1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189
190 static const struct filterops soread_filtops = {
191 .f_isfd = 1,
192 .f_detach = filt_sordetach,
193 .f_event = filt_soread,
194 };
195 static const struct filterops sowrite_filtops = {
196 .f_isfd = 1,
197 .f_detach = filt_sowdetach,
198 .f_event = filt_sowrite,
199 };
200 static const struct filterops soempty_filtops = {
201 .f_isfd = 1,
202 .f_detach = filt_sowdetach,
203 .f_event = filt_soempty,
204 };
205
206 so_gen_t so_gencnt; /* generation count for sockets */
207
208 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
209 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
210
211 #define VNET_SO_ASSERT(so) \
212 VNET_ASSERT(curvnet != NULL, \
213 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
214
215 #ifdef SOCKET_HHOOK
216 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
217 #define V_socket_hhh VNET(socket_hhh)
218 static inline int hhook_run_socket(struct socket *, void *, int32_t);
219 #endif
220
221 #ifdef COMPAT_FREEBSD32
222 #ifdef __amd64__
223 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
224 #define __splice32_packed __packed
225 #else
226 #define __splice32_packed
227 #endif
228 struct splice32 {
229 int32_t sp_fd;
230 int64_t sp_max;
231 struct timeval32 sp_idle;
232 } __splice32_packed;
233 #undef __splice32_packed
234 #endif
235
236 /*
237 * Limit on the number of connections in the listen queue waiting
238 * for accept(2).
239 * NB: The original sysctl somaxconn is still available but hidden
240 * to prevent confusion about the actual purpose of this number.
241 */
242 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
243 #define V_somaxconn VNET(somaxconn)
244
245 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)246 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
247 {
248 int error;
249 u_int val;
250
251 val = V_somaxconn;
252 error = sysctl_handle_int(oidp, &val, 0, req);
253 if (error || !req->newptr )
254 return (error);
255
256 /*
257 * The purpose of the UINT_MAX / 3 limit, is so that the formula
258 * 3 * sol_qlimit / 2
259 * below, will not overflow.
260 */
261
262 if (val < 1 || val > UINT_MAX / 3)
263 return (EINVAL);
264
265 V_somaxconn = val;
266 return (0);
267 }
268 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
269 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
270 sysctl_somaxconn, "IU",
271 "Maximum listen socket pending connection accept queue size");
272 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
274 sizeof(u_int), sysctl_somaxconn, "IU",
275 "Maximum listen socket pending connection accept queue size (compat)");
276
277 static u_int numopensockets;
278 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)279 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
280 {
281 u_int val;
282
283 #ifdef VIMAGE
284 if(!IS_DEFAULT_VNET(curvnet))
285 val = curvnet->vnet_sockcnt;
286 else
287 #endif
288 val = numopensockets;
289 return (sysctl_handle_int(oidp, &val, 0, req));
290 }
291 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
292 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
293 sysctl_numopensockets, "IU", "Number of open sockets");
294
295 /*
296 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
297 * so_gencnt field.
298 */
299 static struct mtx so_global_mtx;
300 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
301
302 /*
303 * General IPC sysctl name space, used by sockets and a variety of other IPC
304 * types.
305 */
306 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
307 "IPC");
308
309 /*
310 * Initialize the socket subsystem and set up the socket
311 * memory allocator.
312 */
313 static uma_zone_t socket_zone;
314 int maxsockets;
315
316 static void
socket_zone_change(void * tag)317 socket_zone_change(void *tag)
318 {
319
320 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
321 }
322
323 static int splice_init_state;
324 static struct sx splice_init_lock;
325 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
326
327 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
328 "Settings relating to the SO_SPLICE socket option");
329
330 static bool splice_receive_stream = true;
331 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
332 &splice_receive_stream, 0,
333 "Use soreceive_stream() for stream splices");
334
335 static uma_zone_t splice_zone;
336 static struct proc *splice_proc;
337 struct splice_wq {
338 struct mtx mtx;
339 STAILQ_HEAD(, so_splice) head;
340 bool running;
341 } __aligned(CACHE_LINE_SIZE);
342 static struct splice_wq *splice_wq;
343 static uint32_t splice_index = 0;
344
345 static void so_splice_timeout(void *arg, int pending);
346 static void so_splice_xfer(struct so_splice *s);
347 static int so_unsplice(struct socket *so, bool timeout);
348
349 static void
splice_work_thread(void * ctx)350 splice_work_thread(void *ctx)
351 {
352 struct splice_wq *wq = ctx;
353 struct so_splice *s, *s_temp;
354 STAILQ_HEAD(, so_splice) local_head;
355 int cpu;
356
357 cpu = wq - splice_wq;
358 if (bootverbose)
359 printf("starting so_splice worker thread for CPU %d\n", cpu);
360
361 for (;;) {
362 mtx_lock(&wq->mtx);
363 while (STAILQ_EMPTY(&wq->head)) {
364 wq->running = false;
365 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
366 wq->running = true;
367 }
368 STAILQ_INIT(&local_head);
369 STAILQ_CONCAT(&local_head, &wq->head);
370 STAILQ_INIT(&wq->head);
371 mtx_unlock(&wq->mtx);
372 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
373 mtx_lock(&s->mtx);
374 CURVNET_SET(s->src->so_vnet);
375 so_splice_xfer(s);
376 CURVNET_RESTORE();
377 }
378 }
379 }
380
381 static void
so_splice_dispatch_async(struct so_splice * sp)382 so_splice_dispatch_async(struct so_splice *sp)
383 {
384 struct splice_wq *wq;
385 bool running;
386
387 wq = &splice_wq[sp->wq_index];
388 mtx_lock(&wq->mtx);
389 STAILQ_INSERT_TAIL(&wq->head, sp, next);
390 running = wq->running;
391 mtx_unlock(&wq->mtx);
392 if (!running)
393 wakeup(wq);
394 }
395
396 void
so_splice_dispatch(struct so_splice * sp)397 so_splice_dispatch(struct so_splice *sp)
398 {
399 mtx_assert(&sp->mtx, MA_OWNED);
400
401 if (sp->state != SPLICE_IDLE) {
402 mtx_unlock(&sp->mtx);
403 } else {
404 sp->state = SPLICE_QUEUED;
405 mtx_unlock(&sp->mtx);
406 so_splice_dispatch_async(sp);
407 }
408 }
409
410 static int
splice_zinit(void * mem,int size __unused,int flags __unused)411 splice_zinit(void *mem, int size __unused, int flags __unused)
412 {
413 struct so_splice *s;
414
415 s = (struct so_splice *)mem;
416 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
417 return (0);
418 }
419
420 static void
splice_zfini(void * mem,int size)421 splice_zfini(void *mem, int size)
422 {
423 struct so_splice *s;
424
425 s = (struct so_splice *)mem;
426 mtx_destroy(&s->mtx);
427 }
428
429 static int
splice_init(void)430 splice_init(void)
431 {
432 struct thread *td;
433 int error, i, state;
434
435 state = atomic_load_acq_int(&splice_init_state);
436 if (__predict_true(state > 0))
437 return (0);
438 if (state < 0)
439 return (ENXIO);
440 sx_xlock(&splice_init_lock);
441 if (splice_init_state != 0) {
442 sx_xunlock(&splice_init_lock);
443 return (0);
444 }
445
446 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
447 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
448
449 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
450 M_WAITOK | M_ZERO);
451
452 /*
453 * Initialize the workqueues to run the splice work. We create a
454 * work queue for each CPU.
455 */
456 CPU_FOREACH(i) {
457 STAILQ_INIT(&splice_wq[i].head);
458 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
459 }
460
461 /* Start kthreads for each workqueue. */
462 error = 0;
463 CPU_FOREACH(i) {
464 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
465 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
466 if (error) {
467 printf("Can't add so_splice thread %d error %d\n",
468 i, error);
469 break;
470 }
471
472 /*
473 * It's possible to create loops with SO_SPLICE; ensure that
474 * worker threads aren't able to starve the system too easily.
475 */
476 thread_lock(td);
477 sched_prio(td, PUSER);
478 thread_unlock(td);
479 }
480
481 splice_init_state = error != 0 ? -1 : 1;
482 sx_xunlock(&splice_init_lock);
483
484 return (error);
485 }
486
487 /*
488 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
489 * one lock in order to avoid potential deadlocks in case there is some other
490 * code path which acquires more than one I/O lock at a time.
491 */
492 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)493 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
494 {
495 int error;
496
497 for (;;) {
498 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
499 KASSERT(error == 0,
500 ("%s: failed to lock send I/O lock: %d", __func__, error));
501 error = SOCK_IO_RECV_LOCK(so_src, 0);
502 KASSERT(error == 0 || error == EWOULDBLOCK,
503 ("%s: failed to lock recv I/O lock: %d", __func__, error));
504 if (error == 0)
505 break;
506 SOCK_IO_SEND_UNLOCK(so_dst);
507
508 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
509 KASSERT(error == 0,
510 ("%s: failed to lock recv I/O lock: %d", __func__, error));
511 error = SOCK_IO_SEND_LOCK(so_dst, 0);
512 KASSERT(error == 0 || error == EWOULDBLOCK,
513 ("%s: failed to lock send I/O lock: %d", __func__, error));
514 if (error == 0)
515 break;
516 SOCK_IO_RECV_UNLOCK(so_src);
517 }
518 }
519
520 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)521 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
522 {
523 SOCK_IO_RECV_UNLOCK(so_src);
524 SOCK_IO_SEND_UNLOCK(so_dst);
525 }
526
527 /*
528 * Move data from the source to the sink. Assumes that both of the relevant
529 * socket I/O locks are held.
530 */
531 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)532 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
533 ssize_t *lenp)
534 {
535 struct uio uio;
536 struct mbuf *m;
537 struct sockbuf *sb_src, *sb_dst;
538 ssize_t len;
539 long space;
540 int error, flags;
541
542 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
543 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
544
545 error = 0;
546 m = NULL;
547 memset(&uio, 0, sizeof(uio));
548
549 sb_src = &so_src->so_rcv;
550 sb_dst = &so_dst->so_snd;
551
552 space = sbspace(sb_dst);
553 if (space < 0)
554 space = 0;
555 len = MIN(max, MIN(space, sbavail(sb_src)));
556 if (len == 0) {
557 SOCK_RECVBUF_LOCK(so_src);
558 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
559 error = EPIPE;
560 SOCK_RECVBUF_UNLOCK(so_src);
561 } else {
562 flags = MSG_DONTWAIT;
563 uio.uio_resid = len;
564 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
565 error = soreceive_stream_locked(so_src, sb_src, NULL,
566 &uio, &m, NULL, flags);
567 } else {
568 error = soreceive_generic_locked(so_src, NULL,
569 &uio, &m, NULL, &flags);
570 }
571 if (error != 0 && m != NULL) {
572 m_freem(m);
573 m = NULL;
574 }
575 }
576 if (m != NULL) {
577 len -= uio.uio_resid;
578 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
579 MSG_DONTWAIT, curthread);
580 } else if (error == 0) {
581 len = 0;
582 SOCK_SENDBUF_LOCK(so_dst);
583 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
584 error = EPIPE;
585 SOCK_SENDBUF_UNLOCK(so_dst);
586 }
587 if (error == 0)
588 *lenp = len;
589 return (error);
590 }
591
592 /*
593 * Transfer data from the source to the sink.
594 */
595 static void
so_splice_xfer(struct so_splice * sp)596 so_splice_xfer(struct so_splice *sp)
597 {
598 struct socket *so_src, *so_dst;
599 off_t max;
600 ssize_t len;
601 int error;
602
603 mtx_assert(&sp->mtx, MA_OWNED);
604 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
605 ("so_splice_xfer: invalid state %d", sp->state));
606 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
607
608 if (sp->state == SPLICE_CLOSING) {
609 /* Userspace asked us to close the splice. */
610 goto closing;
611 }
612
613 sp->state = SPLICE_RUNNING;
614 so_src = sp->src;
615 so_dst = sp->dst;
616 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
617 if (max < 0)
618 max = 0;
619
620 /*
621 * Lock the sockets in order to block userspace from doing anything
622 * sneaky. If an error occurs or one of the sockets can no longer
623 * transfer data, we will automatically unsplice.
624 */
625 mtx_unlock(&sp->mtx);
626 splice_lock_pair(so_src, so_dst);
627
628 error = so_splice_xfer_data(so_src, so_dst, max, &len);
629
630 mtx_lock(&sp->mtx);
631
632 /*
633 * Update our stats while still holding the socket locks. This
634 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
635 */
636 if (error == 0) {
637 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
638 so_src->so_splice_sent += len;
639 }
640 splice_unlock_pair(so_src, so_dst);
641
642 switch (sp->state) {
643 case SPLICE_CLOSING:
644 closing:
645 sp->state = SPLICE_CLOSED;
646 wakeup(sp);
647 mtx_unlock(&sp->mtx);
648 break;
649 case SPLICE_RUNNING:
650 if (error != 0 ||
651 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
652 sp->state = SPLICE_EXCEPTION;
653 soref(so_src);
654 mtx_unlock(&sp->mtx);
655 (void)so_unsplice(so_src, false);
656 sorele(so_src);
657 } else {
658 /*
659 * Locklessly check for additional bytes in the source's
660 * receive buffer and queue more work if possible. We
661 * may end up queuing needless work, but that's ok, and
662 * if we race with a thread inserting more data into the
663 * buffer and observe sbavail() == 0, the splice mutex
664 * ensures that splice_push() will queue more work for
665 * us.
666 */
667 if (sbavail(&so_src->so_rcv) > 0 &&
668 sbspace(&so_dst->so_snd) > 0) {
669 sp->state = SPLICE_QUEUED;
670 mtx_unlock(&sp->mtx);
671 so_splice_dispatch_async(sp);
672 } else {
673 sp->state = SPLICE_IDLE;
674 mtx_unlock(&sp->mtx);
675 }
676 }
677 break;
678 default:
679 __assert_unreachable();
680 }
681 }
682
683 static void
socket_init(void * tag)684 socket_init(void *tag)
685 {
686
687 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
688 NULL, NULL, UMA_ALIGN_PTR, 0);
689 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
690 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
691 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
692 EVENTHANDLER_PRI_FIRST);
693 }
694 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
695
696 #ifdef SOCKET_HHOOK
697 static void
socket_hhook_register(int subtype)698 socket_hhook_register(int subtype)
699 {
700
701 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
702 &V_socket_hhh[subtype],
703 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
704 printf("%s: WARNING: unable to register hook\n", __func__);
705 }
706
707 static void
socket_hhook_deregister(int subtype)708 socket_hhook_deregister(int subtype)
709 {
710
711 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
712 printf("%s: WARNING: unable to deregister hook\n", __func__);
713 }
714
715 static void
socket_vnet_init(const void * unused __unused)716 socket_vnet_init(const void *unused __unused)
717 {
718 int i;
719
720 /* We expect a contiguous range */
721 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
722 socket_hhook_register(i);
723 }
724 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
725 socket_vnet_init, NULL);
726
727 static void
socket_vnet_uninit(const void * unused __unused)728 socket_vnet_uninit(const void *unused __unused)
729 {
730 int i;
731
732 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
733 socket_hhook_deregister(i);
734 }
735 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
736 socket_vnet_uninit, NULL);
737 #endif /* SOCKET_HHOOK */
738
739 /*
740 * Initialise maxsockets. This SYSINIT must be run after
741 * tunable_mbinit().
742 */
743 static void
init_maxsockets(void * ignored)744 init_maxsockets(void *ignored)
745 {
746
747 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
748 maxsockets = imax(maxsockets, maxfiles);
749 }
750 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
751
752 /*
753 * Sysctl to get and set the maximum global sockets limit. Notify protocols
754 * of the change so that they can update their dependent limits as required.
755 */
756 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)757 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
758 {
759 int error, newmaxsockets;
760
761 newmaxsockets = maxsockets;
762 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
763 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
764 if (newmaxsockets > maxsockets &&
765 newmaxsockets <= maxfiles) {
766 maxsockets = newmaxsockets;
767 EVENTHANDLER_INVOKE(maxsockets_change);
768 } else
769 error = EINVAL;
770 }
771 return (error);
772 }
773 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
774 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
775 &maxsockets, 0, sysctl_maxsockets, "IU",
776 "Maximum number of sockets available");
777
778 /*
779 * Socket operation routines. These routines are called by the routines in
780 * sys_socket.c or from a system process, and implement the semantics of
781 * socket operations by switching out to the protocol specific routines.
782 */
783
784 /*
785 * Get a socket structure from our zone, and initialize it. Note that it
786 * would probably be better to allocate socket and PCB at the same time, but
787 * I'm not convinced that all the protocols can be easily modified to do
788 * this.
789 *
790 * soalloc() returns a socket with a ref count of 0.
791 */
792 static struct socket *
soalloc(struct vnet * vnet)793 soalloc(struct vnet *vnet)
794 {
795 struct socket *so;
796
797 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
798 if (so == NULL)
799 return (NULL);
800 #ifdef MAC
801 if (mac_socket_init(so, M_NOWAIT) != 0) {
802 uma_zfree(socket_zone, so);
803 return (NULL);
804 }
805 #endif
806 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
807 uma_zfree(socket_zone, so);
808 return (NULL);
809 }
810
811 /*
812 * The socket locking protocol allows to lock 2 sockets at a time,
813 * however, the first one must be a listening socket. WITNESS lacks
814 * a feature to change class of an existing lock, so we use DUPOK.
815 */
816 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
817 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
818 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
819 so->so_rcv.sb_sel = &so->so_rdsel;
820 so->so_snd.sb_sel = &so->so_wrsel;
821 sx_init(&so->so_snd_sx, "so_snd_sx");
822 sx_init(&so->so_rcv_sx, "so_rcv_sx");
823 TAILQ_INIT(&so->so_snd.sb_aiojobq);
824 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
825 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
826 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
827 #ifdef VIMAGE
828 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
829 __func__, __LINE__, so));
830 so->so_vnet = vnet;
831 #endif
832 #ifdef SOCKET_HHOOK
833 /* We shouldn't need the so_global_mtx */
834 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
835 /* Do we need more comprehensive error returns? */
836 uma_zfree(socket_zone, so);
837 return (NULL);
838 }
839 #endif
840 mtx_lock(&so_global_mtx);
841 so->so_gencnt = ++so_gencnt;
842 ++numopensockets;
843 #ifdef VIMAGE
844 vnet->vnet_sockcnt++;
845 #endif
846 mtx_unlock(&so_global_mtx);
847
848 return (so);
849 }
850
851 /*
852 * Free the storage associated with a socket at the socket layer, tear down
853 * locks, labels, etc. All protocol state is assumed already to have been
854 * torn down (and possibly never set up) by the caller.
855 */
856 void
sodealloc(struct socket * so)857 sodealloc(struct socket *so)
858 {
859
860 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
861 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
862
863 mtx_lock(&so_global_mtx);
864 so->so_gencnt = ++so_gencnt;
865 --numopensockets; /* Could be below, but faster here. */
866 #ifdef VIMAGE
867 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
868 __func__, __LINE__, so));
869 so->so_vnet->vnet_sockcnt--;
870 #endif
871 mtx_unlock(&so_global_mtx);
872 #ifdef MAC
873 mac_socket_destroy(so);
874 #endif
875 #ifdef SOCKET_HHOOK
876 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
877 #endif
878
879 khelp_destroy_osd(&so->osd);
880 if (SOLISTENING(so)) {
881 if (so->sol_accept_filter != NULL)
882 accept_filt_setopt(so, NULL);
883 } else {
884 if (so->so_rcv.sb_hiwat)
885 (void)chgsbsize(so->so_cred->cr_uidinfo,
886 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
887 if (so->so_snd.sb_hiwat)
888 (void)chgsbsize(so->so_cred->cr_uidinfo,
889 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
890 sx_destroy(&so->so_snd_sx);
891 sx_destroy(&so->so_rcv_sx);
892 mtx_destroy(&so->so_snd_mtx);
893 mtx_destroy(&so->so_rcv_mtx);
894 }
895 crfree(so->so_cred);
896 mtx_destroy(&so->so_lock);
897 uma_zfree(socket_zone, so);
898 }
899
900 /*
901 * socreate returns a socket with a ref count of 1 and a file descriptor
902 * reference. The socket should be closed with soclose().
903 */
904 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)905 socreate(int dom, struct socket **aso, int type, int proto,
906 struct ucred *cred, struct thread *td)
907 {
908 struct protosw *prp;
909 struct socket *so;
910 int error;
911
912 /*
913 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
914 * shim until all applications have been updated.
915 */
916 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
917 proto == IPPROTO_DIVERT)) {
918 dom = PF_DIVERT;
919 printf("%s uses obsolete way to create divert(4) socket\n",
920 td->td_proc->p_comm);
921 }
922
923 prp = pffindproto(dom, type, proto);
924 if (prp == NULL) {
925 /* No support for domain. */
926 if (pffinddomain(dom) == NULL)
927 return (EAFNOSUPPORT);
928 /* No support for socket type. */
929 if (proto == 0 && type != 0)
930 return (EPROTOTYPE);
931 return (EPROTONOSUPPORT);
932 }
933
934 MPASS(prp->pr_attach);
935
936 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
937 if (CAP_TRACING(td))
938 ktrcapfail(CAPFAIL_PROTO, &proto);
939 if (IN_CAPABILITY_MODE(td))
940 return (ECAPMODE);
941 }
942
943 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
944 return (EPROTONOSUPPORT);
945
946 so = soalloc(CRED_TO_VNET(cred));
947 if (so == NULL)
948 return (ENOBUFS);
949
950 so->so_type = type;
951 so->so_cred = crhold(cred);
952 if ((prp->pr_domain->dom_family == PF_INET) ||
953 (prp->pr_domain->dom_family == PF_INET6) ||
954 (prp->pr_domain->dom_family == PF_ROUTE))
955 so->so_fibnum = td->td_proc->p_fibnum;
956 else
957 so->so_fibnum = 0;
958 so->so_proto = prp;
959 #ifdef MAC
960 mac_socket_create(cred, so);
961 #endif
962 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
963 so_rdknl_assert_lock);
964 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
965 so_wrknl_assert_lock);
966 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
967 so->so_snd.sb_mtx = &so->so_snd_mtx;
968 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
969 }
970 /*
971 * Auto-sizing of socket buffers is managed by the protocols and
972 * the appropriate flags must be set in the pr_attach() method.
973 */
974 CURVNET_SET(so->so_vnet);
975 error = prp->pr_attach(so, proto, td);
976 CURVNET_RESTORE();
977 if (error) {
978 sodealloc(so);
979 return (error);
980 }
981 soref(so);
982 *aso = so;
983 return (0);
984 }
985
986 #ifdef REGRESSION
987 static int regression_sonewconn_earlytest = 1;
988 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
989 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
990 #endif
991
992 static int sooverprio = LOG_DEBUG;
993 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
994 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
995
996 static struct timeval overinterval = { 60, 0 };
997 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
998 &overinterval,
999 "Delay in seconds between warnings for listen socket overflows");
1000
1001 /*
1002 * When an attempt at a new connection is noted on a socket which supports
1003 * accept(2), the protocol has two options:
1004 * 1) Call legacy sonewconn() function, which would call protocol attach
1005 * method, same as used for socket(2).
1006 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1007 * and then call solisten_enqueue().
1008 *
1009 * Note: the ref count on the socket is 0 on return.
1010 */
1011 struct socket *
solisten_clone(struct socket * head)1012 solisten_clone(struct socket *head)
1013 {
1014 struct sbuf descrsb;
1015 struct socket *so;
1016 int len, overcount;
1017 u_int qlen;
1018 const char localprefix[] = "local:";
1019 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1020 #if defined(INET6)
1021 char addrbuf[INET6_ADDRSTRLEN];
1022 #elif defined(INET)
1023 char addrbuf[INET_ADDRSTRLEN];
1024 #endif
1025 bool dolog, over;
1026
1027 SOLISTEN_LOCK(head);
1028 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1029 #ifdef REGRESSION
1030 if (regression_sonewconn_earlytest && over) {
1031 #else
1032 if (over) {
1033 #endif
1034 head->sol_overcount++;
1035 dolog = (sooverprio >= 0) &&
1036 !!ratecheck(&head->sol_lastover, &overinterval);
1037
1038 /*
1039 * If we're going to log, copy the overflow count and queue
1040 * length from the listen socket before dropping the lock.
1041 * Also, reset the overflow count.
1042 */
1043 if (dolog) {
1044 overcount = head->sol_overcount;
1045 head->sol_overcount = 0;
1046 qlen = head->sol_qlen;
1047 }
1048 SOLISTEN_UNLOCK(head);
1049
1050 if (dolog) {
1051 /*
1052 * Try to print something descriptive about the
1053 * socket for the error message.
1054 */
1055 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1056 SBUF_FIXEDLEN);
1057 switch (head->so_proto->pr_domain->dom_family) {
1058 #if defined(INET) || defined(INET6)
1059 #ifdef INET
1060 case AF_INET:
1061 #endif
1062 #ifdef INET6
1063 case AF_INET6:
1064 if (head->so_proto->pr_domain->dom_family ==
1065 AF_INET6 ||
1066 (sotoinpcb(head)->inp_inc.inc_flags &
1067 INC_ISIPV6)) {
1068 ip6_sprintf(addrbuf,
1069 &sotoinpcb(head)->inp_inc.inc6_laddr);
1070 sbuf_printf(&descrsb, "[%s]", addrbuf);
1071 } else
1072 #endif
1073 {
1074 #ifdef INET
1075 inet_ntoa_r(
1076 sotoinpcb(head)->inp_inc.inc_laddr,
1077 addrbuf);
1078 sbuf_cat(&descrsb, addrbuf);
1079 #endif
1080 }
1081 sbuf_printf(&descrsb, ":%hu (proto %u)",
1082 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1083 head->so_proto->pr_protocol);
1084 break;
1085 #endif /* INET || INET6 */
1086 case AF_UNIX:
1087 sbuf_cat(&descrsb, localprefix);
1088 if (sotounpcb(head)->unp_addr != NULL)
1089 len =
1090 sotounpcb(head)->unp_addr->sun_len -
1091 offsetof(struct sockaddr_un,
1092 sun_path);
1093 else
1094 len = 0;
1095 if (len > 0)
1096 sbuf_bcat(&descrsb,
1097 sotounpcb(head)->unp_addr->sun_path,
1098 len);
1099 else
1100 sbuf_cat(&descrsb, "(unknown)");
1101 break;
1102 }
1103
1104 /*
1105 * If we can't print something more specific, at least
1106 * print the domain name.
1107 */
1108 if (sbuf_finish(&descrsb) != 0 ||
1109 sbuf_len(&descrsb) <= 0) {
1110 sbuf_clear(&descrsb);
1111 sbuf_cat(&descrsb,
1112 head->so_proto->pr_domain->dom_name ?:
1113 "unknown");
1114 sbuf_finish(&descrsb);
1115 }
1116 KASSERT(sbuf_len(&descrsb) > 0,
1117 ("%s: sbuf creation failed", __func__));
1118 /*
1119 * Preserve the historic listen queue overflow log
1120 * message, that starts with "sonewconn:". It has
1121 * been known to sysadmins for years and also test
1122 * sys/kern/sonewconn_overflow checks for it.
1123 */
1124 if (head->so_cred == 0) {
1125 log(LOG_PRI(sooverprio),
1126 "sonewconn: pcb %p (%s): "
1127 "Listen queue overflow: %i already in "
1128 "queue awaiting acceptance (%d "
1129 "occurrences)\n", head->so_pcb,
1130 sbuf_data(&descrsb),
1131 qlen, overcount);
1132 } else {
1133 log(LOG_PRI(sooverprio),
1134 "sonewconn: pcb %p (%s): "
1135 "Listen queue overflow: "
1136 "%i already in queue awaiting acceptance "
1137 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1138 head->so_pcb, sbuf_data(&descrsb), qlen,
1139 overcount, head->so_cred->cr_uid,
1140 head->so_cred->cr_rgid,
1141 head->so_cred->cr_prison ?
1142 head->so_cred->cr_prison->pr_name :
1143 "not_jailed");
1144 }
1145 sbuf_delete(&descrsb);
1146
1147 overcount = 0;
1148 }
1149
1150 return (NULL);
1151 }
1152 SOLISTEN_UNLOCK(head);
1153 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1154 __func__, head));
1155 so = soalloc(head->so_vnet);
1156 if (so == NULL) {
1157 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1158 "limit reached or out of memory\n",
1159 __func__, head->so_pcb);
1160 return (NULL);
1161 }
1162 so->so_listen = head;
1163 so->so_type = head->so_type;
1164 /*
1165 * POSIX is ambiguous on what options an accept(2)ed socket should
1166 * inherit from the listener. Words "create a new socket" may be
1167 * interpreted as not inheriting anything. Best programming practice
1168 * for application developers is to not rely on such inheritance.
1169 * FreeBSD had historically inherited all so_options excluding
1170 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1171 * including those completely irrelevant to a new born socket. For
1172 * compatibility with older versions we will inherit a list of
1173 * meaningful options.
1174 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1175 * in the child socket for soisconnected() promoting socket from the
1176 * incomplete queue to complete. It will be cleared before the child
1177 * gets available to accept(2).
1178 */
1179 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1180 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1181 so->so_linger = head->so_linger;
1182 so->so_state = head->so_state;
1183 so->so_fibnum = head->so_fibnum;
1184 so->so_proto = head->so_proto;
1185 so->so_cred = crhold(head->so_cred);
1186 #ifdef SOCKET_HHOOK
1187 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1188 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1189 sodealloc(so);
1190 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1191 return (NULL);
1192 }
1193 }
1194 #endif
1195 #ifdef MAC
1196 mac_socket_newconn(head, so);
1197 #endif
1198 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1199 so_rdknl_assert_lock);
1200 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1201 so_wrknl_assert_lock);
1202 VNET_SO_ASSERT(head);
1203 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1204 sodealloc(so);
1205 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1206 __func__, head->so_pcb);
1207 return (NULL);
1208 }
1209 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1210 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1211 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1212 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1213 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1214 so->so_snd.sb_flags = head->sol_sbsnd_flags &
1215 (SB_AUTOSIZE | SB_AUTOLOWAT);
1216 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 }
1220
1221 return (so);
1222 }
1223
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 struct socket *so;
1229
1230 if ((so = solisten_clone(head)) == NULL)
1231 return (NULL);
1232
1233 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 sodealloc(so);
1235 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 __func__, head->so_pcb);
1237 return (NULL);
1238 }
1239
1240 (void)solisten_enqueue(so, connstatus);
1241
1242 return (so);
1243 }
1244
1245 /*
1246 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247 * listener it has been cloned from.
1248 *
1249 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250 */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 struct socket *head = so->so_listen;
1255
1256 MPASS(refcount_load(&so->so_count) == 0);
1257 refcount_init(&so->so_count, 1);
1258
1259 SOLISTEN_LOCK(head);
1260 if (head->sol_accept_filter != NULL)
1261 connstatus = 0;
1262 so->so_state |= connstatus;
1263 soref(head); /* A socket on (in)complete queue refs head. */
1264 if (connstatus) {
1265 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 so->so_qstate = SQ_COMP;
1267 head->sol_qlen++;
1268 solisten_wakeup(head); /* unlocks */
1269 return (true);
1270 } else {
1271 /*
1272 * Keep removing sockets from the head until there's room for
1273 * us to insert on the tail. In pre-locking revisions, this
1274 * was a simple if(), but as we could be racing with other
1275 * threads and soabort() requires dropping locks, we must
1276 * loop waiting for the condition to be true.
1277 */
1278 while (head->sol_incqlen > head->sol_qlimit) {
1279 struct socket *sp;
1280
1281 sp = TAILQ_FIRST(&head->sol_incomp);
1282 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 head->sol_incqlen--;
1284 SOCK_LOCK(sp);
1285 sp->so_qstate = SQ_NONE;
1286 sp->so_listen = NULL;
1287 SOCK_UNLOCK(sp);
1288 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1289 soabort(sp);
1290 SOLISTEN_LOCK(head);
1291 }
1292 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 so->so_qstate = SQ_INCOMP;
1294 head->sol_incqlen++;
1295 SOLISTEN_UNLOCK(head);
1296 return (false);
1297 }
1298 }
1299
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302 * Socket part of sctp_peeloff(). Detach a new socket from an
1303 * association. The new socket is returned with a reference.
1304 *
1305 * XXXGL: reduce copy-paste with solisten_clone().
1306 */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 struct socket *so;
1311
1312 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 __func__, __LINE__, head));
1314 so = soalloc(head->so_vnet);
1315 if (so == NULL) {
1316 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 "limit reached or out of memory\n",
1318 __func__, head->so_pcb);
1319 return (NULL);
1320 }
1321 so->so_type = head->so_type;
1322 so->so_options = head->so_options;
1323 so->so_linger = head->so_linger;
1324 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 so->so_fibnum = head->so_fibnum;
1326 so->so_proto = head->so_proto;
1327 so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 mac_socket_newconn(head, so);
1330 #endif
1331 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 so_rdknl_assert_lock);
1333 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 so_wrknl_assert_lock);
1335 VNET_SO_ASSERT(head);
1336 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 sodealloc(so);
1338 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 __func__, head->so_pcb);
1340 return (NULL);
1341 }
1342 if (so->so_proto->pr_attach(so, 0, NULL)) {
1343 sodealloc(so);
1344 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1345 __func__, head->so_pcb);
1346 return (NULL);
1347 }
1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 }
1358
1359 soref(so);
1360
1361 return (so);
1362 }
1363 #endif /* SCTP */
1364
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 int error;
1369
1370 CURVNET_SET(so->so_vnet);
1371 error = so->so_proto->pr_bind(so, nam, td);
1372 CURVNET_RESTORE();
1373 return (error);
1374 }
1375
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 int error;
1380
1381 CURVNET_SET(so->so_vnet);
1382 error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 CURVNET_RESTORE();
1384 return (error);
1385 }
1386
1387 /*
1388 * solisten() transitions a socket from a non-listening state to a listening
1389 * state, but can also be used to update the listen queue depth on an
1390 * existing listen socket. The protocol will call back into the sockets
1391 * layer using solisten_proto_check() and solisten_proto() to check and set
1392 * socket-layer listen state. Call backs are used so that the protocol can
1393 * acquire both protocol and socket layer locks in whatever order is required
1394 * by the protocol.
1395 *
1396 * Protocol implementors are advised to hold the socket lock across the
1397 * socket-layer test and set to avoid races at the socket layer.
1398 */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 int error;
1403
1404 CURVNET_SET(so->so_vnet);
1405 error = so->so_proto->pr_listen(so, backlog, td);
1406 CURVNET_RESTORE();
1407 return (error);
1408 }
1409
1410 /*
1411 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1412 * order to interlock with socket I/O.
1413 */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 SOCK_LOCK_ASSERT(so);
1418
1419 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 SS_ISDISCONNECTING)) != 0)
1421 return (EINVAL);
1422
1423 /*
1424 * Sleeping is not permitted here, so simply fail if userspace is
1425 * attempting to transmit or receive on the socket. This kind of
1426 * transient failure is not ideal, but it should occur only if userspace
1427 * is misusing the socket interfaces.
1428 */
1429 if (!sx_try_xlock(&so->so_snd_sx))
1430 return (EAGAIN);
1431 if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 sx_xunlock(&so->so_snd_sx);
1433 return (EAGAIN);
1434 }
1435 mtx_lock(&so->so_snd_mtx);
1436 mtx_lock(&so->so_rcv_mtx);
1437
1438 /* Interlock with soo_aio_queue() and KTLS. */
1439 if (!SOLISTENING(so)) {
1440 bool ktls;
1441
1442 #ifdef KERN_TLS
1443 ktls = so->so_snd.sb_tls_info != NULL ||
1444 so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 ktls = false;
1447 #endif
1448 if (ktls ||
1449 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 solisten_proto_abort(so);
1452 return (EINVAL);
1453 }
1454 }
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Undo the setup done by solisten_proto_check().
1461 */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 mtx_unlock(&so->so_snd_mtx);
1466 mtx_unlock(&so->so_rcv_mtx);
1467 sx_xunlock(&so->so_snd_sx);
1468 sx_xunlock(&so->so_rcv_sx);
1469 }
1470
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 int sbrcv_lowat, sbsnd_lowat;
1475 u_int sbrcv_hiwat, sbsnd_hiwat;
1476 short sbrcv_flags, sbsnd_flags;
1477 sbintime_t sbrcv_timeo, sbsnd_timeo;
1478
1479 SOCK_LOCK_ASSERT(so);
1480 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 SS_ISDISCONNECTING)) == 0,
1482 ("%s: bad socket state %p", __func__, so));
1483
1484 if (SOLISTENING(so))
1485 goto listening;
1486
1487 /*
1488 * Change this socket to listening state.
1489 */
1490 sbrcv_lowat = so->so_rcv.sb_lowat;
1491 sbsnd_lowat = so->so_snd.sb_lowat;
1492 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 sbrcv_flags = so->so_rcv.sb_flags;
1495 sbsnd_flags = so->so_snd.sb_flags;
1496 sbrcv_timeo = so->so_rcv.sb_timeo;
1497 sbsnd_timeo = so->so_snd.sb_timeo;
1498
1499 #ifdef MAC
1500 mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502
1503 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 sbdestroy(so, SO_SND);
1505 sbdestroy(so, SO_RCV);
1506 }
1507
1508 #ifdef INVARIANTS
1509 bzero(&so->so_rcv,
1510 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512
1513 so->sol_sbrcv_lowat = sbrcv_lowat;
1514 so->sol_sbsnd_lowat = sbsnd_lowat;
1515 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 so->sol_sbrcv_flags = sbrcv_flags;
1518 so->sol_sbsnd_flags = sbsnd_flags;
1519 so->sol_sbrcv_timeo = sbrcv_timeo;
1520 so->sol_sbsnd_timeo = sbsnd_timeo;
1521
1522 so->sol_qlen = so->sol_incqlen = 0;
1523 TAILQ_INIT(&so->sol_incomp);
1524 TAILQ_INIT(&so->sol_comp);
1525
1526 so->sol_accept_filter = NULL;
1527 so->sol_accept_filter_arg = NULL;
1528 so->sol_accept_filter_str = NULL;
1529
1530 so->sol_upcall = NULL;
1531 so->sol_upcallarg = NULL;
1532
1533 so->so_options |= SO_ACCEPTCONN;
1534
1535 listening:
1536 if (backlog < 0 || backlog > V_somaxconn)
1537 backlog = V_somaxconn;
1538 so->sol_qlimit = backlog;
1539
1540 mtx_unlock(&so->so_snd_mtx);
1541 mtx_unlock(&so->so_rcv_mtx);
1542 sx_xunlock(&so->so_snd_sx);
1543 sx_xunlock(&so->so_rcv_sx);
1544 }
1545
1546 /*
1547 * Wakeup listeners/subsystems once we have a complete connection.
1548 * Enters with lock, returns unlocked.
1549 */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553
1554 if (sol->sol_upcall != NULL)
1555 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 else {
1557 selwakeuppri(&sol->so_rdsel, PSOCK);
1558 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 }
1560 SOLISTEN_UNLOCK(sol);
1561 wakeup_one(&sol->sol_comp);
1562 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565
1566 /*
1567 * Return single connection off a listening socket queue. Main consumer of
1568 * the function is kern_accept4(). Some modules, that do their own accept
1569 * management also use the function. The socket reference held by the
1570 * listen queue is handed to the caller.
1571 *
1572 * Listening socket must be locked on entry and is returned unlocked on
1573 * return.
1574 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575 */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 struct socket *so;
1580 int error;
1581
1582 SOLISTEN_LOCK_ASSERT(head);
1583
1584 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 head->so_error == 0) {
1586 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 "accept", 0);
1588 if (error != 0) {
1589 SOLISTEN_UNLOCK(head);
1590 return (error);
1591 }
1592 }
1593 if (head->so_error) {
1594 error = head->so_error;
1595 head->so_error = 0;
1596 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 error = EWOULDBLOCK;
1598 else
1599 error = 0;
1600 if (error) {
1601 SOLISTEN_UNLOCK(head);
1602 return (error);
1603 }
1604 so = TAILQ_FIRST(&head->sol_comp);
1605 SOCK_LOCK(so);
1606 KASSERT(so->so_qstate == SQ_COMP,
1607 ("%s: so %p not SQ_COMP", __func__, so));
1608 head->sol_qlen--;
1609 so->so_qstate = SQ_NONE;
1610 so->so_listen = NULL;
1611 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 if (flags & ACCEPT4_INHERIT)
1613 so->so_state |= (head->so_state & SS_NBIO);
1614 else
1615 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 SOCK_UNLOCK(so);
1617 sorele_locked(head);
1618
1619 *ret = so;
1620 return (0);
1621 }
1622
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 struct so_splice *sp;
1627
1628 sp = uma_zalloc(splice_zone, M_WAITOK);
1629 sp->src = NULL;
1630 sp->dst = NULL;
1631 sp->max = max > 0 ? max : -1;
1632 do {
1633 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 (mp_maxid + 1);
1635 } while (CPU_ABSENT(sp->wq_index));
1636 sp->state = SPLICE_INIT;
1637 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 sp);
1639 return (sp);
1640 }
1641
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 KASSERT(sp->state == SPLICE_CLOSED,
1646 ("so_splice_free: sp %p not closed", sp));
1647 uma_zfree(splice_zone, sp);
1648 }
1649
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 struct so_splice *sp;
1654
1655 sp = arg;
1656 (void)so_unsplice(sp->src, true);
1657 }
1658
1659 /*
1660 * Splice the output from so to the input of so2.
1661 */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 struct so_splice *sp;
1666 int error;
1667
1668 if (splice->sp_max < 0)
1669 return (EINVAL);
1670 /* Handle only TCP for now; TODO: other streaming protos */
1671 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 return (EPROTONOSUPPORT);
1674 if (so->so_vnet != so2->so_vnet)
1675 return (EINVAL);
1676
1677 /* so_splice_xfer() assumes that we're using these implementations. */
1678 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 ("so_splice: sosend not sosend_generic"));
1680 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 so2->so_proto->pr_soreceive == soreceive_stream,
1682 ("so_splice: soreceive not soreceive_generic/stream"));
1683
1684 sp = so_splice_alloc(splice->sp_max);
1685 so->so_splice_sent = 0;
1686 sp->src = so;
1687 sp->dst = so2;
1688
1689 error = 0;
1690 SOCK_LOCK(so);
1691 if (SOLISTENING(so))
1692 error = EINVAL;
1693 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 error = ENOTCONN;
1695 else if (so->so_splice != NULL)
1696 error = EBUSY;
1697 if (error != 0) {
1698 SOCK_UNLOCK(so);
1699 uma_zfree(splice_zone, sp);
1700 return (error);
1701 }
1702 SOCK_RECVBUF_LOCK(so);
1703 if (so->so_rcv.sb_tls_info != NULL) {
1704 SOCK_RECVBUF_UNLOCK(so);
1705 SOCK_UNLOCK(so);
1706 uma_zfree(splice_zone, sp);
1707 return (EINVAL);
1708 }
1709 so->so_rcv.sb_flags |= SB_SPLICED;
1710 so->so_splice = sp;
1711 soref(so);
1712 SOCK_RECVBUF_UNLOCK(so);
1713 SOCK_UNLOCK(so);
1714
1715 error = 0;
1716 SOCK_LOCK(so2);
1717 if (SOLISTENING(so2))
1718 error = EINVAL;
1719 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1720 error = ENOTCONN;
1721 else if (so2->so_splice_back != NULL)
1722 error = EBUSY;
1723 if (error != 0) {
1724 SOCK_UNLOCK(so2);
1725 so_unsplice(so, false);
1726 return (error);
1727 }
1728 SOCK_SENDBUF_LOCK(so2);
1729 if (so->so_snd.sb_tls_info != NULL) {
1730 SOCK_SENDBUF_UNLOCK(so2);
1731 SOCK_UNLOCK(so2);
1732 so_unsplice(so, false);
1733 return (EINVAL);
1734 }
1735 so2->so_snd.sb_flags |= SB_SPLICED;
1736 so2->so_splice_back = sp;
1737 soref(so2);
1738 mtx_lock(&sp->mtx);
1739 SOCK_SENDBUF_UNLOCK(so2);
1740 SOCK_UNLOCK(so2);
1741
1742 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1743 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1744 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1745 }
1746
1747 /*
1748 * Transfer any data already present in the socket buffer.
1749 */
1750 KASSERT(sp->state == SPLICE_INIT,
1751 ("so_splice: splice %p state %d", sp, sp->state));
1752 sp->state = SPLICE_QUEUED;
1753 so_splice_xfer(sp);
1754 return (0);
1755 }
1756
1757 static int
1758 so_unsplice(struct socket *so, bool timeout)
1759 {
1760 struct socket *so2;
1761 struct so_splice *sp;
1762 bool drain, so2rele;
1763
1764 /*
1765 * First unset SB_SPLICED and hide the splice structure so that
1766 * wakeup routines will stop enqueuing work. This also ensures that
1767 * a only a single thread will proceed with the unsplice.
1768 */
1769 SOCK_LOCK(so);
1770 if (SOLISTENING(so)) {
1771 SOCK_UNLOCK(so);
1772 return (EINVAL);
1773 }
1774 SOCK_RECVBUF_LOCK(so);
1775 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1776 SOCK_RECVBUF_UNLOCK(so);
1777 SOCK_UNLOCK(so);
1778 return (ENOTCONN);
1779 }
1780 sp = so->so_splice;
1781 mtx_lock(&sp->mtx);
1782 if (sp->state == SPLICE_INIT) {
1783 /*
1784 * A splice is in the middle of being set up.
1785 */
1786 mtx_unlock(&sp->mtx);
1787 SOCK_RECVBUF_UNLOCK(so);
1788 SOCK_UNLOCK(so);
1789 return (ENOTCONN);
1790 }
1791 mtx_unlock(&sp->mtx);
1792 so->so_rcv.sb_flags &= ~SB_SPLICED;
1793 so->so_splice = NULL;
1794 SOCK_RECVBUF_UNLOCK(so);
1795 SOCK_UNLOCK(so);
1796
1797 so2 = sp->dst;
1798 SOCK_LOCK(so2);
1799 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1800 SOCK_SENDBUF_LOCK(so2);
1801 KASSERT(sp->state == SPLICE_INIT ||
1802 (so2->so_snd.sb_flags & SB_SPLICED) != 0,
1803 ("%s: so2 is not spliced", __func__));
1804 KASSERT(sp->state == SPLICE_INIT ||
1805 so2->so_splice_back == sp,
1806 ("%s: so_splice_back != sp", __func__));
1807 so2->so_snd.sb_flags &= ~SB_SPLICED;
1808 so2rele = so2->so_splice_back != NULL;
1809 so2->so_splice_back = NULL;
1810 SOCK_SENDBUF_UNLOCK(so2);
1811 SOCK_UNLOCK(so2);
1812
1813 /*
1814 * No new work is being enqueued. The worker thread might be
1815 * splicing data right now, in which case we want to wait for it to
1816 * finish before proceeding.
1817 */
1818 mtx_lock(&sp->mtx);
1819 switch (sp->state) {
1820 case SPLICE_QUEUED:
1821 case SPLICE_RUNNING:
1822 sp->state = SPLICE_CLOSING;
1823 while (sp->state == SPLICE_CLOSING)
1824 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1825 break;
1826 case SPLICE_INIT:
1827 case SPLICE_IDLE:
1828 case SPLICE_EXCEPTION:
1829 sp->state = SPLICE_CLOSED;
1830 break;
1831 default:
1832 __assert_unreachable();
1833 }
1834 if (!timeout) {
1835 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1836 NULL) != 0;
1837 } else {
1838 drain = false;
1839 }
1840 mtx_unlock(&sp->mtx);
1841 if (drain)
1842 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1843
1844 /*
1845 * Now we hold the sole reference to the splice structure.
1846 * Clean up: signal userspace and release socket references.
1847 */
1848 sorwakeup(so);
1849 CURVNET_SET(so->so_vnet);
1850 sorele(so);
1851 sowwakeup(so2);
1852 if (so2rele)
1853 sorele(so2);
1854 CURVNET_RESTORE();
1855 so_splice_free(sp);
1856 return (0);
1857 }
1858
1859 /*
1860 * Free socket upon release of the very last reference.
1861 */
1862 static void
1863 sofree(struct socket *so)
1864 {
1865 struct protosw *pr = so->so_proto;
1866
1867 SOCK_LOCK_ASSERT(so);
1868 KASSERT(refcount_load(&so->so_count) == 0,
1869 ("%s: so %p has references", __func__, so));
1870 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1871 ("%s: so %p is on listen queue", __func__, so));
1872 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1873 ("%s: so %p rcvbuf is spliced", __func__, so));
1874 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1875 ("%s: so %p sndbuf is spliced", __func__, so));
1876 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1877 ("%s: so %p has spliced data", __func__, so));
1878
1879 SOCK_UNLOCK(so);
1880
1881 if (so->so_dtor != NULL)
1882 so->so_dtor(so);
1883
1884 VNET_SO_ASSERT(so);
1885 if (pr->pr_detach != NULL)
1886 pr->pr_detach(so);
1887
1888 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1889 /*
1890 * From this point on, we assume that no other references to
1891 * this socket exist anywhere else in the stack. Therefore,
1892 * no locks need to be acquired or held.
1893 */
1894 #ifdef INVARIANTS
1895 SOCK_SENDBUF_LOCK(so);
1896 SOCK_RECVBUF_LOCK(so);
1897 #endif
1898 sbdestroy(so, SO_SND);
1899 sbdestroy(so, SO_RCV);
1900 #ifdef INVARIANTS
1901 SOCK_SENDBUF_UNLOCK(so);
1902 SOCK_RECVBUF_UNLOCK(so);
1903 #endif
1904 }
1905 seldrain(&so->so_rdsel);
1906 seldrain(&so->so_wrsel);
1907 knlist_destroy(&so->so_rdsel.si_note);
1908 knlist_destroy(&so->so_wrsel.si_note);
1909 sodealloc(so);
1910 }
1911
1912 /*
1913 * Release a reference on a socket while holding the socket lock.
1914 * Unlocks the socket lock before returning.
1915 */
1916 void
1917 sorele_locked(struct socket *so)
1918 {
1919 SOCK_LOCK_ASSERT(so);
1920 if (refcount_release(&so->so_count))
1921 sofree(so);
1922 else
1923 SOCK_UNLOCK(so);
1924 }
1925
1926 /*
1927 * Close a socket on last file table reference removal. Initiate disconnect
1928 * if connected. Free socket when disconnect complete.
1929 *
1930 * This function will sorele() the socket. Note that soclose() may be called
1931 * prior to the ref count reaching zero. The actual socket structure will
1932 * not be freed until the ref count reaches zero.
1933 */
1934 int
1935 soclose(struct socket *so)
1936 {
1937 struct accept_queue lqueue;
1938 int error = 0;
1939 bool listening, last __diagused;
1940
1941 CURVNET_SET(so->so_vnet);
1942 funsetown(&so->so_sigio);
1943 if (so->so_state & SS_ISCONNECTED) {
1944 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1945 error = sodisconnect(so);
1946 if (error) {
1947 if (error == ENOTCONN)
1948 error = 0;
1949 goto drop;
1950 }
1951 }
1952
1953 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1954 if ((so->so_state & SS_ISDISCONNECTING) &&
1955 (so->so_state & SS_NBIO))
1956 goto drop;
1957 while (so->so_state & SS_ISCONNECTED) {
1958 error = tsleep(&so->so_timeo,
1959 PSOCK | PCATCH, "soclos",
1960 so->so_linger * hz);
1961 if (error)
1962 break;
1963 }
1964 }
1965 }
1966
1967 drop:
1968 if (so->so_proto->pr_close != NULL)
1969 so->so_proto->pr_close(so);
1970
1971 SOCK_LOCK(so);
1972 if ((listening = SOLISTENING(so))) {
1973 struct socket *sp;
1974
1975 TAILQ_INIT(&lqueue);
1976 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1977 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1978
1979 so->sol_qlen = so->sol_incqlen = 0;
1980
1981 TAILQ_FOREACH(sp, &lqueue, so_list) {
1982 SOCK_LOCK(sp);
1983 sp->so_qstate = SQ_NONE;
1984 sp->so_listen = NULL;
1985 SOCK_UNLOCK(sp);
1986 last = refcount_release(&so->so_count);
1987 KASSERT(!last, ("%s: released last reference for %p",
1988 __func__, so));
1989 }
1990 }
1991 sorele_locked(so);
1992 if (listening) {
1993 struct socket *sp, *tsp;
1994
1995 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1996 soabort(sp);
1997 }
1998 CURVNET_RESTORE();
1999 return (error);
2000 }
2001
2002 /*
2003 * soabort() is used to abruptly tear down a connection, such as when a
2004 * resource limit is reached (listen queue depth exceeded), or if a listen
2005 * socket is closed while there are sockets waiting to be accepted.
2006 *
2007 * This interface is tricky, because it is called on an unreferenced socket,
2008 * and must be called only by a thread that has actually removed the socket
2009 * from the listen queue it was on. Likely this thread holds the last
2010 * reference on the socket and soabort() will proceed with sofree(). But
2011 * it might be not the last, as the sockets on the listen queues are seen
2012 * from the protocol side.
2013 *
2014 * This interface will call into the protocol code, so must not be called
2015 * with any socket locks held. Protocols do call it while holding their own
2016 * recursible protocol mutexes, but this is something that should be subject
2017 * to review in the future.
2018 *
2019 * Usually socket should have a single reference left, but this is not a
2020 * requirement. In the past, when we have had named references for file
2021 * descriptor and protocol, we asserted that none of them are being held.
2022 */
2023 void
2024 soabort(struct socket *so)
2025 {
2026
2027 VNET_SO_ASSERT(so);
2028
2029 if (so->so_proto->pr_abort != NULL)
2030 so->so_proto->pr_abort(so);
2031 SOCK_LOCK(so);
2032 sorele_locked(so);
2033 }
2034
2035 int
2036 soaccept(struct socket *so, struct sockaddr *sa)
2037 {
2038 #ifdef INVARIANTS
2039 u_char len = sa->sa_len;
2040 #endif
2041 int error;
2042
2043 CURVNET_SET(so->so_vnet);
2044 error = so->so_proto->pr_accept(so, sa);
2045 KASSERT(sa->sa_len <= len,
2046 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2047 CURVNET_RESTORE();
2048 return (error);
2049 }
2050
2051 int
2052 sopeeraddr(struct socket *so, struct sockaddr *sa)
2053 {
2054 #ifdef INVARIANTS
2055 u_char len = sa->sa_len;
2056 #endif
2057 int error;
2058
2059 CURVNET_ASSERT_SET();
2060
2061 error = so->so_proto->pr_peeraddr(so, sa);
2062 KASSERT(sa->sa_len <= len,
2063 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2064
2065 return (error);
2066 }
2067
2068 int
2069 sosockaddr(struct socket *so, struct sockaddr *sa)
2070 {
2071 #ifdef INVARIANTS
2072 u_char len = sa->sa_len;
2073 #endif
2074 int error;
2075
2076 CURVNET_SET(so->so_vnet);
2077 error = so->so_proto->pr_sockaddr(so, sa);
2078 KASSERT(sa->sa_len <= len,
2079 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2080 CURVNET_RESTORE();
2081
2082 return (error);
2083 }
2084
2085 int
2086 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2087 {
2088
2089 return (soconnectat(AT_FDCWD, so, nam, td));
2090 }
2091
2092 int
2093 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2094 {
2095 int error;
2096
2097 CURVNET_SET(so->so_vnet);
2098
2099 /*
2100 * If protocol is connection-based, can only connect once.
2101 * Otherwise, if connected, try to disconnect first. This allows
2102 * user to disconnect by connecting to, e.g., a null address.
2103 *
2104 * Note, this check is racy and may need to be re-evaluated at the
2105 * protocol layer.
2106 */
2107 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2108 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2109 (error = sodisconnect(so)))) {
2110 error = EISCONN;
2111 } else {
2112 /*
2113 * Prevent accumulated error from previous connection from
2114 * biting us.
2115 */
2116 so->so_error = 0;
2117 if (fd == AT_FDCWD) {
2118 error = so->so_proto->pr_connect(so, nam, td);
2119 } else {
2120 error = so->so_proto->pr_connectat(fd, so, nam, td);
2121 }
2122 }
2123 CURVNET_RESTORE();
2124
2125 return (error);
2126 }
2127
2128 int
2129 soconnect2(struct socket *so1, struct socket *so2)
2130 {
2131 int error;
2132
2133 CURVNET_SET(so1->so_vnet);
2134 error = so1->so_proto->pr_connect2(so1, so2);
2135 CURVNET_RESTORE();
2136 return (error);
2137 }
2138
2139 int
2140 sodisconnect(struct socket *so)
2141 {
2142 int error;
2143
2144 if ((so->so_state & SS_ISCONNECTED) == 0)
2145 return (ENOTCONN);
2146 if (so->so_state & SS_ISDISCONNECTING)
2147 return (EALREADY);
2148 VNET_SO_ASSERT(so);
2149 error = so->so_proto->pr_disconnect(so);
2150 return (error);
2151 }
2152
2153 int
2154 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2155 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2156 {
2157 long space;
2158 ssize_t resid;
2159 int clen = 0, error, dontroute;
2160
2161 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2162 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2163 ("sosend_dgram: !PR_ATOMIC"));
2164
2165 if (uio != NULL)
2166 resid = uio->uio_resid;
2167 else
2168 resid = top->m_pkthdr.len;
2169 /*
2170 * In theory resid should be unsigned. However, space must be
2171 * signed, as it might be less than 0 if we over-committed, and we
2172 * must use a signed comparison of space and resid. On the other
2173 * hand, a negative resid causes us to loop sending 0-length
2174 * segments to the protocol.
2175 */
2176 if (resid < 0) {
2177 error = EINVAL;
2178 goto out;
2179 }
2180
2181 dontroute =
2182 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2183 if (td != NULL)
2184 td->td_ru.ru_msgsnd++;
2185 if (control != NULL)
2186 clen = control->m_len;
2187
2188 SOCKBUF_LOCK(&so->so_snd);
2189 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2190 SOCKBUF_UNLOCK(&so->so_snd);
2191 error = EPIPE;
2192 goto out;
2193 }
2194 if (so->so_error) {
2195 error = so->so_error;
2196 so->so_error = 0;
2197 SOCKBUF_UNLOCK(&so->so_snd);
2198 goto out;
2199 }
2200 if ((so->so_state & SS_ISCONNECTED) == 0) {
2201 /*
2202 * `sendto' and `sendmsg' is allowed on a connection-based
2203 * socket if it supports implied connect. Return ENOTCONN if
2204 * not connected and no address is supplied.
2205 */
2206 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2207 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2208 if (!(resid == 0 && clen != 0)) {
2209 SOCKBUF_UNLOCK(&so->so_snd);
2210 error = ENOTCONN;
2211 goto out;
2212 }
2213 } else if (addr == NULL) {
2214 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2215 error = ENOTCONN;
2216 else
2217 error = EDESTADDRREQ;
2218 SOCKBUF_UNLOCK(&so->so_snd);
2219 goto out;
2220 }
2221 }
2222
2223 /*
2224 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2225 * problem and need fixing.
2226 */
2227 space = sbspace(&so->so_snd);
2228 if (flags & MSG_OOB)
2229 space += 1024;
2230 space -= clen;
2231 SOCKBUF_UNLOCK(&so->so_snd);
2232 if (resid > space) {
2233 error = EMSGSIZE;
2234 goto out;
2235 }
2236 if (uio == NULL) {
2237 resid = 0;
2238 if (flags & MSG_EOR)
2239 top->m_flags |= M_EOR;
2240 } else {
2241 /*
2242 * Copy the data from userland into a mbuf chain.
2243 * If no data is to be copied in, a single empty mbuf
2244 * is returned.
2245 */
2246 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2247 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2248 if (top == NULL) {
2249 error = EFAULT; /* only possible error */
2250 goto out;
2251 }
2252 space -= resid - uio->uio_resid;
2253 resid = uio->uio_resid;
2254 }
2255 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2256 /*
2257 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2258 * than with.
2259 */
2260 if (dontroute) {
2261 SOCK_LOCK(so);
2262 so->so_options |= SO_DONTROUTE;
2263 SOCK_UNLOCK(so);
2264 }
2265 /*
2266 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2267 * of date. We could have received a reset packet in an interrupt or
2268 * maybe we slept while doing page faults in uiomove() etc. We could
2269 * probably recheck again inside the locking protection here, but
2270 * there are probably other places that this also happens. We must
2271 * rethink this.
2272 */
2273 VNET_SO_ASSERT(so);
2274 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2275 /*
2276 * If the user set MSG_EOF, the protocol understands this flag and
2277 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2278 */
2279 ((flags & MSG_EOF) &&
2280 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2281 (resid <= 0)) ?
2282 PRUS_EOF :
2283 /* If there is more to send set PRUS_MORETOCOME */
2284 (flags & MSG_MORETOCOME) ||
2285 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2286 top, addr, control, td);
2287 if (dontroute) {
2288 SOCK_LOCK(so);
2289 so->so_options &= ~SO_DONTROUTE;
2290 SOCK_UNLOCK(so);
2291 }
2292 clen = 0;
2293 control = NULL;
2294 top = NULL;
2295 out:
2296 if (top != NULL)
2297 m_freem(top);
2298 if (control != NULL)
2299 m_freem(control);
2300 return (error);
2301 }
2302
2303 /*
2304 * Send on a socket. If send must go all at once and message is larger than
2305 * send buffering, then hard error. Lock against other senders. If must go
2306 * all at once and not enough room now, then inform user that this would
2307 * block and do nothing. Otherwise, if nonblocking, send as much as
2308 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2309 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2310 * in mbuf chain must be small enough to send all at once.
2311 *
2312 * Returns nonzero on error, timeout or signal; callers must check for short
2313 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2314 * on return.
2315 */
2316 static int
2317 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2318 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2319 {
2320 long space;
2321 ssize_t resid;
2322 int clen = 0, error, dontroute;
2323 int atomic = sosendallatonce(so) || top;
2324 int pr_send_flag;
2325 #ifdef KERN_TLS
2326 struct ktls_session *tls;
2327 int tls_enq_cnt, tls_send_flag;
2328 uint8_t tls_rtype;
2329
2330 tls = NULL;
2331 tls_rtype = TLS_RLTYPE_APP;
2332 #endif
2333
2334 SOCK_IO_SEND_ASSERT_LOCKED(so);
2335
2336 if (uio != NULL)
2337 resid = uio->uio_resid;
2338 else if ((top->m_flags & M_PKTHDR) != 0)
2339 resid = top->m_pkthdr.len;
2340 else
2341 resid = m_length(top, NULL);
2342 /*
2343 * In theory resid should be unsigned. However, space must be
2344 * signed, as it might be less than 0 if we over-committed, and we
2345 * must use a signed comparison of space and resid. On the other
2346 * hand, a negative resid causes us to loop sending 0-length
2347 * segments to the protocol.
2348 *
2349 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2350 * type sockets since that's an error.
2351 */
2352 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2353 error = EINVAL;
2354 goto out;
2355 }
2356
2357 dontroute =
2358 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2359 (so->so_proto->pr_flags & PR_ATOMIC);
2360 if (td != NULL)
2361 td->td_ru.ru_msgsnd++;
2362 if (control != NULL)
2363 clen = control->m_len;
2364
2365 #ifdef KERN_TLS
2366 tls_send_flag = 0;
2367 tls = ktls_hold(so->so_snd.sb_tls_info);
2368 if (tls != NULL) {
2369 if (tls->mode == TCP_TLS_MODE_SW)
2370 tls_send_flag = PRUS_NOTREADY;
2371
2372 if (control != NULL) {
2373 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2374
2375 if (clen >= sizeof(*cm) &&
2376 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2377 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2378 clen = 0;
2379 m_freem(control);
2380 control = NULL;
2381 atomic = 1;
2382 }
2383 }
2384
2385 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2386 error = EINVAL;
2387 goto out;
2388 }
2389 }
2390 #endif
2391
2392 restart:
2393 do {
2394 SOCKBUF_LOCK(&so->so_snd);
2395 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2396 SOCKBUF_UNLOCK(&so->so_snd);
2397 error = EPIPE;
2398 goto out;
2399 }
2400 if (so->so_error) {
2401 error = so->so_error;
2402 so->so_error = 0;
2403 SOCKBUF_UNLOCK(&so->so_snd);
2404 goto out;
2405 }
2406 if ((so->so_state & SS_ISCONNECTED) == 0) {
2407 /*
2408 * `sendto' and `sendmsg' is allowed on a connection-
2409 * based socket if it supports implied connect.
2410 * Return ENOTCONN if not connected and no address is
2411 * supplied.
2412 */
2413 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2414 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2415 if (!(resid == 0 && clen != 0)) {
2416 SOCKBUF_UNLOCK(&so->so_snd);
2417 error = ENOTCONN;
2418 goto out;
2419 }
2420 } else if (addr == NULL) {
2421 SOCKBUF_UNLOCK(&so->so_snd);
2422 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2423 error = ENOTCONN;
2424 else
2425 error = EDESTADDRREQ;
2426 goto out;
2427 }
2428 }
2429 space = sbspace(&so->so_snd);
2430 if (flags & MSG_OOB)
2431 space += 1024;
2432 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2433 clen > so->so_snd.sb_hiwat) {
2434 SOCKBUF_UNLOCK(&so->so_snd);
2435 error = EMSGSIZE;
2436 goto out;
2437 }
2438 if (space < resid + clen &&
2439 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2440 if ((so->so_state & SS_NBIO) ||
2441 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2442 SOCKBUF_UNLOCK(&so->so_snd);
2443 error = EWOULDBLOCK;
2444 goto out;
2445 }
2446 error = sbwait(so, SO_SND);
2447 SOCKBUF_UNLOCK(&so->so_snd);
2448 if (error)
2449 goto out;
2450 goto restart;
2451 }
2452 SOCKBUF_UNLOCK(&so->so_snd);
2453 space -= clen;
2454 do {
2455 if (uio == NULL) {
2456 resid = 0;
2457 if (flags & MSG_EOR)
2458 top->m_flags |= M_EOR;
2459 #ifdef KERN_TLS
2460 if (tls != NULL) {
2461 ktls_frame(top, tls, &tls_enq_cnt,
2462 tls_rtype);
2463 tls_rtype = TLS_RLTYPE_APP;
2464 }
2465 #endif
2466 } else {
2467 /*
2468 * Copy the data from userland into a mbuf
2469 * chain. If resid is 0, which can happen
2470 * only if we have control to send, then
2471 * a single empty mbuf is returned. This
2472 * is a workaround to prevent protocol send
2473 * methods to panic.
2474 */
2475 #ifdef KERN_TLS
2476 if (tls != NULL) {
2477 top = m_uiotombuf(uio, M_WAITOK, space,
2478 tls->params.max_frame_len,
2479 M_EXTPG |
2480 ((flags & MSG_EOR) ? M_EOR : 0));
2481 if (top != NULL) {
2482 ktls_frame(top, tls,
2483 &tls_enq_cnt, tls_rtype);
2484 }
2485 tls_rtype = TLS_RLTYPE_APP;
2486 } else
2487 #endif
2488 top = m_uiotombuf(uio, M_WAITOK, space,
2489 (atomic ? max_hdr : 0),
2490 (atomic ? M_PKTHDR : 0) |
2491 ((flags & MSG_EOR) ? M_EOR : 0));
2492 if (top == NULL) {
2493 error = EFAULT; /* only possible error */
2494 goto out;
2495 }
2496 space -= resid - uio->uio_resid;
2497 resid = uio->uio_resid;
2498 }
2499 if (dontroute) {
2500 SOCK_LOCK(so);
2501 so->so_options |= SO_DONTROUTE;
2502 SOCK_UNLOCK(so);
2503 }
2504 /*
2505 * XXX all the SBS_CANTSENDMORE checks previously
2506 * done could be out of date. We could have received
2507 * a reset packet in an interrupt or maybe we slept
2508 * while doing page faults in uiomove() etc. We
2509 * could probably recheck again inside the locking
2510 * protection here, but there are probably other
2511 * places that this also happens. We must rethink
2512 * this.
2513 */
2514 VNET_SO_ASSERT(so);
2515
2516 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2517 /*
2518 * If the user set MSG_EOF, the protocol understands
2519 * this flag and nothing left to send then use
2520 * PRU_SEND_EOF instead of PRU_SEND.
2521 */
2522 ((flags & MSG_EOF) &&
2523 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2524 (resid <= 0)) ?
2525 PRUS_EOF :
2526 /* If there is more to send set PRUS_MORETOCOME. */
2527 (flags & MSG_MORETOCOME) ||
2528 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2529
2530 #ifdef KERN_TLS
2531 pr_send_flag |= tls_send_flag;
2532 #endif
2533
2534 error = so->so_proto->pr_send(so, pr_send_flag, top,
2535 addr, control, td);
2536
2537 if (dontroute) {
2538 SOCK_LOCK(so);
2539 so->so_options &= ~SO_DONTROUTE;
2540 SOCK_UNLOCK(so);
2541 }
2542
2543 #ifdef KERN_TLS
2544 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2545 if (error != 0) {
2546 m_freem(top);
2547 top = NULL;
2548 } else {
2549 soref(so);
2550 ktls_enqueue(top, so, tls_enq_cnt);
2551 }
2552 }
2553 #endif
2554 clen = 0;
2555 control = NULL;
2556 top = NULL;
2557 if (error)
2558 goto out;
2559 } while (resid && space > 0);
2560 } while (resid);
2561
2562 out:
2563 #ifdef KERN_TLS
2564 if (tls != NULL)
2565 ktls_free(tls);
2566 #endif
2567 if (top != NULL)
2568 m_freem(top);
2569 if (control != NULL)
2570 m_freem(control);
2571 return (error);
2572 }
2573
2574 int
2575 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2576 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2577 {
2578 int error;
2579
2580 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2581 if (error)
2582 return (error);
2583 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2584 SOCK_IO_SEND_UNLOCK(so);
2585 return (error);
2586 }
2587
2588 /*
2589 * Send to a socket from a kernel thread.
2590 *
2591 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2592 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2593 * to be set at all. This function should just boil down to a static inline
2594 * calling the protocol method.
2595 */
2596 int
2597 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2598 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2599 {
2600 int error;
2601
2602 CURVNET_SET(so->so_vnet);
2603 error = so->so_proto->pr_sosend(so, addr, uio,
2604 top, control, flags, td);
2605 CURVNET_RESTORE();
2606 return (error);
2607 }
2608
2609 /*
2610 * send(2), write(2) or aio_write(2) on a socket.
2611 */
2612 int
2613 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2614 struct mbuf *control, int flags, struct proc *userproc)
2615 {
2616 struct thread *td;
2617 ssize_t len;
2618 int error;
2619
2620 td = uio->uio_td;
2621 len = uio->uio_resid;
2622 CURVNET_SET(so->so_vnet);
2623 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2624 td);
2625 CURVNET_RESTORE();
2626 if (error != 0) {
2627 /*
2628 * Clear transient errors for stream protocols if they made
2629 * some progress. Make exclusion for aio(4) that would
2630 * schedule a new write in case of EWOULDBLOCK and clear
2631 * error itself. See soaio_process_job().
2632 */
2633 if (uio->uio_resid != len &&
2634 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2635 userproc == NULL &&
2636 (error == ERESTART || error == EINTR ||
2637 error == EWOULDBLOCK))
2638 error = 0;
2639 /* Generation of SIGPIPE can be controlled per socket. */
2640 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2641 (flags & MSG_NOSIGNAL) == 0) {
2642 if (userproc != NULL) {
2643 /* aio(4) job */
2644 PROC_LOCK(userproc);
2645 kern_psignal(userproc, SIGPIPE);
2646 PROC_UNLOCK(userproc);
2647 } else {
2648 PROC_LOCK(td->td_proc);
2649 tdsignal(td, SIGPIPE);
2650 PROC_UNLOCK(td->td_proc);
2651 }
2652 }
2653 }
2654 return (error);
2655 }
2656
2657 /*
2658 * The part of soreceive() that implements reading non-inline out-of-band
2659 * data from a socket. For more complete comments, see soreceive(), from
2660 * which this code originated.
2661 *
2662 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2663 * unable to return an mbuf chain to the caller.
2664 */
2665 static int
2666 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2667 {
2668 struct protosw *pr = so->so_proto;
2669 struct mbuf *m;
2670 int error;
2671
2672 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2673 VNET_SO_ASSERT(so);
2674
2675 m = m_get(M_WAITOK, MT_DATA);
2676 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2677 if (error)
2678 goto bad;
2679 do {
2680 error = uiomove(mtod(m, void *),
2681 (int) min(uio->uio_resid, m->m_len), uio);
2682 m = m_free(m);
2683 } while (uio->uio_resid && error == 0 && m);
2684 bad:
2685 if (m != NULL)
2686 m_freem(m);
2687 return (error);
2688 }
2689
2690 /*
2691 * Following replacement or removal of the first mbuf on the first mbuf chain
2692 * of a socket buffer, push necessary state changes back into the socket
2693 * buffer so that other consumers see the values consistently. 'nextrecord'
2694 * is the callers locally stored value of the original value of
2695 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2696 * NOTE: 'nextrecord' may be NULL.
2697 */
2698 static __inline void
2699 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2700 {
2701
2702 SOCKBUF_LOCK_ASSERT(sb);
2703 /*
2704 * First, update for the new value of nextrecord. If necessary, make
2705 * it the first record.
2706 */
2707 if (sb->sb_mb != NULL)
2708 sb->sb_mb->m_nextpkt = nextrecord;
2709 else
2710 sb->sb_mb = nextrecord;
2711
2712 /*
2713 * Now update any dependent socket buffer fields to reflect the new
2714 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2715 * addition of a second clause that takes care of the case where
2716 * sb_mb has been updated, but remains the last record.
2717 */
2718 if (sb->sb_mb == NULL) {
2719 sb->sb_mbtail = NULL;
2720 sb->sb_lastrecord = NULL;
2721 } else if (sb->sb_mb->m_nextpkt == NULL)
2722 sb->sb_lastrecord = sb->sb_mb;
2723 }
2724
2725 /*
2726 * Implement receive operations on a socket. We depend on the way that
2727 * records are added to the sockbuf by sbappend. In particular, each record
2728 * (mbufs linked through m_next) must begin with an address if the protocol
2729 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2730 * data, and then zero or more mbufs of data. In order to allow parallelism
2731 * between network receive and copying to user space, as well as avoid
2732 * sleeping with a mutex held, we release the socket buffer mutex during the
2733 * user space copy. Although the sockbuf is locked, new data may still be
2734 * appended, and thus we must maintain consistency of the sockbuf during that
2735 * time.
2736 *
2737 * The caller may receive the data as a single mbuf chain by supplying an
2738 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2739 * the count in uio_resid.
2740 */
2741 static int
2742 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2743 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2744 {
2745 struct mbuf *m;
2746 int flags, error, offset;
2747 ssize_t len;
2748 struct protosw *pr = so->so_proto;
2749 struct mbuf *nextrecord;
2750 int moff, type = 0;
2751 ssize_t orig_resid = uio->uio_resid;
2752 bool report_real_len = false;
2753
2754 SOCK_IO_RECV_ASSERT_LOCKED(so);
2755
2756 error = 0;
2757 if (flagsp != NULL) {
2758 report_real_len = *flagsp & MSG_TRUNC;
2759 *flagsp &= ~MSG_TRUNC;
2760 flags = *flagsp &~ MSG_EOR;
2761 } else
2762 flags = 0;
2763
2764 restart:
2765 SOCKBUF_LOCK(&so->so_rcv);
2766 m = so->so_rcv.sb_mb;
2767 /*
2768 * If we have less data than requested, block awaiting more (subject
2769 * to any timeout) if:
2770 * 1. the current count is less than the low water mark, or
2771 * 2. MSG_DONTWAIT is not set
2772 */
2773 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2774 sbavail(&so->so_rcv) < uio->uio_resid) &&
2775 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2776 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2777 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2778 ("receive: m == %p sbavail == %u",
2779 m, sbavail(&so->so_rcv)));
2780 if (so->so_error || so->so_rerror) {
2781 if (m != NULL)
2782 goto dontblock;
2783 if (so->so_error)
2784 error = so->so_error;
2785 else
2786 error = so->so_rerror;
2787 if ((flags & MSG_PEEK) == 0) {
2788 if (so->so_error)
2789 so->so_error = 0;
2790 else
2791 so->so_rerror = 0;
2792 }
2793 SOCKBUF_UNLOCK(&so->so_rcv);
2794 goto release;
2795 }
2796 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2797 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2798 if (m != NULL)
2799 goto dontblock;
2800 #ifdef KERN_TLS
2801 else if (so->so_rcv.sb_tlsdcc == 0 &&
2802 so->so_rcv.sb_tlscc == 0) {
2803 #else
2804 else {
2805 #endif
2806 SOCKBUF_UNLOCK(&so->so_rcv);
2807 goto release;
2808 }
2809 }
2810 for (; m != NULL; m = m->m_next)
2811 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2812 m = so->so_rcv.sb_mb;
2813 goto dontblock;
2814 }
2815 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2816 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2817 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2818 SOCKBUF_UNLOCK(&so->so_rcv);
2819 error = ENOTCONN;
2820 goto release;
2821 }
2822 if (uio->uio_resid == 0 && !report_real_len) {
2823 SOCKBUF_UNLOCK(&so->so_rcv);
2824 goto release;
2825 }
2826 if ((so->so_state & SS_NBIO) ||
2827 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2828 SOCKBUF_UNLOCK(&so->so_rcv);
2829 error = EWOULDBLOCK;
2830 goto release;
2831 }
2832 SBLASTRECORDCHK(&so->so_rcv);
2833 SBLASTMBUFCHK(&so->so_rcv);
2834 error = sbwait(so, SO_RCV);
2835 SOCKBUF_UNLOCK(&so->so_rcv);
2836 if (error)
2837 goto release;
2838 goto restart;
2839 }
2840 dontblock:
2841 /*
2842 * From this point onward, we maintain 'nextrecord' as a cache of the
2843 * pointer to the next record in the socket buffer. We must keep the
2844 * various socket buffer pointers and local stack versions of the
2845 * pointers in sync, pushing out modifications before dropping the
2846 * socket buffer mutex, and re-reading them when picking it up.
2847 *
2848 * Otherwise, we will race with the network stack appending new data
2849 * or records onto the socket buffer by using inconsistent/stale
2850 * versions of the field, possibly resulting in socket buffer
2851 * corruption.
2852 *
2853 * By holding the high-level sblock(), we prevent simultaneous
2854 * readers from pulling off the front of the socket buffer.
2855 */
2856 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2857 if (uio->uio_td)
2858 uio->uio_td->td_ru.ru_msgrcv++;
2859 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2860 SBLASTRECORDCHK(&so->so_rcv);
2861 SBLASTMBUFCHK(&so->so_rcv);
2862 nextrecord = m->m_nextpkt;
2863 if (pr->pr_flags & PR_ADDR) {
2864 KASSERT(m->m_type == MT_SONAME,
2865 ("m->m_type == %d", m->m_type));
2866 orig_resid = 0;
2867 if (psa != NULL)
2868 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2869 M_NOWAIT);
2870 if (flags & MSG_PEEK) {
2871 m = m->m_next;
2872 } else {
2873 sbfree(&so->so_rcv, m);
2874 so->so_rcv.sb_mb = m_free(m);
2875 m = so->so_rcv.sb_mb;
2876 sockbuf_pushsync(&so->so_rcv, nextrecord);
2877 }
2878 }
2879
2880 /*
2881 * Process one or more MT_CONTROL mbufs present before any data mbufs
2882 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2883 * just copy the data; if !MSG_PEEK, we call into the protocol to
2884 * perform externalization (or freeing if controlp == NULL).
2885 */
2886 if (m != NULL && m->m_type == MT_CONTROL) {
2887 struct mbuf *cm = NULL, *cmn;
2888 struct mbuf **cme = &cm;
2889 #ifdef KERN_TLS
2890 struct cmsghdr *cmsg;
2891 struct tls_get_record tgr;
2892
2893 /*
2894 * For MSG_TLSAPPDATA, check for an alert record.
2895 * If found, return ENXIO without removing
2896 * it from the receive queue. This allows a subsequent
2897 * call without MSG_TLSAPPDATA to receive it.
2898 * Note that, for TLS, there should only be a single
2899 * control mbuf with the TLS_GET_RECORD message in it.
2900 */
2901 if (flags & MSG_TLSAPPDATA) {
2902 cmsg = mtod(m, struct cmsghdr *);
2903 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2904 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2905 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2906 if (__predict_false(tgr.tls_type ==
2907 TLS_RLTYPE_ALERT)) {
2908 SOCKBUF_UNLOCK(&so->so_rcv);
2909 error = ENXIO;
2910 goto release;
2911 }
2912 }
2913 }
2914 #endif
2915
2916 do {
2917 if (flags & MSG_PEEK) {
2918 if (controlp != NULL) {
2919 *controlp = m_copym(m, 0, m->m_len,
2920 M_NOWAIT);
2921 controlp = &(*controlp)->m_next;
2922 }
2923 m = m->m_next;
2924 } else {
2925 sbfree(&so->so_rcv, m);
2926 so->so_rcv.sb_mb = m->m_next;
2927 m->m_next = NULL;
2928 *cme = m;
2929 cme = &(*cme)->m_next;
2930 m = so->so_rcv.sb_mb;
2931 }
2932 } while (m != NULL && m->m_type == MT_CONTROL);
2933 if ((flags & MSG_PEEK) == 0)
2934 sockbuf_pushsync(&so->so_rcv, nextrecord);
2935 while (cm != NULL) {
2936 cmn = cm->m_next;
2937 cm->m_next = NULL;
2938 if (controlp != NULL)
2939 *controlp = cm;
2940 else
2941 m_freem(cm);
2942 if (controlp != NULL) {
2943 while (*controlp != NULL)
2944 controlp = &(*controlp)->m_next;
2945 }
2946 cm = cmn;
2947 }
2948 if (m != NULL)
2949 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2950 else
2951 nextrecord = so->so_rcv.sb_mb;
2952 orig_resid = 0;
2953 }
2954 if (m != NULL) {
2955 if ((flags & MSG_PEEK) == 0) {
2956 KASSERT(m->m_nextpkt == nextrecord,
2957 ("soreceive: post-control, nextrecord !sync"));
2958 if (nextrecord == NULL) {
2959 KASSERT(so->so_rcv.sb_mb == m,
2960 ("soreceive: post-control, sb_mb!=m"));
2961 KASSERT(so->so_rcv.sb_lastrecord == m,
2962 ("soreceive: post-control, lastrecord!=m"));
2963 }
2964 }
2965 type = m->m_type;
2966 if (type == MT_OOBDATA)
2967 flags |= MSG_OOB;
2968 } else {
2969 if ((flags & MSG_PEEK) == 0) {
2970 KASSERT(so->so_rcv.sb_mb == nextrecord,
2971 ("soreceive: sb_mb != nextrecord"));
2972 if (so->so_rcv.sb_mb == NULL) {
2973 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2974 ("soreceive: sb_lastercord != NULL"));
2975 }
2976 }
2977 }
2978 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2979 SBLASTRECORDCHK(&so->so_rcv);
2980 SBLASTMBUFCHK(&so->so_rcv);
2981
2982 /*
2983 * Now continue to read any data mbufs off of the head of the socket
2984 * buffer until the read request is satisfied. Note that 'type' is
2985 * used to store the type of any mbuf reads that have happened so far
2986 * such that soreceive() can stop reading if the type changes, which
2987 * causes soreceive() to return only one of regular data and inline
2988 * out-of-band data in a single socket receive operation.
2989 */
2990 moff = 0;
2991 offset = 0;
2992 while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
2993 error == 0) {
2994 /*
2995 * If the type of mbuf has changed since the last mbuf
2996 * examined ('type'), end the receive operation.
2997 */
2998 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2999 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3000 if (type != m->m_type)
3001 break;
3002 } else if (type == MT_OOBDATA)
3003 break;
3004 else
3005 KASSERT(m->m_type == MT_DATA,
3006 ("m->m_type == %d", m->m_type));
3007 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3008 len = uio->uio_resid;
3009 if (so->so_oobmark && len > so->so_oobmark - offset)
3010 len = so->so_oobmark - offset;
3011 if (len > m->m_len - moff)
3012 len = m->m_len - moff;
3013 /*
3014 * If mp is set, just pass back the mbufs. Otherwise copy
3015 * them out via the uio, then free. Sockbuf must be
3016 * consistent here (points to current mbuf, it points to next
3017 * record) when we drop priority; we must note any additions
3018 * to the sockbuf when we block interrupts again.
3019 */
3020 if (mp == NULL) {
3021 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3022 SBLASTRECORDCHK(&so->so_rcv);
3023 SBLASTMBUFCHK(&so->so_rcv);
3024 SOCKBUF_UNLOCK(&so->so_rcv);
3025 if ((m->m_flags & M_EXTPG) != 0)
3026 error = m_unmapped_uiomove(m, moff, uio,
3027 (int)len);
3028 else
3029 error = uiomove(mtod(m, char *) + moff,
3030 (int)len, uio);
3031 SOCKBUF_LOCK(&so->so_rcv);
3032 if (error) {
3033 /*
3034 * The MT_SONAME mbuf has already been removed
3035 * from the record, so it is necessary to
3036 * remove the data mbufs, if any, to preserve
3037 * the invariant in the case of PR_ADDR that
3038 * requires MT_SONAME mbufs at the head of
3039 * each record.
3040 */
3041 if (pr->pr_flags & PR_ATOMIC &&
3042 ((flags & MSG_PEEK) == 0))
3043 (void)sbdroprecord_locked(&so->so_rcv);
3044 SOCKBUF_UNLOCK(&so->so_rcv);
3045 goto release;
3046 }
3047 } else
3048 uio->uio_resid -= len;
3049 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3050 if (len == m->m_len - moff) {
3051 if (m->m_flags & M_EOR)
3052 flags |= MSG_EOR;
3053 if (flags & MSG_PEEK) {
3054 m = m->m_next;
3055 moff = 0;
3056 } else {
3057 nextrecord = m->m_nextpkt;
3058 sbfree(&so->so_rcv, m);
3059 if (mp != NULL) {
3060 m->m_nextpkt = NULL;
3061 *mp = m;
3062 mp = &m->m_next;
3063 so->so_rcv.sb_mb = m = m->m_next;
3064 *mp = NULL;
3065 } else {
3066 so->so_rcv.sb_mb = m_free(m);
3067 m = so->so_rcv.sb_mb;
3068 }
3069 sockbuf_pushsync(&so->so_rcv, nextrecord);
3070 SBLASTRECORDCHK(&so->so_rcv);
3071 SBLASTMBUFCHK(&so->so_rcv);
3072 }
3073 } else {
3074 if (flags & MSG_PEEK)
3075 moff += len;
3076 else {
3077 if (mp != NULL) {
3078 if (flags & MSG_DONTWAIT) {
3079 *mp = m_copym(m, 0, len,
3080 M_NOWAIT);
3081 if (*mp == NULL) {
3082 /*
3083 * m_copym() couldn't
3084 * allocate an mbuf.
3085 * Adjust uio_resid back
3086 * (it was adjusted
3087 * down by len bytes,
3088 * which we didn't end
3089 * up "copying" over).
3090 */
3091 uio->uio_resid += len;
3092 break;
3093 }
3094 } else {
3095 SOCKBUF_UNLOCK(&so->so_rcv);
3096 *mp = m_copym(m, 0, len,
3097 M_WAITOK);
3098 SOCKBUF_LOCK(&so->so_rcv);
3099 }
3100 }
3101 sbcut_locked(&so->so_rcv, len);
3102 }
3103 }
3104 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3105 if (so->so_oobmark) {
3106 if ((flags & MSG_PEEK) == 0) {
3107 so->so_oobmark -= len;
3108 if (so->so_oobmark == 0) {
3109 so->so_rcv.sb_state |= SBS_RCVATMARK;
3110 break;
3111 }
3112 } else {
3113 offset += len;
3114 if (offset == so->so_oobmark)
3115 break;
3116 }
3117 }
3118 if (flags & MSG_EOR)
3119 break;
3120 /*
3121 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3122 * must not quit until "uio->uio_resid == 0" or an error
3123 * termination. If a signal/timeout occurs, return with a
3124 * short count but without error. Keep sockbuf locked
3125 * against other readers.
3126 */
3127 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3128 !sosendallatonce(so) && nextrecord == NULL) {
3129 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3130 if (so->so_error || so->so_rerror ||
3131 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3132 break;
3133 /*
3134 * Notify the protocol that some data has been
3135 * drained before blocking.
3136 */
3137 if (pr->pr_flags & PR_WANTRCVD) {
3138 SOCKBUF_UNLOCK(&so->so_rcv);
3139 VNET_SO_ASSERT(so);
3140 pr->pr_rcvd(so, flags);
3141 SOCKBUF_LOCK(&so->so_rcv);
3142 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3143 (so->so_error || so->so_rerror ||
3144 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3145 break;
3146 }
3147 SBLASTRECORDCHK(&so->so_rcv);
3148 SBLASTMBUFCHK(&so->so_rcv);
3149 /*
3150 * We could receive some data while was notifying
3151 * the protocol. Skip blocking in this case.
3152 */
3153 if (so->so_rcv.sb_mb == NULL) {
3154 error = sbwait(so, SO_RCV);
3155 if (error) {
3156 SOCKBUF_UNLOCK(&so->so_rcv);
3157 goto release;
3158 }
3159 }
3160 m = so->so_rcv.sb_mb;
3161 if (m != NULL)
3162 nextrecord = m->m_nextpkt;
3163 }
3164 }
3165
3166 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3167 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3168 if (report_real_len)
3169 uio->uio_resid -= m_length(m, NULL) - moff;
3170 flags |= MSG_TRUNC;
3171 if ((flags & MSG_PEEK) == 0)
3172 (void) sbdroprecord_locked(&so->so_rcv);
3173 }
3174 if ((flags & MSG_PEEK) == 0) {
3175 if (m == NULL) {
3176 /*
3177 * First part is an inline SB_EMPTY_FIXUP(). Second
3178 * part makes sure sb_lastrecord is up-to-date if
3179 * there is still data in the socket buffer.
3180 */
3181 so->so_rcv.sb_mb = nextrecord;
3182 if (so->so_rcv.sb_mb == NULL) {
3183 so->so_rcv.sb_mbtail = NULL;
3184 so->so_rcv.sb_lastrecord = NULL;
3185 } else if (nextrecord->m_nextpkt == NULL)
3186 so->so_rcv.sb_lastrecord = nextrecord;
3187 }
3188 SBLASTRECORDCHK(&so->so_rcv);
3189 SBLASTMBUFCHK(&so->so_rcv);
3190 /*
3191 * If soreceive() is being done from the socket callback,
3192 * then don't need to generate ACK to peer to update window,
3193 * since ACK will be generated on return to TCP.
3194 */
3195 if (!(flags & MSG_SOCALLBCK) &&
3196 (pr->pr_flags & PR_WANTRCVD)) {
3197 SOCKBUF_UNLOCK(&so->so_rcv);
3198 VNET_SO_ASSERT(so);
3199 pr->pr_rcvd(so, flags);
3200 SOCKBUF_LOCK(&so->so_rcv);
3201 }
3202 }
3203 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3204 if (orig_resid == uio->uio_resid && orig_resid &&
3205 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3206 SOCKBUF_UNLOCK(&so->so_rcv);
3207 goto restart;
3208 }
3209 SOCKBUF_UNLOCK(&so->so_rcv);
3210
3211 if (flagsp != NULL)
3212 *flagsp |= flags;
3213 release:
3214 return (error);
3215 }
3216
3217 int
3218 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3219 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3220 {
3221 int error, flags;
3222
3223 if (psa != NULL)
3224 *psa = NULL;
3225 if (controlp != NULL)
3226 *controlp = NULL;
3227 if (flagsp != NULL) {
3228 flags = *flagsp;
3229 if ((flags & MSG_OOB) != 0)
3230 return (soreceive_rcvoob(so, uio, flags));
3231 } else {
3232 flags = 0;
3233 }
3234 if (mp != NULL)
3235 *mp = NULL;
3236
3237 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3238 if (error)
3239 return (error);
3240 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3241 SOCK_IO_RECV_UNLOCK(so);
3242 return (error);
3243 }
3244
3245 /*
3246 * Optimized version of soreceive() for stream (TCP) sockets.
3247 */
3248 static int
3249 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3250 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3251 struct mbuf **controlp, int flags)
3252 {
3253 int len = 0, error = 0, oresid;
3254 struct mbuf *m, *n = NULL;
3255
3256 SOCK_IO_RECV_ASSERT_LOCKED(so);
3257
3258 /* Easy one, no space to copyout anything. */
3259 if (uio->uio_resid == 0)
3260 return (EINVAL);
3261 oresid = uio->uio_resid;
3262
3263 SOCKBUF_LOCK(sb);
3264 /* We will never ever get anything unless we are or were connected. */
3265 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3266 error = ENOTCONN;
3267 goto out;
3268 }
3269
3270 restart:
3271 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3272
3273 /* Abort if socket has reported problems. */
3274 if (so->so_error) {
3275 if (sbavail(sb) > 0)
3276 goto deliver;
3277 if (oresid > uio->uio_resid)
3278 goto out;
3279 error = so->so_error;
3280 if (!(flags & MSG_PEEK))
3281 so->so_error = 0;
3282 goto out;
3283 }
3284
3285 /* Door is closed. Deliver what is left, if any. */
3286 if (sb->sb_state & SBS_CANTRCVMORE) {
3287 if (sbavail(sb) > 0)
3288 goto deliver;
3289 else
3290 goto out;
3291 }
3292
3293 /* Socket buffer is empty and we shall not block. */
3294 if (sbavail(sb) == 0 &&
3295 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3296 error = EAGAIN;
3297 goto out;
3298 }
3299
3300 /* Socket buffer got some data that we shall deliver now. */
3301 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3302 ((so->so_state & SS_NBIO) ||
3303 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3304 sbavail(sb) >= sb->sb_lowat ||
3305 sbavail(sb) >= uio->uio_resid ||
3306 sbavail(sb) >= sb->sb_hiwat) ) {
3307 goto deliver;
3308 }
3309
3310 /* On MSG_WAITALL we must wait until all data or error arrives. */
3311 if ((flags & MSG_WAITALL) &&
3312 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3313 goto deliver;
3314
3315 /*
3316 * Wait and block until (more) data comes in.
3317 * NB: Drops the sockbuf lock during wait.
3318 */
3319 error = sbwait(so, SO_RCV);
3320 if (error)
3321 goto out;
3322 goto restart;
3323
3324 deliver:
3325 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3326 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3327 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3328
3329 /* Statistics. */
3330 if (uio->uio_td)
3331 uio->uio_td->td_ru.ru_msgrcv++;
3332
3333 /* Fill uio until full or current end of socket buffer is reached. */
3334 len = min(uio->uio_resid, sbavail(sb));
3335 if (mp0 != NULL) {
3336 /* Dequeue as many mbufs as possible. */
3337 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3338 if (*mp0 == NULL)
3339 *mp0 = sb->sb_mb;
3340 else
3341 m_cat(*mp0, sb->sb_mb);
3342 for (m = sb->sb_mb;
3343 m != NULL && m->m_len <= len;
3344 m = m->m_next) {
3345 KASSERT(!(m->m_flags & M_NOTREADY),
3346 ("%s: m %p not available", __func__, m));
3347 len -= m->m_len;
3348 uio->uio_resid -= m->m_len;
3349 sbfree(sb, m);
3350 n = m;
3351 }
3352 n->m_next = NULL;
3353 sb->sb_mb = m;
3354 sb->sb_lastrecord = sb->sb_mb;
3355 if (sb->sb_mb == NULL)
3356 SB_EMPTY_FIXUP(sb);
3357 }
3358 /* Copy the remainder. */
3359 if (len > 0) {
3360 KASSERT(sb->sb_mb != NULL,
3361 ("%s: len > 0 && sb->sb_mb empty", __func__));
3362
3363 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3364 if (m == NULL)
3365 len = 0; /* Don't flush data from sockbuf. */
3366 else
3367 uio->uio_resid -= len;
3368 if (*mp0 != NULL)
3369 m_cat(*mp0, m);
3370 else
3371 *mp0 = m;
3372 if (*mp0 == NULL) {
3373 error = ENOBUFS;
3374 goto out;
3375 }
3376 }
3377 } else {
3378 /* NB: Must unlock socket buffer as uiomove may sleep. */
3379 SOCKBUF_UNLOCK(sb);
3380 error = m_mbuftouio(uio, sb->sb_mb, len);
3381 SOCKBUF_LOCK(sb);
3382 if (error)
3383 goto out;
3384 }
3385 SBLASTRECORDCHK(sb);
3386 SBLASTMBUFCHK(sb);
3387
3388 /*
3389 * Remove the delivered data from the socket buffer unless we
3390 * were only peeking.
3391 */
3392 if (!(flags & MSG_PEEK)) {
3393 if (len > 0)
3394 sbdrop_locked(sb, len);
3395
3396 /* Notify protocol that we drained some data. */
3397 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3398 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3399 !(flags & MSG_SOCALLBCK))) {
3400 SOCKBUF_UNLOCK(sb);
3401 VNET_SO_ASSERT(so);
3402 so->so_proto->pr_rcvd(so, flags);
3403 SOCKBUF_LOCK(sb);
3404 }
3405 }
3406
3407 /*
3408 * For MSG_WAITALL we may have to loop again and wait for
3409 * more data to come in.
3410 */
3411 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3412 goto restart;
3413 out:
3414 SBLASTRECORDCHK(sb);
3415 SBLASTMBUFCHK(sb);
3416 SOCKBUF_UNLOCK(sb);
3417 return (error);
3418 }
3419
3420 int
3421 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3422 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3423 {
3424 struct sockbuf *sb;
3425 int error, flags;
3426
3427 sb = &so->so_rcv;
3428
3429 /* We only do stream sockets. */
3430 if (so->so_type != SOCK_STREAM)
3431 return (EINVAL);
3432 if (psa != NULL)
3433 *psa = NULL;
3434 if (flagsp != NULL)
3435 flags = *flagsp & ~MSG_EOR;
3436 else
3437 flags = 0;
3438 if (controlp != NULL)
3439 *controlp = NULL;
3440 if (flags & MSG_OOB)
3441 return (soreceive_rcvoob(so, uio, flags));
3442 if (mp0 != NULL)
3443 *mp0 = NULL;
3444
3445 #ifdef KERN_TLS
3446 /*
3447 * KTLS store TLS records as records with a control message to
3448 * describe the framing.
3449 *
3450 * We check once here before acquiring locks to optimize the
3451 * common case.
3452 */
3453 if (sb->sb_tls_info != NULL)
3454 return (soreceive_generic(so, psa, uio, mp0, controlp,
3455 flagsp));
3456 #endif
3457
3458 /*
3459 * Prevent other threads from reading from the socket. This lock may be
3460 * dropped in order to sleep waiting for data to arrive.
3461 */
3462 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3463 if (error)
3464 return (error);
3465 #ifdef KERN_TLS
3466 if (__predict_false(sb->sb_tls_info != NULL)) {
3467 SOCK_IO_RECV_UNLOCK(so);
3468 return (soreceive_generic(so, psa, uio, mp0, controlp,
3469 flagsp));
3470 }
3471 #endif
3472 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3473 SOCK_IO_RECV_UNLOCK(so);
3474 return (error);
3475 }
3476
3477 /*
3478 * Optimized version of soreceive() for simple datagram cases from userspace.
3479 * Unlike in the stream case, we're able to drop a datagram if copyout()
3480 * fails, and because we handle datagrams atomically, we don't need to use a
3481 * sleep lock to prevent I/O interlacing.
3482 */
3483 int
3484 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3485 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3486 {
3487 struct mbuf *m, *m2;
3488 int flags, error;
3489 ssize_t len;
3490 struct protosw *pr = so->so_proto;
3491 struct mbuf *nextrecord;
3492
3493 if (psa != NULL)
3494 *psa = NULL;
3495 if (controlp != NULL)
3496 *controlp = NULL;
3497 if (flagsp != NULL)
3498 flags = *flagsp &~ MSG_EOR;
3499 else
3500 flags = 0;
3501
3502 /*
3503 * For any complicated cases, fall back to the full
3504 * soreceive_generic().
3505 */
3506 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3507 return (soreceive_generic(so, psa, uio, mp0, controlp,
3508 flagsp));
3509
3510 /*
3511 * Enforce restrictions on use.
3512 */
3513 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3514 ("soreceive_dgram: wantrcvd"));
3515 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3516 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3517 ("soreceive_dgram: SBS_RCVATMARK"));
3518 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3519 ("soreceive_dgram: P_CONNREQUIRED"));
3520
3521 /*
3522 * Loop blocking while waiting for a datagram.
3523 */
3524 SOCKBUF_LOCK(&so->so_rcv);
3525 while ((m = so->so_rcv.sb_mb) == NULL) {
3526 KASSERT(sbavail(&so->so_rcv) == 0,
3527 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3528 sbavail(&so->so_rcv)));
3529 if (so->so_error) {
3530 error = so->so_error;
3531 so->so_error = 0;
3532 SOCKBUF_UNLOCK(&so->so_rcv);
3533 return (error);
3534 }
3535 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3536 uio->uio_resid == 0) {
3537 SOCKBUF_UNLOCK(&so->so_rcv);
3538 return (0);
3539 }
3540 if ((so->so_state & SS_NBIO) ||
3541 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3542 SOCKBUF_UNLOCK(&so->so_rcv);
3543 return (EWOULDBLOCK);
3544 }
3545 SBLASTRECORDCHK(&so->so_rcv);
3546 SBLASTMBUFCHK(&so->so_rcv);
3547 error = sbwait(so, SO_RCV);
3548 if (error) {
3549 SOCKBUF_UNLOCK(&so->so_rcv);
3550 return (error);
3551 }
3552 }
3553 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3554
3555 if (uio->uio_td)
3556 uio->uio_td->td_ru.ru_msgrcv++;
3557 SBLASTRECORDCHK(&so->so_rcv);
3558 SBLASTMBUFCHK(&so->so_rcv);
3559 nextrecord = m->m_nextpkt;
3560 if (nextrecord == NULL) {
3561 KASSERT(so->so_rcv.sb_lastrecord == m,
3562 ("soreceive_dgram: lastrecord != m"));
3563 }
3564
3565 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3566 ("soreceive_dgram: m_nextpkt != nextrecord"));
3567
3568 /*
3569 * Pull 'm' and its chain off the front of the packet queue.
3570 */
3571 so->so_rcv.sb_mb = NULL;
3572 sockbuf_pushsync(&so->so_rcv, nextrecord);
3573
3574 /*
3575 * Walk 'm's chain and free that many bytes from the socket buffer.
3576 */
3577 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3578 sbfree(&so->so_rcv, m2);
3579
3580 /*
3581 * Do a few last checks before we let go of the lock.
3582 */
3583 SBLASTRECORDCHK(&so->so_rcv);
3584 SBLASTMBUFCHK(&so->so_rcv);
3585 SOCKBUF_UNLOCK(&so->so_rcv);
3586
3587 if (pr->pr_flags & PR_ADDR) {
3588 KASSERT(m->m_type == MT_SONAME,
3589 ("m->m_type == %d", m->m_type));
3590 if (psa != NULL)
3591 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3592 M_WAITOK);
3593 m = m_free(m);
3594 }
3595 KASSERT(m, ("%s: no data or control after soname", __func__));
3596
3597 /*
3598 * Packet to copyout() is now in 'm' and it is disconnected from the
3599 * queue.
3600 *
3601 * Process one or more MT_CONTROL mbufs present before any data mbufs
3602 * in the first mbuf chain on the socket buffer. We call into the
3603 * protocol to perform externalization (or freeing if controlp ==
3604 * NULL). In some cases there can be only MT_CONTROL mbufs without
3605 * MT_DATA mbufs.
3606 */
3607 if (m->m_type == MT_CONTROL) {
3608 struct mbuf *cm = NULL, *cmn;
3609 struct mbuf **cme = &cm;
3610
3611 do {
3612 m2 = m->m_next;
3613 m->m_next = NULL;
3614 *cme = m;
3615 cme = &(*cme)->m_next;
3616 m = m2;
3617 } while (m != NULL && m->m_type == MT_CONTROL);
3618 while (cm != NULL) {
3619 cmn = cm->m_next;
3620 cm->m_next = NULL;
3621 if (controlp != NULL)
3622 *controlp = cm;
3623 else
3624 m_freem(cm);
3625 if (controlp != NULL) {
3626 while (*controlp != NULL)
3627 controlp = &(*controlp)->m_next;
3628 }
3629 cm = cmn;
3630 }
3631 }
3632 KASSERT(m == NULL || m->m_type == MT_DATA,
3633 ("soreceive_dgram: !data"));
3634 while (m != NULL && uio->uio_resid > 0) {
3635 len = uio->uio_resid;
3636 if (len > m->m_len)
3637 len = m->m_len;
3638 error = uiomove(mtod(m, char *), (int)len, uio);
3639 if (error) {
3640 m_freem(m);
3641 return (error);
3642 }
3643 if (len == m->m_len)
3644 m = m_free(m);
3645 else {
3646 m->m_data += len;
3647 m->m_len -= len;
3648 }
3649 }
3650 if (m != NULL) {
3651 flags |= MSG_TRUNC;
3652 m_freem(m);
3653 }
3654 if (flagsp != NULL)
3655 *flagsp |= flags;
3656 return (0);
3657 }
3658
3659 int
3660 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3661 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3662 {
3663 int error;
3664
3665 CURVNET_SET(so->so_vnet);
3666 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3667 CURVNET_RESTORE();
3668 return (error);
3669 }
3670
3671 int
3672 soshutdown(struct socket *so, enum shutdown_how how)
3673 {
3674 int error;
3675
3676 CURVNET_SET(so->so_vnet);
3677 error = so->so_proto->pr_shutdown(so, how);
3678 CURVNET_RESTORE();
3679
3680 return (error);
3681 }
3682
3683 /*
3684 * Used by several pr_shutdown implementations that use generic socket buffers.
3685 */
3686 void
3687 sorflush(struct socket *so)
3688 {
3689 int error;
3690
3691 VNET_SO_ASSERT(so);
3692
3693 /*
3694 * Dislodge threads currently blocked in receive and wait to acquire
3695 * a lock against other simultaneous readers before clearing the
3696 * socket buffer. Don't let our acquire be interrupted by a signal
3697 * despite any existing socket disposition on interruptable waiting.
3698 *
3699 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3700 * methods that read the top of the socket buffer without acquisition
3701 * of the socket buffer mutex, assuming that top of the buffer
3702 * exclusively belongs to the read(2) syscall. This is handy when
3703 * performing MSG_PEEK.
3704 */
3705 socantrcvmore(so);
3706
3707 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3708 if (error != 0) {
3709 KASSERT(SOLISTENING(so),
3710 ("%s: soiolock(%p) failed", __func__, so));
3711 return;
3712 }
3713
3714 sbrelease(so, SO_RCV);
3715 SOCK_IO_RECV_UNLOCK(so);
3716
3717 }
3718
3719 int
3720 sosetfib(struct socket *so, int fibnum)
3721 {
3722 if (fibnum < 0 || fibnum >= rt_numfibs)
3723 return (EINVAL);
3724
3725 SOCK_LOCK(so);
3726 so->so_fibnum = fibnum;
3727 SOCK_UNLOCK(so);
3728
3729 return (0);
3730 }
3731
3732 #ifdef SOCKET_HHOOK
3733 /*
3734 * Wrapper for Socket established helper hook.
3735 * Parameters: socket, context of the hook point, hook id.
3736 */
3737 static inline int
3738 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3739 {
3740 struct socket_hhook_data hhook_data = {
3741 .so = so,
3742 .hctx = hctx,
3743 .m = NULL,
3744 .status = 0
3745 };
3746
3747 CURVNET_SET(so->so_vnet);
3748 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3749 CURVNET_RESTORE();
3750
3751 /* Ugly but needed, since hhooks return void for now */
3752 return (hhook_data.status);
3753 }
3754 #endif
3755
3756 /*
3757 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3758 * additional variant to handle the case where the option value needs to be
3759 * some kind of integer, but not a specific size. In addition to their use
3760 * here, these functions are also called by the protocol-level pr_ctloutput()
3761 * routines.
3762 */
3763 int
3764 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3765 {
3766 size_t valsize;
3767
3768 /*
3769 * If the user gives us more than we wanted, we ignore it, but if we
3770 * don't get the minimum length the caller wants, we return EINVAL.
3771 * On success, sopt->sopt_valsize is set to however much we actually
3772 * retrieved.
3773 */
3774 if ((valsize = sopt->sopt_valsize) < minlen)
3775 return EINVAL;
3776 if (valsize > len)
3777 sopt->sopt_valsize = valsize = len;
3778
3779 if (sopt->sopt_td != NULL)
3780 return (copyin(sopt->sopt_val, buf, valsize));
3781
3782 bcopy(sopt->sopt_val, buf, valsize);
3783 return (0);
3784 }
3785
3786 /*
3787 * Kernel version of setsockopt(2).
3788 *
3789 * XXX: optlen is size_t, not socklen_t
3790 */
3791 int
3792 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3793 size_t optlen)
3794 {
3795 struct sockopt sopt;
3796
3797 sopt.sopt_level = level;
3798 sopt.sopt_name = optname;
3799 sopt.sopt_dir = SOPT_SET;
3800 sopt.sopt_val = optval;
3801 sopt.sopt_valsize = optlen;
3802 sopt.sopt_td = NULL;
3803 return (sosetopt(so, &sopt));
3804 }
3805
3806 int
3807 sosetopt(struct socket *so, struct sockopt *sopt)
3808 {
3809 int error, optval;
3810 struct linger l;
3811 struct timeval tv;
3812 sbintime_t val, *valp;
3813 uint32_t val32;
3814 #ifdef MAC
3815 struct mac extmac;
3816 #endif
3817
3818 CURVNET_SET(so->so_vnet);
3819 error = 0;
3820 if (sopt->sopt_level != SOL_SOCKET) {
3821 error = so->so_proto->pr_ctloutput(so, sopt);
3822 } else {
3823 switch (sopt->sopt_name) {
3824 case SO_ACCEPTFILTER:
3825 error = accept_filt_setopt(so, sopt);
3826 if (error)
3827 goto bad;
3828 break;
3829
3830 case SO_LINGER:
3831 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3832 if (error)
3833 goto bad;
3834 if (l.l_linger < 0 ||
3835 l.l_linger > USHRT_MAX ||
3836 l.l_linger > (INT_MAX / hz)) {
3837 error = EDOM;
3838 goto bad;
3839 }
3840 SOCK_LOCK(so);
3841 so->so_linger = l.l_linger;
3842 if (l.l_onoff)
3843 so->so_options |= SO_LINGER;
3844 else
3845 so->so_options &= ~SO_LINGER;
3846 SOCK_UNLOCK(so);
3847 break;
3848
3849 case SO_DEBUG:
3850 case SO_KEEPALIVE:
3851 case SO_DONTROUTE:
3852 case SO_USELOOPBACK:
3853 case SO_BROADCAST:
3854 case SO_REUSEADDR:
3855 case SO_REUSEPORT:
3856 case SO_REUSEPORT_LB:
3857 case SO_OOBINLINE:
3858 case SO_TIMESTAMP:
3859 case SO_BINTIME:
3860 case SO_NOSIGPIPE:
3861 case SO_NO_DDP:
3862 case SO_NO_OFFLOAD:
3863 case SO_RERROR:
3864 error = sooptcopyin(sopt, &optval, sizeof optval,
3865 sizeof optval);
3866 if (error)
3867 goto bad;
3868 SOCK_LOCK(so);
3869 if (optval)
3870 so->so_options |= sopt->sopt_name;
3871 else
3872 so->so_options &= ~sopt->sopt_name;
3873 SOCK_UNLOCK(so);
3874 break;
3875
3876 case SO_SETFIB:
3877 error = so->so_proto->pr_ctloutput(so, sopt);
3878 break;
3879
3880 case SO_USER_COOKIE:
3881 error = sooptcopyin(sopt, &val32, sizeof val32,
3882 sizeof val32);
3883 if (error)
3884 goto bad;
3885 so->so_user_cookie = val32;
3886 break;
3887
3888 case SO_SNDBUF:
3889 case SO_RCVBUF:
3890 case SO_SNDLOWAT:
3891 case SO_RCVLOWAT:
3892 error = so->so_proto->pr_setsbopt(so, sopt);
3893 if (error)
3894 goto bad;
3895 break;
3896
3897 case SO_SNDTIMEO:
3898 case SO_RCVTIMEO:
3899 #ifdef COMPAT_FREEBSD32
3900 if (SV_CURPROC_FLAG(SV_ILP32)) {
3901 struct timeval32 tv32;
3902
3903 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3904 sizeof tv32);
3905 CP(tv32, tv, tv_sec);
3906 CP(tv32, tv, tv_usec);
3907 } else
3908 #endif
3909 error = sooptcopyin(sopt, &tv, sizeof tv,
3910 sizeof tv);
3911 if (error)
3912 goto bad;
3913 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3914 tv.tv_usec >= 1000000) {
3915 error = EDOM;
3916 goto bad;
3917 }
3918 if (tv.tv_sec > INT32_MAX)
3919 val = SBT_MAX;
3920 else
3921 val = tvtosbt(tv);
3922 SOCK_LOCK(so);
3923 valp = sopt->sopt_name == SO_SNDTIMEO ?
3924 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3925 &so->so_snd.sb_timeo) :
3926 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3927 &so->so_rcv.sb_timeo);
3928 *valp = val;
3929 SOCK_UNLOCK(so);
3930 break;
3931
3932 case SO_LABEL:
3933 #ifdef MAC
3934 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3935 sizeof extmac);
3936 if (error)
3937 goto bad;
3938 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3939 so, &extmac);
3940 #else
3941 error = EOPNOTSUPP;
3942 #endif
3943 break;
3944
3945 case SO_TS_CLOCK:
3946 error = sooptcopyin(sopt, &optval, sizeof optval,
3947 sizeof optval);
3948 if (error)
3949 goto bad;
3950 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3951 error = EINVAL;
3952 goto bad;
3953 }
3954 so->so_ts_clock = optval;
3955 break;
3956
3957 case SO_MAX_PACING_RATE:
3958 error = sooptcopyin(sopt, &val32, sizeof(val32),
3959 sizeof(val32));
3960 if (error)
3961 goto bad;
3962 so->so_max_pacing_rate = val32;
3963 break;
3964
3965 case SO_SPLICE: {
3966 struct splice splice;
3967
3968 #ifdef COMPAT_FREEBSD32
3969 if (SV_CURPROC_FLAG(SV_ILP32)) {
3970 struct splice32 splice32;
3971
3972 error = sooptcopyin(sopt, &splice32,
3973 sizeof(splice32), sizeof(splice32));
3974 if (error == 0) {
3975 splice.sp_fd = splice32.sp_fd;
3976 splice.sp_max = splice32.sp_max;
3977 CP(splice32.sp_idle, splice.sp_idle,
3978 tv_sec);
3979 CP(splice32.sp_idle, splice.sp_idle,
3980 tv_usec);
3981 }
3982 } else
3983 #endif
3984 {
3985 error = sooptcopyin(sopt, &splice,
3986 sizeof(splice), sizeof(splice));
3987 }
3988 if (error)
3989 goto bad;
3990 #ifdef KTRACE
3991 if (KTRPOINT(curthread, KTR_STRUCT))
3992 ktrsplice(&splice);
3993 #endif
3994
3995 error = splice_init();
3996 if (error != 0)
3997 goto bad;
3998
3999 if (splice.sp_fd >= 0) {
4000 struct file *fp;
4001 struct socket *so2;
4002
4003 if (!cap_rights_contains(sopt->sopt_rights,
4004 &cap_recv_rights)) {
4005 error = ENOTCAPABLE;
4006 goto bad;
4007 }
4008 error = getsock(sopt->sopt_td, splice.sp_fd,
4009 &cap_send_rights, &fp);
4010 if (error != 0)
4011 goto bad;
4012 so2 = fp->f_data;
4013
4014 error = so_splice(so, so2, &splice);
4015 fdrop(fp, sopt->sopt_td);
4016 } else {
4017 error = so_unsplice(so, false);
4018 }
4019 break;
4020 }
4021 default:
4022 #ifdef SOCKET_HHOOK
4023 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4024 error = hhook_run_socket(so, sopt,
4025 HHOOK_SOCKET_OPT);
4026 else
4027 #endif
4028 error = ENOPROTOOPT;
4029 break;
4030 }
4031 if (error == 0)
4032 (void)so->so_proto->pr_ctloutput(so, sopt);
4033 }
4034 bad:
4035 CURVNET_RESTORE();
4036 return (error);
4037 }
4038
4039 /*
4040 * Helper routine for getsockopt.
4041 */
4042 int
4043 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4044 {
4045 int error;
4046 size_t valsize;
4047
4048 error = 0;
4049
4050 /*
4051 * Documented get behavior is that we always return a value, possibly
4052 * truncated to fit in the user's buffer. Traditional behavior is
4053 * that we always tell the user precisely how much we copied, rather
4054 * than something useful like the total amount we had available for
4055 * her. Note that this interface is not idempotent; the entire
4056 * answer must be generated ahead of time.
4057 */
4058 valsize = min(len, sopt->sopt_valsize);
4059 sopt->sopt_valsize = valsize;
4060 if (sopt->sopt_val != NULL) {
4061 if (sopt->sopt_td != NULL)
4062 error = copyout(buf, sopt->sopt_val, valsize);
4063 else
4064 bcopy(buf, sopt->sopt_val, valsize);
4065 }
4066 return (error);
4067 }
4068
4069 int
4070 sogetopt(struct socket *so, struct sockopt *sopt)
4071 {
4072 int error, optval;
4073 struct linger l;
4074 struct timeval tv;
4075 #ifdef MAC
4076 struct mac extmac;
4077 #endif
4078
4079 CURVNET_SET(so->so_vnet);
4080 error = 0;
4081 if (sopt->sopt_level != SOL_SOCKET) {
4082 error = so->so_proto->pr_ctloutput(so, sopt);
4083 CURVNET_RESTORE();
4084 return (error);
4085 } else {
4086 switch (sopt->sopt_name) {
4087 case SO_ACCEPTFILTER:
4088 error = accept_filt_getopt(so, sopt);
4089 break;
4090
4091 case SO_LINGER:
4092 SOCK_LOCK(so);
4093 l.l_onoff = so->so_options & SO_LINGER;
4094 l.l_linger = so->so_linger;
4095 SOCK_UNLOCK(so);
4096 error = sooptcopyout(sopt, &l, sizeof l);
4097 break;
4098
4099 case SO_USELOOPBACK:
4100 case SO_DONTROUTE:
4101 case SO_DEBUG:
4102 case SO_KEEPALIVE:
4103 case SO_REUSEADDR:
4104 case SO_REUSEPORT:
4105 case SO_REUSEPORT_LB:
4106 case SO_BROADCAST:
4107 case SO_OOBINLINE:
4108 case SO_ACCEPTCONN:
4109 case SO_TIMESTAMP:
4110 case SO_BINTIME:
4111 case SO_NOSIGPIPE:
4112 case SO_NO_DDP:
4113 case SO_NO_OFFLOAD:
4114 case SO_RERROR:
4115 optval = so->so_options & sopt->sopt_name;
4116 integer:
4117 error = sooptcopyout(sopt, &optval, sizeof optval);
4118 break;
4119
4120 case SO_FIB:
4121 SOCK_LOCK(so);
4122 optval = so->so_fibnum;
4123 SOCK_UNLOCK(so);
4124 goto integer;
4125
4126 case SO_DOMAIN:
4127 optval = so->so_proto->pr_domain->dom_family;
4128 goto integer;
4129
4130 case SO_TYPE:
4131 optval = so->so_type;
4132 goto integer;
4133
4134 case SO_PROTOCOL:
4135 optval = so->so_proto->pr_protocol;
4136 goto integer;
4137
4138 case SO_ERROR:
4139 SOCK_LOCK(so);
4140 if (so->so_error) {
4141 optval = so->so_error;
4142 so->so_error = 0;
4143 } else {
4144 optval = so->so_rerror;
4145 so->so_rerror = 0;
4146 }
4147 SOCK_UNLOCK(so);
4148 goto integer;
4149
4150 case SO_SNDBUF:
4151 SOCK_LOCK(so);
4152 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4153 so->so_snd.sb_hiwat;
4154 SOCK_UNLOCK(so);
4155 goto integer;
4156
4157 case SO_RCVBUF:
4158 SOCK_LOCK(so);
4159 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4160 so->so_rcv.sb_hiwat;
4161 SOCK_UNLOCK(so);
4162 goto integer;
4163
4164 case SO_SNDLOWAT:
4165 SOCK_LOCK(so);
4166 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4167 so->so_snd.sb_lowat;
4168 SOCK_UNLOCK(so);
4169 goto integer;
4170
4171 case SO_RCVLOWAT:
4172 SOCK_LOCK(so);
4173 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4174 so->so_rcv.sb_lowat;
4175 SOCK_UNLOCK(so);
4176 goto integer;
4177
4178 case SO_SNDTIMEO:
4179 case SO_RCVTIMEO:
4180 SOCK_LOCK(so);
4181 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4182 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4183 so->so_snd.sb_timeo) :
4184 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4185 so->so_rcv.sb_timeo));
4186 SOCK_UNLOCK(so);
4187 #ifdef COMPAT_FREEBSD32
4188 if (SV_CURPROC_FLAG(SV_ILP32)) {
4189 struct timeval32 tv32;
4190
4191 CP(tv, tv32, tv_sec);
4192 CP(tv, tv32, tv_usec);
4193 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4194 } else
4195 #endif
4196 error = sooptcopyout(sopt, &tv, sizeof tv);
4197 break;
4198
4199 case SO_LABEL:
4200 #ifdef MAC
4201 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4202 sizeof(extmac));
4203 if (error)
4204 goto bad;
4205 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4206 so, &extmac);
4207 if (error)
4208 goto bad;
4209 /* Don't copy out extmac, it is unchanged. */
4210 #else
4211 error = EOPNOTSUPP;
4212 #endif
4213 break;
4214
4215 case SO_PEERLABEL:
4216 #ifdef MAC
4217 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4218 sizeof(extmac));
4219 if (error)
4220 goto bad;
4221 error = mac_getsockopt_peerlabel(
4222 sopt->sopt_td->td_ucred, so, &extmac);
4223 if (error)
4224 goto bad;
4225 /* Don't copy out extmac, it is unchanged. */
4226 #else
4227 error = EOPNOTSUPP;
4228 #endif
4229 break;
4230
4231 case SO_LISTENQLIMIT:
4232 SOCK_LOCK(so);
4233 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4234 SOCK_UNLOCK(so);
4235 goto integer;
4236
4237 case SO_LISTENQLEN:
4238 SOCK_LOCK(so);
4239 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4240 SOCK_UNLOCK(so);
4241 goto integer;
4242
4243 case SO_LISTENINCQLEN:
4244 SOCK_LOCK(so);
4245 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4246 SOCK_UNLOCK(so);
4247 goto integer;
4248
4249 case SO_TS_CLOCK:
4250 optval = so->so_ts_clock;
4251 goto integer;
4252
4253 case SO_MAX_PACING_RATE:
4254 optval = so->so_max_pacing_rate;
4255 goto integer;
4256
4257 case SO_SPLICE: {
4258 off_t n;
4259
4260 /*
4261 * Acquire the I/O lock to serialize with
4262 * so_splice_xfer(). This is not required for
4263 * correctness, but makes testing simpler: once a byte
4264 * has been transmitted to the sink and observed (e.g.,
4265 * by reading from the socket to which the sink is
4266 * connected), a subsequent getsockopt(SO_SPLICE) will
4267 * return an up-to-date value.
4268 */
4269 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4270 if (error != 0)
4271 goto bad;
4272 SOCK_LOCK(so);
4273 if (SOLISTENING(so)) {
4274 n = 0;
4275 } else {
4276 n = so->so_splice_sent;
4277 }
4278 SOCK_UNLOCK(so);
4279 SOCK_IO_RECV_UNLOCK(so);
4280 error = sooptcopyout(sopt, &n, sizeof(n));
4281 break;
4282 }
4283
4284 default:
4285 #ifdef SOCKET_HHOOK
4286 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4287 error = hhook_run_socket(so, sopt,
4288 HHOOK_SOCKET_OPT);
4289 else
4290 #endif
4291 error = ENOPROTOOPT;
4292 break;
4293 }
4294 }
4295 bad:
4296 CURVNET_RESTORE();
4297 return (error);
4298 }
4299
4300 int
4301 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4302 {
4303 struct mbuf *m, *m_prev;
4304 int sopt_size = sopt->sopt_valsize;
4305
4306 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4307 if (m == NULL)
4308 return ENOBUFS;
4309 if (sopt_size > MLEN) {
4310 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4311 if ((m->m_flags & M_EXT) == 0) {
4312 m_free(m);
4313 return ENOBUFS;
4314 }
4315 m->m_len = min(MCLBYTES, sopt_size);
4316 } else {
4317 m->m_len = min(MLEN, sopt_size);
4318 }
4319 sopt_size -= m->m_len;
4320 *mp = m;
4321 m_prev = m;
4322
4323 while (sopt_size) {
4324 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4325 if (m == NULL) {
4326 m_freem(*mp);
4327 return ENOBUFS;
4328 }
4329 if (sopt_size > MLEN) {
4330 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4331 M_NOWAIT);
4332 if ((m->m_flags & M_EXT) == 0) {
4333 m_freem(m);
4334 m_freem(*mp);
4335 return ENOBUFS;
4336 }
4337 m->m_len = min(MCLBYTES, sopt_size);
4338 } else {
4339 m->m_len = min(MLEN, sopt_size);
4340 }
4341 sopt_size -= m->m_len;
4342 m_prev->m_next = m;
4343 m_prev = m;
4344 }
4345 return (0);
4346 }
4347
4348 int
4349 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4350 {
4351 struct mbuf *m0 = m;
4352
4353 if (sopt->sopt_val == NULL)
4354 return (0);
4355 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4356 if (sopt->sopt_td != NULL) {
4357 int error;
4358
4359 error = copyin(sopt->sopt_val, mtod(m, char *),
4360 m->m_len);
4361 if (error != 0) {
4362 m_freem(m0);
4363 return(error);
4364 }
4365 } else
4366 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4367 sopt->sopt_valsize -= m->m_len;
4368 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4369 m = m->m_next;
4370 }
4371 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4372 panic("ip6_sooptmcopyin");
4373 return (0);
4374 }
4375
4376 int
4377 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4378 {
4379 struct mbuf *m0 = m;
4380 size_t valsize = 0;
4381
4382 if (sopt->sopt_val == NULL)
4383 return (0);
4384 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4385 if (sopt->sopt_td != NULL) {
4386 int error;
4387
4388 error = copyout(mtod(m, char *), sopt->sopt_val,
4389 m->m_len);
4390 if (error != 0) {
4391 m_freem(m0);
4392 return(error);
4393 }
4394 } else
4395 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4396 sopt->sopt_valsize -= m->m_len;
4397 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4398 valsize += m->m_len;
4399 m = m->m_next;
4400 }
4401 if (m != NULL) {
4402 /* enough soopt buffer should be given from user-land */
4403 m_freem(m0);
4404 return(EINVAL);
4405 }
4406 sopt->sopt_valsize = valsize;
4407 return (0);
4408 }
4409
4410 /*
4411 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4412 * out-of-band data, which will then notify socket consumers.
4413 */
4414 void
4415 sohasoutofband(struct socket *so)
4416 {
4417
4418 if (so->so_sigio != NULL)
4419 pgsigio(&so->so_sigio, SIGURG, 0);
4420 selwakeuppri(&so->so_rdsel, PSOCK);
4421 }
4422
4423 int
4424 sopoll_generic(struct socket *so, int events, struct thread *td)
4425 {
4426 int revents;
4427
4428 SOCK_LOCK(so);
4429 if (SOLISTENING(so)) {
4430 if (!(events & (POLLIN | POLLRDNORM)))
4431 revents = 0;
4432 else if (!TAILQ_EMPTY(&so->sol_comp))
4433 revents = events & (POLLIN | POLLRDNORM);
4434 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4435 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4436 else {
4437 selrecord(td, &so->so_rdsel);
4438 revents = 0;
4439 }
4440 } else {
4441 revents = 0;
4442 SOCK_SENDBUF_LOCK(so);
4443 SOCK_RECVBUF_LOCK(so);
4444 if (events & (POLLIN | POLLRDNORM))
4445 if (soreadabledata(so) && !isspliced(so))
4446 revents |= events & (POLLIN | POLLRDNORM);
4447 if (events & (POLLOUT | POLLWRNORM))
4448 if (sowriteable(so) && !issplicedback(so))
4449 revents |= events & (POLLOUT | POLLWRNORM);
4450 if (events & (POLLPRI | POLLRDBAND))
4451 if (so->so_oobmark ||
4452 (so->so_rcv.sb_state & SBS_RCVATMARK))
4453 revents |= events & (POLLPRI | POLLRDBAND);
4454 if ((events & POLLINIGNEOF) == 0) {
4455 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4456 revents |= events & (POLLIN | POLLRDNORM);
4457 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4458 revents |= POLLHUP;
4459 }
4460 }
4461 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4462 revents |= events & POLLRDHUP;
4463 if (revents == 0) {
4464 if (events &
4465 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4466 selrecord(td, &so->so_rdsel);
4467 so->so_rcv.sb_flags |= SB_SEL;
4468 }
4469 if (events & (POLLOUT | POLLWRNORM)) {
4470 selrecord(td, &so->so_wrsel);
4471 so->so_snd.sb_flags |= SB_SEL;
4472 }
4473 }
4474 SOCK_RECVBUF_UNLOCK(so);
4475 SOCK_SENDBUF_UNLOCK(so);
4476 }
4477 SOCK_UNLOCK(so);
4478 return (revents);
4479 }
4480
4481 int
4482 sokqfilter_generic(struct socket *so, struct knote *kn)
4483 {
4484 struct sockbuf *sb;
4485 sb_which which;
4486 struct knlist *knl;
4487
4488 switch (kn->kn_filter) {
4489 case EVFILT_READ:
4490 kn->kn_fop = &soread_filtops;
4491 knl = &so->so_rdsel.si_note;
4492 sb = &so->so_rcv;
4493 which = SO_RCV;
4494 break;
4495 case EVFILT_WRITE:
4496 kn->kn_fop = &sowrite_filtops;
4497 knl = &so->so_wrsel.si_note;
4498 sb = &so->so_snd;
4499 which = SO_SND;
4500 break;
4501 case EVFILT_EMPTY:
4502 kn->kn_fop = &soempty_filtops;
4503 knl = &so->so_wrsel.si_note;
4504 sb = &so->so_snd;
4505 which = SO_SND;
4506 break;
4507 default:
4508 return (EINVAL);
4509 }
4510
4511 SOCK_LOCK(so);
4512 if (SOLISTENING(so)) {
4513 knlist_add(knl, kn, 1);
4514 } else {
4515 SOCK_BUF_LOCK(so, which);
4516 knlist_add(knl, kn, 1);
4517 sb->sb_flags |= SB_KNOTE;
4518 if ((kn->kn_sfflags & NOTE_LOWAT) &&
4519 (sb->sb_flags & SB_AUTOLOWAT))
4520 sb->sb_flags &= ~SB_AUTOLOWAT;
4521 SOCK_BUF_UNLOCK(so, which);
4522 }
4523 SOCK_UNLOCK(so);
4524 return (0);
4525 }
4526
4527 static void
4528 filt_sordetach(struct knote *kn)
4529 {
4530 struct socket *so = kn->kn_fp->f_data;
4531
4532 so_rdknl_lock(so);
4533 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4534 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4535 so->so_rcv.sb_flags &= ~SB_KNOTE;
4536 so_rdknl_unlock(so);
4537 }
4538
4539 /*ARGSUSED*/
4540 static int
4541 filt_soread(struct knote *kn, long hint)
4542 {
4543 struct socket *so;
4544
4545 so = kn->kn_fp->f_data;
4546
4547 if (SOLISTENING(so)) {
4548 SOCK_LOCK_ASSERT(so);
4549 kn->kn_data = so->sol_qlen;
4550 if (so->so_error) {
4551 kn->kn_flags |= EV_EOF;
4552 kn->kn_fflags = so->so_error;
4553 return (1);
4554 }
4555 return (!TAILQ_EMPTY(&so->sol_comp));
4556 }
4557
4558 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4559 return (0);
4560
4561 SOCK_RECVBUF_LOCK_ASSERT(so);
4562
4563 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4564 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4565 kn->kn_flags |= EV_EOF;
4566 kn->kn_fflags = so->so_error;
4567 return (1);
4568 } else if (so->so_error || so->so_rerror)
4569 return (1);
4570
4571 if (kn->kn_sfflags & NOTE_LOWAT) {
4572 if (kn->kn_data >= kn->kn_sdata)
4573 return (1);
4574 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4575 return (1);
4576
4577 #ifdef SOCKET_HHOOK
4578 /* This hook returning non-zero indicates an event, not error */
4579 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4580 #else
4581 return (0);
4582 #endif
4583 }
4584
4585 static void
4586 filt_sowdetach(struct knote *kn)
4587 {
4588 struct socket *so = kn->kn_fp->f_data;
4589
4590 so_wrknl_lock(so);
4591 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4592 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4593 so->so_snd.sb_flags &= ~SB_KNOTE;
4594 so_wrknl_unlock(so);
4595 }
4596
4597 /*ARGSUSED*/
4598 static int
4599 filt_sowrite(struct knote *kn, long hint)
4600 {
4601 struct socket *so;
4602
4603 so = kn->kn_fp->f_data;
4604
4605 if (SOLISTENING(so))
4606 return (0);
4607
4608 SOCK_SENDBUF_LOCK_ASSERT(so);
4609 kn->kn_data = sbspace(&so->so_snd);
4610
4611 #ifdef SOCKET_HHOOK
4612 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4613 #endif
4614
4615 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4616 kn->kn_flags |= EV_EOF;
4617 kn->kn_fflags = so->so_error;
4618 return (1);
4619 } else if (so->so_error) /* temporary udp error */
4620 return (1);
4621 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4622 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4623 return (0);
4624 else if (kn->kn_sfflags & NOTE_LOWAT)
4625 return (kn->kn_data >= kn->kn_sdata);
4626 else
4627 return (kn->kn_data >= so->so_snd.sb_lowat);
4628 }
4629
4630 static int
4631 filt_soempty(struct knote *kn, long hint)
4632 {
4633 struct socket *so;
4634
4635 so = kn->kn_fp->f_data;
4636
4637 if (SOLISTENING(so))
4638 return (1);
4639
4640 SOCK_SENDBUF_LOCK_ASSERT(so);
4641 kn->kn_data = sbused(&so->so_snd);
4642
4643 if (kn->kn_data == 0)
4644 return (1);
4645 else
4646 return (0);
4647 }
4648
4649 int
4650 socheckuid(struct socket *so, uid_t uid)
4651 {
4652
4653 if (so == NULL)
4654 return (EPERM);
4655 if (so->so_cred->cr_uid != uid)
4656 return (EPERM);
4657 return (0);
4658 }
4659
4660 /*
4661 * These functions are used by protocols to notify the socket layer (and its
4662 * consumers) of state changes in the sockets driven by protocol-side events.
4663 */
4664
4665 /*
4666 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4667 *
4668 * Normal sequence from the active (originating) side is that
4669 * soisconnecting() is called during processing of connect() call, resulting
4670 * in an eventual call to soisconnected() if/when the connection is
4671 * established. When the connection is torn down soisdisconnecting() is
4672 * called during processing of disconnect() call, and soisdisconnected() is
4673 * called when the connection to the peer is totally severed. The semantics
4674 * of these routines are such that connectionless protocols can call
4675 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4676 * calls when setting up a ``connection'' takes no time.
4677 *
4678 * From the passive side, a socket is created with two queues of sockets:
4679 * so_incomp for connections in progress and so_comp for connections already
4680 * made and awaiting user acceptance. As a protocol is preparing incoming
4681 * connections, it creates a socket structure queued on so_incomp by calling
4682 * sonewconn(). When the connection is established, soisconnected() is
4683 * called, and transfers the socket structure to so_comp, making it available
4684 * to accept().
4685 *
4686 * If a socket is closed with sockets on either so_incomp or so_comp, these
4687 * sockets are dropped.
4688 *
4689 * If higher-level protocols are implemented in the kernel, the wakeups done
4690 * here will sometimes cause software-interrupt process scheduling.
4691 */
4692 void
4693 soisconnecting(struct socket *so)
4694 {
4695
4696 SOCK_LOCK(so);
4697 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4698 so->so_state |= SS_ISCONNECTING;
4699 SOCK_UNLOCK(so);
4700 }
4701
4702 void
4703 soisconnected(struct socket *so)
4704 {
4705 bool last __diagused;
4706
4707 SOCK_LOCK(so);
4708 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4709 so->so_state |= SS_ISCONNECTED;
4710
4711 if (so->so_qstate == SQ_INCOMP) {
4712 struct socket *head = so->so_listen;
4713 int ret;
4714
4715 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4716 /*
4717 * Promoting a socket from incomplete queue to complete, we
4718 * need to go through reverse order of locking. We first do
4719 * trylock, and if that doesn't succeed, we go the hard way
4720 * leaving a reference and rechecking consistency after proper
4721 * locking.
4722 */
4723 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4724 soref(head);
4725 SOCK_UNLOCK(so);
4726 SOLISTEN_LOCK(head);
4727 SOCK_LOCK(so);
4728 if (__predict_false(head != so->so_listen)) {
4729 /*
4730 * The socket went off the listen queue,
4731 * should be lost race to close(2) of sol.
4732 * The socket is about to soabort().
4733 */
4734 SOCK_UNLOCK(so);
4735 sorele_locked(head);
4736 return;
4737 }
4738 last = refcount_release(&head->so_count);
4739 KASSERT(!last, ("%s: released last reference for %p",
4740 __func__, head));
4741 }
4742 again:
4743 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4744 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4745 head->sol_incqlen--;
4746 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4747 head->sol_qlen++;
4748 so->so_qstate = SQ_COMP;
4749 SOCK_UNLOCK(so);
4750 solisten_wakeup(head); /* unlocks */
4751 } else {
4752 SOCK_RECVBUF_LOCK(so);
4753 soupcall_set(so, SO_RCV,
4754 head->sol_accept_filter->accf_callback,
4755 head->sol_accept_filter_arg);
4756 so->so_options &= ~SO_ACCEPTFILTER;
4757 ret = head->sol_accept_filter->accf_callback(so,
4758 head->sol_accept_filter_arg, M_NOWAIT);
4759 if (ret == SU_ISCONNECTED) {
4760 soupcall_clear(so, SO_RCV);
4761 SOCK_RECVBUF_UNLOCK(so);
4762 goto again;
4763 }
4764 SOCK_RECVBUF_UNLOCK(so);
4765 SOCK_UNLOCK(so);
4766 SOLISTEN_UNLOCK(head);
4767 }
4768 return;
4769 }
4770 SOCK_UNLOCK(so);
4771 wakeup(&so->so_timeo);
4772 sorwakeup(so);
4773 sowwakeup(so);
4774 }
4775
4776 void
4777 soisdisconnecting(struct socket *so)
4778 {
4779
4780 SOCK_LOCK(so);
4781 so->so_state &= ~SS_ISCONNECTING;
4782 so->so_state |= SS_ISDISCONNECTING;
4783
4784 if (!SOLISTENING(so)) {
4785 SOCK_RECVBUF_LOCK(so);
4786 socantrcvmore_locked(so);
4787 SOCK_SENDBUF_LOCK(so);
4788 socantsendmore_locked(so);
4789 }
4790 SOCK_UNLOCK(so);
4791 wakeup(&so->so_timeo);
4792 }
4793
4794 void
4795 soisdisconnected(struct socket *so)
4796 {
4797
4798 SOCK_LOCK(so);
4799
4800 /*
4801 * There is at least one reader of so_state that does not
4802 * acquire socket lock, namely soreceive_generic(). Ensure
4803 * that it never sees all flags that track connection status
4804 * cleared, by ordering the update with a barrier semantic of
4805 * our release thread fence.
4806 */
4807 so->so_state |= SS_ISDISCONNECTED;
4808 atomic_thread_fence_rel();
4809 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4810
4811 if (!SOLISTENING(so)) {
4812 SOCK_UNLOCK(so);
4813 SOCK_RECVBUF_LOCK(so);
4814 socantrcvmore_locked(so);
4815 SOCK_SENDBUF_LOCK(so);
4816 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4817 socantsendmore_locked(so);
4818 } else
4819 SOCK_UNLOCK(so);
4820 wakeup(&so->so_timeo);
4821 }
4822
4823 int
4824 soiolock(struct socket *so, struct sx *sx, int flags)
4825 {
4826 int error;
4827
4828 KASSERT((flags & SBL_VALID) == flags,
4829 ("soiolock: invalid flags %#x", flags));
4830
4831 if ((flags & SBL_WAIT) != 0) {
4832 if ((flags & SBL_NOINTR) != 0) {
4833 sx_xlock(sx);
4834 } else {
4835 error = sx_xlock_sig(sx);
4836 if (error != 0)
4837 return (error);
4838 }
4839 } else if (!sx_try_xlock(sx)) {
4840 return (EWOULDBLOCK);
4841 }
4842
4843 if (__predict_false(SOLISTENING(so))) {
4844 sx_xunlock(sx);
4845 return (ENOTCONN);
4846 }
4847 return (0);
4848 }
4849
4850 void
4851 soiounlock(struct sx *sx)
4852 {
4853 sx_xunlock(sx);
4854 }
4855
4856 /*
4857 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4858 */
4859 struct sockaddr *
4860 sodupsockaddr(const struct sockaddr *sa, int mflags)
4861 {
4862 struct sockaddr *sa2;
4863
4864 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4865 if (sa2)
4866 bcopy(sa, sa2, sa->sa_len);
4867 return sa2;
4868 }
4869
4870 /*
4871 * Register per-socket destructor.
4872 */
4873 void
4874 sodtor_set(struct socket *so, so_dtor_t *func)
4875 {
4876
4877 SOCK_LOCK_ASSERT(so);
4878 so->so_dtor = func;
4879 }
4880
4881 /*
4882 * Register per-socket buffer upcalls.
4883 */
4884 void
4885 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4886 {
4887 struct sockbuf *sb;
4888
4889 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4890
4891 switch (which) {
4892 case SO_RCV:
4893 sb = &so->so_rcv;
4894 break;
4895 case SO_SND:
4896 sb = &so->so_snd;
4897 break;
4898 }
4899 SOCK_BUF_LOCK_ASSERT(so, which);
4900 sb->sb_upcall = func;
4901 sb->sb_upcallarg = arg;
4902 sb->sb_flags |= SB_UPCALL;
4903 }
4904
4905 void
4906 soupcall_clear(struct socket *so, sb_which which)
4907 {
4908 struct sockbuf *sb;
4909
4910 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4911
4912 switch (which) {
4913 case SO_RCV:
4914 sb = &so->so_rcv;
4915 break;
4916 case SO_SND:
4917 sb = &so->so_snd;
4918 break;
4919 }
4920 SOCK_BUF_LOCK_ASSERT(so, which);
4921 KASSERT(sb->sb_upcall != NULL,
4922 ("%s: so %p no upcall to clear", __func__, so));
4923 sb->sb_upcall = NULL;
4924 sb->sb_upcallarg = NULL;
4925 sb->sb_flags &= ~SB_UPCALL;
4926 }
4927
4928 void
4929 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4930 {
4931
4932 SOLISTEN_LOCK_ASSERT(so);
4933 so->sol_upcall = func;
4934 so->sol_upcallarg = arg;
4935 }
4936
4937 static void
4938 so_rdknl_lock(void *arg)
4939 {
4940 struct socket *so = arg;
4941
4942 retry:
4943 if (SOLISTENING(so)) {
4944 SOLISTEN_LOCK(so);
4945 } else {
4946 SOCK_RECVBUF_LOCK(so);
4947 if (__predict_false(SOLISTENING(so))) {
4948 SOCK_RECVBUF_UNLOCK(so);
4949 goto retry;
4950 }
4951 }
4952 }
4953
4954 static void
4955 so_rdknl_unlock(void *arg)
4956 {
4957 struct socket *so = arg;
4958
4959 if (SOLISTENING(so))
4960 SOLISTEN_UNLOCK(so);
4961 else
4962 SOCK_RECVBUF_UNLOCK(so);
4963 }
4964
4965 static void
4966 so_rdknl_assert_lock(void *arg, int what)
4967 {
4968 struct socket *so = arg;
4969
4970 if (what == LA_LOCKED) {
4971 if (SOLISTENING(so))
4972 SOLISTEN_LOCK_ASSERT(so);
4973 else
4974 SOCK_RECVBUF_LOCK_ASSERT(so);
4975 } else {
4976 if (SOLISTENING(so))
4977 SOLISTEN_UNLOCK_ASSERT(so);
4978 else
4979 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4980 }
4981 }
4982
4983 static void
4984 so_wrknl_lock(void *arg)
4985 {
4986 struct socket *so = arg;
4987
4988 retry:
4989 if (SOLISTENING(so)) {
4990 SOLISTEN_LOCK(so);
4991 } else {
4992 SOCK_SENDBUF_LOCK(so);
4993 if (__predict_false(SOLISTENING(so))) {
4994 SOCK_SENDBUF_UNLOCK(so);
4995 goto retry;
4996 }
4997 }
4998 }
4999
5000 static void
5001 so_wrknl_unlock(void *arg)
5002 {
5003 struct socket *so = arg;
5004
5005 if (SOLISTENING(so))
5006 SOLISTEN_UNLOCK(so);
5007 else
5008 SOCK_SENDBUF_UNLOCK(so);
5009 }
5010
5011 static void
5012 so_wrknl_assert_lock(void *arg, int what)
5013 {
5014 struct socket *so = arg;
5015
5016 if (what == LA_LOCKED) {
5017 if (SOLISTENING(so))
5018 SOLISTEN_LOCK_ASSERT(so);
5019 else
5020 SOCK_SENDBUF_LOCK_ASSERT(so);
5021 } else {
5022 if (SOLISTENING(so))
5023 SOLISTEN_UNLOCK_ASSERT(so);
5024 else
5025 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5026 }
5027 }
5028
5029 /*
5030 * Create an external-format (``xsocket'') structure using the information in
5031 * the kernel-format socket structure pointed to by so. This is done to
5032 * reduce the spew of irrelevant information over this interface, to isolate
5033 * user code from changes in the kernel structure, and potentially to provide
5034 * information-hiding if we decide that some of this information should be
5035 * hidden from users.
5036 */
5037 void
5038 sotoxsocket(struct socket *so, struct xsocket *xso)
5039 {
5040
5041 bzero(xso, sizeof(*xso));
5042 xso->xso_len = sizeof *xso;
5043 xso->xso_so = (uintptr_t)so;
5044 xso->so_type = so->so_type;
5045 xso->so_options = so->so_options;
5046 xso->so_linger = so->so_linger;
5047 xso->so_state = so->so_state;
5048 xso->so_pcb = (uintptr_t)so->so_pcb;
5049 xso->xso_protocol = so->so_proto->pr_protocol;
5050 xso->xso_family = so->so_proto->pr_domain->dom_family;
5051 xso->so_timeo = so->so_timeo;
5052 xso->so_error = so->so_error;
5053 xso->so_uid = so->so_cred->cr_uid;
5054 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5055 SOCK_LOCK(so);
5056 xso->so_fibnum = so->so_fibnum;
5057 if (SOLISTENING(so)) {
5058 xso->so_qlen = so->sol_qlen;
5059 xso->so_incqlen = so->sol_incqlen;
5060 xso->so_qlimit = so->sol_qlimit;
5061 xso->so_oobmark = 0;
5062 } else {
5063 xso->so_state |= so->so_qstate;
5064 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5065 xso->so_oobmark = so->so_oobmark;
5066 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5067 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5068 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5069 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5070 }
5071 SOCK_UNLOCK(so);
5072 }
5073
5074 int
5075 so_options_get(const struct socket *so)
5076 {
5077
5078 return (so->so_options);
5079 }
5080
5081 void
5082 so_options_set(struct socket *so, int val)
5083 {
5084
5085 so->so_options = val;
5086 }
5087
5088 int
5089 so_error_get(const struct socket *so)
5090 {
5091
5092 return (so->so_error);
5093 }
5094
5095 void
5096 so_error_set(struct socket *so, int val)
5097 {
5098
5099 so->so_error = val;
5100 }
5101