1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31 #include <linux/units.h>
32
33 #include <asm/cpu.h>
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 #include "../drivers/thermal/intel/thermal_interrupt.h"
40
41 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
45 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
57
58 #define EXT_BITS 6
59 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
60 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
61 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62
mul_fp(int32_t x,int32_t y)63 static inline int32_t mul_fp(int32_t x, int32_t y)
64 {
65 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
66 }
67
div_fp(s64 x,s64 y)68 static inline int32_t div_fp(s64 x, s64 y)
69 {
70 return div64_s64((int64_t)x << FRAC_BITS, y);
71 }
72
ceiling_fp(int32_t x)73 static inline int ceiling_fp(int32_t x)
74 {
75 int mask, ret;
76
77 ret = fp_toint(x);
78 mask = (1 << FRAC_BITS) - 1;
79 if (x & mask)
80 ret += 1;
81 return ret;
82 }
83
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 return (x * y) >> EXT_FRAC_BITS;
87 }
88
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 /**
95 * struct sample - Store performance sample
96 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
97 * performance during last sample period
98 * @busy_scaled: Scaled busy value which is used to calculate next
99 * P state. This can be different than core_avg_perf
100 * to account for cpu idle period
101 * @aperf: Difference of actual performance frequency clock count
102 * read from APERF MSR between last and current sample
103 * @mperf: Difference of maximum performance frequency clock count
104 * read from MPERF MSR between last and current sample
105 * @tsc: Difference of time stamp counter between last and
106 * current sample
107 * @time: Current time from scheduler
108 *
109 * This structure is used in the cpudata structure to store performance sample
110 * data for choosing next P State.
111 */
112 struct sample {
113 int32_t core_avg_perf;
114 int32_t busy_scaled;
115 u64 aperf;
116 u64 mperf;
117 u64 tsc;
118 u64 time;
119 };
120
121 /**
122 * struct pstate_data - Store P state data
123 * @current_pstate: Current requested P state
124 * @min_pstate: Min P state possible for this platform
125 * @max_pstate: Max P state possible for this platform
126 * @max_pstate_physical:This is physical Max P state for a processor
127 * This can be higher than the max_pstate which can
128 * be limited by platform thermal design power limits
129 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
130 * @scaling: Scaling factor between performance and frequency
131 * @turbo_pstate: Max Turbo P state possible for this platform
132 * @min_freq: @min_pstate frequency in cpufreq units
133 * @max_freq: @max_pstate frequency in cpufreq units
134 * @turbo_freq: @turbo_pstate frequency in cpufreq units
135 *
136 * Stores the per cpu model P state limits and current P state.
137 */
138 struct pstate_data {
139 int current_pstate;
140 int min_pstate;
141 int max_pstate;
142 int max_pstate_physical;
143 int perf_ctl_scaling;
144 int scaling;
145 int turbo_pstate;
146 unsigned int min_freq;
147 unsigned int max_freq;
148 unsigned int turbo_freq;
149 };
150
151 /**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
164 struct vid_data {
165 int min;
166 int max;
167 int turbo;
168 int32_t ratio;
169 };
170
171 /**
172 * struct global_params - Global parameters, mostly tunable via sysfs.
173 * @no_turbo: Whether or not to use turbo P-states.
174 * @turbo_disabled: Whether or not turbo P-states are available at all,
175 * based on the MSR_IA32_MISC_ENABLE value and whether or
176 * not the maximum reported turbo P-state is different from
177 * the maximum reported non-turbo one.
178 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 */
183 struct global_params {
184 bool no_turbo;
185 bool turbo_disabled;
186 int max_perf_pct;
187 int min_perf_pct;
188 };
189
190 /**
191 * struct cpudata - Per CPU instance data storage
192 * @cpu: CPU number for this instance data
193 * @policy: CPUFreq policy value
194 * @update_util: CPUFreq utility callback information
195 * @update_util_set: CPUFreq utility callback is set
196 * @iowait_boost: iowait-related boost fraction
197 * @last_update: Time of the last update.
198 * @pstate: Stores P state limits for this CPU
199 * @vid: Stores VID limits for this CPU
200 * @last_sample_time: Last Sample time
201 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
202 * @prev_aperf: Last APERF value read from APERF MSR
203 * @prev_mperf: Last MPERF value read from MPERF MSR
204 * @prev_tsc: Last timestamp counter (TSC) value
205 * @sample: Storage for storing last Sample data
206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
208 * @acpi_perf_data: Stores ACPI perf information read from _PSS
209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
210 * @epp_powersave: Last saved HWP energy performance preference
211 * (EPP) or energy performance bias (EPB),
212 * when policy switched to performance
213 * @epp_policy: Last saved policy used to set EPP/EPB
214 * @epp_default: Power on default HWP energy performance
215 * preference/bias
216 * @epp_cached: Cached HWP energy-performance preference value
217 * @hwp_req_cached: Cached value of the last HWP Request MSR
218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
219 * @last_io_update: Last time when IO wake flag was set
220 * @capacity_perf: Highest perf used for scale invariance
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @pd_registered: Set when a perf domain is registered for this CPU.
225 * @hwp_notify_work: workqueue for HWP notifications.
226 *
227 * This structure stores per CPU instance data for all CPUs.
228 */
229 struct cpudata {
230 int cpu;
231
232 unsigned int policy;
233 struct update_util_data update_util;
234 bool update_util_set;
235
236 struct pstate_data pstate;
237 struct vid_data vid;
238
239 u64 last_update;
240 u64 last_sample_time;
241 u64 aperf_mperf_shift;
242 u64 prev_aperf;
243 u64 prev_mperf;
244 u64 prev_tsc;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int capacity_perf;
261 unsigned int sched_flags;
262 u32 hwp_boost_min;
263 bool suspended;
264 #ifdef CONFIG_ENERGY_MODEL
265 bool pd_registered;
266 #endif
267 struct delayed_work hwp_notify_work;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273 * struct pstate_funcs - Per CPU model specific callbacks
274 * @get_max: Callback to get maximum non turbo effective P state
275 * @get_max_physical: Callback to get maximum non turbo physical P state
276 * @get_min: Callback to get minimum P state
277 * @get_turbo: Callback to get turbo P state
278 * @get_scaling: Callback to get frequency scaling factor
279 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
280 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
281 * @get_val: Callback to convert P state to actual MSR write value
282 * @get_vid: Callback to get VID data for Atom platforms
283 *
284 * Core and Atom CPU models have different way to get P State limits. This
285 * structure is used to store those callbacks.
286 */
287 struct pstate_funcs {
288 int (*get_max)(int cpu);
289 int (*get_max_physical)(int cpu);
290 int (*get_min)(int cpu);
291 int (*get_turbo)(int cpu);
292 int (*get_scaling)(void);
293 int (*get_cpu_scaling)(int cpu);
294 int (*get_aperf_mperf_shift)(void);
295 u64 (*get_val)(struct cpudata*, int pstate);
296 void (*get_vid)(struct cpudata *);
297 };
298
299 static struct pstate_funcs pstate_funcs __read_mostly;
300
301 static bool hwp_active __ro_after_init;
302 static int hwp_mode_bdw __ro_after_init;
303 static bool per_cpu_limits __ro_after_init;
304 static bool hwp_forced __ro_after_init;
305 static bool hwp_boost __read_mostly;
306 static bool hwp_is_hybrid;
307
308 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
309
310 #define INTEL_PSTATE_CORE_SCALING 100000
311 #define HYBRID_SCALING_FACTOR_ADL 78741
312 #define HYBRID_SCALING_FACTOR_MTL 80000
313 #define HYBRID_SCALING_FACTOR_LNL 86957
314
315 static int hybrid_scaling_factor;
316
core_get_scaling(void)317 static inline int core_get_scaling(void)
318 {
319 return INTEL_PSTATE_CORE_SCALING;
320 }
321
322 #ifdef CONFIG_ACPI
323 static bool acpi_ppc;
324 #endif
325
326 static struct global_params global;
327
328 static DEFINE_MUTEX(intel_pstate_driver_lock);
329 static DEFINE_MUTEX(intel_pstate_limits_lock);
330
331 #ifdef CONFIG_ACPI
332
intel_pstate_acpi_pm_profile_server(void)333 static bool intel_pstate_acpi_pm_profile_server(void)
334 {
335 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
336 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
337 return true;
338
339 return false;
340 }
341
intel_pstate_get_ppc_enable_status(void)342 static bool intel_pstate_get_ppc_enable_status(void)
343 {
344 if (intel_pstate_acpi_pm_profile_server())
345 return true;
346
347 return acpi_ppc;
348 }
349
350 #ifdef CONFIG_ACPI_CPPC_LIB
351
352 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)353 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
354 {
355 sched_set_itmt_support();
356 }
357
358 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
359
360 #define CPPC_MAX_PERF U8_MAX
361
intel_pstate_set_itmt_prio(int cpu)362 static void intel_pstate_set_itmt_prio(int cpu)
363 {
364 struct cppc_perf_caps cppc_perf;
365 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
366 int ret;
367
368 ret = cppc_get_perf_caps(cpu, &cppc_perf);
369 /*
370 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
371 *
372 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
373 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
374 * Fall back to MSR_HWP_CAPABILITIES then too.
375 */
376 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
377 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
378
379 /*
380 * The priorities can be set regardless of whether or not
381 * sched_set_itmt_support(true) has been called and it is valid to
382 * update them at any time after it has been called.
383 */
384 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
385
386 if (max_highest_perf <= min_highest_perf) {
387 if (cppc_perf.highest_perf > max_highest_perf)
388 max_highest_perf = cppc_perf.highest_perf;
389
390 if (cppc_perf.highest_perf < min_highest_perf)
391 min_highest_perf = cppc_perf.highest_perf;
392
393 if (max_highest_perf > min_highest_perf) {
394 /*
395 * This code can be run during CPU online under the
396 * CPU hotplug locks, so sched_set_itmt_support()
397 * cannot be called from here. Queue up a work item
398 * to invoke it.
399 */
400 schedule_work(&sched_itmt_work);
401 }
402 }
403 }
404
intel_pstate_get_cppc_guaranteed(int cpu)405 static int intel_pstate_get_cppc_guaranteed(int cpu)
406 {
407 struct cppc_perf_caps cppc_perf;
408 int ret;
409
410 ret = cppc_get_perf_caps(cpu, &cppc_perf);
411 if (ret)
412 return ret;
413
414 if (cppc_perf.guaranteed_perf)
415 return cppc_perf.guaranteed_perf;
416
417 return cppc_perf.nominal_perf;
418 }
419
intel_pstate_cppc_get_scaling(int cpu)420 static int intel_pstate_cppc_get_scaling(int cpu)
421 {
422 struct cppc_perf_caps cppc_perf;
423
424 /*
425 * Compute the perf-to-frequency scaling factor for the given CPU if
426 * possible, unless it would be 0.
427 */
428 if (!cppc_get_perf_caps(cpu, &cppc_perf) &&
429 cppc_perf.nominal_perf && cppc_perf.nominal_freq)
430 return div_u64(cppc_perf.nominal_freq * KHZ_PER_MHZ,
431 cppc_perf.nominal_perf);
432
433 return core_get_scaling();
434 }
435
436 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)437 static inline void intel_pstate_set_itmt_prio(int cpu)
438 {
439 }
440 #endif /* CONFIG_ACPI_CPPC_LIB */
441
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)442 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
443 {
444 struct cpudata *cpu;
445 int ret;
446 int i;
447
448 if (hwp_active) {
449 intel_pstate_set_itmt_prio(policy->cpu);
450 return;
451 }
452
453 if (!intel_pstate_get_ppc_enable_status())
454 return;
455
456 cpu = all_cpu_data[policy->cpu];
457
458 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
459 policy->cpu);
460 if (ret)
461 return;
462
463 /*
464 * Check if the control value in _PSS is for PERF_CTL MSR, which should
465 * guarantee that the states returned by it map to the states in our
466 * list directly.
467 */
468 if (cpu->acpi_perf_data.control_register.space_id !=
469 ACPI_ADR_SPACE_FIXED_HARDWARE)
470 goto err;
471
472 /*
473 * If there is only one entry _PSS, simply ignore _PSS and continue as
474 * usual without taking _PSS into account
475 */
476 if (cpu->acpi_perf_data.state_count < 2)
477 goto err;
478
479 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
480 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
481 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
482 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
483 (u32) cpu->acpi_perf_data.states[i].core_frequency,
484 (u32) cpu->acpi_perf_data.states[i].power,
485 (u32) cpu->acpi_perf_data.states[i].control);
486 }
487
488 cpu->valid_pss_table = true;
489 pr_debug("_PPC limits will be enforced\n");
490
491 return;
492
493 err:
494 cpu->valid_pss_table = false;
495 acpi_processor_unregister_performance(policy->cpu);
496 }
497
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)498 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 {
500 struct cpudata *cpu;
501
502 cpu = all_cpu_data[policy->cpu];
503 if (!cpu->valid_pss_table)
504 return;
505
506 acpi_processor_unregister_performance(policy->cpu);
507 }
508 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)509 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 {
511 }
512
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)513 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 }
516
intel_pstate_acpi_pm_profile_server(void)517 static inline bool intel_pstate_acpi_pm_profile_server(void)
518 {
519 return false;
520 }
521 #endif /* CONFIG_ACPI */
522
523 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)524 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
525 {
526 return -ENOTSUPP;
527 }
528
intel_pstate_cppc_get_scaling(int cpu)529 static int intel_pstate_cppc_get_scaling(int cpu)
530 {
531 return core_get_scaling();
532 }
533 #endif /* CONFIG_ACPI_CPPC_LIB */
534
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)535 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
536 unsigned int relation)
537 {
538 if (freq == cpu->pstate.turbo_freq)
539 return cpu->pstate.turbo_pstate;
540
541 if (freq == cpu->pstate.max_freq)
542 return cpu->pstate.max_pstate;
543
544 switch (relation) {
545 case CPUFREQ_RELATION_H:
546 return freq / cpu->pstate.scaling;
547 case CPUFREQ_RELATION_C:
548 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
549 }
550
551 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
552 }
553
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)554 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
555 {
556 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
557 }
558
559 /**
560 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
561 * @cpu: Target CPU.
562 *
563 * On hybrid processors, HWP may expose more performance levels than there are
564 * P-states accessible through the PERF_CTL interface. If that happens, the
565 * scaling factor between HWP performance levels and CPU frequency will be less
566 * than the scaling factor between P-state values and CPU frequency.
567 *
568 * In that case, adjust the CPU parameters used in computations accordingly.
569 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)570 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
571 {
572 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
573 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
574 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
575 int scaling = cpu->pstate.scaling;
576 int freq;
577
578 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
579 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
580 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
581 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
582 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
583 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
584
585 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
586 perf_ctl_scaling);
587 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
588 perf_ctl_scaling);
589
590 freq = perf_ctl_max_phys * perf_ctl_scaling;
591 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
592
593 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
594 cpu->pstate.min_freq = freq;
595 /*
596 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
597 * the effective range of HWP performance levels.
598 */
599 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
600 }
601
turbo_is_disabled(void)602 static bool turbo_is_disabled(void)
603 {
604 u64 misc_en;
605
606 rdmsrq(MSR_IA32_MISC_ENABLE, misc_en);
607
608 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
609 }
610
min_perf_pct_min(void)611 static int min_perf_pct_min(void)
612 {
613 struct cpudata *cpu = all_cpu_data[0];
614 int turbo_pstate = cpu->pstate.turbo_pstate;
615
616 return turbo_pstate ?
617 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
618 }
619
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)620 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
621 {
622 s16 epp = -EOPNOTSUPP;
623
624 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
625 /*
626 * When hwp_req_data is 0, means that caller didn't read
627 * MSR_HWP_REQUEST, so need to read and get EPP.
628 */
629 if (!hwp_req_data) {
630 epp = rdmsrq_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
631 &hwp_req_data);
632 if (epp)
633 return epp;
634 }
635 epp = (hwp_req_data >> 24) & 0xff;
636 }
637
638 return epp;
639 }
640
641 /*
642 * EPP display strings corresponding to EPP index in the
643 * energy_perf_strings[]
644 * index String
645 *-------------------------------------
646 * 0 default
647 * 1 performance
648 * 2 balance_performance
649 * 3 balance_power
650 * 4 power
651 */
652
653 enum energy_perf_value_index {
654 EPP_INDEX_DEFAULT = 0,
655 EPP_INDEX_PERFORMANCE,
656 EPP_INDEX_BALANCE_PERFORMANCE,
657 EPP_INDEX_BALANCE_POWERSAVE,
658 EPP_INDEX_POWERSAVE,
659 };
660
661 static const char * const energy_perf_strings[] = {
662 [EPP_INDEX_DEFAULT] = "default",
663 [EPP_INDEX_PERFORMANCE] = "performance",
664 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
665 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
666 [EPP_INDEX_POWERSAVE] = "power",
667 NULL
668 };
669 static unsigned int epp_values[] = {
670 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
671 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
672 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
673 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
674 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
675 };
676
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)677 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
678 {
679 s16 epp;
680 int index = -EINVAL;
681
682 *raw_epp = 0;
683 epp = intel_pstate_get_epp(cpu_data, 0);
684 if (epp < 0)
685 return epp;
686
687 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
688 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
689 return EPP_INDEX_PERFORMANCE;
690 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
691 return EPP_INDEX_BALANCE_PERFORMANCE;
692 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
693 return EPP_INDEX_BALANCE_POWERSAVE;
694 if (epp == epp_values[EPP_INDEX_POWERSAVE])
695 return EPP_INDEX_POWERSAVE;
696 *raw_epp = epp;
697 return 0;
698 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
699 /*
700 * Range:
701 * 0x00-0x03 : Performance
702 * 0x04-0x07 : Balance performance
703 * 0x08-0x0B : Balance power
704 * 0x0C-0x0F : Power
705 * The EPB is a 4 bit value, but our ranges restrict the
706 * value which can be set. Here only using top two bits
707 * effectively.
708 */
709 index = (epp >> 2) + 1;
710 }
711
712 return index;
713 }
714
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)715 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
716 {
717 int ret;
718
719 /*
720 * Use the cached HWP Request MSR value, because in the active mode the
721 * register itself may be updated by intel_pstate_hwp_boost_up() or
722 * intel_pstate_hwp_boost_down() at any time.
723 */
724 u64 value = READ_ONCE(cpu->hwp_req_cached);
725
726 value &= ~GENMASK_ULL(31, 24);
727 value |= (u64)epp << 24;
728 /*
729 * The only other updater of hwp_req_cached in the active mode,
730 * intel_pstate_hwp_set(), is called under the same lock as this
731 * function, so it cannot run in parallel with the update below.
732 */
733 WRITE_ONCE(cpu->hwp_req_cached, value);
734 ret = wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
735 if (!ret)
736 cpu->epp_cached = epp;
737
738 return ret;
739 }
740
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)741 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
742 int pref_index, bool use_raw,
743 u32 raw_epp)
744 {
745 int epp = -EINVAL;
746 int ret = -EOPNOTSUPP;
747
748 if (!pref_index)
749 epp = cpu_data->epp_default;
750
751 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
752 if (use_raw)
753 epp = raw_epp;
754 else if (epp == -EINVAL)
755 epp = epp_values[pref_index];
756
757 /*
758 * To avoid confusion, refuse to set EPP to any values different
759 * from 0 (performance) if the current policy is "performance",
760 * because those values would be overridden.
761 */
762 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
763 return -EBUSY;
764
765 ret = intel_pstate_set_epp(cpu_data, epp);
766 }
767
768 return ret;
769 }
770
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)771 static ssize_t show_energy_performance_available_preferences(
772 struct cpufreq_policy *policy, char *buf)
773 {
774 int i = 0;
775 int ret = 0;
776
777 while (energy_perf_strings[i] != NULL)
778 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
779
780 ret += sprintf(&buf[ret], "\n");
781
782 return ret;
783 }
784
785 cpufreq_freq_attr_ro(energy_performance_available_preferences);
786
787 static struct cpufreq_driver intel_pstate;
788
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)789 static ssize_t store_energy_performance_preference(
790 struct cpufreq_policy *policy, const char *buf, size_t count)
791 {
792 struct cpudata *cpu = all_cpu_data[policy->cpu];
793 char str_preference[21];
794 bool raw = false;
795 ssize_t ret;
796 u32 epp = 0;
797
798 ret = sscanf(buf, "%20s", str_preference);
799 if (ret != 1)
800 return -EINVAL;
801
802 ret = match_string(energy_perf_strings, -1, str_preference);
803 if (ret < 0) {
804 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
805 return ret;
806
807 ret = kstrtouint(buf, 10, &epp);
808 if (ret)
809 return ret;
810
811 if (epp > 255)
812 return -EINVAL;
813
814 raw = true;
815 }
816
817 /*
818 * This function runs with the policy R/W semaphore held, which
819 * guarantees that the driver pointer will not change while it is
820 * running.
821 */
822 if (!intel_pstate_driver)
823 return -EAGAIN;
824
825 mutex_lock(&intel_pstate_limits_lock);
826
827 if (intel_pstate_driver == &intel_pstate) {
828 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
829 } else {
830 /*
831 * In the passive mode the governor needs to be stopped on the
832 * target CPU before the EPP update and restarted after it,
833 * which is super-heavy-weight, so make sure it is worth doing
834 * upfront.
835 */
836 if (!raw)
837 epp = ret ? epp_values[ret] : cpu->epp_default;
838
839 if (cpu->epp_cached != epp) {
840 int err;
841
842 cpufreq_stop_governor(policy);
843 ret = intel_pstate_set_epp(cpu, epp);
844 err = cpufreq_start_governor(policy);
845 if (!ret)
846 ret = err;
847 } else {
848 ret = 0;
849 }
850 }
851
852 mutex_unlock(&intel_pstate_limits_lock);
853
854 return ret ?: count;
855 }
856
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)857 static ssize_t show_energy_performance_preference(
858 struct cpufreq_policy *policy, char *buf)
859 {
860 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
861 int preference, raw_epp;
862
863 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
864 if (preference < 0)
865 return preference;
866
867 if (raw_epp)
868 return sprintf(buf, "%d\n", raw_epp);
869 else
870 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
871 }
872
873 cpufreq_freq_attr_rw(energy_performance_preference);
874
show_base_frequency(struct cpufreq_policy * policy,char * buf)875 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
876 {
877 struct cpudata *cpu = all_cpu_data[policy->cpu];
878 int ratio, freq;
879
880 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
881 if (ratio <= 0) {
882 u64 cap;
883
884 rdmsrq_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
885 ratio = HWP_GUARANTEED_PERF(cap);
886 }
887
888 freq = ratio * cpu->pstate.scaling;
889 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
890 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
891
892 return sprintf(buf, "%d\n", freq);
893 }
894
895 cpufreq_freq_attr_ro(base_frequency);
896
897 enum hwp_cpufreq_attr_index {
898 HWP_BASE_FREQUENCY_INDEX = 0,
899 HWP_PERFORMANCE_PREFERENCE_INDEX,
900 HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX,
901 HWP_CPUFREQ_ATTR_COUNT,
902 };
903
904 static struct freq_attr *hwp_cpufreq_attrs[] = {
905 [HWP_BASE_FREQUENCY_INDEX] = &base_frequency,
906 [HWP_PERFORMANCE_PREFERENCE_INDEX] = &energy_performance_preference,
907 [HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX] =
908 &energy_performance_available_preferences,
909 [HWP_CPUFREQ_ATTR_COUNT] = NULL,
910 };
911
912 static bool no_cas __ro_after_init;
913
914 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
915 /*
916 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
917 * and the x86 arch scale-invariance information from concurrent updates.
918 */
919 static DEFINE_MUTEX(hybrid_capacity_lock);
920
921 #ifdef CONFIG_ENERGY_MODEL
922 #define HYBRID_EM_STATE_COUNT 4
923
hybrid_active_power(struct device * dev,unsigned long * power,unsigned long * freq)924 static int hybrid_active_power(struct device *dev, unsigned long *power,
925 unsigned long *freq)
926 {
927 /*
928 * Create "utilization bins" of 0-40%, 40%-60%, 60%-80%, and 80%-100%
929 * of the maximum capacity such that two CPUs of the same type will be
930 * regarded as equally attractive if the utilization of each of them
931 * falls into the same bin, which should prevent tasks from being
932 * migrated between them too often.
933 *
934 * For this purpose, return the "frequency" of 2 for the first
935 * performance level and otherwise leave the value set by the caller.
936 */
937 if (!*freq)
938 *freq = 2;
939
940 /* No power information. */
941 *power = EM_MAX_POWER;
942
943 return 0;
944 }
945
hybrid_get_cost(struct device * dev,unsigned long freq,unsigned long * cost)946 static int hybrid_get_cost(struct device *dev, unsigned long freq,
947 unsigned long *cost)
948 {
949 struct pstate_data *pstate = &all_cpu_data[dev->id]->pstate;
950 struct cpu_cacheinfo *cacheinfo = get_cpu_cacheinfo(dev->id);
951
952 /*
953 * The smaller the perf-to-frequency scaling factor, the larger the IPC
954 * ratio between the given CPU and the least capable CPU in the system.
955 * Regard that IPC ratio as the primary cost component and assume that
956 * the scaling factors for different CPU types will differ by at least
957 * 5% and they will not be above INTEL_PSTATE_CORE_SCALING.
958 *
959 * Add the freq value to the cost, so that the cost of running on CPUs
960 * of the same type in different "utilization bins" is different.
961 */
962 *cost = div_u64(100ULL * INTEL_PSTATE_CORE_SCALING, pstate->scaling) + freq;
963 /*
964 * Increase the cost slightly for CPUs able to access L3 to avoid
965 * touching it in case some other CPUs of the same type can do the work
966 * without it.
967 */
968 if (cacheinfo) {
969 unsigned int i;
970
971 /* Check if L3 cache is there. */
972 for (i = 0; i < cacheinfo->num_leaves; i++) {
973 if (cacheinfo->info_list[i].level == 3) {
974 *cost += 2;
975 break;
976 }
977 }
978 }
979
980 return 0;
981 }
982
hybrid_register_perf_domain(unsigned int cpu)983 static bool hybrid_register_perf_domain(unsigned int cpu)
984 {
985 static const struct em_data_callback cb
986 = EM_ADV_DATA_CB(hybrid_active_power, hybrid_get_cost);
987 struct cpudata *cpudata = all_cpu_data[cpu];
988 struct device *cpu_dev;
989
990 /*
991 * Registering EM perf domains without enabling asymmetric CPU capacity
992 * support is not really useful and one domain should not be registered
993 * more than once.
994 */
995 if (!hybrid_max_perf_cpu || cpudata->pd_registered)
996 return false;
997
998 cpu_dev = get_cpu_device(cpu);
999 if (!cpu_dev)
1000 return false;
1001
1002 if (em_dev_register_pd_no_update(cpu_dev, HYBRID_EM_STATE_COUNT, &cb,
1003 cpumask_of(cpu), false))
1004 return false;
1005
1006 cpudata->pd_registered = true;
1007
1008 return true;
1009 }
1010
hybrid_register_all_perf_domains(void)1011 static void hybrid_register_all_perf_domains(void)
1012 {
1013 unsigned int cpu;
1014
1015 for_each_online_cpu(cpu)
1016 hybrid_register_perf_domain(cpu);
1017 }
1018
hybrid_update_perf_domain(struct cpudata * cpu)1019 static void hybrid_update_perf_domain(struct cpudata *cpu)
1020 {
1021 if (cpu->pd_registered)
1022 em_adjust_cpu_capacity(cpu->cpu);
1023 }
1024 #else /* !CONFIG_ENERGY_MODEL */
hybrid_register_perf_domain(unsigned int cpu)1025 static inline bool hybrid_register_perf_domain(unsigned int cpu) { return false; }
hybrid_register_all_perf_domains(void)1026 static inline void hybrid_register_all_perf_domains(void) {}
hybrid_update_perf_domain(struct cpudata * cpu)1027 static inline void hybrid_update_perf_domain(struct cpudata *cpu) {}
1028 #endif /* CONFIG_ENERGY_MODEL */
1029
hybrid_set_cpu_capacity(struct cpudata * cpu)1030 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
1031 {
1032 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
1033 hybrid_max_perf_cpu->capacity_perf,
1034 cpu->capacity_perf,
1035 cpu->pstate.max_pstate_physical);
1036 hybrid_update_perf_domain(cpu);
1037
1038 topology_set_cpu_scale(cpu->cpu, arch_scale_cpu_capacity(cpu->cpu));
1039
1040 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
1041 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
1042 cpu->pstate.max_pstate_physical);
1043 }
1044
hybrid_clear_cpu_capacity(unsigned int cpunum)1045 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
1046 {
1047 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
1048 }
1049
hybrid_get_capacity_perf(struct cpudata * cpu)1050 static void hybrid_get_capacity_perf(struct cpudata *cpu)
1051 {
1052 if (READ_ONCE(global.no_turbo)) {
1053 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
1054 return;
1055 }
1056
1057 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1058 }
1059
hybrid_set_capacity_of_cpus(void)1060 static void hybrid_set_capacity_of_cpus(void)
1061 {
1062 int cpunum;
1063
1064 for_each_online_cpu(cpunum) {
1065 struct cpudata *cpu = all_cpu_data[cpunum];
1066
1067 if (cpu)
1068 hybrid_set_cpu_capacity(cpu);
1069 }
1070 }
1071
hybrid_update_cpu_capacity_scaling(void)1072 static void hybrid_update_cpu_capacity_scaling(void)
1073 {
1074 struct cpudata *max_perf_cpu = NULL;
1075 unsigned int max_cap_perf = 0;
1076 int cpunum;
1077
1078 for_each_online_cpu(cpunum) {
1079 struct cpudata *cpu = all_cpu_data[cpunum];
1080
1081 if (!cpu)
1082 continue;
1083
1084 /*
1085 * During initialization, CPU performance at full capacity needs
1086 * to be determined.
1087 */
1088 if (!hybrid_max_perf_cpu)
1089 hybrid_get_capacity_perf(cpu);
1090
1091 /*
1092 * If hybrid_max_perf_cpu is not NULL at this point, it is
1093 * being replaced, so don't take it into account when looking
1094 * for the new one.
1095 */
1096 if (cpu == hybrid_max_perf_cpu)
1097 continue;
1098
1099 if (cpu->capacity_perf > max_cap_perf) {
1100 max_cap_perf = cpu->capacity_perf;
1101 max_perf_cpu = cpu;
1102 }
1103 }
1104
1105 if (max_perf_cpu) {
1106 hybrid_max_perf_cpu = max_perf_cpu;
1107 hybrid_set_capacity_of_cpus();
1108 } else {
1109 pr_info("Found no CPUs with nonzero maximum performance\n");
1110 /* Revert to the flat CPU capacity structure. */
1111 for_each_online_cpu(cpunum)
1112 hybrid_clear_cpu_capacity(cpunum);
1113 }
1114 }
1115
__hybrid_refresh_cpu_capacity_scaling(void)1116 static void __hybrid_refresh_cpu_capacity_scaling(void)
1117 {
1118 hybrid_max_perf_cpu = NULL;
1119 hybrid_update_cpu_capacity_scaling();
1120 }
1121
hybrid_refresh_cpu_capacity_scaling(void)1122 static void hybrid_refresh_cpu_capacity_scaling(void)
1123 {
1124 guard(mutex)(&hybrid_capacity_lock);
1125
1126 __hybrid_refresh_cpu_capacity_scaling();
1127 /*
1128 * Perf domains are not registered before setting hybrid_max_perf_cpu,
1129 * so register them all after setting up CPU capacity scaling.
1130 */
1131 hybrid_register_all_perf_domains();
1132 }
1133
hybrid_init_cpu_capacity_scaling(bool refresh)1134 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1135 {
1136 /* Bail out if enabling capacity-aware scheduling is prohibited. */
1137 if (no_cas)
1138 return;
1139
1140 /*
1141 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1142 * scaling has been enabled already and the driver is just changing the
1143 * operation mode.
1144 */
1145 if (refresh) {
1146 hybrid_refresh_cpu_capacity_scaling();
1147 return;
1148 }
1149
1150 /*
1151 * On hybrid systems, use asym capacity instead of ITMT, but because
1152 * the capacity of SMT threads is not deterministic even approximately,
1153 * do not do that when SMT is in use.
1154 */
1155 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1156 hybrid_refresh_cpu_capacity_scaling();
1157 /*
1158 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1159 * packing and enable asym capacity and EAS.
1160 */
1161 sched_clear_itmt_support();
1162 }
1163 }
1164
hybrid_clear_max_perf_cpu(void)1165 static bool hybrid_clear_max_perf_cpu(void)
1166 {
1167 bool ret;
1168
1169 guard(mutex)(&hybrid_capacity_lock);
1170
1171 ret = !!hybrid_max_perf_cpu;
1172 hybrid_max_perf_cpu = NULL;
1173
1174 return ret;
1175 }
1176
__intel_pstate_get_hwp_cap(struct cpudata * cpu)1177 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1178 {
1179 u64 cap;
1180
1181 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1182 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1183 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1184 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1185 }
1186
intel_pstate_get_hwp_cap(struct cpudata * cpu)1187 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1188 {
1189 int scaling = cpu->pstate.scaling;
1190
1191 __intel_pstate_get_hwp_cap(cpu);
1192
1193 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1194 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1195 if (scaling != cpu->pstate.perf_ctl_scaling) {
1196 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1197
1198 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1199 perf_ctl_scaling);
1200 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1201 perf_ctl_scaling);
1202 }
1203 }
1204
hybrid_update_capacity(struct cpudata * cpu)1205 static void hybrid_update_capacity(struct cpudata *cpu)
1206 {
1207 unsigned int max_cap_perf;
1208
1209 mutex_lock(&hybrid_capacity_lock);
1210
1211 if (!hybrid_max_perf_cpu)
1212 goto unlock;
1213
1214 /*
1215 * The maximum performance of the CPU may have changed, but assume
1216 * that the performance of the other CPUs has not changed.
1217 */
1218 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1219
1220 intel_pstate_get_hwp_cap(cpu);
1221
1222 hybrid_get_capacity_perf(cpu);
1223 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1224 if (cpu->capacity_perf > max_cap_perf) {
1225 hybrid_max_perf_cpu = cpu;
1226 hybrid_set_capacity_of_cpus();
1227 goto unlock;
1228 }
1229
1230 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1231 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1232 hybrid_update_cpu_capacity_scaling();
1233 goto unlock;
1234 }
1235
1236 hybrid_set_cpu_capacity(cpu);
1237 /*
1238 * If the CPU was offline to start with and it is going online for the
1239 * first time, a perf domain needs to be registered for it if hybrid
1240 * capacity scaling has been enabled already. In that case, sched
1241 * domains need to be rebuilt to take the new perf domain into account.
1242 */
1243 if (hybrid_register_perf_domain(cpu->cpu))
1244 em_rebuild_sched_domains();
1245
1246 unlock:
1247 mutex_unlock(&hybrid_capacity_lock);
1248 }
1249
intel_pstate_hwp_set(unsigned int cpu)1250 static void intel_pstate_hwp_set(unsigned int cpu)
1251 {
1252 struct cpudata *cpu_data = all_cpu_data[cpu];
1253 int max, min;
1254 u64 value;
1255 s16 epp;
1256
1257 max = cpu_data->max_perf_ratio;
1258 min = cpu_data->min_perf_ratio;
1259
1260 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1261 min = max;
1262
1263 rdmsrq_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1264
1265 value &= ~HWP_MIN_PERF(~0L);
1266 value |= HWP_MIN_PERF(min);
1267
1268 value &= ~HWP_MAX_PERF(~0L);
1269 value |= HWP_MAX_PERF(max);
1270
1271 if (cpu_data->epp_policy == cpu_data->policy)
1272 goto skip_epp;
1273
1274 cpu_data->epp_policy = cpu_data->policy;
1275
1276 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1277 epp = intel_pstate_get_epp(cpu_data, value);
1278 cpu_data->epp_powersave = epp;
1279 /* If EPP read was failed, then don't try to write */
1280 if (epp < 0)
1281 goto skip_epp;
1282
1283 epp = 0;
1284 } else {
1285 /* skip setting EPP, when saved value is invalid */
1286 if (cpu_data->epp_powersave < 0)
1287 goto skip_epp;
1288
1289 /*
1290 * No need to restore EPP when it is not zero. This
1291 * means:
1292 * - Policy is not changed
1293 * - user has manually changed
1294 * - Error reading EPB
1295 */
1296 epp = intel_pstate_get_epp(cpu_data, value);
1297 if (epp)
1298 goto skip_epp;
1299
1300 epp = cpu_data->epp_powersave;
1301 }
1302 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1303 value &= ~GENMASK_ULL(31, 24);
1304 value |= (u64)epp << 24;
1305 }
1306
1307 skip_epp:
1308 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1309 wrmsrq_on_cpu(cpu, MSR_HWP_REQUEST, value);
1310 }
1311
1312 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1313
intel_pstate_hwp_offline(struct cpudata * cpu)1314 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1315 {
1316 u64 value = READ_ONCE(cpu->hwp_req_cached);
1317 int min_perf;
1318
1319 intel_pstate_disable_hwp_interrupt(cpu);
1320
1321 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1322 /*
1323 * In case the EPP has been set to "performance" by the
1324 * active mode "performance" scaling algorithm, replace that
1325 * temporary value with the cached EPP one.
1326 */
1327 value &= ~GENMASK_ULL(31, 24);
1328 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1329 /*
1330 * However, make sure that EPP will be set to "performance" when
1331 * the CPU is brought back online again and the "performance"
1332 * scaling algorithm is still in effect.
1333 */
1334 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1335 }
1336
1337 /*
1338 * Clear the desired perf field in the cached HWP request value to
1339 * prevent nonzero desired values from being leaked into the active
1340 * mode.
1341 */
1342 value &= ~HWP_DESIRED_PERF(~0L);
1343 WRITE_ONCE(cpu->hwp_req_cached, value);
1344
1345 value &= ~GENMASK_ULL(31, 0);
1346 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1347
1348 /* Set hwp_max = hwp_min */
1349 value |= HWP_MAX_PERF(min_perf);
1350 value |= HWP_MIN_PERF(min_perf);
1351
1352 /* Set EPP to min */
1353 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1354 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1355
1356 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1357
1358 mutex_lock(&hybrid_capacity_lock);
1359
1360 if (!hybrid_max_perf_cpu) {
1361 mutex_unlock(&hybrid_capacity_lock);
1362
1363 return;
1364 }
1365
1366 if (hybrid_max_perf_cpu == cpu)
1367 hybrid_update_cpu_capacity_scaling();
1368
1369 mutex_unlock(&hybrid_capacity_lock);
1370
1371 /* Reset the capacity of the CPU going offline to the initial value. */
1372 hybrid_clear_cpu_capacity(cpu->cpu);
1373 }
1374
1375 #define POWER_CTL_EE_ENABLE 1
1376 #define POWER_CTL_EE_DISABLE 2
1377
1378 /* Enable bit for Dynamic Efficiency Control (DEC) */
1379 #define POWER_CTL_DEC_ENABLE 27
1380
1381 static int power_ctl_ee_state;
1382
set_power_ctl_ee_state(bool input)1383 static void set_power_ctl_ee_state(bool input)
1384 {
1385 u64 power_ctl;
1386
1387 mutex_lock(&intel_pstate_driver_lock);
1388 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1389 if (input) {
1390 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1391 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1392 } else {
1393 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1394 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1395 }
1396 wrmsrq(MSR_IA32_POWER_CTL, power_ctl);
1397 mutex_unlock(&intel_pstate_driver_lock);
1398 }
1399
1400 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1401
intel_pstate_hwp_reenable(struct cpudata * cpu)1402 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1403 {
1404 intel_pstate_hwp_enable(cpu);
1405 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1406 }
1407
intel_pstate_suspend(struct cpufreq_policy * policy)1408 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1409 {
1410 struct cpudata *cpu = all_cpu_data[policy->cpu];
1411
1412 pr_debug("CPU %d suspending\n", cpu->cpu);
1413
1414 cpu->suspended = true;
1415
1416 /* disable HWP interrupt and cancel any pending work */
1417 intel_pstate_disable_hwp_interrupt(cpu);
1418
1419 return 0;
1420 }
1421
intel_pstate_resume(struct cpufreq_policy * policy)1422 static int intel_pstate_resume(struct cpufreq_policy *policy)
1423 {
1424 struct cpudata *cpu = all_cpu_data[policy->cpu];
1425
1426 pr_debug("CPU %d resuming\n", cpu->cpu);
1427
1428 /* Only restore if the system default is changed */
1429 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1430 set_power_ctl_ee_state(true);
1431 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1432 set_power_ctl_ee_state(false);
1433
1434 if (cpu->suspended && hwp_active) {
1435 mutex_lock(&intel_pstate_limits_lock);
1436
1437 /* Re-enable HWP, because "online" has not done that. */
1438 intel_pstate_hwp_reenable(cpu);
1439
1440 mutex_unlock(&intel_pstate_limits_lock);
1441 }
1442
1443 cpu->suspended = false;
1444
1445 return 0;
1446 }
1447
intel_pstate_update_policies(void)1448 static void intel_pstate_update_policies(void)
1449 {
1450 int cpu;
1451
1452 for_each_possible_cpu(cpu)
1453 cpufreq_update_policy(cpu);
1454 }
1455
__intel_pstate_update_max_freq(struct cpufreq_policy * policy,struct cpudata * cpudata)1456 static void __intel_pstate_update_max_freq(struct cpufreq_policy *policy,
1457 struct cpudata *cpudata)
1458 {
1459 guard(cpufreq_policy_write)(policy);
1460
1461 if (hwp_active)
1462 intel_pstate_get_hwp_cap(cpudata);
1463
1464 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1465 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1466
1467 refresh_frequency_limits(policy);
1468 }
1469
intel_pstate_update_max_freq(struct cpudata * cpudata)1470 static bool intel_pstate_update_max_freq(struct cpudata *cpudata)
1471 {
1472 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpudata->cpu);
1473 if (!policy)
1474 return false;
1475
1476 __intel_pstate_update_max_freq(policy, cpudata);
1477
1478 return true;
1479 }
1480
intel_pstate_update_limits(struct cpufreq_policy * policy)1481 static void intel_pstate_update_limits(struct cpufreq_policy *policy)
1482 {
1483 struct cpudata *cpudata = all_cpu_data[policy->cpu];
1484
1485 __intel_pstate_update_max_freq(policy, cpudata);
1486
1487 hybrid_update_capacity(cpudata);
1488 }
1489
intel_pstate_update_limits_for_all(void)1490 static void intel_pstate_update_limits_for_all(void)
1491 {
1492 int cpu;
1493
1494 for_each_possible_cpu(cpu)
1495 intel_pstate_update_max_freq(all_cpu_data[cpu]);
1496
1497 mutex_lock(&hybrid_capacity_lock);
1498
1499 if (hybrid_max_perf_cpu)
1500 __hybrid_refresh_cpu_capacity_scaling();
1501
1502 mutex_unlock(&hybrid_capacity_lock);
1503 }
1504
1505 /************************** sysfs begin ************************/
1506 #define show_one(file_name, object) \
1507 static ssize_t show_##file_name \
1508 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1509 { \
1510 return sprintf(buf, "%u\n", global.object); \
1511 }
1512
1513 static ssize_t intel_pstate_show_status(char *buf);
1514 static int intel_pstate_update_status(const char *buf, size_t size);
1515
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1516 static ssize_t show_status(struct kobject *kobj,
1517 struct kobj_attribute *attr, char *buf)
1518 {
1519 ssize_t ret;
1520
1521 mutex_lock(&intel_pstate_driver_lock);
1522 ret = intel_pstate_show_status(buf);
1523 mutex_unlock(&intel_pstate_driver_lock);
1524
1525 return ret;
1526 }
1527
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1528 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1529 const char *buf, size_t count)
1530 {
1531 char *p = memchr(buf, '\n', count);
1532 int ret;
1533
1534 mutex_lock(&intel_pstate_driver_lock);
1535 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1536 mutex_unlock(&intel_pstate_driver_lock);
1537
1538 return ret < 0 ? ret : count;
1539 }
1540
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1541 static ssize_t show_turbo_pct(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1543 {
1544 struct cpudata *cpu;
1545 int total, no_turbo, turbo_pct;
1546 uint32_t turbo_fp;
1547
1548 mutex_lock(&intel_pstate_driver_lock);
1549
1550 if (!intel_pstate_driver) {
1551 mutex_unlock(&intel_pstate_driver_lock);
1552 return -EAGAIN;
1553 }
1554
1555 cpu = all_cpu_data[0];
1556
1557 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1558 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1559 turbo_fp = div_fp(no_turbo, total);
1560 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1561
1562 mutex_unlock(&intel_pstate_driver_lock);
1563
1564 return sprintf(buf, "%u\n", turbo_pct);
1565 }
1566
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1567 static ssize_t show_num_pstates(struct kobject *kobj,
1568 struct kobj_attribute *attr, char *buf)
1569 {
1570 struct cpudata *cpu;
1571 int total;
1572
1573 mutex_lock(&intel_pstate_driver_lock);
1574
1575 if (!intel_pstate_driver) {
1576 mutex_unlock(&intel_pstate_driver_lock);
1577 return -EAGAIN;
1578 }
1579
1580 cpu = all_cpu_data[0];
1581 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1582
1583 mutex_unlock(&intel_pstate_driver_lock);
1584
1585 return sprintf(buf, "%u\n", total);
1586 }
1587
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1588 static ssize_t show_no_turbo(struct kobject *kobj,
1589 struct kobj_attribute *attr, char *buf)
1590 {
1591 ssize_t ret;
1592
1593 mutex_lock(&intel_pstate_driver_lock);
1594
1595 if (!intel_pstate_driver) {
1596 mutex_unlock(&intel_pstate_driver_lock);
1597 return -EAGAIN;
1598 }
1599
1600 ret = sprintf(buf, "%u\n", global.no_turbo);
1601
1602 mutex_unlock(&intel_pstate_driver_lock);
1603
1604 return ret;
1605 }
1606
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1607 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1608 const char *buf, size_t count)
1609 {
1610 unsigned int input;
1611 bool no_turbo;
1612
1613 if (sscanf(buf, "%u", &input) != 1)
1614 return -EINVAL;
1615
1616 mutex_lock(&intel_pstate_driver_lock);
1617
1618 if (!intel_pstate_driver) {
1619 count = -EAGAIN;
1620 goto unlock_driver;
1621 }
1622
1623 no_turbo = !!clamp_t(int, input, 0, 1);
1624
1625 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1626 if (global.turbo_disabled && !no_turbo) {
1627 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1628 count = -EPERM;
1629 if (global.no_turbo)
1630 goto unlock_driver;
1631 else
1632 no_turbo = 1;
1633 }
1634
1635 if (no_turbo == global.no_turbo) {
1636 goto unlock_driver;
1637 }
1638
1639 WRITE_ONCE(global.no_turbo, no_turbo);
1640
1641 mutex_lock(&intel_pstate_limits_lock);
1642
1643 if (no_turbo) {
1644 struct cpudata *cpu = all_cpu_data[0];
1645 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1646
1647 /* Squash the global minimum into the permitted range. */
1648 if (global.min_perf_pct > pct)
1649 global.min_perf_pct = pct;
1650 }
1651
1652 mutex_unlock(&intel_pstate_limits_lock);
1653
1654 intel_pstate_update_limits_for_all();
1655 arch_set_max_freq_ratio(no_turbo);
1656
1657 unlock_driver:
1658 mutex_unlock(&intel_pstate_driver_lock);
1659
1660 return count;
1661 }
1662
update_cpu_qos_request(int cpu,enum freq_qos_req_type type)1663 static void update_cpu_qos_request(int cpu, enum freq_qos_req_type type)
1664 {
1665 struct cpudata *cpudata = all_cpu_data[cpu];
1666 unsigned int freq = cpudata->pstate.turbo_freq;
1667 struct freq_qos_request *req;
1668
1669 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1670 if (!policy)
1671 return;
1672
1673 req = policy->driver_data;
1674 if (!req)
1675 return;
1676
1677 if (hwp_active)
1678 intel_pstate_get_hwp_cap(cpudata);
1679
1680 if (type == FREQ_QOS_MIN) {
1681 freq = DIV_ROUND_UP(freq * global.min_perf_pct, 100);
1682 } else {
1683 req++;
1684 freq = (freq * global.max_perf_pct) / 100;
1685 }
1686
1687 if (freq_qos_update_request(req, freq) < 0)
1688 pr_warn("Failed to update freq constraint: CPU%d\n", cpu);
1689 }
1690
update_qos_requests(enum freq_qos_req_type type)1691 static void update_qos_requests(enum freq_qos_req_type type)
1692 {
1693 int i;
1694
1695 for_each_possible_cpu(i)
1696 update_cpu_qos_request(i, type);
1697 }
1698
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1699 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1700 const char *buf, size_t count)
1701 {
1702 unsigned int input;
1703 int ret;
1704
1705 ret = sscanf(buf, "%u", &input);
1706 if (ret != 1)
1707 return -EINVAL;
1708
1709 mutex_lock(&intel_pstate_driver_lock);
1710
1711 if (!intel_pstate_driver) {
1712 mutex_unlock(&intel_pstate_driver_lock);
1713 return -EAGAIN;
1714 }
1715
1716 mutex_lock(&intel_pstate_limits_lock);
1717
1718 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1719
1720 mutex_unlock(&intel_pstate_limits_lock);
1721
1722 if (intel_pstate_driver == &intel_pstate)
1723 intel_pstate_update_policies();
1724 else
1725 update_qos_requests(FREQ_QOS_MAX);
1726
1727 mutex_unlock(&intel_pstate_driver_lock);
1728
1729 return count;
1730 }
1731
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1732 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1733 const char *buf, size_t count)
1734 {
1735 unsigned int input;
1736 int ret;
1737
1738 ret = sscanf(buf, "%u", &input);
1739 if (ret != 1)
1740 return -EINVAL;
1741
1742 mutex_lock(&intel_pstate_driver_lock);
1743
1744 if (!intel_pstate_driver) {
1745 mutex_unlock(&intel_pstate_driver_lock);
1746 return -EAGAIN;
1747 }
1748
1749 mutex_lock(&intel_pstate_limits_lock);
1750
1751 global.min_perf_pct = clamp_t(int, input,
1752 min_perf_pct_min(), global.max_perf_pct);
1753
1754 mutex_unlock(&intel_pstate_limits_lock);
1755
1756 if (intel_pstate_driver == &intel_pstate)
1757 intel_pstate_update_policies();
1758 else
1759 update_qos_requests(FREQ_QOS_MIN);
1760
1761 mutex_unlock(&intel_pstate_driver_lock);
1762
1763 return count;
1764 }
1765
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1766 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1767 struct kobj_attribute *attr, char *buf)
1768 {
1769 return sprintf(buf, "%u\n", hwp_boost);
1770 }
1771
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1772 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1773 struct kobj_attribute *b,
1774 const char *buf, size_t count)
1775 {
1776 unsigned int input;
1777 int ret;
1778
1779 ret = kstrtouint(buf, 10, &input);
1780 if (ret)
1781 return ret;
1782
1783 mutex_lock(&intel_pstate_driver_lock);
1784 hwp_boost = !!input;
1785 intel_pstate_update_policies();
1786 mutex_unlock(&intel_pstate_driver_lock);
1787
1788 return count;
1789 }
1790
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1791 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1792 char *buf)
1793 {
1794 u64 power_ctl;
1795 int enable;
1796
1797 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1798 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1799 return sprintf(buf, "%d\n", !enable);
1800 }
1801
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1802 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1803 const char *buf, size_t count)
1804 {
1805 bool input;
1806 int ret;
1807
1808 ret = kstrtobool(buf, &input);
1809 if (ret)
1810 return ret;
1811
1812 set_power_ctl_ee_state(input);
1813
1814 return count;
1815 }
1816
1817 show_one(max_perf_pct, max_perf_pct);
1818 show_one(min_perf_pct, min_perf_pct);
1819
1820 define_one_global_rw(status);
1821 define_one_global_rw(no_turbo);
1822 define_one_global_rw(max_perf_pct);
1823 define_one_global_rw(min_perf_pct);
1824 define_one_global_ro(turbo_pct);
1825 define_one_global_ro(num_pstates);
1826 define_one_global_rw(hwp_dynamic_boost);
1827 define_one_global_rw(energy_efficiency);
1828
1829 static struct attribute *intel_pstate_attributes[] = {
1830 &status.attr,
1831 &no_turbo.attr,
1832 NULL
1833 };
1834
1835 static const struct attribute_group intel_pstate_attr_group = {
1836 .attrs = intel_pstate_attributes,
1837 };
1838
1839 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1840
1841 static struct kobject *intel_pstate_kobject;
1842
intel_pstate_sysfs_expose_params(void)1843 static void __init intel_pstate_sysfs_expose_params(void)
1844 {
1845 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1846 int rc;
1847
1848 if (dev_root) {
1849 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1850 put_device(dev_root);
1851 }
1852 if (WARN_ON(!intel_pstate_kobject))
1853 return;
1854
1855 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1856 if (WARN_ON(rc))
1857 return;
1858
1859 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1860 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1861 WARN_ON(rc);
1862
1863 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1864 WARN_ON(rc);
1865 }
1866
1867 /*
1868 * If per cpu limits are enforced there are no global limits, so
1869 * return without creating max/min_perf_pct attributes
1870 */
1871 if (per_cpu_limits)
1872 return;
1873
1874 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1875 WARN_ON(rc);
1876
1877 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1878 WARN_ON(rc);
1879
1880 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1881 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1882 WARN_ON(rc);
1883 }
1884 }
1885
intel_pstate_sysfs_remove(void)1886 static void __init intel_pstate_sysfs_remove(void)
1887 {
1888 if (!intel_pstate_kobject)
1889 return;
1890
1891 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1892
1893 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1894 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1895 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1896 }
1897
1898 if (!per_cpu_limits) {
1899 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1900 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1901
1902 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1903 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1904 }
1905
1906 kobject_put(intel_pstate_kobject);
1907 }
1908
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1909 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1910 {
1911 int rc;
1912
1913 if (!hwp_active)
1914 return;
1915
1916 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1917 WARN_ON_ONCE(rc);
1918 }
1919
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1920 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1921 {
1922 if (!hwp_active)
1923 return;
1924
1925 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1926 }
1927
1928 /************************** sysfs end ************************/
1929
intel_pstate_notify_work(struct work_struct * work)1930 static void intel_pstate_notify_work(struct work_struct *work)
1931 {
1932 struct cpudata *cpudata =
1933 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1934
1935 if (intel_pstate_update_max_freq(cpudata)) {
1936 /*
1937 * The driver will not be unregistered while this function is
1938 * running, so update the capacity without acquiring the driver
1939 * lock.
1940 */
1941 hybrid_update_capacity(cpudata);
1942 }
1943
1944 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1945 }
1946
1947 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1948 static cpumask_t hwp_intr_enable_mask;
1949
1950 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1951 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1952
notify_hwp_interrupt(void)1953 void notify_hwp_interrupt(void)
1954 {
1955 unsigned int this_cpu = smp_processor_id();
1956 u64 value, status_mask;
1957 unsigned long flags;
1958
1959 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1960 return;
1961
1962 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1963 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1964 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1965
1966 rdmsrq_safe(MSR_HWP_STATUS, &value);
1967 if (!(value & status_mask))
1968 return;
1969
1970 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1971
1972 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1973 goto ack_intr;
1974
1975 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1976 msecs_to_jiffies(10));
1977
1978 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1979
1980 return;
1981
1982 ack_intr:
1983 wrmsrq_safe(MSR_HWP_STATUS, 0);
1984 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1985 }
1986
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1987 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1988 {
1989 bool cancel_work;
1990
1991 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1992 return;
1993
1994 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
1995 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1996
1997 raw_spin_lock_irq(&hwp_notify_lock);
1998 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1999 raw_spin_unlock_irq(&hwp_notify_lock);
2000
2001 if (cancel_work)
2002 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
2003 }
2004
2005 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
2006 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
2007
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)2008 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
2009 {
2010 /* Enable HWP notification interrupt for performance change */
2011 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
2012 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
2013
2014 raw_spin_lock_irq(&hwp_notify_lock);
2015 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
2016 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
2017 raw_spin_unlock_irq(&hwp_notify_lock);
2018
2019 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
2020 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
2021
2022 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
2023 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
2024 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
2025 }
2026 }
2027
intel_pstate_update_epp_defaults(struct cpudata * cpudata)2028 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
2029 {
2030 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2031
2032 /*
2033 * If the EPP is set by firmware, which means that firmware enabled HWP
2034 * - Is equal or less than 0x80 (default balance_perf EPP)
2035 * - But less performance oriented than performance EPP
2036 * then use this as new balance_perf EPP.
2037 */
2038 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
2039 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
2040 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
2041 return;
2042 }
2043
2044 /*
2045 * If this CPU gen doesn't call for change in balance_perf
2046 * EPP return.
2047 */
2048 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
2049 return;
2050
2051 /*
2052 * Use hard coded value per gen to update the balance_perf
2053 * and default EPP.
2054 */
2055 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
2056 intel_pstate_set_epp(cpudata, cpudata->epp_default);
2057 }
2058
intel_pstate_hwp_enable(struct cpudata * cpudata)2059 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2060 {
2061 /* First disable HWP notification interrupt till we activate again */
2062 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
2063 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
2064
2065 wrmsrq_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2066
2067 intel_pstate_enable_hwp_interrupt(cpudata);
2068
2069 if (cpudata->epp_default >= 0)
2070 return;
2071
2072 intel_pstate_update_epp_defaults(cpudata);
2073 }
2074
atom_get_min_pstate(int not_used)2075 static int atom_get_min_pstate(int not_used)
2076 {
2077 u64 value;
2078
2079 rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2080 return (value >> 8) & 0x7F;
2081 }
2082
atom_get_max_pstate(int not_used)2083 static int atom_get_max_pstate(int not_used)
2084 {
2085 u64 value;
2086
2087 rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2088 return (value >> 16) & 0x7F;
2089 }
2090
atom_get_turbo_pstate(int not_used)2091 static int atom_get_turbo_pstate(int not_used)
2092 {
2093 u64 value;
2094
2095 rdmsrq(MSR_ATOM_CORE_TURBO_RATIOS, value);
2096 return value & 0x7F;
2097 }
2098
atom_get_val(struct cpudata * cpudata,int pstate)2099 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2100 {
2101 u64 val;
2102 int32_t vid_fp;
2103 u32 vid;
2104
2105 val = (u64)pstate << 8;
2106 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled) &&
2107 cpu_feature_enabled(X86_FEATURE_IDA))
2108 val |= (u64)1 << 32;
2109
2110 vid_fp = cpudata->vid.min + mul_fp(
2111 int_tofp(pstate - cpudata->pstate.min_pstate),
2112 cpudata->vid.ratio);
2113
2114 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2115 vid = ceiling_fp(vid_fp);
2116
2117 if (pstate > cpudata->pstate.max_pstate)
2118 vid = cpudata->vid.turbo;
2119
2120 return val | vid;
2121 }
2122
silvermont_get_scaling(void)2123 static int silvermont_get_scaling(void)
2124 {
2125 u64 value;
2126 int i;
2127 /* Defined in Table 35-6 from SDM (Sept 2015) */
2128 static int silvermont_freq_table[] = {
2129 83300, 100000, 133300, 116700, 80000};
2130
2131 rdmsrq(MSR_FSB_FREQ, value);
2132 i = value & 0x7;
2133 WARN_ON(i > 4);
2134
2135 return silvermont_freq_table[i];
2136 }
2137
airmont_get_scaling(void)2138 static int airmont_get_scaling(void)
2139 {
2140 u64 value;
2141 int i;
2142 /* Defined in Table 35-10 from SDM (Sept 2015) */
2143 static int airmont_freq_table[] = {
2144 83300, 100000, 133300, 116700, 80000,
2145 93300, 90000, 88900, 87500};
2146
2147 rdmsrq(MSR_FSB_FREQ, value);
2148 i = value & 0xF;
2149 WARN_ON(i > 8);
2150
2151 return airmont_freq_table[i];
2152 }
2153
atom_get_vid(struct cpudata * cpudata)2154 static void atom_get_vid(struct cpudata *cpudata)
2155 {
2156 u64 value;
2157
2158 rdmsrq(MSR_ATOM_CORE_VIDS, value);
2159 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2160 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2161 cpudata->vid.ratio = div_fp(
2162 cpudata->vid.max - cpudata->vid.min,
2163 int_tofp(cpudata->pstate.max_pstate -
2164 cpudata->pstate.min_pstate));
2165
2166 rdmsrq(MSR_ATOM_CORE_TURBO_VIDS, value);
2167 cpudata->vid.turbo = value & 0x7f;
2168 }
2169
core_get_min_pstate(int cpu)2170 static int core_get_min_pstate(int cpu)
2171 {
2172 u64 value;
2173
2174 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2175 return (value >> 40) & 0xFF;
2176 }
2177
core_get_max_pstate_physical(int cpu)2178 static int core_get_max_pstate_physical(int cpu)
2179 {
2180 u64 value;
2181
2182 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2183 return (value >> 8) & 0xFF;
2184 }
2185
core_get_tdp_ratio(int cpu,u64 plat_info)2186 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2187 {
2188 /* Check how many TDP levels present */
2189 if (plat_info & 0x600000000) {
2190 u64 tdp_ctrl;
2191 u64 tdp_ratio;
2192 int tdp_msr;
2193 int err;
2194
2195 /* Get the TDP level (0, 1, 2) to get ratios */
2196 err = rdmsrq_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2197 if (err)
2198 return err;
2199
2200 /* TDP MSR are continuous starting at 0x648 */
2201 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2202 err = rdmsrq_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2203 if (err)
2204 return err;
2205
2206 /* For level 1 and 2, bits[23:16] contain the ratio */
2207 if (tdp_ctrl & 0x03)
2208 tdp_ratio >>= 16;
2209
2210 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2211 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2212
2213 return (int)tdp_ratio;
2214 }
2215
2216 return -ENXIO;
2217 }
2218
core_get_max_pstate(int cpu)2219 static int core_get_max_pstate(int cpu)
2220 {
2221 u64 tar;
2222 u64 plat_info;
2223 int max_pstate;
2224 int tdp_ratio;
2225 int err;
2226
2227 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2228 max_pstate = (plat_info >> 8) & 0xFF;
2229
2230 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2231 if (tdp_ratio <= 0)
2232 return max_pstate;
2233
2234 if (hwp_active) {
2235 /* Turbo activation ratio is not used on HWP platforms */
2236 return tdp_ratio;
2237 }
2238
2239 err = rdmsrq_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2240 if (!err) {
2241 int tar_levels;
2242
2243 /* Do some sanity checking for safety */
2244 tar_levels = tar & 0xff;
2245 if (tdp_ratio - 1 == tar_levels) {
2246 max_pstate = tar_levels;
2247 pr_debug("max_pstate=TAC %x\n", max_pstate);
2248 }
2249 }
2250
2251 return max_pstate;
2252 }
2253
core_get_turbo_pstate(int cpu)2254 static int core_get_turbo_pstate(int cpu)
2255 {
2256 u64 value;
2257 int nont, ret;
2258
2259 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2260 nont = core_get_max_pstate(cpu);
2261 ret = (value) & 255;
2262 if (ret <= nont)
2263 ret = nont;
2264 return ret;
2265 }
2266
core_get_val(struct cpudata * cpudata,int pstate)2267 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2268 {
2269 u64 val;
2270
2271 val = (u64)pstate << 8;
2272 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled) &&
2273 cpu_feature_enabled(X86_FEATURE_IDA))
2274 val |= (u64)1 << 32;
2275
2276 return val;
2277 }
2278
knl_get_aperf_mperf_shift(void)2279 static int knl_get_aperf_mperf_shift(void)
2280 {
2281 return 10;
2282 }
2283
knl_get_turbo_pstate(int cpu)2284 static int knl_get_turbo_pstate(int cpu)
2285 {
2286 u64 value;
2287 int nont, ret;
2288
2289 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2290 nont = core_get_max_pstate(cpu);
2291 ret = (((value) >> 8) & 0xFF);
2292 if (ret <= nont)
2293 ret = nont;
2294 return ret;
2295 }
2296
hwp_get_cpu_scaling(int cpu)2297 static int hwp_get_cpu_scaling(int cpu)
2298 {
2299 if (hybrid_scaling_factor) {
2300 struct cpuinfo_x86 *c = &cpu_data(cpu);
2301 u8 cpu_type = c->topo.intel_type;
2302
2303 /*
2304 * Return the hybrid scaling factor for P-cores and use the
2305 * default core scaling for E-cores.
2306 */
2307 if (cpu_type == INTEL_CPU_TYPE_CORE)
2308 return hybrid_scaling_factor;
2309
2310 if (cpu_type == INTEL_CPU_TYPE_ATOM)
2311 return core_get_scaling();
2312 }
2313
2314 /* Use core scaling on non-hybrid systems. */
2315 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
2316 return core_get_scaling();
2317
2318 /*
2319 * The system is hybrid, but the hybrid scaling factor is not known or
2320 * the CPU type is not one of the above, so use CPPC to compute the
2321 * scaling factor for this CPU.
2322 */
2323 return intel_pstate_cppc_get_scaling(cpu);
2324 }
2325
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2326 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2327 {
2328 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2329 cpu->pstate.current_pstate = pstate;
2330 /*
2331 * Generally, there is no guarantee that this code will always run on
2332 * the CPU being updated, so force the register update to run on the
2333 * right CPU.
2334 */
2335 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2336 pstate_funcs.get_val(cpu, pstate));
2337 }
2338
intel_pstate_set_min_pstate(struct cpudata * cpu)2339 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2340 {
2341 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2342 }
2343
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2344 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2345 {
2346 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2347 int perf_ctl_scaling = pstate_funcs.get_scaling();
2348
2349 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2350 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2351 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2352
2353 if (hwp_active && !hwp_mode_bdw) {
2354 __intel_pstate_get_hwp_cap(cpu);
2355
2356 if (pstate_funcs.get_cpu_scaling) {
2357 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2358 if (cpu->pstate.scaling != perf_ctl_scaling) {
2359 intel_pstate_hybrid_hwp_adjust(cpu);
2360 hwp_is_hybrid = true;
2361 }
2362 } else {
2363 cpu->pstate.scaling = perf_ctl_scaling;
2364 }
2365 /*
2366 * If the CPU is going online for the first time and it was
2367 * offline initially, asym capacity scaling needs to be updated.
2368 */
2369 hybrid_update_capacity(cpu);
2370 } else {
2371 cpu->pstate.scaling = perf_ctl_scaling;
2372 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2373 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2374 }
2375
2376 if (cpu->pstate.scaling == perf_ctl_scaling) {
2377 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2378 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2379 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2380 }
2381
2382 if (pstate_funcs.get_aperf_mperf_shift)
2383 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2384
2385 if (pstate_funcs.get_vid)
2386 pstate_funcs.get_vid(cpu);
2387
2388 intel_pstate_set_min_pstate(cpu);
2389 }
2390
2391 /*
2392 * Long hold time will keep high perf limits for long time,
2393 * which negatively impacts perf/watt for some workloads,
2394 * like specpower. 3ms is based on experiements on some
2395 * workoads.
2396 */
2397 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2398
intel_pstate_hwp_boost_up(struct cpudata * cpu)2399 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2400 {
2401 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2402 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2403 u32 max_limit = (hwp_req & 0xff00) >> 8;
2404 u32 min_limit = (hwp_req & 0xff);
2405 u32 boost_level1;
2406
2407 /*
2408 * Cases to consider (User changes via sysfs or boot time):
2409 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2410 * No boost, return.
2411 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2412 * Should result in one level boost only for P0.
2413 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2414 * Should result in two level boost:
2415 * (min + p1)/2 and P1.
2416 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2417 * Should result in three level boost:
2418 * (min + p1)/2, P1 and P0.
2419 */
2420
2421 /* If max and min are equal or already at max, nothing to boost */
2422 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2423 return;
2424
2425 if (!cpu->hwp_boost_min)
2426 cpu->hwp_boost_min = min_limit;
2427
2428 /* level at half way mark between min and guranteed */
2429 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2430
2431 if (cpu->hwp_boost_min < boost_level1)
2432 cpu->hwp_boost_min = boost_level1;
2433 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2434 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2435 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2436 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2437 cpu->hwp_boost_min = max_limit;
2438 else
2439 return;
2440
2441 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2442 wrmsrq(MSR_HWP_REQUEST, hwp_req);
2443 cpu->last_update = cpu->sample.time;
2444 }
2445
intel_pstate_hwp_boost_down(struct cpudata * cpu)2446 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2447 {
2448 if (cpu->hwp_boost_min) {
2449 bool expired;
2450
2451 /* Check if we are idle for hold time to boost down */
2452 expired = time_after64(cpu->sample.time, cpu->last_update +
2453 hwp_boost_hold_time_ns);
2454 if (expired) {
2455 wrmsrq(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2456 cpu->hwp_boost_min = 0;
2457 }
2458 }
2459 cpu->last_update = cpu->sample.time;
2460 }
2461
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2462 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2463 u64 time)
2464 {
2465 cpu->sample.time = time;
2466
2467 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2468 bool do_io = false;
2469
2470 cpu->sched_flags = 0;
2471 /*
2472 * Set iowait_boost flag and update time. Since IO WAIT flag
2473 * is set all the time, we can't just conclude that there is
2474 * some IO bound activity is scheduled on this CPU with just
2475 * one occurrence. If we receive at least two in two
2476 * consecutive ticks, then we treat as boost candidate.
2477 */
2478 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2479 do_io = true;
2480
2481 cpu->last_io_update = time;
2482
2483 if (do_io)
2484 intel_pstate_hwp_boost_up(cpu);
2485
2486 } else {
2487 intel_pstate_hwp_boost_down(cpu);
2488 }
2489 }
2490
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2491 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2492 u64 time, unsigned int flags)
2493 {
2494 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2495
2496 cpu->sched_flags |= flags;
2497
2498 if (smp_processor_id() == cpu->cpu)
2499 intel_pstate_update_util_hwp_local(cpu, time);
2500 }
2501
intel_pstate_calc_avg_perf(struct cpudata * cpu)2502 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2503 {
2504 struct sample *sample = &cpu->sample;
2505
2506 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2507 }
2508
intel_pstate_sample(struct cpudata * cpu,u64 time)2509 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2510 {
2511 u64 aperf, mperf;
2512 unsigned long flags;
2513 u64 tsc;
2514
2515 local_irq_save(flags);
2516 rdmsrq(MSR_IA32_APERF, aperf);
2517 rdmsrq(MSR_IA32_MPERF, mperf);
2518 tsc = rdtsc();
2519 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2520 local_irq_restore(flags);
2521 return false;
2522 }
2523 local_irq_restore(flags);
2524
2525 cpu->last_sample_time = cpu->sample.time;
2526 cpu->sample.time = time;
2527 cpu->sample.aperf = aperf;
2528 cpu->sample.mperf = mperf;
2529 cpu->sample.tsc = tsc;
2530 cpu->sample.aperf -= cpu->prev_aperf;
2531 cpu->sample.mperf -= cpu->prev_mperf;
2532 cpu->sample.tsc -= cpu->prev_tsc;
2533
2534 cpu->prev_aperf = aperf;
2535 cpu->prev_mperf = mperf;
2536 cpu->prev_tsc = tsc;
2537 /*
2538 * First time this function is invoked in a given cycle, all of the
2539 * previous sample data fields are equal to zero or stale and they must
2540 * be populated with meaningful numbers for things to work, so assume
2541 * that sample.time will always be reset before setting the utilization
2542 * update hook and make the caller skip the sample then.
2543 */
2544 if (likely(cpu->last_sample_time)) {
2545 intel_pstate_calc_avg_perf(cpu);
2546 return true;
2547 }
2548 return false;
2549 }
2550
get_avg_frequency(struct cpudata * cpu)2551 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2552 {
2553 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2554 }
2555
get_avg_pstate(struct cpudata * cpu)2556 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2557 {
2558 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2559 cpu->sample.core_avg_perf);
2560 }
2561
get_target_pstate(struct cpudata * cpu)2562 static inline int32_t get_target_pstate(struct cpudata *cpu)
2563 {
2564 struct sample *sample = &cpu->sample;
2565 int32_t busy_frac;
2566 int target, avg_pstate;
2567
2568 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2569 sample->tsc);
2570
2571 if (busy_frac < cpu->iowait_boost)
2572 busy_frac = cpu->iowait_boost;
2573
2574 sample->busy_scaled = busy_frac * 100;
2575
2576 target = READ_ONCE(global.no_turbo) ?
2577 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2578 target += target >> 2;
2579 target = mul_fp(target, busy_frac);
2580 if (target < cpu->pstate.min_pstate)
2581 target = cpu->pstate.min_pstate;
2582
2583 /*
2584 * If the average P-state during the previous cycle was higher than the
2585 * current target, add 50% of the difference to the target to reduce
2586 * possible performance oscillations and offset possible performance
2587 * loss related to moving the workload from one CPU to another within
2588 * a package/module.
2589 */
2590 avg_pstate = get_avg_pstate(cpu);
2591 if (avg_pstate > target)
2592 target += (avg_pstate - target) >> 1;
2593
2594 return target;
2595 }
2596
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2597 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2598 {
2599 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2600 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2601
2602 return clamp_t(int, pstate, min_pstate, max_pstate);
2603 }
2604
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2605 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2606 {
2607 if (pstate == cpu->pstate.current_pstate)
2608 return;
2609
2610 cpu->pstate.current_pstate = pstate;
2611 wrmsrq(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2612 }
2613
intel_pstate_adjust_pstate(struct cpudata * cpu)2614 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2615 {
2616 int from = cpu->pstate.current_pstate;
2617 struct sample *sample;
2618 int target_pstate;
2619
2620 target_pstate = get_target_pstate(cpu);
2621 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2622 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2623 intel_pstate_update_pstate(cpu, target_pstate);
2624
2625 sample = &cpu->sample;
2626 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2627 fp_toint(sample->busy_scaled),
2628 from,
2629 cpu->pstate.current_pstate,
2630 sample->mperf,
2631 sample->aperf,
2632 sample->tsc,
2633 get_avg_frequency(cpu),
2634 fp_toint(cpu->iowait_boost * 100));
2635 }
2636
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2637 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2638 unsigned int flags)
2639 {
2640 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2641 u64 delta_ns;
2642
2643 /* Don't allow remote callbacks */
2644 if (smp_processor_id() != cpu->cpu)
2645 return;
2646
2647 delta_ns = time - cpu->last_update;
2648 if (flags & SCHED_CPUFREQ_IOWAIT) {
2649 /* Start over if the CPU may have been idle. */
2650 if (delta_ns > TICK_NSEC) {
2651 cpu->iowait_boost = ONE_EIGHTH_FP;
2652 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2653 cpu->iowait_boost <<= 1;
2654 if (cpu->iowait_boost > int_tofp(1))
2655 cpu->iowait_boost = int_tofp(1);
2656 } else {
2657 cpu->iowait_boost = ONE_EIGHTH_FP;
2658 }
2659 } else if (cpu->iowait_boost) {
2660 /* Clear iowait_boost if the CPU may have been idle. */
2661 if (delta_ns > TICK_NSEC)
2662 cpu->iowait_boost = 0;
2663 else
2664 cpu->iowait_boost >>= 1;
2665 }
2666 cpu->last_update = time;
2667 delta_ns = time - cpu->sample.time;
2668 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2669 return;
2670
2671 if (intel_pstate_sample(cpu, time))
2672 intel_pstate_adjust_pstate(cpu);
2673 }
2674
2675 static struct pstate_funcs core_funcs = {
2676 .get_max = core_get_max_pstate,
2677 .get_max_physical = core_get_max_pstate_physical,
2678 .get_min = core_get_min_pstate,
2679 .get_turbo = core_get_turbo_pstate,
2680 .get_scaling = core_get_scaling,
2681 .get_val = core_get_val,
2682 };
2683
2684 static const struct pstate_funcs silvermont_funcs = {
2685 .get_max = atom_get_max_pstate,
2686 .get_max_physical = atom_get_max_pstate,
2687 .get_min = atom_get_min_pstate,
2688 .get_turbo = atom_get_turbo_pstate,
2689 .get_val = atom_get_val,
2690 .get_scaling = silvermont_get_scaling,
2691 .get_vid = atom_get_vid,
2692 };
2693
2694 static const struct pstate_funcs airmont_funcs = {
2695 .get_max = atom_get_max_pstate,
2696 .get_max_physical = atom_get_max_pstate,
2697 .get_min = atom_get_min_pstate,
2698 .get_turbo = atom_get_turbo_pstate,
2699 .get_val = atom_get_val,
2700 .get_scaling = airmont_get_scaling,
2701 .get_vid = atom_get_vid,
2702 };
2703
2704 static const struct pstate_funcs knl_funcs = {
2705 .get_max = core_get_max_pstate,
2706 .get_max_physical = core_get_max_pstate_physical,
2707 .get_min = core_get_min_pstate,
2708 .get_turbo = knl_get_turbo_pstate,
2709 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2710 .get_scaling = core_get_scaling,
2711 .get_val = core_get_val,
2712 };
2713
2714 #define X86_MATCH(vfm, policy) \
2715 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2716
2717 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2718 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2719 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2720 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2721 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2722 X86_MATCH(INTEL_HASWELL, core_funcs),
2723 X86_MATCH(INTEL_BROADWELL, core_funcs),
2724 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2725 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2726 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2727 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2728 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2729 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2730 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2731 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2732 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2733 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2734 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2735 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2736 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2737 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2738 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2739 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2740 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2741 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2742 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2743 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2744 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2745 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2746 {}
2747 };
2748 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2749
2750 #ifdef CONFIG_ACPI
2751 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2752 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2753 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2754 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2755 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2756 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2757 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2758 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2759 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2760 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2761 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2762 X86_MATCH(INTEL_ATOM_DARKMONT_X, core_funcs),
2763 {}
2764 };
2765 #endif
2766
2767 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2768 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2769 {}
2770 };
2771
intel_pstate_init_cpu(unsigned int cpunum)2772 static int intel_pstate_init_cpu(unsigned int cpunum)
2773 {
2774 struct cpudata *cpu;
2775
2776 cpu = all_cpu_data[cpunum];
2777
2778 if (!cpu) {
2779 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2780 if (!cpu)
2781 return -ENOMEM;
2782
2783 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2784
2785 cpu->cpu = cpunum;
2786
2787 cpu->epp_default = -EINVAL;
2788
2789 if (hwp_active) {
2790 intel_pstate_hwp_enable(cpu);
2791
2792 if (intel_pstate_acpi_pm_profile_server())
2793 hwp_boost = true;
2794 }
2795 } else if (hwp_active) {
2796 /*
2797 * Re-enable HWP in case this happens after a resume from ACPI
2798 * S3 if the CPU was offline during the whole system/resume
2799 * cycle.
2800 */
2801 intel_pstate_hwp_reenable(cpu);
2802 }
2803
2804 cpu->epp_powersave = -EINVAL;
2805 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
2806
2807 intel_pstate_get_cpu_pstates(cpu);
2808
2809 pr_debug("controlling: cpu %d\n", cpunum);
2810
2811 return 0;
2812 }
2813
intel_pstate_set_update_util_hook(unsigned int cpu_num)2814 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2815 {
2816 struct cpudata *cpu = all_cpu_data[cpu_num];
2817
2818 if (hwp_active && !hwp_boost)
2819 return;
2820
2821 if (cpu->update_util_set)
2822 return;
2823
2824 /* Prevent intel_pstate_update_util() from using stale data. */
2825 cpu->sample.time = 0;
2826 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2827 (hwp_active ?
2828 intel_pstate_update_util_hwp :
2829 intel_pstate_update_util));
2830 cpu->update_util_set = true;
2831 }
2832
intel_pstate_clear_update_util_hook(unsigned int cpu)2833 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2834 {
2835 struct cpudata *cpu_data = all_cpu_data[cpu];
2836
2837 if (!cpu_data->update_util_set)
2838 return;
2839
2840 cpufreq_remove_update_util_hook(cpu);
2841 cpu_data->update_util_set = false;
2842 synchronize_rcu();
2843 }
2844
intel_pstate_get_max_freq(struct cpudata * cpu)2845 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2846 {
2847 return READ_ONCE(global.no_turbo) ?
2848 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2849 }
2850
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2851 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2852 unsigned int policy_min,
2853 unsigned int policy_max)
2854 {
2855 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2856 int32_t max_policy_perf, min_policy_perf;
2857
2858 max_policy_perf = policy_max / perf_ctl_scaling;
2859 if (policy_max == policy_min) {
2860 min_policy_perf = max_policy_perf;
2861 } else {
2862 min_policy_perf = policy_min / perf_ctl_scaling;
2863 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2864 0, max_policy_perf);
2865 }
2866
2867 /*
2868 * HWP needs some special consideration, because HWP_REQUEST uses
2869 * abstract values to represent performance rather than pure ratios.
2870 */
2871 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2872 int freq;
2873
2874 freq = max_policy_perf * perf_ctl_scaling;
2875 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2876 freq = min_policy_perf * perf_ctl_scaling;
2877 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2878 }
2879
2880 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2881 cpu->cpu, min_policy_perf, max_policy_perf);
2882
2883 /* Normalize user input to [min_perf, max_perf] */
2884 if (per_cpu_limits) {
2885 cpu->min_perf_ratio = min_policy_perf;
2886 cpu->max_perf_ratio = max_policy_perf;
2887 } else {
2888 int turbo_max = cpu->pstate.turbo_pstate;
2889 int32_t global_min, global_max;
2890
2891 /* Global limits are in percent of the maximum turbo P-state. */
2892 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2893 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2894 global_min = clamp_t(int32_t, global_min, 0, global_max);
2895
2896 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2897 global_min, global_max);
2898
2899 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2900 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2901 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2902 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2903
2904 /* Make sure min_perf <= max_perf */
2905 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2906 cpu->max_perf_ratio);
2907
2908 }
2909 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2910 cpu->max_perf_ratio,
2911 cpu->min_perf_ratio);
2912 }
2913
intel_pstate_set_policy(struct cpufreq_policy * policy)2914 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2915 {
2916 struct cpudata *cpu;
2917
2918 if (!policy->cpuinfo.max_freq)
2919 return -ENODEV;
2920
2921 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2922 policy->cpuinfo.max_freq, policy->max);
2923
2924 cpu = all_cpu_data[policy->cpu];
2925 cpu->policy = policy->policy;
2926
2927 mutex_lock(&intel_pstate_limits_lock);
2928
2929 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2930
2931 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2932 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2933
2934 /*
2935 * NOHZ_FULL CPUs need this as the governor callback may not
2936 * be invoked on them.
2937 */
2938 intel_pstate_clear_update_util_hook(policy->cpu);
2939 intel_pstate_set_pstate(cpu, pstate);
2940 } else {
2941 intel_pstate_set_update_util_hook(policy->cpu);
2942 }
2943
2944 if (hwp_active) {
2945 /*
2946 * When hwp_boost was active before and dynamically it
2947 * was turned off, in that case we need to clear the
2948 * update util hook.
2949 */
2950 if (!hwp_boost)
2951 intel_pstate_clear_update_util_hook(policy->cpu);
2952 intel_pstate_hwp_set(policy->cpu);
2953 }
2954 /*
2955 * policy->cur is never updated with the intel_pstate driver, but it
2956 * is used as a stale frequency value. So, keep it within limits.
2957 */
2958 policy->cur = policy->min;
2959
2960 mutex_unlock(&intel_pstate_limits_lock);
2961
2962 return 0;
2963 }
2964
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2965 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2966 struct cpufreq_policy_data *policy)
2967 {
2968 if (!hwp_active &&
2969 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2970 policy->max < policy->cpuinfo.max_freq &&
2971 policy->max > cpu->pstate.max_freq) {
2972 pr_debug("policy->max > max non turbo frequency\n");
2973 policy->max = policy->cpuinfo.max_freq;
2974 }
2975 }
2976
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2977 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2978 struct cpufreq_policy_data *policy)
2979 {
2980 int max_freq;
2981
2982 if (hwp_active) {
2983 intel_pstate_get_hwp_cap(cpu);
2984 max_freq = READ_ONCE(global.no_turbo) ?
2985 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2986 } else {
2987 max_freq = intel_pstate_get_max_freq(cpu);
2988 }
2989 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2990
2991 intel_pstate_adjust_policy_max(cpu, policy);
2992 }
2993
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2994 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2995 {
2996 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2997
2998 return 0;
2999 }
3000
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)3001 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
3002 {
3003 struct cpudata *cpu = all_cpu_data[policy->cpu];
3004
3005 pr_debug("CPU %d going offline\n", cpu->cpu);
3006
3007 if (cpu->suspended)
3008 return 0;
3009
3010 /*
3011 * If the CPU is an SMT thread and it goes offline with the performance
3012 * settings different from the minimum, it will prevent its sibling
3013 * from getting to lower performance levels, so force the minimum
3014 * performance on CPU offline to prevent that from happening.
3015 */
3016 if (hwp_active)
3017 intel_pstate_hwp_offline(cpu);
3018 else
3019 intel_pstate_set_min_pstate(cpu);
3020
3021 intel_pstate_exit_perf_limits(policy);
3022
3023 return 0;
3024 }
3025
intel_pstate_cpu_online(struct cpufreq_policy * policy)3026 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
3027 {
3028 struct cpudata *cpu = all_cpu_data[policy->cpu];
3029
3030 pr_debug("CPU %d going online\n", cpu->cpu);
3031
3032 intel_pstate_init_acpi_perf_limits(policy);
3033
3034 if (hwp_active) {
3035 /*
3036 * Re-enable HWP and clear the "suspended" flag to let "resume"
3037 * know that it need not do that.
3038 */
3039 intel_pstate_hwp_reenable(cpu);
3040 cpu->suspended = false;
3041
3042 hybrid_update_capacity(cpu);
3043 }
3044
3045 return 0;
3046 }
3047
intel_pstate_cpu_offline(struct cpufreq_policy * policy)3048 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
3049 {
3050 intel_pstate_clear_update_util_hook(policy->cpu);
3051
3052 return intel_cpufreq_cpu_offline(policy);
3053 }
3054
intel_pstate_cpu_exit(struct cpufreq_policy * policy)3055 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
3056 {
3057 pr_debug("CPU %d exiting\n", policy->cpu);
3058
3059 policy->fast_switch_possible = false;
3060 }
3061
__intel_pstate_cpu_init(struct cpufreq_policy * policy)3062 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
3063 {
3064 struct cpudata *cpu;
3065 int rc;
3066
3067 rc = intel_pstate_init_cpu(policy->cpu);
3068 if (rc)
3069 return rc;
3070
3071 cpu = all_cpu_data[policy->cpu];
3072
3073 cpu->max_perf_ratio = 0xFF;
3074 cpu->min_perf_ratio = 0;
3075
3076 /* cpuinfo and default policy values */
3077 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
3078 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
3079 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
3080
3081 policy->min = policy->cpuinfo.min_freq;
3082 policy->max = policy->cpuinfo.max_freq;
3083
3084 intel_pstate_init_acpi_perf_limits(policy);
3085
3086 policy->fast_switch_possible = true;
3087
3088 return 0;
3089 }
3090
intel_pstate_cpu_init(struct cpufreq_policy * policy)3091 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
3092 {
3093 int ret = __intel_pstate_cpu_init(policy);
3094
3095 if (ret)
3096 return ret;
3097
3098 /*
3099 * Set the policy to powersave to provide a valid fallback value in case
3100 * the default cpufreq governor is neither powersave nor performance.
3101 */
3102 policy->policy = CPUFREQ_POLICY_POWERSAVE;
3103
3104 if (hwp_active) {
3105 struct cpudata *cpu = all_cpu_data[policy->cpu];
3106
3107 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3108 }
3109
3110 return 0;
3111 }
3112
3113 static struct cpufreq_driver intel_pstate = {
3114 .flags = CPUFREQ_CONST_LOOPS,
3115 .verify = intel_pstate_verify_policy,
3116 .setpolicy = intel_pstate_set_policy,
3117 .suspend = intel_pstate_suspend,
3118 .resume = intel_pstate_resume,
3119 .init = intel_pstate_cpu_init,
3120 .exit = intel_pstate_cpu_exit,
3121 .offline = intel_pstate_cpu_offline,
3122 .online = intel_pstate_cpu_online,
3123 .update_limits = intel_pstate_update_limits,
3124 .name = "intel_pstate",
3125 };
3126
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)3127 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3128 {
3129 struct cpudata *cpu = all_cpu_data[policy->cpu];
3130
3131 intel_pstate_verify_cpu_policy(cpu, policy);
3132 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3133
3134 return 0;
3135 }
3136
3137 /* Use of trace in passive mode:
3138 *
3139 * In passive mode the trace core_busy field (also known as the
3140 * performance field, and lablelled as such on the graphs; also known as
3141 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3142 * driver call was via the normal or fast switch path. Various graphs
3143 * output from the intel_pstate_tracer.py utility that include core_busy
3144 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3145 * so we use 10 to indicate the normal path through the driver, and
3146 * 90 to indicate the fast switch path through the driver.
3147 * The scaled_busy field is not used, and is set to 0.
3148 */
3149
3150 #define INTEL_PSTATE_TRACE_TARGET 10
3151 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3152
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)3153 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3154 {
3155 struct sample *sample;
3156
3157 if (!trace_pstate_sample_enabled())
3158 return;
3159
3160 if (!intel_pstate_sample(cpu, ktime_get()))
3161 return;
3162
3163 sample = &cpu->sample;
3164 trace_pstate_sample(trace_type,
3165 0,
3166 old_pstate,
3167 cpu->pstate.current_pstate,
3168 sample->mperf,
3169 sample->aperf,
3170 sample->tsc,
3171 get_avg_frequency(cpu),
3172 fp_toint(cpu->iowait_boost * 100));
3173 }
3174
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)3175 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3176 u32 desired, bool fast_switch)
3177 {
3178 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3179
3180 value &= ~HWP_MIN_PERF(~0L);
3181 value |= HWP_MIN_PERF(min);
3182
3183 value &= ~HWP_MAX_PERF(~0L);
3184 value |= HWP_MAX_PERF(max);
3185
3186 value &= ~HWP_DESIRED_PERF(~0L);
3187 value |= HWP_DESIRED_PERF(desired);
3188
3189 if (value == prev)
3190 return;
3191
3192 WRITE_ONCE(cpu->hwp_req_cached, value);
3193 if (fast_switch)
3194 wrmsrq(MSR_HWP_REQUEST, value);
3195 else
3196 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3197 }
3198
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)3199 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3200 u32 target_pstate, bool fast_switch)
3201 {
3202 if (fast_switch)
3203 wrmsrq(MSR_IA32_PERF_CTL,
3204 pstate_funcs.get_val(cpu, target_pstate));
3205 else
3206 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3207 pstate_funcs.get_val(cpu, target_pstate));
3208 }
3209
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)3210 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3211 int target_pstate, bool fast_switch)
3212 {
3213 struct cpudata *cpu = all_cpu_data[policy->cpu];
3214 int old_pstate = cpu->pstate.current_pstate;
3215
3216 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3217 if (hwp_active) {
3218 int max_pstate = policy->strict_target ?
3219 target_pstate : cpu->max_perf_ratio;
3220
3221 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate,
3222 target_pstate, fast_switch);
3223 } else if (target_pstate != old_pstate) {
3224 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3225 }
3226
3227 cpu->pstate.current_pstate = target_pstate;
3228
3229 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3230 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3231
3232 return target_pstate;
3233 }
3234
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)3235 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3236 unsigned int target_freq,
3237 unsigned int relation)
3238 {
3239 struct cpudata *cpu = all_cpu_data[policy->cpu];
3240 struct cpufreq_freqs freqs;
3241 int target_pstate;
3242
3243 freqs.old = policy->cur;
3244 freqs.new = target_freq;
3245
3246 cpufreq_freq_transition_begin(policy, &freqs);
3247
3248 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3249 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3250
3251 freqs.new = target_pstate * cpu->pstate.scaling;
3252
3253 cpufreq_freq_transition_end(policy, &freqs, false);
3254
3255 return 0;
3256 }
3257
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)3258 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3259 unsigned int target_freq)
3260 {
3261 struct cpudata *cpu = all_cpu_data[policy->cpu];
3262 int target_pstate;
3263
3264 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3265
3266 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3267
3268 return target_pstate * cpu->pstate.scaling;
3269 }
3270
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)3271 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3272 unsigned long min_perf,
3273 unsigned long target_perf,
3274 unsigned long capacity)
3275 {
3276 struct cpudata *cpu = all_cpu_data[cpunum];
3277 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3278 int old_pstate = cpu->pstate.current_pstate;
3279 int cap_pstate, min_pstate, max_pstate, target_pstate;
3280
3281 cap_pstate = READ_ONCE(global.no_turbo) ?
3282 HWP_GUARANTEED_PERF(hwp_cap) :
3283 HWP_HIGHEST_PERF(hwp_cap);
3284
3285 /* Optimization: Avoid unnecessary divisions. */
3286
3287 target_pstate = cap_pstate;
3288 if (target_perf < capacity)
3289 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3290
3291 min_pstate = cap_pstate;
3292 if (min_perf < capacity)
3293 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3294
3295 if (min_pstate < cpu->pstate.min_pstate)
3296 min_pstate = cpu->pstate.min_pstate;
3297
3298 if (min_pstate < cpu->min_perf_ratio)
3299 min_pstate = cpu->min_perf_ratio;
3300
3301 if (min_pstate > cpu->max_perf_ratio)
3302 min_pstate = cpu->max_perf_ratio;
3303
3304 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3305 if (max_pstate < min_pstate)
3306 max_pstate = min_pstate;
3307
3308 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3309
3310 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3311
3312 cpu->pstate.current_pstate = target_pstate;
3313 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3314 }
3315
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3316 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3317 {
3318 struct freq_qos_request *req;
3319 struct cpudata *cpu;
3320 struct device *dev;
3321 int ret, freq;
3322
3323 dev = get_cpu_device(policy->cpu);
3324 if (!dev)
3325 return -ENODEV;
3326
3327 ret = __intel_pstate_cpu_init(policy);
3328 if (ret)
3329 return ret;
3330
3331 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3332 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3333 policy->cur = policy->cpuinfo.min_freq;
3334
3335 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3336 if (!req) {
3337 ret = -ENOMEM;
3338 goto pstate_exit;
3339 }
3340
3341 cpu = all_cpu_data[policy->cpu];
3342
3343 if (hwp_active) {
3344 u64 value;
3345
3346 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3347
3348 intel_pstate_get_hwp_cap(cpu);
3349
3350 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3351 WRITE_ONCE(cpu->hwp_req_cached, value);
3352
3353 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3354 } else {
3355 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3356 }
3357
3358 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3359
3360 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3361 freq);
3362 if (ret < 0) {
3363 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3364 goto free_req;
3365 }
3366
3367 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3368
3369 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3370 freq);
3371 if (ret < 0) {
3372 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3373 goto remove_min_req;
3374 }
3375
3376 policy->driver_data = req;
3377
3378 return 0;
3379
3380 remove_min_req:
3381 freq_qos_remove_request(req);
3382 free_req:
3383 kfree(req);
3384 pstate_exit:
3385 intel_pstate_exit_perf_limits(policy);
3386
3387 return ret;
3388 }
3389
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3390 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3391 {
3392 struct freq_qos_request *req;
3393
3394 req = policy->driver_data;
3395
3396 freq_qos_remove_request(req + 1);
3397 freq_qos_remove_request(req);
3398 kfree(req);
3399
3400 intel_pstate_cpu_exit(policy);
3401 }
3402
intel_cpufreq_suspend(struct cpufreq_policy * policy)3403 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3404 {
3405 intel_pstate_suspend(policy);
3406
3407 if (hwp_active) {
3408 struct cpudata *cpu = all_cpu_data[policy->cpu];
3409 u64 value = READ_ONCE(cpu->hwp_req_cached);
3410
3411 /*
3412 * Clear the desired perf field in MSR_HWP_REQUEST in case
3413 * intel_cpufreq_adjust_perf() is in use and the last value
3414 * written by it may not be suitable.
3415 */
3416 value &= ~HWP_DESIRED_PERF(~0L);
3417 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3418 WRITE_ONCE(cpu->hwp_req_cached, value);
3419 }
3420
3421 return 0;
3422 }
3423
3424 static struct cpufreq_driver intel_cpufreq = {
3425 .flags = CPUFREQ_CONST_LOOPS,
3426 .verify = intel_cpufreq_verify_policy,
3427 .target = intel_cpufreq_target,
3428 .fast_switch = intel_cpufreq_fast_switch,
3429 .init = intel_cpufreq_cpu_init,
3430 .exit = intel_cpufreq_cpu_exit,
3431 .offline = intel_cpufreq_cpu_offline,
3432 .online = intel_pstate_cpu_online,
3433 .suspend = intel_cpufreq_suspend,
3434 .resume = intel_pstate_resume,
3435 .update_limits = intel_pstate_update_limits,
3436 .name = "intel_cpufreq",
3437 };
3438
3439 static struct cpufreq_driver *default_driver;
3440
intel_pstate_driver_cleanup(void)3441 static void intel_pstate_driver_cleanup(void)
3442 {
3443 unsigned int cpu;
3444
3445 cpus_read_lock();
3446 for_each_online_cpu(cpu) {
3447 if (all_cpu_data[cpu]) {
3448 if (intel_pstate_driver == &intel_pstate)
3449 intel_pstate_clear_update_util_hook(cpu);
3450
3451 kfree(all_cpu_data[cpu]);
3452 WRITE_ONCE(all_cpu_data[cpu], NULL);
3453 }
3454 }
3455 cpus_read_unlock();
3456
3457 intel_pstate_driver = NULL;
3458 }
3459
intel_pstate_register_driver(struct cpufreq_driver * driver)3460 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3461 {
3462 bool refresh_cpu_cap_scaling;
3463 int ret;
3464
3465 if (driver == &intel_pstate)
3466 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3467
3468 memset(&global, 0, sizeof(global));
3469 global.max_perf_pct = 100;
3470 global.turbo_disabled = turbo_is_disabled();
3471 global.no_turbo = global.turbo_disabled;
3472
3473 arch_set_max_freq_ratio(global.turbo_disabled);
3474
3475 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3476
3477 intel_pstate_driver = driver;
3478 ret = cpufreq_register_driver(intel_pstate_driver);
3479 if (ret) {
3480 intel_pstate_driver_cleanup();
3481 return ret;
3482 }
3483
3484 global.min_perf_pct = min_perf_pct_min();
3485
3486 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3487
3488 return 0;
3489 }
3490
intel_pstate_show_status(char * buf)3491 static ssize_t intel_pstate_show_status(char *buf)
3492 {
3493 if (!intel_pstate_driver)
3494 return sprintf(buf, "off\n");
3495
3496 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3497 "active" : "passive");
3498 }
3499
intel_pstate_update_status(const char * buf,size_t size)3500 static int intel_pstate_update_status(const char *buf, size_t size)
3501 {
3502 if (size == 3 && !strncmp(buf, "off", size)) {
3503 if (!intel_pstate_driver)
3504 return -EINVAL;
3505
3506 if (hwp_active)
3507 return -EBUSY;
3508
3509 cpufreq_unregister_driver(intel_pstate_driver);
3510 intel_pstate_driver_cleanup();
3511 return 0;
3512 }
3513
3514 if (size == 6 && !strncmp(buf, "active", size)) {
3515 if (intel_pstate_driver) {
3516 if (intel_pstate_driver == &intel_pstate)
3517 return 0;
3518
3519 cpufreq_unregister_driver(intel_pstate_driver);
3520 }
3521
3522 return intel_pstate_register_driver(&intel_pstate);
3523 }
3524
3525 if (size == 7 && !strncmp(buf, "passive", size)) {
3526 if (intel_pstate_driver) {
3527 if (intel_pstate_driver == &intel_cpufreq)
3528 return 0;
3529
3530 cpufreq_unregister_driver(intel_pstate_driver);
3531 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3532 }
3533
3534 return intel_pstate_register_driver(&intel_cpufreq);
3535 }
3536
3537 return -EINVAL;
3538 }
3539
3540 static int no_load __initdata;
3541 static int no_hwp __initdata;
3542 static int hwp_only __initdata;
3543 static unsigned int force_load __initdata;
3544
intel_pstate_msrs_not_valid(void)3545 static int __init intel_pstate_msrs_not_valid(void)
3546 {
3547 if (!pstate_funcs.get_max(0) ||
3548 !pstate_funcs.get_min(0) ||
3549 !pstate_funcs.get_turbo(0))
3550 return -ENODEV;
3551
3552 return 0;
3553 }
3554
copy_cpu_funcs(struct pstate_funcs * funcs)3555 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3556 {
3557 pstate_funcs.get_max = funcs->get_max;
3558 pstate_funcs.get_max_physical = funcs->get_max_physical;
3559 pstate_funcs.get_min = funcs->get_min;
3560 pstate_funcs.get_turbo = funcs->get_turbo;
3561 pstate_funcs.get_scaling = funcs->get_scaling;
3562 pstate_funcs.get_val = funcs->get_val;
3563 pstate_funcs.get_vid = funcs->get_vid;
3564 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3565 }
3566
3567 #ifdef CONFIG_ACPI
3568
intel_pstate_no_acpi_pss(void)3569 static bool __init intel_pstate_no_acpi_pss(void)
3570 {
3571 int i;
3572
3573 for_each_possible_cpu(i) {
3574 acpi_status status;
3575 union acpi_object *pss;
3576 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3577 struct acpi_processor *pr = per_cpu(processors, i);
3578
3579 if (!pr)
3580 continue;
3581
3582 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3583 if (ACPI_FAILURE(status))
3584 continue;
3585
3586 pss = buffer.pointer;
3587 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3588 kfree(pss);
3589 return false;
3590 }
3591
3592 kfree(pss);
3593 }
3594
3595 pr_debug("ACPI _PSS not found\n");
3596 return true;
3597 }
3598
intel_pstate_no_acpi_pcch(void)3599 static bool __init intel_pstate_no_acpi_pcch(void)
3600 {
3601 acpi_status status;
3602 acpi_handle handle;
3603
3604 status = acpi_get_handle(NULL, "\\_SB", &handle);
3605 if (ACPI_FAILURE(status))
3606 goto not_found;
3607
3608 if (acpi_has_method(handle, "PCCH"))
3609 return false;
3610
3611 not_found:
3612 pr_debug("ACPI PCCH not found\n");
3613 return true;
3614 }
3615
intel_pstate_has_acpi_ppc(void)3616 static bool __init intel_pstate_has_acpi_ppc(void)
3617 {
3618 int i;
3619
3620 for_each_possible_cpu(i) {
3621 struct acpi_processor *pr = per_cpu(processors, i);
3622
3623 if (!pr)
3624 continue;
3625 if (acpi_has_method(pr->handle, "_PPC"))
3626 return true;
3627 }
3628 pr_debug("ACPI _PPC not found\n");
3629 return false;
3630 }
3631
3632 enum {
3633 PSS,
3634 PPC,
3635 };
3636
3637 /* Hardware vendor-specific info that has its own power management modes */
3638 static struct acpi_platform_list plat_info[] __initdata = {
3639 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3640 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3641 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3642 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3643 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3644 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3645 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3646 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3647 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3648 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3649 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3650 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3651 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3652 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3653 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3654 { } /* End */
3655 };
3656
3657 #define BITMASK_OOB (BIT(8) | BIT(18))
3658
intel_pstate_platform_pwr_mgmt_exists(void)3659 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3660 {
3661 const struct x86_cpu_id *id;
3662 u64 misc_pwr;
3663 int idx;
3664
3665 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3666 if (id) {
3667 rdmsrq(MSR_MISC_PWR_MGMT, misc_pwr);
3668 if (misc_pwr & BITMASK_OOB) {
3669 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3670 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3671 return true;
3672 }
3673 }
3674
3675 idx = acpi_match_platform_list(plat_info);
3676 if (idx < 0)
3677 return false;
3678
3679 switch (plat_info[idx].data) {
3680 case PSS:
3681 if (!intel_pstate_no_acpi_pss())
3682 return false;
3683
3684 return intel_pstate_no_acpi_pcch();
3685 case PPC:
3686 return intel_pstate_has_acpi_ppc() && !force_load;
3687 }
3688
3689 return false;
3690 }
3691
intel_pstate_request_control_from_smm(void)3692 static void intel_pstate_request_control_from_smm(void)
3693 {
3694 /*
3695 * It may be unsafe to request P-states control from SMM if _PPC support
3696 * has not been enabled.
3697 */
3698 if (acpi_ppc)
3699 acpi_processor_pstate_control();
3700 }
3701 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3702 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3703 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3704 static inline void intel_pstate_request_control_from_smm(void) {}
3705 #endif /* CONFIG_ACPI */
3706
3707 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3708
3709 #define X86_MATCH_HWP(vfm, hwp_mode) \
3710 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3711
3712 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3713 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3714 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3715 X86_MATCH_HWP(INTEL_ANY, 0),
3716 {}
3717 };
3718
intel_pstate_hwp_is_enabled(void)3719 static bool intel_pstate_hwp_is_enabled(void)
3720 {
3721 u64 value;
3722
3723 rdmsrq(MSR_PM_ENABLE, value);
3724 return !!(value & 0x1);
3725 }
3726
3727 #define POWERSAVE_MASK GENMASK(7, 0)
3728 #define BALANCE_POWER_MASK GENMASK(15, 8)
3729 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3730 #define PERFORMANCE_MASK GENMASK(31, 24)
3731
3732 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3733 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3734 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3735 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3736 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3737
3738 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3739 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3740 balance_perf, HWP_EPP_PERFORMANCE))
3741
3742 static const struct x86_cpu_id intel_epp_default[] = {
3743 /*
3744 * Set EPP value as 102, this is the max suggested EPP
3745 * which can result in one core turbo frequency for
3746 * AlderLake Mobile CPUs.
3747 */
3748 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3749 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3750 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3751 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3752 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3753 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3754 179, 64, 16)),
3755 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3756 179, 64, 16)),
3757 {}
3758 };
3759
3760 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3761 X86_MATCH_VFM(INTEL_ALDERLAKE, HYBRID_SCALING_FACTOR_ADL),
3762 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HYBRID_SCALING_FACTOR_ADL),
3763 X86_MATCH_VFM(INTEL_RAPTORLAKE, HYBRID_SCALING_FACTOR_ADL),
3764 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, HYBRID_SCALING_FACTOR_ADL),
3765 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, HYBRID_SCALING_FACTOR_ADL),
3766 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3767 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3768 {}
3769 };
3770
hwp_check_epp(void)3771 static bool hwp_check_epp(void)
3772 {
3773 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
3774 return true;
3775
3776 /* Without EPP support, don't expose EPP-related sysfs attributes. */
3777 hwp_cpufreq_attrs[HWP_PERFORMANCE_PREFERENCE_INDEX] = NULL;
3778 hwp_cpufreq_attrs[HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX] = NULL;
3779
3780 return false;
3781 }
3782
hwp_check_dec(void)3783 static bool hwp_check_dec(void)
3784 {
3785 u64 power_ctl;
3786
3787 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
3788 return !!(power_ctl & BIT(POWER_CTL_DEC_ENABLE));
3789 }
3790
intel_pstate_init(void)3791 static int __init intel_pstate_init(void)
3792 {
3793 static struct cpudata **_all_cpu_data;
3794 const struct x86_cpu_id *id;
3795 int rc;
3796
3797 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3798 return -ENODEV;
3799
3800 /*
3801 * The Intel pstate driver will be ignored if the platform
3802 * firmware has its own power management modes.
3803 */
3804 if (intel_pstate_platform_pwr_mgmt_exists()) {
3805 pr_info("P-states controlled by the platform\n");
3806 return -ENODEV;
3807 }
3808
3809 id = x86_match_cpu(hwp_support_ids);
3810 if (id) {
3811 bool epp_present = hwp_check_epp();
3812
3813 /*
3814 * If HWP is enabled already, there is no choice but to deal
3815 * with it.
3816 */
3817 hwp_forced = intel_pstate_hwp_is_enabled();
3818 if (hwp_forced) {
3819 pr_info("HWP enabled by BIOS\n");
3820 no_hwp = 0;
3821 } else if (no_load) {
3822 return -ENODEV;
3823 } else if (!epp_present && !hwp_check_dec()) {
3824 /*
3825 * Avoid enabling HWP for processors without EPP support
3826 * unless the Dynamic Efficiency Control (DEC) enable
3827 * bit (MSR_IA32_POWER_CTL, bit 27) is set because that
3828 * means incomplete HWP implementation which is a corner
3829 * case and supporting it is generally problematic.
3830 */
3831 no_hwp = 1;
3832 }
3833
3834 copy_cpu_funcs(&core_funcs);
3835
3836 if (!no_hwp) {
3837 hwp_active = true;
3838 hwp_mode_bdw = id->driver_data;
3839 intel_pstate.attr = hwp_cpufreq_attrs;
3840 intel_cpufreq.attr = hwp_cpufreq_attrs;
3841 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3842 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3843 if (!default_driver)
3844 default_driver = &intel_pstate;
3845
3846 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3847
3848 goto hwp_cpu_matched;
3849 }
3850 pr_info("HWP not enabled\n");
3851 } else {
3852 if (no_load)
3853 return -ENODEV;
3854
3855 id = x86_match_cpu(intel_pstate_cpu_ids);
3856 if (!id) {
3857 pr_info("CPU model not supported\n");
3858 return -ENODEV;
3859 }
3860
3861 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3862 }
3863
3864 if (intel_pstate_msrs_not_valid()) {
3865 pr_info("Invalid MSRs\n");
3866 return -ENODEV;
3867 }
3868 /* Without HWP start in the passive mode. */
3869 if (!default_driver)
3870 default_driver = &intel_cpufreq;
3871
3872 hwp_cpu_matched:
3873 if (!hwp_active && hwp_only)
3874 return -ENOTSUPP;
3875
3876 pr_info("Intel P-state driver initializing\n");
3877
3878 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3879 if (!_all_cpu_data)
3880 return -ENOMEM;
3881
3882 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3883
3884 intel_pstate_request_control_from_smm();
3885
3886 intel_pstate_sysfs_expose_params();
3887
3888 if (hwp_active) {
3889 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3890 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3891
3892 if (id) {
3893 epp_values[EPP_INDEX_POWERSAVE] =
3894 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3895 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3896 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3897 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3898 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3899 epp_values[EPP_INDEX_PERFORMANCE] =
3900 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3901 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3902 epp_values[EPP_INDEX_POWERSAVE],
3903 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3904 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3905 epp_values[EPP_INDEX_PERFORMANCE]);
3906 }
3907
3908 if (hybrid_id) {
3909 hybrid_scaling_factor = hybrid_id->driver_data;
3910 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3911 }
3912
3913 }
3914
3915 mutex_lock(&intel_pstate_driver_lock);
3916 rc = intel_pstate_register_driver(default_driver);
3917 mutex_unlock(&intel_pstate_driver_lock);
3918 if (rc) {
3919 intel_pstate_sysfs_remove();
3920 return rc;
3921 }
3922
3923 if (hwp_active) {
3924 const struct x86_cpu_id *id;
3925
3926 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3927 if (id) {
3928 set_power_ctl_ee_state(false);
3929 pr_info("Disabling energy efficiency optimization\n");
3930 }
3931
3932 pr_info("HWP enabled\n");
3933 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3934 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3935 }
3936
3937 return 0;
3938 }
3939 device_initcall(intel_pstate_init);
3940
intel_pstate_setup(char * str)3941 static int __init intel_pstate_setup(char *str)
3942 {
3943 if (!str)
3944 return -EINVAL;
3945
3946 if (!strcmp(str, "disable"))
3947 no_load = 1;
3948 else if (!strcmp(str, "active"))
3949 default_driver = &intel_pstate;
3950 else if (!strcmp(str, "passive"))
3951 default_driver = &intel_cpufreq;
3952
3953 if (!strcmp(str, "no_hwp"))
3954 no_hwp = 1;
3955
3956 if (!strcmp(str, "no_cas"))
3957 no_cas = true;
3958
3959 if (!strcmp(str, "force"))
3960 force_load = 1;
3961 if (!strcmp(str, "hwp_only"))
3962 hwp_only = 1;
3963 if (!strcmp(str, "per_cpu_perf_limits"))
3964 per_cpu_limits = true;
3965
3966 #ifdef CONFIG_ACPI
3967 if (!strcmp(str, "support_acpi_ppc"))
3968 acpi_ppc = true;
3969 #endif
3970
3971 return 0;
3972 }
3973 early_param("intel_pstate", intel_pstate_setup);
3974
3975 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3976 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3977