1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2017-2022 Linaro Ltd
4 * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
5 * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
6 */
7 #include <linux/bits.h>
8 #include <linux/bitfield.h>
9 #include <linux/led-class-multicolor.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/pwm.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/soc/qcom/qcom-pbs.h>
18
19 #define LPG_SUBTYPE_REG 0x05
20 #define LPG_SUBTYPE_LPG 0x2
21 #define LPG_SUBTYPE_PWM 0xb
22 #define LPG_SUBTYPE_HI_RES_PWM 0xc
23 #define LPG_SUBTYPE_LPG_LITE 0x11
24 #define LPG_PATTERN_CONFIG_REG 0x40
25 #define LPG_SIZE_CLK_REG 0x41
26 #define PWM_CLK_SELECT_MASK GENMASK(1, 0)
27 #define PWM_CLK_SELECT_HI_RES_MASK GENMASK(2, 0)
28 #define PWM_SIZE_HI_RES_MASK GENMASK(6, 4)
29 #define LPG_PREDIV_CLK_REG 0x42
30 #define PWM_FREQ_PRE_DIV_MASK GENMASK(6, 5)
31 #define PWM_FREQ_EXP_MASK GENMASK(2, 0)
32 #define PWM_TYPE_CONFIG_REG 0x43
33 #define PWM_VALUE_REG 0x44
34 #define PWM_ENABLE_CONTROL_REG 0x46
35 #define PWM_SYNC_REG 0x47
36 #define LPG_RAMP_DURATION_REG 0x50
37 #define LPG_HI_PAUSE_REG 0x52
38 #define LPG_LO_PAUSE_REG 0x54
39 #define LPG_HI_IDX_REG 0x56
40 #define LPG_LO_IDX_REG 0x57
41 #define PWM_SEC_ACCESS_REG 0xd0
42 #define PWM_DTEST_REG(x) (0xe2 + (x) - 1)
43
44 #define SDAM_REG_PBS_SEQ_EN 0x42
45 #define SDAM_PBS_TRIG_SET 0xe5
46 #define SDAM_PBS_TRIG_CLR 0xe6
47
48 #define TRI_LED_SRC_SEL 0x45
49 #define TRI_LED_EN_CTL 0x46
50 #define TRI_LED_ATC_CTL 0x47
51
52 #define LPG_LUT_REG(x) (0x40 + (x) * 2)
53 #define RAMP_CONTROL_REG 0xc8
54
55 #define LPG_RESOLUTION_9BIT BIT(9)
56 #define LPG_RESOLUTION_15BIT BIT(15)
57 #define PPG_MAX_LED_BRIGHTNESS 255
58
59 #define LPG_MAX_M 7
60 #define LPG_MAX_PREDIV 6
61
62 #define DEFAULT_TICK_DURATION_US 7800
63 #define RAMP_STEP_DURATION(x) (((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff)
64
65 #define SDAM_MAX_DEVICES 2
66 /* LPG common config settings for PPG */
67 #define SDAM_START_BASE 0x40
68 #define SDAM_REG_RAMP_STEP_DURATION 0x47
69
70 #define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET 0x45
71 #define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET 0x80
72
73 /* LPG per channel config settings for PPG */
74 #define SDAM_LUT_EN_OFFSET 0x0
75 #define SDAM_PATTERN_CONFIG_OFFSET 0x1
76 #define SDAM_END_INDEX_OFFSET 0x3
77 #define SDAM_START_INDEX_OFFSET 0x4
78 #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET 0x6
79 #define SDAM_PAUSE_HI_MULTIPLIER_OFFSET 0x8
80 #define SDAM_PAUSE_LO_MULTIPLIER_OFFSET 0x9
81
82 struct lpg_channel;
83 struct lpg_data;
84
85 /**
86 * struct lpg - LPG device context
87 * @dev: pointer to LPG device
88 * @map: regmap for register access
89 * @lock: used to synchronize LED and pwm callback requests
90 * @pwm: PWM-chip object, if operating in PWM mode
91 * @data: reference to version specific data
92 * @lut_base: base address of the LUT block (optional)
93 * @lut_size: number of entries in the LUT block
94 * @lut_bitmap: allocation bitmap for LUT entries
95 * @pbs_dev: PBS device
96 * @lpg_chan_sdam: LPG SDAM peripheral device
97 * @lut_sdam: LUT SDAM peripheral device
98 * @pbs_en_bitmap: bitmap for tracking PBS triggers
99 * @triled_base: base address of the TRILED block (optional)
100 * @triled_src: power-source for the TRILED
101 * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
102 * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
103 * @channels: list of PWM channels
104 * @num_channels: number of @channels
105 */
106 struct lpg {
107 struct device *dev;
108 struct regmap *map;
109
110 struct mutex lock;
111
112 struct pwm_chip *pwm;
113
114 const struct lpg_data *data;
115
116 u32 lut_base;
117 u32 lut_size;
118 unsigned long *lut_bitmap;
119
120 struct pbs_dev *pbs_dev;
121 struct nvmem_device *lpg_chan_sdam;
122 struct nvmem_device *lut_sdam;
123 unsigned long pbs_en_bitmap;
124
125 u32 triled_base;
126 u32 triled_src;
127 bool triled_has_atc_ctl;
128 bool triled_has_src_sel;
129
130 struct lpg_channel *channels;
131 unsigned int num_channels;
132 };
133
134 /**
135 * struct lpg_channel - per channel data
136 * @lpg: reference to parent lpg
137 * @base: base address of the PWM channel
138 * @triled_mask: mask in TRILED to enable this channel
139 * @lut_mask: mask in LUT to start pattern generator for this channel
140 * @subtype: PMIC hardware block subtype
141 * @sdam_offset: channel offset in LPG SDAM
142 * @in_use: channel is exposed to LED framework
143 * @color: color of the LED attached to this channel
144 * @dtest_line: DTEST line for output, or 0 if disabled
145 * @dtest_value: DTEST line configuration
146 * @pwm_value: duty (in microseconds) of the generated pulses, overridden by LUT
147 * @enabled: output enabled?
148 * @period: period (in nanoseconds) of the generated pulses
149 * @clk_sel: reference clock frequency selector
150 * @pre_div_sel: divider selector of the reference clock
151 * @pre_div_exp: exponential divider of the reference clock
152 * @pwm_resolution_sel: pwm resolution selector
153 * @ramp_enabled: duty cycle is driven by iterating over lookup table
154 * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
155 * @ramp_oneshot: perform only a single pass over the pattern
156 * @ramp_reverse: iterate over pattern backwards
157 * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
158 * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
159 * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
160 * @pattern_lo_idx: start index of associated pattern
161 * @pattern_hi_idx: last index of associated pattern
162 */
163 struct lpg_channel {
164 struct lpg *lpg;
165
166 u32 base;
167 unsigned int triled_mask;
168 unsigned int lut_mask;
169 unsigned int subtype;
170 u32 sdam_offset;
171
172 bool in_use;
173
174 int color;
175
176 u32 dtest_line;
177 u32 dtest_value;
178
179 u16 pwm_value;
180 bool enabled;
181
182 u64 period;
183 unsigned int clk_sel;
184 unsigned int pre_div_sel;
185 unsigned int pre_div_exp;
186 unsigned int pwm_resolution_sel;
187
188 bool ramp_enabled;
189 bool ramp_ping_pong;
190 bool ramp_oneshot;
191 bool ramp_reverse;
192 unsigned short ramp_tick_ms;
193 unsigned long ramp_lo_pause_ms;
194 unsigned long ramp_hi_pause_ms;
195
196 unsigned int pattern_lo_idx;
197 unsigned int pattern_hi_idx;
198 };
199
200 /**
201 * struct lpg_led - logical LED object
202 * @lpg: lpg context reference
203 * @cdev: LED class device
204 * @mcdev: Multicolor LED class device
205 * @num_channels: number of @channels
206 * @channels: list of channels associated with the LED
207 */
208 struct lpg_led {
209 struct lpg *lpg;
210
211 struct led_classdev cdev;
212 struct led_classdev_mc mcdev;
213
214 unsigned int num_channels;
215 struct lpg_channel *channels[] __counted_by(num_channels);
216 };
217
218 /**
219 * struct lpg_channel_data - per channel initialization data
220 * @sdam_offset: Channel offset in LPG SDAM
221 * @base: base address for PWM channel registers
222 * @triled_mask: bitmask for controlling this channel in TRILED
223 */
224 struct lpg_channel_data {
225 unsigned int sdam_offset;
226 unsigned int base;
227 u8 triled_mask;
228 };
229
230 /**
231 * struct lpg_data - initialization data
232 * @lut_base: base address of LUT block
233 * @lut_size: number of entries in LUT
234 * @triled_base: base address of TRILED
235 * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
236 * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
237 * @num_channels: number of channels in LPG
238 * @channels: list of channel initialization data
239 */
240 struct lpg_data {
241 unsigned int lut_base;
242 unsigned int lut_size;
243 unsigned int triled_base;
244 bool triled_has_atc_ctl;
245 bool triled_has_src_sel;
246 int num_channels;
247 const struct lpg_channel_data *channels;
248 };
249
250 #define PBS_SW_TRIG_BIT BIT(0)
251
lpg_clear_pbs_trigger(struct lpg * lpg,unsigned int lut_mask)252 static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
253 {
254 u8 val = 0;
255 int rc;
256
257 if (!lpg->lpg_chan_sdam)
258 return 0;
259
260 lpg->pbs_en_bitmap &= (~lut_mask);
261 if (!lpg->pbs_en_bitmap) {
262 rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
263 if (rc < 0)
264 return rc;
265
266 if (lpg->lut_sdam) {
267 val = PBS_SW_TRIG_BIT;
268 rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val);
269 if (rc < 0)
270 return rc;
271 }
272 }
273
274 return 0;
275 }
276
lpg_set_pbs_trigger(struct lpg * lpg,unsigned int lut_mask)277 static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
278 {
279 u8 val = PBS_SW_TRIG_BIT;
280 int rc;
281
282 if (!lpg->lpg_chan_sdam)
283 return 0;
284
285 if (!lpg->pbs_en_bitmap) {
286 rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
287 if (rc < 0)
288 return rc;
289
290 if (lpg->lut_sdam) {
291 rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val);
292 if (rc < 0)
293 return rc;
294 } else {
295 rc = qcom_pbs_trigger_event(lpg->pbs_dev, val);
296 if (rc < 0)
297 return rc;
298 }
299 }
300 lpg->pbs_en_bitmap |= lut_mask;
301
302 return 0;
303 }
304
lpg_sdam_configure_triggers(struct lpg_channel * chan,u8 set_trig)305 static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig)
306 {
307 u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset;
308
309 if (!chan->lpg->lpg_chan_sdam)
310 return 0;
311
312 return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig);
313 }
314
triled_set(struct lpg * lpg,unsigned int mask,unsigned int enable)315 static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
316 {
317 /* Skip if we don't have a triled block */
318 if (!lpg->triled_base)
319 return 0;
320
321 return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
322 mask, enable);
323 }
324
lpg_lut_store_sdam(struct lpg * lpg,struct led_pattern * pattern,size_t len,unsigned int * lo_idx,unsigned int * hi_idx)325 static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern,
326 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
327 {
328 unsigned int idx;
329 u8 brightness;
330 int i, rc;
331 u16 addr;
332
333 if (len > lpg->lut_size) {
334 dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n",
335 len, lpg->lut_size);
336 return -EINVAL;
337 }
338
339 idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0);
340 if (idx >= lpg->lut_size)
341 return -ENOSPC;
342
343 for (i = 0; i < len; i++) {
344 brightness = pattern[i].brightness;
345
346 if (lpg->lut_sdam) {
347 addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx;
348 rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness);
349 } else {
350 addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx;
351 rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness);
352 }
353
354 if (rc < 0)
355 return rc;
356 }
357
358 bitmap_set(lpg->lut_bitmap, idx, len);
359
360 *lo_idx = idx;
361 *hi_idx = idx + len - 1;
362
363 return 0;
364 }
365
lpg_lut_store(struct lpg * lpg,struct led_pattern * pattern,size_t len,unsigned int * lo_idx,unsigned int * hi_idx)366 static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
367 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
368 {
369 unsigned int idx;
370 u16 val;
371 int i;
372
373 idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
374 0, len, 0);
375 if (idx >= lpg->lut_size)
376 return -ENOMEM;
377
378 for (i = 0; i < len; i++) {
379 val = pattern[i].brightness;
380
381 regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
382 &val, sizeof(val));
383 }
384
385 bitmap_set(lpg->lut_bitmap, idx, len);
386
387 *lo_idx = idx;
388 *hi_idx = idx + len - 1;
389
390 return 0;
391 }
392
lpg_lut_free(struct lpg * lpg,unsigned int lo_idx,unsigned int hi_idx)393 static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
394 {
395 int len;
396
397 len = hi_idx - lo_idx + 1;
398 if (len == 1)
399 return;
400
401 bitmap_clear(lpg->lut_bitmap, lo_idx, len);
402 }
403
lpg_lut_sync(struct lpg * lpg,unsigned int mask)404 static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
405 {
406 if (!lpg->lut_base)
407 return 0;
408
409 return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
410 }
411
412 static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
413 static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000};
414 static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
415 static const unsigned int lpg_pwm_resolution[] = {9};
416 static const unsigned int lpg_pwm_resolution_hi_res[] = {8, 9, 10, 11, 12, 13, 14, 15};
417
lpg_calc_freq(struct lpg_channel * chan,uint64_t period)418 static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
419 {
420 unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0;
421 const unsigned int *clk_rate_arr, *pwm_resolution_arr;
422 unsigned int clk_sel, clk_len, best_clk = 0;
423 unsigned int div, best_div = 0;
424 unsigned int m, best_m = 0;
425 unsigned int resolution;
426 unsigned int error;
427 unsigned int best_err = UINT_MAX;
428 u64 max_period, min_period;
429 u64 best_period = 0;
430 u64 max_res;
431
432 /*
433 * The PWM period is determined by:
434 *
435 * resolution * pre_div * 2^M
436 * period = --------------------------
437 * refclk
438 *
439 * Resolution = 2^9 bits for PWM or
440 * 2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM
441 * pre_div = {1, 3, 5, 6} and
442 * M = [0..7].
443 *
444 * This allows for periods between 27uS and 384s for PWM channels and periods between
445 * 3uS and 24576s for high resolution PWMs.
446 * The PWM framework wants a period of equal or lower length than requested,
447 * reject anything below minimum period.
448 */
449
450 if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
451 clk_rate_arr = lpg_clk_rates_hi_res;
452 clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res);
453 pwm_resolution_arr = lpg_pwm_resolution_hi_res;
454 pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res);
455 max_res = LPG_RESOLUTION_15BIT;
456 } else {
457 clk_rate_arr = lpg_clk_rates;
458 clk_len = ARRAY_SIZE(lpg_clk_rates);
459 pwm_resolution_arr = lpg_pwm_resolution;
460 pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution);
461 max_res = LPG_RESOLUTION_9BIT;
462 }
463
464 min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]),
465 clk_rate_arr[clk_len - 1]);
466 if (period <= min_period)
467 return -EINVAL;
468
469 /* Limit period to largest possible value, to avoid overflows */
470 max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M),
471 1024);
472 if (period > max_period)
473 period = max_period;
474
475 /*
476 * Search for the pre_div, refclk, resolution and M by solving the rewritten formula
477 * for each refclk, resolution and pre_div value:
478 *
479 * period * refclk
480 * M = log2 -------------------------------------
481 * NSEC_PER_SEC * pre_div * resolution
482 */
483
484 for (i = 0; i < pwm_resolution_count; i++) {
485 resolution = 1 << pwm_resolution_arr[i];
486 for (clk_sel = 1; clk_sel < clk_len; clk_sel++) {
487 u64 numerator = period * clk_rate_arr[clk_sel];
488
489 for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
490 u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] *
491 resolution;
492 u64 actual;
493 u64 ratio;
494
495 if (numerator < denominator)
496 continue;
497
498 ratio = div64_u64(numerator, denominator);
499 m = ilog2(ratio);
500 if (m > LPG_MAX_M)
501 m = LPG_MAX_M;
502
503 actual = DIV_ROUND_UP_ULL(denominator * (1 << m),
504 clk_rate_arr[clk_sel]);
505 error = period - actual;
506 if (error < best_err) {
507 best_err = error;
508 best_div = div;
509 best_m = m;
510 best_clk = clk_sel;
511 best_period = actual;
512 best_pwm_resolution_sel = i;
513 }
514 }
515 }
516 }
517 chan->clk_sel = best_clk;
518 chan->pre_div_sel = best_div;
519 chan->pre_div_exp = best_m;
520 chan->period = best_period;
521 chan->pwm_resolution_sel = best_pwm_resolution_sel;
522 return 0;
523 }
524
lpg_calc_duty(struct lpg_channel * chan,uint64_t duty)525 static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
526 {
527 unsigned int max;
528 unsigned int val;
529 unsigned int clk_rate;
530
531 if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
532 max = LPG_RESOLUTION_15BIT - 1;
533 clk_rate = lpg_clk_rates_hi_res[chan->clk_sel];
534 } else {
535 max = LPG_RESOLUTION_9BIT - 1;
536 clk_rate = lpg_clk_rates[chan->clk_sel];
537 }
538
539 val = div64_u64(duty * clk_rate,
540 (u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
541
542 chan->pwm_value = min(val, max);
543 }
544
lpg_apply_freq(struct lpg_channel * chan)545 static void lpg_apply_freq(struct lpg_channel *chan)
546 {
547 unsigned long val;
548 struct lpg *lpg = chan->lpg;
549
550 if (!chan->enabled)
551 return;
552
553 val = chan->clk_sel;
554
555 /* Specify resolution, based on the subtype of the channel */
556 switch (chan->subtype) {
557 case LPG_SUBTYPE_LPG:
558 val |= GENMASK(5, 4);
559 break;
560 case LPG_SUBTYPE_PWM:
561 val |= BIT(2);
562 break;
563 case LPG_SUBTYPE_HI_RES_PWM:
564 val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel);
565 break;
566 case LPG_SUBTYPE_LPG_LITE:
567 default:
568 val |= BIT(4);
569 break;
570 }
571
572 regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
573
574 val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
575 FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
576 regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
577 }
578
579 #define LPG_ENABLE_GLITCH_REMOVAL BIT(5)
580
lpg_enable_glitch(struct lpg_channel * chan)581 static void lpg_enable_glitch(struct lpg_channel *chan)
582 {
583 struct lpg *lpg = chan->lpg;
584
585 regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
586 LPG_ENABLE_GLITCH_REMOVAL, 0);
587 }
588
lpg_disable_glitch(struct lpg_channel * chan)589 static void lpg_disable_glitch(struct lpg_channel *chan)
590 {
591 struct lpg *lpg = chan->lpg;
592
593 regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
594 LPG_ENABLE_GLITCH_REMOVAL,
595 LPG_ENABLE_GLITCH_REMOVAL);
596 }
597
lpg_apply_pwm_value(struct lpg_channel * chan)598 static void lpg_apply_pwm_value(struct lpg_channel *chan)
599 {
600 struct lpg *lpg = chan->lpg;
601 u16 val = chan->pwm_value;
602
603 if (!chan->enabled)
604 return;
605
606 regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
607 }
608
609 #define LPG_PATTERN_CONFIG_LO_TO_HI BIT(4)
610 #define LPG_PATTERN_CONFIG_REPEAT BIT(3)
611 #define LPG_PATTERN_CONFIG_TOGGLE BIT(2)
612 #define LPG_PATTERN_CONFIG_PAUSE_HI BIT(1)
613 #define LPG_PATTERN_CONFIG_PAUSE_LO BIT(0)
614
lpg_sdam_apply_lut_control(struct lpg_channel * chan)615 static void lpg_sdam_apply_lut_control(struct lpg_channel *chan)
616 {
617 struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam;
618 unsigned int lo_idx = chan->pattern_lo_idx;
619 unsigned int hi_idx = chan->pattern_hi_idx;
620 u8 val = 0, conf = 0, lut_offset = 0;
621 unsigned int hi_pause, lo_pause;
622 struct lpg *lpg = chan->lpg;
623
624 if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
625 return;
626
627 hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms);
628 lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms);
629
630 if (!chan->ramp_oneshot)
631 conf |= LPG_PATTERN_CONFIG_REPEAT;
632 if (chan->ramp_hi_pause_ms && lpg->lut_sdam)
633 conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
634 if (chan->ramp_lo_pause_ms && lpg->lut_sdam)
635 conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
636
637 if (lpg->lut_sdam) {
638 lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE;
639 hi_idx += lut_offset;
640 lo_idx += lut_offset;
641 }
642
643 nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
644 nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf);
645 nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx);
646 nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx);
647
648 val = RAMP_STEP_DURATION(chan->ramp_tick_ms);
649 nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val);
650
651 if (lpg->lut_sdam) {
652 nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause);
653 nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause);
654 }
655
656 }
657
lpg_apply_lut_control(struct lpg_channel * chan)658 static void lpg_apply_lut_control(struct lpg_channel *chan)
659 {
660 struct lpg *lpg = chan->lpg;
661 unsigned int hi_pause;
662 unsigned int lo_pause;
663 unsigned int conf = 0;
664 unsigned int lo_idx = chan->pattern_lo_idx;
665 unsigned int hi_idx = chan->pattern_hi_idx;
666 u16 step = chan->ramp_tick_ms;
667
668 if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
669 return;
670
671 hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
672 lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
673
674 if (!chan->ramp_reverse)
675 conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
676 if (!chan->ramp_oneshot)
677 conf |= LPG_PATTERN_CONFIG_REPEAT;
678 if (chan->ramp_ping_pong)
679 conf |= LPG_PATTERN_CONFIG_TOGGLE;
680 if (chan->ramp_hi_pause_ms)
681 conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
682 if (chan->ramp_lo_pause_ms)
683 conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
684
685 regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
686 regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
687 regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
688
689 regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
690 regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
691 regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
692 }
693
694 #define LPG_ENABLE_CONTROL_OUTPUT BIT(7)
695 #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE BIT(5)
696 #define LPG_ENABLE_CONTROL_SRC_PWM BIT(2)
697 #define LPG_ENABLE_CONTROL_RAMP_GEN BIT(1)
698
lpg_apply_control(struct lpg_channel * chan)699 static void lpg_apply_control(struct lpg_channel *chan)
700 {
701 unsigned int ctrl;
702 struct lpg *lpg = chan->lpg;
703
704 ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
705
706 if (chan->enabled)
707 ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
708
709 if (chan->pattern_lo_idx != chan->pattern_hi_idx)
710 ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
711 else
712 ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
713
714 regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
715
716 /*
717 * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
718 * We have to write PWM values one more time.
719 */
720 if (chan->enabled)
721 lpg_apply_pwm_value(chan);
722 }
723
724 #define LPG_SYNC_PWM BIT(0)
725
lpg_apply_sync(struct lpg_channel * chan)726 static void lpg_apply_sync(struct lpg_channel *chan)
727 {
728 struct lpg *lpg = chan->lpg;
729
730 regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
731 }
732
lpg_parse_dtest(struct lpg * lpg)733 static int lpg_parse_dtest(struct lpg *lpg)
734 {
735 struct lpg_channel *chan;
736 struct device_node *np = lpg->dev->of_node;
737 int count;
738 int ret;
739 int i;
740
741 count = of_property_count_u32_elems(np, "qcom,dtest");
742 if (count == -EINVAL) {
743 return 0;
744 } else if (count < 0) {
745 ret = count;
746 goto err_malformed;
747 } else if (count != lpg->data->num_channels * 2) {
748 return dev_err_probe(lpg->dev, -EINVAL,
749 "qcom,dtest needs to be %d items\n",
750 lpg->data->num_channels * 2);
751 }
752
753 for (i = 0; i < lpg->data->num_channels; i++) {
754 chan = &lpg->channels[i];
755
756 ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
757 &chan->dtest_line);
758 if (ret)
759 goto err_malformed;
760
761 ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
762 &chan->dtest_value);
763 if (ret)
764 goto err_malformed;
765 }
766
767 return 0;
768
769 err_malformed:
770 return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n");
771 }
772
lpg_apply_dtest(struct lpg_channel * chan)773 static void lpg_apply_dtest(struct lpg_channel *chan)
774 {
775 struct lpg *lpg = chan->lpg;
776
777 if (!chan->dtest_line)
778 return;
779
780 regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
781 regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
782 chan->dtest_value);
783 }
784
lpg_apply(struct lpg_channel * chan)785 static void lpg_apply(struct lpg_channel *chan)
786 {
787 lpg_disable_glitch(chan);
788 lpg_apply_freq(chan);
789 lpg_apply_pwm_value(chan);
790 lpg_apply_control(chan);
791 lpg_apply_sync(chan);
792 if (chan->lpg->lpg_chan_sdam)
793 lpg_sdam_apply_lut_control(chan);
794 else
795 lpg_apply_lut_control(chan);
796 lpg_enable_glitch(chan);
797 }
798
lpg_brightness_set(struct lpg_led * led,struct led_classdev * cdev,struct mc_subled * subleds)799 static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
800 struct mc_subled *subleds)
801 {
802 enum led_brightness brightness;
803 struct lpg_channel *chan;
804 unsigned int triled_enabled = 0;
805 unsigned int triled_mask = 0;
806 unsigned int lut_mask = 0;
807 unsigned int duty;
808 struct lpg *lpg = led->lpg;
809 int i;
810
811 for (i = 0; i < led->num_channels; i++) {
812 chan = led->channels[i];
813 brightness = subleds[i].brightness;
814
815 if (brightness == LED_OFF) {
816 chan->enabled = false;
817 chan->ramp_enabled = false;
818 } else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
819 lpg_calc_freq(chan, NSEC_PER_MSEC);
820 lpg_sdam_configure_triggers(chan, 1);
821
822 chan->enabled = true;
823 chan->ramp_enabled = true;
824
825 lut_mask |= chan->lut_mask;
826 triled_enabled |= chan->triled_mask;
827 } else {
828 lpg_calc_freq(chan, NSEC_PER_MSEC);
829
830 duty = div_u64(brightness * chan->period, cdev->max_brightness);
831 lpg_calc_duty(chan, duty);
832 chan->enabled = true;
833 chan->ramp_enabled = false;
834
835 triled_enabled |= chan->triled_mask;
836 }
837
838 triled_mask |= chan->triled_mask;
839
840 lpg_apply(chan);
841 }
842
843 /* Toggle triled lines */
844 if (triled_mask)
845 triled_set(lpg, triled_mask, triled_enabled);
846
847 /* Trigger start of ramp generator(s) */
848 if (lut_mask) {
849 lpg_lut_sync(lpg, lut_mask);
850 lpg_set_pbs_trigger(lpg, lut_mask);
851 }
852 }
853
lpg_brightness_single_set(struct led_classdev * cdev,enum led_brightness value)854 static int lpg_brightness_single_set(struct led_classdev *cdev,
855 enum led_brightness value)
856 {
857 struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
858 struct mc_subled info;
859
860 mutex_lock(&led->lpg->lock);
861
862 info.brightness = value;
863 lpg_brightness_set(led, cdev, &info);
864
865 mutex_unlock(&led->lpg->lock);
866
867 return 0;
868 }
869
lpg_brightness_mc_set(struct led_classdev * cdev,enum led_brightness value)870 static int lpg_brightness_mc_set(struct led_classdev *cdev,
871 enum led_brightness value)
872 {
873 struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
874 struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
875
876 mutex_lock(&led->lpg->lock);
877
878 led_mc_calc_color_components(mc, value);
879 lpg_brightness_set(led, cdev, mc->subled_info);
880
881 mutex_unlock(&led->lpg->lock);
882
883 return 0;
884 }
885
lpg_blink_set(struct lpg_led * led,unsigned long * delay_on,unsigned long * delay_off)886 static int lpg_blink_set(struct lpg_led *led,
887 unsigned long *delay_on, unsigned long *delay_off)
888 {
889 struct lpg_channel *chan;
890 unsigned int period;
891 unsigned int triled_mask = 0;
892 struct lpg *lpg = led->lpg;
893 u64 duty;
894 int i;
895
896 if (!*delay_on && !*delay_off) {
897 *delay_on = 500;
898 *delay_off = 500;
899 }
900
901 duty = *delay_on * NSEC_PER_MSEC;
902 period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
903
904 for (i = 0; i < led->num_channels; i++) {
905 chan = led->channels[i];
906
907 lpg_calc_freq(chan, period);
908 lpg_calc_duty(chan, duty);
909
910 chan->enabled = true;
911 chan->ramp_enabled = false;
912
913 triled_mask |= chan->triled_mask;
914
915 lpg_apply(chan);
916 }
917
918 /* Enable triled lines */
919 triled_set(lpg, triled_mask, triled_mask);
920
921 chan = led->channels[0];
922 duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT);
923 *delay_on = div_u64(duty, NSEC_PER_MSEC);
924 *delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
925
926 return 0;
927 }
928
lpg_blink_single_set(struct led_classdev * cdev,unsigned long * delay_on,unsigned long * delay_off)929 static int lpg_blink_single_set(struct led_classdev *cdev,
930 unsigned long *delay_on, unsigned long *delay_off)
931 {
932 struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
933 int ret;
934
935 mutex_lock(&led->lpg->lock);
936
937 ret = lpg_blink_set(led, delay_on, delay_off);
938
939 mutex_unlock(&led->lpg->lock);
940
941 return ret;
942 }
943
lpg_blink_mc_set(struct led_classdev * cdev,unsigned long * delay_on,unsigned long * delay_off)944 static int lpg_blink_mc_set(struct led_classdev *cdev,
945 unsigned long *delay_on, unsigned long *delay_off)
946 {
947 struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
948 struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
949 int ret;
950
951 mutex_lock(&led->lpg->lock);
952
953 ret = lpg_blink_set(led, delay_on, delay_off);
954
955 mutex_unlock(&led->lpg->lock);
956
957 return ret;
958 }
959
lpg_pattern_set(struct lpg_led * led,struct led_pattern * led_pattern,u32 len,int repeat)960 static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
961 u32 len, int repeat)
962 {
963 struct lpg_channel *chan;
964 struct lpg *lpg = led->lpg;
965 struct led_pattern *pattern;
966 unsigned int brightness_a;
967 unsigned int brightness_b;
968 unsigned int hi_pause = 0;
969 unsigned int lo_pause = 0;
970 unsigned int actual_len;
971 unsigned int delta_t;
972 unsigned int lo_idx;
973 unsigned int hi_idx;
974 unsigned int i;
975 bool ping_pong = true;
976 int ret = -EINVAL;
977
978 /* Hardware only support oneshot or indefinite loops */
979 if (repeat != -1 && repeat != 1)
980 return -EINVAL;
981
982 /*
983 * The standardized leds-trigger-pattern format defines that the
984 * brightness of the LED follows a linear transition from one entry
985 * in the pattern to the next, over the given delta_t time. It
986 * describes that the way to perform instant transitions a zero-length
987 * entry should be added following a pattern entry.
988 *
989 * The LPG hardware is only able to perform the latter (no linear
990 * transitions), so require each entry in the pattern to be followed by
991 * a zero-length transition.
992 */
993 if (len % 2)
994 return -EINVAL;
995
996 pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
997 if (!pattern)
998 return -ENOMEM;
999
1000 for (i = 0; i < len; i += 2) {
1001 if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
1002 goto out_free_pattern;
1003 if (led_pattern[i + 1].delta_t != 0)
1004 goto out_free_pattern;
1005
1006 pattern[i / 2].brightness = led_pattern[i].brightness;
1007 pattern[i / 2].delta_t = led_pattern[i].delta_t;
1008 }
1009
1010 len /= 2;
1011
1012 /*
1013 * Specifying a pattern of length 1 causes the hardware to iterate
1014 * through the entire LUT, so prohibit this.
1015 */
1016 if (len < 2)
1017 goto out_free_pattern;
1018
1019 /*
1020 * The LPG plays patterns with at a fixed pace, a "low pause" can be
1021 * used to stretch the first delay of the pattern and a "high pause"
1022 * the last one.
1023 *
1024 * In order to save space the pattern can be played in "ping pong"
1025 * mode, in which the pattern is first played forward, then "high
1026 * pause" is applied, then the pattern is played backwards and finally
1027 * the "low pause" is applied.
1028 *
1029 * The middle elements of the pattern are used to determine delta_t and
1030 * the "low pause" and "high pause" multipliers are derrived from this.
1031 *
1032 * The first element in the pattern is used to determine "low pause".
1033 *
1034 * If the specified pattern is a palindrome the ping pong mode is
1035 * enabled. In this scenario the delta_t of the middle entry (i.e. the
1036 * last in the programmed pattern) determines the "high pause".
1037 *
1038 * SDAM-based devices do not support "ping pong", and only supports
1039 * "low pause" and "high pause" with a dedicated SDAM LUT.
1040 */
1041
1042 /* Detect palindromes and use "ping pong" to reduce LUT usage */
1043 if (lpg->lut_base) {
1044 for (i = 0; i < len / 2; i++) {
1045 brightness_a = pattern[i].brightness;
1046 brightness_b = pattern[len - i - 1].brightness;
1047
1048 if (brightness_a != brightness_b) {
1049 ping_pong = false;
1050 break;
1051 }
1052 }
1053 } else
1054 ping_pong = false;
1055
1056 /* The pattern length to be written to the LUT */
1057 if (ping_pong)
1058 actual_len = (len + 1) / 2;
1059 else
1060 actual_len = len;
1061
1062 /*
1063 * Validate that all delta_t in the pattern are the same, with the
1064 * exception of the middle element in case of ping_pong.
1065 */
1066 delta_t = pattern[1].delta_t;
1067 for (i = 2; i < len; i++) {
1068 if (pattern[i].delta_t != delta_t) {
1069 /*
1070 * Allow last entry in the full or shortened pattern to
1071 * specify hi pause. Reject other variations.
1072 */
1073 if (i != actual_len - 1)
1074 goto out_free_pattern;
1075 }
1076 }
1077
1078 /* LPG_RAMP_DURATION_REG is a 9bit */
1079 if (delta_t >= BIT(9))
1080 goto out_free_pattern;
1081
1082 /*
1083 * Find "low pause" and "high pause" in the pattern in the LUT case.
1084 * SDAM-based devices without dedicated LUT SDAM require equal
1085 * duration of all steps.
1086 */
1087 if (lpg->lut_base || lpg->lut_sdam) {
1088 lo_pause = pattern[0].delta_t;
1089 hi_pause = pattern[actual_len - 1].delta_t;
1090 } else {
1091 if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t)
1092 goto out_free_pattern;
1093 }
1094
1095
1096 mutex_lock(&lpg->lock);
1097
1098 if (lpg->lut_base)
1099 ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1100 else
1101 ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1102
1103 if (ret < 0)
1104 goto out_unlock;
1105
1106 for (i = 0; i < led->num_channels; i++) {
1107 chan = led->channels[i];
1108
1109 chan->ramp_tick_ms = delta_t;
1110 chan->ramp_ping_pong = ping_pong;
1111 chan->ramp_oneshot = repeat != -1;
1112
1113 chan->ramp_lo_pause_ms = lo_pause;
1114 chan->ramp_hi_pause_ms = hi_pause;
1115
1116 chan->pattern_lo_idx = lo_idx;
1117 chan->pattern_hi_idx = hi_idx;
1118 }
1119
1120 out_unlock:
1121 mutex_unlock(&lpg->lock);
1122 out_free_pattern:
1123 kfree(pattern);
1124
1125 return ret;
1126 }
1127
lpg_pattern_single_set(struct led_classdev * cdev,struct led_pattern * pattern,u32 len,int repeat)1128 static int lpg_pattern_single_set(struct led_classdev *cdev,
1129 struct led_pattern *pattern, u32 len,
1130 int repeat)
1131 {
1132 struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1133 int ret;
1134
1135 ret = lpg_pattern_set(led, pattern, len, repeat);
1136 if (ret < 0)
1137 return ret;
1138
1139 lpg_brightness_single_set(cdev, LED_FULL);
1140
1141 return 0;
1142 }
1143
lpg_pattern_mc_set(struct led_classdev * cdev,struct led_pattern * pattern,u32 len,int repeat)1144 static int lpg_pattern_mc_set(struct led_classdev *cdev,
1145 struct led_pattern *pattern, u32 len,
1146 int repeat)
1147 {
1148 struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1149 struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1150 unsigned int triled_mask = 0;
1151 int ret, i;
1152
1153 for (i = 0; i < led->num_channels; i++)
1154 triled_mask |= led->channels[i]->triled_mask;
1155 triled_set(led->lpg, triled_mask, 0);
1156
1157 ret = lpg_pattern_set(led, pattern, len, repeat);
1158 if (ret < 0)
1159 return ret;
1160
1161 led_mc_calc_color_components(mc, LED_FULL);
1162 lpg_brightness_set(led, cdev, mc->subled_info);
1163
1164 return 0;
1165 }
1166
lpg_pattern_clear(struct lpg_led * led)1167 static int lpg_pattern_clear(struct lpg_led *led)
1168 {
1169 struct lpg_channel *chan;
1170 struct lpg *lpg = led->lpg;
1171 int i;
1172
1173 mutex_lock(&lpg->lock);
1174
1175 chan = led->channels[0];
1176 lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
1177
1178 for (i = 0; i < led->num_channels; i++) {
1179 chan = led->channels[i];
1180 lpg_sdam_configure_triggers(chan, 0);
1181 lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1182 chan->pattern_lo_idx = 0;
1183 chan->pattern_hi_idx = 0;
1184 }
1185
1186 mutex_unlock(&lpg->lock);
1187
1188 return 0;
1189 }
1190
lpg_pattern_single_clear(struct led_classdev * cdev)1191 static int lpg_pattern_single_clear(struct led_classdev *cdev)
1192 {
1193 struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1194
1195 return lpg_pattern_clear(led);
1196 }
1197
lpg_pattern_mc_clear(struct led_classdev * cdev)1198 static int lpg_pattern_mc_clear(struct led_classdev *cdev)
1199 {
1200 struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1201 struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1202
1203 return lpg_pattern_clear(led);
1204 }
1205
lpg_pwm_from_chip(struct pwm_chip * chip)1206 static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip)
1207 {
1208 return pwmchip_get_drvdata(chip);
1209 }
1210
lpg_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1211 static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1212 {
1213 struct lpg *lpg = lpg_pwm_from_chip(chip);
1214 struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1215
1216 return chan->in_use ? -EBUSY : 0;
1217 }
1218
1219 /*
1220 * Limitations:
1221 * - Updating both duty and period is not done atomically, so the output signal
1222 * will momentarily be a mix of the settings.
1223 * - Changed parameters takes effect immediately.
1224 * - A disabled channel outputs a logical 0.
1225 */
lpg_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1226 static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1227 const struct pwm_state *state)
1228 {
1229 struct lpg *lpg = lpg_pwm_from_chip(chip);
1230 struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1231 int ret = 0;
1232
1233 if (state->polarity != PWM_POLARITY_NORMAL)
1234 return -EINVAL;
1235
1236 mutex_lock(&lpg->lock);
1237
1238 if (state->enabled) {
1239 ret = lpg_calc_freq(chan, state->period);
1240 if (ret < 0)
1241 goto out_unlock;
1242
1243 lpg_calc_duty(chan, state->duty_cycle);
1244 }
1245 chan->enabled = state->enabled;
1246
1247 lpg_apply(chan);
1248
1249 triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
1250
1251 out_unlock:
1252 mutex_unlock(&lpg->lock);
1253
1254 return ret;
1255 }
1256
lpg_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1257 static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1258 struct pwm_state *state)
1259 {
1260 struct lpg *lpg = lpg_pwm_from_chip(chip);
1261 struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1262 unsigned int resolution;
1263 unsigned int pre_div;
1264 unsigned int refclk;
1265 unsigned int val;
1266 unsigned int m;
1267 u16 pwm_value;
1268 int ret;
1269
1270 ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
1271 if (ret)
1272 return ret;
1273
1274 if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
1275 refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)];
1276 resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)];
1277 } else {
1278 refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)];
1279 resolution = 9;
1280 }
1281
1282 if (refclk) {
1283 ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
1284 if (ret)
1285 return ret;
1286
1287 pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
1288 m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
1289
1290 ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
1291 if (ret)
1292 return ret;
1293
1294 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) *
1295 pre_div * (1 << m), refclk);
1296 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
1297 } else {
1298 state->period = 0;
1299 state->duty_cycle = 0;
1300 }
1301
1302 ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
1303 if (ret)
1304 return ret;
1305
1306 state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
1307 state->polarity = PWM_POLARITY_NORMAL;
1308
1309 if (state->duty_cycle > state->period)
1310 state->duty_cycle = state->period;
1311
1312 return 0;
1313 }
1314
1315 static const struct pwm_ops lpg_pwm_ops = {
1316 .request = lpg_pwm_request,
1317 .apply = lpg_pwm_apply,
1318 .get_state = lpg_pwm_get_state,
1319 };
1320
lpg_add_pwm(struct lpg * lpg)1321 static int lpg_add_pwm(struct lpg *lpg)
1322 {
1323 struct pwm_chip *chip;
1324 int ret;
1325
1326 lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0);
1327 if (IS_ERR(chip))
1328 return PTR_ERR(chip);
1329
1330 chip->ops = &lpg_pwm_ops;
1331 pwmchip_set_drvdata(chip, lpg);
1332
1333 ret = devm_pwmchip_add(lpg->dev, chip);
1334 if (ret)
1335 dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n");
1336
1337 return ret;
1338 }
1339
lpg_parse_channel(struct lpg * lpg,struct device_node * np,struct lpg_channel ** channel)1340 static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
1341 struct lpg_channel **channel)
1342 {
1343 struct lpg_channel *chan;
1344 u32 color = LED_COLOR_ID_GREEN;
1345 u32 reg;
1346 int ret;
1347
1348 ret = of_property_read_u32(np, "reg", ®);
1349 if (ret || !reg || reg > lpg->num_channels)
1350 return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np);
1351
1352 chan = &lpg->channels[reg - 1];
1353 chan->in_use = true;
1354
1355 ret = of_property_read_u32(np, "color", &color);
1356 if (ret < 0 && ret != -EINVAL)
1357 return dev_err_probe(lpg->dev, ret,
1358 "failed to parse \"color\" of %pOF\n", np);
1359
1360 chan->color = color;
1361
1362 *channel = chan;
1363
1364 return 0;
1365 }
1366
lpg_add_led(struct lpg * lpg,struct device_node * np)1367 static int lpg_add_led(struct lpg *lpg, struct device_node *np)
1368 {
1369 struct led_init_data init_data = {};
1370 struct led_classdev *cdev;
1371 struct mc_subled *info;
1372 struct lpg_led *led;
1373 const char *state;
1374 int num_channels;
1375 u32 color = 0;
1376 int ret;
1377 int i;
1378
1379 ret = of_property_read_u32(np, "color", &color);
1380 if (ret < 0 && ret != -EINVAL)
1381 return dev_err_probe(lpg->dev, ret,
1382 "failed to parse \"color\" of %pOF\n", np);
1383
1384 if (color == LED_COLOR_ID_RGB)
1385 num_channels = of_get_available_child_count(np);
1386 else
1387 num_channels = 1;
1388
1389 led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
1390 if (!led)
1391 return -ENOMEM;
1392
1393 led->lpg = lpg;
1394 led->num_channels = num_channels;
1395
1396 if (color == LED_COLOR_ID_RGB) {
1397 info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
1398 if (!info)
1399 return -ENOMEM;
1400 i = 0;
1401 for_each_available_child_of_node_scoped(np, child) {
1402 ret = lpg_parse_channel(lpg, child, &led->channels[i]);
1403 if (ret < 0)
1404 return ret;
1405
1406 info[i].color_index = led->channels[i]->color;
1407 info[i].intensity = 0;
1408 i++;
1409 }
1410
1411 led->mcdev.subled_info = info;
1412 led->mcdev.num_colors = num_channels;
1413
1414 cdev = &led->mcdev.led_cdev;
1415 cdev->brightness_set_blocking = lpg_brightness_mc_set;
1416 cdev->blink_set = lpg_blink_mc_set;
1417
1418 /* Register pattern accessors if we have a LUT block or when using PPG */
1419 if (lpg->lut_base || lpg->lpg_chan_sdam) {
1420 cdev->pattern_set = lpg_pattern_mc_set;
1421 cdev->pattern_clear = lpg_pattern_mc_clear;
1422 }
1423 } else {
1424 ret = lpg_parse_channel(lpg, np, &led->channels[0]);
1425 if (ret < 0)
1426 return ret;
1427
1428 cdev = &led->cdev;
1429 cdev->brightness_set_blocking = lpg_brightness_single_set;
1430 cdev->blink_set = lpg_blink_single_set;
1431
1432 /* Register pattern accessors if we have a LUT block or when using PPG */
1433 if (lpg->lut_base || lpg->lpg_chan_sdam) {
1434 cdev->pattern_set = lpg_pattern_single_set;
1435 cdev->pattern_clear = lpg_pattern_single_clear;
1436 }
1437 }
1438
1439 cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
1440
1441 if (lpg->lpg_chan_sdam)
1442 cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS;
1443 else
1444 cdev->max_brightness = LPG_RESOLUTION_9BIT - 1;
1445
1446 if (!of_property_read_string(np, "default-state", &state) &&
1447 !strcmp(state, "on"))
1448 cdev->brightness = cdev->max_brightness;
1449 else
1450 cdev->brightness = LED_OFF;
1451
1452 cdev->brightness_set_blocking(cdev, cdev->brightness);
1453
1454 init_data.fwnode = of_fwnode_handle(np);
1455
1456 if (color == LED_COLOR_ID_RGB)
1457 ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
1458 else
1459 ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
1460 if (ret)
1461 dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name);
1462
1463 return ret;
1464 }
1465
lpg_init_channels(struct lpg * lpg)1466 static int lpg_init_channels(struct lpg *lpg)
1467 {
1468 const struct lpg_data *data = lpg->data;
1469 struct lpg_channel *chan;
1470 int i;
1471
1472 lpg->num_channels = data->num_channels;
1473 lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
1474 sizeof(struct lpg_channel), GFP_KERNEL);
1475 if (!lpg->channels)
1476 return -ENOMEM;
1477
1478 for (i = 0; i < data->num_channels; i++) {
1479 chan = &lpg->channels[i];
1480
1481 chan->lpg = lpg;
1482 chan->base = data->channels[i].base;
1483 chan->triled_mask = data->channels[i].triled_mask;
1484 chan->lut_mask = BIT(i);
1485 chan->sdam_offset = data->channels[i].sdam_offset;
1486
1487 regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
1488 }
1489
1490 return 0;
1491 }
1492
lpg_init_triled(struct lpg * lpg)1493 static int lpg_init_triled(struct lpg *lpg)
1494 {
1495 struct device_node *np = lpg->dev->of_node;
1496 int ret;
1497
1498 /* Skip initialization if we don't have a triled block */
1499 if (!lpg->data->triled_base)
1500 return 0;
1501
1502 lpg->triled_base = lpg->data->triled_base;
1503 lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
1504 lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
1505
1506 if (lpg->triled_has_src_sel) {
1507 ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
1508 if (ret || lpg->triled_src == 2 || lpg->triled_src > 3)
1509 return dev_err_probe(lpg->dev, -EINVAL,
1510 "invalid power source\n");
1511 }
1512
1513 /* Disable automatic trickle charge LED */
1514 if (lpg->triled_has_atc_ctl)
1515 regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
1516
1517 /* Configure power source */
1518 if (lpg->triled_has_src_sel)
1519 regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
1520
1521 /* Default all outputs to off */
1522 regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
1523
1524 return 0;
1525 }
1526
lpg_init_lut(struct lpg * lpg)1527 static int lpg_init_lut(struct lpg *lpg)
1528 {
1529 const struct lpg_data *data = lpg->data;
1530
1531 if (!data->lut_size)
1532 return 0;
1533
1534 lpg->lut_size = data->lut_size;
1535 if (data->lut_base)
1536 lpg->lut_base = data->lut_base;
1537
1538 lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
1539 if (!lpg->lut_bitmap)
1540 return -ENOMEM;
1541
1542 return 0;
1543 }
1544
lpg_init_sdam(struct lpg * lpg)1545 static int lpg_init_sdam(struct lpg *lpg)
1546 {
1547 int i, sdam_count, rc;
1548 u8 val = 0;
1549
1550 sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names");
1551 if (sdam_count <= 0)
1552 return 0;
1553 if (sdam_count > SDAM_MAX_DEVICES)
1554 return -EINVAL;
1555
1556 /* Get the 1st SDAM device for LPG/LUT config */
1557 lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam");
1558 if (IS_ERR(lpg->lpg_chan_sdam))
1559 return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam),
1560 "Failed to get LPG chan SDAM device\n");
1561
1562 if (sdam_count == 1) {
1563 /* Get PBS device node if single SDAM device */
1564 lpg->pbs_dev = get_pbs_client_device(lpg->dev);
1565 if (IS_ERR(lpg->pbs_dev))
1566 return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev),
1567 "Failed to get PBS client device\n");
1568 } else if (sdam_count == 2) {
1569 /* Get the 2nd SDAM device for LUT pattern */
1570 lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam");
1571 if (IS_ERR(lpg->lut_sdam))
1572 return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam),
1573 "Failed to get LPG LUT SDAM device\n");
1574 }
1575
1576 for (i = 0; i < lpg->num_channels; i++) {
1577 struct lpg_channel *chan = &lpg->channels[i];
1578
1579 if (chan->sdam_offset) {
1580 rc = nvmem_device_write(lpg->lpg_chan_sdam,
1581 SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
1582 if (rc < 0)
1583 return rc;
1584
1585 rc = lpg_sdam_configure_triggers(chan, 0);
1586 if (rc < 0)
1587 return rc;
1588
1589 rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1590 if (rc < 0)
1591 return rc;
1592 }
1593 }
1594
1595 return 0;
1596 }
1597
lpg_probe(struct platform_device * pdev)1598 static int lpg_probe(struct platform_device *pdev)
1599 {
1600 struct lpg *lpg;
1601 int ret;
1602 int i;
1603
1604 lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
1605 if (!lpg)
1606 return -ENOMEM;
1607
1608 lpg->data = of_device_get_match_data(&pdev->dev);
1609 if (!lpg->data)
1610 return -EINVAL;
1611
1612 lpg->dev = &pdev->dev;
1613 mutex_init(&lpg->lock);
1614
1615 lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
1616 if (!lpg->map)
1617 return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
1618
1619 ret = lpg_init_channels(lpg);
1620 if (ret < 0)
1621 return ret;
1622
1623 ret = lpg_parse_dtest(lpg);
1624 if (ret < 0)
1625 return ret;
1626
1627 ret = lpg_init_triled(lpg);
1628 if (ret < 0)
1629 return ret;
1630
1631 ret = lpg_init_sdam(lpg);
1632 if (ret < 0)
1633 return ret;
1634
1635 ret = lpg_init_lut(lpg);
1636 if (ret < 0)
1637 return ret;
1638
1639 for_each_available_child_of_node_scoped(pdev->dev.of_node, np) {
1640 ret = lpg_add_led(lpg, np);
1641 if (ret)
1642 return ret;
1643 }
1644
1645 for (i = 0; i < lpg->num_channels; i++)
1646 lpg_apply_dtest(&lpg->channels[i]);
1647
1648 return lpg_add_pwm(lpg);
1649 }
1650
1651 static const struct lpg_data pm660l_lpg_data = {
1652 .lut_base = 0xb000,
1653 .lut_size = 49,
1654
1655 .triled_base = 0xd000,
1656 .triled_has_atc_ctl = true,
1657 .triled_has_src_sel = true,
1658
1659 .num_channels = 4,
1660 .channels = (const struct lpg_channel_data[]) {
1661 { .base = 0xb100, .triled_mask = BIT(5) },
1662 { .base = 0xb200, .triled_mask = BIT(6) },
1663 { .base = 0xb300, .triled_mask = BIT(7) },
1664 { .base = 0xb400 },
1665 },
1666 };
1667
1668 static const struct lpg_data pm8916_pwm_data = {
1669 .num_channels = 1,
1670 .channels = (const struct lpg_channel_data[]) {
1671 { .base = 0xbc00 },
1672 },
1673 };
1674
1675 static const struct lpg_data pm8941_lpg_data = {
1676 .lut_base = 0xb000,
1677 .lut_size = 64,
1678
1679 .triled_base = 0xd000,
1680 .triled_has_atc_ctl = true,
1681 .triled_has_src_sel = true,
1682
1683 .num_channels = 8,
1684 .channels = (const struct lpg_channel_data[]) {
1685 { .base = 0xb100 },
1686 { .base = 0xb200 },
1687 { .base = 0xb300 },
1688 { .base = 0xb400 },
1689 { .base = 0xb500, .triled_mask = BIT(5) },
1690 { .base = 0xb600, .triled_mask = BIT(6) },
1691 { .base = 0xb700, .triled_mask = BIT(7) },
1692 { .base = 0xb800 },
1693 },
1694 };
1695
1696 static const struct lpg_data pmi8950_pwm_data = {
1697 .num_channels = 1,
1698 .channels = (const struct lpg_channel_data[]) {
1699 { .base = 0xb000 },
1700 },
1701 };
1702
1703 static const struct lpg_data pm8994_lpg_data = {
1704 .lut_base = 0xb000,
1705 .lut_size = 64,
1706
1707 .num_channels = 6,
1708 .channels = (const struct lpg_channel_data[]) {
1709 { .base = 0xb100 },
1710 { .base = 0xb200 },
1711 { .base = 0xb300 },
1712 { .base = 0xb400 },
1713 { .base = 0xb500 },
1714 { .base = 0xb600 },
1715 },
1716 };
1717
1718 /* PMI632 uses SDAM instead of LUT for pattern */
1719 static const struct lpg_data pmi632_lpg_data = {
1720 .triled_base = 0xd000,
1721
1722 .lut_size = 64,
1723
1724 .num_channels = 5,
1725 .channels = (const struct lpg_channel_data[]) {
1726 { .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1727 { .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1728 { .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1729 { .base = 0xb600 },
1730 { .base = 0xb700 },
1731 },
1732 };
1733
1734 static const struct lpg_data pmi8994_lpg_data = {
1735 .lut_base = 0xb000,
1736 .lut_size = 24,
1737
1738 .triled_base = 0xd000,
1739 .triled_has_atc_ctl = true,
1740 .triled_has_src_sel = true,
1741
1742 .num_channels = 4,
1743 .channels = (const struct lpg_channel_data[]) {
1744 { .base = 0xb100, .triled_mask = BIT(5) },
1745 { .base = 0xb200, .triled_mask = BIT(6) },
1746 { .base = 0xb300, .triled_mask = BIT(7) },
1747 { .base = 0xb400 },
1748 },
1749 };
1750
1751 static const struct lpg_data pmi8998_lpg_data = {
1752 .lut_base = 0xb000,
1753 .lut_size = 49,
1754
1755 .triled_base = 0xd000,
1756
1757 .num_channels = 6,
1758 .channels = (const struct lpg_channel_data[]) {
1759 { .base = 0xb100 },
1760 { .base = 0xb200 },
1761 { .base = 0xb300, .triled_mask = BIT(5) },
1762 { .base = 0xb400, .triled_mask = BIT(6) },
1763 { .base = 0xb500, .triled_mask = BIT(7) },
1764 { .base = 0xb600 },
1765 },
1766 };
1767
1768 static const struct lpg_data pm8150b_lpg_data = {
1769 .lut_base = 0xb000,
1770 .lut_size = 24,
1771
1772 .triled_base = 0xd000,
1773
1774 .num_channels = 2,
1775 .channels = (const struct lpg_channel_data[]) {
1776 { .base = 0xb100, .triled_mask = BIT(7) },
1777 { .base = 0xb200, .triled_mask = BIT(6) },
1778 },
1779 };
1780
1781 static const struct lpg_data pm8150l_lpg_data = {
1782 .lut_base = 0xb000,
1783 .lut_size = 48,
1784
1785 .triled_base = 0xd000,
1786
1787 .num_channels = 5,
1788 .channels = (const struct lpg_channel_data[]) {
1789 { .base = 0xb100, .triled_mask = BIT(7) },
1790 { .base = 0xb200, .triled_mask = BIT(6) },
1791 { .base = 0xb300, .triled_mask = BIT(5) },
1792 { .base = 0xbc00 },
1793 { .base = 0xbd00 },
1794
1795 },
1796 };
1797
1798 static const struct lpg_data pm8350c_pwm_data = {
1799 .triled_base = 0xef00,
1800
1801 .lut_size = 122,
1802
1803 .num_channels = 4,
1804 .channels = (const struct lpg_channel_data[]) {
1805 { .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1806 { .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1807 { .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1808 { .base = 0xeb00 },
1809 },
1810 };
1811
1812 static const struct lpg_data pmk8550_pwm_data = {
1813 .num_channels = 2,
1814 .channels = (const struct lpg_channel_data[]) {
1815 { .base = 0xe800 },
1816 { .base = 0xe900 },
1817 },
1818 };
1819
1820 static const struct of_device_id lpg_of_table[] = {
1821 { .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data },
1822 { .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
1823 { .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
1824 { .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
1825 { .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
1826 { .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
1827 { .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
1828 { .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data },
1829 { .compatible = "qcom,pmi8950-pwm", .data = &pmi8950_pwm_data },
1830 { .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
1831 { .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
1832 { .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
1833 { .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data },
1834 {}
1835 };
1836 MODULE_DEVICE_TABLE(of, lpg_of_table);
1837
1838 static struct platform_driver lpg_driver = {
1839 .probe = lpg_probe,
1840 .driver = {
1841 .name = "qcom-spmi-lpg",
1842 .of_match_table = lpg_of_table,
1843 },
1844 };
1845 module_platform_driver(lpg_driver);
1846
1847 MODULE_DESCRIPTION("Qualcomm LPG LED driver");
1848 MODULE_LICENSE("GPL v2");
1849