadata_show(struct mddev * mddev,char * page)4765 metadata_show(struct mddev *mddev, char *page)
4766 {
4767 if (mddev->persistent)
4768 return sprintf(page, "%d.%d\n",
4769 mddev->major_version, mddev->minor_version);
4770 else if (mddev->external)
4771 return sprintf(page, "external:%s\n", mddev->metadata_type);
4772 else
4773 return sprintf(page, "none\n");
4774 }
4775
4776 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4777 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4778 {
4779 int major, minor;
4780 char *e;
4781 int err;
4782 /* Changing the details of 'external' metadata is
4783 * always permitted. Otherwise there must be
4784 * no devices attached to the array.
4785 */
4786
4787 err = mddev_lock(mddev);
4788 if (err)
4789 return err;
4790 err = -EBUSY;
4791 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4792 ;
4793 else if (!list_empty(&mddev->disks))
4794 goto out_unlock;
4795
4796 err = 0;
4797 if (cmd_match(buf, "none")) {
4798 mddev->persistent = 0;
4799 mddev->external = 0;
4800 mddev->major_version = 0;
4801 mddev->minor_version = 90;
4802 goto out_unlock;
4803 }
4804 if (strncmp(buf, "external:", 9) == 0) {
4805 size_t namelen = len-9;
4806 if (namelen >= sizeof(mddev->metadata_type))
4807 namelen = sizeof(mddev->metadata_type)-1;
4808 memcpy(mddev->metadata_type, buf+9, namelen);
4809 mddev->metadata_type[namelen] = 0;
4810 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4811 mddev->metadata_type[--namelen] = 0;
4812 mddev->persistent = 0;
4813 mddev->external = 1;
4814 mddev->major_version = 0;
4815 mddev->minor_version = 90;
4816 goto out_unlock;
4817 }
4818 major = simple_strtoul(buf, &e, 10);
4819 err = -EINVAL;
4820 if (e==buf || *e != '.')
4821 goto out_unlock;
4822 buf = e+1;
4823 minor = simple_strtoul(buf, &e, 10);
4824 if (e==buf || (*e && *e != '\n') )
4825 goto out_unlock;
4826 err = -ENOENT;
4827 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4828 goto out_unlock;
4829 mddev->major_version = major;
4830 mddev->minor_version = minor;
4831 mddev->persistent = 1;
4832 mddev->external = 0;
4833 err = 0;
4834 out_unlock:
4835 mddev_unlock(mddev);
4836 return err ?: len;
4837 }
4838
4839 static struct md_sysfs_entry md_metadata =
4840 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4841
rdev_needs_recovery(struct md_rdev * rdev,sector_t sectors)4842 static bool rdev_needs_recovery(struct md_rdev *rdev, sector_t sectors)
4843 {
4844 return rdev->raid_disk >= 0 &&
4845 !test_bit(Journal, &rdev->flags) &&
4846 !test_bit(Faulty, &rdev->flags) &&
4847 !test_bit(In_sync, &rdev->flags) &&
4848 rdev->recovery_offset < sectors;
4849 }
4850
md_get_active_sync_action(struct mddev * mddev)4851 static enum sync_action md_get_active_sync_action(struct mddev *mddev)
4852 {
4853 struct md_rdev *rdev;
4854 bool is_recover = false;
4855
4856 if (mddev->resync_offset < MaxSector)
4857 return ACTION_RESYNC;
4858
4859 if (mddev->reshape_position != MaxSector)
4860 return ACTION_RESHAPE;
4861
4862 rcu_read_lock();
4863 rdev_for_each_rcu(rdev, mddev) {
4864 if (rdev_needs_recovery(rdev, MaxSector)) {
4865 is_recover = true;
4866 break;
4867 }
4868 }
4869 rcu_read_unlock();
4870
4871 return is_recover ? ACTION_RECOVER : ACTION_IDLE;
4872 }
4873
md_sync_action(struct mddev * mddev)4874 enum sync_action md_sync_action(struct mddev *mddev)
4875 {
4876 unsigned long recovery = mddev->recovery;
4877 enum sync_action active_action;
4878
4879 /*
4880 * frozen has the highest priority, means running sync_thread will be
4881 * stopped immediately, and no new sync_thread can start.
4882 */
4883 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4884 return ACTION_FROZEN;
4885
4886 /*
4887 * read-only array can't register sync_thread, and it can only
4888 * add/remove spares.
4889 */
4890 if (!md_is_rdwr(mddev))
4891 return ACTION_IDLE;
4892
4893 /*
4894 * idle means no sync_thread is running, and no new sync_thread is
4895 * requested.
4896 */
4897 if (!test_bit(MD_RECOVERY_RUNNING, &recovery) &&
4898 !test_bit(MD_RECOVERY_NEEDED, &recovery))
4899 return ACTION_IDLE;
4900
4901 /*
4902 * Check if any sync operation (resync/recover/reshape) is
4903 * currently active. This ensures that only one sync operation
4904 * can run at a time. Returns the type of active operation, or
4905 * ACTION_IDLE if none are active.
4906 */
4907 active_action = md_get_active_sync_action(mddev);
4908 if (active_action != ACTION_IDLE)
4909 return active_action;
4910
4911 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4912 return ACTION_RESHAPE;
4913
4914 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4915 return ACTION_RECOVER;
4916
4917 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4918 /*
4919 * MD_RECOVERY_CHECK must be paired with
4920 * MD_RECOVERY_REQUESTED.
4921 */
4922 if (test_bit(MD_RECOVERY_CHECK, &recovery))
4923 return ACTION_CHECK;
4924 if (test_bit(MD_RECOVERY_REQUESTED, &recovery))
4925 return ACTION_REPAIR;
4926 return ACTION_RESYNC;
4927 }
4928
4929 /*
4930 * MD_RECOVERY_NEEDED or MD_RECOVERY_RUNNING is set, however, no
4931 * sync_action is specified.
4932 */
4933 return ACTION_IDLE;
4934 }
4935
md_sync_action_by_name(const char * page)4936 enum sync_action md_sync_action_by_name(const char *page)
4937 {
4938 enum sync_action action;
4939
4940 for (action = 0; action < NR_SYNC_ACTIONS; ++action) {
4941 if (cmd_match(page, action_name[action]))
4942 return action;
4943 }
4944
4945 return NR_SYNC_ACTIONS;
4946 }
4947
md_sync_action_name(enum sync_action action)4948 const char *md_sync_action_name(enum sync_action action)
4949 {
4950 return action_name[action];
4951 }
4952
4953 static ssize_t
action_show(struct mddev * mddev,char * page)4954 action_show(struct mddev *mddev, char *page)
4955 {
4956 enum sync_action action = md_sync_action(mddev);
4957
4958 return sprintf(page, "%s\n", md_sync_action_name(action));
4959 }
4960
4961 /**
4962 * stop_sync_thread() - wait for sync_thread to stop if it's running.
4963 * @mddev: the array.
4964 * @locked: if set, reconfig_mutex will still be held after this function
4965 * return; if not set, reconfig_mutex will be released after this
4966 * function return.
4967 */
stop_sync_thread(struct mddev * mddev,bool locked)4968 static void stop_sync_thread(struct mddev *mddev, bool locked)
4969 {
4970 int sync_seq = atomic_read(&mddev->sync_seq);
4971
4972 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4973 if (!locked)
4974 mddev_unlock(mddev);
4975 return;
4976 }
4977
4978 mddev_unlock(mddev);
4979
4980 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4981 /*
4982 * Thread might be blocked waiting for metadata update which will now
4983 * never happen
4984 */
4985 md_wakeup_thread_directly(mddev->sync_thread);
4986 if (work_pending(&mddev->sync_work))
4987 flush_work(&mddev->sync_work);
4988
4989 wait_event(resync_wait,
4990 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4991 (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery) &&
4992 sync_seq != atomic_read(&mddev->sync_seq)));
4993
4994 if (locked)
4995 mddev_lock_nointr(mddev);
4996 }
4997
md_idle_sync_thread(struct mddev * mddev)4998 void md_idle_sync_thread(struct mddev *mddev)
4999 {
5000 lockdep_assert_held(&mddev->reconfig_mutex);
5001
5002 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5003 stop_sync_thread(mddev, true);
5004 }
5005 EXPORT_SYMBOL_GPL(md_idle_sync_thread);
5006
md_frozen_sync_thread(struct mddev * mddev)5007 void md_frozen_sync_thread(struct mddev *mddev)
5008 {
5009 lockdep_assert_held(&mddev->reconfig_mutex);
5010
5011 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5012 stop_sync_thread(mddev, true);
5013 }
5014 EXPORT_SYMBOL_GPL(md_frozen_sync_thread);
5015
md_unfrozen_sync_thread(struct mddev * mddev)5016 void md_unfrozen_sync_thread(struct mddev *mddev)
5017 {
5018 lockdep_assert_held(&mddev->reconfig_mutex);
5019
5020 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5021 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5022 md_wakeup_thread(mddev->thread);
5023 sysfs_notify_dirent_safe(mddev->sysfs_action);
5024 }
5025 EXPORT_SYMBOL_GPL(md_unfrozen_sync_thread);
5026
mddev_start_reshape(struct mddev * mddev)5027 static int mddev_start_reshape(struct mddev *mddev)
5028 {
5029 int ret;
5030
5031 if (mddev->pers->start_reshape == NULL)
5032 return -EINVAL;
5033
5034 if (mddev->reshape_position == MaxSector ||
5035 mddev->pers->check_reshape == NULL ||
5036 mddev->pers->check_reshape(mddev)) {
5037 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5038 ret = mddev->pers->start_reshape(mddev);
5039 if (ret)
5040 return ret;
5041 } else {
5042 /*
5043 * If reshape is still in progress, and md_check_recovery() can
5044 * continue to reshape, don't restart reshape because data can
5045 * be corrupted for raid456.
5046 */
5047 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5048 }
5049
5050 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
5051 return 0;
5052 }
5053
5054 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)5055 action_store(struct mddev *mddev, const char *page, size_t len)
5056 {
5057 int ret;
5058 enum sync_action action;
5059
5060 if (!mddev->pers || !mddev->pers->sync_request)
5061 return -EINVAL;
5062
5063 retry:
5064 if (work_busy(&mddev->sync_work))
5065 flush_work(&mddev->sync_work);
5066
5067 ret = mddev_lock(mddev);
5068 if (ret)
5069 return ret;
5070
5071 if (work_busy(&mddev->sync_work)) {
5072 mddev_unlock(mddev);
5073 goto retry;
5074 }
5075
5076 action = md_sync_action_by_name(page);
5077
5078 /* TODO: mdadm rely on "idle" to start sync_thread. */
5079 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5080 switch (action) {
5081 case ACTION_FROZEN:
5082 md_frozen_sync_thread(mddev);
5083 ret = len;
5084 goto out;
5085 case ACTION_IDLE:
5086 md_idle_sync_thread(mddev);
5087 break;
5088 case ACTION_RESHAPE:
5089 case ACTION_RECOVER:
5090 case ACTION_CHECK:
5091 case ACTION_REPAIR:
5092 case ACTION_RESYNC:
5093 ret = -EBUSY;
5094 goto out;
5095 default:
5096 ret = -EINVAL;
5097 goto out;
5098 }
5099 } else {
5100 switch (action) {
5101 case ACTION_FROZEN:
5102 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5103 ret = len;
5104 goto out;
5105 case ACTION_RESHAPE:
5106 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5107 ret = mddev_start_reshape(mddev);
5108 if (ret)
5109 goto out;
5110 break;
5111 case ACTION_RECOVER:
5112 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5113 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5114 break;
5115 case ACTION_CHECK:
5116 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5117 fallthrough;
5118 case ACTION_REPAIR:
5119 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
5120 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5121 fallthrough;
5122 case ACTION_RESYNC:
5123 case ACTION_IDLE:
5124 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5125 break;
5126 default:
5127 ret = -EINVAL;
5128 goto out;
5129 }
5130 }
5131
5132 if (mddev->ro == MD_AUTO_READ) {
5133 /* A write to sync_action is enough to justify
5134 * canceling read-auto mode
5135 */
5136 mddev->ro = MD_RDWR;
5137 md_wakeup_thread(mddev->sync_thread);
5138 }
5139
5140 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5141 md_wakeup_thread(mddev->thread);
5142 sysfs_notify_dirent_safe(mddev->sysfs_action);
5143 ret = len;
5144
5145 out:
5146 mddev_unlock(mddev);
5147 return ret;
5148 }
5149
5150 static struct md_sysfs_entry md_scan_mode =
5151 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
5152
5153 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)5154 last_sync_action_show(struct mddev *mddev, char *page)
5155 {
5156 return sprintf(page, "%s\n",
5157 md_sync_action_name(mddev->last_sync_action));
5158 }
5159
5160 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
5161
5162 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)5163 mismatch_cnt_show(struct mddev *mddev, char *page)
5164 {
5165 return sprintf(page, "%llu\n",
5166 (unsigned long long)
5167 atomic64_read(&mddev->resync_mismatches));
5168 }
5169
5170 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
5171
5172 static ssize_t
sync_min_show(struct mddev * mddev,char * page)5173 sync_min_show(struct mddev *mddev, char *page)
5174 {
5175 return sprintf(page, "%d (%s)\n", speed_min(mddev),
5176 mddev->sync_speed_min ? "local" : "system");
5177 }
5178
5179 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)5180 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
5181 {
5182 unsigned int min;
5183 int rv;
5184
5185 if (strncmp(buf, "system", 6) == 0) {
5186 min = 0;
5187 } else {
5188 rv = kstrtouint(buf, 10, &min);
5189 if (rv < 0)
5190 return rv;
5191 if (min == 0)
5192 return -EINVAL;
5193 }
5194 mddev->sync_speed_min = min;
5195 return len;
5196 }
5197
5198 static struct md_sysfs_entry md_sync_min =
5199 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
5200
5201 static ssize_t
sync_max_show(struct mddev * mddev,char * page)5202 sync_max_show(struct mddev *mddev, char *page)
5203 {
5204 return sprintf(page, "%d (%s)\n", speed_max(mddev),
5205 mddev->sync_speed_max ? "local" : "system");
5206 }
5207
5208 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)5209 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
5210 {
5211 unsigned int max;
5212 int rv;
5213
5214 if (strncmp(buf, "system", 6) == 0) {
5215 max = 0;
5216 } else {
5217 rv = kstrtouint(buf, 10, &max);
5218 if (rv < 0)
5219 return rv;
5220 if (max == 0)
5221 return -EINVAL;
5222 }
5223 mddev->sync_speed_max = max;
5224 return len;
5225 }
5226
5227 static struct md_sysfs_entry md_sync_max =
5228 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5229
5230 static ssize_t
sync_io_depth_show(struct mddev * mddev,char * page)5231 sync_io_depth_show(struct mddev *mddev, char *page)
5232 {
5233 return sprintf(page, "%d (%s)\n", sync_io_depth(mddev),
5234 mddev->sync_io_depth ? "local" : "system");
5235 }
5236
5237 static ssize_t
sync_io_depth_store(struct mddev * mddev,const char * buf,size_t len)5238 sync_io_depth_store(struct mddev *mddev, const char *buf, size_t len)
5239 {
5240 unsigned int max;
5241 int rv;
5242
5243 if (strncmp(buf, "system", 6) == 0) {
5244 max = 0;
5245 } else {
5246 rv = kstrtouint(buf, 10, &max);
5247 if (rv < 0)
5248 return rv;
5249 if (max == 0)
5250 return -EINVAL;
5251 }
5252 mddev->sync_io_depth = max;
5253 return len;
5254 }
5255
5256 static struct md_sysfs_entry md_sync_io_depth =
5257 __ATTR_RW(sync_io_depth);
5258
5259 static ssize_t
degraded_show(struct mddev * mddev,char * page)5260 degraded_show(struct mddev *mddev, char *page)
5261 {
5262 return sprintf(page, "%d\n", mddev->degraded);
5263 }
5264 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5265
5266 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5267 sync_force_parallel_show(struct mddev *mddev, char *page)
5268 {
5269 return sprintf(page, "%d\n", mddev->parallel_resync);
5270 }
5271
5272 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5273 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5274 {
5275 long n;
5276
5277 if (kstrtol(buf, 10, &n))
5278 return -EINVAL;
5279
5280 if (n != 0 && n != 1)
5281 return -EINVAL;
5282
5283 mddev->parallel_resync = n;
5284
5285 if (mddev->sync_thread)
5286 wake_up(&resync_wait);
5287
5288 return len;
5289 }
5290
5291 /* force parallel resync, even with shared block devices */
5292 static struct md_sysfs_entry md_sync_force_parallel =
5293 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5294 sync_force_parallel_show, sync_force_parallel_store);
5295
5296 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5297 sync_speed_show(struct mddev *mddev, char *page)
5298 {
5299 unsigned long resync, dt, db;
5300 if (mddev->curr_resync == MD_RESYNC_NONE)
5301 return sprintf(page, "none\n");
5302 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5303 dt = (jiffies - mddev->resync_mark) / HZ;
5304 if (!dt) dt++;
5305 db = resync - mddev->resync_mark_cnt;
5306 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5307 }
5308
5309 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5310
5311 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5312 sync_completed_show(struct mddev *mddev, char *page)
5313 {
5314 unsigned long long max_sectors, resync;
5315
5316 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5317 return sprintf(page, "none\n");
5318
5319 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5320 mddev->curr_resync == MD_RESYNC_DELAYED)
5321 return sprintf(page, "delayed\n");
5322
5323 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5324 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5325 max_sectors = mddev->resync_max_sectors;
5326 else
5327 max_sectors = mddev->dev_sectors;
5328
5329 resync = mddev->curr_resync_completed;
5330 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5331 }
5332
5333 static struct md_sysfs_entry md_sync_completed =
5334 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5335
5336 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5337 min_sync_show(struct mddev *mddev, char *page)
5338 {
5339 return sprintf(page, "%llu\n",
5340 (unsigned long long)mddev->resync_min);
5341 }
5342 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5343 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5344 {
5345 unsigned long long min;
5346 int err;
5347
5348 if (kstrtoull(buf, 10, &min))
5349 return -EINVAL;
5350
5351 spin_lock(&mddev->lock);
5352 err = -EINVAL;
5353 if (min > mddev->resync_max)
5354 goto out_unlock;
5355
5356 err = -EBUSY;
5357 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5358 goto out_unlock;
5359
5360 /* Round down to multiple of 4K for safety */
5361 mddev->resync_min = round_down(min, 8);
5362 err = 0;
5363
5364 out_unlock:
5365 spin_unlock(&mddev->lock);
5366 return err ?: len;
5367 }
5368
5369 static struct md_sysfs_entry md_min_sync =
5370 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5371
5372 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5373 max_sync_show(struct mddev *mddev, char *page)
5374 {
5375 if (mddev->resync_max == MaxSector)
5376 return sprintf(page, "max\n");
5377 else
5378 return sprintf(page, "%llu\n",
5379 (unsigned long long)mddev->resync_max);
5380 }
5381 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5382 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5383 {
5384 int err;
5385 spin_lock(&mddev->lock);
5386 if (strncmp(buf, "max", 3) == 0)
5387 mddev->resync_max = MaxSector;
5388 else {
5389 unsigned long long max;
5390 int chunk;
5391
5392 err = -EINVAL;
5393 if (kstrtoull(buf, 10, &max))
5394 goto out_unlock;
5395 if (max < mddev->resync_min)
5396 goto out_unlock;
5397
5398 err = -EBUSY;
5399 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5400 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5401 goto out_unlock;
5402
5403 /* Must be a multiple of chunk_size */
5404 chunk = mddev->chunk_sectors;
5405 if (chunk) {
5406 sector_t temp = max;
5407
5408 err = -EINVAL;
5409 if (sector_div(temp, chunk))
5410 goto out_unlock;
5411 }
5412 mddev->resync_max = max;
5413 }
5414 wake_up(&mddev->recovery_wait);
5415 err = 0;
5416 out_unlock:
5417 spin_unlock(&mddev->lock);
5418 return err ?: len;
5419 }
5420
5421 static struct md_sysfs_entry md_max_sync =
5422 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5423
5424 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5425 suspend_lo_show(struct mddev *mddev, char *page)
5426 {
5427 return sprintf(page, "%llu\n",
5428 (unsigned long long)READ_ONCE(mddev->suspend_lo));
5429 }
5430
5431 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5432 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5433 {
5434 unsigned long long new;
5435 int err;
5436
5437 err = kstrtoull(buf, 10, &new);
5438 if (err < 0)
5439 return err;
5440 if (new != (sector_t)new)
5441 return -EINVAL;
5442
5443 err = mddev_suspend(mddev, true);
5444 if (err)
5445 return err;
5446
5447 WRITE_ONCE(mddev->suspend_lo, new);
5448 mddev_resume(mddev);
5449
5450 return len;
5451 }
5452 static struct md_sysfs_entry md_suspend_lo =
5453 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5454
5455 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5456 suspend_hi_show(struct mddev *mddev, char *page)
5457 {
5458 return sprintf(page, "%llu\n",
5459 (unsigned long long)READ_ONCE(mddev->suspend_hi));
5460 }
5461
5462 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5463 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5464 {
5465 unsigned long long new;
5466 int err;
5467
5468 err = kstrtoull(buf, 10, &new);
5469 if (err < 0)
5470 return err;
5471 if (new != (sector_t)new)
5472 return -EINVAL;
5473
5474 err = mddev_suspend(mddev, true);
5475 if (err)
5476 return err;
5477
5478 WRITE_ONCE(mddev->suspend_hi, new);
5479 mddev_resume(mddev);
5480
5481 return len;
5482 }
5483 static struct md_sysfs_entry md_suspend_hi =
5484 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5485
5486 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5487 reshape_position_show(struct mddev *mddev, char *page)
5488 {
5489 if (mddev->reshape_position != MaxSector)
5490 return sprintf(page, "%llu\n",
5491 (unsigned long long)mddev->reshape_position);
5492 strcpy(page, "none\n");
5493 return 5;
5494 }
5495
5496 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5497 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5498 {
5499 struct md_rdev *rdev;
5500 unsigned long long new;
5501 int err;
5502
5503 err = kstrtoull(buf, 10, &new);
5504 if (err < 0)
5505 return err;
5506 if (new != (sector_t)new)
5507 return -EINVAL;
5508 err = mddev_lock(mddev);
5509 if (err)
5510 return err;
5511 err = -EBUSY;
5512 if (mddev->pers)
5513 goto unlock;
5514 mddev->reshape_position = new;
5515 mddev->delta_disks = 0;
5516 mddev->reshape_backwards = 0;
5517 mddev->new_level = mddev->level;
5518 mddev->new_layout = mddev->layout;
5519 mddev->new_chunk_sectors = mddev->chunk_sectors;
5520 rdev_for_each(rdev, mddev)
5521 rdev->new_data_offset = rdev->data_offset;
5522 err = 0;
5523 unlock:
5524 mddev_unlock(mddev);
5525 return err ?: len;
5526 }
5527
5528 static struct md_sysfs_entry md_reshape_position =
5529 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5530 reshape_position_store);
5531
5532 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5533 reshape_direction_show(struct mddev *mddev, char *page)
5534 {
5535 return sprintf(page, "%s\n",
5536 mddev->reshape_backwards ? "backwards" : "forwards");
5537 }
5538
5539 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5540 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5541 {
5542 int backwards = 0;
5543 int err;
5544
5545 if (cmd_match(buf, "forwards"))
5546 backwards = 0;
5547 else if (cmd_match(buf, "backwards"))
5548 backwards = 1;
5549 else
5550 return -EINVAL;
5551 if (mddev->reshape_backwards == backwards)
5552 return len;
5553
5554 err = mddev_lock(mddev);
5555 if (err)
5556 return err;
5557 /* check if we are allowed to change */
5558 if (mddev->delta_disks)
5559 err = -EBUSY;
5560 else if (mddev->persistent &&
5561 mddev->major_version == 0)
5562 err = -EINVAL;
5563 else
5564 mddev->reshape_backwards = backwards;
5565 mddev_unlock(mddev);
5566 return err ?: len;
5567 }
5568
5569 static struct md_sysfs_entry md_reshape_direction =
5570 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5571 reshape_direction_store);
5572
5573 static ssize_t
array_size_show(struct mddev * mddev,char * page)5574 array_size_show(struct mddev *mddev, char *page)
5575 {
5576 if (mddev->external_size)
5577 return sprintf(page, "%llu\n",
5578 (unsigned long long)mddev->array_sectors/2);
5579 else
5580 return sprintf(page, "default\n");
5581 }
5582
5583 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5584 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5585 {
5586 sector_t sectors;
5587 int err;
5588
5589 err = mddev_lock(mddev);
5590 if (err)
5591 return err;
5592
5593 /* cluster raid doesn't support change array_sectors */
5594 if (mddev_is_clustered(mddev)) {
5595 mddev_unlock(mddev);
5596 return -EINVAL;
5597 }
5598
5599 if (strncmp(buf, "default", 7) == 0) {
5600 if (mddev->pers)
5601 sectors = mddev->pers->size(mddev, 0, 0);
5602 else
5603 sectors = mddev->array_sectors;
5604
5605 mddev->external_size = 0;
5606 } else {
5607 if (strict_blocks_to_sectors(buf, §ors) < 0)
5608 err = -EINVAL;
5609 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5610 err = -E2BIG;
5611 else
5612 mddev->external_size = 1;
5613 }
5614
5615 if (!err) {
5616 mddev->array_sectors = sectors;
5617 if (mddev->pers)
5618 set_capacity_and_notify(mddev->gendisk,
5619 mddev->array_sectors);
5620 }
5621 mddev_unlock(mddev);
5622 return err ?: len;
5623 }
5624
5625 static struct md_sysfs_entry md_array_size =
5626 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5627 array_size_store);
5628
5629 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5630 consistency_policy_show(struct mddev *mddev, char *page)
5631 {
5632 int ret;
5633
5634 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5635 ret = sprintf(page, "journal\n");
5636 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5637 ret = sprintf(page, "ppl\n");
5638 } else if (mddev->bitmap) {
5639 ret = sprintf(page, "bitmap\n");
5640 } else if (mddev->pers) {
5641 if (mddev->pers->sync_request)
5642 ret = sprintf(page, "resync\n");
5643 else
5644 ret = sprintf(page, "none\n");
5645 } else {
5646 ret = sprintf(page, "unknown\n");
5647 }
5648
5649 return ret;
5650 }
5651
5652 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5653 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5654 {
5655 int err = 0;
5656
5657 if (mddev->pers) {
5658 if (mddev->pers->change_consistency_policy)
5659 err = mddev->pers->change_consistency_policy(mddev, buf);
5660 else
5661 err = -EBUSY;
5662 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5663 set_bit(MD_HAS_PPL, &mddev->flags);
5664 } else {
5665 err = -EINVAL;
5666 }
5667
5668 return err ? err : len;
5669 }
5670
5671 static struct md_sysfs_entry md_consistency_policy =
5672 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5673 consistency_policy_store);
5674
fail_last_dev_show(struct mddev * mddev,char * page)5675 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5676 {
5677 return sprintf(page, "%d\n", mddev->fail_last_dev);
5678 }
5679
5680 /*
5681 * Setting fail_last_dev to true to allow last device to be forcibly removed
5682 * from RAID1/RAID10.
5683 */
5684 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5685 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5686 {
5687 int ret;
5688 bool value;
5689
5690 ret = kstrtobool(buf, &value);
5691 if (ret)
5692 return ret;
5693
5694 if (value != mddev->fail_last_dev)
5695 mddev->fail_last_dev = value;
5696
5697 return len;
5698 }
5699 static struct md_sysfs_entry md_fail_last_dev =
5700 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5701 fail_last_dev_store);
5702
serialize_policy_show(struct mddev * mddev,char * page)5703 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5704 {
5705 if (mddev->pers == NULL || (mddev->pers->head.id != ID_RAID1))
5706 return sprintf(page, "n/a\n");
5707 else
5708 return sprintf(page, "%d\n", mddev->serialize_policy);
5709 }
5710
5711 /*
5712 * Setting serialize_policy to true to enforce write IO is not reordered
5713 * for raid1.
5714 */
5715 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5716 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5717 {
5718 int err;
5719 bool value;
5720
5721 err = kstrtobool(buf, &value);
5722 if (err)
5723 return err;
5724
5725 if (value == mddev->serialize_policy)
5726 return len;
5727
5728 err = mddev_suspend_and_lock(mddev);
5729 if (err)
5730 return err;
5731 if (mddev->pers == NULL || (mddev->pers->head.id != ID_RAID1)) {
5732 pr_err("md: serialize_policy is only effective for raid1\n");
5733 err = -EINVAL;
5734 goto unlock;
5735 }
5736
5737 if (value)
5738 mddev_create_serial_pool(mddev, NULL);
5739 else
5740 mddev_destroy_serial_pool(mddev, NULL);
5741 mddev->serialize_policy = value;
5742 unlock:
5743 mddev_unlock_and_resume(mddev);
5744 return err ?: len;
5745 }
5746
5747 static struct md_sysfs_entry md_serialize_policy =
5748 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5749 serialize_policy_store);
5750
5751
5752 static struct attribute *md_default_attrs[] = {
5753 &md_level.attr,
5754 &md_new_level.attr,
5755 &md_layout.attr,
5756 &md_raid_disks.attr,
5757 &md_uuid.attr,
5758 &md_chunk_size.attr,
5759 &md_size.attr,
5760 &md_resync_start.attr,
5761 &md_metadata.attr,
5762 &md_new_device.attr,
5763 &md_safe_delay.attr,
5764 &md_array_state.attr,
5765 &md_reshape_position.attr,
5766 &md_reshape_direction.attr,
5767 &md_array_size.attr,
5768 &max_corr_read_errors.attr,
5769 &md_consistency_policy.attr,
5770 &md_fail_last_dev.attr,
5771 &md_serialize_policy.attr,
5772 NULL,
5773 };
5774
5775 static const struct attribute_group md_default_group = {
5776 .attrs = md_default_attrs,
5777 };
5778
5779 static struct attribute *md_redundancy_attrs[] = {
5780 &md_scan_mode.attr,
5781 &md_last_scan_mode.attr,
5782 &md_mismatches.attr,
5783 &md_sync_min.attr,
5784 &md_sync_max.attr,
5785 &md_sync_io_depth.attr,
5786 &md_sync_speed.attr,
5787 &md_sync_force_parallel.attr,
5788 &md_sync_completed.attr,
5789 &md_min_sync.attr,
5790 &md_max_sync.attr,
5791 &md_suspend_lo.attr,
5792 &md_suspend_hi.attr,
5793 &md_bitmap.attr,
5794 &md_degraded.attr,
5795 NULL,
5796 };
5797 static const struct attribute_group md_redundancy_group = {
5798 .name = NULL,
5799 .attrs = md_redundancy_attrs,
5800 };
5801
5802 static const struct attribute_group *md_attr_groups[] = {
5803 &md_default_group,
5804 &md_bitmap_group,
5805 NULL,
5806 };
5807
5808 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5809 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5810 {
5811 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5812 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5813 ssize_t rv;
5814
5815 if (!entry->show)
5816 return -EIO;
5817 spin_lock(&all_mddevs_lock);
5818 if (!mddev_get(mddev)) {
5819 spin_unlock(&all_mddevs_lock);
5820 return -EBUSY;
5821 }
5822 spin_unlock(&all_mddevs_lock);
5823
5824 rv = entry->show(mddev, page);
5825 mddev_put(mddev);
5826 return rv;
5827 }
5828
5829 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5830 md_attr_store(struct kobject *kobj, struct attribute *attr,
5831 const char *page, size_t length)
5832 {
5833 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5834 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5835 ssize_t rv;
5836 struct kernfs_node *kn = NULL;
5837
5838 if (!entry->store)
5839 return -EIO;
5840 if (!capable(CAP_SYS_ADMIN))
5841 return -EACCES;
5842
5843 if (entry->store == array_state_store && cmd_match(page, "clear"))
5844 kn = sysfs_break_active_protection(kobj, attr);
5845
5846 spin_lock(&all_mddevs_lock);
5847 if (!mddev_get(mddev)) {
5848 spin_unlock(&all_mddevs_lock);
5849 if (kn)
5850 sysfs_unbreak_active_protection(kn);
5851 return -EBUSY;
5852 }
5853 spin_unlock(&all_mddevs_lock);
5854 rv = entry->store(mddev, page, length);
5855 mddev_put(mddev);
5856
5857 if (kn)
5858 sysfs_unbreak_active_protection(kn);
5859
5860 return rv;
5861 }
5862
md_kobj_release(struct kobject * ko)5863 static void md_kobj_release(struct kobject *ko)
5864 {
5865 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5866
5867 if (legacy_async_del_gendisk) {
5868 if (mddev->sysfs_state)
5869 sysfs_put(mddev->sysfs_state);
5870 if (mddev->sysfs_level)
5871 sysfs_put(mddev->sysfs_level);
5872 del_gendisk(mddev->gendisk);
5873 }
5874 put_disk(mddev->gendisk);
5875 }
5876
5877 static const struct sysfs_ops md_sysfs_ops = {
5878 .show = md_attr_show,
5879 .store = md_attr_store,
5880 };
5881 static const struct kobj_type md_ktype = {
5882 .release = md_kobj_release,
5883 .sysfs_ops = &md_sysfs_ops,
5884 .default_groups = md_attr_groups,
5885 };
5886
5887 int mdp_major = 0;
5888
5889 /* stack the limit for all rdevs into lim */
mddev_stack_rdev_limits(struct mddev * mddev,struct queue_limits * lim,unsigned int flags)5890 int mddev_stack_rdev_limits(struct mddev *mddev, struct queue_limits *lim,
5891 unsigned int flags)
5892 {
5893 struct md_rdev *rdev;
5894
5895 rdev_for_each(rdev, mddev) {
5896 queue_limits_stack_bdev(lim, rdev->bdev, rdev->data_offset,
5897 mddev->gendisk->disk_name);
5898 if ((flags & MDDEV_STACK_INTEGRITY) &&
5899 !queue_limits_stack_integrity_bdev(lim, rdev->bdev))
5900 return -EINVAL;
5901 }
5902
5903 return 0;
5904 }
5905 EXPORT_SYMBOL_GPL(mddev_stack_rdev_limits);
5906
5907 /* apply the extra stacking limits from a new rdev into mddev */
mddev_stack_new_rdev(struct mddev * mddev,struct md_rdev * rdev)5908 int mddev_stack_new_rdev(struct mddev *mddev, struct md_rdev *rdev)
5909 {
5910 struct queue_limits lim;
5911
5912 if (mddev_is_dm(mddev))
5913 return 0;
5914
5915 lim = queue_limits_start_update(mddev->gendisk->queue);
5916 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->data_offset,
5917 mddev->gendisk->disk_name);
5918
5919 if (!queue_limits_stack_integrity_bdev(&lim, rdev->bdev)) {
5920 pr_err("%s: incompatible integrity profile for %pg\n",
5921 mdname(mddev), rdev->bdev);
5922 queue_limits_cancel_update(mddev->gendisk->queue);
5923 return -ENXIO;
5924 }
5925
5926 return queue_limits_commit_update(mddev->gendisk->queue, &lim);
5927 }
5928 EXPORT_SYMBOL_GPL(mddev_stack_new_rdev);
5929
5930 /* update the optimal I/O size after a reshape */
mddev_update_io_opt(struct mddev * mddev,unsigned int nr_stripes)5931 void mddev_update_io_opt(struct mddev *mddev, unsigned int nr_stripes)
5932 {
5933 struct queue_limits lim;
5934
5935 if (mddev_is_dm(mddev))
5936 return;
5937
5938 /* don't bother updating io_opt if we can't suspend the array */
5939 if (mddev_suspend(mddev, false) < 0)
5940 return;
5941 lim = queue_limits_start_update(mddev->gendisk->queue);
5942 lim.io_opt = lim.io_min * nr_stripes;
5943 queue_limits_commit_update(mddev->gendisk->queue, &lim);
5944 mddev_resume(mddev);
5945 }
5946 EXPORT_SYMBOL_GPL(mddev_update_io_opt);
5947
mddev_delayed_delete(struct work_struct * ws)5948 static void mddev_delayed_delete(struct work_struct *ws)
5949 {
5950 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5951
5952 kobject_put(&mddev->kobj);
5953 }
5954
md_init_stacking_limits(struct queue_limits * lim)5955 void md_init_stacking_limits(struct queue_limits *lim)
5956 {
5957 blk_set_stacking_limits(lim);
5958 lim->features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA |
5959 BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
5960 }
5961 EXPORT_SYMBOL_GPL(md_init_stacking_limits);
5962
md_alloc(dev_t dev,char * name)5963 struct mddev *md_alloc(dev_t dev, char *name)
5964 {
5965 /*
5966 * If dev is zero, name is the name of a device to allocate with
5967 * an arbitrary minor number. It will be "md_???"
5968 * If dev is non-zero it must be a device number with a MAJOR of
5969 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5970 * the device is being created by opening a node in /dev.
5971 * If "name" is not NULL, the device is being created by
5972 * writing to /sys/module/md_mod/parameters/new_array.
5973 */
5974 static DEFINE_MUTEX(disks_mutex);
5975 struct mddev *mddev;
5976 struct gendisk *disk;
5977 int partitioned;
5978 int shift;
5979 int unit;
5980 int error;
5981
5982 /*
5983 * Wait for any previous instance of this device to be completely
5984 * removed (mddev_delayed_delete).
5985 */
5986 flush_workqueue(md_misc_wq);
5987
5988 mutex_lock(&disks_mutex);
5989 mddev = mddev_alloc(dev);
5990 if (IS_ERR(mddev)) {
5991 error = PTR_ERR(mddev);
5992 goto out_unlock;
5993 }
5994
5995 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5996 shift = partitioned ? MdpMinorShift : 0;
5997 unit = MINOR(mddev->unit) >> shift;
5998
5999 if (name && !dev) {
6000 /* Need to ensure that 'name' is not a duplicate.
6001 */
6002 struct mddev *mddev2;
6003 spin_lock(&all_mddevs_lock);
6004
6005 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
6006 if (mddev2->gendisk &&
6007 strcmp(mddev2->gendisk->disk_name, name) == 0) {
6008 spin_unlock(&all_mddevs_lock);
6009 error = -EEXIST;
6010 goto out_free_mddev;
6011 }
6012 spin_unlock(&all_mddevs_lock);
6013 }
6014 if (name && dev)
6015 /*
6016 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
6017 */
6018 mddev->hold_active = UNTIL_STOP;
6019
6020 disk = blk_alloc_disk(NULL, NUMA_NO_NODE);
6021 if (IS_ERR(disk)) {
6022 error = PTR_ERR(disk);
6023 goto out_free_mddev;
6024 }
6025
6026 disk->major = MAJOR(mddev->unit);
6027 disk->first_minor = unit << shift;
6028 disk->minors = 1 << shift;
6029 if (name)
6030 strcpy(disk->disk_name, name);
6031 else if (partitioned)
6032 sprintf(disk->disk_name, "md_d%d", unit);
6033 else
6034 sprintf(disk->disk_name, "md%d", unit);
6035 disk->fops = &md_fops;
6036 disk->private_data = mddev;
6037
6038 disk->events |= DISK_EVENT_MEDIA_CHANGE;
6039 mddev->gendisk = disk;
6040 error = add_disk(disk);
6041 if (error)
6042 goto out_put_disk;
6043
6044 kobject_init(&mddev->kobj, &md_ktype);
6045 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
6046 if (error) {
6047 /*
6048 * The disk is already live at this point. Clear the hold flag
6049 * and let mddev_put take care of the deletion, as it isn't any
6050 * different from a normal close on last release now.
6051 */
6052 mddev->hold_active = 0;
6053 mutex_unlock(&disks_mutex);
6054 mddev_put(mddev);
6055 return ERR_PTR(error);
6056 }
6057
6058 kobject_uevent(&mddev->kobj, KOBJ_ADD);
6059 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
6060 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
6061 mutex_unlock(&disks_mutex);
6062 return mddev;
6063
6064 out_put_disk:
6065 put_disk(disk);
6066 out_free_mddev:
6067 mddev_free(mddev);
6068 out_unlock:
6069 mutex_unlock(&disks_mutex);
6070 return ERR_PTR(error);
6071 }
6072
md_alloc_and_put(dev_t dev,char * name)6073 static int md_alloc_and_put(dev_t dev, char *name)
6074 {
6075 struct mddev *mddev = md_alloc(dev, name);
6076
6077 if (legacy_async_del_gendisk)
6078 pr_warn("md: async del_gendisk mode will be removed in future, please upgrade to mdadm-4.5+\n");
6079
6080 if (IS_ERR(mddev))
6081 return PTR_ERR(mddev);
6082 mddev_put(mddev);
6083 return 0;
6084 }
6085
md_probe(dev_t dev)6086 static void md_probe(dev_t dev)
6087 {
6088 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
6089 return;
6090 if (create_on_open)
6091 md_alloc_and_put(dev, NULL);
6092 }
6093
add_named_array(const char * val,const struct kernel_param * kp)6094 static int add_named_array(const char *val, const struct kernel_param *kp)
6095 {
6096 /*
6097 * val must be "md_*" or "mdNNN".
6098 * For "md_*" we allocate an array with a large free minor number, and
6099 * set the name to val. val must not already be an active name.
6100 * For "mdNNN" we allocate an array with the minor number NNN
6101 * which must not already be in use.
6102 */
6103 int len = strlen(val);
6104 char buf[DISK_NAME_LEN];
6105 unsigned long devnum;
6106
6107 while (len && val[len-1] == '\n')
6108 len--;
6109 if (len >= DISK_NAME_LEN)
6110 return -E2BIG;
6111 strscpy(buf, val, len+1);
6112 if (strncmp(buf, "md_", 3) == 0)
6113 return md_alloc_and_put(0, buf);
6114 if (strncmp(buf, "md", 2) == 0 &&
6115 isdigit(buf[2]) &&
6116 kstrtoul(buf+2, 10, &devnum) == 0 &&
6117 devnum <= MINORMASK)
6118 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
6119
6120 return -EINVAL;
6121 }
6122
md_safemode_timeout(struct timer_list * t)6123 static void md_safemode_timeout(struct timer_list *t)
6124 {
6125 struct mddev *mddev = timer_container_of(mddev, t, safemode_timer);
6126
6127 mddev->safemode = 1;
6128 if (mddev->external)
6129 sysfs_notify_dirent_safe(mddev->sysfs_state);
6130
6131 md_wakeup_thread(mddev->thread);
6132 }
6133
6134 static int start_dirty_degraded;
6135
md_run(struct mddev * mddev)6136 int md_run(struct mddev *mddev)
6137 {
6138 int err;
6139 struct md_rdev *rdev;
6140 struct md_personality *pers;
6141 bool nowait = true;
6142
6143 if (list_empty(&mddev->disks))
6144 /* cannot run an array with no devices.. */
6145 return -EINVAL;
6146
6147 if (mddev->pers)
6148 return -EBUSY;
6149 /* Cannot run until previous stop completes properly */
6150 if (mddev->sysfs_active)
6151 return -EBUSY;
6152
6153 /*
6154 * Analyze all RAID superblock(s)
6155 */
6156 if (!mddev->raid_disks) {
6157 if (!mddev->persistent)
6158 return -EINVAL;
6159 err = analyze_sbs(mddev);
6160 if (err)
6161 return -EINVAL;
6162 }
6163
6164 if (mddev->level != LEVEL_NONE)
6165 request_module("md-level-%d", mddev->level);
6166 else if (mddev->clevel[0])
6167 request_module("md-%s", mddev->clevel);
6168
6169 /*
6170 * Drop all container device buffers, from now on
6171 * the only valid external interface is through the md
6172 * device.
6173 */
6174 mddev->has_superblocks = false;
6175 rdev_for_each(rdev, mddev) {
6176 if (test_bit(Faulty, &rdev->flags))
6177 continue;
6178 sync_blockdev(rdev->bdev);
6179 invalidate_bdev(rdev->bdev);
6180 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
6181 mddev->ro = MD_RDONLY;
6182 if (!mddev_is_dm(mddev))
6183 set_disk_ro(mddev->gendisk, 1);
6184 }
6185
6186 if (rdev->sb_page)
6187 mddev->has_superblocks = true;
6188
6189 /* perform some consistency tests on the device.
6190 * We don't want the data to overlap the metadata,
6191 * Internal Bitmap issues have been handled elsewhere.
6192 */
6193 if (rdev->meta_bdev) {
6194 /* Nothing to check */;
6195 } else if (rdev->data_offset < rdev->sb_start) {
6196 if (mddev->dev_sectors &&
6197 rdev->data_offset + mddev->dev_sectors
6198 > rdev->sb_start) {
6199 pr_warn("md: %s: data overlaps metadata\n",
6200 mdname(mddev));
6201 return -EINVAL;
6202 }
6203 } else {
6204 if (rdev->sb_start + rdev->sb_size/512
6205 > rdev->data_offset) {
6206 pr_warn("md: %s: metadata overlaps data\n",
6207 mdname(mddev));
6208 return -EINVAL;
6209 }
6210 }
6211 sysfs_notify_dirent_safe(rdev->sysfs_state);
6212 nowait = nowait && bdev_nowait(rdev->bdev);
6213 }
6214
6215 if (!bioset_initialized(&mddev->bio_set)) {
6216 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
6217 if (err)
6218 return err;
6219 }
6220 if (!bioset_initialized(&mddev->sync_set)) {
6221 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
6222 if (err)
6223 goto exit_bio_set;
6224 }
6225
6226 if (!bioset_initialized(&mddev->io_clone_set)) {
6227 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE,
6228 offsetof(struct md_io_clone, bio_clone), 0);
6229 if (err)
6230 goto exit_sync_set;
6231 }
6232
6233 pers = get_pers(mddev->level, mddev->clevel);
6234 if (!pers) {
6235 err = -EINVAL;
6236 goto abort;
6237 }
6238 if (mddev->level != pers->head.id) {
6239 mddev->level = pers->head.id;
6240 mddev->new_level = pers->head.id;
6241 }
6242 strscpy(mddev->clevel, pers->head.name, sizeof(mddev->clevel));
6243
6244 if (mddev->reshape_position != MaxSector &&
6245 pers->start_reshape == NULL) {
6246 /* This personality cannot handle reshaping... */
6247 put_pers(pers);
6248 err = -EINVAL;
6249 goto abort;
6250 }
6251
6252 if (pers->sync_request) {
6253 /* Warn if this is a potentially silly
6254 * configuration.
6255 */
6256 struct md_rdev *rdev2;
6257 int warned = 0;
6258
6259 rdev_for_each(rdev, mddev)
6260 rdev_for_each(rdev2, mddev) {
6261 if (rdev < rdev2 &&
6262 rdev->bdev->bd_disk ==
6263 rdev2->bdev->bd_disk) {
6264 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
6265 mdname(mddev),
6266 rdev->bdev,
6267 rdev2->bdev);
6268 warned = 1;
6269 }
6270 }
6271
6272 if (warned)
6273 pr_warn("True protection against single-disk failure might be compromised.\n");
6274 }
6275
6276 /* dm-raid expect sync_thread to be frozen until resume */
6277 if (mddev->gendisk)
6278 mddev->recovery = 0;
6279
6280 /* may be over-ridden by personality */
6281 mddev->resync_max_sectors = mddev->dev_sectors;
6282
6283 mddev->ok_start_degraded = start_dirty_degraded;
6284
6285 if (start_readonly && md_is_rdwr(mddev))
6286 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
6287
6288 err = pers->run(mddev);
6289 if (err)
6290 pr_warn("md: pers->run() failed ...\n");
6291 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6292 WARN_ONCE(!mddev->external_size,
6293 "%s: default size too small, but 'external_size' not in effect?\n",
6294 __func__);
6295 pr_warn("md: invalid array_size %llu > default size %llu\n",
6296 (unsigned long long)mddev->array_sectors / 2,
6297 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6298 err = -EINVAL;
6299 }
6300 if (err == 0 && pers->sync_request &&
6301 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6302 err = mddev->bitmap_ops->create(mddev);
6303 if (err)
6304 pr_warn("%s: failed to create bitmap (%d)\n",
6305 mdname(mddev), err);
6306 }
6307 if (err)
6308 goto bitmap_abort;
6309
6310 if (mddev->bitmap_info.max_write_behind > 0) {
6311 bool create_pool = false;
6312
6313 rdev_for_each(rdev, mddev) {
6314 if (test_bit(WriteMostly, &rdev->flags) &&
6315 rdev_init_serial(rdev))
6316 create_pool = true;
6317 }
6318 if (create_pool && mddev->serial_info_pool == NULL) {
6319 mddev->serial_info_pool =
6320 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6321 sizeof(struct serial_info));
6322 if (!mddev->serial_info_pool) {
6323 err = -ENOMEM;
6324 goto bitmap_abort;
6325 }
6326 }
6327 }
6328
6329 if (pers->sync_request) {
6330 if (mddev->kobj.sd &&
6331 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6332 pr_warn("md: cannot register extra attributes for %s\n",
6333 mdname(mddev));
6334 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6335 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6336 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6337 } else if (mddev->ro == MD_AUTO_READ)
6338 mddev->ro = MD_RDWR;
6339
6340 atomic_set(&mddev->max_corr_read_errors,
6341 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6342 mddev->safemode = 0;
6343 if (mddev_is_clustered(mddev))
6344 mddev->safemode_delay = 0;
6345 else
6346 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6347 mddev->in_sync = 1;
6348 smp_wmb();
6349 spin_lock(&mddev->lock);
6350 mddev->pers = pers;
6351 spin_unlock(&mddev->lock);
6352 rdev_for_each(rdev, mddev)
6353 if (rdev->raid_disk >= 0)
6354 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6355
6356 if (mddev->degraded && md_is_rdwr(mddev))
6357 /* This ensures that recovering status is reported immediately
6358 * via sysfs - until a lack of spares is confirmed.
6359 */
6360 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6361 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6362
6363 if (mddev->sb_flags)
6364 md_update_sb(mddev, 0);
6365
6366 md_new_event();
6367 return 0;
6368
6369 bitmap_abort:
6370 mddev_detach(mddev);
6371 if (mddev->private)
6372 pers->free(mddev, mddev->private);
6373 mddev->private = NULL;
6374 put_pers(pers);
6375 mddev->bitmap_ops->destroy(mddev);
6376 abort:
6377 bioset_exit(&mddev->io_clone_set);
6378 exit_sync_set:
6379 bioset_exit(&mddev->sync_set);
6380 exit_bio_set:
6381 bioset_exit(&mddev->bio_set);
6382 return err;
6383 }
6384 EXPORT_SYMBOL_GPL(md_run);
6385
do_md_run(struct mddev * mddev)6386 int do_md_run(struct mddev *mddev)
6387 {
6388 int err;
6389
6390 set_bit(MD_NOT_READY, &mddev->flags);
6391 err = md_run(mddev);
6392 if (err)
6393 goto out;
6394
6395 err = mddev->bitmap_ops->load(mddev);
6396 if (err) {
6397 mddev->bitmap_ops->destroy(mddev);
6398 goto out;
6399 }
6400
6401 if (mddev_is_clustered(mddev))
6402 md_allow_write(mddev);
6403
6404 /* run start up tasks that require md_thread */
6405 md_start(mddev);
6406
6407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6408
6409 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6410 clear_bit(MD_NOT_READY, &mddev->flags);
6411 mddev->changed = 1;
6412 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6413 sysfs_notify_dirent_safe(mddev->sysfs_state);
6414 sysfs_notify_dirent_safe(mddev->sysfs_action);
6415 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6416 out:
6417 clear_bit(MD_NOT_READY, &mddev->flags);
6418 return err;
6419 }
6420
md_start(struct mddev * mddev)6421 int md_start(struct mddev *mddev)
6422 {
6423 int ret = 0;
6424
6425 if (mddev->pers->start) {
6426 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6427 ret = mddev->pers->start(mddev);
6428 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6429 md_wakeup_thread(mddev->sync_thread);
6430 }
6431 return ret;
6432 }
6433 EXPORT_SYMBOL_GPL(md_start);
6434
restart_array(struct mddev * mddev)6435 static int restart_array(struct mddev *mddev)
6436 {
6437 struct gendisk *disk = mddev->gendisk;
6438 struct md_rdev *rdev;
6439 bool has_journal = false;
6440 bool has_readonly = false;
6441
6442 /* Complain if it has no devices */
6443 if (list_empty(&mddev->disks))
6444 return -ENXIO;
6445 if (!mddev->pers)
6446 return -EINVAL;
6447 if (md_is_rdwr(mddev))
6448 return -EBUSY;
6449
6450 rcu_read_lock();
6451 rdev_for_each_rcu(rdev, mddev) {
6452 if (test_bit(Journal, &rdev->flags) &&
6453 !test_bit(Faulty, &rdev->flags))
6454 has_journal = true;
6455 if (rdev_read_only(rdev))
6456 has_readonly = true;
6457 }
6458 rcu_read_unlock();
6459 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6460 /* Don't restart rw with journal missing/faulty */
6461 return -EINVAL;
6462 if (has_readonly)
6463 return -EROFS;
6464
6465 mddev->safemode = 0;
6466 mddev->ro = MD_RDWR;
6467 set_disk_ro(disk, 0);
6468 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6469 /* Kick recovery or resync if necessary */
6470 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6471 md_wakeup_thread(mddev->sync_thread);
6472 sysfs_notify_dirent_safe(mddev->sysfs_state);
6473 return 0;
6474 }
6475
md_clean(struct mddev * mddev)6476 static void md_clean(struct mddev *mddev)
6477 {
6478 mddev->array_sectors = 0;
6479 mddev->external_size = 0;
6480 mddev->dev_sectors = 0;
6481 mddev->raid_disks = 0;
6482 mddev->resync_offset = 0;
6483 mddev->resync_min = 0;
6484 mddev->resync_max = MaxSector;
6485 mddev->reshape_position = MaxSector;
6486 /* we still need mddev->external in export_rdev, do not clear it yet */
6487 mddev->persistent = 0;
6488 mddev->level = LEVEL_NONE;
6489 mddev->clevel[0] = 0;
6490
6491 /*
6492 * For legacy_async_del_gendisk mode, it can stop the array in the
6493 * middle of assembling it, then it still can access the array. So
6494 * it needs to clear MD_CLOSING. If not legacy_async_del_gendisk,
6495 * it can't open the array again after stopping it. So it doesn't
6496 * clear MD_CLOSING.
6497 */
6498 if (legacy_async_del_gendisk && mddev->hold_active) {
6499 clear_bit(MD_CLOSING, &mddev->flags);
6500 } else {
6501 /* if UNTIL_STOP is set, it's cleared here */
6502 mddev->hold_active = 0;
6503 /* Don't clear MD_CLOSING, or mddev can be opened again. */
6504 mddev->flags &= BIT_ULL_MASK(MD_CLOSING);
6505 }
6506 mddev->sb_flags = 0;
6507 mddev->ro = MD_RDWR;
6508 mddev->metadata_type[0] = 0;
6509 mddev->chunk_sectors = 0;
6510 mddev->ctime = mddev->utime = 0;
6511 mddev->layout = 0;
6512 mddev->max_disks = 0;
6513 mddev->events = 0;
6514 mddev->can_decrease_events = 0;
6515 mddev->delta_disks = 0;
6516 mddev->reshape_backwards = 0;
6517 mddev->new_level = LEVEL_NONE;
6518 mddev->new_layout = 0;
6519 mddev->new_chunk_sectors = 0;
6520 mddev->curr_resync = MD_RESYNC_NONE;
6521 atomic64_set(&mddev->resync_mismatches, 0);
6522 mddev->suspend_lo = mddev->suspend_hi = 0;
6523 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6524 mddev->recovery = 0;
6525 mddev->in_sync = 0;
6526 mddev->changed = 0;
6527 mddev->degraded = 0;
6528 mddev->safemode = 0;
6529 mddev->private = NULL;
6530 mddev->cluster_info = NULL;
6531 mddev->bitmap_info.offset = 0;
6532 mddev->bitmap_info.default_offset = 0;
6533 mddev->bitmap_info.default_space = 0;
6534 mddev->bitmap_info.chunksize = 0;
6535 mddev->bitmap_info.daemon_sleep = 0;
6536 mddev->bitmap_info.max_write_behind = 0;
6537 mddev->bitmap_info.nodes = 0;
6538 }
6539
__md_stop_writes(struct mddev * mddev)6540 static void __md_stop_writes(struct mddev *mddev)
6541 {
6542 timer_delete_sync(&mddev->safemode_timer);
6543
6544 if (mddev->pers && mddev->pers->quiesce) {
6545 mddev->pers->quiesce(mddev, 1);
6546 mddev->pers->quiesce(mddev, 0);
6547 }
6548
6549 mddev->bitmap_ops->flush(mddev);
6550
6551 if (md_is_rdwr(mddev) &&
6552 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6553 mddev->sb_flags)) {
6554 /* mark array as shutdown cleanly */
6555 if (!mddev_is_clustered(mddev))
6556 mddev->in_sync = 1;
6557 md_update_sb(mddev, 1);
6558 }
6559 /* disable policy to guarantee rdevs free resources for serialization */
6560 mddev->serialize_policy = 0;
6561 mddev_destroy_serial_pool(mddev, NULL);
6562 }
6563
md_stop_writes(struct mddev * mddev)6564 void md_stop_writes(struct mddev *mddev)
6565 {
6566 mddev_lock_nointr(mddev);
6567 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6568 stop_sync_thread(mddev, true);
6569 __md_stop_writes(mddev);
6570 mddev_unlock(mddev);
6571 }
6572 EXPORT_SYMBOL_GPL(md_stop_writes);
6573
mddev_detach(struct mddev * mddev)6574 static void mddev_detach(struct mddev *mddev)
6575 {
6576 mddev->bitmap_ops->wait_behind_writes(mddev);
6577 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6578 mddev->pers->quiesce(mddev, 1);
6579 mddev->pers->quiesce(mddev, 0);
6580 }
6581 md_unregister_thread(mddev, &mddev->thread);
6582
6583 /* the unplug fn references 'conf' */
6584 if (!mddev_is_dm(mddev))
6585 blk_sync_queue(mddev->gendisk->queue);
6586 }
6587
__md_stop(struct mddev * mddev)6588 static void __md_stop(struct mddev *mddev)
6589 {
6590 struct md_personality *pers = mddev->pers;
6591
6592 mddev->bitmap_ops->destroy(mddev);
6593 mddev_detach(mddev);
6594 spin_lock(&mddev->lock);
6595 mddev->pers = NULL;
6596 spin_unlock(&mddev->lock);
6597 if (mddev->private)
6598 pers->free(mddev, mddev->private);
6599 mddev->private = NULL;
6600 put_pers(pers);
6601 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6602
6603 bioset_exit(&mddev->bio_set);
6604 bioset_exit(&mddev->sync_set);
6605 bioset_exit(&mddev->io_clone_set);
6606 }
6607
md_stop(struct mddev * mddev)6608 void md_stop(struct mddev *mddev)
6609 {
6610 lockdep_assert_held(&mddev->reconfig_mutex);
6611
6612 /* stop the array and free an attached data structures.
6613 * This is called from dm-raid
6614 */
6615 __md_stop_writes(mddev);
6616 __md_stop(mddev);
6617 }
6618
6619 EXPORT_SYMBOL_GPL(md_stop);
6620
6621 /* ensure 'mddev->pers' exist before calling md_set_readonly() */
md_set_readonly(struct mddev * mddev)6622 static int md_set_readonly(struct mddev *mddev)
6623 {
6624 int err = 0;
6625 int did_freeze = 0;
6626
6627 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6628 return -EBUSY;
6629
6630 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6631 did_freeze = 1;
6632 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6633 }
6634
6635 stop_sync_thread(mddev, false);
6636 wait_event(mddev->sb_wait,
6637 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6638 mddev_lock_nointr(mddev);
6639
6640 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6641 pr_warn("md: %s still in use.\n",mdname(mddev));
6642 err = -EBUSY;
6643 goto out;
6644 }
6645
6646 __md_stop_writes(mddev);
6647
6648 if (mddev->ro == MD_RDONLY) {
6649 err = -ENXIO;
6650 goto out;
6651 }
6652
6653 mddev->ro = MD_RDONLY;
6654 set_disk_ro(mddev->gendisk, 1);
6655
6656 out:
6657 if (!err || did_freeze) {
6658 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6659 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6660 sysfs_notify_dirent_safe(mddev->sysfs_state);
6661 }
6662
6663 return err;
6664 }
6665
6666 /* mode:
6667 * 0 - completely stop and dis-assemble array
6668 * 2 - stop but do not disassemble array
6669 */
do_md_stop(struct mddev * mddev,int mode)6670 static int do_md_stop(struct mddev *mddev, int mode)
6671 {
6672 struct gendisk *disk = mddev->gendisk;
6673 struct md_rdev *rdev;
6674 int did_freeze = 0;
6675
6676 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6677 did_freeze = 1;
6678 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6679 }
6680
6681 stop_sync_thread(mddev, true);
6682
6683 if (mddev->sysfs_active ||
6684 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6685 pr_warn("md: %s still in use.\n",mdname(mddev));
6686 if (did_freeze) {
6687 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6688 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6689 }
6690 return -EBUSY;
6691 }
6692 if (mddev->pers) {
6693 if (!md_is_rdwr(mddev))
6694 set_disk_ro(disk, 0);
6695
6696 __md_stop_writes(mddev);
6697 __md_stop(mddev);
6698
6699 /* tell userspace to handle 'inactive' */
6700 sysfs_notify_dirent_safe(mddev->sysfs_state);
6701
6702 rdev_for_each(rdev, mddev)
6703 if (rdev->raid_disk >= 0)
6704 sysfs_unlink_rdev(mddev, rdev);
6705
6706 set_capacity_and_notify(disk, 0);
6707 mddev->changed = 1;
6708
6709 if (!md_is_rdwr(mddev))
6710 mddev->ro = MD_RDWR;
6711 }
6712 /*
6713 * Free resources if final stop
6714 */
6715 if (mode == 0) {
6716 pr_info("md: %s stopped.\n", mdname(mddev));
6717
6718 if (mddev->bitmap_info.file) {
6719 struct file *f = mddev->bitmap_info.file;
6720 spin_lock(&mddev->lock);
6721 mddev->bitmap_info.file = NULL;
6722 spin_unlock(&mddev->lock);
6723 fput(f);
6724 }
6725 mddev->bitmap_info.offset = 0;
6726
6727 export_array(mddev);
6728 md_clean(mddev);
6729 if (!legacy_async_del_gendisk)
6730 set_bit(MD_DELETED, &mddev->flags);
6731 }
6732 md_new_event();
6733 sysfs_notify_dirent_safe(mddev->sysfs_state);
6734 return 0;
6735 }
6736
6737 #ifndef MODULE
autorun_array(struct mddev * mddev)6738 static void autorun_array(struct mddev *mddev)
6739 {
6740 struct md_rdev *rdev;
6741 int err;
6742
6743 if (list_empty(&mddev->disks))
6744 return;
6745
6746 pr_info("md: running: ");
6747
6748 rdev_for_each(rdev, mddev) {
6749 pr_cont("<%pg>", rdev->bdev);
6750 }
6751 pr_cont("\n");
6752
6753 err = do_md_run(mddev);
6754 if (err) {
6755 pr_warn("md: do_md_run() returned %d\n", err);
6756 do_md_stop(mddev, 0);
6757 }
6758 }
6759
6760 /*
6761 * lets try to run arrays based on all disks that have arrived
6762 * until now. (those are in pending_raid_disks)
6763 *
6764 * the method: pick the first pending disk, collect all disks with
6765 * the same UUID, remove all from the pending list and put them into
6766 * the 'same_array' list. Then order this list based on superblock
6767 * update time (freshest comes first), kick out 'old' disks and
6768 * compare superblocks. If everything's fine then run it.
6769 *
6770 * If "unit" is allocated, then bump its reference count
6771 */
autorun_devices(int part)6772 static void autorun_devices(int part)
6773 {
6774 struct md_rdev *rdev0, *rdev, *tmp;
6775 struct mddev *mddev;
6776
6777 pr_info("md: autorun ...\n");
6778 while (!list_empty(&pending_raid_disks)) {
6779 int unit;
6780 dev_t dev;
6781 LIST_HEAD(candidates);
6782 rdev0 = list_entry(pending_raid_disks.next,
6783 struct md_rdev, same_set);
6784
6785 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6786 INIT_LIST_HEAD(&candidates);
6787 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6788 if (super_90_load(rdev, rdev0, 0) >= 0) {
6789 pr_debug("md: adding %pg ...\n",
6790 rdev->bdev);
6791 list_move(&rdev->same_set, &candidates);
6792 }
6793 /*
6794 * now we have a set of devices, with all of them having
6795 * mostly sane superblocks. It's time to allocate the
6796 * mddev.
6797 */
6798 if (part) {
6799 dev = MKDEV(mdp_major,
6800 rdev0->preferred_minor << MdpMinorShift);
6801 unit = MINOR(dev) >> MdpMinorShift;
6802 } else {
6803 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6804 unit = MINOR(dev);
6805 }
6806 if (rdev0->preferred_minor != unit) {
6807 pr_warn("md: unit number in %pg is bad: %d\n",
6808 rdev0->bdev, rdev0->preferred_minor);
6809 break;
6810 }
6811
6812 mddev = md_alloc(dev, NULL);
6813 if (IS_ERR(mddev))
6814 break;
6815
6816 if (mddev_suspend_and_lock(mddev))
6817 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6818 else if (mddev->raid_disks || mddev->major_version
6819 || !list_empty(&mddev->disks)) {
6820 pr_warn("md: %s already running, cannot run %pg\n",
6821 mdname(mddev), rdev0->bdev);
6822 mddev_unlock_and_resume(mddev);
6823 } else {
6824 pr_debug("md: created %s\n", mdname(mddev));
6825 mddev->persistent = 1;
6826 rdev_for_each_list(rdev, tmp, &candidates) {
6827 list_del_init(&rdev->same_set);
6828 if (bind_rdev_to_array(rdev, mddev))
6829 export_rdev(rdev, mddev);
6830 }
6831 autorun_array(mddev);
6832 mddev_unlock_and_resume(mddev);
6833 }
6834 /* on success, candidates will be empty, on error
6835 * it won't...
6836 */
6837 rdev_for_each_list(rdev, tmp, &candidates) {
6838 list_del_init(&rdev->same_set);
6839 export_rdev(rdev, mddev);
6840 }
6841 mddev_put(mddev);
6842 }
6843 pr_info("md: ... autorun DONE.\n");
6844 }
6845 #endif /* !MODULE */
6846
get_version(void __user * arg)6847 static int get_version(void __user *arg)
6848 {
6849 mdu_version_t ver;
6850
6851 ver.major = MD_MAJOR_VERSION;
6852 ver.minor = MD_MINOR_VERSION;
6853 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6854
6855 if (copy_to_user(arg, &ver, sizeof(ver)))
6856 return -EFAULT;
6857
6858 return 0;
6859 }
6860
get_array_info(struct mddev * mddev,void __user * arg)6861 static int get_array_info(struct mddev *mddev, void __user *arg)
6862 {
6863 mdu_array_info_t info;
6864 int nr,working,insync,failed,spare;
6865 struct md_rdev *rdev;
6866
6867 nr = working = insync = failed = spare = 0;
6868 rcu_read_lock();
6869 rdev_for_each_rcu(rdev, mddev) {
6870 nr++;
6871 if (test_bit(Faulty, &rdev->flags))
6872 failed++;
6873 else {
6874 working++;
6875 if (test_bit(In_sync, &rdev->flags))
6876 insync++;
6877 else if (test_bit(Journal, &rdev->flags))
6878 /* TODO: add journal count to md_u.h */
6879 ;
6880 else
6881 spare++;
6882 }
6883 }
6884 rcu_read_unlock();
6885
6886 info.major_version = mddev->major_version;
6887 info.minor_version = mddev->minor_version;
6888 info.patch_version = MD_PATCHLEVEL_VERSION;
6889 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6890 info.level = mddev->level;
6891 info.size = mddev->dev_sectors / 2;
6892 if (info.size != mddev->dev_sectors / 2) /* overflow */
6893 info.size = -1;
6894 info.nr_disks = nr;
6895 info.raid_disks = mddev->raid_disks;
6896 info.md_minor = mddev->md_minor;
6897 info.not_persistent= !mddev->persistent;
6898
6899 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6900 info.state = 0;
6901 if (mddev->in_sync)
6902 info.state = (1<<MD_SB_CLEAN);
6903 if (mddev->bitmap && mddev->bitmap_info.offset)
6904 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6905 if (mddev_is_clustered(mddev))
6906 info.state |= (1<<MD_SB_CLUSTERED);
6907 info.active_disks = insync;
6908 info.working_disks = working;
6909 info.failed_disks = failed;
6910 info.spare_disks = spare;
6911
6912 info.layout = mddev->layout;
6913 info.chunk_size = mddev->chunk_sectors << 9;
6914
6915 if (copy_to_user(arg, &info, sizeof(info)))
6916 return -EFAULT;
6917
6918 return 0;
6919 }
6920
get_bitmap_file(struct mddev * mddev,void __user * arg)6921 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6922 {
6923 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6924 char *ptr;
6925 int err;
6926
6927 file = kzalloc(sizeof(*file), GFP_NOIO);
6928 if (!file)
6929 return -ENOMEM;
6930
6931 err = 0;
6932 spin_lock(&mddev->lock);
6933 /* bitmap enabled */
6934 if (mddev->bitmap_info.file) {
6935 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6936 sizeof(file->pathname));
6937 if (IS_ERR(ptr))
6938 err = PTR_ERR(ptr);
6939 else
6940 memmove(file->pathname, ptr,
6941 sizeof(file->pathname)-(ptr-file->pathname));
6942 }
6943 spin_unlock(&mddev->lock);
6944
6945 if (err == 0 &&
6946 copy_to_user(arg, file, sizeof(*file)))
6947 err = -EFAULT;
6948
6949 kfree(file);
6950 return err;
6951 }
6952
get_disk_info(struct mddev * mddev,void __user * arg)6953 static int get_disk_info(struct mddev *mddev, void __user * arg)
6954 {
6955 mdu_disk_info_t info;
6956 struct md_rdev *rdev;
6957
6958 if (copy_from_user(&info, arg, sizeof(info)))
6959 return -EFAULT;
6960
6961 rcu_read_lock();
6962 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6963 if (rdev) {
6964 info.major = MAJOR(rdev->bdev->bd_dev);
6965 info.minor = MINOR(rdev->bdev->bd_dev);
6966 info.raid_disk = rdev->raid_disk;
6967 info.state = 0;
6968 if (test_bit(Faulty, &rdev->flags))
6969 info.state |= (1<<MD_DISK_FAULTY);
6970 else if (test_bit(In_sync, &rdev->flags)) {
6971 info.state |= (1<<MD_DISK_ACTIVE);
6972 info.state |= (1<<MD_DISK_SYNC);
6973 }
6974 if (test_bit(Journal, &rdev->flags))
6975 info.state |= (1<<MD_DISK_JOURNAL);
6976 if (test_bit(WriteMostly, &rdev->flags))
6977 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6978 if (test_bit(FailFast, &rdev->flags))
6979 info.state |= (1<<MD_DISK_FAILFAST);
6980 } else {
6981 info.major = info.minor = 0;
6982 info.raid_disk = -1;
6983 info.state = (1<<MD_DISK_REMOVED);
6984 }
6985 rcu_read_unlock();
6986
6987 if (copy_to_user(arg, &info, sizeof(info)))
6988 return -EFAULT;
6989
6990 return 0;
6991 }
6992
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6993 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6994 {
6995 struct md_rdev *rdev;
6996 dev_t dev = MKDEV(info->major,info->minor);
6997
6998 if (mddev_is_clustered(mddev) &&
6999 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
7000 pr_warn("%s: Cannot add to clustered mddev.\n",
7001 mdname(mddev));
7002 return -EINVAL;
7003 }
7004
7005 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
7006 return -EOVERFLOW;
7007
7008 if (!mddev->raid_disks) {
7009 int err;
7010 /* expecting a device which has a superblock */
7011 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
7012 if (IS_ERR(rdev)) {
7013 pr_warn("md: md_import_device returned %ld\n",
7014 PTR_ERR(rdev));
7015 return PTR_ERR(rdev);
7016 }
7017 if (!list_empty(&mddev->disks)) {
7018 struct md_rdev *rdev0
7019 = list_entry(mddev->disks.next,
7020 struct md_rdev, same_set);
7021 err = super_types[mddev->major_version]
7022 .load_super(rdev, rdev0, mddev->minor_version);
7023 if (err < 0) {
7024 pr_warn("md: %pg has different UUID to %pg\n",
7025 rdev->bdev,
7026 rdev0->bdev);
7027 export_rdev(rdev, mddev);
7028 return -EINVAL;
7029 }
7030 }
7031 err = bind_rdev_to_array(rdev, mddev);
7032 if (err)
7033 export_rdev(rdev, mddev);
7034 return err;
7035 }
7036
7037 /*
7038 * md_add_new_disk can be used once the array is assembled
7039 * to add "hot spares". They must already have a superblock
7040 * written
7041 */
7042 if (mddev->pers) {
7043 int err;
7044 if (!mddev->pers->hot_add_disk) {
7045 pr_warn("%s: personality does not support diskops!\n",
7046 mdname(mddev));
7047 return -EINVAL;
7048 }
7049 if (mddev->persistent)
7050 rdev = md_import_device(dev, mddev->major_version,
7051 mddev->minor_version);
7052 else
7053 rdev = md_import_device(dev, -1, -1);
7054 if (IS_ERR(rdev)) {
7055 pr_warn("md: md_import_device returned %ld\n",
7056 PTR_ERR(rdev));
7057 return PTR_ERR(rdev);
7058 }
7059 /* set saved_raid_disk if appropriate */
7060 if (!mddev->persistent) {
7061 if (info->state & (1<<MD_DISK_SYNC) &&
7062 info->raid_disk < mddev->raid_disks) {
7063 rdev->raid_disk = info->raid_disk;
7064 clear_bit(Bitmap_sync, &rdev->flags);
7065 } else
7066 rdev->raid_disk = -1;
7067 rdev->saved_raid_disk = rdev->raid_disk;
7068 } else
7069 super_types[mddev->major_version].
7070 validate_super(mddev, NULL/*freshest*/, rdev);
7071 if ((info->state & (1<<MD_DISK_SYNC)) &&
7072 rdev->raid_disk != info->raid_disk) {
7073 /* This was a hot-add request, but events doesn't
7074 * match, so reject it.
7075 */
7076 export_rdev(rdev, mddev);
7077 return -EINVAL;
7078 }
7079
7080 clear_bit(In_sync, &rdev->flags); /* just to be sure */
7081 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
7082 set_bit(WriteMostly, &rdev->flags);
7083 else
7084 clear_bit(WriteMostly, &rdev->flags);
7085 if (info->state & (1<<MD_DISK_FAILFAST))
7086 set_bit(FailFast, &rdev->flags);
7087 else
7088 clear_bit(FailFast, &rdev->flags);
7089
7090 if (info->state & (1<<MD_DISK_JOURNAL)) {
7091 struct md_rdev *rdev2;
7092 bool has_journal = false;
7093
7094 /* make sure no existing journal disk */
7095 rdev_for_each(rdev2, mddev) {
7096 if (test_bit(Journal, &rdev2->flags)) {
7097 has_journal = true;
7098 break;
7099 }
7100 }
7101 if (has_journal || mddev->bitmap) {
7102 export_rdev(rdev, mddev);
7103 return -EBUSY;
7104 }
7105 set_bit(Journal, &rdev->flags);
7106 }
7107 /*
7108 * check whether the device shows up in other nodes
7109 */
7110 if (mddev_is_clustered(mddev)) {
7111 if (info->state & (1 << MD_DISK_CANDIDATE))
7112 set_bit(Candidate, &rdev->flags);
7113 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
7114 /* --add initiated by this node */
7115 err = mddev->cluster_ops->add_new_disk(mddev, rdev);
7116 if (err) {
7117 export_rdev(rdev, mddev);
7118 return err;
7119 }
7120 }
7121 }
7122
7123 rdev->raid_disk = -1;
7124 err = bind_rdev_to_array(rdev, mddev);
7125
7126 if (err)
7127 export_rdev(rdev, mddev);
7128
7129 if (mddev_is_clustered(mddev)) {
7130 if (info->state & (1 << MD_DISK_CANDIDATE)) {
7131 if (!err) {
7132 err = mddev->cluster_ops->new_disk_ack(
7133 mddev, err == 0);
7134 if (err)
7135 md_kick_rdev_from_array(rdev);
7136 }
7137 } else {
7138 if (err)
7139 mddev->cluster_ops->add_new_disk_cancel(mddev);
7140 else
7141 err = add_bound_rdev(rdev);
7142 }
7143
7144 } else if (!err)
7145 err = add_bound_rdev(rdev);
7146
7147 return err;
7148 }
7149
7150 /* otherwise, md_add_new_disk is only allowed
7151 * for major_version==0 superblocks
7152 */
7153 if (mddev->major_version != 0) {
7154 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
7155 return -EINVAL;
7156 }
7157
7158 if (!(info->state & (1<<MD_DISK_FAULTY))) {
7159 int err;
7160 rdev = md_import_device(dev, -1, 0);
7161 if (IS_ERR(rdev)) {
7162 pr_warn("md: error, md_import_device() returned %ld\n",
7163 PTR_ERR(rdev));
7164 return PTR_ERR(rdev);
7165 }
7166 rdev->desc_nr = info->number;
7167 if (info->raid_disk < mddev->raid_disks)
7168 rdev->raid_disk = info->raid_disk;
7169 else
7170 rdev->raid_disk = -1;
7171
7172 if (rdev->raid_disk < mddev->raid_disks)
7173 if (info->state & (1<<MD_DISK_SYNC))
7174 set_bit(In_sync, &rdev->flags);
7175
7176 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
7177 set_bit(WriteMostly, &rdev->flags);
7178 if (info->state & (1<<MD_DISK_FAILFAST))
7179 set_bit(FailFast, &rdev->flags);
7180
7181 if (!mddev->persistent) {
7182 pr_debug("md: nonpersistent superblock ...\n");
7183 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
7184 } else
7185 rdev->sb_start = calc_dev_sboffset(rdev);
7186 rdev->sectors = rdev->sb_start;
7187
7188 err = bind_rdev_to_array(rdev, mddev);
7189 if (err) {
7190 export_rdev(rdev, mddev);
7191 return err;
7192 }
7193 }
7194
7195 return 0;
7196 }
7197
hot_remove_disk(struct mddev * mddev,dev_t dev)7198 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
7199 {
7200 struct md_rdev *rdev;
7201
7202 if (!mddev->pers)
7203 return -ENODEV;
7204
7205 rdev = find_rdev(mddev, dev);
7206 if (!rdev)
7207 return -ENXIO;
7208
7209 if (rdev->raid_disk < 0)
7210 goto kick_rdev;
7211
7212 clear_bit(Blocked, &rdev->flags);
7213 remove_and_add_spares(mddev, rdev);
7214
7215 if (rdev->raid_disk >= 0)
7216 goto busy;
7217
7218 kick_rdev:
7219 if (mddev_is_clustered(mddev) &&
7220 mddev->cluster_ops->remove_disk(mddev, rdev))
7221 goto busy;
7222
7223 md_kick_rdev_from_array(rdev);
7224 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7225 if (!mddev->thread)
7226 md_update_sb(mddev, 1);
7227 md_new_event();
7228
7229 return 0;
7230 busy:
7231 pr_debug("md: cannot remove active disk %pg from %s ...\n",
7232 rdev->bdev, mdname(mddev));
7233 return -EBUSY;
7234 }
7235
hot_add_disk(struct mddev * mddev,dev_t dev)7236 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7237 {
7238 int err;
7239 struct md_rdev *rdev;
7240
7241 if (!mddev->pers)
7242 return -ENODEV;
7243
7244 if (mddev->major_version != 0) {
7245 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7246 mdname(mddev));
7247 return -EINVAL;
7248 }
7249 if (!mddev->pers->hot_add_disk) {
7250 pr_warn("%s: personality does not support diskops!\n",
7251 mdname(mddev));
7252 return -EINVAL;
7253 }
7254
7255 rdev = md_import_device(dev, -1, 0);
7256 if (IS_ERR(rdev)) {
7257 pr_warn("md: error, md_import_device() returned %ld\n",
7258 PTR_ERR(rdev));
7259 return -EINVAL;
7260 }
7261
7262 if (mddev->persistent)
7263 rdev->sb_start = calc_dev_sboffset(rdev);
7264 else
7265 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
7266
7267 rdev->sectors = rdev->sb_start;
7268
7269 if (test_bit(Faulty, &rdev->flags)) {
7270 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
7271 rdev->bdev, mdname(mddev));
7272 err = -EINVAL;
7273 goto abort_export;
7274 }
7275
7276 clear_bit(In_sync, &rdev->flags);
7277 rdev->desc_nr = -1;
7278 rdev->saved_raid_disk = -1;
7279 err = bind_rdev_to_array(rdev, mddev);
7280 if (err)
7281 goto abort_export;
7282
7283 /*
7284 * The rest should better be atomic, we can have disk failures
7285 * noticed in interrupt contexts ...
7286 */
7287
7288 rdev->raid_disk = -1;
7289
7290 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7291 if (!mddev->thread)
7292 md_update_sb(mddev, 1);
7293 /*
7294 * Kick recovery, maybe this spare has to be added to the
7295 * array immediately.
7296 */
7297 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7298 md_new_event();
7299 return 0;
7300
7301 abort_export:
7302 export_rdev(rdev, mddev);
7303 return err;
7304 }
7305
set_bitmap_file(struct mddev * mddev,int fd)7306 static int set_bitmap_file(struct mddev *mddev, int fd)
7307 {
7308 int err = 0;
7309
7310 if (mddev->pers) {
7311 if (!mddev->pers->quiesce || !mddev->thread)
7312 return -EBUSY;
7313 if (mddev->recovery || mddev->sync_thread)
7314 return -EBUSY;
7315 /* we should be able to change the bitmap.. */
7316 }
7317
7318 if (fd >= 0) {
7319 struct inode *inode;
7320 struct file *f;
7321
7322 if (mddev->bitmap || mddev->bitmap_info.file)
7323 return -EEXIST; /* cannot add when bitmap is present */
7324
7325 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) {
7326 pr_warn("%s: bitmap files not supported by this kernel\n",
7327 mdname(mddev));
7328 return -EINVAL;
7329 }
7330 pr_warn("%s: using deprecated bitmap file support\n",
7331 mdname(mddev));
7332
7333 f = fget(fd);
7334
7335 if (f == NULL) {
7336 pr_warn("%s: error: failed to get bitmap file\n",
7337 mdname(mddev));
7338 return -EBADF;
7339 }
7340
7341 inode = f->f_mapping->host;
7342 if (!S_ISREG(inode->i_mode)) {
7343 pr_warn("%s: error: bitmap file must be a regular file\n",
7344 mdname(mddev));
7345 err = -EBADF;
7346 } else if (!(f->f_mode & FMODE_WRITE)) {
7347 pr_warn("%s: error: bitmap file must open for write\n",
7348 mdname(mddev));
7349 err = -EBADF;
7350 } else if (atomic_read(&inode->i_writecount) != 1) {
7351 pr_warn("%s: error: bitmap file is already in use\n",
7352 mdname(mddev));
7353 err = -EBUSY;
7354 }
7355 if (err) {
7356 fput(f);
7357 return err;
7358 }
7359 mddev->bitmap_info.file = f;
7360 mddev->bitmap_info.offset = 0; /* file overrides offset */
7361 } else if (mddev->bitmap == NULL)
7362 return -ENOENT; /* cannot remove what isn't there */
7363 err = 0;
7364 if (mddev->pers) {
7365 if (fd >= 0) {
7366 err = mddev->bitmap_ops->create(mddev);
7367 if (!err)
7368 err = mddev->bitmap_ops->load(mddev);
7369
7370 if (err) {
7371 mddev->bitmap_ops->destroy(mddev);
7372 fd = -1;
7373 }
7374 } else if (fd < 0) {
7375 mddev->bitmap_ops->destroy(mddev);
7376 }
7377 }
7378
7379 if (fd < 0) {
7380 struct file *f = mddev->bitmap_info.file;
7381 if (f) {
7382 spin_lock(&mddev->lock);
7383 mddev->bitmap_info.file = NULL;
7384 spin_unlock(&mddev->lock);
7385 fput(f);
7386 }
7387 }
7388
7389 return err;
7390 }
7391
7392 /*
7393 * md_set_array_info is used two different ways
7394 * The original usage is when creating a new array.
7395 * In this usage, raid_disks is > 0 and it together with
7396 * level, size, not_persistent,layout,chunksize determine the
7397 * shape of the array.
7398 * This will always create an array with a type-0.90.0 superblock.
7399 * The newer usage is when assembling an array.
7400 * In this case raid_disks will be 0, and the major_version field is
7401 * use to determine which style super-blocks are to be found on the devices.
7402 * The minor and patch _version numbers are also kept incase the
7403 * super_block handler wishes to interpret them.
7404 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7405 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7406 {
7407 if (info->raid_disks == 0) {
7408 /* just setting version number for superblock loading */
7409 if (info->major_version < 0 ||
7410 info->major_version >= ARRAY_SIZE(super_types) ||
7411 super_types[info->major_version].name == NULL) {
7412 /* maybe try to auto-load a module? */
7413 pr_warn("md: superblock version %d not known\n",
7414 info->major_version);
7415 return -EINVAL;
7416 }
7417 mddev->major_version = info->major_version;
7418 mddev->minor_version = info->minor_version;
7419 mddev->patch_version = info->patch_version;
7420 mddev->persistent = !info->not_persistent;
7421 /* ensure mddev_put doesn't delete this now that there
7422 * is some minimal configuration.
7423 */
7424 mddev->ctime = ktime_get_real_seconds();
7425 return 0;
7426 }
7427 mddev->major_version = MD_MAJOR_VERSION;
7428 mddev->minor_version = MD_MINOR_VERSION;
7429 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7430 mddev->ctime = ktime_get_real_seconds();
7431
7432 mddev->level = info->level;
7433 mddev->clevel[0] = 0;
7434 mddev->dev_sectors = 2 * (sector_t)info->size;
7435 mddev->raid_disks = info->raid_disks;
7436 /* don't set md_minor, it is determined by which /dev/md* was
7437 * openned
7438 */
7439 if (info->state & (1<<MD_SB_CLEAN))
7440 mddev->resync_offset = MaxSector;
7441 else
7442 mddev->resync_offset = 0;
7443 mddev->persistent = ! info->not_persistent;
7444 mddev->external = 0;
7445
7446 mddev->layout = info->layout;
7447 if (mddev->level == 0)
7448 /* Cannot trust RAID0 layout info here */
7449 mddev->layout = -1;
7450 mddev->chunk_sectors = info->chunk_size >> 9;
7451
7452 if (mddev->persistent) {
7453 mddev->max_disks = MD_SB_DISKS;
7454 mddev->flags = 0;
7455 mddev->sb_flags = 0;
7456 }
7457 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7458
7459 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7460 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7461 mddev->bitmap_info.offset = 0;
7462
7463 mddev->reshape_position = MaxSector;
7464
7465 /*
7466 * Generate a 128 bit UUID
7467 */
7468 get_random_bytes(mddev->uuid, 16);
7469
7470 mddev->new_level = mddev->level;
7471 mddev->new_chunk_sectors = mddev->chunk_sectors;
7472 mddev->new_layout = mddev->layout;
7473 mddev->delta_disks = 0;
7474 mddev->reshape_backwards = 0;
7475
7476 return 0;
7477 }
7478
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7479 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7480 {
7481 lockdep_assert_held(&mddev->reconfig_mutex);
7482
7483 if (mddev->external_size)
7484 return;
7485
7486 mddev->array_sectors = array_sectors;
7487 }
7488 EXPORT_SYMBOL(md_set_array_sectors);
7489
update_size(struct mddev * mddev,sector_t num_sectors)7490 static int update_size(struct mddev *mddev, sector_t num_sectors)
7491 {
7492 struct md_rdev *rdev;
7493 int rv;
7494 int fit = (num_sectors == 0);
7495 sector_t old_dev_sectors = mddev->dev_sectors;
7496
7497 if (mddev->pers->resize == NULL)
7498 return -EINVAL;
7499 /* The "num_sectors" is the number of sectors of each device that
7500 * is used. This can only make sense for arrays with redundancy.
7501 * linear and raid0 always use whatever space is available. We can only
7502 * consider changing this number if no resync or reconstruction is
7503 * happening, and if the new size is acceptable. It must fit before the
7504 * sb_start or, if that is <data_offset, it must fit before the size
7505 * of each device. If num_sectors is zero, we find the largest size
7506 * that fits.
7507 */
7508 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7509 return -EBUSY;
7510 if (!md_is_rdwr(mddev))
7511 return -EROFS;
7512
7513 rdev_for_each(rdev, mddev) {
7514 sector_t avail = rdev->sectors;
7515
7516 if (fit && (num_sectors == 0 || num_sectors > avail))
7517 num_sectors = avail;
7518 if (avail < num_sectors)
7519 return -ENOSPC;
7520 }
7521 rv = mddev->pers->resize(mddev, num_sectors);
7522 if (!rv) {
7523 if (mddev_is_clustered(mddev))
7524 mddev->cluster_ops->update_size(mddev, old_dev_sectors);
7525 else if (!mddev_is_dm(mddev))
7526 set_capacity_and_notify(mddev->gendisk,
7527 mddev->array_sectors);
7528 }
7529 return rv;
7530 }
7531
update_raid_disks(struct mddev * mddev,int raid_disks)7532 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7533 {
7534 int rv;
7535 struct md_rdev *rdev;
7536 /* change the number of raid disks */
7537 if (mddev->pers->check_reshape == NULL)
7538 return -EINVAL;
7539 if (!md_is_rdwr(mddev))
7540 return -EROFS;
7541 if (raid_disks <= 0 ||
7542 (mddev->max_disks && raid_disks >= mddev->max_disks))
7543 return -EINVAL;
7544 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7545 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7546 mddev->reshape_position != MaxSector)
7547 return -EBUSY;
7548
7549 rdev_for_each(rdev, mddev) {
7550 if (mddev->raid_disks < raid_disks &&
7551 rdev->data_offset < rdev->new_data_offset)
7552 return -EINVAL;
7553 if (mddev->raid_disks > raid_disks &&
7554 rdev->data_offset > rdev->new_data_offset)
7555 return -EINVAL;
7556 }
7557
7558 mddev->delta_disks = raid_disks - mddev->raid_disks;
7559 if (mddev->delta_disks < 0)
7560 mddev->reshape_backwards = 1;
7561 else if (mddev->delta_disks > 0)
7562 mddev->reshape_backwards = 0;
7563
7564 rv = mddev->pers->check_reshape(mddev);
7565 if (rv < 0) {
7566 mddev->delta_disks = 0;
7567 mddev->reshape_backwards = 0;
7568 }
7569 return rv;
7570 }
7571
get_cluster_ops(struct mddev * mddev)7572 static int get_cluster_ops(struct mddev *mddev)
7573 {
7574 xa_lock(&md_submodule);
7575 mddev->cluster_ops = xa_load(&md_submodule, ID_CLUSTER);
7576 if (mddev->cluster_ops &&
7577 !try_module_get(mddev->cluster_ops->head.owner))
7578 mddev->cluster_ops = NULL;
7579 xa_unlock(&md_submodule);
7580
7581 return mddev->cluster_ops == NULL ? -ENOENT : 0;
7582 }
7583
put_cluster_ops(struct mddev * mddev)7584 static void put_cluster_ops(struct mddev *mddev)
7585 {
7586 if (!mddev->cluster_ops)
7587 return;
7588
7589 mddev->cluster_ops->leave(mddev);
7590 module_put(mddev->cluster_ops->head.owner);
7591 mddev->cluster_ops = NULL;
7592 }
7593
7594 /*
7595 * update_array_info is used to change the configuration of an
7596 * on-line array.
7597 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7598 * fields in the info are checked against the array.
7599 * Any differences that cannot be handled will cause an error.
7600 * Normally, only one change can be managed at a time.
7601 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7602 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7603 {
7604 int rv = 0;
7605 int cnt = 0;
7606 int state = 0;
7607
7608 /* calculate expected state,ignoring low bits */
7609 if (mddev->bitmap && mddev->bitmap_info.offset)
7610 state |= (1 << MD_SB_BITMAP_PRESENT);
7611
7612 if (mddev->major_version != info->major_version ||
7613 mddev->minor_version != info->minor_version ||
7614 /* mddev->patch_version != info->patch_version || */
7615 mddev->ctime != info->ctime ||
7616 mddev->level != info->level ||
7617 /* mddev->layout != info->layout || */
7618 mddev->persistent != !info->not_persistent ||
7619 mddev->chunk_sectors != info->chunk_size >> 9 ||
7620 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7621 ((state^info->state) & 0xfffffe00)
7622 )
7623 return -EINVAL;
7624 /* Check there is only one change */
7625 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7626 cnt++;
7627 if (mddev->raid_disks != info->raid_disks)
7628 cnt++;
7629 if (mddev->layout != info->layout)
7630 cnt++;
7631 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7632 cnt++;
7633 if (cnt == 0)
7634 return 0;
7635 if (cnt > 1)
7636 return -EINVAL;
7637
7638 if (mddev->layout != info->layout) {
7639 /* Change layout
7640 * we don't need to do anything at the md level, the
7641 * personality will take care of it all.
7642 */
7643 if (mddev->pers->check_reshape == NULL)
7644 return -EINVAL;
7645 else {
7646 mddev->new_layout = info->layout;
7647 rv = mddev->pers->check_reshape(mddev);
7648 if (rv)
7649 mddev->new_layout = mddev->layout;
7650 return rv;
7651 }
7652 }
7653 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7654 rv = update_size(mddev, (sector_t)info->size * 2);
7655
7656 if (mddev->raid_disks != info->raid_disks)
7657 rv = update_raid_disks(mddev, info->raid_disks);
7658
7659 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7660 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7661 rv = -EINVAL;
7662 goto err;
7663 }
7664 if (mddev->recovery || mddev->sync_thread) {
7665 rv = -EBUSY;
7666 goto err;
7667 }
7668 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7669 /* add the bitmap */
7670 if (mddev->bitmap) {
7671 rv = -EEXIST;
7672 goto err;
7673 }
7674 if (mddev->bitmap_info.default_offset == 0) {
7675 rv = -EINVAL;
7676 goto err;
7677 }
7678 mddev->bitmap_info.offset =
7679 mddev->bitmap_info.default_offset;
7680 mddev->bitmap_info.space =
7681 mddev->bitmap_info.default_space;
7682 rv = mddev->bitmap_ops->create(mddev);
7683 if (!rv)
7684 rv = mddev->bitmap_ops->load(mddev);
7685
7686 if (rv)
7687 mddev->bitmap_ops->destroy(mddev);
7688 } else {
7689 struct md_bitmap_stats stats;
7690
7691 rv = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
7692 if (rv)
7693 goto err;
7694
7695 if (stats.file) {
7696 rv = -EINVAL;
7697 goto err;
7698 }
7699
7700 if (mddev->bitmap_info.nodes) {
7701 /* hold PW on all the bitmap lock */
7702 if (mddev->cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7703 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7704 rv = -EPERM;
7705 mddev->cluster_ops->unlock_all_bitmaps(mddev);
7706 goto err;
7707 }
7708
7709 mddev->bitmap_info.nodes = 0;
7710 put_cluster_ops(mddev);
7711 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7712 }
7713 mddev->bitmap_ops->destroy(mddev);
7714 mddev->bitmap_info.offset = 0;
7715 }
7716 }
7717 md_update_sb(mddev, 1);
7718 return rv;
7719 err:
7720 return rv;
7721 }
7722
set_disk_faulty(struct mddev * mddev,dev_t dev)7723 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7724 {
7725 struct md_rdev *rdev;
7726 int err = 0;
7727
7728 if (mddev->pers == NULL)
7729 return -ENODEV;
7730
7731 rcu_read_lock();
7732 rdev = md_find_rdev_rcu(mddev, dev);
7733 if (!rdev)
7734 err = -ENODEV;
7735 else {
7736 md_error(mddev, rdev);
7737 if (test_bit(MD_BROKEN, &mddev->flags))
7738 err = -EBUSY;
7739 }
7740 rcu_read_unlock();
7741 return err;
7742 }
7743
7744 /*
7745 * We have a problem here : there is no easy way to give a CHS
7746 * virtual geometry. We currently pretend that we have a 2 heads
7747 * 4 sectors (with a BIG number of cylinders...). This drives
7748 * dosfs just mad... ;-)
7749 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7750 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7751 {
7752 struct mddev *mddev = bdev->bd_disk->private_data;
7753
7754 geo->heads = 2;
7755 geo->sectors = 4;
7756 geo->cylinders = mddev->array_sectors / 8;
7757 return 0;
7758 }
7759
md_ioctl_valid(unsigned int cmd)7760 static inline int md_ioctl_valid(unsigned int cmd)
7761 {
7762 switch (cmd) {
7763 case GET_ARRAY_INFO:
7764 case GET_DISK_INFO:
7765 case RAID_VERSION:
7766 return 0;
7767 case ADD_NEW_DISK:
7768 case GET_BITMAP_FILE:
7769 case HOT_ADD_DISK:
7770 case HOT_REMOVE_DISK:
7771 case RESTART_ARRAY_RW:
7772 case RUN_ARRAY:
7773 case SET_ARRAY_INFO:
7774 case SET_BITMAP_FILE:
7775 case SET_DISK_FAULTY:
7776 case STOP_ARRAY:
7777 case STOP_ARRAY_RO:
7778 case CLUSTERED_DISK_NACK:
7779 if (!capable(CAP_SYS_ADMIN))
7780 return -EACCES;
7781 return 0;
7782 default:
7783 return -ENOTTY;
7784 }
7785 }
7786
md_ioctl_need_suspend(unsigned int cmd)7787 static bool md_ioctl_need_suspend(unsigned int cmd)
7788 {
7789 switch (cmd) {
7790 case ADD_NEW_DISK:
7791 case HOT_ADD_DISK:
7792 case HOT_REMOVE_DISK:
7793 case SET_BITMAP_FILE:
7794 case SET_ARRAY_INFO:
7795 return true;
7796 default:
7797 return false;
7798 }
7799 }
7800
__md_set_array_info(struct mddev * mddev,void __user * argp)7801 static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7802 {
7803 mdu_array_info_t info;
7804 int err;
7805
7806 if (!argp)
7807 memset(&info, 0, sizeof(info));
7808 else if (copy_from_user(&info, argp, sizeof(info)))
7809 return -EFAULT;
7810
7811 if (mddev->pers) {
7812 err = update_array_info(mddev, &info);
7813 if (err)
7814 pr_warn("md: couldn't update array info. %d\n", err);
7815 return err;
7816 }
7817
7818 if (!list_empty(&mddev->disks)) {
7819 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7820 return -EBUSY;
7821 }
7822
7823 if (mddev->raid_disks) {
7824 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7825 return -EBUSY;
7826 }
7827
7828 err = md_set_array_info(mddev, &info);
7829 if (err)
7830 pr_warn("md: couldn't set array info. %d\n", err);
7831
7832 return err;
7833 }
7834
md_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7835 static int md_ioctl(struct block_device *bdev, blk_mode_t mode,
7836 unsigned int cmd, unsigned long arg)
7837 {
7838 int err = 0;
7839 void __user *argp = (void __user *)arg;
7840 struct mddev *mddev = NULL;
7841
7842 err = md_ioctl_valid(cmd);
7843 if (err)
7844 return err;
7845
7846 /*
7847 * Commands dealing with the RAID driver but not any
7848 * particular array:
7849 */
7850 if (cmd == RAID_VERSION)
7851 return get_version(argp);
7852
7853 /*
7854 * Commands creating/starting a new array:
7855 */
7856
7857 mddev = bdev->bd_disk->private_data;
7858
7859 /* Some actions do not requires the mutex */
7860 switch (cmd) {
7861 case GET_ARRAY_INFO:
7862 if (!mddev->raid_disks && !mddev->external)
7863 return -ENODEV;
7864 return get_array_info(mddev, argp);
7865
7866 case GET_DISK_INFO:
7867 if (!mddev->raid_disks && !mddev->external)
7868 return -ENODEV;
7869 return get_disk_info(mddev, argp);
7870
7871 case SET_DISK_FAULTY:
7872 return set_disk_faulty(mddev, new_decode_dev(arg));
7873
7874 case GET_BITMAP_FILE:
7875 return get_bitmap_file(mddev, argp);
7876 }
7877
7878 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7879 /* Need to flush page cache, and ensure no-one else opens
7880 * and writes
7881 */
7882 err = mddev_set_closing_and_sync_blockdev(mddev, 1);
7883 if (err)
7884 return err;
7885 }
7886
7887 if (!md_is_rdwr(mddev))
7888 flush_work(&mddev->sync_work);
7889
7890 err = md_ioctl_need_suspend(cmd) ? mddev_suspend_and_lock(mddev) :
7891 mddev_lock(mddev);
7892 if (err) {
7893 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7894 err, cmd);
7895 goto out;
7896 }
7897
7898 if (cmd == SET_ARRAY_INFO) {
7899 err = __md_set_array_info(mddev, argp);
7900 goto unlock;
7901 }
7902
7903 /*
7904 * Commands querying/configuring an existing array:
7905 */
7906 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7907 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7908 if ((!mddev->raid_disks && !mddev->external)
7909 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7910 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7911 && cmd != GET_BITMAP_FILE) {
7912 err = -ENODEV;
7913 goto unlock;
7914 }
7915
7916 /*
7917 * Commands even a read-only array can execute:
7918 */
7919 switch (cmd) {
7920 case RESTART_ARRAY_RW:
7921 err = restart_array(mddev);
7922 goto unlock;
7923
7924 case STOP_ARRAY:
7925 err = do_md_stop(mddev, 0);
7926 goto unlock;
7927
7928 case STOP_ARRAY_RO:
7929 if (mddev->pers)
7930 err = md_set_readonly(mddev);
7931 goto unlock;
7932
7933 case HOT_REMOVE_DISK:
7934 err = hot_remove_disk(mddev, new_decode_dev(arg));
7935 goto unlock;
7936
7937 case ADD_NEW_DISK:
7938 /* We can support ADD_NEW_DISK on read-only arrays
7939 * only if we are re-adding a preexisting device.
7940 * So require mddev->pers and MD_DISK_SYNC.
7941 */
7942 if (mddev->pers) {
7943 mdu_disk_info_t info;
7944 if (copy_from_user(&info, argp, sizeof(info)))
7945 err = -EFAULT;
7946 else if (!(info.state & (1<<MD_DISK_SYNC)))
7947 /* Need to clear read-only for this */
7948 break;
7949 else
7950 err = md_add_new_disk(mddev, &info);
7951 goto unlock;
7952 }
7953 break;
7954 }
7955
7956 /*
7957 * The remaining ioctls are changing the state of the
7958 * superblock, so we do not allow them on read-only arrays.
7959 */
7960 if (!md_is_rdwr(mddev) && mddev->pers) {
7961 if (mddev->ro != MD_AUTO_READ) {
7962 err = -EROFS;
7963 goto unlock;
7964 }
7965 mddev->ro = MD_RDWR;
7966 sysfs_notify_dirent_safe(mddev->sysfs_state);
7967 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7968 /* mddev_unlock will wake thread */
7969 /* If a device failed while we were read-only, we
7970 * need to make sure the metadata is updated now.
7971 */
7972 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7973 mddev_unlock(mddev);
7974 wait_event(mddev->sb_wait,
7975 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7976 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7977 mddev_lock_nointr(mddev);
7978 }
7979 }
7980
7981 switch (cmd) {
7982 case ADD_NEW_DISK:
7983 {
7984 mdu_disk_info_t info;
7985 if (copy_from_user(&info, argp, sizeof(info)))
7986 err = -EFAULT;
7987 else
7988 err = md_add_new_disk(mddev, &info);
7989 goto unlock;
7990 }
7991
7992 case CLUSTERED_DISK_NACK:
7993 if (mddev_is_clustered(mddev))
7994 mddev->cluster_ops->new_disk_ack(mddev, false);
7995 else
7996 err = -EINVAL;
7997 goto unlock;
7998
7999 case HOT_ADD_DISK:
8000 err = hot_add_disk(mddev, new_decode_dev(arg));
8001 goto unlock;
8002
8003 case RUN_ARRAY:
8004 err = do_md_run(mddev);
8005 goto unlock;
8006
8007 case SET_BITMAP_FILE:
8008 err = set_bitmap_file(mddev, (int)arg);
8009 goto unlock;
8010
8011 default:
8012 err = -EINVAL;
8013 goto unlock;
8014 }
8015
8016 unlock:
8017 if (mddev->hold_active == UNTIL_IOCTL &&
8018 err != -EINVAL)
8019 mddev->hold_active = 0;
8020
8021 md_ioctl_need_suspend(cmd) ? mddev_unlock_and_resume(mddev) :
8022 mddev_unlock(mddev);
8023
8024 out:
8025 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY))
8026 clear_bit(MD_CLOSING, &mddev->flags);
8027 return err;
8028 }
8029 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)8030 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
8031 unsigned int cmd, unsigned long arg)
8032 {
8033 switch (cmd) {
8034 case HOT_REMOVE_DISK:
8035 case HOT_ADD_DISK:
8036 case SET_DISK_FAULTY:
8037 case SET_BITMAP_FILE:
8038 /* These take in integer arg, do not convert */
8039 break;
8040 default:
8041 arg = (unsigned long)compat_ptr(arg);
8042 break;
8043 }
8044
8045 return md_ioctl(bdev, mode, cmd, arg);
8046 }
8047 #endif /* CONFIG_COMPAT */
8048
md_set_read_only(struct block_device * bdev,bool ro)8049 static int md_set_read_only(struct block_device *bdev, bool ro)
8050 {
8051 struct mddev *mddev = bdev->bd_disk->private_data;
8052 int err;
8053
8054 err = mddev_lock(mddev);
8055 if (err)
8056 return err;
8057
8058 if (!mddev->raid_disks && !mddev->external) {
8059 err = -ENODEV;
8060 goto out_unlock;
8061 }
8062
8063 /*
8064 * Transitioning to read-auto need only happen for arrays that call
8065 * md_write_start and which are not ready for writes yet.
8066 */
8067 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
8068 err = restart_array(mddev);
8069 if (err)
8070 goto out_unlock;
8071 mddev->ro = MD_AUTO_READ;
8072 }
8073
8074 out_unlock:
8075 mddev_unlock(mddev);
8076 return err;
8077 }
8078
md_open(struct gendisk * disk,blk_mode_t mode)8079 static int md_open(struct gendisk *disk, blk_mode_t mode)
8080 {
8081 struct mddev *mddev;
8082 int err;
8083
8084 spin_lock(&all_mddevs_lock);
8085 mddev = mddev_get(disk->private_data);
8086 spin_unlock(&all_mddevs_lock);
8087 if (!mddev)
8088 return -ENODEV;
8089
8090 err = mutex_lock_interruptible(&mddev->open_mutex);
8091 if (err)
8092 goto out;
8093
8094 err = -ENODEV;
8095 if (test_bit(MD_CLOSING, &mddev->flags))
8096 goto out_unlock;
8097
8098 atomic_inc(&mddev->openers);
8099 mutex_unlock(&mddev->open_mutex);
8100
8101 disk_check_media_change(disk);
8102 return 0;
8103
8104 out_unlock:
8105 mutex_unlock(&mddev->open_mutex);
8106 out:
8107 mddev_put(mddev);
8108 return err;
8109 }
8110
md_release(struct gendisk * disk)8111 static void md_release(struct gendisk *disk)
8112 {
8113 struct mddev *mddev = disk->private_data;
8114
8115 BUG_ON(!mddev);
8116 atomic_dec(&mddev->openers);
8117 mddev_put(mddev);
8118 }
8119
md_check_events(struct gendisk * disk,unsigned int clearing)8120 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
8121 {
8122 struct mddev *mddev = disk->private_data;
8123 unsigned int ret = 0;
8124
8125 if (mddev->changed)
8126 ret = DISK_EVENT_MEDIA_CHANGE;
8127 mddev->changed = 0;
8128 return ret;
8129 }
8130
md_free_disk(struct gendisk * disk)8131 static void md_free_disk(struct gendisk *disk)
8132 {
8133 struct mddev *mddev = disk->private_data;
8134
8135 mddev_free(mddev);
8136 }
8137
8138 const struct block_device_operations md_fops =
8139 {
8140 .owner = THIS_MODULE,
8141 .submit_bio = md_submit_bio,
8142 .open = md_open,
8143 .release = md_release,
8144 .ioctl = md_ioctl,
8145 #ifdef CONFIG_COMPAT
8146 .compat_ioctl = md_compat_ioctl,
8147 #endif
8148 .getgeo = md_getgeo,
8149 .check_events = md_check_events,
8150 .set_read_only = md_set_read_only,
8151 .free_disk = md_free_disk,
8152 };
8153
md_thread(void * arg)8154 static int md_thread(void *arg)
8155 {
8156 struct md_thread *thread = arg;
8157
8158 /*
8159 * md_thread is a 'system-thread', it's priority should be very
8160 * high. We avoid resource deadlocks individually in each
8161 * raid personality. (RAID5 does preallocation) We also use RR and
8162 * the very same RT priority as kswapd, thus we will never get
8163 * into a priority inversion deadlock.
8164 *
8165 * we definitely have to have equal or higher priority than
8166 * bdflush, otherwise bdflush will deadlock if there are too
8167 * many dirty RAID5 blocks.
8168 */
8169
8170 allow_signal(SIGKILL);
8171 while (!kthread_should_stop()) {
8172
8173 /* We need to wait INTERRUPTIBLE so that
8174 * we don't add to the load-average.
8175 * That means we need to be sure no signals are
8176 * pending
8177 */
8178 if (signal_pending(current))
8179 flush_signals(current);
8180
8181 wait_event_interruptible_timeout
8182 (thread->wqueue,
8183 test_bit(THREAD_WAKEUP, &thread->flags)
8184 || kthread_should_stop() || kthread_should_park(),
8185 thread->timeout);
8186
8187 clear_bit(THREAD_WAKEUP, &thread->flags);
8188 if (kthread_should_park())
8189 kthread_parkme();
8190 if (!kthread_should_stop())
8191 thread->run(thread);
8192 }
8193
8194 return 0;
8195 }
8196
md_wakeup_thread_directly(struct md_thread __rcu * thread)8197 static void md_wakeup_thread_directly(struct md_thread __rcu *thread)
8198 {
8199 struct md_thread *t;
8200
8201 rcu_read_lock();
8202 t = rcu_dereference(thread);
8203 if (t)
8204 wake_up_process(t->tsk);
8205 rcu_read_unlock();
8206 }
8207
md_wakeup_thread(struct md_thread __rcu * thread)8208 void md_wakeup_thread(struct md_thread __rcu *thread)
8209 {
8210 struct md_thread *t;
8211
8212 rcu_read_lock();
8213 t = rcu_dereference(thread);
8214 if (t) {
8215 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm);
8216 set_bit(THREAD_WAKEUP, &t->flags);
8217 if (wq_has_sleeper(&t->wqueue))
8218 wake_up(&t->wqueue);
8219 }
8220 rcu_read_unlock();
8221 }
8222 EXPORT_SYMBOL(md_wakeup_thread);
8223
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)8224 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
8225 struct mddev *mddev, const char *name)
8226 {
8227 struct md_thread *thread;
8228
8229 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
8230 if (!thread)
8231 return NULL;
8232
8233 init_waitqueue_head(&thread->wqueue);
8234
8235 thread->run = run;
8236 thread->mddev = mddev;
8237 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8238 thread->tsk = kthread_run(md_thread, thread,
8239 "%s_%s",
8240 mdname(thread->mddev),
8241 name);
8242 if (IS_ERR(thread->tsk)) {
8243 kfree(thread);
8244 return NULL;
8245 }
8246 return thread;
8247 }
8248 EXPORT_SYMBOL(md_register_thread);
8249
md_unregister_thread(struct mddev * mddev,struct md_thread __rcu ** threadp)8250 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp)
8251 {
8252 struct md_thread *thread = rcu_dereference_protected(*threadp,
8253 lockdep_is_held(&mddev->reconfig_mutex));
8254
8255 if (!thread)
8256 return;
8257
8258 rcu_assign_pointer(*threadp, NULL);
8259 synchronize_rcu();
8260
8261 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8262 kthread_stop(thread->tsk);
8263 kfree(thread);
8264 }
8265 EXPORT_SYMBOL(md_unregister_thread);
8266
md_error(struct mddev * mddev,struct md_rdev * rdev)8267 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8268 {
8269 if (!rdev || test_bit(Faulty, &rdev->flags))
8270 return;
8271
8272 if (!mddev->pers || !mddev->pers->error_handler)
8273 return;
8274 mddev->pers->error_handler(mddev, rdev);
8275
8276 if (mddev->pers->head.id == ID_RAID0 ||
8277 mddev->pers->head.id == ID_LINEAR)
8278 return;
8279
8280 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8281 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8282 sysfs_notify_dirent_safe(rdev->sysfs_state);
8283 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8284 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8285 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8286 md_wakeup_thread(mddev->thread);
8287 }
8288 if (mddev->event_work.func)
8289 queue_work(md_misc_wq, &mddev->event_work);
8290 md_new_event();
8291 }
8292 EXPORT_SYMBOL(md_error);
8293
8294 /* seq_file implementation /proc/mdstat */
8295
status_unused(struct seq_file * seq)8296 static void status_unused(struct seq_file *seq)
8297 {
8298 int i = 0;
8299 struct md_rdev *rdev;
8300
8301 seq_printf(seq, "unused devices: ");
8302
8303 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8304 i++;
8305 seq_printf(seq, "%pg ", rdev->bdev);
8306 }
8307 if (!i)
8308 seq_printf(seq, "<none>");
8309
8310 seq_printf(seq, "\n");
8311 }
8312
status_personalities(struct seq_file * seq)8313 static void status_personalities(struct seq_file *seq)
8314 {
8315 struct md_submodule_head *head;
8316 unsigned long i;
8317
8318 seq_puts(seq, "Personalities : ");
8319
8320 xa_lock(&md_submodule);
8321 xa_for_each(&md_submodule, i, head)
8322 if (head->type == MD_PERSONALITY)
8323 seq_printf(seq, "[%s] ", head->name);
8324 xa_unlock(&md_submodule);
8325
8326 seq_puts(seq, "\n");
8327 }
8328
status_resync(struct seq_file * seq,struct mddev * mddev)8329 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8330 {
8331 sector_t max_sectors, resync, res;
8332 unsigned long dt, db = 0;
8333 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8334 int scale, recovery_active;
8335 unsigned int per_milli;
8336
8337 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8338 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8339 max_sectors = mddev->resync_max_sectors;
8340 else
8341 max_sectors = mddev->dev_sectors;
8342
8343 resync = mddev->curr_resync;
8344 if (resync < MD_RESYNC_ACTIVE) {
8345 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8346 /* Still cleaning up */
8347 resync = max_sectors;
8348 } else if (resync > max_sectors) {
8349 resync = max_sectors;
8350 } else {
8351 res = atomic_read(&mddev->recovery_active);
8352 /*
8353 * Resync has started, but the subtraction has overflowed or
8354 * yielded one of the special values. Force it to active to
8355 * ensure the status reports an active resync.
8356 */
8357 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8358 resync = MD_RESYNC_ACTIVE;
8359 else
8360 resync -= res;
8361 }
8362
8363 if (resync == MD_RESYNC_NONE) {
8364 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8365 struct md_rdev *rdev;
8366
8367 rdev_for_each(rdev, mddev)
8368 if (rdev->raid_disk >= 0 &&
8369 !test_bit(Faulty, &rdev->flags) &&
8370 rdev->recovery_offset != MaxSector &&
8371 rdev->recovery_offset) {
8372 seq_printf(seq, "\trecover=REMOTE");
8373 return 1;
8374 }
8375 if (mddev->reshape_position != MaxSector)
8376 seq_printf(seq, "\treshape=REMOTE");
8377 else
8378 seq_printf(seq, "\tresync=REMOTE");
8379 return 1;
8380 }
8381 if (mddev->resync_offset < MaxSector) {
8382 seq_printf(seq, "\tresync=PENDING");
8383 return 1;
8384 }
8385 return 0;
8386 }
8387 if (resync < MD_RESYNC_ACTIVE) {
8388 seq_printf(seq, "\tresync=DELAYED");
8389 return 1;
8390 }
8391
8392 WARN_ON(max_sectors == 0);
8393 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8394 * in a sector_t, and (max_sectors>>scale) will fit in a
8395 * u32, as those are the requirements for sector_div.
8396 * Thus 'scale' must be at least 10
8397 */
8398 scale = 10;
8399 if (sizeof(sector_t) > sizeof(unsigned long)) {
8400 while ( max_sectors/2 > (1ULL<<(scale+32)))
8401 scale++;
8402 }
8403 res = (resync>>scale)*1000;
8404 sector_div(res, (u32)((max_sectors>>scale)+1));
8405
8406 per_milli = res;
8407 {
8408 int i, x = per_milli/50, y = 20-x;
8409 seq_printf(seq, "[");
8410 for (i = 0; i < x; i++)
8411 seq_printf(seq, "=");
8412 seq_printf(seq, ">");
8413 for (i = 0; i < y; i++)
8414 seq_printf(seq, ".");
8415 seq_printf(seq, "] ");
8416 }
8417 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8418 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8419 "reshape" :
8420 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8421 "check" :
8422 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8423 "resync" : "recovery"))),
8424 per_milli/10, per_milli % 10,
8425 (unsigned long long) resync/2,
8426 (unsigned long long) max_sectors/2);
8427
8428 /*
8429 * dt: time from mark until now
8430 * db: blocks written from mark until now
8431 * rt: remaining time
8432 *
8433 * rt is a sector_t, which is always 64bit now. We are keeping
8434 * the original algorithm, but it is not really necessary.
8435 *
8436 * Original algorithm:
8437 * So we divide before multiply in case it is 32bit and close
8438 * to the limit.
8439 * We scale the divisor (db) by 32 to avoid losing precision
8440 * near the end of resync when the number of remaining sectors
8441 * is close to 'db'.
8442 * We then divide rt by 32 after multiplying by db to compensate.
8443 * The '+1' avoids division by zero if db is very small.
8444 */
8445 dt = ((jiffies - mddev->resync_mark) / HZ);
8446 if (!dt) dt++;
8447
8448 curr_mark_cnt = mddev->curr_mark_cnt;
8449 recovery_active = atomic_read(&mddev->recovery_active);
8450 resync_mark_cnt = mddev->resync_mark_cnt;
8451
8452 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8453 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8454
8455 rt = max_sectors - resync; /* number of remaining sectors */
8456 rt = div64_u64(rt, db/32+1);
8457 rt *= dt;
8458 rt >>= 5;
8459
8460 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8461 ((unsigned long)rt % 60)/6);
8462
8463 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8464 return 1;
8465 }
8466
md_seq_start(struct seq_file * seq,loff_t * pos)8467 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8468 __acquires(&all_mddevs_lock)
8469 {
8470 seq->poll_event = atomic_read(&md_event_count);
8471 spin_lock(&all_mddevs_lock);
8472
8473 return seq_list_start_head(&all_mddevs, *pos);
8474 }
8475
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8476 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8477 {
8478 return seq_list_next(v, &all_mddevs, pos);
8479 }
8480
md_seq_stop(struct seq_file * seq,void * v)8481 static void md_seq_stop(struct seq_file *seq, void *v)
8482 __releases(&all_mddevs_lock)
8483 {
8484 spin_unlock(&all_mddevs_lock);
8485 }
8486
md_bitmap_status(struct seq_file * seq,struct mddev * mddev)8487 static void md_bitmap_status(struct seq_file *seq, struct mddev *mddev)
8488 {
8489 struct md_bitmap_stats stats;
8490 unsigned long used_pages;
8491 unsigned long chunk_kb;
8492 int err;
8493
8494 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
8495 if (err)
8496 return;
8497
8498 chunk_kb = mddev->bitmap_info.chunksize >> 10;
8499 used_pages = stats.pages - stats.missing_pages;
8500
8501 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], %lu%s chunk",
8502 used_pages, stats.pages, used_pages << (PAGE_SHIFT - 10),
8503 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
8504 chunk_kb ? "KB" : "B");
8505
8506 if (stats.file) {
8507 seq_puts(seq, ", file: ");
8508 seq_file_path(seq, stats.file, " \t\n");
8509 }
8510
8511 seq_putc(seq, '\n');
8512 }
8513
md_seq_show(struct seq_file * seq,void * v)8514 static int md_seq_show(struct seq_file *seq, void *v)
8515 {
8516 struct mddev *mddev;
8517 sector_t sectors;
8518 struct md_rdev *rdev;
8519
8520 if (v == &all_mddevs) {
8521 status_personalities(seq);
8522 if (list_empty(&all_mddevs))
8523 status_unused(seq);
8524 return 0;
8525 }
8526
8527 mddev = list_entry(v, struct mddev, all_mddevs);
8528 if (!mddev_get(mddev))
8529 return 0;
8530
8531 spin_unlock(&all_mddevs_lock);
8532
8533 /* prevent bitmap to be freed after checking */
8534 mutex_lock(&mddev->bitmap_info.mutex);
8535
8536 spin_lock(&mddev->lock);
8537 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8538 seq_printf(seq, "%s : ", mdname(mddev));
8539 if (mddev->pers) {
8540 if (test_bit(MD_BROKEN, &mddev->flags))
8541 seq_printf(seq, "broken");
8542 else
8543 seq_printf(seq, "active");
8544 if (mddev->ro == MD_RDONLY)
8545 seq_printf(seq, " (read-only)");
8546 if (mddev->ro == MD_AUTO_READ)
8547 seq_printf(seq, " (auto-read-only)");
8548 seq_printf(seq, " %s", mddev->pers->head.name);
8549 } else {
8550 seq_printf(seq, "inactive");
8551 }
8552
8553 sectors = 0;
8554 rcu_read_lock();
8555 rdev_for_each_rcu(rdev, mddev) {
8556 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8557
8558 if (test_bit(WriteMostly, &rdev->flags))
8559 seq_printf(seq, "(W)");
8560 if (test_bit(Journal, &rdev->flags))
8561 seq_printf(seq, "(J)");
8562 if (test_bit(Faulty, &rdev->flags)) {
8563 seq_printf(seq, "(F)");
8564 continue;
8565 }
8566 if (rdev->raid_disk < 0)
8567 seq_printf(seq, "(S)"); /* spare */
8568 if (test_bit(Replacement, &rdev->flags))
8569 seq_printf(seq, "(R)");
8570 sectors += rdev->sectors;
8571 }
8572 rcu_read_unlock();
8573
8574 if (!list_empty(&mddev->disks)) {
8575 if (mddev->pers)
8576 seq_printf(seq, "\n %llu blocks",
8577 (unsigned long long)
8578 mddev->array_sectors / 2);
8579 else
8580 seq_printf(seq, "\n %llu blocks",
8581 (unsigned long long)sectors / 2);
8582 }
8583 if (mddev->persistent) {
8584 if (mddev->major_version != 0 ||
8585 mddev->minor_version != 90) {
8586 seq_printf(seq," super %d.%d",
8587 mddev->major_version,
8588 mddev->minor_version);
8589 }
8590 } else if (mddev->external)
8591 seq_printf(seq, " super external:%s",
8592 mddev->metadata_type);
8593 else
8594 seq_printf(seq, " super non-persistent");
8595
8596 if (mddev->pers) {
8597 mddev->pers->status(seq, mddev);
8598 seq_printf(seq, "\n ");
8599 if (mddev->pers->sync_request) {
8600 if (status_resync(seq, mddev))
8601 seq_printf(seq, "\n ");
8602 }
8603 } else
8604 seq_printf(seq, "\n ");
8605
8606 md_bitmap_status(seq, mddev);
8607
8608 seq_printf(seq, "\n");
8609 }
8610 spin_unlock(&mddev->lock);
8611 mutex_unlock(&mddev->bitmap_info.mutex);
8612 spin_lock(&all_mddevs_lock);
8613
8614 if (mddev == list_last_entry(&all_mddevs, struct mddev, all_mddevs))
8615 status_unused(seq);
8616
8617 mddev_put_locked(mddev);
8618 return 0;
8619 }
8620
8621 static const struct seq_operations md_seq_ops = {
8622 .start = md_seq_start,
8623 .next = md_seq_next,
8624 .stop = md_seq_stop,
8625 .show = md_seq_show,
8626 };
8627
md_seq_open(struct inode * inode,struct file * file)8628 static int md_seq_open(struct inode *inode, struct file *file)
8629 {
8630 struct seq_file *seq;
8631 int error;
8632
8633 error = seq_open(file, &md_seq_ops);
8634 if (error)
8635 return error;
8636
8637 seq = file->private_data;
8638 seq->poll_event = atomic_read(&md_event_count);
8639 return error;
8640 }
8641
8642 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8643 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8644 {
8645 struct seq_file *seq = filp->private_data;
8646 __poll_t mask;
8647
8648 if (md_unloading)
8649 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8650 poll_wait(filp, &md_event_waiters, wait);
8651
8652 /* always allow read */
8653 mask = EPOLLIN | EPOLLRDNORM;
8654
8655 if (seq->poll_event != atomic_read(&md_event_count))
8656 mask |= EPOLLERR | EPOLLPRI;
8657 return mask;
8658 }
8659
8660 static const struct proc_ops mdstat_proc_ops = {
8661 .proc_open = md_seq_open,
8662 .proc_read = seq_read,
8663 .proc_lseek = seq_lseek,
8664 .proc_release = seq_release,
8665 .proc_poll = mdstat_poll,
8666 };
8667
register_md_submodule(struct md_submodule_head * msh)8668 int register_md_submodule(struct md_submodule_head *msh)
8669 {
8670 return xa_insert(&md_submodule, msh->id, msh, GFP_KERNEL);
8671 }
8672 EXPORT_SYMBOL_GPL(register_md_submodule);
8673
unregister_md_submodule(struct md_submodule_head * msh)8674 void unregister_md_submodule(struct md_submodule_head *msh)
8675 {
8676 xa_erase(&md_submodule, msh->id);
8677 }
8678 EXPORT_SYMBOL_GPL(unregister_md_submodule);
8679
md_setup_cluster(struct mddev * mddev,int nodes)8680 int md_setup_cluster(struct mddev *mddev, int nodes)
8681 {
8682 int ret = get_cluster_ops(mddev);
8683
8684 if (ret) {
8685 request_module("md-cluster");
8686 ret = get_cluster_ops(mddev);
8687 }
8688
8689 /* ensure module won't be unloaded */
8690 if (ret) {
8691 pr_warn("can't find md-cluster module or get its reference.\n");
8692 return ret;
8693 }
8694
8695 ret = mddev->cluster_ops->join(mddev, nodes);
8696 if (!ret)
8697 mddev->safemode_delay = 0;
8698 return ret;
8699 }
8700
md_cluster_stop(struct mddev * mddev)8701 void md_cluster_stop(struct mddev *mddev)
8702 {
8703 put_cluster_ops(mddev);
8704 }
8705
is_rdev_holder_idle(struct md_rdev * rdev,bool init)8706 static bool is_rdev_holder_idle(struct md_rdev *rdev, bool init)
8707 {
8708 unsigned long last_events = rdev->last_events;
8709
8710 if (!bdev_is_partition(rdev->bdev))
8711 return true;
8712
8713 /*
8714 * If rdev is partition, and user doesn't issue IO to the array, the
8715 * array is still not idle if user issues IO to other partitions.
8716 */
8717 rdev->last_events = part_stat_read_accum(rdev->bdev->bd_disk->part0,
8718 sectors) -
8719 part_stat_read_accum(rdev->bdev, sectors);
8720
8721 return init || rdev->last_events <= last_events;
8722 }
8723
8724 /*
8725 * mddev is idle if following conditions are matched since last check:
8726 * 1) mddev doesn't have normal IO completed;
8727 * 2) mddev doesn't have inflight normal IO;
8728 * 3) if any member disk is partition, and other partitions don't have IO
8729 * completed;
8730 *
8731 * Noted this checking rely on IO accounting is enabled.
8732 */
is_mddev_idle(struct mddev * mddev,int init)8733 static bool is_mddev_idle(struct mddev *mddev, int init)
8734 {
8735 unsigned long last_events = mddev->normal_io_events;
8736 struct gendisk *disk;
8737 struct md_rdev *rdev;
8738 bool idle = true;
8739
8740 disk = mddev_is_dm(mddev) ? mddev->dm_gendisk : mddev->gendisk;
8741 if (!disk)
8742 return true;
8743
8744 mddev->normal_io_events = part_stat_read_accum(disk->part0, sectors);
8745 if (!init && (mddev->normal_io_events > last_events ||
8746 bdev_count_inflight(disk->part0)))
8747 idle = false;
8748
8749 rcu_read_lock();
8750 rdev_for_each_rcu(rdev, mddev)
8751 if (!is_rdev_holder_idle(rdev, init))
8752 idle = false;
8753 rcu_read_unlock();
8754
8755 return idle;
8756 }
8757
md_done_sync(struct mddev * mddev,int blocks,int ok)8758 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8759 {
8760 /* another "blocks" (512byte) blocks have been synced */
8761 atomic_sub(blocks, &mddev->recovery_active);
8762 wake_up(&mddev->recovery_wait);
8763 if (!ok) {
8764 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8765 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8766 md_wakeup_thread(mddev->thread);
8767 // stop recovery, signal do_sync ....
8768 }
8769 }
8770 EXPORT_SYMBOL(md_done_sync);
8771
8772 /* md_write_start(mddev, bi)
8773 * If we need to update some array metadata (e.g. 'active' flag
8774 * in superblock) before writing, schedule a superblock update
8775 * and wait for it to complete.
8776 * A return value of 'false' means that the write wasn't recorded
8777 * and cannot proceed as the array is being suspend.
8778 */
md_write_start(struct mddev * mddev,struct bio * bi)8779 void md_write_start(struct mddev *mddev, struct bio *bi)
8780 {
8781 int did_change = 0;
8782
8783 if (bio_data_dir(bi) != WRITE)
8784 return;
8785
8786 BUG_ON(mddev->ro == MD_RDONLY);
8787 if (mddev->ro == MD_AUTO_READ) {
8788 /* need to switch to read/write */
8789 mddev->ro = MD_RDWR;
8790 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8791 md_wakeup_thread(mddev->thread);
8792 md_wakeup_thread(mddev->sync_thread);
8793 did_change = 1;
8794 }
8795 rcu_read_lock();
8796 percpu_ref_get(&mddev->writes_pending);
8797 smp_mb(); /* Match smp_mb in set_in_sync() */
8798 if (mddev->safemode == 1)
8799 mddev->safemode = 0;
8800 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8801 if (mddev->in_sync || mddev->sync_checkers) {
8802 spin_lock(&mddev->lock);
8803 if (mddev->in_sync) {
8804 mddev->in_sync = 0;
8805 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8806 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8807 md_wakeup_thread(mddev->thread);
8808 did_change = 1;
8809 }
8810 spin_unlock(&mddev->lock);
8811 }
8812 rcu_read_unlock();
8813 if (did_change)
8814 sysfs_notify_dirent_safe(mddev->sysfs_state);
8815 if (!mddev->has_superblocks)
8816 return;
8817 wait_event(mddev->sb_wait,
8818 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8819 }
8820 EXPORT_SYMBOL(md_write_start);
8821
8822 /* md_write_inc can only be called when md_write_start() has
8823 * already been called at least once of the current request.
8824 * It increments the counter and is useful when a single request
8825 * is split into several parts. Each part causes an increment and
8826 * so needs a matching md_write_end().
8827 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8828 * a spinlocked region.
8829 */
md_write_inc(struct mddev * mddev,struct bio * bi)8830 void md_write_inc(struct mddev *mddev, struct bio *bi)
8831 {
8832 if (bio_data_dir(bi) != WRITE)
8833 return;
8834 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8835 percpu_ref_get(&mddev->writes_pending);
8836 }
8837 EXPORT_SYMBOL(md_write_inc);
8838
md_write_end(struct mddev * mddev)8839 void md_write_end(struct mddev *mddev)
8840 {
8841 percpu_ref_put(&mddev->writes_pending);
8842
8843 if (mddev->safemode == 2)
8844 md_wakeup_thread(mddev->thread);
8845 else if (mddev->safemode_delay)
8846 /* The roundup() ensures this only performs locking once
8847 * every ->safemode_delay jiffies
8848 */
8849 mod_timer(&mddev->safemode_timer,
8850 roundup(jiffies, mddev->safemode_delay) +
8851 mddev->safemode_delay);
8852 }
8853
8854 EXPORT_SYMBOL(md_write_end);
8855
8856 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8857 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8858 struct bio *bio, sector_t start, sector_t size)
8859 {
8860 struct bio *discard_bio = NULL;
8861
8862 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8863 &discard_bio) || !discard_bio)
8864 return;
8865
8866 bio_chain(discard_bio, bio);
8867 bio_clone_blkg_association(discard_bio, bio);
8868 mddev_trace_remap(mddev, discard_bio, bio->bi_iter.bi_sector);
8869 submit_bio_noacct(discard_bio);
8870 }
8871 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8872
md_bitmap_start(struct mddev * mddev,struct md_io_clone * md_io_clone)8873 static void md_bitmap_start(struct mddev *mddev,
8874 struct md_io_clone *md_io_clone)
8875 {
8876 if (mddev->pers->bitmap_sector)
8877 mddev->pers->bitmap_sector(mddev, &md_io_clone->offset,
8878 &md_io_clone->sectors);
8879
8880 mddev->bitmap_ops->start_write(mddev, md_io_clone->offset,
8881 md_io_clone->sectors);
8882 }
8883
md_bitmap_end(struct mddev * mddev,struct md_io_clone * md_io_clone)8884 static void md_bitmap_end(struct mddev *mddev, struct md_io_clone *md_io_clone)
8885 {
8886 mddev->bitmap_ops->end_write(mddev, md_io_clone->offset,
8887 md_io_clone->sectors);
8888 }
8889
md_end_clone_io(struct bio * bio)8890 static void md_end_clone_io(struct bio *bio)
8891 {
8892 struct md_io_clone *md_io_clone = bio->bi_private;
8893 struct bio *orig_bio = md_io_clone->orig_bio;
8894 struct mddev *mddev = md_io_clone->mddev;
8895
8896 if (bio_data_dir(orig_bio) == WRITE && mddev->bitmap)
8897 md_bitmap_end(mddev, md_io_clone);
8898
8899 if (bio->bi_status && !orig_bio->bi_status)
8900 orig_bio->bi_status = bio->bi_status;
8901
8902 if (md_io_clone->start_time)
8903 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8904
8905 bio_put(bio);
8906 bio_endio(orig_bio);
8907 percpu_ref_put(&mddev->active_io);
8908 }
8909
md_clone_bio(struct mddev * mddev,struct bio ** bio)8910 static void md_clone_bio(struct mddev *mddev, struct bio **bio)
8911 {
8912 struct block_device *bdev = (*bio)->bi_bdev;
8913 struct md_io_clone *md_io_clone;
8914 struct bio *clone =
8915 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set);
8916
8917 md_io_clone = container_of(clone, struct md_io_clone, bio_clone);
8918 md_io_clone->orig_bio = *bio;
8919 md_io_clone->mddev = mddev;
8920 if (blk_queue_io_stat(bdev->bd_disk->queue))
8921 md_io_clone->start_time = bio_start_io_acct(*bio);
8922
8923 if (bio_data_dir(*bio) == WRITE && mddev->bitmap) {
8924 md_io_clone->offset = (*bio)->bi_iter.bi_sector;
8925 md_io_clone->sectors = bio_sectors(*bio);
8926 md_bitmap_start(mddev, md_io_clone);
8927 }
8928
8929 clone->bi_end_io = md_end_clone_io;
8930 clone->bi_private = md_io_clone;
8931 *bio = clone;
8932 }
8933
md_account_bio(struct mddev * mddev,struct bio ** bio)8934 void md_account_bio(struct mddev *mddev, struct bio **bio)
8935 {
8936 percpu_ref_get(&mddev->active_io);
8937 md_clone_bio(mddev, bio);
8938 }
8939 EXPORT_SYMBOL_GPL(md_account_bio);
8940
md_free_cloned_bio(struct bio * bio)8941 void md_free_cloned_bio(struct bio *bio)
8942 {
8943 struct md_io_clone *md_io_clone = bio->bi_private;
8944 struct bio *orig_bio = md_io_clone->orig_bio;
8945 struct mddev *mddev = md_io_clone->mddev;
8946
8947 if (bio_data_dir(orig_bio) == WRITE && mddev->bitmap)
8948 md_bitmap_end(mddev, md_io_clone);
8949
8950 if (bio->bi_status && !orig_bio->bi_status)
8951 orig_bio->bi_status = bio->bi_status;
8952
8953 if (md_io_clone->start_time)
8954 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8955
8956 bio_put(bio);
8957 percpu_ref_put(&mddev->active_io);
8958 }
8959 EXPORT_SYMBOL_GPL(md_free_cloned_bio);
8960
8961 /* md_allow_write(mddev)
8962 * Calling this ensures that the array is marked 'active' so that writes
8963 * may proceed without blocking. It is important to call this before
8964 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8965 * Must be called with mddev_lock held.
8966 */
md_allow_write(struct mddev * mddev)8967 void md_allow_write(struct mddev *mddev)
8968 {
8969 if (!mddev->pers)
8970 return;
8971 if (!md_is_rdwr(mddev))
8972 return;
8973 if (!mddev->pers->sync_request)
8974 return;
8975
8976 spin_lock(&mddev->lock);
8977 if (mddev->in_sync) {
8978 mddev->in_sync = 0;
8979 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8980 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8981 if (mddev->safemode_delay &&
8982 mddev->safemode == 0)
8983 mddev->safemode = 1;
8984 spin_unlock(&mddev->lock);
8985 md_update_sb(mddev, 0);
8986 sysfs_notify_dirent_safe(mddev->sysfs_state);
8987 /* wait for the dirty state to be recorded in the metadata */
8988 wait_event(mddev->sb_wait,
8989 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8990 } else
8991 spin_unlock(&mddev->lock);
8992 }
8993 EXPORT_SYMBOL_GPL(md_allow_write);
8994
md_sync_max_sectors(struct mddev * mddev,enum sync_action action)8995 static sector_t md_sync_max_sectors(struct mddev *mddev,
8996 enum sync_action action)
8997 {
8998 switch (action) {
8999 case ACTION_RESYNC:
9000 case ACTION_CHECK:
9001 case ACTION_REPAIR:
9002 atomic64_set(&mddev->resync_mismatches, 0);
9003 fallthrough;
9004 case ACTION_RESHAPE:
9005 return mddev->resync_max_sectors;
9006 case ACTION_RECOVER:
9007 return mddev->dev_sectors;
9008 default:
9009 return 0;
9010 }
9011 }
9012
md_sync_position(struct mddev * mddev,enum sync_action action)9013 static sector_t md_sync_position(struct mddev *mddev, enum sync_action action)
9014 {
9015 sector_t start = 0;
9016 struct md_rdev *rdev;
9017
9018 switch (action) {
9019 case ACTION_CHECK:
9020 case ACTION_REPAIR:
9021 return mddev->resync_min;
9022 case ACTION_RESYNC:
9023 if (!mddev->bitmap)
9024 return mddev->resync_offset;
9025 return 0;
9026 case ACTION_RESHAPE:
9027 /*
9028 * If the original node aborts reshaping then we continue the
9029 * reshaping, so set again to avoid restart reshape from the
9030 * first beginning
9031 */
9032 if (mddev_is_clustered(mddev) &&
9033 mddev->reshape_position != MaxSector)
9034 return mddev->reshape_position;
9035 return 0;
9036 case ACTION_RECOVER:
9037 start = MaxSector;
9038 rcu_read_lock();
9039 rdev_for_each_rcu(rdev, mddev)
9040 if (rdev_needs_recovery(rdev, start))
9041 start = rdev->recovery_offset;
9042 rcu_read_unlock();
9043
9044 /* If there is a bitmap, we need to make sure all
9045 * writes that started before we added a spare
9046 * complete before we start doing a recovery.
9047 * Otherwise the write might complete and (via
9048 * bitmap_endwrite) set a bit in the bitmap after the
9049 * recovery has checked that bit and skipped that
9050 * region.
9051 */
9052 if (mddev->bitmap) {
9053 mddev->pers->quiesce(mddev, 1);
9054 mddev->pers->quiesce(mddev, 0);
9055 }
9056 return start;
9057 default:
9058 return MaxSector;
9059 }
9060 }
9061
sync_io_within_limit(struct mddev * mddev)9062 static bool sync_io_within_limit(struct mddev *mddev)
9063 {
9064 int io_sectors;
9065
9066 /*
9067 * For raid456, sync IO is stripe(4k) per IO, for other levels, it's
9068 * RESYNC_PAGES(64k) per IO.
9069 */
9070 if (mddev->level == 4 || mddev->level == 5 || mddev->level == 6)
9071 io_sectors = 8;
9072 else
9073 io_sectors = 128;
9074
9075 return atomic_read(&mddev->recovery_active) <
9076 io_sectors * sync_io_depth(mddev);
9077 }
9078
9079 #define SYNC_MARKS 10
9080 #define SYNC_MARK_STEP (3*HZ)
9081 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)9082 void md_do_sync(struct md_thread *thread)
9083 {
9084 struct mddev *mddev = thread->mddev;
9085 struct mddev *mddev2;
9086 unsigned int currspeed = 0, window;
9087 sector_t max_sectors,j, io_sectors, recovery_done;
9088 unsigned long mark[SYNC_MARKS];
9089 unsigned long update_time;
9090 sector_t mark_cnt[SYNC_MARKS];
9091 int last_mark,m;
9092 sector_t last_check;
9093 int skipped = 0;
9094 struct md_rdev *rdev;
9095 enum sync_action action;
9096 const char *desc;
9097 struct blk_plug plug;
9098 int ret;
9099
9100 /* just incase thread restarts... */
9101 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
9102 return;
9103
9104 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9105 goto skip;
9106
9107 if (test_bit(MD_RECOVERY_WAIT, &mddev->recovery) ||
9108 !md_is_rdwr(mddev)) {/* never try to sync a read-only array */
9109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9110 goto skip;
9111 }
9112
9113 if (mddev_is_clustered(mddev)) {
9114 ret = mddev->cluster_ops->resync_start(mddev);
9115 if (ret)
9116 goto skip;
9117
9118 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
9119 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
9120 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
9121 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
9122 && ((unsigned long long)mddev->curr_resync_completed
9123 < (unsigned long long)mddev->resync_max_sectors))
9124 goto skip;
9125 }
9126
9127 action = md_sync_action(mddev);
9128 desc = md_sync_action_name(action);
9129 mddev->last_sync_action = action;
9130
9131 /*
9132 * Before starting a resync we must have set curr_resync to
9133 * 2, and then checked that every "conflicting" array has curr_resync
9134 * less than ours. When we find one that is the same or higher
9135 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
9136 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
9137 * This will mean we have to start checking from the beginning again.
9138 *
9139 */
9140 if (mddev_is_clustered(mddev))
9141 mddev->cluster_ops->resync_start_notify(mddev);
9142 do {
9143 int mddev2_minor = -1;
9144 mddev->curr_resync = MD_RESYNC_DELAYED;
9145
9146 try_again:
9147 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9148 goto skip;
9149 spin_lock(&all_mddevs_lock);
9150 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
9151 if (test_bit(MD_DELETED, &mddev2->flags))
9152 continue;
9153 if (mddev2 == mddev)
9154 continue;
9155 if (!mddev->parallel_resync
9156 && mddev2->curr_resync
9157 && match_mddev_units(mddev, mddev2)) {
9158 DEFINE_WAIT(wq);
9159 if (mddev < mddev2 &&
9160 mddev->curr_resync == MD_RESYNC_DELAYED) {
9161 /* arbitrarily yield */
9162 mddev->curr_resync = MD_RESYNC_YIELDED;
9163 wake_up(&resync_wait);
9164 }
9165 if (mddev > mddev2 &&
9166 mddev->curr_resync == MD_RESYNC_YIELDED)
9167 /* no need to wait here, we can wait the next
9168 * time 'round when curr_resync == 2
9169 */
9170 continue;
9171 /* We need to wait 'interruptible' so as not to
9172 * contribute to the load average, and not to
9173 * be caught by 'softlockup'
9174 */
9175 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
9176 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9177 mddev2->curr_resync >= mddev->curr_resync) {
9178 if (mddev2_minor != mddev2->md_minor) {
9179 mddev2_minor = mddev2->md_minor;
9180 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
9181 desc, mdname(mddev),
9182 mdname(mddev2));
9183 }
9184 spin_unlock(&all_mddevs_lock);
9185
9186 if (signal_pending(current))
9187 flush_signals(current);
9188 schedule();
9189 finish_wait(&resync_wait, &wq);
9190 goto try_again;
9191 }
9192 finish_wait(&resync_wait, &wq);
9193 }
9194 }
9195 spin_unlock(&all_mddevs_lock);
9196 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
9197
9198 max_sectors = md_sync_max_sectors(mddev, action);
9199 j = md_sync_position(mddev, action);
9200
9201 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
9202 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
9203 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
9204 speed_max(mddev), desc);
9205
9206 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
9207
9208 io_sectors = 0;
9209 for (m = 0; m < SYNC_MARKS; m++) {
9210 mark[m] = jiffies;
9211 mark_cnt[m] = io_sectors;
9212 }
9213 last_mark = 0;
9214 mddev->resync_mark = mark[last_mark];
9215 mddev->resync_mark_cnt = mark_cnt[last_mark];
9216
9217 /*
9218 * Tune reconstruction:
9219 */
9220 window = 32 * (PAGE_SIZE / 512);
9221 pr_debug("md: using %dk window, over a total of %lluk.\n",
9222 window/2, (unsigned long long)max_sectors/2);
9223
9224 atomic_set(&mddev->recovery_active, 0);
9225 last_check = 0;
9226
9227 if (j >= MD_RESYNC_ACTIVE) {
9228 pr_debug("md: resuming %s of %s from checkpoint.\n",
9229 desc, mdname(mddev));
9230 mddev->curr_resync = j;
9231 } else
9232 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
9233 mddev->curr_resync_completed = j;
9234 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9235 md_new_event();
9236 update_time = jiffies;
9237
9238 blk_start_plug(&plug);
9239 while (j < max_sectors) {
9240 sector_t sectors;
9241
9242 skipped = 0;
9243
9244 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9245 ((mddev->curr_resync > mddev->curr_resync_completed &&
9246 (mddev->curr_resync - mddev->curr_resync_completed)
9247 > (max_sectors >> 4)) ||
9248 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
9249 (j - mddev->curr_resync_completed)*2
9250 >= mddev->resync_max - mddev->curr_resync_completed ||
9251 mddev->curr_resync_completed > mddev->resync_max
9252 )) {
9253 /* time to update curr_resync_completed */
9254 wait_event(mddev->recovery_wait,
9255 atomic_read(&mddev->recovery_active) == 0);
9256 mddev->curr_resync_completed = j;
9257 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
9258 j > mddev->resync_offset)
9259 mddev->resync_offset = j;
9260 update_time = jiffies;
9261 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
9262 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9263 }
9264
9265 while (j >= mddev->resync_max &&
9266 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9267 /* As this condition is controlled by user-space,
9268 * we can block indefinitely, so use '_interruptible'
9269 * to avoid triggering warnings.
9270 */
9271 flush_signals(current); /* just in case */
9272 wait_event_interruptible(mddev->recovery_wait,
9273 mddev->resync_max > j
9274 || test_bit(MD_RECOVERY_INTR,
9275 &mddev->recovery));
9276 }
9277
9278 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9279 break;
9280
9281 sectors = mddev->pers->sync_request(mddev, j, max_sectors,
9282 &skipped);
9283 if (sectors == 0) {
9284 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9285 break;
9286 }
9287
9288 if (!skipped) { /* actual IO requested */
9289 io_sectors += sectors;
9290 atomic_add(sectors, &mddev->recovery_active);
9291 }
9292
9293 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9294 break;
9295
9296 j += sectors;
9297 if (j > max_sectors)
9298 /* when skipping, extra large numbers can be returned. */
9299 j = max_sectors;
9300 if (j >= MD_RESYNC_ACTIVE)
9301 mddev->curr_resync = j;
9302 mddev->curr_mark_cnt = io_sectors;
9303 if (last_check == 0)
9304 /* this is the earliest that rebuild will be
9305 * visible in /proc/mdstat
9306 */
9307 md_new_event();
9308
9309 if (last_check + window > io_sectors || j == max_sectors)
9310 continue;
9311
9312 last_check = io_sectors;
9313 repeat:
9314 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9315 /* step marks */
9316 int next = (last_mark+1) % SYNC_MARKS;
9317
9318 mddev->resync_mark = mark[next];
9319 mddev->resync_mark_cnt = mark_cnt[next];
9320 mark[next] = jiffies;
9321 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9322 last_mark = next;
9323 }
9324
9325 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9326 break;
9327
9328 /*
9329 * this loop exits only if either when we are slower than
9330 * the 'hard' speed limit, or the system was IO-idle for
9331 * a jiffy.
9332 * the system might be non-idle CPU-wise, but we only care
9333 * about not overloading the IO subsystem. (things like an
9334 * e2fsck being done on the RAID array should execute fast)
9335 */
9336 cond_resched();
9337
9338 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9339 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9340 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9341
9342 if (currspeed > speed_min(mddev)) {
9343 if (currspeed > speed_max(mddev)) {
9344 msleep(500);
9345 goto repeat;
9346 }
9347 if (!sync_io_within_limit(mddev) &&
9348 !is_mddev_idle(mddev, 0)) {
9349 /*
9350 * Give other IO more of a chance.
9351 * The faster the devices, the less we wait.
9352 */
9353 wait_event(mddev->recovery_wait,
9354 !atomic_read(&mddev->recovery_active));
9355 }
9356 }
9357 }
9358 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9359 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9360 ? "interrupted" : "done");
9361 /*
9362 * this also signals 'finished resyncing' to md_stop
9363 */
9364 blk_finish_plug(&plug);
9365 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9366
9367 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9368 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9369 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9370 mddev->curr_resync_completed = mddev->curr_resync;
9371 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9372 }
9373 mddev->pers->sync_request(mddev, max_sectors, max_sectors, &skipped);
9374
9375 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9376 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9377 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9378 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9379 if (mddev->curr_resync >= mddev->resync_offset) {
9380 pr_debug("md: checkpointing %s of %s.\n",
9381 desc, mdname(mddev));
9382 if (test_bit(MD_RECOVERY_ERROR,
9383 &mddev->recovery))
9384 mddev->resync_offset =
9385 mddev->curr_resync_completed;
9386 else
9387 mddev->resync_offset =
9388 mddev->curr_resync;
9389 }
9390 } else
9391 mddev->resync_offset = MaxSector;
9392 } else {
9393 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9394 mddev->curr_resync = MaxSector;
9395 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9396 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9397 rcu_read_lock();
9398 rdev_for_each_rcu(rdev, mddev)
9399 if (mddev->delta_disks >= 0 &&
9400 rdev_needs_recovery(rdev, mddev->curr_resync))
9401 rdev->recovery_offset = mddev->curr_resync;
9402 rcu_read_unlock();
9403 }
9404 }
9405 }
9406 skip:
9407 /* set CHANGE_PENDING here since maybe another update is needed,
9408 * so other nodes are informed. It should be harmless for normal
9409 * raid */
9410 set_mask_bits(&mddev->sb_flags, 0,
9411 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9412
9413 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9414 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9415 mddev->delta_disks > 0 &&
9416 mddev->pers->finish_reshape &&
9417 mddev->pers->size &&
9418 !mddev_is_dm(mddev)) {
9419 mddev_lock_nointr(mddev);
9420 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9421 mddev_unlock(mddev);
9422 if (!mddev_is_clustered(mddev))
9423 set_capacity_and_notify(mddev->gendisk,
9424 mddev->array_sectors);
9425 }
9426
9427 spin_lock(&mddev->lock);
9428 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9429 /* We completed so min/max setting can be forgotten if used. */
9430 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9431 mddev->resync_min = 0;
9432 mddev->resync_max = MaxSector;
9433 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9434 mddev->resync_min = mddev->curr_resync_completed;
9435 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9436 mddev->curr_resync = MD_RESYNC_NONE;
9437 spin_unlock(&mddev->lock);
9438
9439 wake_up(&resync_wait);
9440 md_wakeup_thread(mddev->thread);
9441 return;
9442 }
9443 EXPORT_SYMBOL_GPL(md_do_sync);
9444
rdev_removeable(struct md_rdev * rdev)9445 static bool rdev_removeable(struct md_rdev *rdev)
9446 {
9447 /* rdev is not used. */
9448 if (rdev->raid_disk < 0)
9449 return false;
9450
9451 /* There are still inflight io, don't remove this rdev. */
9452 if (atomic_read(&rdev->nr_pending))
9453 return false;
9454
9455 /*
9456 * An error occurred but has not yet been acknowledged by the metadata
9457 * handler, don't remove this rdev.
9458 */
9459 if (test_bit(Blocked, &rdev->flags))
9460 return false;
9461
9462 /* Fautly rdev is not used, it's safe to remove it. */
9463 if (test_bit(Faulty, &rdev->flags))
9464 return true;
9465
9466 /* Journal disk can only be removed if it's faulty. */
9467 if (test_bit(Journal, &rdev->flags))
9468 return false;
9469
9470 /*
9471 * 'In_sync' is cleared while 'raid_disk' is valid, which means
9472 * replacement has just become active from pers->spare_active(), and
9473 * then pers->hot_remove_disk() will replace this rdev with replacement.
9474 */
9475 if (!test_bit(In_sync, &rdev->flags))
9476 return true;
9477
9478 return false;
9479 }
9480
rdev_is_spare(struct md_rdev * rdev)9481 static bool rdev_is_spare(struct md_rdev *rdev)
9482 {
9483 return !test_bit(Candidate, &rdev->flags) && rdev->raid_disk >= 0 &&
9484 !test_bit(In_sync, &rdev->flags) &&
9485 !test_bit(Journal, &rdev->flags) &&
9486 !test_bit(Faulty, &rdev->flags);
9487 }
9488
rdev_addable(struct md_rdev * rdev)9489 static bool rdev_addable(struct md_rdev *rdev)
9490 {
9491 struct mddev *mddev;
9492
9493 mddev = READ_ONCE(rdev->mddev);
9494 if (!mddev)
9495 return false;
9496
9497 /* rdev is already used, don't add it again. */
9498 if (test_bit(Candidate, &rdev->flags) || rdev->raid_disk >= 0 ||
9499 test_bit(Faulty, &rdev->flags))
9500 return false;
9501
9502 /* Allow to add journal disk. */
9503 if (test_bit(Journal, &rdev->flags))
9504 return true;
9505
9506 /* Allow to add if array is read-write. */
9507 if (md_is_rdwr(mddev))
9508 return true;
9509
9510 /*
9511 * For read-only array, only allow to readd a rdev. And if bitmap is
9512 * used, don't allow to readd a rdev that is too old.
9513 */
9514 if (rdev->saved_raid_disk >= 0 && !test_bit(Bitmap_sync, &rdev->flags))
9515 return true;
9516
9517 return false;
9518 }
9519
md_spares_need_change(struct mddev * mddev)9520 static bool md_spares_need_change(struct mddev *mddev)
9521 {
9522 struct md_rdev *rdev;
9523
9524 rcu_read_lock();
9525 rdev_for_each_rcu(rdev, mddev) {
9526 if (rdev_removeable(rdev) || rdev_addable(rdev)) {
9527 rcu_read_unlock();
9528 return true;
9529 }
9530 }
9531 rcu_read_unlock();
9532 return false;
9533 }
9534
remove_spares(struct mddev * mddev,struct md_rdev * this)9535 static int remove_spares(struct mddev *mddev, struct md_rdev *this)
9536 {
9537 struct md_rdev *rdev;
9538 int removed = 0;
9539
9540 rdev_for_each(rdev, mddev) {
9541 if ((this == NULL || rdev == this) && rdev_removeable(rdev) &&
9542 !mddev->pers->hot_remove_disk(mddev, rdev)) {
9543 sysfs_unlink_rdev(mddev, rdev);
9544 rdev->saved_raid_disk = rdev->raid_disk;
9545 rdev->raid_disk = -1;
9546 removed++;
9547 }
9548 }
9549
9550 if (removed && mddev->kobj.sd)
9551 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9552
9553 return removed;
9554 }
9555
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9556 static int remove_and_add_spares(struct mddev *mddev,
9557 struct md_rdev *this)
9558 {
9559 struct md_rdev *rdev;
9560 int spares = 0;
9561 int removed = 0;
9562
9563 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9564 /* Mustn't remove devices when resync thread is running */
9565 return 0;
9566
9567 removed = remove_spares(mddev, this);
9568 if (this && removed)
9569 goto no_add;
9570
9571 rdev_for_each(rdev, mddev) {
9572 if (this && this != rdev)
9573 continue;
9574 if (rdev_is_spare(rdev))
9575 spares++;
9576 if (!rdev_addable(rdev))
9577 continue;
9578 if (!test_bit(Journal, &rdev->flags))
9579 rdev->recovery_offset = 0;
9580 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9581 /* failure here is OK */
9582 sysfs_link_rdev(mddev, rdev);
9583 if (!test_bit(Journal, &rdev->flags))
9584 spares++;
9585 md_new_event();
9586 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9587 }
9588 }
9589 no_add:
9590 if (removed)
9591 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9592 return spares;
9593 }
9594
md_choose_sync_action(struct mddev * mddev,int * spares)9595 static bool md_choose_sync_action(struct mddev *mddev, int *spares)
9596 {
9597 /* Check if reshape is in progress first. */
9598 if (mddev->reshape_position != MaxSector) {
9599 if (mddev->pers->check_reshape == NULL ||
9600 mddev->pers->check_reshape(mddev) != 0)
9601 return false;
9602
9603 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9604 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9605 return true;
9606 }
9607
9608 /* Check if resync is in progress. */
9609 if (mddev->resync_offset < MaxSector) {
9610 remove_spares(mddev, NULL);
9611 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9612 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9613 return true;
9614 }
9615
9616 /*
9617 * Remove any failed drives, then add spares if possible. Spares are
9618 * also removed and re-added, to allow the personality to fail the
9619 * re-add.
9620 */
9621 *spares = remove_and_add_spares(mddev, NULL);
9622 if (*spares) {
9623 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9624 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9625 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9626
9627 /* Start new recovery. */
9628 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9629 return true;
9630 }
9631
9632 /* Delay to choose resync/check/repair in md_do_sync(). */
9633 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9634 return true;
9635
9636 /* Nothing to be done */
9637 return false;
9638 }
9639
md_start_sync(struct work_struct * ws)9640 static void md_start_sync(struct work_struct *ws)
9641 {
9642 struct mddev *mddev = container_of(ws, struct mddev, sync_work);
9643 int spares = 0;
9644 bool suspend = false;
9645 char *name;
9646
9647 /*
9648 * If reshape is still in progress, spares won't be added or removed
9649 * from conf until reshape is done.
9650 */
9651 if (mddev->reshape_position == MaxSector &&
9652 md_spares_need_change(mddev)) {
9653 suspend = true;
9654 mddev_suspend(mddev, false);
9655 }
9656
9657 mddev_lock_nointr(mddev);
9658 if (!md_is_rdwr(mddev)) {
9659 /*
9660 * On a read-only array we can:
9661 * - remove failed devices
9662 * - add already-in_sync devices if the array itself is in-sync.
9663 * As we only add devices that are already in-sync, we can
9664 * activate the spares immediately.
9665 */
9666 remove_and_add_spares(mddev, NULL);
9667 goto not_running;
9668 }
9669
9670 if (!md_choose_sync_action(mddev, &spares))
9671 goto not_running;
9672
9673 if (!mddev->pers->sync_request)
9674 goto not_running;
9675
9676 /*
9677 * We are adding a device or devices to an array which has the bitmap
9678 * stored on all devices. So make sure all bitmap pages get written.
9679 */
9680 if (spares)
9681 mddev->bitmap_ops->write_all(mddev);
9682
9683 name = test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ?
9684 "reshape" : "resync";
9685 rcu_assign_pointer(mddev->sync_thread,
9686 md_register_thread(md_do_sync, mddev, name));
9687 if (!mddev->sync_thread) {
9688 pr_warn("%s: could not start resync thread...\n",
9689 mdname(mddev));
9690 /* leave the spares where they are, it shouldn't hurt */
9691 goto not_running;
9692 }
9693
9694 mddev_unlock(mddev);
9695 /*
9696 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should
9697 * not set it again. Otherwise, we may cause issue like this one:
9698 * https://bugzilla.kernel.org/show_bug.cgi?id=218200
9699 * Therefore, use __mddev_resume(mddev, false).
9700 */
9701 if (suspend)
9702 __mddev_resume(mddev, false);
9703 md_wakeup_thread(mddev->sync_thread);
9704 sysfs_notify_dirent_safe(mddev->sysfs_action);
9705 md_new_event();
9706 return;
9707
9708 not_running:
9709 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9710 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9711 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9712 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9713 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9714 mddev_unlock(mddev);
9715 /*
9716 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should
9717 * not set it again. Otherwise, we may cause issue like this one:
9718 * https://bugzilla.kernel.org/show_bug.cgi?id=218200
9719 * Therefore, use __mddev_resume(mddev, false).
9720 */
9721 if (suspend)
9722 __mddev_resume(mddev, false);
9723
9724 wake_up(&resync_wait);
9725 if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
9726 mddev->sysfs_action)
9727 sysfs_notify_dirent_safe(mddev->sysfs_action);
9728 }
9729
unregister_sync_thread(struct mddev * mddev)9730 static void unregister_sync_thread(struct mddev *mddev)
9731 {
9732 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9733 /* resync/recovery still happening */
9734 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9735 return;
9736 }
9737
9738 if (WARN_ON_ONCE(!mddev->sync_thread))
9739 return;
9740
9741 md_reap_sync_thread(mddev);
9742 }
9743
9744 /*
9745 * This routine is regularly called by all per-raid-array threads to
9746 * deal with generic issues like resync and super-block update.
9747 * Raid personalities that don't have a thread (linear/raid0) do not
9748 * need this as they never do any recovery or update the superblock.
9749 *
9750 * It does not do any resync itself, but rather "forks" off other threads
9751 * to do that as needed.
9752 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9753 * "->recovery" and create a thread at ->sync_thread.
9754 * When the thread finishes it sets MD_RECOVERY_DONE
9755 * and wakeups up this thread which will reap the thread and finish up.
9756 * This thread also removes any faulty devices (with nr_pending == 0).
9757 *
9758 * The overall approach is:
9759 * 1/ if the superblock needs updating, update it.
9760 * 2/ If a recovery thread is running, don't do anything else.
9761 * 3/ If recovery has finished, clean up, possibly marking spares active.
9762 * 4/ If there are any faulty devices, remove them.
9763 * 5/ If array is degraded, try to add spares devices
9764 * 6/ If array has spares or is not in-sync, start a resync thread.
9765 */
md_check_recovery(struct mddev * mddev)9766 void md_check_recovery(struct mddev *mddev)
9767 {
9768 if (mddev->bitmap)
9769 mddev->bitmap_ops->daemon_work(mddev);
9770
9771 if (signal_pending(current)) {
9772 if (mddev->pers->sync_request && !mddev->external) {
9773 pr_debug("md: %s in immediate safe mode\n",
9774 mdname(mddev));
9775 mddev->safemode = 2;
9776 }
9777 flush_signals(current);
9778 }
9779
9780 if (!md_is_rdwr(mddev) &&
9781 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) &&
9782 !test_bit(MD_RECOVERY_DONE, &mddev->recovery))
9783 return;
9784 if ( ! (
9785 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9786 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9787 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9788 (mddev->external == 0 && mddev->safemode == 1) ||
9789 (mddev->safemode == 2
9790 && !mddev->in_sync && mddev->resync_offset == MaxSector)
9791 ))
9792 return;
9793
9794 if (mddev_trylock(mddev)) {
9795 bool try_set_sync = mddev->safemode != 0;
9796
9797 if (!mddev->external && mddev->safemode == 1)
9798 mddev->safemode = 0;
9799
9800 if (!md_is_rdwr(mddev)) {
9801 struct md_rdev *rdev;
9802
9803 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9804 unregister_sync_thread(mddev);
9805 goto unlock;
9806 }
9807
9808 if (!mddev->external && mddev->in_sync)
9809 /*
9810 * 'Blocked' flag not needed as failed devices
9811 * will be recorded if array switched to read/write.
9812 * Leaving it set will prevent the device
9813 * from being removed.
9814 */
9815 rdev_for_each(rdev, mddev)
9816 clear_bit(Blocked, &rdev->flags);
9817
9818 /*
9819 * There is no thread, but we need to call
9820 * ->spare_active and clear saved_raid_disk
9821 */
9822 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9823 md_reap_sync_thread(mddev);
9824
9825 /*
9826 * Let md_start_sync() to remove and add rdevs to the
9827 * array.
9828 */
9829 if (md_spares_need_change(mddev)) {
9830 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9831 queue_work(md_misc_wq, &mddev->sync_work);
9832 }
9833
9834 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9835 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9836 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9837
9838 goto unlock;
9839 }
9840
9841 if (mddev_is_clustered(mddev)) {
9842 struct md_rdev *rdev, *tmp;
9843 /* kick the device if another node issued a
9844 * remove disk.
9845 */
9846 rdev_for_each_safe(rdev, tmp, mddev) {
9847 if (rdev->raid_disk < 0 &&
9848 test_and_clear_bit(ClusterRemove, &rdev->flags))
9849 md_kick_rdev_from_array(rdev);
9850 }
9851 }
9852
9853 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9854 spin_lock(&mddev->lock);
9855 set_in_sync(mddev);
9856 spin_unlock(&mddev->lock);
9857 }
9858
9859 if (mddev->sb_flags)
9860 md_update_sb(mddev, 0);
9861
9862 /*
9863 * Never start a new sync thread if MD_RECOVERY_RUNNING is
9864 * still set.
9865 */
9866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9867 unregister_sync_thread(mddev);
9868 goto unlock;
9869 }
9870
9871 /* Set RUNNING before clearing NEEDED to avoid
9872 * any transients in the value of "sync_action".
9873 */
9874 mddev->curr_resync_completed = 0;
9875 spin_lock(&mddev->lock);
9876 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9877 spin_unlock(&mddev->lock);
9878 /* Clear some bits that don't mean anything, but
9879 * might be left set
9880 */
9881 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9882 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9883
9884 if (test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) &&
9885 !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
9886 queue_work(md_misc_wq, &mddev->sync_work);
9887 } else {
9888 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9889 wake_up(&resync_wait);
9890 }
9891
9892 unlock:
9893 wake_up(&mddev->sb_wait);
9894 mddev_unlock(mddev);
9895 }
9896 }
9897 EXPORT_SYMBOL(md_check_recovery);
9898
md_reap_sync_thread(struct mddev * mddev)9899 void md_reap_sync_thread(struct mddev *mddev)
9900 {
9901 struct md_rdev *rdev;
9902 sector_t old_dev_sectors = mddev->dev_sectors;
9903 bool is_reshaped = false;
9904
9905 /* resync has finished, collect result */
9906 md_unregister_thread(mddev, &mddev->sync_thread);
9907 atomic_inc(&mddev->sync_seq);
9908
9909 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9911 mddev->degraded != mddev->raid_disks) {
9912 /* success...*/
9913 /* activate any spares */
9914 if (mddev->pers->spare_active(mddev)) {
9915 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9916 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9917 }
9918 }
9919 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9920 mddev->pers->finish_reshape) {
9921 mddev->pers->finish_reshape(mddev);
9922 if (mddev_is_clustered(mddev))
9923 is_reshaped = true;
9924 }
9925
9926 /* If array is no-longer degraded, then any saved_raid_disk
9927 * information must be scrapped.
9928 */
9929 if (!mddev->degraded)
9930 rdev_for_each(rdev, mddev)
9931 rdev->saved_raid_disk = -1;
9932
9933 md_update_sb(mddev, 1);
9934 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9935 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9936 * clustered raid */
9937 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9938 mddev->cluster_ops->resync_finish(mddev);
9939 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9940 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9942 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9943 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9944 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9945 /*
9946 * We call mddev->cluster_ops->update_size here because sync_size could
9947 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9948 * so it is time to update size across cluster.
9949 */
9950 if (mddev_is_clustered(mddev) && is_reshaped
9951 && !test_bit(MD_CLOSING, &mddev->flags))
9952 mddev->cluster_ops->update_size(mddev, old_dev_sectors);
9953 /* flag recovery needed just to double check */
9954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9955 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9956 sysfs_notify_dirent_safe(mddev->sysfs_action);
9957 md_new_event();
9958 if (mddev->event_work.func)
9959 queue_work(md_misc_wq, &mddev->event_work);
9960 wake_up(&resync_wait);
9961 }
9962 EXPORT_SYMBOL(md_reap_sync_thread);
9963
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9964 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9965 {
9966 sysfs_notify_dirent_safe(rdev->sysfs_state);
9967 wait_event_timeout(rdev->blocked_wait, !rdev_blocked(rdev),
9968 msecs_to_jiffies(5000));
9969 rdev_dec_pending(rdev, mddev);
9970 }
9971 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9972
md_finish_reshape(struct mddev * mddev)9973 void md_finish_reshape(struct mddev *mddev)
9974 {
9975 /* called be personality module when reshape completes. */
9976 struct md_rdev *rdev;
9977
9978 rdev_for_each(rdev, mddev) {
9979 if (rdev->data_offset > rdev->new_data_offset)
9980 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9981 else
9982 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9983 rdev->data_offset = rdev->new_data_offset;
9984 }
9985 }
9986 EXPORT_SYMBOL(md_finish_reshape);
9987
9988 /* Bad block management */
9989
9990 /* Returns true on success, false on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9991 bool rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9992 int is_new)
9993 {
9994 struct mddev *mddev = rdev->mddev;
9995
9996 /*
9997 * Recording new badblocks for faulty rdev will force unnecessary
9998 * super block updating. This is fragile for external management because
9999 * userspace daemon may trying to remove this device and deadlock may
10000 * occur. This will be probably solved in the mdadm, but it is safer to
10001 * avoid it.
10002 */
10003 if (test_bit(Faulty, &rdev->flags))
10004 return true;
10005
10006 if (is_new)
10007 s += rdev->new_data_offset;
10008 else
10009 s += rdev->data_offset;
10010
10011 if (!badblocks_set(&rdev->badblocks, s, sectors, 0))
10012 return false;
10013
10014 /* Make sure they get written out promptly */
10015 if (test_bit(ExternalBbl, &rdev->flags))
10016 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
10017 sysfs_notify_dirent_safe(rdev->sysfs_state);
10018 set_mask_bits(&mddev->sb_flags, 0,
10019 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
10020 md_wakeup_thread(rdev->mddev->thread);
10021 return true;
10022 }
10023 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
10024
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)10025 void rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
10026 int is_new)
10027 {
10028 if (is_new)
10029 s += rdev->new_data_offset;
10030 else
10031 s += rdev->data_offset;
10032
10033 if (!badblocks_clear(&rdev->badblocks, s, sectors))
10034 return;
10035
10036 if (test_bit(ExternalBbl, &rdev->flags))
10037 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
10038 }
10039 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
10040
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)10041 static int md_notify_reboot(struct notifier_block *this,
10042 unsigned long code, void *x)
10043 {
10044 struct mddev *mddev;
10045 int need_delay = 0;
10046
10047 spin_lock(&all_mddevs_lock);
10048 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
10049 if (!mddev_get(mddev))
10050 continue;
10051 spin_unlock(&all_mddevs_lock);
10052 if (mddev_trylock(mddev)) {
10053 if (mddev->pers)
10054 __md_stop_writes(mddev);
10055 if (mddev->persistent)
10056 mddev->safemode = 2;
10057 mddev_unlock(mddev);
10058 }
10059 need_delay = 1;
10060 spin_lock(&all_mddevs_lock);
10061 mddev_put_locked(mddev);
10062 }
10063 spin_unlock(&all_mddevs_lock);
10064
10065 /*
10066 * certain more exotic SCSI devices are known to be
10067 * volatile wrt too early system reboots. While the
10068 * right place to handle this issue is the given
10069 * driver, we do want to have a safe RAID driver ...
10070 */
10071 if (need_delay)
10072 msleep(1000);
10073
10074 return NOTIFY_DONE;
10075 }
10076
10077 static struct notifier_block md_notifier = {
10078 .notifier_call = md_notify_reboot,
10079 .next = NULL,
10080 .priority = INT_MAX, /* before any real devices */
10081 };
10082
md_geninit(void)10083 static void md_geninit(void)
10084 {
10085 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
10086
10087 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
10088 }
10089
md_init(void)10090 static int __init md_init(void)
10091 {
10092 int ret = -ENOMEM;
10093
10094 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
10095 if (!md_wq)
10096 goto err_wq;
10097
10098 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
10099 if (!md_misc_wq)
10100 goto err_misc_wq;
10101
10102 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND,
10103 0);
10104 if (!md_bitmap_wq)
10105 goto err_bitmap_wq;
10106
10107 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
10108 if (ret < 0)
10109 goto err_md;
10110
10111 ret = __register_blkdev(0, "mdp", md_probe);
10112 if (ret < 0)
10113 goto err_mdp;
10114 mdp_major = ret;
10115
10116 register_reboot_notifier(&md_notifier);
10117 raid_table_header = register_sysctl("dev/raid", raid_table);
10118
10119 md_geninit();
10120 return 0;
10121
10122 err_mdp:
10123 unregister_blkdev(MD_MAJOR, "md");
10124 err_md:
10125 destroy_workqueue(md_bitmap_wq);
10126 err_bitmap_wq:
10127 destroy_workqueue(md_misc_wq);
10128 err_misc_wq:
10129 destroy_workqueue(md_wq);
10130 err_wq:
10131 return ret;
10132 }
10133
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)10134 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
10135 {
10136 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
10137 struct md_rdev *rdev2, *tmp;
10138 int role, ret;
10139
10140 /*
10141 * If size is changed in another node then we need to
10142 * do resize as well.
10143 */
10144 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
10145 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
10146 if (ret)
10147 pr_info("md-cluster: resize failed\n");
10148 else
10149 mddev->bitmap_ops->update_sb(mddev->bitmap);
10150 }
10151
10152 /* Check for change of roles in the active devices */
10153 rdev_for_each_safe(rdev2, tmp, mddev) {
10154 if (test_bit(Faulty, &rdev2->flags)) {
10155 if (test_bit(ClusterRemove, &rdev2->flags))
10156 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
10157 continue;
10158 }
10159
10160 /* Check if the roles changed */
10161 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
10162
10163 if (test_bit(Candidate, &rdev2->flags)) {
10164 if (role == MD_DISK_ROLE_FAULTY) {
10165 pr_info("md: Removing Candidate device %pg because add failed\n",
10166 rdev2->bdev);
10167 md_kick_rdev_from_array(rdev2);
10168 continue;
10169 }
10170 else
10171 clear_bit(Candidate, &rdev2->flags);
10172 }
10173
10174 if (role != rdev2->raid_disk) {
10175 /*
10176 * got activated except reshape is happening.
10177 */
10178 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
10179 !(le32_to_cpu(sb->feature_map) &
10180 MD_FEATURE_RESHAPE_ACTIVE) &&
10181 !mddev->cluster_ops->resync_status_get(mddev)) {
10182 /*
10183 * -1 to make raid1_add_disk() set conf->fullsync
10184 * to 1. This could avoid skipping sync when the
10185 * remote node is down during resyncing.
10186 */
10187 if ((le32_to_cpu(sb->feature_map)
10188 & MD_FEATURE_RECOVERY_OFFSET))
10189 rdev2->saved_raid_disk = -1;
10190 else
10191 rdev2->saved_raid_disk = role;
10192 ret = remove_and_add_spares(mddev, rdev2);
10193 pr_info("Activated spare: %pg\n",
10194 rdev2->bdev);
10195 /* wakeup mddev->thread here, so array could
10196 * perform resync with the new activated disk */
10197 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
10198 md_wakeup_thread(mddev->thread);
10199 }
10200 /* device faulty
10201 * We just want to do the minimum to mark the disk
10202 * as faulty. The recovery is performed by the
10203 * one who initiated the error.
10204 */
10205 if (role == MD_DISK_ROLE_FAULTY ||
10206 role == MD_DISK_ROLE_JOURNAL) {
10207 md_error(mddev, rdev2);
10208 clear_bit(Blocked, &rdev2->flags);
10209 }
10210 }
10211 }
10212
10213 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
10214 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
10215 if (ret)
10216 pr_warn("md: updating array disks failed. %d\n", ret);
10217 }
10218
10219 /*
10220 * Since mddev->delta_disks has already updated in update_raid_disks,
10221 * so it is time to check reshape.
10222 */
10223 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
10224 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
10225 /*
10226 * reshape is happening in the remote node, we need to
10227 * update reshape_position and call start_reshape.
10228 */
10229 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
10230 if (mddev->pers->update_reshape_pos)
10231 mddev->pers->update_reshape_pos(mddev);
10232 if (mddev->pers->start_reshape)
10233 mddev->pers->start_reshape(mddev);
10234 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
10235 mddev->reshape_position != MaxSector &&
10236 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
10237 /* reshape is just done in another node. */
10238 mddev->reshape_position = MaxSector;
10239 if (mddev->pers->update_reshape_pos)
10240 mddev->pers->update_reshape_pos(mddev);
10241 }
10242
10243 /* Finally set the event to be up to date */
10244 mddev->events = le64_to_cpu(sb->events);
10245 }
10246
read_rdev(struct mddev * mddev,struct md_rdev * rdev)10247 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
10248 {
10249 int err;
10250 struct page *swapout = rdev->sb_page;
10251 struct mdp_superblock_1 *sb;
10252
10253 /* Store the sb page of the rdev in the swapout temporary
10254 * variable in case we err in the future
10255 */
10256 rdev->sb_page = NULL;
10257 err = alloc_disk_sb(rdev);
10258 if (err == 0) {
10259 ClearPageUptodate(rdev->sb_page);
10260 rdev->sb_loaded = 0;
10261 err = super_types[mddev->major_version].
10262 load_super(rdev, NULL, mddev->minor_version);
10263 }
10264 if (err < 0) {
10265 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
10266 __func__, __LINE__, rdev->desc_nr, err);
10267 if (rdev->sb_page)
10268 put_page(rdev->sb_page);
10269 rdev->sb_page = swapout;
10270 rdev->sb_loaded = 1;
10271 return err;
10272 }
10273
10274 sb = page_address(rdev->sb_page);
10275 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
10276 * is not set
10277 */
10278
10279 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
10280 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
10281
10282 /* The other node finished recovery, call spare_active to set
10283 * device In_sync and mddev->degraded
10284 */
10285 if (rdev->recovery_offset == MaxSector &&
10286 !test_bit(In_sync, &rdev->flags) &&
10287 mddev->pers->spare_active(mddev))
10288 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
10289
10290 put_page(swapout);
10291 return 0;
10292 }
10293
md_reload_sb(struct mddev * mddev,int nr)10294 void md_reload_sb(struct mddev *mddev, int nr)
10295 {
10296 struct md_rdev *rdev = NULL, *iter;
10297 int err;
10298
10299 /* Find the rdev */
10300 rdev_for_each_rcu(iter, mddev) {
10301 if (iter->desc_nr == nr) {
10302 rdev = iter;
10303 break;
10304 }
10305 }
10306
10307 if (!rdev) {
10308 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
10309 return;
10310 }
10311
10312 err = read_rdev(mddev, rdev);
10313 if (err < 0)
10314 return;
10315
10316 check_sb_changes(mddev, rdev);
10317
10318 /* Read all rdev's to update recovery_offset */
10319 rdev_for_each_rcu(rdev, mddev) {
10320 if (!test_bit(Faulty, &rdev->flags))
10321 read_rdev(mddev, rdev);
10322 }
10323 }
10324 EXPORT_SYMBOL(md_reload_sb);
10325
10326 #ifndef MODULE
10327
10328 /*
10329 * Searches all registered partitions for autorun RAID arrays
10330 * at boot time.
10331 */
10332
10333 static DEFINE_MUTEX(detected_devices_mutex);
10334 static LIST_HEAD(all_detected_devices);
10335 struct detected_devices_node {
10336 struct list_head list;
10337 dev_t dev;
10338 };
10339
md_autodetect_dev(dev_t dev)10340 void md_autodetect_dev(dev_t dev)
10341 {
10342 struct detected_devices_node *node_detected_dev;
10343
10344 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
10345 if (node_detected_dev) {
10346 node_detected_dev->dev = dev;
10347 mutex_lock(&detected_devices_mutex);
10348 list_add_tail(&node_detected_dev->list, &all_detected_devices);
10349 mutex_unlock(&detected_devices_mutex);
10350 }
10351 }
10352
md_autostart_arrays(int part)10353 void md_autostart_arrays(int part)
10354 {
10355 struct md_rdev *rdev;
10356 struct detected_devices_node *node_detected_dev;
10357 dev_t dev;
10358 int i_scanned, i_passed;
10359
10360 i_scanned = 0;
10361 i_passed = 0;
10362
10363 pr_info("md: Autodetecting RAID arrays.\n");
10364
10365 mutex_lock(&detected_devices_mutex);
10366 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
10367 i_scanned++;
10368 node_detected_dev = list_entry(all_detected_devices.next,
10369 struct detected_devices_node, list);
10370 list_del(&node_detected_dev->list);
10371 dev = node_detected_dev->dev;
10372 kfree(node_detected_dev);
10373 mutex_unlock(&detected_devices_mutex);
10374 rdev = md_import_device(dev,0, 90);
10375 mutex_lock(&detected_devices_mutex);
10376 if (IS_ERR(rdev))
10377 continue;
10378
10379 if (test_bit(Faulty, &rdev->flags))
10380 continue;
10381
10382 set_bit(AutoDetected, &rdev->flags);
10383 list_add(&rdev->same_set, &pending_raid_disks);
10384 i_passed++;
10385 }
10386 mutex_unlock(&detected_devices_mutex);
10387
10388 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
10389
10390 autorun_devices(part);
10391 }
10392
10393 #endif /* !MODULE */
10394
md_exit(void)10395 static __exit void md_exit(void)
10396 {
10397 struct mddev *mddev;
10398 int delay = 1;
10399
10400 unregister_blkdev(MD_MAJOR,"md");
10401 unregister_blkdev(mdp_major, "mdp");
10402 unregister_reboot_notifier(&md_notifier);
10403 unregister_sysctl_table(raid_table_header);
10404
10405 /* We cannot unload the modules while some process is
10406 * waiting for us in select() or poll() - wake them up
10407 */
10408 md_unloading = 1;
10409 while (waitqueue_active(&md_event_waiters)) {
10410 /* not safe to leave yet */
10411 wake_up(&md_event_waiters);
10412 msleep(delay);
10413 delay += delay;
10414 }
10415 remove_proc_entry("mdstat", NULL);
10416
10417 spin_lock(&all_mddevs_lock);
10418 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
10419 if (!mddev_get(mddev))
10420 continue;
10421 spin_unlock(&all_mddevs_lock);
10422 export_array(mddev);
10423 mddev->ctime = 0;
10424 mddev->hold_active = 0;
10425 /*
10426 * As the mddev is now fully clear, mddev_put will schedule
10427 * the mddev for destruction by a workqueue, and the
10428 * destroy_workqueue() below will wait for that to complete.
10429 */
10430 spin_lock(&all_mddevs_lock);
10431 mddev_put_locked(mddev);
10432 }
10433 spin_unlock(&all_mddevs_lock);
10434
10435 destroy_workqueue(md_misc_wq);
10436 destroy_workqueue(md_bitmap_wq);
10437 destroy_workqueue(md_wq);
10438 }
10439
10440 subsys_initcall(md_init);
module_exit(md_exit)10441 module_exit(md_exit)
10442
10443 static int get_ro(char *buffer, const struct kernel_param *kp)
10444 {
10445 return sprintf(buffer, "%d\n", start_readonly);
10446 }
set_ro(const char * val,const struct kernel_param * kp)10447 static int set_ro(const char *val, const struct kernel_param *kp)
10448 {
10449 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10450 }
10451
10452 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10453 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10454 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10455 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10456 module_param(legacy_async_del_gendisk, bool, 0600);
10457
10458 MODULE_LICENSE("GPL");
10459 MODULE_DESCRIPTION("MD RAID framework");
10460 MODULE_ALIAS("md");
10461 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10462