1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
get_size(loff_t offset,loff_t sizelimit,struct file * file)140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
141 {
142 loff_t loopsize;
143
144 /* Compute loopsize in bytes */
145 loopsize = i_size_read(file->f_mapping->host);
146 if (offset > 0)
147 loopsize -= offset;
148 /* offset is beyond i_size, weird but possible */
149 if (loopsize < 0)
150 return 0;
151
152 if (sizelimit > 0 && sizelimit < loopsize)
153 loopsize = sizelimit;
154 /*
155 * Unfortunately, if we want to do I/O on the device,
156 * the number of 512-byte sectors has to fit into a sector_t.
157 */
158 return loopsize >> 9;
159 }
160
get_loop_size(struct loop_device * lo,struct file * file)161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
164 }
165
166 /*
167 * We support direct I/O only if lo_offset is aligned with the logical I/O size
168 * of backing device, and the logical block size of loop is bigger than that of
169 * the backing device.
170 */
lo_can_use_dio(struct loop_device * lo)171 static bool lo_can_use_dio(struct loop_device *lo)
172 {
173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
174 return false;
175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
176 return false;
177 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
178 return false;
179 return true;
180 }
181
182 /*
183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
185 * disabled when the device block size is too small or the offset is unaligned.
186 *
187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
188 * not the originally passed in one.
189 */
loop_update_dio(struct loop_device * lo)190 static inline void loop_update_dio(struct loop_device *lo)
191 {
192 lockdep_assert_held(&lo->lo_mutex);
193 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
194 lo->lo_queue->mq_freeze_depth == 0);
195
196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
198 }
199
200 /**
201 * loop_set_size() - sets device size and notifies userspace
202 * @lo: struct loop_device to set the size for
203 * @size: new size of the loop device
204 *
205 * Callers must validate that the size passed into this function fits into
206 * a sector_t, eg using loop_validate_size()
207 */
loop_set_size(struct loop_device * lo,loff_t size)208 static void loop_set_size(struct loop_device *lo, loff_t size)
209 {
210 if (!set_capacity_and_notify(lo->lo_disk, size))
211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
212 }
213
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)214 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
215 {
216 struct iov_iter i;
217 ssize_t bw;
218
219 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
220
221 bw = vfs_iter_write(file, &i, ppos, 0);
222
223 if (likely(bw == bvec->bv_len))
224 return 0;
225
226 printk_ratelimited(KERN_ERR
227 "loop: Write error at byte offset %llu, length %i.\n",
228 (unsigned long long)*ppos, bvec->bv_len);
229 if (bw >= 0)
230 bw = -EIO;
231 return bw;
232 }
233
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)234 static int lo_write_simple(struct loop_device *lo, struct request *rq,
235 loff_t pos)
236 {
237 struct bio_vec bvec;
238 struct req_iterator iter;
239 int ret = 0;
240
241 rq_for_each_segment(bvec, rq, iter) {
242 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
243 if (ret < 0)
244 break;
245 cond_resched();
246 }
247
248 return ret;
249 }
250
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)251 static int lo_read_simple(struct loop_device *lo, struct request *rq,
252 loff_t pos)
253 {
254 struct bio_vec bvec;
255 struct req_iterator iter;
256 struct iov_iter i;
257 ssize_t len;
258
259 rq_for_each_segment(bvec, rq, iter) {
260 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
261 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
262 if (len < 0)
263 return len;
264
265 flush_dcache_page(bvec.bv_page);
266
267 if (len != bvec.bv_len) {
268 struct bio *bio;
269
270 __rq_for_each_bio(bio, rq)
271 zero_fill_bio(bio);
272 break;
273 }
274 cond_resched();
275 }
276
277 return 0;
278 }
279
loop_clear_limits(struct loop_device * lo,int mode)280 static void loop_clear_limits(struct loop_device *lo, int mode)
281 {
282 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
283
284 if (mode & FALLOC_FL_ZERO_RANGE)
285 lim.max_write_zeroes_sectors = 0;
286
287 if (mode & FALLOC_FL_PUNCH_HOLE) {
288 lim.max_hw_discard_sectors = 0;
289 lim.discard_granularity = 0;
290 }
291
292 /*
293 * XXX: this updates the queue limits without freezing the queue, which
294 * is against the locking protocol and dangerous. But we can't just
295 * freeze the queue as we're inside the ->queue_rq method here. So this
296 * should move out into a workqueue unless we get the file operations to
297 * advertise if they support specific fallocate operations.
298 */
299 queue_limits_commit_update(lo->lo_queue, &lim);
300 }
301
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)302 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
303 int mode)
304 {
305 /*
306 * We use fallocate to manipulate the space mappings used by the image
307 * a.k.a. discard/zerorange.
308 */
309 struct file *file = lo->lo_backing_file;
310 int ret;
311
312 mode |= FALLOC_FL_KEEP_SIZE;
313
314 if (!bdev_max_discard_sectors(lo->lo_device))
315 return -EOPNOTSUPP;
316
317 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
318 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
319 return -EIO;
320
321 /*
322 * We initially configure the limits in a hope that fallocate is
323 * supported and clear them here if that turns out not to be true.
324 */
325 if (unlikely(ret == -EOPNOTSUPP))
326 loop_clear_limits(lo, mode);
327
328 return ret;
329 }
330
lo_req_flush(struct loop_device * lo,struct request * rq)331 static int lo_req_flush(struct loop_device *lo, struct request *rq)
332 {
333 int ret = vfs_fsync(lo->lo_backing_file, 0);
334 if (unlikely(ret && ret != -EINVAL))
335 ret = -EIO;
336
337 return ret;
338 }
339
lo_complete_rq(struct request * rq)340 static void lo_complete_rq(struct request *rq)
341 {
342 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
343 blk_status_t ret = BLK_STS_OK;
344
345 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
346 req_op(rq) != REQ_OP_READ) {
347 if (cmd->ret < 0)
348 ret = errno_to_blk_status(cmd->ret);
349 goto end_io;
350 }
351
352 /*
353 * Short READ - if we got some data, advance our request and
354 * retry it. If we got no data, end the rest with EIO.
355 */
356 if (cmd->ret) {
357 blk_update_request(rq, BLK_STS_OK, cmd->ret);
358 cmd->ret = 0;
359 blk_mq_requeue_request(rq, true);
360 } else {
361 if (cmd->use_aio) {
362 struct bio *bio = rq->bio;
363
364 while (bio) {
365 zero_fill_bio(bio);
366 bio = bio->bi_next;
367 }
368 }
369 ret = BLK_STS_IOERR;
370 end_io:
371 blk_mq_end_request(rq, ret);
372 }
373 }
374
lo_rw_aio_do_completion(struct loop_cmd * cmd)375 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
376 {
377 struct request *rq = blk_mq_rq_from_pdu(cmd);
378
379 if (!atomic_dec_and_test(&cmd->ref))
380 return;
381 kfree(cmd->bvec);
382 cmd->bvec = NULL;
383 if (likely(!blk_should_fake_timeout(rq->q)))
384 blk_mq_complete_request(rq);
385 }
386
lo_rw_aio_complete(struct kiocb * iocb,long ret)387 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
388 {
389 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
390
391 cmd->ret = ret;
392 lo_rw_aio_do_completion(cmd);
393 }
394
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)395 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
396 loff_t pos, int rw)
397 {
398 struct iov_iter iter;
399 struct req_iterator rq_iter;
400 struct bio_vec *bvec;
401 struct request *rq = blk_mq_rq_from_pdu(cmd);
402 struct bio *bio = rq->bio;
403 struct file *file = lo->lo_backing_file;
404 struct bio_vec tmp;
405 unsigned int offset;
406 int nr_bvec = 0;
407 int ret;
408
409 rq_for_each_bvec(tmp, rq, rq_iter)
410 nr_bvec++;
411
412 if (rq->bio != rq->biotail) {
413
414 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
415 GFP_NOIO);
416 if (!bvec)
417 return -EIO;
418 cmd->bvec = bvec;
419
420 /*
421 * The bios of the request may be started from the middle of
422 * the 'bvec' because of bio splitting, so we can't directly
423 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
424 * API will take care of all details for us.
425 */
426 rq_for_each_bvec(tmp, rq, rq_iter) {
427 *bvec = tmp;
428 bvec++;
429 }
430 bvec = cmd->bvec;
431 offset = 0;
432 } else {
433 /*
434 * Same here, this bio may be started from the middle of the
435 * 'bvec' because of bio splitting, so offset from the bvec
436 * must be passed to iov iterator
437 */
438 offset = bio->bi_iter.bi_bvec_done;
439 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
440 }
441 atomic_set(&cmd->ref, 2);
442
443 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
444 iter.iov_offset = offset;
445
446 cmd->iocb.ki_pos = pos;
447 cmd->iocb.ki_filp = file;
448 cmd->iocb.ki_complete = lo_rw_aio_complete;
449 cmd->iocb.ki_flags = IOCB_DIRECT;
450 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
451
452 if (rw == ITER_SOURCE)
453 ret = file->f_op->write_iter(&cmd->iocb, &iter);
454 else
455 ret = file->f_op->read_iter(&cmd->iocb, &iter);
456
457 lo_rw_aio_do_completion(cmd);
458
459 if (ret != -EIOCBQUEUED)
460 lo_rw_aio_complete(&cmd->iocb, ret);
461 return 0;
462 }
463
do_req_filebacked(struct loop_device * lo,struct request * rq)464 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
465 {
466 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
467 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
468
469 /*
470 * lo_write_simple and lo_read_simple should have been covered
471 * by io submit style function like lo_rw_aio(), one blocker
472 * is that lo_read_simple() need to call flush_dcache_page after
473 * the page is written from kernel, and it isn't easy to handle
474 * this in io submit style function which submits all segments
475 * of the req at one time. And direct read IO doesn't need to
476 * run flush_dcache_page().
477 */
478 switch (req_op(rq)) {
479 case REQ_OP_FLUSH:
480 return lo_req_flush(lo, rq);
481 case REQ_OP_WRITE_ZEROES:
482 /*
483 * If the caller doesn't want deallocation, call zeroout to
484 * write zeroes the range. Otherwise, punch them out.
485 */
486 return lo_fallocate(lo, rq, pos,
487 (rq->cmd_flags & REQ_NOUNMAP) ?
488 FALLOC_FL_ZERO_RANGE :
489 FALLOC_FL_PUNCH_HOLE);
490 case REQ_OP_DISCARD:
491 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
492 case REQ_OP_WRITE:
493 if (cmd->use_aio)
494 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
495 else
496 return lo_write_simple(lo, rq, pos);
497 case REQ_OP_READ:
498 if (cmd->use_aio)
499 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
500 else
501 return lo_read_simple(lo, rq, pos);
502 default:
503 WARN_ON_ONCE(1);
504 return -EIO;
505 }
506 }
507
loop_reread_partitions(struct loop_device * lo)508 static void loop_reread_partitions(struct loop_device *lo)
509 {
510 int rc;
511
512 mutex_lock(&lo->lo_disk->open_mutex);
513 rc = bdev_disk_changed(lo->lo_disk, false);
514 mutex_unlock(&lo->lo_disk->open_mutex);
515 if (rc)
516 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
517 __func__, lo->lo_number, lo->lo_file_name, rc);
518 }
519
loop_query_min_dio_size(struct loop_device * lo)520 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
521 {
522 struct file *file = lo->lo_backing_file;
523 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
524 struct kstat st;
525
526 /*
527 * Use the minimal dio alignment of the file system if provided.
528 */
529 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
530 (st.result_mask & STATX_DIOALIGN))
531 return st.dio_offset_align;
532
533 /*
534 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
535 * a handful of file systems support the STATX_DIOALIGN flag.
536 */
537 if (sb_bdev)
538 return bdev_logical_block_size(sb_bdev);
539 return SECTOR_SIZE;
540 }
541
is_loop_device(struct file * file)542 static inline int is_loop_device(struct file *file)
543 {
544 struct inode *i = file->f_mapping->host;
545
546 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
547 }
548
loop_validate_file(struct file * file,struct block_device * bdev)549 static int loop_validate_file(struct file *file, struct block_device *bdev)
550 {
551 struct inode *inode = file->f_mapping->host;
552 struct file *f = file;
553
554 /* Avoid recursion */
555 while (is_loop_device(f)) {
556 struct loop_device *l;
557
558 lockdep_assert_held(&loop_validate_mutex);
559 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
560 return -EBADF;
561
562 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
563 if (l->lo_state != Lo_bound)
564 return -EINVAL;
565 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
566 rmb();
567 f = l->lo_backing_file;
568 }
569 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
570 return -EINVAL;
571 return 0;
572 }
573
loop_assign_backing_file(struct loop_device * lo,struct file * file)574 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
575 {
576 lo->lo_backing_file = file;
577 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
578 mapping_set_gfp_mask(file->f_mapping,
579 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
580 if (lo->lo_backing_file->f_flags & O_DIRECT)
581 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
582 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
583 }
584
585 /*
586 * loop_change_fd switched the backing store of a loopback device to
587 * a new file. This is useful for operating system installers to free up
588 * the original file and in High Availability environments to switch to
589 * an alternative location for the content in case of server meltdown.
590 * This can only work if the loop device is used read-only, and if the
591 * new backing store is the same size and type as the old backing store.
592 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)593 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
594 unsigned int arg)
595 {
596 struct file *file = fget(arg);
597 struct file *old_file;
598 unsigned int memflags;
599 int error;
600 bool partscan;
601 bool is_loop;
602
603 if (!file)
604 return -EBADF;
605
606 /* suppress uevents while reconfiguring the device */
607 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
608
609 is_loop = is_loop_device(file);
610 error = loop_global_lock_killable(lo, is_loop);
611 if (error)
612 goto out_putf;
613 error = -ENXIO;
614 if (lo->lo_state != Lo_bound)
615 goto out_err;
616
617 /* the loop device has to be read-only */
618 error = -EINVAL;
619 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
620 goto out_err;
621
622 error = loop_validate_file(file, bdev);
623 if (error)
624 goto out_err;
625
626 old_file = lo->lo_backing_file;
627
628 error = -EINVAL;
629
630 /* size of the new backing store needs to be the same */
631 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
632 goto out_err;
633
634 /*
635 * We might switch to direct I/O mode for the loop device, write back
636 * all dirty data the page cache now that so that the individual I/O
637 * operations don't have to do that.
638 */
639 vfs_fsync(file, 0);
640
641 /* and ... switch */
642 disk_force_media_change(lo->lo_disk);
643 memflags = blk_mq_freeze_queue(lo->lo_queue);
644 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
645 loop_assign_backing_file(lo, file);
646 loop_update_dio(lo);
647 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
648 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
649 loop_global_unlock(lo, is_loop);
650
651 /*
652 * Flush loop_validate_file() before fput(), for l->lo_backing_file
653 * might be pointing at old_file which might be the last reference.
654 */
655 if (!is_loop) {
656 mutex_lock(&loop_validate_mutex);
657 mutex_unlock(&loop_validate_mutex);
658 }
659 /*
660 * We must drop file reference outside of lo_mutex as dropping
661 * the file ref can take open_mutex which creates circular locking
662 * dependency.
663 */
664 fput(old_file);
665 if (partscan)
666 loop_reread_partitions(lo);
667
668 error = 0;
669 done:
670 /* enable and uncork uevent now that we are done */
671 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
672 return error;
673
674 out_err:
675 loop_global_unlock(lo, is_loop);
676 out_putf:
677 fput(file);
678 goto done;
679 }
680
681 /* loop sysfs attributes */
682
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))683 static ssize_t loop_attr_show(struct device *dev, char *page,
684 ssize_t (*callback)(struct loop_device *, char *))
685 {
686 struct gendisk *disk = dev_to_disk(dev);
687 struct loop_device *lo = disk->private_data;
688
689 return callback(lo, page);
690 }
691
692 #define LOOP_ATTR_RO(_name) \
693 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
694 static ssize_t loop_attr_do_show_##_name(struct device *d, \
695 struct device_attribute *attr, char *b) \
696 { \
697 return loop_attr_show(d, b, loop_attr_##_name##_show); \
698 } \
699 static struct device_attribute loop_attr_##_name = \
700 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
701
loop_attr_backing_file_show(struct loop_device * lo,char * buf)702 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
703 {
704 ssize_t ret;
705 char *p = NULL;
706
707 spin_lock_irq(&lo->lo_lock);
708 if (lo->lo_backing_file)
709 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
710 spin_unlock_irq(&lo->lo_lock);
711
712 if (IS_ERR_OR_NULL(p))
713 ret = PTR_ERR(p);
714 else {
715 ret = strlen(p);
716 memmove(buf, p, ret);
717 buf[ret++] = '\n';
718 buf[ret] = 0;
719 }
720
721 return ret;
722 }
723
loop_attr_offset_show(struct loop_device * lo,char * buf)724 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
725 {
726 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
727 }
728
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)729 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
730 {
731 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
732 }
733
loop_attr_autoclear_show(struct loop_device * lo,char * buf)734 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
735 {
736 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
737
738 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
739 }
740
loop_attr_partscan_show(struct loop_device * lo,char * buf)741 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
742 {
743 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
744
745 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
746 }
747
loop_attr_dio_show(struct loop_device * lo,char * buf)748 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
749 {
750 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
751
752 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
753 }
754
755 LOOP_ATTR_RO(backing_file);
756 LOOP_ATTR_RO(offset);
757 LOOP_ATTR_RO(sizelimit);
758 LOOP_ATTR_RO(autoclear);
759 LOOP_ATTR_RO(partscan);
760 LOOP_ATTR_RO(dio);
761
762 static struct attribute *loop_attrs[] = {
763 &loop_attr_backing_file.attr,
764 &loop_attr_offset.attr,
765 &loop_attr_sizelimit.attr,
766 &loop_attr_autoclear.attr,
767 &loop_attr_partscan.attr,
768 &loop_attr_dio.attr,
769 NULL,
770 };
771
772 static struct attribute_group loop_attribute_group = {
773 .name = "loop",
774 .attrs= loop_attrs,
775 };
776
loop_sysfs_init(struct loop_device * lo)777 static void loop_sysfs_init(struct loop_device *lo)
778 {
779 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
780 &loop_attribute_group);
781 }
782
loop_sysfs_exit(struct loop_device * lo)783 static void loop_sysfs_exit(struct loop_device *lo)
784 {
785 if (lo->sysfs_inited)
786 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
787 &loop_attribute_group);
788 }
789
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)790 static void loop_get_discard_config(struct loop_device *lo,
791 u32 *granularity, u32 *max_discard_sectors)
792 {
793 struct file *file = lo->lo_backing_file;
794 struct inode *inode = file->f_mapping->host;
795 struct kstatfs sbuf;
796
797 /*
798 * If the backing device is a block device, mirror its zeroing
799 * capability. Set the discard sectors to the block device's zeroing
800 * capabilities because loop discards result in blkdev_issue_zeroout(),
801 * not blkdev_issue_discard(). This maintains consistent behavior with
802 * file-backed loop devices: discarded regions read back as zero.
803 */
804 if (S_ISBLK(inode->i_mode)) {
805 struct block_device *bdev = I_BDEV(inode);
806
807 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
808 *granularity = bdev_discard_granularity(bdev);
809
810 /*
811 * We use punch hole to reclaim the free space used by the
812 * image a.k.a. discard.
813 */
814 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
815 *max_discard_sectors = UINT_MAX >> 9;
816 *granularity = sbuf.f_bsize;
817 }
818 }
819
820 struct loop_worker {
821 struct rb_node rb_node;
822 struct work_struct work;
823 struct list_head cmd_list;
824 struct list_head idle_list;
825 struct loop_device *lo;
826 struct cgroup_subsys_state *blkcg_css;
827 unsigned long last_ran_at;
828 };
829
830 static void loop_workfn(struct work_struct *work);
831
832 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)833 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
834 {
835 return !css || css == blkcg_root_css;
836 }
837 #else
queue_on_root_worker(struct cgroup_subsys_state * css)838 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
839 {
840 return !css;
841 }
842 #endif
843
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)844 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
845 {
846 struct rb_node **node, *parent = NULL;
847 struct loop_worker *cur_worker, *worker = NULL;
848 struct work_struct *work;
849 struct list_head *cmd_list;
850
851 spin_lock_irq(&lo->lo_work_lock);
852
853 if (queue_on_root_worker(cmd->blkcg_css))
854 goto queue_work;
855
856 node = &lo->worker_tree.rb_node;
857
858 while (*node) {
859 parent = *node;
860 cur_worker = container_of(*node, struct loop_worker, rb_node);
861 if (cur_worker->blkcg_css == cmd->blkcg_css) {
862 worker = cur_worker;
863 break;
864 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
865 node = &(*node)->rb_left;
866 } else {
867 node = &(*node)->rb_right;
868 }
869 }
870 if (worker)
871 goto queue_work;
872
873 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
874 /*
875 * In the event we cannot allocate a worker, just queue on the
876 * rootcg worker and issue the I/O as the rootcg
877 */
878 if (!worker) {
879 cmd->blkcg_css = NULL;
880 if (cmd->memcg_css)
881 css_put(cmd->memcg_css);
882 cmd->memcg_css = NULL;
883 goto queue_work;
884 }
885
886 worker->blkcg_css = cmd->blkcg_css;
887 css_get(worker->blkcg_css);
888 INIT_WORK(&worker->work, loop_workfn);
889 INIT_LIST_HEAD(&worker->cmd_list);
890 INIT_LIST_HEAD(&worker->idle_list);
891 worker->lo = lo;
892 rb_link_node(&worker->rb_node, parent, node);
893 rb_insert_color(&worker->rb_node, &lo->worker_tree);
894 queue_work:
895 if (worker) {
896 /*
897 * We need to remove from the idle list here while
898 * holding the lock so that the idle timer doesn't
899 * free the worker
900 */
901 if (!list_empty(&worker->idle_list))
902 list_del_init(&worker->idle_list);
903 work = &worker->work;
904 cmd_list = &worker->cmd_list;
905 } else {
906 work = &lo->rootcg_work;
907 cmd_list = &lo->rootcg_cmd_list;
908 }
909 list_add_tail(&cmd->list_entry, cmd_list);
910 queue_work(lo->workqueue, work);
911 spin_unlock_irq(&lo->lo_work_lock);
912 }
913
loop_set_timer(struct loop_device * lo)914 static void loop_set_timer(struct loop_device *lo)
915 {
916 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
917 }
918
loop_free_idle_workers(struct loop_device * lo,bool delete_all)919 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
920 {
921 struct loop_worker *pos, *worker;
922
923 spin_lock_irq(&lo->lo_work_lock);
924 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
925 idle_list) {
926 if (!delete_all &&
927 time_is_after_jiffies(worker->last_ran_at +
928 LOOP_IDLE_WORKER_TIMEOUT))
929 break;
930 list_del(&worker->idle_list);
931 rb_erase(&worker->rb_node, &lo->worker_tree);
932 css_put(worker->blkcg_css);
933 kfree(worker);
934 }
935 if (!list_empty(&lo->idle_worker_list))
936 loop_set_timer(lo);
937 spin_unlock_irq(&lo->lo_work_lock);
938 }
939
loop_free_idle_workers_timer(struct timer_list * timer)940 static void loop_free_idle_workers_timer(struct timer_list *timer)
941 {
942 struct loop_device *lo = container_of(timer, struct loop_device, timer);
943
944 return loop_free_idle_workers(lo, false);
945 }
946
947 /**
948 * loop_set_status_from_info - configure device from loop_info
949 * @lo: struct loop_device to configure
950 * @info: struct loop_info64 to configure the device with
951 *
952 * Configures the loop device parameters according to the passed
953 * in loop_info64 configuration.
954 */
955 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)956 loop_set_status_from_info(struct loop_device *lo,
957 const struct loop_info64 *info)
958 {
959 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
960 return -EINVAL;
961
962 switch (info->lo_encrypt_type) {
963 case LO_CRYPT_NONE:
964 break;
965 case LO_CRYPT_XOR:
966 pr_warn("support for the xor transformation has been removed.\n");
967 return -EINVAL;
968 case LO_CRYPT_CRYPTOAPI:
969 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
970 return -EINVAL;
971 default:
972 return -EINVAL;
973 }
974
975 /* Avoid assigning overflow values */
976 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
977 return -EOVERFLOW;
978
979 lo->lo_offset = info->lo_offset;
980 lo->lo_sizelimit = info->lo_sizelimit;
981
982 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
983 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
984 return 0;
985 }
986
loop_default_blocksize(struct loop_device * lo)987 static unsigned int loop_default_blocksize(struct loop_device *lo)
988 {
989 /* In case of direct I/O, match underlying minimum I/O size */
990 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
991 return lo->lo_min_dio_size;
992 return SECTOR_SIZE;
993 }
994
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)995 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
996 unsigned int bsize)
997 {
998 struct file *file = lo->lo_backing_file;
999 struct inode *inode = file->f_mapping->host;
1000 struct block_device *backing_bdev = NULL;
1001 u32 granularity = 0, max_discard_sectors = 0;
1002
1003 if (S_ISBLK(inode->i_mode))
1004 backing_bdev = I_BDEV(inode);
1005 else if (inode->i_sb->s_bdev)
1006 backing_bdev = inode->i_sb->s_bdev;
1007
1008 if (!bsize)
1009 bsize = loop_default_blocksize(lo);
1010
1011 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
1012
1013 lim->logical_block_size = bsize;
1014 lim->physical_block_size = bsize;
1015 lim->io_min = bsize;
1016 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
1017 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
1018 lim->features |= BLK_FEAT_WRITE_CACHE;
1019 if (backing_bdev && !bdev_nonrot(backing_bdev))
1020 lim->features |= BLK_FEAT_ROTATIONAL;
1021 lim->max_hw_discard_sectors = max_discard_sectors;
1022 lim->max_write_zeroes_sectors = max_discard_sectors;
1023 if (max_discard_sectors)
1024 lim->discard_granularity = granularity;
1025 else
1026 lim->discard_granularity = 0;
1027 }
1028
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)1029 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
1030 struct block_device *bdev,
1031 const struct loop_config *config)
1032 {
1033 struct file *file = fget(config->fd);
1034 struct queue_limits lim;
1035 int error;
1036 loff_t size;
1037 bool partscan;
1038 bool is_loop;
1039
1040 if (!file)
1041 return -EBADF;
1042 is_loop = is_loop_device(file);
1043
1044 /* This is safe, since we have a reference from open(). */
1045 __module_get(THIS_MODULE);
1046
1047 /*
1048 * If we don't hold exclusive handle for the device, upgrade to it
1049 * here to avoid changing device under exclusive owner.
1050 */
1051 if (!(mode & BLK_OPEN_EXCL)) {
1052 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1053 if (error)
1054 goto out_putf;
1055 }
1056
1057 error = loop_global_lock_killable(lo, is_loop);
1058 if (error)
1059 goto out_bdev;
1060
1061 error = -EBUSY;
1062 if (lo->lo_state != Lo_unbound)
1063 goto out_unlock;
1064
1065 error = loop_validate_file(file, bdev);
1066 if (error)
1067 goto out_unlock;
1068
1069 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1070 error = -EINVAL;
1071 goto out_unlock;
1072 }
1073
1074 error = loop_set_status_from_info(lo, &config->info);
1075 if (error)
1076 goto out_unlock;
1077 lo->lo_flags = config->info.lo_flags;
1078
1079 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1080 !file->f_op->write_iter)
1081 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1082
1083 if (!lo->workqueue) {
1084 lo->workqueue = alloc_workqueue("loop%d",
1085 WQ_UNBOUND | WQ_FREEZABLE,
1086 0, lo->lo_number);
1087 if (!lo->workqueue) {
1088 error = -ENOMEM;
1089 goto out_unlock;
1090 }
1091 }
1092
1093 /* suppress uevents while reconfiguring the device */
1094 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1095
1096 disk_force_media_change(lo->lo_disk);
1097 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1098
1099 lo->lo_device = bdev;
1100 loop_assign_backing_file(lo, file);
1101
1102 lim = queue_limits_start_update(lo->lo_queue);
1103 loop_update_limits(lo, &lim, config->block_size);
1104 /* No need to freeze the queue as the device isn't bound yet. */
1105 error = queue_limits_commit_update(lo->lo_queue, &lim);
1106 if (error)
1107 goto out_unlock;
1108
1109 /*
1110 * We might switch to direct I/O mode for the loop device, write back
1111 * all dirty data the page cache now that so that the individual I/O
1112 * operations don't have to do that.
1113 */
1114 vfs_fsync(file, 0);
1115
1116 loop_update_dio(lo);
1117 loop_sysfs_init(lo);
1118
1119 size = get_loop_size(lo, file);
1120 loop_set_size(lo, size);
1121
1122 /* Order wrt reading lo_state in loop_validate_file(). */
1123 wmb();
1124
1125 lo->lo_state = Lo_bound;
1126 if (part_shift)
1127 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1128 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1129 if (partscan)
1130 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1131
1132 /* enable and uncork uevent now that we are done */
1133 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1134
1135 loop_global_unlock(lo, is_loop);
1136 if (partscan)
1137 loop_reread_partitions(lo);
1138
1139 if (!(mode & BLK_OPEN_EXCL))
1140 bd_abort_claiming(bdev, loop_configure);
1141
1142 return 0;
1143
1144 out_unlock:
1145 loop_global_unlock(lo, is_loop);
1146 out_bdev:
1147 if (!(mode & BLK_OPEN_EXCL))
1148 bd_abort_claiming(bdev, loop_configure);
1149 out_putf:
1150 fput(file);
1151 /* This is safe: open() is still holding a reference. */
1152 module_put(THIS_MODULE);
1153 return error;
1154 }
1155
__loop_clr_fd(struct loop_device * lo)1156 static void __loop_clr_fd(struct loop_device *lo)
1157 {
1158 struct queue_limits lim;
1159 struct file *filp;
1160 gfp_t gfp = lo->old_gfp_mask;
1161
1162 spin_lock_irq(&lo->lo_lock);
1163 filp = lo->lo_backing_file;
1164 lo->lo_backing_file = NULL;
1165 spin_unlock_irq(&lo->lo_lock);
1166
1167 lo->lo_device = NULL;
1168 lo->lo_offset = 0;
1169 lo->lo_sizelimit = 0;
1170 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1171
1172 /*
1173 * Reset the block size to the default.
1174 *
1175 * No queue freezing needed because this is called from the final
1176 * ->release call only, so there can't be any outstanding I/O.
1177 */
1178 lim = queue_limits_start_update(lo->lo_queue);
1179 lim.logical_block_size = SECTOR_SIZE;
1180 lim.physical_block_size = SECTOR_SIZE;
1181 lim.io_min = SECTOR_SIZE;
1182 queue_limits_commit_update(lo->lo_queue, &lim);
1183
1184 invalidate_disk(lo->lo_disk);
1185 loop_sysfs_exit(lo);
1186 /* let user-space know about this change */
1187 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1188 mapping_set_gfp_mask(filp->f_mapping, gfp);
1189 /* This is safe: open() is still holding a reference. */
1190 module_put(THIS_MODULE);
1191
1192 disk_force_media_change(lo->lo_disk);
1193
1194 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1195 int err;
1196
1197 /*
1198 * open_mutex has been held already in release path, so don't
1199 * acquire it if this function is called in such case.
1200 *
1201 * If the reread partition isn't from release path, lo_refcnt
1202 * must be at least one and it can only become zero when the
1203 * current holder is released.
1204 */
1205 err = bdev_disk_changed(lo->lo_disk, false);
1206 if (err)
1207 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1208 __func__, lo->lo_number, err);
1209 /* Device is gone, no point in returning error */
1210 }
1211
1212 /*
1213 * lo->lo_state is set to Lo_unbound here after above partscan has
1214 * finished. There cannot be anybody else entering __loop_clr_fd() as
1215 * Lo_rundown state protects us from all the other places trying to
1216 * change the 'lo' device.
1217 */
1218 lo->lo_flags = 0;
1219 if (!part_shift)
1220 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1221 mutex_lock(&lo->lo_mutex);
1222 lo->lo_state = Lo_unbound;
1223 mutex_unlock(&lo->lo_mutex);
1224
1225 /*
1226 * Need not hold lo_mutex to fput backing file. Calling fput holding
1227 * lo_mutex triggers a circular lock dependency possibility warning as
1228 * fput can take open_mutex which is usually taken before lo_mutex.
1229 */
1230 fput(filp);
1231 }
1232
loop_clr_fd(struct loop_device * lo)1233 static int loop_clr_fd(struct loop_device *lo)
1234 {
1235 int err;
1236
1237 /*
1238 * Since lo_ioctl() is called without locks held, it is possible that
1239 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1240 *
1241 * Therefore, use global lock when setting Lo_rundown state in order to
1242 * make sure that loop_validate_file() will fail if the "struct file"
1243 * which loop_configure()/loop_change_fd() found via fget() was this
1244 * loop device.
1245 */
1246 err = loop_global_lock_killable(lo, true);
1247 if (err)
1248 return err;
1249 if (lo->lo_state != Lo_bound) {
1250 loop_global_unlock(lo, true);
1251 return -ENXIO;
1252 }
1253 /*
1254 * Mark the device for removing the backing device on last close.
1255 * If we are the only opener, also switch the state to roundown here to
1256 * prevent new openers from coming in.
1257 */
1258
1259 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1260 if (disk_openers(lo->lo_disk) == 1)
1261 lo->lo_state = Lo_rundown;
1262 loop_global_unlock(lo, true);
1263
1264 return 0;
1265 }
1266
1267 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1268 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1269 {
1270 int err;
1271 bool partscan = false;
1272 bool size_changed = false;
1273 unsigned int memflags;
1274
1275 err = mutex_lock_killable(&lo->lo_mutex);
1276 if (err)
1277 return err;
1278 if (lo->lo_state != Lo_bound) {
1279 err = -ENXIO;
1280 goto out_unlock;
1281 }
1282
1283 if (lo->lo_offset != info->lo_offset ||
1284 lo->lo_sizelimit != info->lo_sizelimit) {
1285 size_changed = true;
1286 sync_blockdev(lo->lo_device);
1287 invalidate_bdev(lo->lo_device);
1288 }
1289
1290 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1291 memflags = blk_mq_freeze_queue(lo->lo_queue);
1292
1293 err = loop_set_status_from_info(lo, info);
1294 if (err)
1295 goto out_unfreeze;
1296
1297 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1298 (info->lo_flags & LO_FLAGS_PARTSCAN);
1299
1300 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1301 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1302
1303 if (size_changed) {
1304 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1305 lo->lo_backing_file);
1306 loop_set_size(lo, new_size);
1307 }
1308
1309 /* update the direct I/O flag if lo_offset changed */
1310 loop_update_dio(lo);
1311
1312 out_unfreeze:
1313 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1314 if (partscan)
1315 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1316 out_unlock:
1317 mutex_unlock(&lo->lo_mutex);
1318 if (partscan)
1319 loop_reread_partitions(lo);
1320
1321 return err;
1322 }
1323
1324 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1325 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1326 {
1327 struct path path;
1328 struct kstat stat;
1329 int ret;
1330
1331 ret = mutex_lock_killable(&lo->lo_mutex);
1332 if (ret)
1333 return ret;
1334 if (lo->lo_state != Lo_bound) {
1335 mutex_unlock(&lo->lo_mutex);
1336 return -ENXIO;
1337 }
1338
1339 memset(info, 0, sizeof(*info));
1340 info->lo_number = lo->lo_number;
1341 info->lo_offset = lo->lo_offset;
1342 info->lo_sizelimit = lo->lo_sizelimit;
1343 info->lo_flags = lo->lo_flags;
1344 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1345
1346 /* Drop lo_mutex while we call into the filesystem. */
1347 path = lo->lo_backing_file->f_path;
1348 path_get(&path);
1349 mutex_unlock(&lo->lo_mutex);
1350 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1351 if (!ret) {
1352 info->lo_device = huge_encode_dev(stat.dev);
1353 info->lo_inode = stat.ino;
1354 info->lo_rdevice = huge_encode_dev(stat.rdev);
1355 }
1356 path_put(&path);
1357 return ret;
1358 }
1359
1360 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1361 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1362 {
1363 memset(info64, 0, sizeof(*info64));
1364 info64->lo_number = info->lo_number;
1365 info64->lo_device = info->lo_device;
1366 info64->lo_inode = info->lo_inode;
1367 info64->lo_rdevice = info->lo_rdevice;
1368 info64->lo_offset = info->lo_offset;
1369 info64->lo_sizelimit = 0;
1370 info64->lo_flags = info->lo_flags;
1371 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1372 }
1373
1374 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1375 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1376 {
1377 memset(info, 0, sizeof(*info));
1378 info->lo_number = info64->lo_number;
1379 info->lo_device = info64->lo_device;
1380 info->lo_inode = info64->lo_inode;
1381 info->lo_rdevice = info64->lo_rdevice;
1382 info->lo_offset = info64->lo_offset;
1383 info->lo_flags = info64->lo_flags;
1384 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1385
1386 /* error in case values were truncated */
1387 if (info->lo_device != info64->lo_device ||
1388 info->lo_rdevice != info64->lo_rdevice ||
1389 info->lo_inode != info64->lo_inode ||
1390 info->lo_offset != info64->lo_offset)
1391 return -EOVERFLOW;
1392
1393 return 0;
1394 }
1395
1396 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1397 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1398 {
1399 struct loop_info info;
1400 struct loop_info64 info64;
1401
1402 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1403 return -EFAULT;
1404 loop_info64_from_old(&info, &info64);
1405 return loop_set_status(lo, &info64);
1406 }
1407
1408 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1409 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1410 {
1411 struct loop_info64 info64;
1412
1413 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1414 return -EFAULT;
1415 return loop_set_status(lo, &info64);
1416 }
1417
1418 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1419 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1420 struct loop_info info;
1421 struct loop_info64 info64;
1422 int err;
1423
1424 if (!arg)
1425 return -EINVAL;
1426 err = loop_get_status(lo, &info64);
1427 if (!err)
1428 err = loop_info64_to_old(&info64, &info);
1429 if (!err && copy_to_user(arg, &info, sizeof(info)))
1430 err = -EFAULT;
1431
1432 return err;
1433 }
1434
1435 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1436 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1437 struct loop_info64 info64;
1438 int err;
1439
1440 if (!arg)
1441 return -EINVAL;
1442 err = loop_get_status(lo, &info64);
1443 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1444 err = -EFAULT;
1445
1446 return err;
1447 }
1448
loop_set_capacity(struct loop_device * lo)1449 static int loop_set_capacity(struct loop_device *lo)
1450 {
1451 loff_t size;
1452
1453 if (unlikely(lo->lo_state != Lo_bound))
1454 return -ENXIO;
1455
1456 size = get_loop_size(lo, lo->lo_backing_file);
1457 loop_set_size(lo, size);
1458
1459 return 0;
1460 }
1461
loop_set_dio(struct loop_device * lo,unsigned long arg)1462 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1463 {
1464 bool use_dio = !!arg;
1465 unsigned int memflags;
1466
1467 if (lo->lo_state != Lo_bound)
1468 return -ENXIO;
1469 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1470 return 0;
1471
1472 if (use_dio) {
1473 if (!lo_can_use_dio(lo))
1474 return -EINVAL;
1475 /* flush dirty pages before starting to use direct I/O */
1476 vfs_fsync(lo->lo_backing_file, 0);
1477 }
1478
1479 memflags = blk_mq_freeze_queue(lo->lo_queue);
1480 if (use_dio)
1481 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1482 else
1483 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1484 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1485 return 0;
1486 }
1487
loop_set_block_size(struct loop_device * lo,unsigned long arg)1488 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1489 {
1490 struct queue_limits lim;
1491 unsigned int memflags;
1492 int err = 0;
1493
1494 if (lo->lo_state != Lo_bound)
1495 return -ENXIO;
1496
1497 if (lo->lo_queue->limits.logical_block_size == arg)
1498 return 0;
1499
1500 sync_blockdev(lo->lo_device);
1501 invalidate_bdev(lo->lo_device);
1502
1503 lim = queue_limits_start_update(lo->lo_queue);
1504 loop_update_limits(lo, &lim, arg);
1505
1506 memflags = blk_mq_freeze_queue(lo->lo_queue);
1507 err = queue_limits_commit_update(lo->lo_queue, &lim);
1508 loop_update_dio(lo);
1509 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1510
1511 return err;
1512 }
1513
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1514 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1515 unsigned long arg)
1516 {
1517 int err;
1518
1519 err = mutex_lock_killable(&lo->lo_mutex);
1520 if (err)
1521 return err;
1522 switch (cmd) {
1523 case LOOP_SET_CAPACITY:
1524 err = loop_set_capacity(lo);
1525 break;
1526 case LOOP_SET_DIRECT_IO:
1527 err = loop_set_dio(lo, arg);
1528 break;
1529 case LOOP_SET_BLOCK_SIZE:
1530 err = loop_set_block_size(lo, arg);
1531 break;
1532 default:
1533 err = -EINVAL;
1534 }
1535 mutex_unlock(&lo->lo_mutex);
1536 return err;
1537 }
1538
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1539 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1540 unsigned int cmd, unsigned long arg)
1541 {
1542 struct loop_device *lo = bdev->bd_disk->private_data;
1543 void __user *argp = (void __user *) arg;
1544 int err;
1545
1546 switch (cmd) {
1547 case LOOP_SET_FD: {
1548 /*
1549 * Legacy case - pass in a zeroed out struct loop_config with
1550 * only the file descriptor set , which corresponds with the
1551 * default parameters we'd have used otherwise.
1552 */
1553 struct loop_config config;
1554
1555 memset(&config, 0, sizeof(config));
1556 config.fd = arg;
1557
1558 return loop_configure(lo, mode, bdev, &config);
1559 }
1560 case LOOP_CONFIGURE: {
1561 struct loop_config config;
1562
1563 if (copy_from_user(&config, argp, sizeof(config)))
1564 return -EFAULT;
1565
1566 return loop_configure(lo, mode, bdev, &config);
1567 }
1568 case LOOP_CHANGE_FD:
1569 return loop_change_fd(lo, bdev, arg);
1570 case LOOP_CLR_FD:
1571 return loop_clr_fd(lo);
1572 case LOOP_SET_STATUS:
1573 err = -EPERM;
1574 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1575 err = loop_set_status_old(lo, argp);
1576 break;
1577 case LOOP_GET_STATUS:
1578 return loop_get_status_old(lo, argp);
1579 case LOOP_SET_STATUS64:
1580 err = -EPERM;
1581 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1582 err = loop_set_status64(lo, argp);
1583 break;
1584 case LOOP_GET_STATUS64:
1585 return loop_get_status64(lo, argp);
1586 case LOOP_SET_CAPACITY:
1587 case LOOP_SET_DIRECT_IO:
1588 case LOOP_SET_BLOCK_SIZE:
1589 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1590 return -EPERM;
1591 fallthrough;
1592 default:
1593 err = lo_simple_ioctl(lo, cmd, arg);
1594 break;
1595 }
1596
1597 return err;
1598 }
1599
1600 #ifdef CONFIG_COMPAT
1601 struct compat_loop_info {
1602 compat_int_t lo_number; /* ioctl r/o */
1603 compat_dev_t lo_device; /* ioctl r/o */
1604 compat_ulong_t lo_inode; /* ioctl r/o */
1605 compat_dev_t lo_rdevice; /* ioctl r/o */
1606 compat_int_t lo_offset;
1607 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1608 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1609 compat_int_t lo_flags; /* ioctl r/o */
1610 char lo_name[LO_NAME_SIZE];
1611 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1612 compat_ulong_t lo_init[2];
1613 char reserved[4];
1614 };
1615
1616 /*
1617 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1618 * - noinlined to reduce stack space usage in main part of driver
1619 */
1620 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1621 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1622 struct loop_info64 *info64)
1623 {
1624 struct compat_loop_info info;
1625
1626 if (copy_from_user(&info, arg, sizeof(info)))
1627 return -EFAULT;
1628
1629 memset(info64, 0, sizeof(*info64));
1630 info64->lo_number = info.lo_number;
1631 info64->lo_device = info.lo_device;
1632 info64->lo_inode = info.lo_inode;
1633 info64->lo_rdevice = info.lo_rdevice;
1634 info64->lo_offset = info.lo_offset;
1635 info64->lo_sizelimit = 0;
1636 info64->lo_flags = info.lo_flags;
1637 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1638 return 0;
1639 }
1640
1641 /*
1642 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1643 * - noinlined to reduce stack space usage in main part of driver
1644 */
1645 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1646 loop_info64_to_compat(const struct loop_info64 *info64,
1647 struct compat_loop_info __user *arg)
1648 {
1649 struct compat_loop_info info;
1650
1651 memset(&info, 0, sizeof(info));
1652 info.lo_number = info64->lo_number;
1653 info.lo_device = info64->lo_device;
1654 info.lo_inode = info64->lo_inode;
1655 info.lo_rdevice = info64->lo_rdevice;
1656 info.lo_offset = info64->lo_offset;
1657 info.lo_flags = info64->lo_flags;
1658 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1659
1660 /* error in case values were truncated */
1661 if (info.lo_device != info64->lo_device ||
1662 info.lo_rdevice != info64->lo_rdevice ||
1663 info.lo_inode != info64->lo_inode ||
1664 info.lo_offset != info64->lo_offset)
1665 return -EOVERFLOW;
1666
1667 if (copy_to_user(arg, &info, sizeof(info)))
1668 return -EFAULT;
1669 return 0;
1670 }
1671
1672 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1673 loop_set_status_compat(struct loop_device *lo,
1674 const struct compat_loop_info __user *arg)
1675 {
1676 struct loop_info64 info64;
1677 int ret;
1678
1679 ret = loop_info64_from_compat(arg, &info64);
1680 if (ret < 0)
1681 return ret;
1682 return loop_set_status(lo, &info64);
1683 }
1684
1685 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1686 loop_get_status_compat(struct loop_device *lo,
1687 struct compat_loop_info __user *arg)
1688 {
1689 struct loop_info64 info64;
1690 int err;
1691
1692 if (!arg)
1693 return -EINVAL;
1694 err = loop_get_status(lo, &info64);
1695 if (!err)
1696 err = loop_info64_to_compat(&info64, arg);
1697 return err;
1698 }
1699
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1700 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1701 unsigned int cmd, unsigned long arg)
1702 {
1703 struct loop_device *lo = bdev->bd_disk->private_data;
1704 int err;
1705
1706 switch(cmd) {
1707 case LOOP_SET_STATUS:
1708 err = loop_set_status_compat(lo,
1709 (const struct compat_loop_info __user *)arg);
1710 break;
1711 case LOOP_GET_STATUS:
1712 err = loop_get_status_compat(lo,
1713 (struct compat_loop_info __user *)arg);
1714 break;
1715 case LOOP_SET_CAPACITY:
1716 case LOOP_CLR_FD:
1717 case LOOP_GET_STATUS64:
1718 case LOOP_SET_STATUS64:
1719 case LOOP_CONFIGURE:
1720 arg = (unsigned long) compat_ptr(arg);
1721 fallthrough;
1722 case LOOP_SET_FD:
1723 case LOOP_CHANGE_FD:
1724 case LOOP_SET_BLOCK_SIZE:
1725 case LOOP_SET_DIRECT_IO:
1726 err = lo_ioctl(bdev, mode, cmd, arg);
1727 break;
1728 default:
1729 err = -ENOIOCTLCMD;
1730 break;
1731 }
1732 return err;
1733 }
1734 #endif
1735
lo_open(struct gendisk * disk,blk_mode_t mode)1736 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1737 {
1738 struct loop_device *lo = disk->private_data;
1739 int err;
1740
1741 err = mutex_lock_killable(&lo->lo_mutex);
1742 if (err)
1743 return err;
1744
1745 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1746 err = -ENXIO;
1747 mutex_unlock(&lo->lo_mutex);
1748 return err;
1749 }
1750
lo_release(struct gendisk * disk)1751 static void lo_release(struct gendisk *disk)
1752 {
1753 struct loop_device *lo = disk->private_data;
1754 bool need_clear = false;
1755
1756 if (disk_openers(disk) > 0)
1757 return;
1758 /*
1759 * Clear the backing device information if this is the last close of
1760 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1761 * has been called.
1762 */
1763
1764 mutex_lock(&lo->lo_mutex);
1765 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1766 lo->lo_state = Lo_rundown;
1767
1768 need_clear = (lo->lo_state == Lo_rundown);
1769 mutex_unlock(&lo->lo_mutex);
1770
1771 if (need_clear)
1772 __loop_clr_fd(lo);
1773 }
1774
lo_free_disk(struct gendisk * disk)1775 static void lo_free_disk(struct gendisk *disk)
1776 {
1777 struct loop_device *lo = disk->private_data;
1778
1779 if (lo->workqueue)
1780 destroy_workqueue(lo->workqueue);
1781 loop_free_idle_workers(lo, true);
1782 timer_shutdown_sync(&lo->timer);
1783 mutex_destroy(&lo->lo_mutex);
1784 kfree(lo);
1785 }
1786
1787 static const struct block_device_operations lo_fops = {
1788 .owner = THIS_MODULE,
1789 .open = lo_open,
1790 .release = lo_release,
1791 .ioctl = lo_ioctl,
1792 #ifdef CONFIG_COMPAT
1793 .compat_ioctl = lo_compat_ioctl,
1794 #endif
1795 .free_disk = lo_free_disk,
1796 };
1797
1798 /*
1799 * And now the modules code and kernel interface.
1800 */
1801
1802 /*
1803 * If max_loop is specified, create that many devices upfront.
1804 * This also becomes a hard limit. If max_loop is not specified,
1805 * the default isn't a hard limit (as before commit 85c50197716c
1806 * changed the default value from 0 for max_loop=0 reasons), just
1807 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1808 * init time. Loop devices can be requested on-demand with the
1809 * /dev/loop-control interface, or be instantiated by accessing
1810 * a 'dead' device node.
1811 */
1812 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1813
1814 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1815 static bool max_loop_specified;
1816
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1817 static int max_loop_param_set_int(const char *val,
1818 const struct kernel_param *kp)
1819 {
1820 int ret;
1821
1822 ret = param_set_int(val, kp);
1823 if (ret < 0)
1824 return ret;
1825
1826 max_loop_specified = true;
1827 return 0;
1828 }
1829
1830 static const struct kernel_param_ops max_loop_param_ops = {
1831 .set = max_loop_param_set_int,
1832 .get = param_get_int,
1833 };
1834
1835 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1836 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1837 #else
1838 module_param(max_loop, int, 0444);
1839 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1840 #endif
1841
1842 module_param(max_part, int, 0444);
1843 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1844
1845 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1846
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1847 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1848 {
1849 int qd, ret;
1850
1851 ret = kstrtoint(s, 0, &qd);
1852 if (ret < 0)
1853 return ret;
1854 if (qd < 1)
1855 return -EINVAL;
1856 hw_queue_depth = qd;
1857 return 0;
1858 }
1859
1860 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1861 .set = loop_set_hw_queue_depth,
1862 .get = param_get_int,
1863 };
1864
1865 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1866 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1867
1868 MODULE_DESCRIPTION("Loopback device support");
1869 MODULE_LICENSE("GPL");
1870 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1871
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1872 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1873 const struct blk_mq_queue_data *bd)
1874 {
1875 struct request *rq = bd->rq;
1876 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1877 struct loop_device *lo = rq->q->queuedata;
1878
1879 blk_mq_start_request(rq);
1880
1881 if (lo->lo_state != Lo_bound)
1882 return BLK_STS_IOERR;
1883
1884 switch (req_op(rq)) {
1885 case REQ_OP_FLUSH:
1886 case REQ_OP_DISCARD:
1887 case REQ_OP_WRITE_ZEROES:
1888 cmd->use_aio = false;
1889 break;
1890 default:
1891 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1892 break;
1893 }
1894
1895 /* always use the first bio's css */
1896 cmd->blkcg_css = NULL;
1897 cmd->memcg_css = NULL;
1898 #ifdef CONFIG_BLK_CGROUP
1899 if (rq->bio) {
1900 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1901 #ifdef CONFIG_MEMCG
1902 if (cmd->blkcg_css) {
1903 cmd->memcg_css =
1904 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1905 &memory_cgrp_subsys);
1906 }
1907 #endif
1908 }
1909 #endif
1910 loop_queue_work(lo, cmd);
1911
1912 return BLK_STS_OK;
1913 }
1914
loop_handle_cmd(struct loop_cmd * cmd)1915 static void loop_handle_cmd(struct loop_cmd *cmd)
1916 {
1917 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1918 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1919 struct request *rq = blk_mq_rq_from_pdu(cmd);
1920 const bool write = op_is_write(req_op(rq));
1921 struct loop_device *lo = rq->q->queuedata;
1922 int ret = 0;
1923 struct mem_cgroup *old_memcg = NULL;
1924 const bool use_aio = cmd->use_aio;
1925
1926 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1927 ret = -EIO;
1928 goto failed;
1929 }
1930
1931 if (cmd_blkcg_css)
1932 kthread_associate_blkcg(cmd_blkcg_css);
1933 if (cmd_memcg_css)
1934 old_memcg = set_active_memcg(
1935 mem_cgroup_from_css(cmd_memcg_css));
1936
1937 /*
1938 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1939 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1940 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1941 * not yet been completed.
1942 */
1943 ret = do_req_filebacked(lo, rq);
1944
1945 if (cmd_blkcg_css)
1946 kthread_associate_blkcg(NULL);
1947
1948 if (cmd_memcg_css) {
1949 set_active_memcg(old_memcg);
1950 css_put(cmd_memcg_css);
1951 }
1952 failed:
1953 /* complete non-aio request */
1954 if (!use_aio || ret) {
1955 if (ret == -EOPNOTSUPP)
1956 cmd->ret = ret;
1957 else
1958 cmd->ret = ret ? -EIO : 0;
1959 if (likely(!blk_should_fake_timeout(rq->q)))
1960 blk_mq_complete_request(rq);
1961 }
1962 }
1963
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1964 static void loop_process_work(struct loop_worker *worker,
1965 struct list_head *cmd_list, struct loop_device *lo)
1966 {
1967 int orig_flags = current->flags;
1968 struct loop_cmd *cmd;
1969
1970 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1971 spin_lock_irq(&lo->lo_work_lock);
1972 while (!list_empty(cmd_list)) {
1973 cmd = container_of(
1974 cmd_list->next, struct loop_cmd, list_entry);
1975 list_del(cmd_list->next);
1976 spin_unlock_irq(&lo->lo_work_lock);
1977
1978 loop_handle_cmd(cmd);
1979 cond_resched();
1980
1981 spin_lock_irq(&lo->lo_work_lock);
1982 }
1983
1984 /*
1985 * We only add to the idle list if there are no pending cmds
1986 * *and* the worker will not run again which ensures that it
1987 * is safe to free any worker on the idle list
1988 */
1989 if (worker && !work_pending(&worker->work)) {
1990 worker->last_ran_at = jiffies;
1991 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1992 loop_set_timer(lo);
1993 }
1994 spin_unlock_irq(&lo->lo_work_lock);
1995 current->flags = orig_flags;
1996 }
1997
loop_workfn(struct work_struct * work)1998 static void loop_workfn(struct work_struct *work)
1999 {
2000 struct loop_worker *worker =
2001 container_of(work, struct loop_worker, work);
2002 loop_process_work(worker, &worker->cmd_list, worker->lo);
2003 }
2004
loop_rootcg_workfn(struct work_struct * work)2005 static void loop_rootcg_workfn(struct work_struct *work)
2006 {
2007 struct loop_device *lo =
2008 container_of(work, struct loop_device, rootcg_work);
2009 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2010 }
2011
2012 static const struct blk_mq_ops loop_mq_ops = {
2013 .queue_rq = loop_queue_rq,
2014 .complete = lo_complete_rq,
2015 };
2016
loop_add(int i)2017 static int loop_add(int i)
2018 {
2019 struct queue_limits lim = {
2020 /*
2021 * Random number picked from the historic block max_sectors cap.
2022 */
2023 .max_hw_sectors = 2560u,
2024 };
2025 struct loop_device *lo;
2026 struct gendisk *disk;
2027 int err;
2028
2029 err = -ENOMEM;
2030 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2031 if (!lo)
2032 goto out;
2033 lo->worker_tree = RB_ROOT;
2034 INIT_LIST_HEAD(&lo->idle_worker_list);
2035 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2036 lo->lo_state = Lo_unbound;
2037
2038 err = mutex_lock_killable(&loop_ctl_mutex);
2039 if (err)
2040 goto out_free_dev;
2041
2042 /* allocate id, if @id >= 0, we're requesting that specific id */
2043 if (i >= 0) {
2044 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2045 if (err == -ENOSPC)
2046 err = -EEXIST;
2047 } else {
2048 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2049 }
2050 mutex_unlock(&loop_ctl_mutex);
2051 if (err < 0)
2052 goto out_free_dev;
2053 i = err;
2054
2055 lo->tag_set.ops = &loop_mq_ops;
2056 lo->tag_set.nr_hw_queues = 1;
2057 lo->tag_set.queue_depth = hw_queue_depth;
2058 lo->tag_set.numa_node = NUMA_NO_NODE;
2059 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2060 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2061 lo->tag_set.driver_data = lo;
2062
2063 err = blk_mq_alloc_tag_set(&lo->tag_set);
2064 if (err)
2065 goto out_free_idr;
2066
2067 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2068 if (IS_ERR(disk)) {
2069 err = PTR_ERR(disk);
2070 goto out_cleanup_tags;
2071 }
2072 lo->lo_queue = lo->lo_disk->queue;
2073
2074 /*
2075 * Disable partition scanning by default. The in-kernel partition
2076 * scanning can be requested individually per-device during its
2077 * setup. Userspace can always add and remove partitions from all
2078 * devices. The needed partition minors are allocated from the
2079 * extended minor space, the main loop device numbers will continue
2080 * to match the loop minors, regardless of the number of partitions
2081 * used.
2082 *
2083 * If max_part is given, partition scanning is globally enabled for
2084 * all loop devices. The minors for the main loop devices will be
2085 * multiples of max_part.
2086 *
2087 * Note: Global-for-all-devices, set-only-at-init, read-only module
2088 * parameteters like 'max_loop' and 'max_part' make things needlessly
2089 * complicated, are too static, inflexible and may surprise
2090 * userspace tools. Parameters like this in general should be avoided.
2091 */
2092 if (!part_shift)
2093 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2094 mutex_init(&lo->lo_mutex);
2095 lo->lo_number = i;
2096 spin_lock_init(&lo->lo_lock);
2097 spin_lock_init(&lo->lo_work_lock);
2098 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2099 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2100 disk->major = LOOP_MAJOR;
2101 disk->first_minor = i << part_shift;
2102 disk->minors = 1 << part_shift;
2103 disk->fops = &lo_fops;
2104 disk->private_data = lo;
2105 disk->queue = lo->lo_queue;
2106 disk->events = DISK_EVENT_MEDIA_CHANGE;
2107 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2108 sprintf(disk->disk_name, "loop%d", i);
2109 /* Make this loop device reachable from pathname. */
2110 err = add_disk(disk);
2111 if (err)
2112 goto out_cleanup_disk;
2113
2114 /* Show this loop device. */
2115 mutex_lock(&loop_ctl_mutex);
2116 lo->idr_visible = true;
2117 mutex_unlock(&loop_ctl_mutex);
2118
2119 return i;
2120
2121 out_cleanup_disk:
2122 put_disk(disk);
2123 out_cleanup_tags:
2124 blk_mq_free_tag_set(&lo->tag_set);
2125 out_free_idr:
2126 mutex_lock(&loop_ctl_mutex);
2127 idr_remove(&loop_index_idr, i);
2128 mutex_unlock(&loop_ctl_mutex);
2129 out_free_dev:
2130 kfree(lo);
2131 out:
2132 return err;
2133 }
2134
loop_remove(struct loop_device * lo)2135 static void loop_remove(struct loop_device *lo)
2136 {
2137 /* Make this loop device unreachable from pathname. */
2138 del_gendisk(lo->lo_disk);
2139 blk_mq_free_tag_set(&lo->tag_set);
2140
2141 mutex_lock(&loop_ctl_mutex);
2142 idr_remove(&loop_index_idr, lo->lo_number);
2143 mutex_unlock(&loop_ctl_mutex);
2144
2145 put_disk(lo->lo_disk);
2146 }
2147
2148 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2149 static void loop_probe(dev_t dev)
2150 {
2151 int idx = MINOR(dev) >> part_shift;
2152
2153 if (max_loop_specified && max_loop && idx >= max_loop)
2154 return;
2155 loop_add(idx);
2156 }
2157 #else
2158 #define loop_probe NULL
2159 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2160
loop_control_remove(int idx)2161 static int loop_control_remove(int idx)
2162 {
2163 struct loop_device *lo;
2164 int ret;
2165
2166 if (idx < 0) {
2167 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2168 return -EINVAL;
2169 }
2170
2171 /* Hide this loop device for serialization. */
2172 ret = mutex_lock_killable(&loop_ctl_mutex);
2173 if (ret)
2174 return ret;
2175 lo = idr_find(&loop_index_idr, idx);
2176 if (!lo || !lo->idr_visible)
2177 ret = -ENODEV;
2178 else
2179 lo->idr_visible = false;
2180 mutex_unlock(&loop_ctl_mutex);
2181 if (ret)
2182 return ret;
2183
2184 /* Check whether this loop device can be removed. */
2185 ret = mutex_lock_killable(&lo->lo_mutex);
2186 if (ret)
2187 goto mark_visible;
2188 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2189 mutex_unlock(&lo->lo_mutex);
2190 ret = -EBUSY;
2191 goto mark_visible;
2192 }
2193 /* Mark this loop device as no more bound, but not quite unbound yet */
2194 lo->lo_state = Lo_deleting;
2195 mutex_unlock(&lo->lo_mutex);
2196
2197 loop_remove(lo);
2198 return 0;
2199
2200 mark_visible:
2201 /* Show this loop device again. */
2202 mutex_lock(&loop_ctl_mutex);
2203 lo->idr_visible = true;
2204 mutex_unlock(&loop_ctl_mutex);
2205 return ret;
2206 }
2207
loop_control_get_free(int idx)2208 static int loop_control_get_free(int idx)
2209 {
2210 struct loop_device *lo;
2211 int id, ret;
2212
2213 ret = mutex_lock_killable(&loop_ctl_mutex);
2214 if (ret)
2215 return ret;
2216 idr_for_each_entry(&loop_index_idr, lo, id) {
2217 /* Hitting a race results in creating a new loop device which is harmless. */
2218 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2219 goto found;
2220 }
2221 mutex_unlock(&loop_ctl_mutex);
2222 return loop_add(-1);
2223 found:
2224 mutex_unlock(&loop_ctl_mutex);
2225 return id;
2226 }
2227
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2228 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2229 unsigned long parm)
2230 {
2231 switch (cmd) {
2232 case LOOP_CTL_ADD:
2233 return loop_add(parm);
2234 case LOOP_CTL_REMOVE:
2235 return loop_control_remove(parm);
2236 case LOOP_CTL_GET_FREE:
2237 return loop_control_get_free(parm);
2238 default:
2239 return -ENOSYS;
2240 }
2241 }
2242
2243 static const struct file_operations loop_ctl_fops = {
2244 .open = nonseekable_open,
2245 .unlocked_ioctl = loop_control_ioctl,
2246 .compat_ioctl = loop_control_ioctl,
2247 .owner = THIS_MODULE,
2248 .llseek = noop_llseek,
2249 };
2250
2251 static struct miscdevice loop_misc = {
2252 .minor = LOOP_CTRL_MINOR,
2253 .name = "loop-control",
2254 .fops = &loop_ctl_fops,
2255 };
2256
2257 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2258 MODULE_ALIAS("devname:loop-control");
2259
loop_init(void)2260 static int __init loop_init(void)
2261 {
2262 int i;
2263 int err;
2264
2265 part_shift = 0;
2266 if (max_part > 0) {
2267 part_shift = fls(max_part);
2268
2269 /*
2270 * Adjust max_part according to part_shift as it is exported
2271 * to user space so that user can decide correct minor number
2272 * if [s]he want to create more devices.
2273 *
2274 * Note that -1 is required because partition 0 is reserved
2275 * for the whole disk.
2276 */
2277 max_part = (1UL << part_shift) - 1;
2278 }
2279
2280 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2281 err = -EINVAL;
2282 goto err_out;
2283 }
2284
2285 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2286 err = -EINVAL;
2287 goto err_out;
2288 }
2289
2290 err = misc_register(&loop_misc);
2291 if (err < 0)
2292 goto err_out;
2293
2294
2295 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2296 err = -EIO;
2297 goto misc_out;
2298 }
2299
2300 /* pre-create number of devices given by config or max_loop */
2301 for (i = 0; i < max_loop; i++)
2302 loop_add(i);
2303
2304 printk(KERN_INFO "loop: module loaded\n");
2305 return 0;
2306
2307 misc_out:
2308 misc_deregister(&loop_misc);
2309 err_out:
2310 return err;
2311 }
2312
loop_exit(void)2313 static void __exit loop_exit(void)
2314 {
2315 struct loop_device *lo;
2316 int id;
2317
2318 unregister_blkdev(LOOP_MAJOR, "loop");
2319 misc_deregister(&loop_misc);
2320
2321 /*
2322 * There is no need to use loop_ctl_mutex here, for nobody else can
2323 * access loop_index_idr when this module is unloading (unless forced
2324 * module unloading is requested). If this is not a clean unloading,
2325 * we have no means to avoid kernel crash.
2326 */
2327 idr_for_each_entry(&loop_index_idr, lo, id)
2328 loop_remove(lo);
2329
2330 idr_destroy(&loop_index_idr);
2331 }
2332
2333 module_init(loop_init);
2334 module_exit(loop_exit);
2335
2336 #ifndef MODULE
max_loop_setup(char * str)2337 static int __init max_loop_setup(char *str)
2338 {
2339 max_loop = simple_strtol(str, NULL, 0);
2340 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2341 max_loop_specified = true;
2342 #endif
2343 return 1;
2344 }
2345
2346 __setup("max_loop=", max_loop_setup);
2347 #endif
2348