1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24
25 struct kmem_cache *xfs_log_ticket_cache;
26
27 /* Local miscellaneous function prototypes */
28 STATIC struct xlog *
29 xlog_alloc_log(
30 struct xfs_mount *mp,
31 struct xfs_buftarg *log_target,
32 xfs_daddr_t blk_offset,
33 int num_bblks);
34 STATIC void
35 xlog_dealloc_log(
36 struct xlog *log);
37
38 /* local state machine functions */
39 STATIC void xlog_state_done_syncing(
40 struct xlog_in_core *iclog);
41 STATIC void xlog_state_do_callback(
42 struct xlog *log);
43 STATIC int
44 xlog_state_get_iclog_space(
45 struct xlog *log,
46 int len,
47 struct xlog_in_core **iclog,
48 struct xlog_ticket *ticket,
49 int *logoffsetp);
50 STATIC void
51 xlog_sync(
52 struct xlog *log,
53 struct xlog_in_core *iclog,
54 struct xlog_ticket *ticket);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_verify_iclog(
58 struct xlog *log,
59 struct xlog_in_core *iclog,
60 int count);
61 STATIC void
62 xlog_verify_tail_lsn(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65 #else
66 #define xlog_verify_iclog(a,b,c)
67 #define xlog_verify_tail_lsn(a,b)
68 #endif
69
70 STATIC int
71 xlog_iclogs_empty(
72 struct xlog *log);
73
74 static int
75 xfs_log_cover(struct xfs_mount *);
76
77 /*
78 * We need to make sure the buffer pointer returned is naturally aligned for the
79 * biggest basic data type we put into it. We have already accounted for this
80 * padding when sizing the buffer.
81 *
82 * However, this padding does not get written into the log, and hence we have to
83 * track the space used by the log vectors separately to prevent log space hangs
84 * due to inaccurate accounting (i.e. a leak) of the used log space through the
85 * CIL context ticket.
86 *
87 * We also add space for the xlog_op_header that describes this region in the
88 * log. This prepends the data region we return to the caller to copy their data
89 * into, so do all the static initialisation of the ophdr now. Because the ophdr
90 * is not 8 byte aligned, we have to be careful to ensure that we align the
91 * start of the buffer such that the region we return to the call is 8 byte
92 * aligned and packed against the tail of the ophdr.
93 */
94 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)95 xlog_prepare_iovec(
96 struct xfs_log_vec *lv,
97 struct xfs_log_iovec **vecp,
98 uint type)
99 {
100 struct xfs_log_iovec *vec = *vecp;
101 struct xlog_op_header *oph;
102 uint32_t len;
103 void *buf;
104
105 if (vec) {
106 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 vec++;
108 } else {
109 vec = &lv->lv_iovecp[0];
110 }
111
112 len = lv->lv_buf_used + sizeof(struct xlog_op_header);
113 if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 lv->lv_buf_used = round_up(len, sizeof(uint64_t)) -
115 sizeof(struct xlog_op_header);
116 }
117
118 vec->i_type = type;
119 vec->i_addr = lv->lv_buf + lv->lv_buf_used;
120
121 oph = vec->i_addr;
122 oph->oh_clientid = XFS_TRANSACTION;
123 oph->oh_res2 = 0;
124 oph->oh_flags = 0;
125
126 buf = vec->i_addr + sizeof(struct xlog_op_header);
127 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128
129 *vecp = vec;
130 return buf;
131 }
132
133 static inline void
xlog_grant_sub_space(struct xlog_grant_head * head,int64_t bytes)134 xlog_grant_sub_space(
135 struct xlog_grant_head *head,
136 int64_t bytes)
137 {
138 atomic64_sub(bytes, &head->grant);
139 }
140
141 static inline void
xlog_grant_add_space(struct xlog_grant_head * head,int64_t bytes)142 xlog_grant_add_space(
143 struct xlog_grant_head *head,
144 int64_t bytes)
145 {
146 atomic64_add(bytes, &head->grant);
147 }
148
149 static void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 struct xlog_grant_head *head)
152 {
153 atomic64_set(&head->grant, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
156 }
157
158 void
xlog_grant_return_space(struct xlog * log,xfs_lsn_t old_head,xfs_lsn_t new_head)159 xlog_grant_return_space(
160 struct xlog *log,
161 xfs_lsn_t old_head,
162 xfs_lsn_t new_head)
163 {
164 int64_t diff = xlog_lsn_sub(log, new_head, old_head);
165
166 xlog_grant_sub_space(&log->l_reserve_head, diff);
167 xlog_grant_sub_space(&log->l_write_head, diff);
168 }
169
170 /*
171 * Return the space in the log between the tail and the head. In the case where
172 * we have overrun available reservation space, return 0. The memory barrier
173 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174 * vs tail space updates are seen in the correct order and hence avoid
175 * transients as space is transferred from the grant heads to the AIL on commit
176 * completion.
177 */
178 static uint64_t
xlog_grant_space_left(struct xlog * log,struct xlog_grant_head * head)179 xlog_grant_space_left(
180 struct xlog *log,
181 struct xlog_grant_head *head)
182 {
183 int64_t free_bytes;
184
185 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */
186 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 atomic64_read(&head->grant);
188 if (free_bytes > 0)
189 return free_bytes;
190 return 0;
191 }
192
193 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)194 xlog_grant_head_wake_all(
195 struct xlog_grant_head *head)
196 {
197 struct xlog_ticket *tic;
198
199 spin_lock(&head->lock);
200 list_for_each_entry(tic, &head->waiters, t_queue)
201 wake_up_process(tic->t_task);
202 spin_unlock(&head->lock);
203 }
204
205 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)206 xlog_ticket_reservation(
207 struct xlog *log,
208 struct xlog_grant_head *head,
209 struct xlog_ticket *tic)
210 {
211 if (head == &log->l_write_head) {
212 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 return tic->t_unit_res;
214 }
215
216 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 return tic->t_unit_res * tic->t_cnt;
218
219 return tic->t_unit_res;
220 }
221
222 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)223 xlog_grant_head_wake(
224 struct xlog *log,
225 struct xlog_grant_head *head,
226 int *free_bytes)
227 {
228 struct xlog_ticket *tic;
229 int need_bytes;
230
231 list_for_each_entry(tic, &head->waiters, t_queue) {
232 need_bytes = xlog_ticket_reservation(log, head, tic);
233 if (*free_bytes < need_bytes)
234 return false;
235
236 *free_bytes -= need_bytes;
237 trace_xfs_log_grant_wake_up(log, tic);
238 wake_up_process(tic->t_task);
239 }
240
241 return true;
242 }
243
244 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)245 xlog_grant_head_wait(
246 struct xlog *log,
247 struct xlog_grant_head *head,
248 struct xlog_ticket *tic,
249 int need_bytes) __releases(&head->lock)
250 __acquires(&head->lock)
251 {
252 list_add_tail(&tic->t_queue, &head->waiters);
253
254 do {
255 if (xlog_is_shutdown(log))
256 goto shutdown;
257
258 __set_current_state(TASK_UNINTERRUPTIBLE);
259 spin_unlock(&head->lock);
260
261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262
263 /* Push on the AIL to free up all the log space. */
264 xfs_ail_push_all(log->l_ailp);
265
266 trace_xfs_log_grant_sleep(log, tic);
267 schedule();
268 trace_xfs_log_grant_wake(log, tic);
269
270 spin_lock(&head->lock);
271 if (xlog_is_shutdown(log))
272 goto shutdown;
273 } while (xlog_grant_space_left(log, head) < need_bytes);
274
275 list_del_init(&tic->t_queue);
276 return 0;
277 shutdown:
278 list_del_init(&tic->t_queue);
279 return -EIO;
280 }
281
282 /*
283 * Atomically get the log space required for a log ticket.
284 *
285 * Once a ticket gets put onto head->waiters, it will only return after the
286 * needed reservation is satisfied.
287 *
288 * This function is structured so that it has a lock free fast path. This is
289 * necessary because every new transaction reservation will come through this
290 * path. Hence any lock will be globally hot if we take it unconditionally on
291 * every pass.
292 *
293 * As tickets are only ever moved on and off head->waiters under head->lock, we
294 * only need to take that lock if we are going to add the ticket to the queue
295 * and sleep. We can avoid taking the lock if the ticket was never added to
296 * head->waiters because the t_queue list head will be empty and we hold the
297 * only reference to it so it can safely be checked unlocked.
298 */
299 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)300 xlog_grant_head_check(
301 struct xlog *log,
302 struct xlog_grant_head *head,
303 struct xlog_ticket *tic,
304 int *need_bytes)
305 {
306 int free_bytes;
307 int error = 0;
308
309 ASSERT(!xlog_in_recovery(log));
310
311 /*
312 * If there are other waiters on the queue then give them a chance at
313 * logspace before us. Wake up the first waiters, if we do not wake
314 * up all the waiters then go to sleep waiting for more free space,
315 * otherwise try to get some space for this transaction.
316 */
317 *need_bytes = xlog_ticket_reservation(log, head, tic);
318 free_bytes = xlog_grant_space_left(log, head);
319 if (!list_empty_careful(&head->waiters)) {
320 spin_lock(&head->lock);
321 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 free_bytes < *need_bytes) {
323 error = xlog_grant_head_wait(log, head, tic,
324 *need_bytes);
325 }
326 spin_unlock(&head->lock);
327 } else if (free_bytes < *need_bytes) {
328 spin_lock(&head->lock);
329 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 spin_unlock(&head->lock);
331 }
332
333 return error;
334 }
335
336 bool
xfs_log_writable(struct xfs_mount * mp)337 xfs_log_writable(
338 struct xfs_mount *mp)
339 {
340 /*
341 * Do not write to the log on norecovery mounts, if the data or log
342 * devices are read-only, or if the filesystem is shutdown. Read-only
343 * mounts allow internal writes for log recovery and unmount purposes,
344 * so don't restrict that case.
345 */
346 if (xfs_has_norecovery(mp))
347 return false;
348 if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 return false;
350 if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 return false;
352 if (xlog_is_shutdown(mp->m_log))
353 return false;
354 return true;
355 }
356
357 /*
358 * Replenish the byte reservation required by moving the grant write head.
359 */
360 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)361 xfs_log_regrant(
362 struct xfs_mount *mp,
363 struct xlog_ticket *tic)
364 {
365 struct xlog *log = mp->m_log;
366 int need_bytes;
367 int error = 0;
368
369 if (xlog_is_shutdown(log))
370 return -EIO;
371
372 XFS_STATS_INC(mp, xs_try_logspace);
373
374 /*
375 * This is a new transaction on the ticket, so we need to change the
376 * transaction ID so that the next transaction has a different TID in
377 * the log. Just add one to the existing tid so that we can see chains
378 * of rolling transactions in the log easily.
379 */
380 tic->t_tid++;
381 tic->t_curr_res = tic->t_unit_res;
382 if (tic->t_cnt > 0)
383 return 0;
384
385 trace_xfs_log_regrant(log, tic);
386
387 error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 &need_bytes);
389 if (error)
390 goto out_error;
391
392 xlog_grant_add_space(&log->l_write_head, need_bytes);
393 trace_xfs_log_regrant_exit(log, tic);
394 return 0;
395
396 out_error:
397 /*
398 * If we are failing, make sure the ticket doesn't have any current
399 * reservations. We don't want to add this back when the ticket/
400 * transaction gets cancelled.
401 */
402 tic->t_curr_res = 0;
403 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
404 return error;
405 }
406
407 /*
408 * Reserve log space and return a ticket corresponding to the reservation.
409 *
410 * Each reservation is going to reserve extra space for a log record header.
411 * When writes happen to the on-disk log, we don't subtract the length of the
412 * log record header from any reservation. By wasting space in each
413 * reservation, we prevent over allocation problems.
414 */
415 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)416 xfs_log_reserve(
417 struct xfs_mount *mp,
418 int unit_bytes,
419 int cnt,
420 struct xlog_ticket **ticp,
421 bool permanent)
422 {
423 struct xlog *log = mp->m_log;
424 struct xlog_ticket *tic;
425 int need_bytes;
426 int error = 0;
427
428 if (xlog_is_shutdown(log))
429 return -EIO;
430
431 XFS_STATS_INC(mp, xs_try_logspace);
432
433 ASSERT(*ticp == NULL);
434 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 *ticp = tic;
436 trace_xfs_log_reserve(log, tic);
437 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 &need_bytes);
439 if (error)
440 goto out_error;
441
442 xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 xlog_grant_add_space(&log->l_write_head, need_bytes);
444 trace_xfs_log_reserve_exit(log, tic);
445 return 0;
446
447 out_error:
448 /*
449 * If we are failing, make sure the ticket doesn't have any current
450 * reservations. We don't want to add this back when the ticket/
451 * transaction gets cancelled.
452 */
453 tic->t_curr_res = 0;
454 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
455 return error;
456 }
457
458 /*
459 * Run all the pending iclog callbacks and wake log force waiters and iclog
460 * space waiters so they can process the newly set shutdown state. We really
461 * don't care what order we process callbacks here because the log is shut down
462 * and so state cannot change on disk anymore. However, we cannot wake waiters
463 * until the callbacks have been processed because we may be in unmount and
464 * we must ensure that all AIL operations the callbacks perform have completed
465 * before we tear down the AIL.
466 *
467 * We avoid processing actively referenced iclogs so that we don't run callbacks
468 * while the iclog owner might still be preparing the iclog for IO submssion.
469 * These will be caught by xlog_state_iclog_release() and call this function
470 * again to process any callbacks that may have been added to that iclog.
471 */
472 static void
xlog_state_shutdown_callbacks(struct xlog * log)473 xlog_state_shutdown_callbacks(
474 struct xlog *log)
475 {
476 struct xlog_in_core *iclog;
477 LIST_HEAD(cb_list);
478
479 iclog = log->l_iclog;
480 do {
481 if (atomic_read(&iclog->ic_refcnt)) {
482 /* Reference holder will re-run iclog callbacks. */
483 continue;
484 }
485 list_splice_init(&iclog->ic_callbacks, &cb_list);
486 spin_unlock(&log->l_icloglock);
487
488 xlog_cil_process_committed(&cb_list);
489
490 spin_lock(&log->l_icloglock);
491 wake_up_all(&iclog->ic_write_wait);
492 wake_up_all(&iclog->ic_force_wait);
493 } while ((iclog = iclog->ic_next) != log->l_iclog);
494
495 wake_up_all(&log->l_flush_wait);
496 }
497
498 /*
499 * Flush iclog to disk if this is the last reference to the given iclog and the
500 * it is in the WANT_SYNC state.
501 *
502 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504 * written to stable storage, and implies that a commit record is contained
505 * within the iclog. We need to ensure that the log tail does not move beyond
506 * the tail that the first commit record in the iclog ordered against, otherwise
507 * correct recovery of that checkpoint becomes dependent on future operations
508 * performed on this iclog.
509 *
510 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511 * current tail into iclog. Once the iclog tail is set, future operations must
512 * not modify it, otherwise they potentially violate ordering constraints for
513 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514 * the iclog will get zeroed on activation of the iclog after sync, so we
515 * always capture the tail lsn on the iclog on the first NEED_FUA release
516 * regardless of the number of active reference counts on this iclog.
517 */
518 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)519 xlog_state_release_iclog(
520 struct xlog *log,
521 struct xlog_in_core *iclog,
522 struct xlog_ticket *ticket)
523 {
524 bool last_ref;
525
526 lockdep_assert_held(&log->l_icloglock);
527
528 trace_xlog_iclog_release(iclog, _RET_IP_);
529 /*
530 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 * of the tail LSN into the iclog so we guarantee that the log tail does
532 * not move between the first time we know that the iclog needs to be
533 * made stable and when we eventually submit it.
534 */
535 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 !iclog->ic_header->h_tail_lsn) {
538 iclog->ic_header->h_tail_lsn =
539 cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 }
541
542 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543
544 if (xlog_is_shutdown(log)) {
545 /*
546 * If there are no more references to this iclog, process the
547 * pending iclog callbacks that were waiting on the release of
548 * this iclog.
549 */
550 if (last_ref)
551 xlog_state_shutdown_callbacks(log);
552 return -EIO;
553 }
554
555 if (!last_ref)
556 return 0;
557
558 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 return 0;
561 }
562
563 iclog->ic_state = XLOG_STATE_SYNCING;
564 xlog_verify_tail_lsn(log, iclog);
565 trace_xlog_iclog_syncing(iclog, _RET_IP_);
566
567 spin_unlock(&log->l_icloglock);
568 xlog_sync(log, iclog, ticket);
569 spin_lock(&log->l_icloglock);
570 return 0;
571 }
572
573 /*
574 * Mount a log filesystem
575 *
576 * mp - ubiquitous xfs mount point structure
577 * log_target - buftarg of on-disk log device
578 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
579 * num_bblocks - Number of BBSIZE blocks in on-disk log
580 *
581 * Return error or zero.
582 */
583 int
xfs_log_mount(xfs_mount_t * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)584 xfs_log_mount(
585 xfs_mount_t *mp,
586 struct xfs_buftarg *log_target,
587 xfs_daddr_t blk_offset,
588 int num_bblks)
589 {
590 struct xlog *log;
591 int error = 0;
592 int min_logfsbs;
593
594 if (!xfs_has_norecovery(mp)) {
595 xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 XFS_SB_VERSION_NUM(&mp->m_sb),
597 &mp->m_sb.sb_uuid);
598 } else {
599 xfs_notice(mp,
600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 XFS_SB_VERSION_NUM(&mp->m_sb),
602 &mp->m_sb.sb_uuid);
603 ASSERT(xfs_is_readonly(mp));
604 }
605
606 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 if (IS_ERR(log)) {
608 error = PTR_ERR(log);
609 goto out;
610 }
611 mp->m_log = log;
612
613 /*
614 * Now that we have set up the log and it's internal geometry
615 * parameters, we can validate the given log space and drop a critical
616 * message via syslog if the log size is too small. A log that is too
617 * small can lead to unexpected situations in transaction log space
618 * reservation stage. The superblock verifier has already validated all
619 * the other log geometry constraints, so we don't have to check those
620 * here.
621 *
622 * Note: For v4 filesystems, we can't just reject the mount if the
623 * validation fails. This would mean that people would have to
624 * downgrade their kernel just to remedy the situation as there is no
625 * way to grow the log (short of black magic surgery with xfs_db).
626 *
627 * We can, however, reject mounts for V5 format filesystems, as the
628 * mkfs binary being used to make the filesystem should never create a
629 * filesystem with a log that is too small.
630 */
631 min_logfsbs = xfs_log_calc_minimum_size(mp);
632 if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 xfs_warn(mp,
634 "Log size %d blocks too small, minimum size is %d blocks",
635 mp->m_sb.sb_logblocks, min_logfsbs);
636
637 /*
638 * Log check errors are always fatal on v5; or whenever bad
639 * metadata leads to a crash.
640 */
641 if (xfs_has_crc(mp)) {
642 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 ASSERT(0);
644 error = -EINVAL;
645 goto out_free_log;
646 }
647 xfs_crit(mp, "Log size out of supported range.");
648 xfs_crit(mp,
649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 }
651
652 /*
653 * Initialize the AIL now we have a log.
654 */
655 error = xfs_trans_ail_init(mp);
656 if (error) {
657 xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 goto out_free_log;
659 }
660 log->l_ailp = mp->m_ail;
661
662 /*
663 * skip log recovery on a norecovery mount. pretend it all
664 * just worked.
665 */
666 if (!xfs_has_norecovery(mp)) {
667 error = xlog_recover(log);
668 if (error) {
669 xfs_warn(mp, "log mount/recovery failed: error %d",
670 error);
671 xlog_recover_cancel(log);
672 goto out_destroy_ail;
673 }
674 }
675
676 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 "log");
678 if (error)
679 goto out_destroy_ail;
680
681 /* Normal transactions can now occur */
682 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683
684 /*
685 * Now the log has been fully initialised and we know were our
686 * space grant counters are, we can initialise the permanent ticket
687 * needed for delayed logging to work.
688 */
689 xlog_cil_init_post_recovery(log);
690
691 return 0;
692
693 out_destroy_ail:
694 xfs_trans_ail_destroy(mp);
695 out_free_log:
696 xlog_dealloc_log(log);
697 out:
698 return error;
699 }
700
701 /*
702 * Finish the recovery of the file system. This is separate from the
703 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705 * here.
706 *
707 * If we finish recovery successfully, start the background log work. If we are
708 * not doing recovery, then we have a RO filesystem and we don't need to start
709 * it.
710 */
711 int
xfs_log_mount_finish(struct xfs_mount * mp)712 xfs_log_mount_finish(
713 struct xfs_mount *mp)
714 {
715 struct xlog *log = mp->m_log;
716 int error = 0;
717
718 if (xfs_has_norecovery(mp)) {
719 ASSERT(xfs_is_readonly(mp));
720 return 0;
721 }
722
723 /*
724 * During the second phase of log recovery, we need iget and
725 * iput to behave like they do for an active filesystem.
726 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 * of inodes before we're done replaying log items on those
728 * inodes. Turn it off immediately after recovery finishes
729 * so that we don't leak the quota inodes if subsequent mount
730 * activities fail.
731 *
732 * We let all inodes involved in redo item processing end up on
733 * the LRU instead of being evicted immediately so that if we do
734 * something to an unlinked inode, the irele won't cause
735 * premature truncation and freeing of the inode, which results
736 * in log recovery failure. We have to evict the unreferenced
737 * lru inodes after clearing SB_ACTIVE because we don't
738 * otherwise clean up the lru if there's a subsequent failure in
739 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 * else (e.g. quotacheck) references the inodes before the
741 * mount failure occurs.
742 */
743 mp->m_super->s_flags |= SB_ACTIVE;
744 xfs_log_work_queue(mp);
745 if (xlog_recovery_needed(log))
746 error = xlog_recover_finish(log);
747 mp->m_super->s_flags &= ~SB_ACTIVE;
748 evict_inodes(mp->m_super);
749
750 /*
751 * Drain the buffer LRU after log recovery. This is required for v4
752 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 * but we do it unconditionally to make sure we're always in a clean
754 * cache state after mount.
755 *
756 * Don't push in the error case because the AIL may have pending intents
757 * that aren't removed until recovery is cancelled.
758 */
759 if (xlog_recovery_needed(log)) {
760 if (!error) {
761 xfs_log_force(mp, XFS_LOG_SYNC);
762 xfs_ail_push_all_sync(mp->m_ail);
763 }
764 xfs_notice(mp, "Ending recovery (logdev: %s)",
765 mp->m_logname ? mp->m_logname : "internal");
766 } else {
767 xfs_info(mp, "Ending clean mount");
768 }
769 xfs_buftarg_drain(mp->m_ddev_targp);
770
771 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772
773 /* Make sure the log is dead if we're returning failure. */
774 ASSERT(!error || xlog_is_shutdown(log));
775
776 return error;
777 }
778
779 /*
780 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781 * the log.
782 */
783 void
xfs_log_mount_cancel(struct xfs_mount * mp)784 xfs_log_mount_cancel(
785 struct xfs_mount *mp)
786 {
787 xlog_recover_cancel(mp->m_log);
788 xfs_log_unmount(mp);
789 }
790
791 /*
792 * Flush out the iclog to disk ensuring that device caches are flushed and
793 * the iclog hits stable storage before any completion waiters are woken.
794 */
795 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)796 xlog_force_iclog(
797 struct xlog_in_core *iclog)
798 {
799 atomic_inc(&iclog->ic_refcnt);
800 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804 }
805
806 /*
807 * Cycle all the iclogbuf locks to make sure all log IO completion
808 * is done before we tear down these buffers.
809 */
810 static void
xlog_wait_iclog_completion(struct xlog * log)811 xlog_wait_iclog_completion(struct xlog *log)
812 {
813 int i;
814 struct xlog_in_core *iclog = log->l_iclog;
815
816 for (i = 0; i < log->l_iclog_bufs; i++) {
817 down(&iclog->ic_sema);
818 up(&iclog->ic_sema);
819 iclog = iclog->ic_next;
820 }
821 }
822
823 /*
824 * Wait for the iclog and all prior iclogs to be written disk as required by the
825 * log force state machine. Waiting on ic_force_wait ensures iclog completions
826 * have been ordered and callbacks run before we are woken here, hence
827 * guaranteeing that all the iclogs up to this one are on stable storage.
828 */
829 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)830 xlog_wait_on_iclog(
831 struct xlog_in_core *iclog)
832 __releases(iclog->ic_log->l_icloglock)
833 {
834 struct xlog *log = iclog->ic_log;
835
836 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 if (!xlog_is_shutdown(log) &&
838 iclog->ic_state != XLOG_STATE_ACTIVE &&
839 iclog->ic_state != XLOG_STATE_DIRTY) {
840 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 } else {
843 spin_unlock(&log->l_icloglock);
844 }
845
846 if (xlog_is_shutdown(log))
847 return -EIO;
848 return 0;
849 }
850
851 /*
852 * Write out an unmount record using the ticket provided. We have to account for
853 * the data space used in the unmount ticket as this write is not done from a
854 * transaction context that has already done the accounting for us.
855 */
856 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)857 xlog_write_unmount_record(
858 struct xlog *log,
859 struct xlog_ticket *ticket)
860 {
861 struct {
862 struct xlog_op_header ophdr;
863 struct xfs_unmount_log_format ulf;
864 } unmount_rec = {
865 .ophdr = {
866 .oh_clientid = XFS_LOG,
867 .oh_tid = cpu_to_be32(ticket->t_tid),
868 .oh_flags = XLOG_UNMOUNT_TRANS,
869 },
870 .ulf = {
871 .magic = XLOG_UNMOUNT_TYPE,
872 },
873 };
874 struct xfs_log_iovec reg = {
875 .i_addr = &unmount_rec,
876 .i_len = sizeof(unmount_rec),
877 .i_type = XLOG_REG_TYPE_UNMOUNT,
878 };
879 struct xfs_log_vec vec = {
880 .lv_niovecs = 1,
881 .lv_iovecp = ®,
882 };
883 LIST_HEAD(lv_chain);
884 list_add(&vec.lv_list, &lv_chain);
885
886 BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 sizeof(struct xfs_unmount_log_format)) !=
888 sizeof(unmount_rec));
889
890 /* account for space used by record data */
891 ticket->t_curr_res -= sizeof(unmount_rec);
892
893 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894 }
895
896 /*
897 * Mark the filesystem clean by writing an unmount record to the head of the
898 * log.
899 */
900 static void
xlog_unmount_write(struct xlog * log)901 xlog_unmount_write(
902 struct xlog *log)
903 {
904 struct xfs_mount *mp = log->l_mp;
905 struct xlog_in_core *iclog;
906 struct xlog_ticket *tic = NULL;
907 int error;
908
909 error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 if (error)
911 goto out_err;
912
913 error = xlog_write_unmount_record(log, tic);
914 /*
915 * At this point, we're umounting anyway, so there's no point in
916 * transitioning log state to shutdown. Just continue...
917 */
918 out_err:
919 if (error)
920 xfs_alert(mp, "%s: unmount record failed", __func__);
921
922 spin_lock(&log->l_icloglock);
923 iclog = log->l_iclog;
924 error = xlog_force_iclog(iclog);
925 xlog_wait_on_iclog(iclog);
926
927 if (tic) {
928 trace_xfs_log_umount_write(log, tic);
929 xfs_log_ticket_ungrant(log, tic);
930 }
931 }
932
933 static void
xfs_log_unmount_verify_iclog(struct xlog * log)934 xfs_log_unmount_verify_iclog(
935 struct xlog *log)
936 {
937 struct xlog_in_core *iclog = log->l_iclog;
938
939 do {
940 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 ASSERT(iclog->ic_offset == 0);
942 } while ((iclog = iclog->ic_next) != log->l_iclog);
943 }
944
945 /*
946 * Unmount record used to have a string "Unmount filesystem--" in the
947 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948 * We just write the magic number now since that particular field isn't
949 * currently architecture converted and "Unmount" is a bit foo.
950 * As far as I know, there weren't any dependencies on the old behaviour.
951 */
952 static void
xfs_log_unmount_write(struct xfs_mount * mp)953 xfs_log_unmount_write(
954 struct xfs_mount *mp)
955 {
956 struct xlog *log = mp->m_log;
957
958 if (!xfs_log_writable(mp))
959 return;
960
961 xfs_log_force(mp, XFS_LOG_SYNC);
962
963 if (xlog_is_shutdown(log))
964 return;
965
966 /*
967 * If we think the summary counters are bad, avoid writing the unmount
968 * record to force log recovery at next mount, after which the summary
969 * counters will be recalculated. Refer to xlog_check_unmount_rec for
970 * more details.
971 */
972 if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) ||
973 XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 xfs_alert(mp, "%s: will fix summary counters at next mount",
975 __func__);
976 return;
977 }
978
979 xfs_log_unmount_verify_iclog(log);
980 xlog_unmount_write(log);
981 }
982
983 /*
984 * Empty the log for unmount/freeze.
985 *
986 * To do this, we first need to shut down the background log work so it is not
987 * trying to cover the log as we clean up. We then need to unpin all objects in
988 * the log so we can then flush them out. Once they have completed their IO and
989 * run the callbacks removing themselves from the AIL, we can cover the log.
990 */
991 int
xfs_log_quiesce(struct xfs_mount * mp)992 xfs_log_quiesce(
993 struct xfs_mount *mp)
994 {
995 /*
996 * Clear log incompat features since we're quiescing the log. Report
997 * failures, though it's not fatal to have a higher log feature
998 * protection level than the log contents actually require.
999 */
1000 if (xfs_clear_incompat_log_features(mp)) {
1001 int error;
1002
1003 error = xfs_sync_sb(mp, false);
1004 if (error)
1005 xfs_warn(mp,
1006 "Failed to clear log incompat features on quiesce");
1007 }
1008
1009 cancel_delayed_work_sync(&mp->m_log->l_work);
1010 xfs_log_force(mp, XFS_LOG_SYNC);
1011
1012 /*
1013 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 * the IO to complete.
1018 */
1019 xfs_ail_push_all_sync(mp->m_ail);
1020 xfs_buftarg_wait(mp->m_ddev_targp);
1021 xfs_buf_lock(mp->m_sb_bp);
1022 xfs_buf_unlock(mp->m_sb_bp);
1023
1024 return xfs_log_cover(mp);
1025 }
1026
1027 void
xfs_log_clean(struct xfs_mount * mp)1028 xfs_log_clean(
1029 struct xfs_mount *mp)
1030 {
1031 xfs_log_quiesce(mp);
1032 xfs_log_unmount_write(mp);
1033 }
1034
1035 /*
1036 * Shut down and release the AIL and Log.
1037 *
1038 * During unmount, we need to ensure we flush all the dirty metadata objects
1039 * from the AIL so that the log is empty before we write the unmount record to
1040 * the log. Once this is done, we can tear down the AIL and the log.
1041 */
1042 void
xfs_log_unmount(struct xfs_mount * mp)1043 xfs_log_unmount(
1044 struct xfs_mount *mp)
1045 {
1046 xfs_log_clean(mp);
1047
1048 /*
1049 * If shutdown has come from iclog IO context, the log
1050 * cleaning will have been skipped and so we need to wait
1051 * for the iclog to complete shutdown processing before we
1052 * tear anything down.
1053 */
1054 xlog_wait_iclog_completion(mp->m_log);
1055
1056 xfs_buftarg_drain(mp->m_ddev_targp);
1057
1058 xfs_trans_ail_destroy(mp);
1059
1060 xfs_sysfs_del(&mp->m_log->l_kobj);
1061
1062 xlog_dealloc_log(mp->m_log);
1063 }
1064
1065 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1066 xfs_log_item_init(
1067 struct xfs_mount *mp,
1068 struct xfs_log_item *item,
1069 int type,
1070 const struct xfs_item_ops *ops)
1071 {
1072 item->li_log = mp->m_log;
1073 item->li_ailp = mp->m_ail;
1074 item->li_type = type;
1075 item->li_ops = ops;
1076 item->li_lv = NULL;
1077
1078 INIT_LIST_HEAD(&item->li_ail);
1079 INIT_LIST_HEAD(&item->li_cil);
1080 INIT_LIST_HEAD(&item->li_bio_list);
1081 INIT_LIST_HEAD(&item->li_trans);
1082 }
1083
1084 /*
1085 * Wake up processes waiting for log space after we have moved the log tail.
1086 */
1087 void
xfs_log_space_wake(struct xfs_mount * mp)1088 xfs_log_space_wake(
1089 struct xfs_mount *mp)
1090 {
1091 struct xlog *log = mp->m_log;
1092 int free_bytes;
1093
1094 if (xlog_is_shutdown(log))
1095 return;
1096
1097 if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 ASSERT(!xlog_in_recovery(log));
1099
1100 spin_lock(&log->l_write_head.lock);
1101 free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 spin_unlock(&log->l_write_head.lock);
1104 }
1105
1106 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 ASSERT(!xlog_in_recovery(log));
1108
1109 spin_lock(&log->l_reserve_head.lock);
1110 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 spin_unlock(&log->l_reserve_head.lock);
1113 }
1114 }
1115
1116 /*
1117 * Determine if we have a transaction that has gone to disk that needs to be
1118 * covered. To begin the transition to the idle state firstly the log needs to
1119 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120 * we start attempting to cover the log.
1121 *
1122 * Only if we are then in a state where covering is needed, the caller is
1123 * informed that dummy transactions are required to move the log into the idle
1124 * state.
1125 *
1126 * If there are any items in the AIl or CIL, then we do not want to attempt to
1127 * cover the log as we may be in a situation where there isn't log space
1128 * available to run a dummy transaction and this can lead to deadlocks when the
1129 * tail of the log is pinned by an item that is modified in the CIL. Hence
1130 * there's no point in running a dummy transaction at this point because we
1131 * can't start trying to idle the log until both the CIL and AIL are empty.
1132 */
1133 static bool
xfs_log_need_covered(struct xfs_mount * mp)1134 xfs_log_need_covered(
1135 struct xfs_mount *mp)
1136 {
1137 struct xlog *log = mp->m_log;
1138 bool needed = false;
1139
1140 if (!xlog_cil_empty(log))
1141 return false;
1142
1143 spin_lock(&log->l_icloglock);
1144 switch (log->l_covered_state) {
1145 case XLOG_STATE_COVER_DONE:
1146 case XLOG_STATE_COVER_DONE2:
1147 case XLOG_STATE_COVER_IDLE:
1148 break;
1149 case XLOG_STATE_COVER_NEED:
1150 case XLOG_STATE_COVER_NEED2:
1151 if (xfs_ail_min_lsn(log->l_ailp))
1152 break;
1153 if (!xlog_iclogs_empty(log))
1154 break;
1155
1156 needed = true;
1157 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 else
1160 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 break;
1162 default:
1163 needed = true;
1164 break;
1165 }
1166 spin_unlock(&log->l_icloglock);
1167 return needed;
1168 }
1169
1170 /*
1171 * Explicitly cover the log. This is similar to background log covering but
1172 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174 * must all be empty.
1175 */
1176 static int
xfs_log_cover(struct xfs_mount * mp)1177 xfs_log_cover(
1178 struct xfs_mount *mp)
1179 {
1180 int error = 0;
1181 bool need_covered;
1182
1183 if (!xlog_is_shutdown(mp->m_log)) {
1184 ASSERT(xlog_cil_empty(mp->m_log));
1185 ASSERT(xlog_iclogs_empty(mp->m_log));
1186 ASSERT(!xfs_ail_min_lsn(mp->m_log->l_ailp));
1187 }
1188
1189 if (!xfs_log_writable(mp))
1190 return 0;
1191
1192 /*
1193 * xfs_log_need_covered() is not idempotent because it progresses the
1194 * state machine if the log requires covering. Therefore, we must call
1195 * this function once and use the result until we've issued an sb sync.
1196 * Do so first to make that abundantly clear.
1197 *
1198 * Fall into the covering sequence if the log needs covering or the
1199 * mount has lazy superblock accounting to sync to disk. The sb sync
1200 * used for covering accumulates the in-core counters, so covering
1201 * handles this for us.
1202 */
1203 need_covered = xfs_log_need_covered(mp);
1204 if (!need_covered && !xfs_has_lazysbcount(mp))
1205 return 0;
1206
1207 /*
1208 * To cover the log, commit the superblock twice (at most) in
1209 * independent checkpoints. The first serves as a reference for the
1210 * tail pointer. The sync transaction and AIL push empties the AIL and
1211 * updates the in-core tail to the LSN of the first checkpoint. The
1212 * second commit updates the on-disk tail with the in-core LSN,
1213 * covering the log. Push the AIL one more time to leave it empty, as
1214 * we found it.
1215 */
1216 do {
1217 error = xfs_sync_sb(mp, true);
1218 if (error)
1219 break;
1220 xfs_ail_push_all_sync(mp->m_ail);
1221 } while (xfs_log_need_covered(mp));
1222
1223 return error;
1224 }
1225
1226 static void
xlog_ioend_work(struct work_struct * work)1227 xlog_ioend_work(
1228 struct work_struct *work)
1229 {
1230 struct xlog_in_core *iclog =
1231 container_of(work, struct xlog_in_core, ic_end_io_work);
1232 struct xlog *log = iclog->ic_log;
1233 int error;
1234
1235 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1236 #ifdef DEBUG
1237 /* treat writes with injected CRC errors as failed */
1238 if (iclog->ic_fail_crc)
1239 error = -EIO;
1240 #endif
1241
1242 /*
1243 * Race to shutdown the filesystem if we see an error.
1244 */
1245 if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1246 xfs_alert(log->l_mp, "log I/O error %d", error);
1247 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1248 }
1249
1250 xlog_state_done_syncing(iclog);
1251 bio_uninit(&iclog->ic_bio);
1252
1253 /*
1254 * Drop the lock to signal that we are done. Nothing references the
1255 * iclog after this, so an unmount waiting on this lock can now tear it
1256 * down safely. As such, it is unsafe to reference the iclog after the
1257 * unlock as we could race with it being freed.
1258 */
1259 up(&iclog->ic_sema);
1260 }
1261
1262 /*
1263 * Return size of each in-core log record buffer.
1264 *
1265 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1266 *
1267 * If the filesystem blocksize is too large, we may need to choose a
1268 * larger size since the directory code currently logs entire blocks.
1269 */
1270 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1271 xlog_get_iclog_buffer_size(
1272 struct xfs_mount *mp,
1273 struct xlog *log)
1274 {
1275 if (mp->m_logbufs <= 0)
1276 mp->m_logbufs = XLOG_MAX_ICLOGS;
1277 if (mp->m_logbsize <= 0)
1278 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1279
1280 log->l_iclog_bufs = mp->m_logbufs;
1281 log->l_iclog_size = mp->m_logbsize;
1282
1283 /*
1284 * Combined size of the log record headers. The first 32k cycles
1285 * are stored directly in the xlog_rec_header, the rest in the
1286 * variable number of xlog_rec_ext_headers at its end.
1287 */
1288 log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext,
1289 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1);
1290 }
1291
1292 void
xfs_log_work_queue(struct xfs_mount * mp)1293 xfs_log_work_queue(
1294 struct xfs_mount *mp)
1295 {
1296 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1297 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298 }
1299
1300 /*
1301 * Clear the log incompat flags if we have the opportunity.
1302 *
1303 * This only happens if we're about to log the second dummy transaction as part
1304 * of covering the log.
1305 */
1306 static inline void
xlog_clear_incompat(struct xlog * log)1307 xlog_clear_incompat(
1308 struct xlog *log)
1309 {
1310 struct xfs_mount *mp = log->l_mp;
1311
1312 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1313 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1314 return;
1315
1316 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1317 return;
1318
1319 xfs_clear_incompat_log_features(mp);
1320 }
1321
1322 /*
1323 * Every sync period we need to unpin all items in the AIL and push them to
1324 * disk. If there is nothing dirty, then we might need to cover the log to
1325 * indicate that the filesystem is idle.
1326 */
1327 static void
xfs_log_worker(struct work_struct * work)1328 xfs_log_worker(
1329 struct work_struct *work)
1330 {
1331 struct xlog *log = container_of(to_delayed_work(work),
1332 struct xlog, l_work);
1333 struct xfs_mount *mp = log->l_mp;
1334
1335 /* dgc: errors ignored - not fatal and nowhere to report them */
1336 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1337 /*
1338 * Dump a transaction into the log that contains no real change.
1339 * This is needed to stamp the current tail LSN into the log
1340 * during the covering operation.
1341 *
1342 * We cannot use an inode here for this - that will push dirty
1343 * state back up into the VFS and then periodic inode flushing
1344 * will prevent log covering from making progress. Hence we
1345 * synchronously log the superblock instead to ensure the
1346 * superblock is immediately unpinned and can be written back.
1347 */
1348 xlog_clear_incompat(log);
1349 xfs_sync_sb(mp, true);
1350 } else
1351 xfs_log_force(mp, 0);
1352
1353 /* start pushing all the metadata that is currently dirty */
1354 xfs_ail_push_all(mp->m_ail);
1355
1356 /* queue us up again */
1357 xfs_log_work_queue(mp);
1358 }
1359
1360 /*
1361 * This routine initializes some of the log structure for a given mount point.
1362 * Its primary purpose is to fill in enough, so recovery can occur. However,
1363 * some other stuff may be filled in too.
1364 */
1365 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1366 xlog_alloc_log(
1367 struct xfs_mount *mp,
1368 struct xfs_buftarg *log_target,
1369 xfs_daddr_t blk_offset,
1370 int num_bblks)
1371 {
1372 struct xlog *log;
1373 struct xlog_in_core **iclogp;
1374 struct xlog_in_core *iclog, *prev_iclog = NULL;
1375 int i;
1376 int error = -ENOMEM;
1377 uint log2_size = 0;
1378
1379 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1380 if (!log) {
1381 xfs_warn(mp, "Log allocation failed: No memory!");
1382 goto out;
1383 }
1384
1385 log->l_mp = mp;
1386 log->l_targ = log_target;
1387 log->l_logsize = BBTOB(num_bblks);
1388 log->l_logBBstart = blk_offset;
1389 log->l_logBBsize = num_bblks;
1390 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1391 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1392 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1393 INIT_LIST_HEAD(&log->r_dfops);
1394
1395 log->l_prev_block = -1;
1396 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1397 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1398 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1399
1400 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1401 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1402 else
1403 log->l_iclog_roundoff = BBSIZE;
1404
1405 xlog_grant_head_init(&log->l_reserve_head);
1406 xlog_grant_head_init(&log->l_write_head);
1407
1408 error = -EFSCORRUPTED;
1409 if (xfs_has_sector(mp)) {
1410 log2_size = mp->m_sb.sb_logsectlog;
1411 if (log2_size < BBSHIFT) {
1412 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1413 log2_size, BBSHIFT);
1414 goto out_free_log;
1415 }
1416
1417 log2_size -= BBSHIFT;
1418 if (log2_size > mp->m_sectbb_log) {
1419 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1420 log2_size, mp->m_sectbb_log);
1421 goto out_free_log;
1422 }
1423
1424 /* for larger sector sizes, must have v2 or external log */
1425 if (log2_size && log->l_logBBstart > 0 &&
1426 !xfs_has_logv2(mp)) {
1427 xfs_warn(mp,
1428 "log sector size (0x%x) invalid for configuration.",
1429 log2_size);
1430 goto out_free_log;
1431 }
1432 }
1433 log->l_sectBBsize = 1 << log2_size;
1434
1435 xlog_get_iclog_buffer_size(mp, log);
1436
1437 spin_lock_init(&log->l_icloglock);
1438 init_waitqueue_head(&log->l_flush_wait);
1439
1440 iclogp = &log->l_iclog;
1441 ASSERT(log->l_iclog_size >= 4096);
1442 for (i = 0; i < log->l_iclog_bufs; i++) {
1443 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1444 sizeof(struct bio_vec);
1445
1446 iclog = kzalloc(sizeof(*iclog) + bvec_size,
1447 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1448 if (!iclog)
1449 goto out_free_iclog;
1450
1451 *iclogp = iclog;
1452 iclog->ic_prev = prev_iclog;
1453 prev_iclog = iclog;
1454
1455 iclog->ic_header = kvzalloc(log->l_iclog_size,
1456 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1457 if (!iclog->ic_header)
1458 goto out_free_iclog;
1459 iclog->ic_header->h_magicno =
1460 cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1461 iclog->ic_header->h_version = cpu_to_be32(
1462 xfs_has_logv2(log->l_mp) ? 2 : 1);
1463 iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size);
1464 iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT);
1465 memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid,
1466 sizeof(iclog->ic_header->h_fs_uuid));
1467
1468 iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize;
1469 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1470 iclog->ic_state = XLOG_STATE_ACTIVE;
1471 iclog->ic_log = log;
1472 atomic_set(&iclog->ic_refcnt, 0);
1473 INIT_LIST_HEAD(&iclog->ic_callbacks);
1474
1475 init_waitqueue_head(&iclog->ic_force_wait);
1476 init_waitqueue_head(&iclog->ic_write_wait);
1477 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1478 sema_init(&iclog->ic_sema, 1);
1479
1480 iclogp = &iclog->ic_next;
1481 }
1482 *iclogp = log->l_iclog; /* complete ring */
1483 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1484
1485 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1486 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU),
1487 0, mp->m_super->s_id);
1488 if (!log->l_ioend_workqueue)
1489 goto out_free_iclog;
1490
1491 error = xlog_cil_init(log);
1492 if (error)
1493 goto out_destroy_workqueue;
1494 return log;
1495
1496 out_destroy_workqueue:
1497 destroy_workqueue(log->l_ioend_workqueue);
1498 out_free_iclog:
1499 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1500 prev_iclog = iclog->ic_next;
1501 kvfree(iclog->ic_header);
1502 kfree(iclog);
1503 if (prev_iclog == log->l_iclog)
1504 break;
1505 }
1506 out_free_log:
1507 kfree(log);
1508 out:
1509 return ERR_PTR(error);
1510 } /* xlog_alloc_log */
1511
1512 /*
1513 * Stamp cycle number in every block
1514 */
1515 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1516 xlog_pack_data(
1517 struct xlog *log,
1518 struct xlog_in_core *iclog,
1519 int roundoff)
1520 {
1521 struct xlog_rec_header *rhead = iclog->ic_header;
1522 __be32 cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn);
1523 char *dp = iclog->ic_datap;
1524 int i;
1525
1526 for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) {
1527 *xlog_cycle_data(rhead, i) = *(__be32 *)dp;
1528 *(__be32 *)dp = cycle_lsn;
1529 dp += BBSIZE;
1530 }
1531
1532 for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++)
1533 rhead->h_ext[i].xh_cycle = cycle_lsn;
1534 }
1535
1536 /*
1537 * Calculate the checksum for a log buffer.
1538 *
1539 * This is a little more complicated than it should be because the various
1540 * headers and the actual data are non-contiguous.
1541 */
1542 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,unsigned int hdrsize,unsigned int size)1543 xlog_cksum(
1544 struct xlog *log,
1545 struct xlog_rec_header *rhead,
1546 char *dp,
1547 unsigned int hdrsize,
1548 unsigned int size)
1549 {
1550 uint32_t crc;
1551
1552 /* first generate the crc for the record header ... */
1553 crc = xfs_start_cksum_update((char *)rhead, hdrsize,
1554 offsetof(struct xlog_rec_header, h_crc));
1555
1556 /* ... then for additional cycle data for v2 logs ... */
1557 if (xfs_has_logv2(log->l_mp)) {
1558 int xheads, i;
1559
1560 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1;
1561 for (i = 0; i < xheads; i++)
1562 crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE);
1563 }
1564
1565 /* ... and finally for the payload */
1566 crc = crc32c(crc, dp, size);
1567
1568 return xfs_end_cksum(crc);
1569 }
1570
1571 static void
xlog_bio_end_io(struct bio * bio)1572 xlog_bio_end_io(
1573 struct bio *bio)
1574 {
1575 struct xlog_in_core *iclog = bio->bi_private;
1576
1577 queue_work(iclog->ic_log->l_ioend_workqueue,
1578 &iclog->ic_end_io_work);
1579 }
1580
1581 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1582 xlog_write_iclog(
1583 struct xlog *log,
1584 struct xlog_in_core *iclog,
1585 uint64_t bno,
1586 unsigned int count)
1587 {
1588 ASSERT(bno < log->l_logBBsize);
1589 trace_xlog_iclog_write(iclog, _RET_IP_);
1590
1591 /*
1592 * We lock the iclogbufs here so that we can serialise against I/O
1593 * completion during unmount. We might be processing a shutdown
1594 * triggered during unmount, and that can occur asynchronously to the
1595 * unmount thread, and hence we need to ensure that completes before
1596 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1597 * across the log IO to archieve that.
1598 */
1599 down(&iclog->ic_sema);
1600 if (xlog_is_shutdown(log)) {
1601 /*
1602 * It would seem logical to return EIO here, but we rely on
1603 * the log state machine to propagate I/O errors instead of
1604 * doing it here. We kick of the state machine and unlock
1605 * the buffer manually, the code needs to be kept in sync
1606 * with the I/O completion path.
1607 */
1608 goto sync;
1609 }
1610
1611 /*
1612 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1613 * IOs coming immediately after this one. This prevents the block layer
1614 * writeback throttle from throttling log writes behind background
1615 * metadata writeback and causing priority inversions.
1616 */
1617 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1618 howmany(count, PAGE_SIZE),
1619 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1620 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1621 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1622 iclog->ic_bio.bi_private = iclog;
1623
1624 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1625 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1626 /*
1627 * For external log devices, we also need to flush the data
1628 * device cache first to ensure all metadata writeback covered
1629 * by the LSN in this iclog is on stable storage. This is slow,
1630 * but it *must* complete before we issue the external log IO.
1631 *
1632 * If the flush fails, we cannot conclude that past metadata
1633 * writeback from the log succeeded. Repeating the flush is
1634 * not possible, hence we must shut down with log IO error to
1635 * avoid shutdown re-entering this path and erroring out again.
1636 */
1637 if (log->l_targ != log->l_mp->m_ddev_targp &&
1638 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1639 goto shutdown;
1640 }
1641 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1642 iclog->ic_bio.bi_opf |= REQ_FUA;
1643
1644 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1645
1646 if (is_vmalloc_addr(iclog->ic_header)) {
1647 if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count))
1648 goto shutdown;
1649 } else {
1650 bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count);
1651 }
1652
1653 /*
1654 * If this log buffer would straddle the end of the log we will have
1655 * to split it up into two bios, so that we can continue at the start.
1656 */
1657 if (bno + BTOBB(count) > log->l_logBBsize) {
1658 struct bio *split;
1659
1660 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1661 GFP_NOIO, &fs_bio_set);
1662 bio_chain(split, &iclog->ic_bio);
1663 submit_bio(split);
1664
1665 /* restart at logical offset zero for the remainder */
1666 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1667 }
1668
1669 submit_bio(&iclog->ic_bio);
1670 return;
1671 shutdown:
1672 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1673 sync:
1674 xlog_state_done_syncing(iclog);
1675 up(&iclog->ic_sema);
1676 }
1677
1678 /*
1679 * We need to bump cycle number for the part of the iclog that is
1680 * written to the start of the log. Watch out for the header magic
1681 * number case, though.
1682 */
1683 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1684 xlog_split_iclog(
1685 struct xlog *log,
1686 void *data,
1687 uint64_t bno,
1688 unsigned int count)
1689 {
1690 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1691 unsigned int i;
1692
1693 for (i = split_offset; i < count; i += BBSIZE) {
1694 uint32_t cycle = get_unaligned_be32(data + i);
1695
1696 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1697 cycle++;
1698 put_unaligned_be32(cycle, data + i);
1699 }
1700 }
1701
1702 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1703 xlog_calc_iclog_size(
1704 struct xlog *log,
1705 struct xlog_in_core *iclog,
1706 uint32_t *roundoff)
1707 {
1708 uint32_t count_init, count;
1709
1710 /* Add for LR header */
1711 count_init = log->l_iclog_hsize + iclog->ic_offset;
1712 count = roundup(count_init, log->l_iclog_roundoff);
1713
1714 *roundoff = count - count_init;
1715
1716 ASSERT(count >= count_init);
1717 ASSERT(*roundoff < log->l_iclog_roundoff);
1718 return count;
1719 }
1720
1721 /*
1722 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1723 * fashion. Previously, we should have moved the current iclog
1724 * ptr in the log to point to the next available iclog. This allows further
1725 * write to continue while this code syncs out an iclog ready to go.
1726 * Before an in-core log can be written out, the data section must be scanned
1727 * to save away the 1st word of each BBSIZE block into the header. We replace
1728 * it with the current cycle count. Each BBSIZE block is tagged with the
1729 * cycle count because there in an implicit assumption that drives will
1730 * guarantee that entire 512 byte blocks get written at once. In other words,
1731 * we can't have part of a 512 byte block written and part not written. By
1732 * tagging each block, we will know which blocks are valid when recovering
1733 * after an unclean shutdown.
1734 *
1735 * This routine is single threaded on the iclog. No other thread can be in
1736 * this routine with the same iclog. Changing contents of iclog can there-
1737 * fore be done without grabbing the state machine lock. Updating the global
1738 * log will require grabbing the lock though.
1739 *
1740 * The entire log manager uses a logical block numbering scheme. Only
1741 * xlog_write_iclog knows about the fact that the log may not start with
1742 * block zero on a given device.
1743 */
1744 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)1745 xlog_sync(
1746 struct xlog *log,
1747 struct xlog_in_core *iclog,
1748 struct xlog_ticket *ticket)
1749 {
1750 unsigned int count; /* byte count of bwrite */
1751 unsigned int roundoff; /* roundoff to BB or stripe */
1752 uint64_t bno;
1753 unsigned int size;
1754
1755 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1756 trace_xlog_iclog_sync(iclog, _RET_IP_);
1757
1758 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1759
1760 /*
1761 * If we have a ticket, account for the roundoff via the ticket
1762 * reservation to avoid touching the hot grant heads needlessly.
1763 * Otherwise, we have to move grant heads directly.
1764 */
1765 if (ticket) {
1766 ticket->t_curr_res -= roundoff;
1767 } else {
1768 xlog_grant_add_space(&log->l_reserve_head, roundoff);
1769 xlog_grant_add_space(&log->l_write_head, roundoff);
1770 }
1771
1772 /* put cycle number in every block */
1773 xlog_pack_data(log, iclog, roundoff);
1774
1775 /* real byte length */
1776 size = iclog->ic_offset;
1777 if (xfs_has_logv2(log->l_mp))
1778 size += roundoff;
1779 iclog->ic_header->h_len = cpu_to_be32(size);
1780
1781 XFS_STATS_INC(log->l_mp, xs_log_writes);
1782 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1783
1784 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn));
1785
1786 /* Do we need to split this write into 2 parts? */
1787 if (bno + BTOBB(count) > log->l_logBBsize)
1788 xlog_split_iclog(log, iclog->ic_header, bno, count);
1789
1790 /* calculcate the checksum */
1791 iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header,
1792 iclog->ic_datap, XLOG_REC_SIZE, size);
1793 /*
1794 * Intentionally corrupt the log record CRC based on the error injection
1795 * frequency, if defined. This facilitates testing log recovery in the
1796 * event of torn writes. Hence, set the IOABORT state to abort the log
1797 * write on I/O completion and shutdown the fs. The subsequent mount
1798 * detects the bad CRC and attempts to recover.
1799 */
1800 #ifdef DEBUG
1801 if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1802 iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA);
1803 iclog->ic_fail_crc = true;
1804 xfs_warn(log->l_mp,
1805 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1806 be64_to_cpu(iclog->ic_header->h_lsn));
1807 }
1808 #endif
1809 xlog_verify_iclog(log, iclog, count);
1810 xlog_write_iclog(log, iclog, bno, count);
1811 }
1812
1813 /*
1814 * Deallocate a log structure
1815 */
1816 STATIC void
xlog_dealloc_log(struct xlog * log)1817 xlog_dealloc_log(
1818 struct xlog *log)
1819 {
1820 struct xlog_in_core *iclog, *next_iclog;
1821 int i;
1822
1823 /*
1824 * Destroy the CIL after waiting for iclog IO completion because an
1825 * iclog EIO error will try to shut down the log, which accesses the
1826 * CIL to wake up the waiters.
1827 */
1828 xlog_cil_destroy(log);
1829
1830 iclog = log->l_iclog;
1831 for (i = 0; i < log->l_iclog_bufs; i++) {
1832 next_iclog = iclog->ic_next;
1833 kvfree(iclog->ic_header);
1834 kfree(iclog);
1835 iclog = next_iclog;
1836 }
1837
1838 log->l_mp->m_log = NULL;
1839 destroy_workqueue(log->l_ioend_workqueue);
1840 kfree(log);
1841 }
1842
1843 /*
1844 * Update counters atomically now that memcpy is done.
1845 */
1846 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1847 xlog_state_finish_copy(
1848 struct xlog *log,
1849 struct xlog_in_core *iclog,
1850 int record_cnt,
1851 int copy_bytes)
1852 {
1853 lockdep_assert_held(&log->l_icloglock);
1854
1855 be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt);
1856 iclog->ic_offset += copy_bytes;
1857 }
1858
1859 /*
1860 * print out info relating to regions written which consume
1861 * the reservation
1862 */
1863 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1864 xlog_print_tic_res(
1865 struct xfs_mount *mp,
1866 struct xlog_ticket *ticket)
1867 {
1868 xfs_warn(mp, "ticket reservation summary:");
1869 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res);
1870 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res);
1871 xfs_warn(mp, " original count = %d", ticket->t_ocnt);
1872 xfs_warn(mp, " remaining count = %d", ticket->t_cnt);
1873 }
1874
1875 /*
1876 * Print a summary of the transaction.
1877 */
1878 void
xlog_print_trans(struct xfs_trans * tp)1879 xlog_print_trans(
1880 struct xfs_trans *tp)
1881 {
1882 struct xfs_mount *mp = tp->t_mountp;
1883 struct xfs_log_item *lip;
1884
1885 /* dump core transaction and ticket info */
1886 xfs_warn(mp, "transaction summary:");
1887 xfs_warn(mp, " log res = %d", tp->t_log_res);
1888 xfs_warn(mp, " log count = %d", tp->t_log_count);
1889 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
1890
1891 xlog_print_tic_res(mp, tp->t_ticket);
1892
1893 /* dump each log item */
1894 list_for_each_entry(lip, &tp->t_items, li_trans) {
1895 struct xfs_log_vec *lv = lip->li_lv;
1896 struct xfs_log_iovec *vec;
1897 int i;
1898
1899 xfs_warn(mp, "log item: ");
1900 xfs_warn(mp, " type = 0x%x", lip->li_type);
1901 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
1902 if (!lv)
1903 continue;
1904 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
1905 xfs_warn(mp, " alloc_size = %d", lv->lv_alloc_size);
1906 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
1907 xfs_warn(mp, " buf used= %d", lv->lv_buf_used);
1908
1909 /* dump each iovec for the log item */
1910 vec = lv->lv_iovecp;
1911 for (i = 0; i < lv->lv_niovecs; i++) {
1912 int dumplen = min(vec->i_len, 32);
1913
1914 xfs_warn(mp, " iovec[%d]", i);
1915 xfs_warn(mp, " type = 0x%x", vec->i_type);
1916 xfs_warn(mp, " len = %d", vec->i_len);
1917 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
1918 xfs_hex_dump(vec->i_addr, dumplen);
1919
1920 vec++;
1921 }
1922 }
1923 }
1924
1925 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)1926 xlog_write_iovec(
1927 struct xlog_in_core *iclog,
1928 uint32_t *log_offset,
1929 void *data,
1930 uint32_t write_len,
1931 int *bytes_left,
1932 uint32_t *record_cnt,
1933 uint32_t *data_cnt)
1934 {
1935 ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1936 ASSERT(*log_offset % sizeof(int32_t) == 0);
1937 ASSERT(write_len % sizeof(int32_t) == 0);
1938
1939 memcpy(iclog->ic_datap + *log_offset, data, write_len);
1940 *log_offset += write_len;
1941 *bytes_left -= write_len;
1942 (*record_cnt)++;
1943 *data_cnt += write_len;
1944 }
1945
1946 /*
1947 * Write log vectors into a single iclog which is guaranteed by the caller
1948 * to have enough space to write the entire log vector into.
1949 */
1950 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)1951 xlog_write_full(
1952 struct xfs_log_vec *lv,
1953 struct xlog_ticket *ticket,
1954 struct xlog_in_core *iclog,
1955 uint32_t *log_offset,
1956 uint32_t *len,
1957 uint32_t *record_cnt,
1958 uint32_t *data_cnt)
1959 {
1960 int index;
1961
1962 ASSERT(*log_offset + *len <= iclog->ic_size ||
1963 iclog->ic_state == XLOG_STATE_WANT_SYNC);
1964
1965 /*
1966 * Ordered log vectors have no regions to write so this
1967 * loop will naturally skip them.
1968 */
1969 for (index = 0; index < lv->lv_niovecs; index++) {
1970 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
1971 struct xlog_op_header *ophdr = reg->i_addr;
1972
1973 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1974 xlog_write_iovec(iclog, log_offset, reg->i_addr,
1975 reg->i_len, len, record_cnt, data_cnt);
1976 }
1977 }
1978
1979 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)1980 xlog_write_get_more_iclog_space(
1981 struct xlog_ticket *ticket,
1982 struct xlog_in_core **iclogp,
1983 uint32_t *log_offset,
1984 uint32_t len,
1985 uint32_t *record_cnt,
1986 uint32_t *data_cnt)
1987 {
1988 struct xlog_in_core *iclog = *iclogp;
1989 struct xlog *log = iclog->ic_log;
1990 int error;
1991
1992 spin_lock(&log->l_icloglock);
1993 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
1994 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1995 error = xlog_state_release_iclog(log, iclog, ticket);
1996 spin_unlock(&log->l_icloglock);
1997 if (error)
1998 return error;
1999
2000 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2001 log_offset);
2002 if (error)
2003 return error;
2004 *record_cnt = 0;
2005 *data_cnt = 0;
2006 *iclogp = iclog;
2007 return 0;
2008 }
2009
2010 /*
2011 * Write log vectors into a single iclog which is smaller than the current chain
2012 * length. We write until we cannot fit a full record into the remaining space
2013 * and then stop. We return the log vector that is to be written that cannot
2014 * wholly fit in the iclog.
2015 */
2016 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2017 xlog_write_partial(
2018 struct xfs_log_vec *lv,
2019 struct xlog_ticket *ticket,
2020 struct xlog_in_core **iclogp,
2021 uint32_t *log_offset,
2022 uint32_t *len,
2023 uint32_t *record_cnt,
2024 uint32_t *data_cnt)
2025 {
2026 struct xlog_in_core *iclog = *iclogp;
2027 struct xlog_op_header *ophdr;
2028 int index = 0;
2029 uint32_t rlen;
2030 int error;
2031
2032 /* walk the logvec, copying until we run out of space in the iclog */
2033 for (index = 0; index < lv->lv_niovecs; index++) {
2034 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2035 uint32_t reg_offset = 0;
2036
2037 /*
2038 * The first region of a continuation must have a non-zero
2039 * length otherwise log recovery will just skip over it and
2040 * start recovering from the next opheader it finds. Because we
2041 * mark the next opheader as a continuation, recovery will then
2042 * incorrectly add the continuation to the previous region and
2043 * that breaks stuff.
2044 *
2045 * Hence if there isn't space for region data after the
2046 * opheader, then we need to start afresh with a new iclog.
2047 */
2048 if (iclog->ic_size - *log_offset <=
2049 sizeof(struct xlog_op_header)) {
2050 error = xlog_write_get_more_iclog_space(ticket,
2051 &iclog, log_offset, *len, record_cnt,
2052 data_cnt);
2053 if (error)
2054 return error;
2055 }
2056
2057 ophdr = reg->i_addr;
2058 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2059
2060 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2061 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2062 if (rlen != reg->i_len)
2063 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2064
2065 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2066 rlen, len, record_cnt, data_cnt);
2067
2068 /* If we wrote the whole region, move to the next. */
2069 if (rlen == reg->i_len)
2070 continue;
2071
2072 /*
2073 * We now have a partially written iovec, but it can span
2074 * multiple iclogs so we loop here. First we release the iclog
2075 * we currently have, then we get a new iclog and add a new
2076 * opheader. Then we continue copying from where we were until
2077 * we either complete the iovec or fill the iclog. If we
2078 * complete the iovec, then we increment the index and go right
2079 * back to the top of the outer loop. if we fill the iclog, we
2080 * run the inner loop again.
2081 *
2082 * This is complicated by the tail of a region using all the
2083 * space in an iclog and hence requiring us to release the iclog
2084 * and get a new one before returning to the outer loop. We must
2085 * always guarantee that we exit this inner loop with at least
2086 * space for log transaction opheaders left in the current
2087 * iclog, hence we cannot just terminate the loop at the end
2088 * of the of the continuation. So we loop while there is no
2089 * space left in the current iclog, and check for the end of the
2090 * continuation after getting a new iclog.
2091 */
2092 do {
2093 /*
2094 * Ensure we include the continuation opheader in the
2095 * space we need in the new iclog by adding that size
2096 * to the length we require. This continuation opheader
2097 * needs to be accounted to the ticket as the space it
2098 * consumes hasn't been accounted to the lv we are
2099 * writing.
2100 */
2101 error = xlog_write_get_more_iclog_space(ticket,
2102 &iclog, log_offset,
2103 *len + sizeof(struct xlog_op_header),
2104 record_cnt, data_cnt);
2105 if (error)
2106 return error;
2107
2108 ophdr = iclog->ic_datap + *log_offset;
2109 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2110 ophdr->oh_clientid = XFS_TRANSACTION;
2111 ophdr->oh_res2 = 0;
2112 ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2113
2114 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2115 *log_offset += sizeof(struct xlog_op_header);
2116 *data_cnt += sizeof(struct xlog_op_header);
2117
2118 /*
2119 * If rlen fits in the iclog, then end the region
2120 * continuation. Otherwise we're going around again.
2121 */
2122 reg_offset += rlen;
2123 rlen = reg->i_len - reg_offset;
2124 if (rlen <= iclog->ic_size - *log_offset)
2125 ophdr->oh_flags |= XLOG_END_TRANS;
2126 else
2127 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2128
2129 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2130 ophdr->oh_len = cpu_to_be32(rlen);
2131
2132 xlog_write_iovec(iclog, log_offset,
2133 reg->i_addr + reg_offset,
2134 rlen, len, record_cnt, data_cnt);
2135
2136 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2137 }
2138
2139 /*
2140 * No more iovecs remain in this logvec so return the next log vec to
2141 * the caller so it can go back to fast path copying.
2142 */
2143 *iclogp = iclog;
2144 return 0;
2145 }
2146
2147 /*
2148 * Write some region out to in-core log
2149 *
2150 * This will be called when writing externally provided regions or when
2151 * writing out a commit record for a given transaction.
2152 *
2153 * General algorithm:
2154 * 1. Find total length of this write. This may include adding to the
2155 * lengths passed in.
2156 * 2. Check whether we violate the tickets reservation.
2157 * 3. While writing to this iclog
2158 * A. Reserve as much space in this iclog as can get
2159 * B. If this is first write, save away start lsn
2160 * C. While writing this region:
2161 * 1. If first write of transaction, write start record
2162 * 2. Write log operation header (header per region)
2163 * 3. Find out if we can fit entire region into this iclog
2164 * 4. Potentially, verify destination memcpy ptr
2165 * 5. Memcpy (partial) region
2166 * 6. If partial copy, release iclog; otherwise, continue
2167 * copying more regions into current iclog
2168 * 4. Mark want sync bit (in simulation mode)
2169 * 5. Release iclog for potential flush to on-disk log.
2170 *
2171 * ERRORS:
2172 * 1. Panic if reservation is overrun. This should never happen since
2173 * reservation amounts are generated internal to the filesystem.
2174 * NOTES:
2175 * 1. Tickets are single threaded data structures.
2176 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2177 * syncing routine. When a single log_write region needs to span
2178 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2179 * on all log operation writes which don't contain the end of the
2180 * region. The XLOG_END_TRANS bit is used for the in-core log
2181 * operation which contains the end of the continued log_write region.
2182 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2183 * we don't really know exactly how much space will be used. As a result,
2184 * we don't update ic_offset until the end when we know exactly how many
2185 * bytes have been written out.
2186 */
2187 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct list_head * lv_chain,struct xlog_ticket * ticket,uint32_t len)2188 xlog_write(
2189 struct xlog *log,
2190 struct xfs_cil_ctx *ctx,
2191 struct list_head *lv_chain,
2192 struct xlog_ticket *ticket,
2193 uint32_t len)
2194
2195 {
2196 struct xlog_in_core *iclog = NULL;
2197 struct xfs_log_vec *lv;
2198 uint32_t record_cnt = 0;
2199 uint32_t data_cnt = 0;
2200 int error = 0;
2201 int log_offset;
2202
2203 if (ticket->t_curr_res < 0) {
2204 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2205 "ctx ticket reservation ran out. Need to up reservation");
2206 xlog_print_tic_res(log->l_mp, ticket);
2207 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2208 }
2209
2210 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2211 &log_offset);
2212 if (error)
2213 return error;
2214
2215 ASSERT(log_offset <= iclog->ic_size - 1);
2216
2217 /*
2218 * If we have a context pointer, pass it the first iclog we are
2219 * writing to so it can record state needed for iclog write
2220 * ordering.
2221 */
2222 if (ctx)
2223 xlog_cil_set_ctx_write_state(ctx, iclog);
2224
2225 list_for_each_entry(lv, lv_chain, lv_list) {
2226 /*
2227 * If the entire log vec does not fit in the iclog, punt it to
2228 * the partial copy loop which can handle this case.
2229 */
2230 if (lv->lv_niovecs &&
2231 lv->lv_bytes > iclog->ic_size - log_offset) {
2232 error = xlog_write_partial(lv, ticket, &iclog,
2233 &log_offset, &len, &record_cnt,
2234 &data_cnt);
2235 if (error) {
2236 /*
2237 * We have no iclog to release, so just return
2238 * the error immediately.
2239 */
2240 return error;
2241 }
2242 } else {
2243 xlog_write_full(lv, ticket, iclog, &log_offset,
2244 &len, &record_cnt, &data_cnt);
2245 }
2246 }
2247 ASSERT(len == 0);
2248
2249 /*
2250 * We've already been guaranteed that the last writes will fit inside
2251 * the current iclog, and hence it will already have the space used by
2252 * those writes accounted to it. Hence we do not need to update the
2253 * iclog with the number of bytes written here.
2254 */
2255 spin_lock(&log->l_icloglock);
2256 xlog_state_finish_copy(log, iclog, record_cnt, 0);
2257 error = xlog_state_release_iclog(log, iclog, ticket);
2258 spin_unlock(&log->l_icloglock);
2259
2260 return error;
2261 }
2262
2263 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2264 xlog_state_activate_iclog(
2265 struct xlog_in_core *iclog,
2266 int *iclogs_changed)
2267 {
2268 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2269 trace_xlog_iclog_activate(iclog, _RET_IP_);
2270
2271 /*
2272 * If the number of ops in this iclog indicate it just contains the
2273 * dummy transaction, we can change state into IDLE (the second time
2274 * around). Otherwise we should change the state into NEED a dummy.
2275 * We don't need to cover the dummy.
2276 */
2277 if (*iclogs_changed == 0 &&
2278 iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2279 *iclogs_changed = 1;
2280 } else {
2281 /*
2282 * We have two dirty iclogs so start over. This could also be
2283 * num of ops indicating this is not the dummy going out.
2284 */
2285 *iclogs_changed = 2;
2286 }
2287
2288 iclog->ic_state = XLOG_STATE_ACTIVE;
2289 iclog->ic_offset = 0;
2290 iclog->ic_header->h_num_logops = 0;
2291 memset(iclog->ic_header->h_cycle_data, 0,
2292 sizeof(iclog->ic_header->h_cycle_data));
2293 iclog->ic_header->h_lsn = 0;
2294 iclog->ic_header->h_tail_lsn = 0;
2295 }
2296
2297 /*
2298 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2299 * ACTIVE after iclog I/O has completed.
2300 */
2301 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2302 xlog_state_activate_iclogs(
2303 struct xlog *log,
2304 int *iclogs_changed)
2305 {
2306 struct xlog_in_core *iclog = log->l_iclog;
2307
2308 do {
2309 if (iclog->ic_state == XLOG_STATE_DIRTY)
2310 xlog_state_activate_iclog(iclog, iclogs_changed);
2311 /*
2312 * The ordering of marking iclogs ACTIVE must be maintained, so
2313 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2314 */
2315 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2316 break;
2317 } while ((iclog = iclog->ic_next) != log->l_iclog);
2318 }
2319
2320 static int
xlog_covered_state(int prev_state,int iclogs_changed)2321 xlog_covered_state(
2322 int prev_state,
2323 int iclogs_changed)
2324 {
2325 /*
2326 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2327 * wrote the first covering record (DONE). We go to IDLE if we just
2328 * wrote the second covering record (DONE2) and remain in IDLE until a
2329 * non-covering write occurs.
2330 */
2331 switch (prev_state) {
2332 case XLOG_STATE_COVER_IDLE:
2333 if (iclogs_changed == 1)
2334 return XLOG_STATE_COVER_IDLE;
2335 fallthrough;
2336 case XLOG_STATE_COVER_NEED:
2337 case XLOG_STATE_COVER_NEED2:
2338 break;
2339 case XLOG_STATE_COVER_DONE:
2340 if (iclogs_changed == 1)
2341 return XLOG_STATE_COVER_NEED2;
2342 break;
2343 case XLOG_STATE_COVER_DONE2:
2344 if (iclogs_changed == 1)
2345 return XLOG_STATE_COVER_IDLE;
2346 break;
2347 default:
2348 ASSERT(0);
2349 }
2350
2351 return XLOG_STATE_COVER_NEED;
2352 }
2353
2354 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2355 xlog_state_clean_iclog(
2356 struct xlog *log,
2357 struct xlog_in_core *dirty_iclog)
2358 {
2359 int iclogs_changed = 0;
2360
2361 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2362
2363 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2364
2365 xlog_state_activate_iclogs(log, &iclogs_changed);
2366 wake_up_all(&dirty_iclog->ic_force_wait);
2367
2368 if (iclogs_changed) {
2369 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2370 iclogs_changed);
2371 }
2372 }
2373
2374 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2375 xlog_get_lowest_lsn(
2376 struct xlog *log)
2377 {
2378 struct xlog_in_core *iclog = log->l_iclog;
2379 xfs_lsn_t lowest_lsn = 0, lsn;
2380
2381 do {
2382 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2383 iclog->ic_state == XLOG_STATE_DIRTY)
2384 continue;
2385
2386 lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2387 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2388 lowest_lsn = lsn;
2389 } while ((iclog = iclog->ic_next) != log->l_iclog);
2390
2391 return lowest_lsn;
2392 }
2393
2394 /*
2395 * Return true if we need to stop processing, false to continue to the next
2396 * iclog. The caller will need to run callbacks if the iclog is returned in the
2397 * XLOG_STATE_CALLBACK state.
2398 */
2399 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2400 xlog_state_iodone_process_iclog(
2401 struct xlog *log,
2402 struct xlog_in_core *iclog)
2403 {
2404 xfs_lsn_t lowest_lsn;
2405 xfs_lsn_t header_lsn;
2406
2407 switch (iclog->ic_state) {
2408 case XLOG_STATE_ACTIVE:
2409 case XLOG_STATE_DIRTY:
2410 /*
2411 * Skip all iclogs in the ACTIVE & DIRTY states:
2412 */
2413 return false;
2414 case XLOG_STATE_DONE_SYNC:
2415 /*
2416 * Now that we have an iclog that is in the DONE_SYNC state, do
2417 * one more check here to see if we have chased our tail around.
2418 * If this is not the lowest lsn iclog, then we will leave it
2419 * for another completion to process.
2420 */
2421 header_lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2422 lowest_lsn = xlog_get_lowest_lsn(log);
2423 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2424 return false;
2425 /*
2426 * If there are no callbacks on this iclog, we can mark it clean
2427 * immediately and return. Otherwise we need to run the
2428 * callbacks.
2429 */
2430 if (list_empty(&iclog->ic_callbacks)) {
2431 xlog_state_clean_iclog(log, iclog);
2432 return false;
2433 }
2434 trace_xlog_iclog_callback(iclog, _RET_IP_);
2435 iclog->ic_state = XLOG_STATE_CALLBACK;
2436 return false;
2437 default:
2438 /*
2439 * Can only perform callbacks in order. Since this iclog is not
2440 * in the DONE_SYNC state, we skip the rest and just try to
2441 * clean up.
2442 */
2443 return true;
2444 }
2445 }
2446
2447 /*
2448 * Loop over all the iclogs, running attached callbacks on them. Return true if
2449 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2450 * to handle transient shutdown state here at all because
2451 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2452 * cleanup of the callbacks.
2453 */
2454 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2455 xlog_state_do_iclog_callbacks(
2456 struct xlog *log)
2457 __releases(&log->l_icloglock)
2458 __acquires(&log->l_icloglock)
2459 {
2460 struct xlog_in_core *first_iclog = log->l_iclog;
2461 struct xlog_in_core *iclog = first_iclog;
2462 bool ran_callback = false;
2463
2464 do {
2465 LIST_HEAD(cb_list);
2466
2467 if (xlog_state_iodone_process_iclog(log, iclog))
2468 break;
2469 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2470 iclog = iclog->ic_next;
2471 continue;
2472 }
2473 list_splice_init(&iclog->ic_callbacks, &cb_list);
2474 spin_unlock(&log->l_icloglock);
2475
2476 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2477 xlog_cil_process_committed(&cb_list);
2478 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2479 ran_callback = true;
2480
2481 spin_lock(&log->l_icloglock);
2482 xlog_state_clean_iclog(log, iclog);
2483 iclog = iclog->ic_next;
2484 } while (iclog != first_iclog);
2485
2486 return ran_callback;
2487 }
2488
2489
2490 /*
2491 * Loop running iclog completion callbacks until there are no more iclogs in a
2492 * state that can run callbacks.
2493 */
2494 STATIC void
xlog_state_do_callback(struct xlog * log)2495 xlog_state_do_callback(
2496 struct xlog *log)
2497 {
2498 int flushcnt = 0;
2499 int repeats = 0;
2500
2501 spin_lock(&log->l_icloglock);
2502 while (xlog_state_do_iclog_callbacks(log)) {
2503 if (xlog_is_shutdown(log))
2504 break;
2505
2506 if (++repeats > 5000) {
2507 flushcnt += repeats;
2508 repeats = 0;
2509 xfs_warn(log->l_mp,
2510 "%s: possible infinite loop (%d iterations)",
2511 __func__, flushcnt);
2512 }
2513 }
2514
2515 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2516 wake_up_all(&log->l_flush_wait);
2517
2518 spin_unlock(&log->l_icloglock);
2519 }
2520
2521
2522 /*
2523 * Finish transitioning this iclog to the dirty state.
2524 *
2525 * Callbacks could take time, so they are done outside the scope of the
2526 * global state machine log lock.
2527 */
2528 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2529 xlog_state_done_syncing(
2530 struct xlog_in_core *iclog)
2531 {
2532 struct xlog *log = iclog->ic_log;
2533
2534 spin_lock(&log->l_icloglock);
2535 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2536 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2537
2538 /*
2539 * If we got an error, either on the first buffer, or in the case of
2540 * split log writes, on the second, we shut down the file system and
2541 * no iclogs should ever be attempted to be written to disk again.
2542 */
2543 if (!xlog_is_shutdown(log)) {
2544 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2545 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2546 }
2547
2548 /*
2549 * Someone could be sleeping prior to writing out the next
2550 * iclog buffer, we wake them all, one will get to do the
2551 * I/O, the others get to wait for the result.
2552 */
2553 wake_up_all(&iclog->ic_write_wait);
2554 spin_unlock(&log->l_icloglock);
2555 xlog_state_do_callback(log);
2556 }
2557
2558 /*
2559 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2560 * sleep. We wait on the flush queue on the head iclog as that should be
2561 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2562 * we will wait here and all new writes will sleep until a sync completes.
2563 *
2564 * The in-core logs are used in a circular fashion. They are not used
2565 * out-of-order even when an iclog past the head is free.
2566 *
2567 * return:
2568 * * log_offset where xlog_write() can start writing into the in-core
2569 * log's data space.
2570 * * in-core log pointer to which xlog_write() should write.
2571 * * boolean indicating this is a continued write to an in-core log.
2572 * If this is the last write, then the in-core log's offset field
2573 * needs to be incremented, depending on the amount of data which
2574 * is copied.
2575 */
2576 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2577 xlog_state_get_iclog_space(
2578 struct xlog *log,
2579 int len,
2580 struct xlog_in_core **iclogp,
2581 struct xlog_ticket *ticket,
2582 int *logoffsetp)
2583 {
2584 int log_offset;
2585 struct xlog_rec_header *head;
2586 struct xlog_in_core *iclog;
2587
2588 restart:
2589 spin_lock(&log->l_icloglock);
2590 if (xlog_is_shutdown(log)) {
2591 spin_unlock(&log->l_icloglock);
2592 return -EIO;
2593 }
2594
2595 iclog = log->l_iclog;
2596 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2597 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2598
2599 /* Wait for log writes to have flushed */
2600 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2601 goto restart;
2602 }
2603
2604 head = iclog->ic_header;
2605
2606 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2607 log_offset = iclog->ic_offset;
2608
2609 trace_xlog_iclog_get_space(iclog, _RET_IP_);
2610
2611 /* On the 1st write to an iclog, figure out lsn. This works
2612 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2613 * committing to. If the offset is set, that's how many blocks
2614 * must be written.
2615 */
2616 if (log_offset == 0) {
2617 ticket->t_curr_res -= log->l_iclog_hsize;
2618 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2619 head->h_lsn = cpu_to_be64(
2620 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2621 ASSERT(log->l_curr_block >= 0);
2622 }
2623
2624 /* If there is enough room to write everything, then do it. Otherwise,
2625 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2626 * bit is on, so this will get flushed out. Don't update ic_offset
2627 * until you know exactly how many bytes get copied. Therefore, wait
2628 * until later to update ic_offset.
2629 *
2630 * xlog_write() algorithm assumes that at least 2 xlog_op_header's
2631 * can fit into remaining data section.
2632 */
2633 if (iclog->ic_size - iclog->ic_offset <
2634 2 * sizeof(struct xlog_op_header)) {
2635 int error = 0;
2636
2637 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2638
2639 /*
2640 * If we are the only one writing to this iclog, sync it to
2641 * disk. We need to do an atomic compare and decrement here to
2642 * avoid racing with concurrent atomic_dec_and_lock() calls in
2643 * xlog_state_release_iclog() when there is more than one
2644 * reference to the iclog.
2645 */
2646 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2647 error = xlog_state_release_iclog(log, iclog, ticket);
2648 spin_unlock(&log->l_icloglock);
2649 if (error)
2650 return error;
2651 goto restart;
2652 }
2653
2654 /* Do we have enough room to write the full amount in the remainder
2655 * of this iclog? Or must we continue a write on the next iclog and
2656 * mark this iclog as completely taken? In the case where we switch
2657 * iclogs (to mark it taken), this particular iclog will release/sync
2658 * to disk in xlog_write().
2659 */
2660 if (len <= iclog->ic_size - iclog->ic_offset)
2661 iclog->ic_offset += len;
2662 else
2663 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2664 *iclogp = iclog;
2665
2666 ASSERT(iclog->ic_offset <= iclog->ic_size);
2667 spin_unlock(&log->l_icloglock);
2668
2669 *logoffsetp = log_offset;
2670 return 0;
2671 }
2672
2673 /*
2674 * The first cnt-1 times a ticket goes through here we don't need to move the
2675 * grant write head because the permanent reservation has reserved cnt times the
2676 * unit amount. Release part of current permanent unit reservation and reset
2677 * current reservation to be one units worth. Also move grant reservation head
2678 * forward.
2679 */
2680 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2681 xfs_log_ticket_regrant(
2682 struct xlog *log,
2683 struct xlog_ticket *ticket)
2684 {
2685 trace_xfs_log_ticket_regrant(log, ticket);
2686
2687 if (ticket->t_cnt > 0)
2688 ticket->t_cnt--;
2689
2690 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2691 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2692 ticket->t_curr_res = ticket->t_unit_res;
2693
2694 trace_xfs_log_ticket_regrant_sub(log, ticket);
2695
2696 /* just return if we still have some of the pre-reserved space */
2697 if (!ticket->t_cnt) {
2698 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2699 trace_xfs_log_ticket_regrant_exit(log, ticket);
2700 }
2701
2702 xfs_log_ticket_put(ticket);
2703 }
2704
2705 /*
2706 * Give back the space left from a reservation.
2707 *
2708 * All the information we need to make a correct determination of space left
2709 * is present. For non-permanent reservations, things are quite easy. The
2710 * count should have been decremented to zero. We only need to deal with the
2711 * space remaining in the current reservation part of the ticket. If the
2712 * ticket contains a permanent reservation, there may be left over space which
2713 * needs to be released. A count of N means that N-1 refills of the current
2714 * reservation can be done before we need to ask for more space. The first
2715 * one goes to fill up the first current reservation. Once we run out of
2716 * space, the count will stay at zero and the only space remaining will be
2717 * in the current reservation field.
2718 */
2719 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)2720 xfs_log_ticket_ungrant(
2721 struct xlog *log,
2722 struct xlog_ticket *ticket)
2723 {
2724 int bytes;
2725
2726 trace_xfs_log_ticket_ungrant(log, ticket);
2727
2728 if (ticket->t_cnt > 0)
2729 ticket->t_cnt--;
2730
2731 trace_xfs_log_ticket_ungrant_sub(log, ticket);
2732
2733 /*
2734 * If this is a permanent reservation ticket, we may be able to free
2735 * up more space based on the remaining count.
2736 */
2737 bytes = ticket->t_curr_res;
2738 if (ticket->t_cnt > 0) {
2739 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2740 bytes += ticket->t_unit_res*ticket->t_cnt;
2741 }
2742
2743 xlog_grant_sub_space(&log->l_reserve_head, bytes);
2744 xlog_grant_sub_space(&log->l_write_head, bytes);
2745
2746 trace_xfs_log_ticket_ungrant_exit(log, ticket);
2747
2748 xfs_log_space_wake(log->l_mp);
2749 xfs_log_ticket_put(ticket);
2750 }
2751
2752 /*
2753 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2754 * the current iclog pointer to the next iclog in the ring.
2755 */
2756 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)2757 xlog_state_switch_iclogs(
2758 struct xlog *log,
2759 struct xlog_in_core *iclog,
2760 int eventual_size)
2761 {
2762 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2763 assert_spin_locked(&log->l_icloglock);
2764 trace_xlog_iclog_switch(iclog, _RET_IP_);
2765
2766 if (!eventual_size)
2767 eventual_size = iclog->ic_offset;
2768 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2769 iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block);
2770 log->l_prev_block = log->l_curr_block;
2771 log->l_prev_cycle = log->l_curr_cycle;
2772
2773 /* roll log?: ic_offset changed later */
2774 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2775
2776 /* Round up to next log-sunit */
2777 if (log->l_iclog_roundoff > BBSIZE) {
2778 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2779 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2780 }
2781
2782 if (log->l_curr_block >= log->l_logBBsize) {
2783 /*
2784 * Rewind the current block before the cycle is bumped to make
2785 * sure that the combined LSN never transiently moves forward
2786 * when the log wraps to the next cycle. This is to support the
2787 * unlocked sample of these fields from xlog_valid_lsn(). Most
2788 * other cases should acquire l_icloglock.
2789 */
2790 log->l_curr_block -= log->l_logBBsize;
2791 ASSERT(log->l_curr_block >= 0);
2792 smp_wmb();
2793 log->l_curr_cycle++;
2794 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2795 log->l_curr_cycle++;
2796 }
2797 ASSERT(iclog == log->l_iclog);
2798 log->l_iclog = iclog->ic_next;
2799 }
2800
2801 /*
2802 * Force the iclog to disk and check if the iclog has been completed before
2803 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2804 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2805 * If completion has already occurred, tell the caller so that it can avoid an
2806 * unnecessary wait on the iclog.
2807 */
2808 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)2809 xlog_force_and_check_iclog(
2810 struct xlog_in_core *iclog,
2811 bool *completed)
2812 {
2813 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2814 int error;
2815
2816 *completed = false;
2817 error = xlog_force_iclog(iclog);
2818 if (error)
2819 return error;
2820
2821 /*
2822 * If the iclog has already been completed and reused the header LSN
2823 * will have been rewritten by completion
2824 */
2825 if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn)
2826 *completed = true;
2827 return 0;
2828 }
2829
2830 /*
2831 * Write out all data in the in-core log as of this exact moment in time.
2832 *
2833 * Data may be written to the in-core log during this call. However,
2834 * we don't guarantee this data will be written out. A change from past
2835 * implementation means this routine will *not* write out zero length LRs.
2836 *
2837 * Basically, we try and perform an intelligent scan of the in-core logs.
2838 * If we determine there is no flushable data, we just return. There is no
2839 * flushable data if:
2840 *
2841 * 1. the current iclog is active and has no data; the previous iclog
2842 * is in the active or dirty state.
2843 * 2. the current iclog is dirty, and the previous iclog is in the
2844 * active or dirty state.
2845 *
2846 * We may sleep if:
2847 *
2848 * 1. the current iclog is not in the active nor dirty state.
2849 * 2. the current iclog dirty, and the previous iclog is not in the
2850 * active nor dirty state.
2851 * 3. the current iclog is active, and there is another thread writing
2852 * to this particular iclog.
2853 * 4. a) the current iclog is active and has no other writers
2854 * b) when we return from flushing out this iclog, it is still
2855 * not in the active nor dirty state.
2856 */
2857 int
xfs_log_force(struct xfs_mount * mp,uint flags)2858 xfs_log_force(
2859 struct xfs_mount *mp,
2860 uint flags)
2861 {
2862 struct xlog *log = mp->m_log;
2863 struct xlog_in_core *iclog;
2864
2865 XFS_STATS_INC(mp, xs_log_force);
2866 trace_xfs_log_force(mp, 0, _RET_IP_);
2867
2868 xlog_cil_force(log);
2869
2870 spin_lock(&log->l_icloglock);
2871 if (xlog_is_shutdown(log))
2872 goto out_error;
2873
2874 iclog = log->l_iclog;
2875 trace_xlog_iclog_force(iclog, _RET_IP_);
2876
2877 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2878 (iclog->ic_state == XLOG_STATE_ACTIVE &&
2879 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2880 /*
2881 * If the head is dirty or (active and empty), then we need to
2882 * look at the previous iclog.
2883 *
2884 * If the previous iclog is active or dirty we are done. There
2885 * is nothing to sync out. Otherwise, we attach ourselves to the
2886 * previous iclog and go to sleep.
2887 */
2888 iclog = iclog->ic_prev;
2889 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2890 if (atomic_read(&iclog->ic_refcnt) == 0) {
2891 /* We have exclusive access to this iclog. */
2892 bool completed;
2893
2894 if (xlog_force_and_check_iclog(iclog, &completed))
2895 goto out_error;
2896
2897 if (completed)
2898 goto out_unlock;
2899 } else {
2900 /*
2901 * Someone else is still writing to this iclog, so we
2902 * need to ensure that when they release the iclog it
2903 * gets synced immediately as we may be waiting on it.
2904 */
2905 xlog_state_switch_iclogs(log, iclog, 0);
2906 }
2907 }
2908
2909 /*
2910 * The iclog we are about to wait on may contain the checkpoint pushed
2911 * by the above xlog_cil_force() call, but it may not have been pushed
2912 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2913 * are flushed when this iclog is written.
2914 */
2915 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2916 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2917
2918 if (flags & XFS_LOG_SYNC)
2919 return xlog_wait_on_iclog(iclog);
2920 out_unlock:
2921 spin_unlock(&log->l_icloglock);
2922 return 0;
2923 out_error:
2924 spin_unlock(&log->l_icloglock);
2925 return -EIO;
2926 }
2927
2928 /*
2929 * Force the log to a specific LSN.
2930 *
2931 * If an iclog with that lsn can be found:
2932 * If it is in the DIRTY state, just return.
2933 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2934 * state and go to sleep or return.
2935 * If it is in any other state, go to sleep or return.
2936 *
2937 * Synchronous forces are implemented with a wait queue. All callers trying
2938 * to force a given lsn to disk must wait on the queue attached to the
2939 * specific in-core log. When given in-core log finally completes its write
2940 * to disk, that thread will wake up all threads waiting on the queue.
2941 */
2942 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)2943 xlog_force_lsn(
2944 struct xlog *log,
2945 xfs_lsn_t lsn,
2946 uint flags,
2947 int *log_flushed,
2948 bool already_slept)
2949 {
2950 struct xlog_in_core *iclog;
2951 bool completed;
2952
2953 spin_lock(&log->l_icloglock);
2954 if (xlog_is_shutdown(log))
2955 goto out_error;
2956
2957 iclog = log->l_iclog;
2958 while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) {
2959 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2960 iclog = iclog->ic_next;
2961 if (iclog == log->l_iclog)
2962 goto out_unlock;
2963 }
2964
2965 switch (iclog->ic_state) {
2966 case XLOG_STATE_ACTIVE:
2967 /*
2968 * We sleep here if we haven't already slept (e.g. this is the
2969 * first time we've looked at the correct iclog buf) and the
2970 * buffer before us is going to be sync'ed. The reason for this
2971 * is that if we are doing sync transactions here, by waiting
2972 * for the previous I/O to complete, we can allow a few more
2973 * transactions into this iclog before we close it down.
2974 *
2975 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
2976 * refcnt so we can release the log (which drops the ref count).
2977 * The state switch keeps new transaction commits from using
2978 * this buffer. When the current commits finish writing into
2979 * the buffer, the refcount will drop to zero and the buffer
2980 * will go out then.
2981 */
2982 if (!already_slept &&
2983 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
2984 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
2985 xlog_wait(&iclog->ic_prev->ic_write_wait,
2986 &log->l_icloglock);
2987 return -EAGAIN;
2988 }
2989 if (xlog_force_and_check_iclog(iclog, &completed))
2990 goto out_error;
2991 if (log_flushed)
2992 *log_flushed = 1;
2993 if (completed)
2994 goto out_unlock;
2995 break;
2996 case XLOG_STATE_WANT_SYNC:
2997 /*
2998 * This iclog may contain the checkpoint pushed by the
2999 * xlog_cil_force_seq() call, but there are other writers still
3000 * accessing it so it hasn't been pushed to disk yet. Like the
3001 * ACTIVE case above, we need to make sure caches are flushed
3002 * when this iclog is written.
3003 */
3004 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3005 break;
3006 default:
3007 /*
3008 * The entire checkpoint was written by the CIL force and is on
3009 * its way to disk already. It will be stable when it
3010 * completes, so we don't need to manipulate caches here at all.
3011 * We just need to wait for completion if necessary.
3012 */
3013 break;
3014 }
3015
3016 if (flags & XFS_LOG_SYNC)
3017 return xlog_wait_on_iclog(iclog);
3018 out_unlock:
3019 spin_unlock(&log->l_icloglock);
3020 return 0;
3021 out_error:
3022 spin_unlock(&log->l_icloglock);
3023 return -EIO;
3024 }
3025
3026 /*
3027 * Force the log to a specific checkpoint sequence.
3028 *
3029 * First force the CIL so that all the required changes have been flushed to the
3030 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3031 * the iclog that needs to be flushed to stable storage. If the caller needs
3032 * a synchronous log force, we will wait on the iclog with the LSN returned by
3033 * xlog_cil_force_seq() to be completed.
3034 */
3035 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3036 xfs_log_force_seq(
3037 struct xfs_mount *mp,
3038 xfs_csn_t seq,
3039 uint flags,
3040 int *log_flushed)
3041 {
3042 struct xlog *log = mp->m_log;
3043 xfs_lsn_t lsn;
3044 int ret;
3045 ASSERT(seq != 0);
3046
3047 XFS_STATS_INC(mp, xs_log_force);
3048 trace_xfs_log_force(mp, seq, _RET_IP_);
3049
3050 lsn = xlog_cil_force_seq(log, seq);
3051 if (lsn == NULLCOMMITLSN)
3052 return 0;
3053
3054 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3055 if (ret == -EAGAIN) {
3056 XFS_STATS_INC(mp, xs_log_force_sleep);
3057 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3058 }
3059 return ret;
3060 }
3061
3062 /*
3063 * Free a used ticket when its refcount falls to zero.
3064 */
3065 void
xfs_log_ticket_put(struct xlog_ticket * ticket)3066 xfs_log_ticket_put(
3067 struct xlog_ticket *ticket)
3068 {
3069 ASSERT(atomic_read(&ticket->t_ref) > 0);
3070 if (atomic_dec_and_test(&ticket->t_ref))
3071 kmem_cache_free(xfs_log_ticket_cache, ticket);
3072 }
3073
3074 struct xlog_ticket *
xfs_log_ticket_get(struct xlog_ticket * ticket)3075 xfs_log_ticket_get(
3076 struct xlog_ticket *ticket)
3077 {
3078 ASSERT(atomic_read(&ticket->t_ref) > 0);
3079 atomic_inc(&ticket->t_ref);
3080 return ticket;
3081 }
3082
3083 /*
3084 * Figure out the total log space unit (in bytes) that would be
3085 * required for a log ticket.
3086 */
3087 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes,int * niclogs)3088 xlog_calc_unit_res(
3089 struct xlog *log,
3090 int unit_bytes,
3091 int *niclogs)
3092 {
3093 int iclog_space;
3094 uint num_headers;
3095
3096 /*
3097 * Permanent reservations have up to 'cnt'-1 active log operations
3098 * in the log. A unit in this case is the amount of space for one
3099 * of these log operations. Normal reservations have a cnt of 1
3100 * and their unit amount is the total amount of space required.
3101 *
3102 * The following lines of code account for non-transaction data
3103 * which occupy space in the on-disk log.
3104 *
3105 * Normal form of a transaction is:
3106 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3107 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3108 *
3109 * We need to account for all the leadup data and trailer data
3110 * around the transaction data.
3111 * And then we need to account for the worst case in terms of using
3112 * more space.
3113 * The worst case will happen if:
3114 * - the placement of the transaction happens to be such that the
3115 * roundoff is at its maximum
3116 * - the transaction data is synced before the commit record is synced
3117 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3118 * Therefore the commit record is in its own Log Record.
3119 * This can happen as the commit record is called with its
3120 * own region to xlog_write().
3121 * This then means that in the worst case, roundoff can happen for
3122 * the commit-rec as well.
3123 * The commit-rec is smaller than padding in this scenario and so it is
3124 * not added separately.
3125 */
3126
3127 /* for trans header */
3128 unit_bytes += sizeof(struct xlog_op_header);
3129 unit_bytes += sizeof(struct xfs_trans_header);
3130
3131 /* for start-rec */
3132 unit_bytes += sizeof(struct xlog_op_header);
3133
3134 /*
3135 * for LR headers - the space for data in an iclog is the size minus
3136 * the space used for the headers. If we use the iclog size, then we
3137 * undercalculate the number of headers required.
3138 *
3139 * Furthermore - the addition of op headers for split-recs might
3140 * increase the space required enough to require more log and op
3141 * headers, so take that into account too.
3142 *
3143 * IMPORTANT: This reservation makes the assumption that if this
3144 * transaction is the first in an iclog and hence has the LR headers
3145 * accounted to it, then the remaining space in the iclog is
3146 * exclusively for this transaction. i.e. if the transaction is larger
3147 * than the iclog, it will be the only thing in that iclog.
3148 * Fundamentally, this means we must pass the entire log vector to
3149 * xlog_write to guarantee this.
3150 */
3151 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3152 num_headers = howmany(unit_bytes, iclog_space);
3153
3154 /* for split-recs - ophdrs added when data split over LRs */
3155 unit_bytes += sizeof(struct xlog_op_header) * num_headers;
3156
3157 /* add extra header reservations if we overrun */
3158 while (!num_headers ||
3159 howmany(unit_bytes, iclog_space) > num_headers) {
3160 unit_bytes += sizeof(struct xlog_op_header);
3161 num_headers++;
3162 }
3163 unit_bytes += log->l_iclog_hsize * num_headers;
3164
3165 /* for commit-rec LR header - note: padding will subsume the ophdr */
3166 unit_bytes += log->l_iclog_hsize;
3167
3168 /* roundoff padding for transaction data and one for commit record */
3169 unit_bytes += 2 * log->l_iclog_roundoff;
3170
3171 if (niclogs)
3172 *niclogs = num_headers;
3173 return unit_bytes;
3174 }
3175
3176 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3177 xfs_log_calc_unit_res(
3178 struct xfs_mount *mp,
3179 int unit_bytes)
3180 {
3181 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3182 }
3183
3184 /*
3185 * Allocate and initialise a new log ticket.
3186 */
3187 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3188 xlog_ticket_alloc(
3189 struct xlog *log,
3190 int unit_bytes,
3191 int cnt,
3192 bool permanent)
3193 {
3194 struct xlog_ticket *tic;
3195 int unit_res;
3196
3197 tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3198 GFP_KERNEL | __GFP_NOFAIL);
3199
3200 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3201
3202 atomic_set(&tic->t_ref, 1);
3203 tic->t_task = current;
3204 INIT_LIST_HEAD(&tic->t_queue);
3205 tic->t_unit_res = unit_res;
3206 tic->t_curr_res = unit_res;
3207 tic->t_cnt = cnt;
3208 tic->t_ocnt = cnt;
3209 tic->t_tid = get_random_u32();
3210 if (permanent)
3211 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3212
3213 return tic;
3214 }
3215
3216 #if defined(DEBUG)
3217 static void
xlog_verify_dump_tail(struct xlog * log,struct xlog_in_core * iclog)3218 xlog_verify_dump_tail(
3219 struct xlog *log,
3220 struct xlog_in_core *iclog)
3221 {
3222 xfs_alert(log->l_mp,
3223 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3224 iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1,
3225 atomic64_read(&log->l_tail_lsn),
3226 log->l_ailp->ail_head_lsn,
3227 log->l_curr_cycle, log->l_curr_block,
3228 log->l_prev_cycle, log->l_prev_block);
3229 xfs_alert(log->l_mp,
3230 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3231 atomic64_read(&log->l_write_head.grant),
3232 atomic64_read(&log->l_reserve_head.grant),
3233 log->l_tail_space, log->l_logsize,
3234 iclog ? iclog->ic_flags : -1);
3235 }
3236
3237 /* Check if the new iclog will fit in the log. */
3238 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3239 xlog_verify_tail_lsn(
3240 struct xlog *log,
3241 struct xlog_in_core *iclog)
3242 {
3243 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn);
3244 int blocks;
3245
3246 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3247 blocks = log->l_logBBsize -
3248 (log->l_prev_block - BLOCK_LSN(tail_lsn));
3249 if (blocks < BTOBB(iclog->ic_offset) +
3250 BTOBB(log->l_iclog_hsize)) {
3251 xfs_emerg(log->l_mp,
3252 "%s: ran out of log space", __func__);
3253 xlog_verify_dump_tail(log, iclog);
3254 }
3255 return;
3256 }
3257
3258 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3259 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3260 xlog_verify_dump_tail(log, iclog);
3261 return;
3262 }
3263 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3264 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3265 xlog_verify_dump_tail(log, iclog);
3266 return;
3267 }
3268
3269 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3270 if (blocks < BTOBB(iclog->ic_offset) + 1) {
3271 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3272 xlog_verify_dump_tail(log, iclog);
3273 }
3274 }
3275
3276 /*
3277 * Perform a number of checks on the iclog before writing to disk.
3278 *
3279 * 1. Make sure the iclogs are still circular
3280 * 2. Make sure we have a good magic number
3281 * 3. Make sure we don't have magic numbers in the data
3282 * 4. Check fields of each log operation header for:
3283 * A. Valid client identifier
3284 * B. tid ptr value falls in valid ptr space (user space code)
3285 * C. Length in log record header is correct according to the
3286 * individual operation headers within record.
3287 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3288 * log, check the preceding blocks of the physical log to make sure all
3289 * the cycle numbers agree with the current cycle number.
3290 */
3291 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3292 xlog_verify_iclog(
3293 struct xlog *log,
3294 struct xlog_in_core *iclog,
3295 int count)
3296 {
3297 struct xlog_rec_header *rhead = iclog->ic_header;
3298 struct xlog_in_core *icptr;
3299 void *base_ptr, *ptr;
3300 ptrdiff_t field_offset;
3301 uint8_t clientid;
3302 int len, i, op_len;
3303 int idx;
3304
3305 /* check validity of iclog pointers */
3306 spin_lock(&log->l_icloglock);
3307 icptr = log->l_iclog;
3308 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3309 ASSERT(icptr);
3310
3311 if (icptr != log->l_iclog)
3312 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3313 spin_unlock(&log->l_icloglock);
3314
3315 /* check log magic numbers */
3316 if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3317 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3318
3319 base_ptr = ptr = rhead;
3320 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3321 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3322 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3323 __func__);
3324 }
3325
3326 /* check fields */
3327 len = be32_to_cpu(rhead->h_num_logops);
3328 base_ptr = ptr = iclog->ic_datap;
3329 for (i = 0; i < len; i++) {
3330 struct xlog_op_header *ophead = ptr;
3331 void *p = &ophead->oh_clientid;
3332
3333 /* clientid is only 1 byte */
3334 field_offset = p - base_ptr;
3335 if (field_offset & 0x1ff) {
3336 clientid = ophead->oh_clientid;
3337 } else {
3338 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3339 clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx));
3340 }
3341 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3342 xfs_warn(log->l_mp,
3343 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3344 __func__, i, clientid, ophead,
3345 (unsigned long)field_offset);
3346 }
3347
3348 /* check length */
3349 p = &ophead->oh_len;
3350 field_offset = p - base_ptr;
3351 if (field_offset & 0x1ff) {
3352 op_len = be32_to_cpu(ophead->oh_len);
3353 } else {
3354 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3355 op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx));
3356 }
3357 ptr += sizeof(struct xlog_op_header) + op_len;
3358 }
3359 }
3360 #endif
3361
3362 /*
3363 * Perform a forced shutdown on the log.
3364 *
3365 * This can be called from low level log code to trigger a shutdown, or from the
3366 * high level mount shutdown code when the mount shuts down.
3367 *
3368 * Our main objectives here are to make sure that:
3369 * a. if the shutdown was not due to a log IO error, flush the logs to
3370 * disk. Anything modified after this is ignored.
3371 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3372 * parties to find out. Nothing new gets queued after this is done.
3373 * c. Tasks sleeping on log reservations, pinned objects and
3374 * other resources get woken up.
3375 * d. The mount is also marked as shut down so that log triggered shutdowns
3376 * still behave the same as if they called xfs_forced_shutdown().
3377 *
3378 * Return true if the shutdown cause was a log IO error and we actually shut the
3379 * log down.
3380 */
3381 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3382 xlog_force_shutdown(
3383 struct xlog *log,
3384 uint32_t shutdown_flags)
3385 {
3386 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3387
3388 if (!log)
3389 return false;
3390
3391 /*
3392 * Ensure that there is only ever one log shutdown being processed.
3393 * If we allow the log force below on a second pass after shutting
3394 * down the log, we risk deadlocking the CIL push as it may require
3395 * locks on objects the current shutdown context holds (e.g. taking
3396 * buffer locks to abort buffers on last unpin of buf log items).
3397 */
3398 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3399 return false;
3400
3401 /*
3402 * Flush all the completed transactions to disk before marking the log
3403 * being shut down. We need to do this first as shutting down the log
3404 * before the force will prevent the log force from flushing the iclogs
3405 * to disk.
3406 *
3407 * When we are in recovery, there are no transactions to flush, and
3408 * we don't want to touch the log because we don't want to perturb the
3409 * current head/tail for future recovery attempts. Hence we need to
3410 * avoid a log force in this case.
3411 *
3412 * If we are shutting down due to a log IO error, then we must avoid
3413 * trying to write the log as that may just result in more IO errors and
3414 * an endless shutdown/force loop.
3415 */
3416 if (!log_error && !xlog_in_recovery(log))
3417 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3418
3419 /*
3420 * Atomically set the shutdown state. If the shutdown state is already
3421 * set, there someone else is performing the shutdown and so we are done
3422 * here. This should never happen because we should only ever get called
3423 * once by the first shutdown caller.
3424 *
3425 * Much of the log state machine transitions assume that shutdown state
3426 * cannot change once they hold the log->l_icloglock. Hence we need to
3427 * hold that lock here, even though we use the atomic test_and_set_bit()
3428 * operation to set the shutdown state.
3429 */
3430 spin_lock(&log->l_icloglock);
3431 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3432 spin_unlock(&log->l_icloglock);
3433 ASSERT(0);
3434 return false;
3435 }
3436 spin_unlock(&log->l_icloglock);
3437
3438 /*
3439 * If this log shutdown also sets the mount shutdown state, issue a
3440 * shutdown warning message.
3441 */
3442 if (!xfs_set_shutdown(log->l_mp)) {
3443 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3444 "Filesystem has been shut down due to log error (0x%x).",
3445 shutdown_flags);
3446 xfs_alert(log->l_mp,
3447 "Please unmount the filesystem and rectify the problem(s).");
3448 if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3449 xfs_stack_trace();
3450 }
3451
3452 /*
3453 * We don't want anybody waiting for log reservations after this. That
3454 * means we have to wake up everybody queued up on reserveq as well as
3455 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3456 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3457 * action is protected by the grant locks.
3458 */
3459 xlog_grant_head_wake_all(&log->l_reserve_head);
3460 xlog_grant_head_wake_all(&log->l_write_head);
3461
3462 /*
3463 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3464 * as if the log writes were completed. The abort handling in the log
3465 * item committed callback functions will do this again under lock to
3466 * avoid races.
3467 */
3468 spin_lock(&log->l_cilp->xc_push_lock);
3469 wake_up_all(&log->l_cilp->xc_start_wait);
3470 wake_up_all(&log->l_cilp->xc_commit_wait);
3471 spin_unlock(&log->l_cilp->xc_push_lock);
3472
3473 spin_lock(&log->l_icloglock);
3474 xlog_state_shutdown_callbacks(log);
3475 spin_unlock(&log->l_icloglock);
3476
3477 wake_up_var(&log->l_opstate);
3478 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3479 xfs_zoned_wake_all(log->l_mp);
3480
3481 return log_error;
3482 }
3483
3484 STATIC int
xlog_iclogs_empty(struct xlog * log)3485 xlog_iclogs_empty(
3486 struct xlog *log)
3487 {
3488 struct xlog_in_core *iclog = log->l_iclog;
3489
3490 do {
3491 /* endianness does not matter here, zero is zero in
3492 * any language.
3493 */
3494 if (iclog->ic_header->h_num_logops)
3495 return 0;
3496 iclog = iclog->ic_next;
3497 } while (iclog != log->l_iclog);
3498
3499 return 1;
3500 }
3501
3502 /*
3503 * Verify that an LSN stamped into a piece of metadata is valid. This is
3504 * intended for use in read verifiers on v5 superblocks.
3505 */
3506 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3507 xfs_log_check_lsn(
3508 struct xfs_mount *mp,
3509 xfs_lsn_t lsn)
3510 {
3511 struct xlog *log = mp->m_log;
3512 bool valid;
3513
3514 /*
3515 * norecovery mode skips mount-time log processing and unconditionally
3516 * resets the in-core LSN. We can't validate in this mode, but
3517 * modifications are not allowed anyways so just return true.
3518 */
3519 if (xfs_has_norecovery(mp))
3520 return true;
3521
3522 /*
3523 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3524 * handled by recovery and thus safe to ignore here.
3525 */
3526 if (lsn == NULLCOMMITLSN)
3527 return true;
3528
3529 valid = xlog_valid_lsn(mp->m_log, lsn);
3530
3531 /* warn the user about what's gone wrong before verifier failure */
3532 if (!valid) {
3533 spin_lock(&log->l_icloglock);
3534 xfs_warn(mp,
3535 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3536 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3537 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3538 log->l_curr_cycle, log->l_curr_block);
3539 spin_unlock(&log->l_icloglock);
3540 }
3541
3542 return valid;
3543 }
3544