xref: /linux/drivers/net/wireless/realtek/rtw88/main.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22 #include "led.h"
23 
24 bool rtw_disable_lps_deep_mode;
25 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
26 bool rtw_bf_support = true;
27 unsigned int rtw_debug_mask;
28 EXPORT_SYMBOL(rtw_debug_mask);
29 /* EDCCA is enabled during normal behavior. For debugging purpose in
30  * a noisy environment, it can be disabled via edcca debugfs. Because
31  * all rtw88 devices will probably be affected if environment is noisy,
32  * rtw_edcca_enabled is just declared by driver instead of by device.
33  * So, turning it off will take effect for all rtw88 devices before
34  * there is a tough reason to maintain rtw_edcca_enabled by device.
35  */
36 bool rtw_edcca_enabled = true;
37 
38 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
39 module_param_named(support_bf, rtw_bf_support, bool, 0644);
40 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
41 
42 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
43 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
44 MODULE_PARM_DESC(debug_mask, "Debugging mask");
45 
46 static struct ieee80211_channel rtw_channeltable_2g[] = {
47 	{.center_freq = 2412, .hw_value = 1,},
48 	{.center_freq = 2417, .hw_value = 2,},
49 	{.center_freq = 2422, .hw_value = 3,},
50 	{.center_freq = 2427, .hw_value = 4,},
51 	{.center_freq = 2432, .hw_value = 5,},
52 	{.center_freq = 2437, .hw_value = 6,},
53 	{.center_freq = 2442, .hw_value = 7,},
54 	{.center_freq = 2447, .hw_value = 8,},
55 	{.center_freq = 2452, .hw_value = 9,},
56 	{.center_freq = 2457, .hw_value = 10,},
57 	{.center_freq = 2462, .hw_value = 11,},
58 	{.center_freq = 2467, .hw_value = 12,},
59 	{.center_freq = 2472, .hw_value = 13,},
60 	{.center_freq = 2484, .hw_value = 14,},
61 };
62 
63 static struct ieee80211_channel rtw_channeltable_5g[] = {
64 	{.center_freq = 5180, .hw_value = 36,},
65 	{.center_freq = 5200, .hw_value = 40,},
66 	{.center_freq = 5220, .hw_value = 44,},
67 	{.center_freq = 5240, .hw_value = 48,},
68 	{.center_freq = 5260, .hw_value = 52,},
69 	{.center_freq = 5280, .hw_value = 56,},
70 	{.center_freq = 5300, .hw_value = 60,},
71 	{.center_freq = 5320, .hw_value = 64,},
72 	{.center_freq = 5500, .hw_value = 100,},
73 	{.center_freq = 5520, .hw_value = 104,},
74 	{.center_freq = 5540, .hw_value = 108,},
75 	{.center_freq = 5560, .hw_value = 112,},
76 	{.center_freq = 5580, .hw_value = 116,},
77 	{.center_freq = 5600, .hw_value = 120,},
78 	{.center_freq = 5620, .hw_value = 124,},
79 	{.center_freq = 5640, .hw_value = 128,},
80 	{.center_freq = 5660, .hw_value = 132,},
81 	{.center_freq = 5680, .hw_value = 136,},
82 	{.center_freq = 5700, .hw_value = 140,},
83 	{.center_freq = 5720, .hw_value = 144,},
84 	{.center_freq = 5745, .hw_value = 149,},
85 	{.center_freq = 5765, .hw_value = 153,},
86 	{.center_freq = 5785, .hw_value = 157,},
87 	{.center_freq = 5805, .hw_value = 161,},
88 	{.center_freq = 5825, .hw_value = 165,
89 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
90 };
91 
92 static struct ieee80211_rate rtw_ratetable[] = {
93 	{.bitrate = 10, .hw_value = 0x00,},
94 	{.bitrate = 20, .hw_value = 0x01,},
95 	{.bitrate = 55, .hw_value = 0x02,},
96 	{.bitrate = 110, .hw_value = 0x03,},
97 	{.bitrate = 60, .hw_value = 0x04,},
98 	{.bitrate = 90, .hw_value = 0x05,},
99 	{.bitrate = 120, .hw_value = 0x06,},
100 	{.bitrate = 180, .hw_value = 0x07,},
101 	{.bitrate = 240, .hw_value = 0x08,},
102 	{.bitrate = 360, .hw_value = 0x09,},
103 	{.bitrate = 480, .hw_value = 0x0a,},
104 	{.bitrate = 540, .hw_value = 0x0b,},
105 };
106 
107 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
108 	{
109 		.max = 1,
110 		.types = BIT(NL80211_IFTYPE_STATION),
111 	},
112 	{
113 		.max = 1,
114 		.types = BIT(NL80211_IFTYPE_AP),
115 	}
116 };
117 
118 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
119 	{
120 		.limits = rtw_iface_limits,
121 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
122 		.max_interfaces = 2,
123 		.num_different_channels = 1,
124 	}
125 };
126 
rtw_desc_to_bitrate(u8 desc_rate)127 u16 rtw_desc_to_bitrate(u8 desc_rate)
128 {
129 	struct ieee80211_rate rate;
130 
131 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
132 		return 0;
133 
134 	rate = rtw_ratetable[desc_rate];
135 
136 	return rate.bitrate;
137 }
138 
139 static const struct ieee80211_supported_band rtw_band_2ghz = {
140 	.band = NL80211_BAND_2GHZ,
141 
142 	.channels = rtw_channeltable_2g,
143 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
144 
145 	.bitrates = rtw_ratetable,
146 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
147 
148 	.ht_cap = {0},
149 	.vht_cap = {0},
150 };
151 
152 static const struct ieee80211_supported_band rtw_band_5ghz = {
153 	.band = NL80211_BAND_5GHZ,
154 
155 	.channels = rtw_channeltable_5g,
156 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
157 
158 	/* 5G has no CCK rates */
159 	.bitrates = rtw_ratetable + 4,
160 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
161 
162 	.ht_cap = {0},
163 	.vht_cap = {0},
164 };
165 
166 struct rtw_watch_dog_iter_data {
167 	struct rtw_dev *rtwdev;
168 	struct rtw_vif *rtwvif;
169 };
170 
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)171 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
172 {
173 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
174 	u8 fix_rate_enable = 0;
175 	u8 new_csi_rate_idx;
176 
177 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
178 	    rtwvif->bfee.role != RTW_BFEE_MU)
179 		return;
180 
181 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
182 			      bf_info->cur_csi_rpt_rate,
183 			      fix_rate_enable, &new_csi_rate_idx);
184 
185 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
186 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
187 }
188 
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)189 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
190 {
191 	struct rtw_watch_dog_iter_data *iter_data = data;
192 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
193 
194 	if (vif->type == NL80211_IFTYPE_STATION)
195 		if (vif->cfg.assoc)
196 			iter_data->rtwvif = rtwvif;
197 
198 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
199 
200 	rtwvif->stats.tx_unicast = 0;
201 	rtwvif->stats.rx_unicast = 0;
202 	rtwvif->stats.tx_cnt = 0;
203 	rtwvif->stats.rx_cnt = 0;
204 }
205 
rtw_sw_beacon_loss_check(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,int received_beacons)206 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
207 				     struct rtw_vif *rtwvif, int received_beacons)
208 {
209 	int watchdog_delay = 2000000 / 1024; /* TU */
210 	int beacon_int, expected_beacons;
211 
212 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
213 		return;
214 
215 	beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
216 	expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
217 
218 	rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
219 }
220 
221 /* process TX/RX statistics periodically for hardware,
222  * the information helps hardware to enhance performance
223  */
rtw_watch_dog_work(struct work_struct * work)224 static void rtw_watch_dog_work(struct work_struct *work)
225 {
226 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
227 					      watch_dog_work.work);
228 	struct rtw_traffic_stats *stats = &rtwdev->stats;
229 	struct rtw_watch_dog_iter_data data = {};
230 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
231 	int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
232 	u32 tx_unicast_mbps, rx_unicast_mbps;
233 	bool ps_active;
234 
235 	mutex_lock(&rtwdev->mutex);
236 
237 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
238 		goto unlock;
239 
240 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
241 				     RTW_WATCH_DOG_DELAY_TIME);
242 
243 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
244 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
245 	else
246 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
247 
248 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
249 		rtw_coex_wl_status_change_notify(rtwdev, 0);
250 
251 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
252 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
253 		ps_active = true;
254 	else
255 		ps_active = false;
256 
257 	tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
258 	rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
259 
260 	ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
261 	ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
262 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
263 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
264 
265 	/* reset tx/rx statictics */
266 	stats->tx_unicast = 0;
267 	stats->rx_unicast = 0;
268 	stats->tx_cnt = 0;
269 	stats->rx_cnt = 0;
270 
271 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
272 		goto unlock;
273 
274 	/* make sure BB/RF is working for dynamic mech */
275 	rtw_leave_lps(rtwdev);
276 	rtw_coex_wl_status_check(rtwdev);
277 	rtw_coex_query_bt_hid_list(rtwdev);
278 	rtw_coex_active_query_bt_info(rtwdev);
279 
280 	rtw_phy_dynamic_mechanism(rtwdev);
281 
282 	rtw_hci_dynamic_rx_agg(rtwdev,
283 			       tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
284 
285 	data.rtwdev = rtwdev;
286 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
287 	 * to avoid taking local->iflist_mtx mutex
288 	 */
289 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
290 
291 	rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
292 
293 	/* fw supports only one station associated to enter lps, if there are
294 	 * more than two stations associated to the AP, then we can not enter
295 	 * lps, because fw does not handle the overlapped beacon interval
296 	 *
297 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
298 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
299 	 * get that vif and check if device is having traffic more than the
300 	 * threshold.
301 	 */
302 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
303 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
304 		rtw_enter_lps(rtwdev, data.rtwvif->port);
305 
306 	rtwdev->watch_dog_cnt++;
307 
308 unlock:
309 	mutex_unlock(&rtwdev->mutex);
310 }
311 
rtw_c2h_work(struct work_struct * work)312 static void rtw_c2h_work(struct work_struct *work)
313 {
314 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
315 	struct sk_buff *skb, *tmp;
316 
317 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
318 		skb_unlink(skb, &rtwdev->c2h_queue);
319 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
320 		dev_kfree_skb_any(skb);
321 	}
322 }
323 
rtw_ips_work(struct work_struct * work)324 static void rtw_ips_work(struct work_struct *work)
325 {
326 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
327 
328 	mutex_lock(&rtwdev->mutex);
329 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
330 		rtw_enter_ips(rtwdev);
331 	mutex_unlock(&rtwdev->mutex);
332 }
333 
rtw_sta_rc_work(struct work_struct * work)334 static void rtw_sta_rc_work(struct work_struct *work)
335 {
336 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
337 					       rc_work);
338 	struct rtw_dev *rtwdev = si->rtwdev;
339 
340 	mutex_lock(&rtwdev->mutex);
341 	rtw_update_sta_info(rtwdev, si, true);
342 	mutex_unlock(&rtwdev->mutex);
343 }
344 
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)345 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
346 		struct ieee80211_vif *vif)
347 {
348 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
349 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
350 	int i;
351 
352 	if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) {
353 		si->mac_id = rtwvif->mac_id;
354 	} else {
355 		si->mac_id = rtw_acquire_macid(rtwdev);
356 		if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
357 			return -ENOSPC;
358 	}
359 
360 	si->rtwdev = rtwdev;
361 	si->sta = sta;
362 	si->vif = vif;
363 	si->init_ra_lv = 1;
364 	ewma_rssi_init(&si->avg_rssi);
365 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
366 		rtw_txq_init(rtwdev, sta->txq[i]);
367 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
368 
369 	rtw_update_sta_info(rtwdev, si, true);
370 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
371 
372 	rtwdev->sta_cnt++;
373 	rtwdev->beacon_loss = false;
374 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
375 		sta->addr, si->mac_id);
376 
377 	return 0;
378 }
379 
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)380 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
381 		    bool fw_exist)
382 {
383 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
384 	struct ieee80211_vif *vif = si->vif;
385 	int i;
386 
387 	cancel_work_sync(&si->rc_work);
388 
389 	if (vif->type != NL80211_IFTYPE_STATION || sta->tdls)
390 		rtw_release_macid(rtwdev, si->mac_id);
391 	if (fw_exist)
392 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
393 
394 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
395 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
396 
397 	kfree(si->mask);
398 
399 	rtwdev->sta_cnt--;
400 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
401 		sta->addr, si->mac_id);
402 }
403 
404 struct rtw_fwcd_hdr {
405 	u32 item;
406 	u32 size;
407 	u32 padding1;
408 	u32 padding2;
409 } __packed;
410 
rtw_fwcd_prep(struct rtw_dev * rtwdev)411 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
412 {
413 	const struct rtw_chip_info *chip = rtwdev->chip;
414 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
415 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
416 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
417 	u8 i;
418 
419 	if (segs) {
420 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
421 
422 		for (i = 0; i < segs->num; i++)
423 			prep_size += segs->segs[i];
424 	}
425 
426 	desc->data = vmalloc(prep_size);
427 	if (!desc->data)
428 		return -ENOMEM;
429 
430 	desc->size = prep_size;
431 	desc->next = desc->data;
432 
433 	return 0;
434 }
435 
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)436 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
437 {
438 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
439 	struct rtw_fwcd_hdr *hdr;
440 	u8 *next;
441 
442 	if (!desc->data) {
443 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
444 		return NULL;
445 	}
446 
447 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
448 	if (next - desc->data + size > desc->size) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
450 		return NULL;
451 	}
452 
453 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
454 	hdr->item = item;
455 	hdr->size = size;
456 	hdr->padding1 = 0x01234567;
457 	hdr->padding2 = 0x89abcdef;
458 	desc->next = next + size;
459 
460 	return next;
461 }
462 
rtw_fwcd_dump(struct rtw_dev * rtwdev)463 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
464 {
465 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
466 
467 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
468 
469 	/* Data will be freed after lifetime of device coredump. After calling
470 	 * dev_coredump, data is supposed to be handled by the device coredump
471 	 * framework. Note that a new dump will be discarded if a previous one
472 	 * hasn't been released yet.
473 	 */
474 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
475 }
476 
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)477 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
478 {
479 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
480 
481 	if (free_self) {
482 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
483 		vfree(desc->data);
484 	}
485 
486 	desc->data = NULL;
487 	desc->next = NULL;
488 }
489 
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)490 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
491 {
492 	u32 size = rtwdev->chip->fw_rxff_size;
493 	u32 *buf;
494 	u8 seq;
495 
496 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
497 	if (!buf)
498 		return -ENOMEM;
499 
500 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
501 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
502 		return -EINVAL;
503 	}
504 
505 	if (GET_FW_DUMP_LEN(buf) == 0) {
506 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
507 		return -EINVAL;
508 	}
509 
510 	seq = GET_FW_DUMP_SEQ(buf);
511 	if (seq > 0) {
512 		rtw_dbg(rtwdev, RTW_DBG_FW,
513 			"fw crash dump's seq is wrong: %d\n", seq);
514 		return -EINVAL;
515 	}
516 
517 	return 0;
518 }
519 
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)520 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
521 		u32 fwcd_item)
522 {
523 	u32 rxff = rtwdev->chip->fw_rxff_size;
524 	u32 dump_size, done_size = 0;
525 	u8 *buf;
526 	int ret;
527 
528 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
529 	if (!buf)
530 		return -ENOMEM;
531 
532 	while (size) {
533 		dump_size = size > rxff ? rxff : size;
534 
535 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
536 					  dump_size);
537 		if (ret) {
538 			rtw_err(rtwdev,
539 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
540 				ocp_src, done_size);
541 			return ret;
542 		}
543 
544 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
545 				       dump_size, (u32 *)(buf + done_size));
546 		if (ret) {
547 			rtw_err(rtwdev,
548 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
549 				ocp_src, done_size);
550 			return ret;
551 		}
552 
553 		size -= dump_size;
554 		done_size += dump_size;
555 	}
556 
557 	return 0;
558 }
559 EXPORT_SYMBOL(rtw_dump_fw);
560 
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)561 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
562 {
563 	u8 *buf;
564 	u32 i;
565 
566 	if (addr & 0x3) {
567 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
568 		return -EINVAL;
569 	}
570 
571 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
572 	if (!buf)
573 		return -ENOMEM;
574 
575 	for (i = 0; i < size; i += 4)
576 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
577 
578 	return 0;
579 }
580 EXPORT_SYMBOL(rtw_dump_reg);
581 
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)582 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
583 			   struct ieee80211_bss_conf *conf)
584 {
585 	struct ieee80211_vif *vif = NULL;
586 
587 	if (conf)
588 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
589 
590 	if (conf && vif->cfg.assoc) {
591 		rtwvif->aid = vif->cfg.aid;
592 		rtwvif->net_type = RTW_NET_MGD_LINKED;
593 	} else {
594 		rtwvif->aid = 0;
595 		rtwvif->net_type = RTW_NET_NO_LINK;
596 	}
597 }
598 
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)599 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
600 			       struct ieee80211_vif *vif,
601 			       struct ieee80211_sta *sta,
602 			       struct ieee80211_key_conf *key,
603 			       void *data)
604 {
605 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
606 	struct rtw_sec_desc *sec = &rtwdev->sec;
607 
608 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
609 }
610 
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)611 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
612 {
613 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
614 
615 	if (rtwdev->sta_cnt == 0) {
616 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
617 		return;
618 	}
619 	rtw_sta_remove(rtwdev, sta, false);
620 }
621 
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)622 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
623 {
624 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
625 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
626 
627 	rtw_bf_disassoc(rtwdev, vif, NULL);
628 	rtw_vif_assoc_changed(rtwvif, NULL);
629 	rtw_txq_cleanup(rtwdev, vif->txq);
630 
631 	rtw_release_macid(rtwdev, rtwvif->mac_id);
632 }
633 
rtw_fw_recovery(struct rtw_dev * rtwdev)634 void rtw_fw_recovery(struct rtw_dev *rtwdev)
635 {
636 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
637 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
638 }
639 EXPORT_SYMBOL(rtw_fw_recovery);
640 
__fw_recovery_work(struct rtw_dev * rtwdev)641 static void __fw_recovery_work(struct rtw_dev *rtwdev)
642 {
643 	int ret = 0;
644 
645 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
646 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
647 
648 	ret = rtw_fwcd_prep(rtwdev);
649 	if (ret)
650 		goto free;
651 	ret = rtw_fw_dump_crash_log(rtwdev);
652 	if (ret)
653 		goto free;
654 	ret = rtw_chip_dump_fw_crash(rtwdev);
655 	if (ret)
656 		goto free;
657 
658 	rtw_fwcd_dump(rtwdev);
659 free:
660 	rtw_fwcd_free(rtwdev, !!ret);
661 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
662 
663 	WARN(1, "firmware crash, start reset and recover\n");
664 
665 	rcu_read_lock();
666 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
667 	rcu_read_unlock();
668 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
669 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
670 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
671 	rtw_enter_ips(rtwdev);
672 }
673 
rtw_fw_recovery_work(struct work_struct * work)674 static void rtw_fw_recovery_work(struct work_struct *work)
675 {
676 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
677 					      fw_recovery_work);
678 
679 	mutex_lock(&rtwdev->mutex);
680 	__fw_recovery_work(rtwdev);
681 	mutex_unlock(&rtwdev->mutex);
682 
683 	ieee80211_restart_hw(rtwdev->hw);
684 }
685 
686 struct rtw_txq_ba_iter_data {
687 };
688 
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)689 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
690 {
691 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
692 	int ret;
693 	u8 tid;
694 
695 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
696 	while (tid != IEEE80211_NUM_TIDS) {
697 		clear_bit(tid, si->tid_ba);
698 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
699 		if (ret == -EINVAL) {
700 			struct ieee80211_txq *txq;
701 			struct rtw_txq *rtwtxq;
702 
703 			txq = sta->txq[tid];
704 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
705 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
706 		}
707 
708 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
709 	}
710 }
711 
rtw_txq_ba_work(struct work_struct * work)712 static void rtw_txq_ba_work(struct work_struct *work)
713 {
714 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
715 	struct rtw_txq_ba_iter_data data;
716 
717 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
718 }
719 
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)720 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
721 {
722 	if (IS_CH_2G_BAND(channel))
723 		pkt_stat->band = NL80211_BAND_2GHZ;
724 	else if (IS_CH_5G_BAND(channel))
725 		pkt_stat->band = NL80211_BAND_5GHZ;
726 	else
727 		return;
728 
729 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
730 }
731 EXPORT_SYMBOL(rtw_set_rx_freq_band);
732 
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)733 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
734 {
735 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
736 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
737 }
738 
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)739 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
740 			u8 primary_channel, enum rtw_supported_band band,
741 			enum rtw_bandwidth bandwidth)
742 {
743 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
744 	struct rtw_hal *hal = &rtwdev->hal;
745 	u8 *cch_by_bw = hal->cch_by_bw;
746 	u32 center_freq, primary_freq;
747 	enum rtw_sar_bands sar_band;
748 	u8 primary_channel_idx;
749 
750 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
751 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
752 
753 	/* assign the center channel used while 20M bw is selected */
754 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
755 
756 	/* assign the center channel used while current bw is selected */
757 	cch_by_bw[bandwidth] = center_channel;
758 
759 	switch (bandwidth) {
760 	case RTW_CHANNEL_WIDTH_20:
761 	default:
762 		primary_channel_idx = RTW_SC_DONT_CARE;
763 		break;
764 	case RTW_CHANNEL_WIDTH_40:
765 		if (primary_freq > center_freq)
766 			primary_channel_idx = RTW_SC_20_UPPER;
767 		else
768 			primary_channel_idx = RTW_SC_20_LOWER;
769 		break;
770 	case RTW_CHANNEL_WIDTH_80:
771 		if (primary_freq > center_freq) {
772 			if (primary_freq - center_freq == 10)
773 				primary_channel_idx = RTW_SC_20_UPPER;
774 			else
775 				primary_channel_idx = RTW_SC_20_UPMOST;
776 
777 			/* assign the center channel used
778 			 * while 40M bw is selected
779 			 */
780 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
781 		} else {
782 			if (center_freq - primary_freq == 10)
783 				primary_channel_idx = RTW_SC_20_LOWER;
784 			else
785 				primary_channel_idx = RTW_SC_20_LOWEST;
786 
787 			/* assign the center channel used
788 			 * while 40M bw is selected
789 			 */
790 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
791 		}
792 		break;
793 	}
794 
795 	switch (center_channel) {
796 	case 1 ... 14:
797 		sar_band = RTW_SAR_BAND_0;
798 		break;
799 	case 36 ... 64:
800 		sar_band = RTW_SAR_BAND_1;
801 		break;
802 	case 100 ... 144:
803 		sar_band = RTW_SAR_BAND_3;
804 		break;
805 	case 149 ... 177:
806 		sar_band = RTW_SAR_BAND_4;
807 		break;
808 	default:
809 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
810 		sar_band = RTW_SAR_BAND_0;
811 		break;
812 	}
813 
814 	hal->current_primary_channel_index = primary_channel_idx;
815 	hal->current_band_width = bandwidth;
816 	hal->primary_channel = primary_channel;
817 	hal->current_channel = center_channel;
818 	hal->current_band_type = band;
819 	hal->sar_band = sar_band;
820 }
821 
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)822 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
823 			    struct rtw_channel_params *chan_params)
824 {
825 	struct ieee80211_channel *channel = chandef->chan;
826 	enum nl80211_chan_width width = chandef->width;
827 	u32 primary_freq, center_freq;
828 	u8 center_chan;
829 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
830 
831 	center_chan = channel->hw_value;
832 	primary_freq = channel->center_freq;
833 	center_freq = chandef->center_freq1;
834 
835 	switch (width) {
836 	case NL80211_CHAN_WIDTH_20_NOHT:
837 	case NL80211_CHAN_WIDTH_20:
838 		bandwidth = RTW_CHANNEL_WIDTH_20;
839 		break;
840 	case NL80211_CHAN_WIDTH_40:
841 		bandwidth = RTW_CHANNEL_WIDTH_40;
842 		if (primary_freq > center_freq)
843 			center_chan -= 2;
844 		else
845 			center_chan += 2;
846 		break;
847 	case NL80211_CHAN_WIDTH_80:
848 		bandwidth = RTW_CHANNEL_WIDTH_80;
849 		if (primary_freq > center_freq) {
850 			if (primary_freq - center_freq == 10)
851 				center_chan -= 2;
852 			else
853 				center_chan -= 6;
854 		} else {
855 			if (center_freq - primary_freq == 10)
856 				center_chan += 2;
857 			else
858 				center_chan += 6;
859 		}
860 		break;
861 	default:
862 		center_chan = 0;
863 		break;
864 	}
865 
866 	chan_params->center_chan = center_chan;
867 	chan_params->bandwidth = bandwidth;
868 	chan_params->primary_chan = channel->hw_value;
869 }
870 
rtw_set_channel(struct rtw_dev * rtwdev)871 void rtw_set_channel(struct rtw_dev *rtwdev)
872 {
873 	const struct rtw_chip_info *chip = rtwdev->chip;
874 	struct ieee80211_hw *hw = rtwdev->hw;
875 	struct rtw_hal *hal = &rtwdev->hal;
876 	struct rtw_channel_params ch_param;
877 	u8 center_chan, primary_chan, bandwidth, band;
878 
879 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
880 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
881 		return;
882 
883 	center_chan = ch_param.center_chan;
884 	primary_chan = ch_param.primary_chan;
885 	bandwidth = ch_param.bandwidth;
886 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
887 
888 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
889 
890 	if (rtwdev->scan_info.op_chan)
891 		rtw_store_op_chan(rtwdev, true);
892 
893 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
894 			       hal->current_primary_channel_index);
895 
896 	if (hal->current_band_type == RTW_BAND_5G) {
897 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
898 	} else {
899 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
900 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
901 		else
902 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
903 	}
904 
905 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
906 
907 	/* if the channel isn't set for scanning, we will do RF calibration
908 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
909 	 * during scanning on each channel takes too long.
910 	 */
911 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
912 		rtwdev->need_rfk = true;
913 }
914 
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)915 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
916 {
917 	const struct rtw_chip_info *chip = rtwdev->chip;
918 
919 	if (rtwdev->need_rfk) {
920 		rtwdev->need_rfk = false;
921 		chip->ops->phy_calibration(rtwdev);
922 	}
923 }
924 
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)925 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
926 {
927 	int i;
928 
929 	for (i = 0; i < ETH_ALEN; i++)
930 		rtw_write8(rtwdev, start + i, addr[i]);
931 }
932 
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)933 void rtw_vif_port_config(struct rtw_dev *rtwdev,
934 			 struct rtw_vif *rtwvif,
935 			 u32 config)
936 {
937 	u32 addr, mask;
938 
939 	if (config & PORT_SET_MAC_ADDR) {
940 		addr = rtwvif->conf->mac_addr.addr;
941 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
942 	}
943 	if (config & PORT_SET_BSSID) {
944 		addr = rtwvif->conf->bssid.addr;
945 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
946 	}
947 	if (config & PORT_SET_NET_TYPE) {
948 		addr = rtwvif->conf->net_type.addr;
949 		mask = rtwvif->conf->net_type.mask;
950 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
951 	}
952 	if (config & PORT_SET_AID) {
953 		addr = rtwvif->conf->aid.addr;
954 		mask = rtwvif->conf->aid.mask;
955 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
956 	}
957 	if (config & PORT_SET_BCN_CTRL) {
958 		addr = rtwvif->conf->bcn_ctrl.addr;
959 		mask = rtwvif->conf->bcn_ctrl.mask;
960 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
961 	}
962 }
963 
hw_bw_cap_to_bitamp(u8 bw_cap)964 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
965 {
966 	u8 bw = 0;
967 
968 	switch (bw_cap) {
969 	case EFUSE_HW_CAP_IGNORE:
970 	case EFUSE_HW_CAP_SUPP_BW80:
971 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
972 		fallthrough;
973 	case EFUSE_HW_CAP_SUPP_BW40:
974 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
975 		fallthrough;
976 	default:
977 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
978 		break;
979 	}
980 
981 	return bw;
982 }
983 
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)984 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
985 {
986 	const struct rtw_chip_info *chip = rtwdev->chip;
987 	struct rtw_hal *hal = &rtwdev->hal;
988 
989 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
990 	    hw_ant_num >= hal->rf_path_num)
991 		return;
992 
993 	switch (hw_ant_num) {
994 	case 1:
995 		hal->rf_type = RF_1T1R;
996 		hal->rf_path_num = 1;
997 		if (!chip->fix_rf_phy_num)
998 			hal->rf_phy_num = hal->rf_path_num;
999 		hal->antenna_tx = BB_PATH_A;
1000 		hal->antenna_rx = BB_PATH_A;
1001 		break;
1002 	default:
1003 		WARN(1, "invalid hw configuration from efuse\n");
1004 		break;
1005 	}
1006 }
1007 
get_vht_ra_mask(struct ieee80211_sta * sta)1008 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1009 {
1010 	u64 ra_mask = 0;
1011 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1012 	u8 vht_mcs_cap;
1013 	int i, nss;
1014 
1015 	/* 4SS, every two bits for MCS7/8/9 */
1016 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1017 		vht_mcs_cap = mcs_map & 0x3;
1018 		switch (vht_mcs_cap) {
1019 		case 2: /* MCS9 */
1020 			ra_mask |= 0x3ffULL << nss;
1021 			break;
1022 		case 1: /* MCS8 */
1023 			ra_mask |= 0x1ffULL << nss;
1024 			break;
1025 		case 0: /* MCS7 */
1026 			ra_mask |= 0x0ffULL << nss;
1027 			break;
1028 		default:
1029 			break;
1030 		}
1031 	}
1032 
1033 	return ra_mask;
1034 }
1035 
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1036 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1037 {
1038 	u8 rate_id = 0;
1039 
1040 	switch (wireless_set) {
1041 	case WIRELESS_CCK:
1042 		rate_id = RTW_RATEID_B_20M;
1043 		break;
1044 	case WIRELESS_OFDM:
1045 		rate_id = RTW_RATEID_G;
1046 		break;
1047 	case WIRELESS_CCK | WIRELESS_OFDM:
1048 		rate_id = RTW_RATEID_BG;
1049 		break;
1050 	case WIRELESS_OFDM | WIRELESS_HT:
1051 		if (tx_num == 1)
1052 			rate_id = RTW_RATEID_GN_N1SS;
1053 		else if (tx_num == 2)
1054 			rate_id = RTW_RATEID_GN_N2SS;
1055 		else if (tx_num == 3)
1056 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1057 		break;
1058 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1059 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1060 			if (tx_num == 1)
1061 				rate_id = RTW_RATEID_BGN_40M_1SS;
1062 			else if (tx_num == 2)
1063 				rate_id = RTW_RATEID_BGN_40M_2SS;
1064 			else if (tx_num == 3)
1065 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1066 			else if (tx_num == 4)
1067 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1068 		} else {
1069 			if (tx_num == 1)
1070 				rate_id = RTW_RATEID_BGN_20M_1SS;
1071 			else if (tx_num == 2)
1072 				rate_id = RTW_RATEID_BGN_20M_2SS;
1073 			else if (tx_num == 3)
1074 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1075 			else if (tx_num == 4)
1076 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1077 		}
1078 		break;
1079 	case WIRELESS_OFDM | WIRELESS_VHT:
1080 		if (tx_num == 1)
1081 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1082 		else if (tx_num == 2)
1083 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1084 		else if (tx_num == 3)
1085 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1086 		else if (tx_num == 4)
1087 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1088 		break;
1089 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1090 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1091 			if (tx_num == 1)
1092 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1093 			else if (tx_num == 2)
1094 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1095 			else if (tx_num == 3)
1096 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1097 			else if (tx_num == 4)
1098 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1099 		} else {
1100 			if (tx_num == 1)
1101 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1102 			else if (tx_num == 2)
1103 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1104 			else if (tx_num == 3)
1105 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1106 			else if (tx_num == 4)
1107 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1108 		}
1109 		break;
1110 	default:
1111 		break;
1112 	}
1113 
1114 	return rate_id;
1115 }
1116 
1117 #define RA_MASK_CCK_RATES	0x0000f
1118 #define RA_MASK_OFDM_RATES	0x00ff0
1119 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1120 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1121 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1122 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1123 				 RA_MASK_HT_RATES_2SS | \
1124 				 RA_MASK_HT_RATES_3SS)
1125 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1126 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1127 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1128 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1129 				 RA_MASK_VHT_RATES_2SS | \
1130 				 RA_MASK_VHT_RATES_3SS)
1131 #define RA_MASK_CCK_IN_BG	0x00005
1132 #define RA_MASK_CCK_IN_HT	0x00005
1133 #define RA_MASK_CCK_IN_VHT	0x00005
1134 #define RA_MASK_OFDM_IN_VHT	0x00010
1135 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1136 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1137 
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1138 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1139 {
1140 	u8 rssi_level = si->rssi_level;
1141 
1142 	if (wireless_set == WIRELESS_CCK)
1143 		return 0xffffffffffffffffULL;
1144 
1145 	if (rssi_level == 0)
1146 		return 0xffffffffffffffffULL;
1147 	else if (rssi_level == 1)
1148 		return 0xfffffffffffffff0ULL;
1149 	else if (rssi_level == 2)
1150 		return 0xffffffffffffefe0ULL;
1151 	else if (rssi_level == 3)
1152 		return 0xffffffffffffcfc0ULL;
1153 	else if (rssi_level == 4)
1154 		return 0xffffffffffff8f80ULL;
1155 	else
1156 		return 0xffffffffffff0f00ULL;
1157 }
1158 
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1159 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1160 {
1161 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1162 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1163 
1164 	if (ra_mask == 0)
1165 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1166 
1167 	return ra_mask;
1168 }
1169 
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1170 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1171 			     u64 ra_mask, bool is_vht_enable)
1172 {
1173 	struct rtw_hal *hal = &rtwdev->hal;
1174 	const struct cfg80211_bitrate_mask *mask = si->mask;
1175 	u64 cfg_mask = GENMASK_ULL(63, 0);
1176 	u8 band;
1177 
1178 	if (!si->use_cfg_mask)
1179 		return ra_mask;
1180 
1181 	band = hal->current_band_type;
1182 	if (band == RTW_BAND_2G) {
1183 		band = NL80211_BAND_2GHZ;
1184 		cfg_mask = mask->control[band].legacy;
1185 	} else if (band == RTW_BAND_5G) {
1186 		band = NL80211_BAND_5GHZ;
1187 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1188 					   RA_MASK_OFDM_RATES);
1189 	}
1190 
1191 	if (!is_vht_enable) {
1192 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1193 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1194 						    RA_MASK_HT_RATES_1SS);
1195 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1196 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1197 						    RA_MASK_HT_RATES_2SS);
1198 	} else {
1199 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1200 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1201 						    RA_MASK_VHT_RATES_1SS);
1202 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1203 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1204 						    RA_MASK_VHT_RATES_2SS);
1205 	}
1206 
1207 	ra_mask &= cfg_mask;
1208 
1209 	return ra_mask;
1210 }
1211 
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1212 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1213 			 bool reset_ra_mask)
1214 {
1215 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1216 	struct ieee80211_sta *sta = si->sta;
1217 	struct rtw_efuse *efuse = &rtwdev->efuse;
1218 	struct rtw_hal *hal = &rtwdev->hal;
1219 	u8 wireless_set;
1220 	u8 bw_mode;
1221 	u8 rate_id;
1222 	u8 stbc_en = 0;
1223 	u8 ldpc_en = 0;
1224 	u8 tx_num = 1;
1225 	u64 ra_mask = 0;
1226 	u64 ra_mask_bak = 0;
1227 	bool is_vht_enable = false;
1228 	bool is_support_sgi = false;
1229 
1230 	if (sta->deflink.vht_cap.vht_supported) {
1231 		is_vht_enable = true;
1232 		ra_mask |= get_vht_ra_mask(sta);
1233 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1234 			stbc_en = VHT_STBC_EN;
1235 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1236 			ldpc_en = VHT_LDPC_EN;
1237 	} else if (sta->deflink.ht_cap.ht_supported) {
1238 		ra_mask |= ((u64)sta->deflink.ht_cap.mcs.rx_mask[3] << 36) |
1239 			   ((u64)sta->deflink.ht_cap.mcs.rx_mask[2] << 28) |
1240 			   (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1241 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1242 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1243 			stbc_en = HT_STBC_EN;
1244 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1245 			ldpc_en = HT_LDPC_EN;
1246 	}
1247 
1248 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1249 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1250 	else if (efuse->hw_cap.nss == 2)
1251 		ra_mask &= RA_MASK_VHT_RATES_2SS | RA_MASK_HT_RATES_2SS |
1252 			   RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1253 
1254 	if (hal->current_band_type == RTW_BAND_5G) {
1255 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1256 		ra_mask_bak = ra_mask;
1257 		if (sta->deflink.vht_cap.vht_supported) {
1258 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1259 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1260 		} else if (sta->deflink.ht_cap.ht_supported) {
1261 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1262 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1263 		} else {
1264 			wireless_set = WIRELESS_OFDM;
1265 		}
1266 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1267 	} else if (hal->current_band_type == RTW_BAND_2G) {
1268 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1269 		ra_mask_bak = ra_mask;
1270 		if (sta->deflink.vht_cap.vht_supported) {
1271 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1272 				   RA_MASK_OFDM_IN_VHT;
1273 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1274 				       WIRELESS_HT | WIRELESS_VHT;
1275 		} else if (sta->deflink.ht_cap.ht_supported) {
1276 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1277 				   RA_MASK_OFDM_IN_HT_2G;
1278 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1279 				       WIRELESS_HT;
1280 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1281 			wireless_set = WIRELESS_CCK;
1282 		} else {
1283 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1284 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1285 		}
1286 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1287 	} else {
1288 		rtw_err(rtwdev, "Unknown band type\n");
1289 		ra_mask_bak = ra_mask;
1290 		wireless_set = 0;
1291 	}
1292 
1293 	switch (sta->deflink.bandwidth) {
1294 	case IEEE80211_STA_RX_BW_80:
1295 		bw_mode = RTW_CHANNEL_WIDTH_80;
1296 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1297 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1298 		break;
1299 	case IEEE80211_STA_RX_BW_40:
1300 		bw_mode = RTW_CHANNEL_WIDTH_40;
1301 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1302 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1303 		break;
1304 	default:
1305 		bw_mode = RTW_CHANNEL_WIDTH_20;
1306 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1307 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1308 		break;
1309 	}
1310 
1311 	if (sta->deflink.vht_cap.vht_supported ||
1312 	    sta->deflink.ht_cap.ht_supported)
1313 		tx_num = efuse->hw_cap.nss;
1314 
1315 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1316 
1317 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1318 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1319 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1320 
1321 	si->bw_mode = bw_mode;
1322 	si->stbc_en = stbc_en;
1323 	si->ldpc_en = ldpc_en;
1324 	si->sgi_enable = is_support_sgi;
1325 	si->vht_enable = is_vht_enable;
1326 	si->ra_mask = ra_mask;
1327 	si->rate_id = rate_id;
1328 
1329 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1330 }
1331 
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1332 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1333 {
1334 	const struct rtw_chip_info *chip = rtwdev->chip;
1335 	struct rtw_fw_state *fw;
1336 	int ret = 0;
1337 
1338 	fw = &rtwdev->fw;
1339 	wait_for_completion(&fw->completion);
1340 	if (!fw->firmware)
1341 		ret = -EINVAL;
1342 
1343 	if (chip->wow_fw_name) {
1344 		fw = &rtwdev->wow_fw;
1345 		wait_for_completion(&fw->completion);
1346 		if (!fw->firmware)
1347 			ret = -EINVAL;
1348 	}
1349 
1350 	return ret;
1351 }
1352 EXPORT_SYMBOL(rtw_wait_firmware_completion);
1353 
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1354 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1355 						       struct rtw_fw_state *fw)
1356 {
1357 	const struct rtw_chip_info *chip = rtwdev->chip;
1358 
1359 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1360 	    !fw->feature)
1361 		return LPS_DEEP_MODE_NONE;
1362 
1363 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1364 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1365 		return LPS_DEEP_MODE_PG;
1366 
1367 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1368 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1369 		return LPS_DEEP_MODE_LCLK;
1370 
1371 	return LPS_DEEP_MODE_NONE;
1372 }
1373 
rtw_power_on(struct rtw_dev * rtwdev)1374 int rtw_power_on(struct rtw_dev *rtwdev)
1375 {
1376 	const struct rtw_chip_info *chip = rtwdev->chip;
1377 	struct rtw_fw_state *fw = &rtwdev->fw;
1378 	bool wifi_only;
1379 	int ret;
1380 
1381 	ret = rtw_hci_setup(rtwdev);
1382 	if (ret) {
1383 		rtw_err(rtwdev, "failed to setup hci\n");
1384 		goto err;
1385 	}
1386 
1387 	/* power on MAC before firmware downloaded */
1388 	ret = rtw_mac_power_on(rtwdev);
1389 	if (ret) {
1390 		rtw_err(rtwdev, "failed to power on mac\n");
1391 		goto err;
1392 	}
1393 
1394 	ret = rtw_wait_firmware_completion(rtwdev);
1395 	if (ret) {
1396 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1397 		goto err_off;
1398 	}
1399 
1400 	ret = rtw_download_firmware(rtwdev, fw);
1401 	if (ret) {
1402 		rtw_err(rtwdev, "failed to download firmware\n");
1403 		goto err_off;
1404 	}
1405 
1406 	/* config mac after firmware downloaded */
1407 	ret = rtw_mac_init(rtwdev);
1408 	if (ret) {
1409 		rtw_err(rtwdev, "failed to configure mac\n");
1410 		goto err_off;
1411 	}
1412 
1413 	chip->ops->phy_set_param(rtwdev);
1414 
1415 	ret = rtw_mac_postinit(rtwdev);
1416 	if (ret) {
1417 		rtw_err(rtwdev, "failed to configure mac in postinit\n");
1418 		goto err_off;
1419 	}
1420 
1421 	ret = rtw_hci_start(rtwdev);
1422 	if (ret) {
1423 		rtw_err(rtwdev, "failed to start hci\n");
1424 		goto err_off;
1425 	}
1426 
1427 	/* send H2C after HCI has started */
1428 	rtw_fw_send_general_info(rtwdev);
1429 	rtw_fw_send_phydm_info(rtwdev);
1430 
1431 	wifi_only = !rtwdev->efuse.btcoex;
1432 	rtw_coex_power_on_setting(rtwdev);
1433 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1434 
1435 	return 0;
1436 
1437 err_off:
1438 	rtw_mac_power_off(rtwdev);
1439 
1440 err:
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL(rtw_power_on);
1444 
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1445 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1446 {
1447 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1448 		return;
1449 
1450 	if (start) {
1451 		rtw_fw_scan_notify(rtwdev, true);
1452 	} else {
1453 		reinit_completion(&rtwdev->fw_scan_density);
1454 		rtw_fw_scan_notify(rtwdev, false);
1455 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1456 						 SCAN_NOTIFY_TIMEOUT))
1457 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1458 	}
1459 }
1460 
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1461 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1462 			 const u8 *mac_addr, bool hw_scan)
1463 {
1464 	u32 config = 0;
1465 	int ret = 0;
1466 
1467 	rtw_leave_lps(rtwdev);
1468 
1469 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1470 		ret = rtw_leave_ips(rtwdev);
1471 		if (ret) {
1472 			rtw_err(rtwdev, "failed to leave idle state\n");
1473 			return;
1474 		}
1475 	}
1476 
1477 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1478 	config |= PORT_SET_MAC_ADDR;
1479 	rtw_vif_port_config(rtwdev, rtwvif, config);
1480 
1481 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1482 	rtw_core_fw_scan_notify(rtwdev, true);
1483 
1484 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1485 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1486 }
1487 
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1488 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1489 			    bool hw_scan)
1490 {
1491 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1492 	u32 config = 0;
1493 
1494 	if (!rtwvif)
1495 		return;
1496 
1497 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1498 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1499 
1500 	rtw_core_fw_scan_notify(rtwdev, false);
1501 
1502 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1503 	config |= PORT_SET_MAC_ADDR;
1504 	rtw_vif_port_config(rtwdev, rtwvif, config);
1505 
1506 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1507 
1508 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1509 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1510 }
1511 
rtw_core_start(struct rtw_dev * rtwdev)1512 int rtw_core_start(struct rtw_dev *rtwdev)
1513 {
1514 	int ret;
1515 
1516 	ret = rtwdev->chip->ops->power_on(rtwdev);
1517 	if (ret)
1518 		return ret;
1519 
1520 	rtw_sec_enable_sec_engine(rtwdev);
1521 
1522 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1523 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1524 
1525 	/* rcr reset after powered on */
1526 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1527 
1528 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1529 				     RTW_WATCH_DOG_DELAY_TIME);
1530 
1531 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1532 
1533 	return 0;
1534 }
1535 
rtw_power_off(struct rtw_dev * rtwdev)1536 void rtw_power_off(struct rtw_dev *rtwdev)
1537 {
1538 	rtw_hci_stop(rtwdev);
1539 	rtw_coex_power_off_setting(rtwdev);
1540 	rtw_mac_power_off(rtwdev);
1541 }
1542 EXPORT_SYMBOL(rtw_power_off);
1543 
rtw_core_stop(struct rtw_dev * rtwdev)1544 void rtw_core_stop(struct rtw_dev *rtwdev)
1545 {
1546 	struct rtw_coex *coex = &rtwdev->coex;
1547 
1548 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1549 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1550 
1551 	mutex_unlock(&rtwdev->mutex);
1552 
1553 	cancel_work_sync(&rtwdev->c2h_work);
1554 	cancel_work_sync(&rtwdev->update_beacon_work);
1555 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1556 	cancel_delayed_work_sync(&coex->bt_relink_work);
1557 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1558 	cancel_delayed_work_sync(&coex->defreeze_work);
1559 	cancel_delayed_work_sync(&coex->wl_remain_work);
1560 	cancel_delayed_work_sync(&coex->bt_remain_work);
1561 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1562 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1563 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1564 
1565 	mutex_lock(&rtwdev->mutex);
1566 
1567 	rtwdev->chip->ops->power_off(rtwdev);
1568 }
1569 
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1570 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1571 			    struct ieee80211_sta_ht_cap *ht_cap)
1572 {
1573 	const struct rtw_chip_info *chip = rtwdev->chip;
1574 	struct rtw_efuse *efuse = &rtwdev->efuse;
1575 	int i;
1576 
1577 	ht_cap->ht_supported = true;
1578 	ht_cap->cap = 0;
1579 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1580 			IEEE80211_HT_CAP_MAX_AMSDU |
1581 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1582 
1583 	if (rtw_chip_has_rx_ldpc(rtwdev))
1584 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1585 	if (rtw_chip_has_tx_stbc(rtwdev))
1586 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1587 
1588 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1589 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1590 				IEEE80211_HT_CAP_DSSSCCK40 |
1591 				IEEE80211_HT_CAP_SGI_40;
1592 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1593 	ht_cap->ampdu_density = chip->ampdu_density;
1594 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1595 
1596 	for (i = 0; i < efuse->hw_cap.nss; i++)
1597 		ht_cap->mcs.rx_mask[i] = 0xFF;
1598 	ht_cap->mcs.rx_mask[4] = 0x01;
1599 	ht_cap->mcs.rx_highest = cpu_to_le16(150 * efuse->hw_cap.nss);
1600 }
1601 
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1602 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1603 			     struct ieee80211_sta_vht_cap *vht_cap)
1604 {
1605 	struct rtw_efuse *efuse = &rtwdev->efuse;
1606 	u16 mcs_map = 0;
1607 	__le16 highest;
1608 	int i;
1609 
1610 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1611 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1612 		return;
1613 
1614 	vht_cap->vht_supported = true;
1615 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1616 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1617 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1618 		       IEEE80211_VHT_CAP_HTC_VHT |
1619 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1620 		       0;
1621 	if (rtwdev->hal.rf_path_num > 1)
1622 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1623 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1624 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1625 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1626 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1627 
1628 	if (rtw_chip_has_rx_ldpc(rtwdev))
1629 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1630 
1631 	for (i = 0; i < 8; i++) {
1632 		if (i < efuse->hw_cap.nss)
1633 			mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
1634 		else
1635 			mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
1636 	}
1637 
1638 	highest = cpu_to_le16(390 * efuse->hw_cap.nss);
1639 
1640 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1641 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1642 	vht_cap->vht_mcs.rx_highest = highest;
1643 	vht_cap->vht_mcs.tx_highest = highest;
1644 }
1645 
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1646 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1647 {
1648 	u16 len;
1649 
1650 	len = rtwdev->chip->max_scan_ie_len;
1651 
1652 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1653 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1654 		len = IEEE80211_MAX_DATA_LEN;
1655 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1656 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1657 
1658 	return len;
1659 }
1660 
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1661 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1662 				   const struct rtw_chip_info *chip)
1663 {
1664 	struct rtw_dev *rtwdev = hw->priv;
1665 	struct ieee80211_supported_band *sband;
1666 
1667 	if (chip->band & RTW_BAND_2G) {
1668 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1669 		if (!sband)
1670 			goto err_out;
1671 		if (chip->ht_supported)
1672 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1673 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1674 	}
1675 
1676 	if (chip->band & RTW_BAND_5G) {
1677 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1678 		if (!sband)
1679 			goto err_out;
1680 		if (chip->ht_supported)
1681 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1682 		if (chip->vht_supported)
1683 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1684 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1685 	}
1686 
1687 	return;
1688 
1689 err_out:
1690 	rtw_err(rtwdev, "failed to set supported band\n");
1691 }
1692 
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1693 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1694 				     const struct rtw_chip_info *chip)
1695 {
1696 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1697 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1698 }
1699 
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1700 static void rtw_vif_smps_iter(void *data, u8 *mac,
1701 			      struct ieee80211_vif *vif)
1702 {
1703 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1704 
1705 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1706 		return;
1707 
1708 	if (rtwdev->hal.txrx_1ss)
1709 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1710 	else
1711 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1712 }
1713 
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1714 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1715 {
1716 	const struct rtw_chip_info *chip = rtwdev->chip;
1717 	struct rtw_hal *hal = &rtwdev->hal;
1718 
1719 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1720 		return;
1721 
1722 	rtwdev->hal.txrx_1ss = txrx_1ss;
1723 	if (txrx_1ss)
1724 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1725 	else
1726 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1727 					    hal->antenna_rx, false);
1728 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1729 }
1730 
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1731 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1732 				      struct rtw_fw_state *fw)
1733 {
1734 	u32 feature;
1735 	const struct rtw_fw_hdr *fw_hdr =
1736 				(const struct rtw_fw_hdr *)fw->firmware->data;
1737 
1738 	feature = le32_to_cpu(fw_hdr->feature);
1739 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1740 
1741 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1742 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1743 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1744 }
1745 
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1746 static void __update_firmware_info(struct rtw_dev *rtwdev,
1747 				   struct rtw_fw_state *fw)
1748 {
1749 	const struct rtw_fw_hdr *fw_hdr =
1750 				(const struct rtw_fw_hdr *)fw->firmware->data;
1751 
1752 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1753 	fw->version = le16_to_cpu(fw_hdr->version);
1754 	fw->sub_version = fw_hdr->subversion;
1755 	fw->sub_index = fw_hdr->subindex;
1756 
1757 	__update_firmware_feature(rtwdev, fw);
1758 }
1759 
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1760 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1761 					  struct rtw_fw_state *fw)
1762 {
1763 	struct rtw_fw_hdr_legacy *legacy =
1764 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1765 
1766 	fw->h2c_version = 0;
1767 	fw->version = le16_to_cpu(legacy->version);
1768 	fw->sub_version = legacy->subversion1;
1769 	fw->sub_index = legacy->subversion2;
1770 }
1771 
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1772 static void update_firmware_info(struct rtw_dev *rtwdev,
1773 				 struct rtw_fw_state *fw)
1774 {
1775 	if (rtw_chip_wcpu_8051(rtwdev))
1776 		__update_firmware_info_legacy(rtwdev, fw);
1777 	else
1778 		__update_firmware_info(rtwdev, fw);
1779 }
1780 
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1781 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1782 {
1783 	struct rtw_fw_state *fw = context;
1784 	struct rtw_dev *rtwdev = fw->rtwdev;
1785 
1786 	if (!firmware || !firmware->data) {
1787 		rtw_err(rtwdev, "failed to request firmware\n");
1788 		complete_all(&fw->completion);
1789 		return;
1790 	}
1791 
1792 	fw->firmware = firmware;
1793 	update_firmware_info(rtwdev, fw);
1794 	complete_all(&fw->completion);
1795 
1796 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1797 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1798 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1799 }
1800 
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1801 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1802 {
1803 	const char *fw_name;
1804 	struct rtw_fw_state *fw;
1805 	int ret;
1806 
1807 	switch (type) {
1808 	case RTW_WOWLAN_FW:
1809 		fw = &rtwdev->wow_fw;
1810 		fw_name = rtwdev->chip->wow_fw_name;
1811 		break;
1812 
1813 	case RTW_NORMAL_FW:
1814 		fw = &rtwdev->fw;
1815 		fw_name = rtwdev->chip->fw_name;
1816 		break;
1817 
1818 	default:
1819 		rtw_warn(rtwdev, "unsupported firmware type\n");
1820 		return -ENOENT;
1821 	}
1822 
1823 	fw->type = type;
1824 	fw->rtwdev = rtwdev;
1825 	init_completion(&fw->completion);
1826 
1827 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1828 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1829 	if (ret) {
1830 		rtw_err(rtwdev, "failed to async firmware request\n");
1831 		return ret;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1837 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1838 {
1839 	const struct rtw_chip_info *chip = rtwdev->chip;
1840 	struct rtw_hal *hal = &rtwdev->hal;
1841 	struct rtw_efuse *efuse = &rtwdev->efuse;
1842 
1843 	switch (rtw_hci_type(rtwdev)) {
1844 	case RTW_HCI_TYPE_PCIE:
1845 		rtwdev->hci.rpwm_addr = 0x03d9;
1846 		rtwdev->hci.cpwm_addr = 0x03da;
1847 		break;
1848 	case RTW_HCI_TYPE_SDIO:
1849 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1850 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1851 		break;
1852 	case RTW_HCI_TYPE_USB:
1853 		rtwdev->hci.rpwm_addr = 0xfe58;
1854 		rtwdev->hci.cpwm_addr = 0xfe57;
1855 		break;
1856 	default:
1857 		rtw_err(rtwdev, "unsupported hci type\n");
1858 		return -EINVAL;
1859 	}
1860 
1861 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1862 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1863 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1864 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1865 		hal->rf_type = RF_2T2R;
1866 		hal->rf_path_num = 2;
1867 		hal->antenna_tx = BB_PATH_AB;
1868 		hal->antenna_rx = BB_PATH_AB;
1869 	} else {
1870 		hal->rf_type = RF_1T1R;
1871 		hal->rf_path_num = 1;
1872 		hal->antenna_tx = BB_PATH_A;
1873 		hal->antenna_rx = BB_PATH_A;
1874 	}
1875 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1876 			  hal->rf_path_num;
1877 
1878 	efuse->physical_size = chip->phy_efuse_size;
1879 	efuse->logical_size = chip->log_efuse_size;
1880 	efuse->protect_size = chip->ptct_efuse_size;
1881 
1882 	/* default use ack */
1883 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1884 
1885 	hal->bfee_sts_cap = 3;
1886 
1887 	return 0;
1888 }
1889 
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1890 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1891 {
1892 	struct rtw_fw_state *fw = &rtwdev->fw;
1893 	int ret;
1894 
1895 	ret = rtw_hci_setup(rtwdev);
1896 	if (ret) {
1897 		rtw_err(rtwdev, "failed to setup hci\n");
1898 		goto err;
1899 	}
1900 
1901 	ret = rtw_mac_power_on(rtwdev);
1902 	if (ret) {
1903 		rtw_err(rtwdev, "failed to power on mac\n");
1904 		goto err;
1905 	}
1906 
1907 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1908 
1909 	wait_for_completion(&fw->completion);
1910 	if (!fw->firmware) {
1911 		ret = -EINVAL;
1912 		rtw_err(rtwdev, "failed to load firmware\n");
1913 		goto err;
1914 	}
1915 
1916 	ret = rtw_download_firmware(rtwdev, fw);
1917 	if (ret) {
1918 		rtw_err(rtwdev, "failed to download firmware\n");
1919 		goto err_off;
1920 	}
1921 
1922 	return 0;
1923 
1924 err_off:
1925 	rtw_mac_power_off(rtwdev);
1926 
1927 err:
1928 	return ret;
1929 }
1930 
rtw_dump_hw_feature(struct rtw_dev * rtwdev)1931 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1932 {
1933 	struct rtw_efuse *efuse = &rtwdev->efuse;
1934 	u8 hw_feature[HW_FEATURE_LEN];
1935 	u8 id;
1936 	u8 bw;
1937 	int i;
1938 
1939 	if (!rtwdev->chip->hw_feature_report)
1940 		return 0;
1941 
1942 	id = rtw_read8(rtwdev, REG_C2HEVT);
1943 	if (id != C2H_HW_FEATURE_REPORT) {
1944 		rtw_err(rtwdev, "failed to read hw feature report\n");
1945 		return -EBUSY;
1946 	}
1947 
1948 	for (i = 0; i < HW_FEATURE_LEN; i++)
1949 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1950 
1951 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1952 
1953 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1954 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1955 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1956 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1957 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1958 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1959 
1960 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1961 
1962 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1963 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1964 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1965 
1966 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1967 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1968 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1969 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1970 
1971 	return 0;
1972 }
1973 
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)1974 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1975 {
1976 	rtw_hci_stop(rtwdev);
1977 	rtw_mac_power_off(rtwdev);
1978 }
1979 
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)1980 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1981 {
1982 	struct rtw_efuse *efuse = &rtwdev->efuse;
1983 	int ret;
1984 
1985 	mutex_lock(&rtwdev->mutex);
1986 
1987 	/* power on mac to read efuse */
1988 	ret = rtw_chip_efuse_enable(rtwdev);
1989 	if (ret)
1990 		goto out_unlock;
1991 
1992 	ret = rtw_parse_efuse_map(rtwdev);
1993 	if (ret)
1994 		goto out_disable;
1995 
1996 	ret = rtw_dump_hw_feature(rtwdev);
1997 	if (ret)
1998 		goto out_disable;
1999 
2000 	ret = rtw_check_supported_rfe(rtwdev);
2001 	if (ret)
2002 		goto out_disable;
2003 
2004 	if (efuse->crystal_cap == 0xff)
2005 		efuse->crystal_cap = 0;
2006 	if (efuse->pa_type_2g == 0xff)
2007 		efuse->pa_type_2g = 0;
2008 	if (efuse->pa_type_5g == 0xff)
2009 		efuse->pa_type_5g = 0;
2010 	if (efuse->lna_type_2g == 0xff)
2011 		efuse->lna_type_2g = 0;
2012 	if (efuse->lna_type_5g == 0xff)
2013 		efuse->lna_type_5g = 0;
2014 	if (efuse->channel_plan == 0xff)
2015 		efuse->channel_plan = 0x7f;
2016 	if (efuse->rf_board_option == 0xff)
2017 		efuse->rf_board_option = 0;
2018 	if (efuse->bt_setting & BIT(0))
2019 		efuse->share_ant = true;
2020 	if (efuse->regd == 0xff)
2021 		efuse->regd = 0;
2022 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2023 		efuse->tx_bb_swing_setting_2g = 0;
2024 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2025 		efuse->tx_bb_swing_setting_5g = 0;
2026 
2027 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2028 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2029 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2030 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2031 	efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2032 
2033 	if (!is_valid_ether_addr(efuse->addr)) {
2034 		eth_random_addr(efuse->addr);
2035 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2036 	}
2037 
2038 out_disable:
2039 	rtw_chip_efuse_disable(rtwdev);
2040 
2041 out_unlock:
2042 	mutex_unlock(&rtwdev->mutex);
2043 	return ret;
2044 }
2045 
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2046 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2047 {
2048 	struct rtw_hal *hal = &rtwdev->hal;
2049 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2050 
2051 	if (!rfe_def)
2052 		return -ENODEV;
2053 
2054 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2055 
2056 	rtw_phy_init_tx_power(rtwdev);
2057 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2058 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2059 	rtw_phy_tx_power_by_rate_config(hal);
2060 	rtw_phy_tx_power_limit_config(hal);
2061 
2062 	return 0;
2063 }
2064 
rtw_chip_info_setup(struct rtw_dev * rtwdev)2065 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2066 {
2067 	int ret;
2068 
2069 	ret = rtw_chip_parameter_setup(rtwdev);
2070 	if (ret) {
2071 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2072 		goto err_out;
2073 	}
2074 
2075 	ret = rtw_chip_efuse_info_setup(rtwdev);
2076 	if (ret) {
2077 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2078 		goto err_out;
2079 	}
2080 
2081 	ret = rtw_chip_board_info_setup(rtwdev);
2082 	if (ret) {
2083 		rtw_err(rtwdev, "failed to setup chip board info\n");
2084 		goto err_out;
2085 	}
2086 
2087 	return 0;
2088 
2089 err_out:
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL(rtw_chip_info_setup);
2093 
rtw_stats_init(struct rtw_dev * rtwdev)2094 static void rtw_stats_init(struct rtw_dev *rtwdev)
2095 {
2096 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2097 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2098 	int i;
2099 
2100 	ewma_tp_init(&stats->tx_ewma_tp);
2101 	ewma_tp_init(&stats->rx_ewma_tp);
2102 
2103 	for (i = 0; i < RTW_EVM_NUM; i++)
2104 		ewma_evm_init(&dm_info->ewma_evm[i]);
2105 	for (i = 0; i < RTW_SNR_NUM; i++)
2106 		ewma_snr_init(&dm_info->ewma_snr[i]);
2107 }
2108 
rtw_core_init(struct rtw_dev * rtwdev)2109 int rtw_core_init(struct rtw_dev *rtwdev)
2110 {
2111 	const struct rtw_chip_info *chip = rtwdev->chip;
2112 	struct rtw_coex *coex = &rtwdev->coex;
2113 	int ret;
2114 
2115 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2116 	INIT_LIST_HEAD(&rtwdev->txqs);
2117 
2118 	timer_setup(&rtwdev->tx_report.purge_timer,
2119 		    rtw_tx_report_purge_timer, 0);
2120 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2121 	if (!rtwdev->tx_wq) {
2122 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2123 		return -ENOMEM;
2124 	}
2125 
2126 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2127 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2128 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2129 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2130 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2131 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2132 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2133 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2134 			  rtw_coex_bt_multi_link_remain_work);
2135 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2136 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2137 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2138 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2139 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2140 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2141 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2142 	skb_queue_head_init(&rtwdev->c2h_queue);
2143 	skb_queue_head_init(&rtwdev->coex.queue);
2144 	skb_queue_head_init(&rtwdev->tx_report.queue);
2145 
2146 	spin_lock_init(&rtwdev->txq_lock);
2147 	spin_lock_init(&rtwdev->tx_report.q_lock);
2148 
2149 	mutex_init(&rtwdev->mutex);
2150 	mutex_init(&rtwdev->hal.tx_power_mutex);
2151 
2152 	init_waitqueue_head(&rtwdev->coex.wait);
2153 	init_completion(&rtwdev->lps_leave_check);
2154 	init_completion(&rtwdev->fw_scan_density);
2155 
2156 	rtwdev->sec.total_cam_num = 32;
2157 	rtwdev->hal.current_channel = 1;
2158 	rtwdev->dm_info.fix_rate = U8_MAX;
2159 
2160 	rtw_stats_init(rtwdev);
2161 
2162 	/* default rx filter setting */
2163 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2164 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2165 			  BIT_AB | BIT_AM | BIT_APM;
2166 
2167 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2168 	if (ret) {
2169 		rtw_warn(rtwdev, "no firmware loaded\n");
2170 		goto out;
2171 	}
2172 
2173 	if (chip->wow_fw_name) {
2174 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2175 		if (ret) {
2176 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2177 			wait_for_completion(&rtwdev->fw.completion);
2178 			if (rtwdev->fw.firmware)
2179 				release_firmware(rtwdev->fw.firmware);
2180 			goto out;
2181 		}
2182 	}
2183 
2184 	return 0;
2185 
2186 out:
2187 	destroy_workqueue(rtwdev->tx_wq);
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL(rtw_core_init);
2191 
rtw_core_deinit(struct rtw_dev * rtwdev)2192 void rtw_core_deinit(struct rtw_dev *rtwdev)
2193 {
2194 	struct rtw_fw_state *fw = &rtwdev->fw;
2195 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2196 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2197 	unsigned long flags;
2198 
2199 	rtw_wait_firmware_completion(rtwdev);
2200 
2201 	if (fw->firmware)
2202 		release_firmware(fw->firmware);
2203 
2204 	if (wow_fw->firmware)
2205 		release_firmware(wow_fw->firmware);
2206 
2207 	destroy_workqueue(rtwdev->tx_wq);
2208 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2209 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2210 	skb_queue_purge(&rtwdev->tx_report.queue);
2211 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2212 	skb_queue_purge(&rtwdev->coex.queue);
2213 	skb_queue_purge(&rtwdev->c2h_queue);
2214 
2215 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2216 				 build_list) {
2217 		list_del(&rsvd_pkt->build_list);
2218 		kfree(rsvd_pkt);
2219 	}
2220 
2221 	mutex_destroy(&rtwdev->mutex);
2222 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2223 }
2224 EXPORT_SYMBOL(rtw_core_deinit);
2225 
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2226 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2227 {
2228 	struct rtw_hal *hal = &rtwdev->hal;
2229 	int max_tx_headroom = 0;
2230 	int ret;
2231 
2232 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2233 
2234 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2235 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2236 
2237 	hw->extra_tx_headroom = max_tx_headroom;
2238 	hw->queues = IEEE80211_NUM_ACS;
2239 	hw->txq_data_size = sizeof(struct rtw_txq);
2240 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2241 	hw->vif_data_size = sizeof(struct rtw_vif);
2242 
2243 	ieee80211_hw_set(hw, SIGNAL_DBM);
2244 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2245 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2246 	ieee80211_hw_set(hw, MFP_CAPABLE);
2247 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2248 	ieee80211_hw_set(hw, SUPPORTS_PS);
2249 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2250 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2251 	if (rtwdev->chip->amsdu_in_ampdu)
2252 		ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2253 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2254 	ieee80211_hw_set(hw, TX_AMSDU);
2255 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2256 
2257 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2258 				     BIT(NL80211_IFTYPE_AP) |
2259 				     BIT(NL80211_IFTYPE_ADHOC);
2260 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2261 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2262 
2263 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2264 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2265 
2266 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2267 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2268 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2269 
2270 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2271 		hw->wiphy->iface_combinations = rtw_iface_combs;
2272 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2273 	}
2274 
2275 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2276 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2277 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2278 
2279 #ifdef CONFIG_PM
2280 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2281 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2282 #endif
2283 	rtw_set_supported_band(hw, rtwdev->chip);
2284 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2285 
2286 	hw->wiphy->sar_capa = &rtw_sar_capa;
2287 
2288 	ret = rtw_regd_init(rtwdev);
2289 	if (ret) {
2290 		rtw_err(rtwdev, "failed to init regd\n");
2291 		return ret;
2292 	}
2293 
2294 	rtw_led_init(rtwdev);
2295 
2296 	ret = ieee80211_register_hw(hw);
2297 	if (ret) {
2298 		rtw_err(rtwdev, "failed to register hw\n");
2299 		goto led_deinit;
2300 	}
2301 
2302 	ret = rtw_regd_hint(rtwdev);
2303 	if (ret) {
2304 		rtw_err(rtwdev, "failed to hint regd\n");
2305 		goto led_deinit;
2306 	}
2307 
2308 	rtw_debugfs_init(rtwdev);
2309 
2310 	rtwdev->bf_info.bfer_mu_cnt = 0;
2311 	rtwdev->bf_info.bfer_su_cnt = 0;
2312 
2313 	return 0;
2314 
2315 led_deinit:
2316 	rtw_led_deinit(rtwdev);
2317 	return ret;
2318 }
2319 EXPORT_SYMBOL(rtw_register_hw);
2320 
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2321 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2322 {
2323 	const struct rtw_chip_info *chip = rtwdev->chip;
2324 
2325 	ieee80211_unregister_hw(hw);
2326 	rtw_unset_supported_band(hw, chip);
2327 	rtw_debugfs_deinit(rtwdev);
2328 	rtw_led_deinit(rtwdev);
2329 }
2330 EXPORT_SYMBOL(rtw_unregister_hw);
2331 
2332 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2333 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2334 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2335 {
2336 	u8 i;
2337 
2338 	for (i = 0; i < nbytes; i++) {
2339 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2340 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2341 
2342 		rtw_write8(rtwdev, reg1->addr + i, v2);
2343 		rtw_write8(rtwdev, reg2->addr + i, v1);
2344 	}
2345 }
2346 
2347 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2348 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2349 		       const struct rtw_hw_reg *reg2)
2350 {
2351 	u32 v1, v2;
2352 
2353 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2354 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2355 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2356 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2357 }
2358 
2359 struct rtw_iter_port_switch_data {
2360 	struct rtw_dev *rtwdev;
2361 	struct rtw_vif *rtwvif_ap;
2362 };
2363 
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2364 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2365 {
2366 	struct rtw_iter_port_switch_data *iter_data = data;
2367 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2368 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2369 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2370 	const struct rtw_hw_reg *reg1, *reg2;
2371 
2372 	if (rtwvif_target->port != RTW_PORT_0)
2373 		return;
2374 
2375 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2376 		rtwvif_ap->port, rtwvif_target->port);
2377 
2378 	/* Leave LPS so the value swapped are not in PS mode */
2379 	rtw_leave_lps(rtwdev);
2380 
2381 	reg1 = &rtwvif_ap->conf->net_type;
2382 	reg2 = &rtwvif_target->conf->net_type;
2383 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2384 
2385 	reg1 = &rtwvif_ap->conf->mac_addr;
2386 	reg2 = &rtwvif_target->conf->mac_addr;
2387 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2388 
2389 	reg1 = &rtwvif_ap->conf->bssid;
2390 	reg2 = &rtwvif_target->conf->bssid;
2391 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2392 
2393 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2394 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2395 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2396 
2397 	swap(rtwvif_target->port, rtwvif_ap->port);
2398 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2399 
2400 	rtw_fw_default_port(rtwdev, rtwvif_target);
2401 }
2402 
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2403 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2404 {
2405 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2406 	struct rtw_iter_port_switch_data iter_data;
2407 
2408 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2409 		return;
2410 
2411 	iter_data.rtwdev = rtwdev;
2412 	iter_data.rtwvif_ap = rtwvif;
2413 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2414 }
2415 
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2416 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2417 {
2418 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2419 	bool *active = data;
2420 
2421 	if (*active)
2422 		return;
2423 
2424 	if (vif->type != NL80211_IFTYPE_STATION)
2425 		return;
2426 
2427 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2428 		*active = true;
2429 }
2430 
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2431 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2432 {
2433 	bool sta_active = false;
2434 
2435 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2436 
2437 	return rtwdev->ap_active || sta_active;
2438 }
2439 
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2440 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2441 {
2442 	if (!rtwdev->ap_active)
2443 		return;
2444 
2445 	if (enable) {
2446 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2447 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2448 	} else {
2449 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2450 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2451 	}
2452 }
2453 
rtw_set_ampdu_factor(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf)2454 void rtw_set_ampdu_factor(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
2455 			  struct ieee80211_bss_conf *bss_conf)
2456 {
2457 	const struct rtw_chip_ops *ops = rtwdev->chip->ops;
2458 	struct ieee80211_sta *sta;
2459 	u8 factor = 0xff;
2460 
2461 	if (!ops->set_ampdu_factor)
2462 		return;
2463 
2464 	rcu_read_lock();
2465 
2466 	sta = ieee80211_find_sta(vif, bss_conf->bssid);
2467 	if (!sta) {
2468 		rcu_read_unlock();
2469 		rtw_warn(rtwdev, "%s: failed to find station %pM\n",
2470 			 __func__, bss_conf->bssid);
2471 		return;
2472 	}
2473 
2474 	if (sta->deflink.vht_cap.vht_supported)
2475 		factor = u32_get_bits(sta->deflink.vht_cap.cap,
2476 				      IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
2477 	else if (sta->deflink.ht_cap.ht_supported)
2478 		factor = sta->deflink.ht_cap.ampdu_factor;
2479 
2480 	rcu_read_unlock();
2481 
2482 	if (factor != 0xff)
2483 		ops->set_ampdu_factor(rtwdev, factor);
2484 }
2485 
2486 MODULE_AUTHOR("Realtek Corporation");
2487 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2488 MODULE_LICENSE("Dual BSD/GPL");
2489