xref: /linux/drivers/md/dm-integrity.c (revision 72c181399b01bb4836d1fabaa9f5f6438c82178e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <crypto/utils.h>
25 #include <linux/async_tx.h>
26 #include <linux/dm-bufio.h>
27 
28 #include "dm-audit.h"
29 
30 #define DM_MSG_PREFIX "integrity"
31 
32 #define DEFAULT_INTERLEAVE_SECTORS	32768
33 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
34 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
35 #define DEFAULT_BUFFER_SECTORS		128
36 #define DEFAULT_JOURNAL_WATERMARK	50
37 #define DEFAULT_SYNC_MSEC		10000
38 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
39 #define MIN_LOG2_INTERLEAVE_SECTORS	3
40 #define MAX_LOG2_INTERLEAVE_SECTORS	31
41 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
42 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
43 #define RECALC_WRITE_SUPER		16
44 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
45 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
46 #define DISCARD_FILLER			0xf6
47 #define SALT_SIZE			16
48 #define RECHECK_POOL_SIZE		256
49 
50 /*
51  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
52  * so it should not be enabled in the official kernel
53  */
54 //#define DEBUG_PRINT
55 //#define INTERNAL_VERIFY
56 
57 /*
58  * On disk structures
59  */
60 
61 #define SB_MAGIC			"integrt"
62 #define SB_VERSION_1			1
63 #define SB_VERSION_2			2
64 #define SB_VERSION_3			3
65 #define SB_VERSION_4			4
66 #define SB_VERSION_5			5
67 #define SB_VERSION_6			6
68 #define SB_SECTORS			8
69 #define MAX_SECTORS_PER_BLOCK		8
70 
71 struct superblock {
72 	__u8 magic[8];
73 	__u8 version;
74 	__u8 log2_interleave_sectors;
75 	__le16 integrity_tag_size;
76 	__le32 journal_sections;
77 	__le64 provided_data_sectors;	/* userspace uses this value */
78 	__le32 flags;
79 	__u8 log2_sectors_per_block;
80 	__u8 log2_blocks_per_bitmap_bit;
81 	__u8 pad[2];
82 	__le64 recalc_sector;
83 	__u8 pad2[8];
84 	__u8 salt[SALT_SIZE];
85 };
86 
87 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
88 #define SB_FLAG_RECALCULATING		0x2
89 #define SB_FLAG_DIRTY_BITMAP		0x4
90 #define SB_FLAG_FIXED_PADDING		0x8
91 #define SB_FLAG_FIXED_HMAC		0x10
92 #define SB_FLAG_INLINE			0x20
93 
94 #define	JOURNAL_ENTRY_ROUNDUP		8
95 
96 typedef __le64 commit_id_t;
97 #define JOURNAL_MAC_PER_SECTOR		8
98 
99 struct journal_entry {
100 	union {
101 		struct {
102 			__le32 sector_lo;
103 			__le32 sector_hi;
104 		} s;
105 		__le64 sector;
106 	} u;
107 	commit_id_t last_bytes[];
108 	/* __u8 tag[0]; */
109 };
110 
111 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112 
113 #if BITS_PER_LONG == 64
114 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #else
116 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #endif
118 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
119 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
120 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
121 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
122 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
123 
124 #define JOURNAL_BLOCK_SECTORS		8
125 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
126 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127 
128 struct journal_sector {
129 	struct_group(sectors,
130 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
131 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
132 	);
133 	commit_id_t commit_id;
134 };
135 
136 #define MAX_TAG_SIZE			255
137 
138 #define METADATA_PADDING_SECTORS	8
139 
140 #define N_COMMIT_IDS			4
141 
prev_commit_seq(unsigned char seq)142 static unsigned char prev_commit_seq(unsigned char seq)
143 {
144 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
145 }
146 
next_commit_seq(unsigned char seq)147 static unsigned char next_commit_seq(unsigned char seq)
148 {
149 	return (seq + 1) % N_COMMIT_IDS;
150 }
151 
152 /*
153  * In-memory structures
154  */
155 
156 struct journal_node {
157 	struct rb_node node;
158 	sector_t sector;
159 };
160 
161 struct alg_spec {
162 	char *alg_string;
163 	char *key_string;
164 	__u8 *key;
165 	unsigned int key_size;
166 };
167 
168 struct dm_integrity_c {
169 	struct dm_dev *dev;
170 	struct dm_dev *meta_dev;
171 	unsigned int tag_size;
172 	__s8 log2_tag_size;
173 	unsigned int tuple_size;
174 	sector_t start;
175 	mempool_t journal_io_mempool;
176 	struct dm_io_client *io;
177 	struct dm_bufio_client *bufio;
178 	struct workqueue_struct *metadata_wq;
179 	struct superblock *sb;
180 	unsigned int journal_pages;
181 	unsigned int n_bitmap_blocks;
182 
183 	struct page_list *journal;
184 	struct page_list *journal_io;
185 	struct page_list *journal_xor;
186 	struct page_list *recalc_bitmap;
187 	struct page_list *may_write_bitmap;
188 	struct bitmap_block_status *bbs;
189 	unsigned int bitmap_flush_interval;
190 	int synchronous_mode;
191 	struct bio_list synchronous_bios;
192 	struct delayed_work bitmap_flush_work;
193 
194 	struct crypto_skcipher *journal_crypt;
195 	struct scatterlist **journal_scatterlist;
196 	struct scatterlist **journal_io_scatterlist;
197 	struct skcipher_request **sk_requests;
198 
199 	struct crypto_shash *journal_mac;
200 
201 	struct journal_node *journal_tree;
202 	struct rb_root journal_tree_root;
203 
204 	sector_t provided_data_sectors;
205 
206 	unsigned short journal_entry_size;
207 	unsigned char journal_entries_per_sector;
208 	unsigned char journal_section_entries;
209 	unsigned short journal_section_sectors;
210 	unsigned int journal_sections;
211 	unsigned int journal_entries;
212 	sector_t data_device_sectors;
213 	sector_t meta_device_sectors;
214 	unsigned int initial_sectors;
215 	unsigned int metadata_run;
216 	__s8 log2_metadata_run;
217 	__u8 log2_buffer_sectors;
218 	__u8 sectors_per_block;
219 	__u8 log2_blocks_per_bitmap_bit;
220 
221 	unsigned char mode;
222 	bool internal_hash;
223 
224 	int failed;
225 
226 	struct crypto_shash *internal_shash;
227 	struct crypto_ahash *internal_ahash;
228 	unsigned int internal_hash_digestsize;
229 
230 	struct dm_target *ti;
231 
232 	/* these variables are locked with endio_wait.lock */
233 	struct rb_root in_progress;
234 	struct list_head wait_list;
235 	wait_queue_head_t endio_wait;
236 	struct workqueue_struct *wait_wq;
237 	struct workqueue_struct *offload_wq;
238 
239 	unsigned char commit_seq;
240 	commit_id_t commit_ids[N_COMMIT_IDS];
241 
242 	unsigned int committed_section;
243 	unsigned int n_committed_sections;
244 
245 	unsigned int uncommitted_section;
246 	unsigned int n_uncommitted_sections;
247 
248 	unsigned int free_section;
249 	unsigned char free_section_entry;
250 	unsigned int free_sectors;
251 
252 	unsigned int free_sectors_threshold;
253 
254 	struct workqueue_struct *commit_wq;
255 	struct work_struct commit_work;
256 
257 	struct workqueue_struct *writer_wq;
258 	struct work_struct writer_work;
259 
260 	struct workqueue_struct *recalc_wq;
261 	struct work_struct recalc_work;
262 
263 	struct bio_list flush_bio_list;
264 
265 	unsigned long autocommit_jiffies;
266 	struct timer_list autocommit_timer;
267 	unsigned int autocommit_msec;
268 
269 	wait_queue_head_t copy_to_journal_wait;
270 
271 	struct completion crypto_backoff;
272 
273 	bool wrote_to_journal;
274 	bool journal_uptodate;
275 	bool just_formatted;
276 	bool recalculate_flag;
277 	bool reset_recalculate_flag;
278 	bool discard;
279 	bool fix_padding;
280 	bool fix_hmac;
281 	bool legacy_recalculate;
282 
283 	mempool_t ahash_req_pool;
284 	struct ahash_request *journal_ahash_req;
285 
286 	struct alg_spec internal_hash_alg;
287 	struct alg_spec journal_crypt_alg;
288 	struct alg_spec journal_mac_alg;
289 
290 	atomic64_t number_of_mismatches;
291 
292 	mempool_t recheck_pool;
293 	struct bio_set recheck_bios;
294 	struct bio_set recalc_bios;
295 
296 	struct notifier_block reboot_notifier;
297 };
298 
299 struct dm_integrity_range {
300 	sector_t logical_sector;
301 	sector_t n_sectors;
302 	bool waiting;
303 	union {
304 		struct rb_node node;
305 		struct {
306 			struct task_struct *task;
307 			struct list_head wait_entry;
308 		};
309 	};
310 };
311 
312 struct dm_integrity_io {
313 	struct work_struct work;
314 
315 	struct dm_integrity_c *ic;
316 	enum req_op op;
317 	bool fua;
318 
319 	struct dm_integrity_range range;
320 
321 	sector_t metadata_block;
322 	unsigned int metadata_offset;
323 
324 	atomic_t in_flight;
325 	blk_status_t bi_status;
326 
327 	struct completion *completion;
328 
329 	struct dm_bio_details bio_details;
330 
331 	char *integrity_payload;
332 	unsigned payload_len;
333 	bool integrity_payload_from_mempool;
334 	bool integrity_range_locked;
335 
336 	struct ahash_request *ahash_req;
337 };
338 
339 struct journal_completion {
340 	struct dm_integrity_c *ic;
341 	atomic_t in_flight;
342 	struct completion comp;
343 };
344 
345 struct journal_io {
346 	struct dm_integrity_range range;
347 	struct journal_completion *comp;
348 };
349 
350 struct bitmap_block_status {
351 	struct work_struct work;
352 	struct dm_integrity_c *ic;
353 	unsigned int idx;
354 	unsigned long *bitmap;
355 	struct bio_list bio_queue;
356 	spinlock_t bio_queue_lock;
357 
358 };
359 
360 static struct kmem_cache *journal_io_cache;
361 
362 #define JOURNAL_IO_MEMPOOL	32
363 #define AHASH_MEMPOOL		32
364 
365 #ifdef DEBUG_PRINT
366 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
367 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
368 						       len ? ": " : "", len, bytes)
369 #else
370 #define DEBUG_print(x, ...)			do { } while (0)
371 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
372 #endif
373 
374 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
375 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
376 static void integrity_bio_wait(struct work_struct *w);
377 static void dm_integrity_dtr(struct dm_target *ti);
378 
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)379 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
380 {
381 	if (err == -EILSEQ)
382 		atomic64_inc(&ic->number_of_mismatches);
383 	if (!cmpxchg(&ic->failed, 0, err))
384 		DMERR("Error on %s: %d", msg, err);
385 }
386 
dm_integrity_failed(struct dm_integrity_c * ic)387 static int dm_integrity_failed(struct dm_integrity_c *ic)
388 {
389 	return READ_ONCE(ic->failed);
390 }
391 
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)392 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
393 {
394 	if (ic->legacy_recalculate)
395 		return false;
396 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
397 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
398 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
399 		return true;
400 	return false;
401 }
402 
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)403 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
404 					  unsigned int j, unsigned char seq)
405 {
406 	/*
407 	 * Xor the number with section and sector, so that if a piece of
408 	 * journal is written at wrong place, it is detected.
409 	 */
410 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
411 }
412 
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)413 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
414 				sector_t *area, sector_t *offset)
415 {
416 	if (!ic->meta_dev) {
417 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
418 		*area = data_sector >> log2_interleave_sectors;
419 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
420 	} else {
421 		*area = 0;
422 		*offset = data_sector;
423 	}
424 }
425 
426 #define sector_to_block(ic, n)						\
427 do {									\
428 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
429 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
430 } while (0)
431 
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)432 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
433 					    sector_t offset, unsigned int *metadata_offset)
434 {
435 	__u64 ms;
436 	unsigned int mo;
437 
438 	ms = area << ic->sb->log2_interleave_sectors;
439 	if (likely(ic->log2_metadata_run >= 0))
440 		ms += area << ic->log2_metadata_run;
441 	else
442 		ms += area * ic->metadata_run;
443 	ms >>= ic->log2_buffer_sectors;
444 
445 	sector_to_block(ic, offset);
446 
447 	if (likely(ic->log2_tag_size >= 0)) {
448 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
449 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	} else {
451 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
452 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
453 	}
454 	*metadata_offset = mo;
455 	return ms;
456 }
457 
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)458 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
459 {
460 	sector_t result;
461 
462 	if (ic->meta_dev)
463 		return offset;
464 
465 	result = area << ic->sb->log2_interleave_sectors;
466 	if (likely(ic->log2_metadata_run >= 0))
467 		result += (area + 1) << ic->log2_metadata_run;
468 	else
469 		result += (area + 1) * ic->metadata_run;
470 
471 	result += (sector_t)ic->initial_sectors + offset;
472 	result += ic->start;
473 
474 	return result;
475 }
476 
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)477 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
478 {
479 	if (unlikely(*sec_ptr >= ic->journal_sections))
480 		*sec_ptr -= ic->journal_sections;
481 }
482 
sb_set_version(struct dm_integrity_c * ic)483 static void sb_set_version(struct dm_integrity_c *ic)
484 {
485 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
486 		ic->sb->version = SB_VERSION_6;
487 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
488 		ic->sb->version = SB_VERSION_5;
489 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
490 		ic->sb->version = SB_VERSION_4;
491 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
492 		ic->sb->version = SB_VERSION_3;
493 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
494 		ic->sb->version = SB_VERSION_2;
495 	else
496 		ic->sb->version = SB_VERSION_1;
497 }
498 
sb_mac(struct dm_integrity_c * ic,bool wr)499 static int sb_mac(struct dm_integrity_c *ic, bool wr)
500 {
501 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
502 	int r;
503 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
504 	__u8 *sb = (__u8 *)ic->sb;
505 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
506 
507 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
508 	    mac_size > HASH_MAX_DIGESTSIZE) {
509 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510 		return -EINVAL;
511 	}
512 
513 	desc->tfm = ic->journal_mac;
514 
515 	if (likely(wr)) {
516 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
517 		if (unlikely(r < 0)) {
518 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
519 			return r;
520 		}
521 	} else {
522 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
523 
524 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
525 		if (unlikely(r < 0)) {
526 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
527 			return r;
528 		}
529 		if (crypto_memneq(mac, actual_mac, mac_size)) {
530 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
531 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
532 			return -EILSEQ;
533 		}
534 	}
535 
536 	return 0;
537 }
538 
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)539 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
540 {
541 	struct dm_io_request io_req;
542 	struct dm_io_region io_loc;
543 	const enum req_op op = opf & REQ_OP_MASK;
544 	int r;
545 
546 	io_req.bi_opf = opf;
547 	io_req.mem.type = DM_IO_KMEM;
548 	io_req.mem.ptr.addr = ic->sb;
549 	io_req.notify.fn = NULL;
550 	io_req.client = ic->io;
551 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
552 	io_loc.sector = ic->start;
553 	io_loc.count = SB_SECTORS;
554 
555 	if (op == REQ_OP_WRITE) {
556 		sb_set_version(ic);
557 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
558 			r = sb_mac(ic, true);
559 			if (unlikely(r))
560 				return r;
561 		}
562 	}
563 
564 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
565 	if (unlikely(r))
566 		return r;
567 
568 	if (op == REQ_OP_READ) {
569 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
570 			r = sb_mac(ic, false);
571 			if (unlikely(r))
572 				return r;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 #define BITMAP_OP_TEST_ALL_SET		0
580 #define BITMAP_OP_TEST_ALL_CLEAR	1
581 #define BITMAP_OP_SET			2
582 #define BITMAP_OP_CLEAR			3
583 
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)584 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
585 			    sector_t sector, sector_t n_sectors, int mode)
586 {
587 	unsigned long bit, end_bit, this_end_bit, page, end_page;
588 	unsigned long *data;
589 
590 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
591 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
592 			sector,
593 			n_sectors,
594 			ic->sb->log2_sectors_per_block,
595 			ic->log2_blocks_per_bitmap_bit,
596 			mode);
597 		BUG();
598 	}
599 
600 	if (unlikely(!n_sectors))
601 		return true;
602 
603 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
604 	end_bit = (sector + n_sectors - 1) >>
605 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
606 
607 	page = bit / (PAGE_SIZE * 8);
608 	bit %= PAGE_SIZE * 8;
609 
610 	end_page = end_bit / (PAGE_SIZE * 8);
611 	end_bit %= PAGE_SIZE * 8;
612 
613 repeat:
614 	if (page < end_page)
615 		this_end_bit = PAGE_SIZE * 8 - 1;
616 	else
617 		this_end_bit = end_bit;
618 
619 	data = lowmem_page_address(bitmap[page].page);
620 
621 	if (mode == BITMAP_OP_TEST_ALL_SET) {
622 		while (bit <= this_end_bit) {
623 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
624 				do {
625 					if (data[bit / BITS_PER_LONG] != -1)
626 						return false;
627 					bit += BITS_PER_LONG;
628 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
629 				continue;
630 			}
631 			if (!test_bit(bit, data))
632 				return false;
633 			bit++;
634 		}
635 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
636 		while (bit <= this_end_bit) {
637 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
638 				do {
639 					if (data[bit / BITS_PER_LONG] != 0)
640 						return false;
641 					bit += BITS_PER_LONG;
642 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
643 				continue;
644 			}
645 			if (test_bit(bit, data))
646 				return false;
647 			bit++;
648 		}
649 	} else if (mode == BITMAP_OP_SET) {
650 		while (bit <= this_end_bit) {
651 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
652 				do {
653 					data[bit / BITS_PER_LONG] = -1;
654 					bit += BITS_PER_LONG;
655 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
656 				continue;
657 			}
658 			__set_bit(bit, data);
659 			bit++;
660 		}
661 	} else if (mode == BITMAP_OP_CLEAR) {
662 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
663 			clear_page(data);
664 		else {
665 			while (bit <= this_end_bit) {
666 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
667 					do {
668 						data[bit / BITS_PER_LONG] = 0;
669 						bit += BITS_PER_LONG;
670 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
671 					continue;
672 				}
673 				__clear_bit(bit, data);
674 				bit++;
675 			}
676 		}
677 	} else {
678 		BUG();
679 	}
680 
681 	if (unlikely(page < end_page)) {
682 		bit = 0;
683 		page++;
684 		goto repeat;
685 	}
686 
687 	return true;
688 }
689 
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)690 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
691 {
692 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
693 	unsigned int i;
694 
695 	for (i = 0; i < n_bitmap_pages; i++) {
696 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
697 		unsigned long *src_data = lowmem_page_address(src[i].page);
698 
699 		copy_page(dst_data, src_data);
700 	}
701 }
702 
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)703 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
704 {
705 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
706 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
707 
708 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
709 	return &ic->bbs[bitmap_block];
710 }
711 
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)712 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
713 				 bool e, const char *function)
714 {
715 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
716 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
717 
718 	if (unlikely(section >= ic->journal_sections) ||
719 	    unlikely(offset >= limit)) {
720 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
721 		       function, section, offset, ic->journal_sections, limit);
722 		BUG();
723 	}
724 #endif
725 }
726 
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)727 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
728 			       unsigned int *pl_index, unsigned int *pl_offset)
729 {
730 	unsigned int sector;
731 
732 	access_journal_check(ic, section, offset, false, "page_list_location");
733 
734 	sector = section * ic->journal_section_sectors + offset;
735 
736 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
737 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
738 }
739 
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)740 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
741 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
742 {
743 	unsigned int pl_index, pl_offset;
744 	char *va;
745 
746 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
747 
748 	if (n_sectors)
749 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
750 
751 	va = lowmem_page_address(pl[pl_index].page);
752 
753 	return (struct journal_sector *)(va + pl_offset);
754 }
755 
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)756 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
757 {
758 	return access_page_list(ic, ic->journal, section, offset, NULL);
759 }
760 
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)761 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
762 {
763 	unsigned int rel_sector, offset;
764 	struct journal_sector *js;
765 
766 	access_journal_check(ic, section, n, true, "access_journal_entry");
767 
768 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
769 	offset = n / JOURNAL_BLOCK_SECTORS;
770 
771 	js = access_journal(ic, section, rel_sector);
772 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
773 }
774 
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)775 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
776 {
777 	n <<= ic->sb->log2_sectors_per_block;
778 
779 	n += JOURNAL_BLOCK_SECTORS;
780 
781 	access_journal_check(ic, section, n, false, "access_journal_data");
782 
783 	return access_journal(ic, section, n);
784 }
785 
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])786 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
787 {
788 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
789 	int r;
790 	unsigned int j, size;
791 
792 	desc->tfm = ic->journal_mac;
793 
794 	r = crypto_shash_init(desc);
795 	if (unlikely(r < 0)) {
796 		dm_integrity_io_error(ic, "crypto_shash_init", r);
797 		goto err;
798 	}
799 
800 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
801 		__le64 section_le;
802 
803 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
804 		if (unlikely(r < 0)) {
805 			dm_integrity_io_error(ic, "crypto_shash_update", r);
806 			goto err;
807 		}
808 
809 		section_le = cpu_to_le64(section);
810 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
811 		if (unlikely(r < 0)) {
812 			dm_integrity_io_error(ic, "crypto_shash_update", r);
813 			goto err;
814 		}
815 	}
816 
817 	for (j = 0; j < ic->journal_section_entries; j++) {
818 		struct journal_entry *je = access_journal_entry(ic, section, j);
819 
820 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
821 		if (unlikely(r < 0)) {
822 			dm_integrity_io_error(ic, "crypto_shash_update", r);
823 			goto err;
824 		}
825 	}
826 
827 	size = crypto_shash_digestsize(ic->journal_mac);
828 
829 	if (likely(size <= JOURNAL_MAC_SIZE)) {
830 		r = crypto_shash_final(desc, result);
831 		if (unlikely(r < 0)) {
832 			dm_integrity_io_error(ic, "crypto_shash_final", r);
833 			goto err;
834 		}
835 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
836 	} else {
837 		__u8 digest[HASH_MAX_DIGESTSIZE];
838 
839 		if (WARN_ON(size > sizeof(digest))) {
840 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
841 			goto err;
842 		}
843 		r = crypto_shash_final(desc, digest);
844 		if (unlikely(r < 0)) {
845 			dm_integrity_io_error(ic, "crypto_shash_final", r);
846 			goto err;
847 		}
848 		memcpy(result, digest, JOURNAL_MAC_SIZE);
849 	}
850 
851 	return;
852 err:
853 	memset(result, 0, JOURNAL_MAC_SIZE);
854 }
855 
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)856 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
857 {
858 	__u8 result[JOURNAL_MAC_SIZE];
859 	unsigned int j;
860 
861 	if (!ic->journal_mac)
862 		return;
863 
864 	section_mac(ic, section, result);
865 
866 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
867 		struct journal_sector *js = access_journal(ic, section, j);
868 
869 		if (likely(wr))
870 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
871 		else {
872 			if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
873 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
874 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
875 			}
876 		}
877 	}
878 }
879 
complete_journal_op(void * context)880 static void complete_journal_op(void *context)
881 {
882 	struct journal_completion *comp = context;
883 
884 	BUG_ON(!atomic_read(&comp->in_flight));
885 	if (likely(atomic_dec_and_test(&comp->in_flight)))
886 		complete(&comp->comp);
887 }
888 
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)889 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
890 			unsigned int n_sections, struct journal_completion *comp)
891 {
892 	struct async_submit_ctl submit;
893 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
894 	unsigned int pl_index, pl_offset, section_index;
895 	struct page_list *source_pl, *target_pl;
896 
897 	if (likely(encrypt)) {
898 		source_pl = ic->journal;
899 		target_pl = ic->journal_io;
900 	} else {
901 		source_pl = ic->journal_io;
902 		target_pl = ic->journal;
903 	}
904 
905 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
906 
907 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
908 
909 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
910 
911 	section_index = pl_index;
912 
913 	do {
914 		size_t this_step;
915 		struct page *src_pages[2];
916 		struct page *dst_page;
917 
918 		while (unlikely(pl_index == section_index)) {
919 			unsigned int dummy;
920 
921 			if (likely(encrypt))
922 				rw_section_mac(ic, section, true);
923 			section++;
924 			n_sections--;
925 			if (!n_sections)
926 				break;
927 			page_list_location(ic, section, 0, &section_index, &dummy);
928 		}
929 
930 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
931 		dst_page = target_pl[pl_index].page;
932 		src_pages[0] = source_pl[pl_index].page;
933 		src_pages[1] = ic->journal_xor[pl_index].page;
934 
935 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
936 
937 		pl_index++;
938 		pl_offset = 0;
939 		n_bytes -= this_step;
940 	} while (n_bytes);
941 
942 	BUG_ON(n_sections);
943 
944 	async_tx_issue_pending_all();
945 }
946 
complete_journal_encrypt(void * data,int err)947 static void complete_journal_encrypt(void *data, int err)
948 {
949 	struct journal_completion *comp = data;
950 
951 	if (unlikely(err)) {
952 		if (likely(err == -EINPROGRESS)) {
953 			complete(&comp->ic->crypto_backoff);
954 			return;
955 		}
956 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
957 	}
958 	complete_journal_op(comp);
959 }
960 
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)961 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
962 {
963 	int r;
964 
965 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
966 				      complete_journal_encrypt, comp);
967 	if (likely(encrypt))
968 		r = crypto_skcipher_encrypt(req);
969 	else
970 		r = crypto_skcipher_decrypt(req);
971 	if (likely(!r))
972 		return false;
973 	if (likely(r == -EINPROGRESS))
974 		return true;
975 	if (likely(r == -EBUSY)) {
976 		wait_for_completion(&comp->ic->crypto_backoff);
977 		reinit_completion(&comp->ic->crypto_backoff);
978 		return true;
979 	}
980 	dm_integrity_io_error(comp->ic, "encrypt", r);
981 	return false;
982 }
983 
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)984 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
985 			  unsigned int n_sections, struct journal_completion *comp)
986 {
987 	struct scatterlist **source_sg;
988 	struct scatterlist **target_sg;
989 
990 	atomic_add(2, &comp->in_flight);
991 
992 	if (likely(encrypt)) {
993 		source_sg = ic->journal_scatterlist;
994 		target_sg = ic->journal_io_scatterlist;
995 	} else {
996 		source_sg = ic->journal_io_scatterlist;
997 		target_sg = ic->journal_scatterlist;
998 	}
999 
1000 	do {
1001 		struct skcipher_request *req;
1002 		unsigned int ivsize;
1003 		char *iv;
1004 
1005 		if (likely(encrypt))
1006 			rw_section_mac(ic, section, true);
1007 
1008 		req = ic->sk_requests[section];
1009 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1010 		iv = req->iv;
1011 
1012 		memcpy(iv, iv + ivsize, ivsize);
1013 
1014 		req->src = source_sg[section];
1015 		req->dst = target_sg[section];
1016 
1017 		if (unlikely(do_crypt(encrypt, req, comp)))
1018 			atomic_inc(&comp->in_flight);
1019 
1020 		section++;
1021 		n_sections--;
1022 	} while (n_sections);
1023 
1024 	atomic_dec(&comp->in_flight);
1025 	complete_journal_op(comp);
1026 }
1027 
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1028 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1029 			    unsigned int n_sections, struct journal_completion *comp)
1030 {
1031 	if (ic->journal_xor)
1032 		return xor_journal(ic, encrypt, section, n_sections, comp);
1033 	else
1034 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1035 }
1036 
complete_journal_io(unsigned long error,void * context)1037 static void complete_journal_io(unsigned long error, void *context)
1038 {
1039 	struct journal_completion *comp = context;
1040 
1041 	if (unlikely(error != 0))
1042 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043 	complete_journal_op(comp);
1044 }
1045 
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1046 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1047 			       unsigned int sector, unsigned int n_sectors,
1048 			       struct journal_completion *comp)
1049 {
1050 	struct dm_io_request io_req;
1051 	struct dm_io_region io_loc;
1052 	unsigned int pl_index, pl_offset;
1053 	int r;
1054 
1055 	if (unlikely(dm_integrity_failed(ic))) {
1056 		if (comp)
1057 			complete_journal_io(-1UL, comp);
1058 		return;
1059 	}
1060 
1061 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1062 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1063 
1064 	io_req.bi_opf = opf;
1065 	io_req.mem.type = DM_IO_PAGE_LIST;
1066 	if (ic->journal_io)
1067 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068 	else
1069 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1070 	io_req.mem.offset = pl_offset;
1071 	if (likely(comp != NULL)) {
1072 		io_req.notify.fn = complete_journal_io;
1073 		io_req.notify.context = comp;
1074 	} else {
1075 		io_req.notify.fn = NULL;
1076 	}
1077 	io_req.client = ic->io;
1078 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079 	io_loc.sector = ic->start + SB_SECTORS + sector;
1080 	io_loc.count = n_sectors;
1081 
1082 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1083 	if (unlikely(r)) {
1084 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1085 				      "reading journal" : "writing journal", r);
1086 		if (comp) {
1087 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1088 			complete_journal_io(-1UL, comp);
1089 		}
1090 	}
1091 }
1092 
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1093 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1094 		       unsigned int section, unsigned int n_sections,
1095 		       struct journal_completion *comp)
1096 {
1097 	unsigned int sector, n_sectors;
1098 
1099 	sector = section * ic->journal_section_sectors;
1100 	n_sectors = n_sections * ic->journal_section_sectors;
1101 
1102 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1103 }
1104 
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1105 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1106 {
1107 	struct journal_completion io_comp;
1108 	struct journal_completion crypt_comp_1;
1109 	struct journal_completion crypt_comp_2;
1110 	unsigned int i;
1111 
1112 	io_comp.ic = ic;
1113 	init_completion(&io_comp.comp);
1114 
1115 	if (commit_start + commit_sections <= ic->journal_sections) {
1116 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1117 		if (ic->journal_io) {
1118 			crypt_comp_1.ic = ic;
1119 			init_completion(&crypt_comp_1.comp);
1120 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1121 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1122 			wait_for_completion_io(&crypt_comp_1.comp);
1123 		} else {
1124 			for (i = 0; i < commit_sections; i++)
1125 				rw_section_mac(ic, commit_start + i, true);
1126 		}
1127 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1128 			   commit_sections, &io_comp);
1129 	} else {
1130 		unsigned int to_end;
1131 
1132 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1133 		to_end = ic->journal_sections - commit_start;
1134 		if (ic->journal_io) {
1135 			crypt_comp_1.ic = ic;
1136 			init_completion(&crypt_comp_1.comp);
1137 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1139 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1140 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1141 					   commit_start, to_end, &io_comp);
1142 				reinit_completion(&crypt_comp_1.comp);
1143 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1145 				wait_for_completion_io(&crypt_comp_1.comp);
1146 			} else {
1147 				crypt_comp_2.ic = ic;
1148 				init_completion(&crypt_comp_2.comp);
1149 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1150 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1151 				wait_for_completion_io(&crypt_comp_1.comp);
1152 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153 				wait_for_completion_io(&crypt_comp_2.comp);
1154 			}
1155 		} else {
1156 			for (i = 0; i < to_end; i++)
1157 				rw_section_mac(ic, commit_start + i, true);
1158 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1159 			for (i = 0; i < commit_sections - to_end; i++)
1160 				rw_section_mac(ic, i, true);
1161 		}
1162 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1163 	}
1164 
1165 	wait_for_completion_io(&io_comp.comp);
1166 }
1167 
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1168 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1169 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1170 {
1171 	struct dm_io_request io_req;
1172 	struct dm_io_region io_loc;
1173 	int r;
1174 	unsigned int sector, pl_index, pl_offset;
1175 
1176 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1177 
1178 	if (unlikely(dm_integrity_failed(ic))) {
1179 		fn(-1UL, data);
1180 		return;
1181 	}
1182 
1183 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1184 
1185 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1186 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1187 
1188 	io_req.bi_opf = REQ_OP_WRITE;
1189 	io_req.mem.type = DM_IO_PAGE_LIST;
1190 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1191 	io_req.mem.offset = pl_offset;
1192 	io_req.notify.fn = fn;
1193 	io_req.notify.context = data;
1194 	io_req.client = ic->io;
1195 	io_loc.bdev = ic->dev->bdev;
1196 	io_loc.sector = target;
1197 	io_loc.count = n_sectors;
1198 
1199 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1200 	if (unlikely(r)) {
1201 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1202 		fn(-1UL, data);
1203 	}
1204 }
1205 
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1206 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1207 {
1208 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1209 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1210 }
1211 
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1212 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1213 {
1214 	struct rb_node **n = &ic->in_progress.rb_node;
1215 	struct rb_node *parent;
1216 
1217 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1218 
1219 	if (likely(check_waiting)) {
1220 		struct dm_integrity_range *range;
1221 
1222 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1223 			if (unlikely(ranges_overlap(range, new_range)))
1224 				return false;
1225 		}
1226 	}
1227 
1228 	parent = NULL;
1229 
1230 	while (*n) {
1231 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1232 
1233 		parent = *n;
1234 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1235 			n = &range->node.rb_left;
1236 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1237 			n = &range->node.rb_right;
1238 		else
1239 			return false;
1240 	}
1241 
1242 	rb_link_node(&new_range->node, parent, n);
1243 	rb_insert_color(&new_range->node, &ic->in_progress);
1244 
1245 	return true;
1246 }
1247 
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1248 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1249 {
1250 	rb_erase(&range->node, &ic->in_progress);
1251 	while (unlikely(!list_empty(&ic->wait_list))) {
1252 		struct dm_integrity_range *last_range =
1253 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1254 		struct task_struct *last_range_task;
1255 
1256 		last_range_task = last_range->task;
1257 		list_del(&last_range->wait_entry);
1258 		if (!add_new_range(ic, last_range, false)) {
1259 			last_range->task = last_range_task;
1260 			list_add(&last_range->wait_entry, &ic->wait_list);
1261 			break;
1262 		}
1263 		last_range->waiting = false;
1264 		wake_up_process(last_range_task);
1265 	}
1266 }
1267 
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1268 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1269 {
1270 	unsigned long flags;
1271 
1272 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1273 	remove_range_unlocked(ic, range);
1274 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1275 }
1276 
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1277 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1278 {
1279 	new_range->waiting = true;
1280 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1281 	new_range->task = current;
1282 	do {
1283 		__set_current_state(TASK_UNINTERRUPTIBLE);
1284 		spin_unlock_irq(&ic->endio_wait.lock);
1285 		io_schedule();
1286 		spin_lock_irq(&ic->endio_wait.lock);
1287 	} while (unlikely(new_range->waiting));
1288 }
1289 
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1290 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1291 {
1292 	if (unlikely(!add_new_range(ic, new_range, true)))
1293 		wait_and_add_new_range(ic, new_range);
1294 }
1295 
init_journal_node(struct journal_node * node)1296 static void init_journal_node(struct journal_node *node)
1297 {
1298 	RB_CLEAR_NODE(&node->node);
1299 	node->sector = (sector_t)-1;
1300 }
1301 
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1302 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1303 {
1304 	struct rb_node **link;
1305 	struct rb_node *parent;
1306 
1307 	node->sector = sector;
1308 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1309 
1310 	link = &ic->journal_tree_root.rb_node;
1311 	parent = NULL;
1312 
1313 	while (*link) {
1314 		struct journal_node *j;
1315 
1316 		parent = *link;
1317 		j = container_of(parent, struct journal_node, node);
1318 		if (sector < j->sector)
1319 			link = &j->node.rb_left;
1320 		else
1321 			link = &j->node.rb_right;
1322 	}
1323 
1324 	rb_link_node(&node->node, parent, link);
1325 	rb_insert_color(&node->node, &ic->journal_tree_root);
1326 }
1327 
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1328 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1329 {
1330 	BUG_ON(RB_EMPTY_NODE(&node->node));
1331 	rb_erase(&node->node, &ic->journal_tree_root);
1332 	init_journal_node(node);
1333 }
1334 
1335 #define NOT_FOUND	(-1U)
1336 
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1337 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1338 {
1339 	struct rb_node *n = ic->journal_tree_root.rb_node;
1340 	unsigned int found = NOT_FOUND;
1341 
1342 	*next_sector = (sector_t)-1;
1343 	while (n) {
1344 		struct journal_node *j = container_of(n, struct journal_node, node);
1345 
1346 		if (sector == j->sector)
1347 			found = j - ic->journal_tree;
1348 
1349 		if (sector < j->sector) {
1350 			*next_sector = j->sector;
1351 			n = j->node.rb_left;
1352 		} else
1353 			n = j->node.rb_right;
1354 	}
1355 
1356 	return found;
1357 }
1358 
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1359 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1360 {
1361 	struct journal_node *node, *next_node;
1362 	struct rb_node *next;
1363 
1364 	if (unlikely(pos >= ic->journal_entries))
1365 		return false;
1366 	node = &ic->journal_tree[pos];
1367 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1368 		return false;
1369 	if (unlikely(node->sector != sector))
1370 		return false;
1371 
1372 	next = rb_next(&node->node);
1373 	if (unlikely(!next))
1374 		return true;
1375 
1376 	next_node = container_of(next, struct journal_node, node);
1377 	return next_node->sector != sector;
1378 }
1379 
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1380 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1381 {
1382 	struct rb_node *next;
1383 	struct journal_node *next_node;
1384 	unsigned int next_section;
1385 
1386 	BUG_ON(RB_EMPTY_NODE(&node->node));
1387 
1388 	next = rb_next(&node->node);
1389 	if (unlikely(!next))
1390 		return false;
1391 
1392 	next_node = container_of(next, struct journal_node, node);
1393 
1394 	if (next_node->sector != node->sector)
1395 		return false;
1396 
1397 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1398 	if (next_section >= ic->committed_section &&
1399 	    next_section < ic->committed_section + ic->n_committed_sections)
1400 		return true;
1401 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1402 		return true;
1403 
1404 	return false;
1405 }
1406 
1407 #define TAG_READ	0
1408 #define TAG_WRITE	1
1409 #define TAG_CMP		2
1410 
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1411 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1412 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1413 {
1414 	unsigned int hash_offset = 0;
1415 	unsigned char mismatch_hash = 0;
1416 	unsigned char mismatch_filler = !ic->discard;
1417 
1418 	do {
1419 		unsigned char *data, *dp;
1420 		struct dm_buffer *b;
1421 		unsigned int to_copy;
1422 		int r;
1423 
1424 		r = dm_integrity_failed(ic);
1425 		if (unlikely(r))
1426 			return r;
1427 
1428 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1429 		if (IS_ERR(data))
1430 			return PTR_ERR(data);
1431 
1432 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1433 		dp = data + *metadata_offset;
1434 		if (op == TAG_READ) {
1435 			memcpy(tag, dp, to_copy);
1436 		} else if (op == TAG_WRITE) {
1437 			if (crypto_memneq(dp, tag, to_copy)) {
1438 				memcpy(dp, tag, to_copy);
1439 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1440 			}
1441 		} else {
1442 			/* e.g.: op == TAG_CMP */
1443 
1444 			if (likely(is_power_of_2(ic->tag_size))) {
1445 				if (unlikely(crypto_memneq(dp, tag, to_copy)))
1446 					goto thorough_test;
1447 			} else {
1448 				unsigned int i, ts;
1449 thorough_test:
1450 				ts = total_size;
1451 
1452 				for (i = 0; i < to_copy; i++, ts--) {
1453 					/*
1454 					 * Warning: the control flow must not be
1455 					 * dependent on match/mismatch of
1456 					 * individual bytes.
1457 					 */
1458 					mismatch_hash |= dp[i] ^ tag[i];
1459 					mismatch_filler |= dp[i] ^ DISCARD_FILLER;
1460 					hash_offset++;
1461 					if (unlikely(hash_offset == ic->tag_size)) {
1462 						if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) {
1463 							dm_bufio_release(b);
1464 							return ts;
1465 						}
1466 						hash_offset = 0;
1467 						mismatch_hash = 0;
1468 						mismatch_filler = !ic->discard;
1469 					}
1470 				}
1471 			}
1472 		}
1473 		dm_bufio_release(b);
1474 
1475 		tag += to_copy;
1476 		*metadata_offset += to_copy;
1477 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1478 			(*metadata_block)++;
1479 			*metadata_offset = 0;
1480 		}
1481 
1482 		if (unlikely(!is_power_of_2(ic->tag_size)))
1483 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1484 
1485 		total_size -= to_copy;
1486 	} while (unlikely(total_size));
1487 
1488 	return 0;
1489 }
1490 
1491 struct flush_request {
1492 	struct dm_io_request io_req;
1493 	struct dm_io_region io_reg;
1494 	struct dm_integrity_c *ic;
1495 	struct completion comp;
1496 };
1497 
flush_notify(unsigned long error,void * fr_)1498 static void flush_notify(unsigned long error, void *fr_)
1499 {
1500 	struct flush_request *fr = fr_;
1501 
1502 	if (unlikely(error != 0))
1503 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1504 	complete(&fr->comp);
1505 }
1506 
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1507 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1508 {
1509 	int r;
1510 	struct flush_request fr;
1511 
1512 	if (!ic->meta_dev)
1513 		flush_data = false;
1514 	if (flush_data) {
1515 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1516 		fr.io_req.mem.type = DM_IO_KMEM;
1517 		fr.io_req.mem.ptr.addr = NULL;
1518 		fr.io_req.notify.fn = flush_notify;
1519 		fr.io_req.notify.context = &fr;
1520 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1521 		fr.io_reg.bdev = ic->dev->bdev;
1522 		fr.io_reg.sector = 0;
1523 		fr.io_reg.count = 0;
1524 		fr.ic = ic;
1525 		init_completion(&fr.comp);
1526 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1527 		BUG_ON(r);
1528 	}
1529 
1530 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1531 	if (unlikely(r))
1532 		dm_integrity_io_error(ic, "writing tags", r);
1533 
1534 	if (flush_data)
1535 		wait_for_completion(&fr.comp);
1536 }
1537 
sleep_on_endio_wait(struct dm_integrity_c * ic)1538 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1539 {
1540 	DECLARE_WAITQUEUE(wait, current);
1541 
1542 	__add_wait_queue(&ic->endio_wait, &wait);
1543 	__set_current_state(TASK_UNINTERRUPTIBLE);
1544 	spin_unlock_irq(&ic->endio_wait.lock);
1545 	io_schedule();
1546 	spin_lock_irq(&ic->endio_wait.lock);
1547 	__remove_wait_queue(&ic->endio_wait, &wait);
1548 }
1549 
autocommit_fn(struct timer_list * t)1550 static void autocommit_fn(struct timer_list *t)
1551 {
1552 	struct dm_integrity_c *ic = timer_container_of(ic, t,
1553 						       autocommit_timer);
1554 
1555 	if (likely(!dm_integrity_failed(ic)))
1556 		queue_work(ic->commit_wq, &ic->commit_work);
1557 }
1558 
schedule_autocommit(struct dm_integrity_c * ic)1559 static void schedule_autocommit(struct dm_integrity_c *ic)
1560 {
1561 	if (!timer_pending(&ic->autocommit_timer))
1562 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1563 }
1564 
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1565 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1566 {
1567 	struct bio *bio;
1568 	unsigned long flags;
1569 
1570 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1571 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1572 	bio_list_add(&ic->flush_bio_list, bio);
1573 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1574 
1575 	queue_work(ic->commit_wq, &ic->commit_work);
1576 }
1577 
do_endio(struct dm_integrity_c * ic,struct bio * bio)1578 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1579 {
1580 	int r;
1581 
1582 	r = dm_integrity_failed(ic);
1583 	if (unlikely(r) && !bio->bi_status)
1584 		bio->bi_status = errno_to_blk_status(r);
1585 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1586 		unsigned long flags;
1587 
1588 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1589 		bio_list_add(&ic->synchronous_bios, bio);
1590 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1591 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1592 		return;
1593 	}
1594 	bio_endio(bio);
1595 }
1596 
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1598 {
1599 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600 
1601 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1602 		submit_flush_bio(ic, dio);
1603 	else
1604 		do_endio(ic, bio);
1605 }
1606 
dec_in_flight(struct dm_integrity_io * dio)1607 static void dec_in_flight(struct dm_integrity_io *dio)
1608 {
1609 	if (atomic_dec_and_test(&dio->in_flight)) {
1610 		struct dm_integrity_c *ic = dio->ic;
1611 		struct bio *bio;
1612 
1613 		remove_range(ic, &dio->range);
1614 
1615 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1616 			schedule_autocommit(ic);
1617 
1618 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1619 		if (unlikely(dio->bi_status) && !bio->bi_status)
1620 			bio->bi_status = dio->bi_status;
1621 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1622 			dio->range.logical_sector += dio->range.n_sectors;
1623 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1624 			INIT_WORK(&dio->work, integrity_bio_wait);
1625 			queue_work(ic->offload_wq, &dio->work);
1626 			return;
1627 		}
1628 		do_endio_flush(ic, dio);
1629 	}
1630 }
1631 
integrity_end_io(struct bio * bio)1632 static void integrity_end_io(struct bio *bio)
1633 {
1634 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1635 
1636 	dm_bio_restore(&dio->bio_details, bio);
1637 	if (bio->bi_integrity)
1638 		bio->bi_opf |= REQ_INTEGRITY;
1639 
1640 	if (dio->completion)
1641 		complete(dio->completion);
1642 
1643 	dec_in_flight(dio);
1644 }
1645 
integrity_sector_checksum_shash(struct dm_integrity_c * ic,sector_t sector,const char * data,unsigned offset,char * result)1646 static void integrity_sector_checksum_shash(struct dm_integrity_c *ic, sector_t sector,
1647 					    const char *data, unsigned offset, char *result)
1648 {
1649 	__le64 sector_le = cpu_to_le64(sector);
1650 	SHASH_DESC_ON_STACK(req, ic->internal_shash);
1651 	int r;
1652 	unsigned int digest_size;
1653 
1654 	req->tfm = ic->internal_shash;
1655 
1656 	r = crypto_shash_init(req);
1657 	if (unlikely(r < 0)) {
1658 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1659 		goto failed;
1660 	}
1661 
1662 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1663 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1664 		if (unlikely(r < 0)) {
1665 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1666 			goto failed;
1667 		}
1668 	}
1669 
1670 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1671 	if (unlikely(r < 0)) {
1672 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1673 		goto failed;
1674 	}
1675 
1676 	r = crypto_shash_update(req, data + offset, ic->sectors_per_block << SECTOR_SHIFT);
1677 	if (unlikely(r < 0)) {
1678 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1679 		goto failed;
1680 	}
1681 
1682 	r = crypto_shash_final(req, result);
1683 	if (unlikely(r < 0)) {
1684 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1685 		goto failed;
1686 	}
1687 
1688 	digest_size = ic->internal_hash_digestsize;
1689 	if (unlikely(digest_size < ic->tag_size))
1690 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1691 
1692 	return;
1693 
1694 failed:
1695 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1696 	get_random_bytes(result, ic->tag_size);
1697 }
1698 
integrity_sector_checksum_ahash(struct dm_integrity_c * ic,struct ahash_request ** ahash_req,sector_t sector,struct page * page,unsigned offset,char * result)1699 static void integrity_sector_checksum_ahash(struct dm_integrity_c *ic, struct ahash_request **ahash_req,
1700 					    sector_t sector, struct page *page, unsigned offset, char *result)
1701 {
1702 	__le64 sector_le = cpu_to_le64(sector);
1703 	struct ahash_request *req;
1704 	DECLARE_CRYPTO_WAIT(wait);
1705 	struct scatterlist sg[3], *s = sg;
1706 	int r;
1707 	unsigned int digest_size;
1708 	unsigned int nbytes = 0;
1709 
1710 	might_sleep();
1711 
1712 	req = *ahash_req;
1713 	if (unlikely(!req)) {
1714 		req = mempool_alloc(&ic->ahash_req_pool, GFP_NOIO);
1715 		*ahash_req = req;
1716 	}
1717 
1718 	ahash_request_set_tfm(req, ic->internal_ahash);
1719 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait);
1720 
1721 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1722 		sg_init_table(sg, 3);
1723 		sg_set_buf(s, (const __u8 *)&ic->sb->salt, SALT_SIZE);
1724 		nbytes += SALT_SIZE;
1725 		s++;
1726 	} else {
1727 		sg_init_table(sg, 2);
1728 	}
1729 
1730 	if (likely(!is_vmalloc_addr(&sector_le))) {
1731 		sg_set_buf(s, &sector_le, sizeof(sector_le));
1732 	} else {
1733 		struct page *sec_page = vmalloc_to_page(&sector_le);
1734 		unsigned int sec_off = offset_in_page(&sector_le);
1735 		sg_set_page(s, sec_page, sizeof(sector_le), sec_off);
1736 	}
1737 	nbytes += sizeof(sector_le);
1738 	s++;
1739 
1740 	sg_set_page(s, page, ic->sectors_per_block << SECTOR_SHIFT, offset);
1741 	nbytes += ic->sectors_per_block << SECTOR_SHIFT;
1742 
1743 	ahash_request_set_crypt(req, sg, result, nbytes);
1744 
1745 	r = crypto_wait_req(crypto_ahash_digest(req), &wait);
1746 	if (unlikely(r)) {
1747 		dm_integrity_io_error(ic, "crypto_ahash_digest", r);
1748 		goto failed;
1749 	}
1750 
1751 	digest_size = ic->internal_hash_digestsize;
1752 	if (unlikely(digest_size < ic->tag_size))
1753 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1754 
1755 	return;
1756 
1757 failed:
1758 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1759 	get_random_bytes(result, ic->tag_size);
1760 }
1761 
integrity_sector_checksum(struct dm_integrity_c * ic,struct ahash_request ** ahash_req,sector_t sector,const char * data,unsigned offset,char * result)1762 static void integrity_sector_checksum(struct dm_integrity_c *ic, struct ahash_request **ahash_req,
1763 				      sector_t sector, const char *data, unsigned offset, char *result)
1764 {
1765 	if (likely(ic->internal_shash != NULL))
1766 		integrity_sector_checksum_shash(ic, sector, data, offset, result);
1767 	else
1768 		integrity_sector_checksum_ahash(ic, ahash_req, sector, (struct page *)data, offset, result);
1769 }
1770 
integrity_kmap(struct dm_integrity_c * ic,struct page * p)1771 static void *integrity_kmap(struct dm_integrity_c *ic, struct page *p)
1772 {
1773 	if (likely(ic->internal_shash != NULL))
1774 		return kmap_local_page(p);
1775 	else
1776 		return p;
1777 }
1778 
integrity_kunmap(struct dm_integrity_c * ic,const void * ptr)1779 static void integrity_kunmap(struct dm_integrity_c *ic, const void *ptr)
1780 {
1781 	if (likely(ic->internal_shash != NULL))
1782 		kunmap_local(ptr);
1783 }
1784 
integrity_identity(struct dm_integrity_c * ic,void * data)1785 static void *integrity_identity(struct dm_integrity_c *ic, void *data)
1786 {
1787 #ifdef CONFIG_DEBUG_SG
1788 	BUG_ON(offset_in_page(data));
1789 	BUG_ON(!virt_addr_valid(data));
1790 #endif
1791 	if (likely(ic->internal_shash != NULL))
1792 		return data;
1793 	else
1794 		return virt_to_page(data);
1795 }
1796 
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1797 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1798 {
1799 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1800 	struct dm_integrity_c *ic = dio->ic;
1801 	struct bvec_iter iter;
1802 	struct bio_vec bv;
1803 	sector_t sector, logical_sector, area, offset;
1804 	struct page *page;
1805 
1806 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1807 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1808 							     &dio->metadata_offset);
1809 	sector = get_data_sector(ic, area, offset);
1810 	logical_sector = dio->range.logical_sector;
1811 
1812 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1813 
1814 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1815 		unsigned pos = 0;
1816 
1817 		do {
1818 			sector_t alignment;
1819 			char *mem;
1820 			char *buffer = page_to_virt(page);
1821 			unsigned int buffer_offset;
1822 			int r;
1823 			struct dm_io_request io_req;
1824 			struct dm_io_region io_loc;
1825 			io_req.bi_opf = REQ_OP_READ;
1826 			io_req.mem.type = DM_IO_KMEM;
1827 			io_req.mem.ptr.addr = buffer;
1828 			io_req.notify.fn = NULL;
1829 			io_req.client = ic->io;
1830 			io_loc.bdev = ic->dev->bdev;
1831 			io_loc.sector = sector;
1832 			io_loc.count = ic->sectors_per_block;
1833 
1834 			/* Align the bio to logical block size */
1835 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1836 			alignment &= -alignment;
1837 			io_loc.sector = round_down(io_loc.sector, alignment);
1838 			io_loc.count += sector - io_loc.sector;
1839 			buffer_offset = (sector - io_loc.sector) << SECTOR_SHIFT;
1840 			io_loc.count = round_up(io_loc.count, alignment);
1841 
1842 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1843 			if (unlikely(r)) {
1844 				dio->bi_status = errno_to_blk_status(r);
1845 				goto free_ret;
1846 			}
1847 
1848 			integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, integrity_identity(ic, buffer), buffer_offset, checksum);
1849 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1850 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1851 			if (r) {
1852 				if (r > 0) {
1853 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1854 						    bio->bi_bdev, logical_sector);
1855 					atomic64_inc(&ic->number_of_mismatches);
1856 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1857 							 bio, logical_sector, 0);
1858 					r = -EILSEQ;
1859 				}
1860 				dio->bi_status = errno_to_blk_status(r);
1861 				goto free_ret;
1862 			}
1863 
1864 			mem = bvec_kmap_local(&bv);
1865 			memcpy(mem + pos, buffer + buffer_offset, ic->sectors_per_block << SECTOR_SHIFT);
1866 			kunmap_local(mem);
1867 
1868 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1869 			sector += ic->sectors_per_block;
1870 			logical_sector += ic->sectors_per_block;
1871 		} while (pos < bv.bv_len);
1872 	}
1873 free_ret:
1874 	mempool_free(page, &ic->recheck_pool);
1875 }
1876 
integrity_metadata(struct work_struct * w)1877 static void integrity_metadata(struct work_struct *w)
1878 {
1879 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1880 	struct dm_integrity_c *ic = dio->ic;
1881 
1882 	int r;
1883 
1884 	if (ic->internal_hash) {
1885 		struct bvec_iter iter;
1886 		struct bio_vec bv;
1887 		unsigned int digest_size = ic->internal_hash_digestsize;
1888 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1889 		char *checksums;
1890 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1891 		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1892 		sector_t sector;
1893 		unsigned int sectors_to_process;
1894 
1895 		if (unlikely(ic->mode == 'R'))
1896 			goto skip_io;
1897 
1898 		if (likely(dio->op != REQ_OP_DISCARD))
1899 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1900 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1901 		else
1902 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1903 		if (!checksums) {
1904 			checksums = checksums_onstack;
1905 			if (WARN_ON(extra_space &&
1906 				    digest_size > sizeof(checksums_onstack))) {
1907 				r = -EINVAL;
1908 				goto error;
1909 			}
1910 		}
1911 
1912 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1913 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1914 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1915 			unsigned int max_blocks = max_size / ic->tag_size;
1916 
1917 			memset(checksums, DISCARD_FILLER, max_size);
1918 
1919 			while (bi_size) {
1920 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1921 
1922 				this_step_blocks = min(this_step_blocks, max_blocks);
1923 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1924 							this_step_blocks * ic->tag_size, TAG_WRITE);
1925 				if (unlikely(r)) {
1926 					if (likely(checksums != checksums_onstack))
1927 						kfree(checksums);
1928 					goto error;
1929 				}
1930 
1931 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1932 			}
1933 
1934 			if (likely(checksums != checksums_onstack))
1935 				kfree(checksums);
1936 			goto skip_io;
1937 		}
1938 
1939 		sector = dio->range.logical_sector;
1940 		sectors_to_process = dio->range.n_sectors;
1941 
1942 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1943 			struct bio_vec bv_copy = bv;
1944 			unsigned int pos;
1945 			char *mem, *checksums_ptr;
1946 
1947 again:
1948 			mem = integrity_kmap(ic, bv_copy.bv_page);
1949 			pos = 0;
1950 			checksums_ptr = checksums;
1951 			do {
1952 				integrity_sector_checksum(ic, &dio->ahash_req, sector, mem, bv_copy.bv_offset + pos, checksums_ptr);
1953 				checksums_ptr += ic->tag_size;
1954 				sectors_to_process -= ic->sectors_per_block;
1955 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1956 				sector += ic->sectors_per_block;
1957 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1958 			integrity_kunmap(ic, mem);
1959 
1960 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1961 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1962 			if (unlikely(r)) {
1963 				if (likely(checksums != checksums_onstack))
1964 					kfree(checksums);
1965 				if (r > 0) {
1966 					integrity_recheck(dio, checksums_onstack);
1967 					goto skip_io;
1968 				}
1969 				goto error;
1970 			}
1971 
1972 			if (!sectors_to_process)
1973 				break;
1974 
1975 			if (unlikely(pos < bv_copy.bv_len)) {
1976 				bv_copy.bv_offset += pos;
1977 				bv_copy.bv_len -= pos;
1978 				goto again;
1979 			}
1980 		}
1981 
1982 		if (likely(checksums != checksums_onstack))
1983 			kfree(checksums);
1984 	} else {
1985 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1986 
1987 		if (bip) {
1988 			struct bio_vec biv;
1989 			struct bvec_iter iter;
1990 			unsigned int data_to_process = dio->range.n_sectors;
1991 
1992 			sector_to_block(ic, data_to_process);
1993 			data_to_process *= ic->tag_size;
1994 
1995 			bip_for_each_vec(biv, bip, iter) {
1996 				unsigned char *tag;
1997 				unsigned int this_len;
1998 
1999 				BUG_ON(PageHighMem(biv.bv_page));
2000 				tag = bvec_virt(&biv);
2001 				this_len = min(biv.bv_len, data_to_process);
2002 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
2003 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
2004 				if (unlikely(r))
2005 					goto error;
2006 				data_to_process -= this_len;
2007 				if (!data_to_process)
2008 					break;
2009 			}
2010 		}
2011 	}
2012 skip_io:
2013 	dec_in_flight(dio);
2014 	return;
2015 error:
2016 	dio->bi_status = errno_to_blk_status(r);
2017 	dec_in_flight(dio);
2018 }
2019 
dm_integrity_check_limits(struct dm_integrity_c * ic,sector_t logical_sector,struct bio * bio)2020 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
2021 {
2022 	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
2023 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
2024 		      logical_sector, bio_sectors(bio),
2025 		      ic->provided_data_sectors);
2026 		return false;
2027 	}
2028 	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
2029 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
2030 		      ic->sectors_per_block,
2031 		      logical_sector, bio_sectors(bio));
2032 		return false;
2033 	}
2034 	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
2035 		struct bvec_iter iter;
2036 		struct bio_vec bv;
2037 
2038 		bio_for_each_segment(bv, bio, iter) {
2039 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
2040 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
2041 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
2042 				return false;
2043 			}
2044 		}
2045 	}
2046 	return true;
2047 }
2048 
dm_integrity_map(struct dm_target * ti,struct bio * bio)2049 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
2050 {
2051 	struct dm_integrity_c *ic = ti->private;
2052 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2053 	struct bio_integrity_payload *bip;
2054 
2055 	sector_t area, offset;
2056 
2057 	dio->ic = ic;
2058 	dio->bi_status = 0;
2059 	dio->op = bio_op(bio);
2060 	dio->ahash_req = NULL;
2061 
2062 	if (ic->mode == 'I') {
2063 		bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
2064 		dio->integrity_payload = NULL;
2065 		dio->integrity_payload_from_mempool = false;
2066 		dio->integrity_range_locked = false;
2067 		return dm_integrity_map_inline(dio, true);
2068 	}
2069 
2070 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
2071 		if (ti->max_io_len) {
2072 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
2073 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
2074 			sector_t start_boundary = sec >> log2_max_io_len;
2075 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
2076 
2077 			if (start_boundary < end_boundary) {
2078 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
2079 
2080 				dm_accept_partial_bio(bio, len);
2081 			}
2082 		}
2083 	}
2084 
2085 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
2086 		submit_flush_bio(ic, dio);
2087 		return DM_MAPIO_SUBMITTED;
2088 	}
2089 
2090 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2091 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
2092 	if (unlikely(dio->fua)) {
2093 		/*
2094 		 * Don't pass down the FUA flag because we have to flush
2095 		 * disk cache anyway.
2096 		 */
2097 		bio->bi_opf &= ~REQ_FUA;
2098 	}
2099 	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
2100 		return DM_MAPIO_KILL;
2101 
2102 	bip = bio_integrity(bio);
2103 	if (!ic->internal_hash) {
2104 		if (bip) {
2105 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
2106 
2107 			if (ic->log2_tag_size >= 0)
2108 				wanted_tag_size <<= ic->log2_tag_size;
2109 			else
2110 				wanted_tag_size *= ic->tag_size;
2111 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2112 				DMERR("Invalid integrity data size %u, expected %u",
2113 				      bip->bip_iter.bi_size, wanted_tag_size);
2114 				return DM_MAPIO_KILL;
2115 			}
2116 		}
2117 	} else {
2118 		if (unlikely(bip != NULL)) {
2119 			DMERR("Unexpected integrity data when using internal hash");
2120 			return DM_MAPIO_KILL;
2121 		}
2122 	}
2123 
2124 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2125 		return DM_MAPIO_KILL;
2126 
2127 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2128 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2129 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2130 
2131 	dm_integrity_map_continue(dio, true);
2132 	return DM_MAPIO_SUBMITTED;
2133 }
2134 
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2135 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2136 				 unsigned int journal_section, unsigned int journal_entry)
2137 {
2138 	struct dm_integrity_c *ic = dio->ic;
2139 	sector_t logical_sector;
2140 	unsigned int n_sectors;
2141 
2142 	logical_sector = dio->range.logical_sector;
2143 	n_sectors = dio->range.n_sectors;
2144 	do {
2145 		struct bio_vec bv = bio_iovec(bio);
2146 		char *mem;
2147 
2148 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2149 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2150 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2151 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2152 retry_kmap:
2153 		mem = kmap_local_page(bv.bv_page);
2154 		if (likely(dio->op == REQ_OP_WRITE))
2155 			flush_dcache_page(bv.bv_page);
2156 
2157 		do {
2158 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2159 
2160 			if (unlikely(dio->op == REQ_OP_READ)) {
2161 				struct journal_sector *js;
2162 				char *mem_ptr;
2163 				unsigned int s;
2164 
2165 				if (unlikely(journal_entry_is_inprogress(je))) {
2166 					flush_dcache_page(bv.bv_page);
2167 					kunmap_local(mem);
2168 
2169 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2170 					goto retry_kmap;
2171 				}
2172 				smp_rmb();
2173 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2174 				js = access_journal_data(ic, journal_section, journal_entry);
2175 				mem_ptr = mem + bv.bv_offset;
2176 				s = 0;
2177 				do {
2178 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2179 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2180 					js++;
2181 					mem_ptr += 1 << SECTOR_SHIFT;
2182 				} while (++s < ic->sectors_per_block);
2183 			}
2184 
2185 			if (!ic->internal_hash) {
2186 				struct bio_integrity_payload *bip = bio_integrity(bio);
2187 				unsigned int tag_todo = ic->tag_size;
2188 				char *tag_ptr = journal_entry_tag(ic, je);
2189 
2190 				if (bip) {
2191 					do {
2192 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2193 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2194 						char *tag_addr;
2195 
2196 						BUG_ON(PageHighMem(biv.bv_page));
2197 						tag_addr = bvec_virt(&biv);
2198 						if (likely(dio->op == REQ_OP_WRITE))
2199 							memcpy(tag_ptr, tag_addr, tag_now);
2200 						else
2201 							memcpy(tag_addr, tag_ptr, tag_now);
2202 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2203 						tag_ptr += tag_now;
2204 						tag_todo -= tag_now;
2205 					} while (unlikely(tag_todo));
2206 				} else if (likely(dio->op == REQ_OP_WRITE))
2207 					memset(tag_ptr, 0, tag_todo);
2208 			}
2209 
2210 			if (likely(dio->op == REQ_OP_WRITE)) {
2211 				struct journal_sector *js;
2212 				unsigned int s;
2213 
2214 				js = access_journal_data(ic, journal_section, journal_entry);
2215 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2216 
2217 				s = 0;
2218 				do {
2219 					je->last_bytes[s] = js[s].commit_id;
2220 				} while (++s < ic->sectors_per_block);
2221 
2222 				if (ic->internal_hash) {
2223 					unsigned int digest_size = ic->internal_hash_digestsize;
2224 					void *js_page = integrity_identity(ic, (char *)js - offset_in_page(js));
2225 					unsigned js_offset = offset_in_page(js);
2226 
2227 					if (unlikely(digest_size > ic->tag_size)) {
2228 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2229 
2230 						integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, js_page, js_offset, checksums_onstack);
2231 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2232 					} else
2233 						integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, js_page, js_offset, journal_entry_tag(ic, je));
2234 				}
2235 
2236 				journal_entry_set_sector(je, logical_sector);
2237 			}
2238 			logical_sector += ic->sectors_per_block;
2239 
2240 			journal_entry++;
2241 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2242 				journal_entry = 0;
2243 				journal_section++;
2244 				wraparound_section(ic, &journal_section);
2245 			}
2246 
2247 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2248 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2249 
2250 		if (unlikely(dio->op == REQ_OP_READ))
2251 			flush_dcache_page(bv.bv_page);
2252 		kunmap_local(mem);
2253 	} while (n_sectors);
2254 
2255 	if (likely(dio->op == REQ_OP_WRITE)) {
2256 		smp_mb();
2257 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2258 			wake_up(&ic->copy_to_journal_wait);
2259 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2260 			queue_work(ic->commit_wq, &ic->commit_work);
2261 		else
2262 			schedule_autocommit(ic);
2263 	} else
2264 		remove_range(ic, &dio->range);
2265 
2266 	if (unlikely(bio->bi_iter.bi_size)) {
2267 		sector_t area, offset;
2268 
2269 		dio->range.logical_sector = logical_sector;
2270 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2271 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2272 		return true;
2273 	}
2274 
2275 	return false;
2276 }
2277 
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2278 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2279 {
2280 	struct dm_integrity_c *ic = dio->ic;
2281 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2282 	unsigned int journal_section, journal_entry;
2283 	unsigned int journal_read_pos;
2284 	sector_t recalc_sector;
2285 	struct completion read_comp;
2286 	bool discard_retried = false;
2287 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2288 
2289 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2290 		need_sync_io = true;
2291 
2292 	if (need_sync_io && from_map) {
2293 		INIT_WORK(&dio->work, integrity_bio_wait);
2294 		queue_work(ic->offload_wq, &dio->work);
2295 		return;
2296 	}
2297 
2298 lock_retry:
2299 	spin_lock_irq(&ic->endio_wait.lock);
2300 retry:
2301 	if (unlikely(dm_integrity_failed(ic))) {
2302 		spin_unlock_irq(&ic->endio_wait.lock);
2303 		do_endio(ic, bio);
2304 		return;
2305 	}
2306 	dio->range.n_sectors = bio_sectors(bio);
2307 	journal_read_pos = NOT_FOUND;
2308 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2309 		if (dio->op == REQ_OP_WRITE) {
2310 			unsigned int next_entry, i, pos;
2311 			unsigned int ws, we, range_sectors;
2312 
2313 			dio->range.n_sectors = min(dio->range.n_sectors,
2314 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2315 			if (unlikely(!dio->range.n_sectors)) {
2316 				if (from_map)
2317 					goto offload_to_thread;
2318 				sleep_on_endio_wait(ic);
2319 				goto retry;
2320 			}
2321 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2322 			ic->free_sectors -= range_sectors;
2323 			journal_section = ic->free_section;
2324 			journal_entry = ic->free_section_entry;
2325 
2326 			next_entry = ic->free_section_entry + range_sectors;
2327 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2328 			ic->free_section += next_entry / ic->journal_section_entries;
2329 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2330 			wraparound_section(ic, &ic->free_section);
2331 
2332 			pos = journal_section * ic->journal_section_entries + journal_entry;
2333 			ws = journal_section;
2334 			we = journal_entry;
2335 			i = 0;
2336 			do {
2337 				struct journal_entry *je;
2338 
2339 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2340 				pos++;
2341 				if (unlikely(pos >= ic->journal_entries))
2342 					pos = 0;
2343 
2344 				je = access_journal_entry(ic, ws, we);
2345 				BUG_ON(!journal_entry_is_unused(je));
2346 				journal_entry_set_inprogress(je);
2347 				we++;
2348 				if (unlikely(we == ic->journal_section_entries)) {
2349 					we = 0;
2350 					ws++;
2351 					wraparound_section(ic, &ws);
2352 				}
2353 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2354 
2355 			spin_unlock_irq(&ic->endio_wait.lock);
2356 			goto journal_read_write;
2357 		} else {
2358 			sector_t next_sector;
2359 
2360 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2361 			if (likely(journal_read_pos == NOT_FOUND)) {
2362 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2363 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2364 			} else {
2365 				unsigned int i;
2366 				unsigned int jp = journal_read_pos + 1;
2367 
2368 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2369 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2370 						break;
2371 				}
2372 				dio->range.n_sectors = i;
2373 			}
2374 		}
2375 	}
2376 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2377 		/*
2378 		 * We must not sleep in the request routine because it could
2379 		 * stall bios on current->bio_list.
2380 		 * So, we offload the bio to a workqueue if we have to sleep.
2381 		 */
2382 		if (from_map) {
2383 offload_to_thread:
2384 			spin_unlock_irq(&ic->endio_wait.lock);
2385 			INIT_WORK(&dio->work, integrity_bio_wait);
2386 			queue_work(ic->wait_wq, &dio->work);
2387 			return;
2388 		}
2389 		if (journal_read_pos != NOT_FOUND)
2390 			dio->range.n_sectors = ic->sectors_per_block;
2391 		wait_and_add_new_range(ic, &dio->range);
2392 		/*
2393 		 * wait_and_add_new_range drops the spinlock, so the journal
2394 		 * may have been changed arbitrarily. We need to recheck.
2395 		 * To simplify the code, we restrict I/O size to just one block.
2396 		 */
2397 		if (journal_read_pos != NOT_FOUND) {
2398 			sector_t next_sector;
2399 			unsigned int new_pos;
2400 
2401 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2402 			if (unlikely(new_pos != journal_read_pos)) {
2403 				remove_range_unlocked(ic, &dio->range);
2404 				goto retry;
2405 			}
2406 		}
2407 	}
2408 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2409 		sector_t next_sector;
2410 		unsigned int new_pos;
2411 
2412 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2413 		if (unlikely(new_pos != NOT_FOUND) ||
2414 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2415 			remove_range_unlocked(ic, &dio->range);
2416 			spin_unlock_irq(&ic->endio_wait.lock);
2417 			queue_work(ic->commit_wq, &ic->commit_work);
2418 			flush_workqueue(ic->commit_wq);
2419 			queue_work(ic->writer_wq, &ic->writer_work);
2420 			flush_workqueue(ic->writer_wq);
2421 			discard_retried = true;
2422 			goto lock_retry;
2423 		}
2424 	}
2425 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2426 	spin_unlock_irq(&ic->endio_wait.lock);
2427 
2428 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2429 		journal_section = journal_read_pos / ic->journal_section_entries;
2430 		journal_entry = journal_read_pos % ic->journal_section_entries;
2431 		goto journal_read_write;
2432 	}
2433 
2434 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2435 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2436 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2437 			struct bitmap_block_status *bbs;
2438 
2439 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2440 			spin_lock(&bbs->bio_queue_lock);
2441 			bio_list_add(&bbs->bio_queue, bio);
2442 			spin_unlock(&bbs->bio_queue_lock);
2443 			queue_work(ic->writer_wq, &bbs->work);
2444 			return;
2445 		}
2446 	}
2447 
2448 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2449 
2450 	if (need_sync_io) {
2451 		init_completion(&read_comp);
2452 		dio->completion = &read_comp;
2453 	} else
2454 		dio->completion = NULL;
2455 
2456 	dm_bio_record(&dio->bio_details, bio);
2457 	bio_set_dev(bio, ic->dev->bdev);
2458 	bio->bi_integrity = NULL;
2459 	bio->bi_opf &= ~REQ_INTEGRITY;
2460 	bio->bi_end_io = integrity_end_io;
2461 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2462 
2463 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2464 		integrity_metadata(&dio->work);
2465 		dm_integrity_flush_buffers(ic, false);
2466 
2467 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2468 		dio->completion = NULL;
2469 
2470 		submit_bio_noacct(bio);
2471 
2472 		return;
2473 	}
2474 
2475 	submit_bio_noacct(bio);
2476 
2477 	if (need_sync_io) {
2478 		wait_for_completion_io(&read_comp);
2479 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2480 		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2481 			goto skip_check;
2482 		if (ic->mode == 'B') {
2483 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2484 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2485 				goto skip_check;
2486 		}
2487 
2488 		if (likely(!bio->bi_status))
2489 			integrity_metadata(&dio->work);
2490 		else
2491 skip_check:
2492 			dec_in_flight(dio);
2493 	} else {
2494 		INIT_WORK(&dio->work, integrity_metadata);
2495 		queue_work(ic->metadata_wq, &dio->work);
2496 	}
2497 
2498 	return;
2499 
2500 journal_read_write:
2501 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2502 		goto lock_retry;
2503 
2504 	do_endio_flush(ic, dio);
2505 }
2506 
dm_integrity_map_inline(struct dm_integrity_io * dio,bool from_map)2507 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2508 {
2509 	struct dm_integrity_c *ic = dio->ic;
2510 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2511 	struct bio_integrity_payload *bip;
2512 	unsigned ret;
2513 	sector_t recalc_sector;
2514 
2515 	if (unlikely(bio_integrity(bio))) {
2516 		bio->bi_status = BLK_STS_NOTSUPP;
2517 		bio_endio(bio);
2518 		return DM_MAPIO_SUBMITTED;
2519 	}
2520 
2521 	bio_set_dev(bio, ic->dev->bdev);
2522 	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2523 		return DM_MAPIO_REMAPPED;
2524 
2525 retry:
2526 	if (!dio->integrity_payload) {
2527 		unsigned digest_size, extra_size;
2528 		dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2529 		digest_size = ic->internal_hash_digestsize;
2530 		extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2531 		dio->payload_len += extra_size;
2532 		dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2533 		if (unlikely(!dio->integrity_payload)) {
2534 			const unsigned x_size = PAGE_SIZE << 1;
2535 			if (dio->payload_len > x_size) {
2536 				unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2537 				if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2538 					bio->bi_status = BLK_STS_NOTSUPP;
2539 					bio_endio(bio);
2540 					return DM_MAPIO_SUBMITTED;
2541 				}
2542 				dm_accept_partial_bio(bio, sectors);
2543 				goto retry;
2544 			}
2545 		}
2546 	}
2547 
2548 	dio->range.logical_sector = bio->bi_iter.bi_sector;
2549 	dio->range.n_sectors = bio_sectors(bio);
2550 
2551 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2552 		goto skip_spinlock;
2553 #ifdef CONFIG_64BIT
2554 	/*
2555 	 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2556 	 * cache line bouncing) and use acquire/release barriers instead.
2557 	 *
2558 	 * Paired with smp_store_release in integrity_recalc_inline.
2559 	 */
2560 	recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2561 	if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2562 		goto skip_spinlock;
2563 #endif
2564 	spin_lock_irq(&ic->endio_wait.lock);
2565 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2566 	if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2567 		goto skip_unlock;
2568 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2569 		if (from_map) {
2570 			spin_unlock_irq(&ic->endio_wait.lock);
2571 			INIT_WORK(&dio->work, integrity_bio_wait);
2572 			queue_work(ic->wait_wq, &dio->work);
2573 			return DM_MAPIO_SUBMITTED;
2574 		}
2575 		wait_and_add_new_range(ic, &dio->range);
2576 	}
2577 	dio->integrity_range_locked = true;
2578 skip_unlock:
2579 	spin_unlock_irq(&ic->endio_wait.lock);
2580 skip_spinlock:
2581 
2582 	if (unlikely(!dio->integrity_payload)) {
2583 		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2584 		dio->integrity_payload_from_mempool = true;
2585 	}
2586 
2587 	dio->bio_details.bi_iter = bio->bi_iter;
2588 
2589 	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2590 		return DM_MAPIO_KILL;
2591 	}
2592 
2593 	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2594 
2595 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2596 	if (IS_ERR(bip)) {
2597 		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2598 		bio_endio(bio);
2599 		return DM_MAPIO_SUBMITTED;
2600 	}
2601 
2602 	if (dio->op == REQ_OP_WRITE) {
2603 		unsigned pos = 0;
2604 		while (dio->bio_details.bi_iter.bi_size) {
2605 			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2606 			const char *mem = integrity_kmap(ic, bv.bv_page);
2607 			if (ic->tag_size < ic->tuple_size)
2608 				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2609 			integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, mem, bv.bv_offset, dio->integrity_payload + pos);
2610 			integrity_kunmap(ic, mem);
2611 			pos += ic->tuple_size;
2612 			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2613 		}
2614 	}
2615 
2616 	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2617 					dio->payload_len, offset_in_page(dio->integrity_payload));
2618 	if (unlikely(ret != dio->payload_len)) {
2619 		bio->bi_status = BLK_STS_RESOURCE;
2620 		bio_endio(bio);
2621 		return DM_MAPIO_SUBMITTED;
2622 	}
2623 
2624 	return DM_MAPIO_REMAPPED;
2625 }
2626 
dm_integrity_free_payload(struct dm_integrity_io * dio)2627 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2628 {
2629 	struct dm_integrity_c *ic = dio->ic;
2630 	if (unlikely(dio->integrity_payload_from_mempool))
2631 		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2632 	else
2633 		kfree(dio->integrity_payload);
2634 	dio->integrity_payload = NULL;
2635 	dio->integrity_payload_from_mempool = false;
2636 }
2637 
dm_integrity_inline_recheck(struct work_struct * w)2638 static void dm_integrity_inline_recheck(struct work_struct *w)
2639 {
2640 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2641 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2642 	struct dm_integrity_c *ic = dio->ic;
2643 	struct bio *outgoing_bio;
2644 	void *outgoing_data;
2645 
2646 	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2647 	dio->integrity_payload_from_mempool = true;
2648 
2649 	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2650 
2651 	while (dio->bio_details.bi_iter.bi_size) {
2652 		char digest[HASH_MAX_DIGESTSIZE];
2653 		int r;
2654 		struct bio_integrity_payload *bip;
2655 		struct bio_vec bv;
2656 		char *mem;
2657 
2658 		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2659 		bio_add_virt_nofail(outgoing_bio, outgoing_data,
2660 				ic->sectors_per_block << SECTOR_SHIFT);
2661 
2662 		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2663 		if (IS_ERR(bip)) {
2664 			bio_put(outgoing_bio);
2665 			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2666 			bio_endio(bio);
2667 			return;
2668 		}
2669 
2670 		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2671 		if (unlikely(r != ic->tuple_size)) {
2672 			bio_put(outgoing_bio);
2673 			bio->bi_status = BLK_STS_RESOURCE;
2674 			bio_endio(bio);
2675 			return;
2676 		}
2677 
2678 		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2679 
2680 		r = submit_bio_wait(outgoing_bio);
2681 		if (unlikely(r != 0)) {
2682 			bio_put(outgoing_bio);
2683 			bio->bi_status = errno_to_blk_status(r);
2684 			bio_endio(bio);
2685 			return;
2686 		}
2687 		bio_put(outgoing_bio);
2688 
2689 		integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, integrity_identity(ic, outgoing_data), 0, digest);
2690 		if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(ic->internal_hash_digestsize, ic->tag_size)))) {
2691 			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2692 				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2693 			atomic64_inc(&ic->number_of_mismatches);
2694 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2695 				bio, dio->bio_details.bi_iter.bi_sector, 0);
2696 
2697 			bio->bi_status = BLK_STS_PROTECTION;
2698 			bio_endio(bio);
2699 			return;
2700 		}
2701 
2702 		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2703 		mem = bvec_kmap_local(&bv);
2704 		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2705 		kunmap_local(mem);
2706 
2707 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2708 	}
2709 
2710 	bio_endio(bio);
2711 }
2712 
dm_integrity_check(struct dm_integrity_c * ic,struct dm_integrity_io * dio)2713 static inline bool dm_integrity_check(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
2714 {
2715 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2716 	unsigned pos = 0;
2717 
2718 	while (dio->bio_details.bi_iter.bi_size) {
2719 		char digest[HASH_MAX_DIGESTSIZE];
2720 		struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2721 		char *mem = integrity_kmap(ic, bv.bv_page);
2722 		integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, mem, bv.bv_offset, digest);
2723 		if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos,
2724 				min(ic->internal_hash_digestsize, ic->tag_size)))) {
2725 			integrity_kunmap(ic, mem);
2726 			dm_integrity_free_payload(dio);
2727 			INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2728 			queue_work(ic->offload_wq, &dio->work);
2729 			return false;
2730 		}
2731 		integrity_kunmap(ic, mem);
2732 		pos += ic->tuple_size;
2733 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2734 	}
2735 
2736 	return true;
2737 }
2738 
dm_integrity_inline_async_check(struct work_struct * w)2739 static void dm_integrity_inline_async_check(struct work_struct *w)
2740 {
2741 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2742 	struct dm_integrity_c *ic = dio->ic;
2743 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2744 
2745 	if (likely(dm_integrity_check(ic, dio)))
2746 		bio_endio(bio);
2747 }
2748 
dm_integrity_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)2749 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2750 {
2751 	struct dm_integrity_c *ic = ti->private;
2752 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2753 	if (ic->mode == 'I') {
2754 		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK) && likely(dio->bio_details.bi_iter.bi_size != 0)) {
2755 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2756 			    unlikely(dio->integrity_range_locked))
2757 			    	goto skip_check;
2758 			if (likely(ic->internal_shash != NULL)) {
2759 				if (unlikely(!dm_integrity_check(ic, dio)))
2760 					return DM_ENDIO_INCOMPLETE;
2761 			} else {
2762 				INIT_WORK(&dio->work, dm_integrity_inline_async_check);
2763 				queue_work(ic->offload_wq, &dio->work);
2764 				return DM_ENDIO_INCOMPLETE;
2765 			}
2766 		}
2767 skip_check:
2768 		dm_integrity_free_payload(dio);
2769 		if (unlikely(dio->integrity_range_locked))
2770 			remove_range(ic, &dio->range);
2771 	}
2772 	if (unlikely(dio->ahash_req))
2773 		mempool_free(dio->ahash_req, &ic->ahash_req_pool);
2774 	return DM_ENDIO_DONE;
2775 }
2776 
integrity_bio_wait(struct work_struct * w)2777 static void integrity_bio_wait(struct work_struct *w)
2778 {
2779 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2780 	struct dm_integrity_c *ic = dio->ic;
2781 
2782 	if (ic->mode == 'I') {
2783 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2784 		int r = dm_integrity_map_inline(dio, false);
2785 		switch (r) {
2786 			case DM_MAPIO_KILL:
2787 				bio->bi_status = BLK_STS_IOERR;
2788 				fallthrough;
2789 			case DM_MAPIO_REMAPPED:
2790 				submit_bio_noacct(bio);
2791 				fallthrough;
2792 			case DM_MAPIO_SUBMITTED:
2793 				return;
2794 			default:
2795 				BUG();
2796 		}
2797 	} else {
2798 		dm_integrity_map_continue(dio, false);
2799 	}
2800 }
2801 
pad_uncommitted(struct dm_integrity_c * ic)2802 static void pad_uncommitted(struct dm_integrity_c *ic)
2803 {
2804 	if (ic->free_section_entry) {
2805 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2806 		ic->free_section_entry = 0;
2807 		ic->free_section++;
2808 		wraparound_section(ic, &ic->free_section);
2809 		ic->n_uncommitted_sections++;
2810 	}
2811 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2812 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2813 		    ic->journal_section_entries + ic->free_sectors)) {
2814 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2815 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2816 		       "journal_section_entries %u, free_sectors %u",
2817 		       ic->journal_sections, ic->journal_section_entries,
2818 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2819 		       ic->journal_section_entries, ic->free_sectors);
2820 	}
2821 }
2822 
integrity_commit(struct work_struct * w)2823 static void integrity_commit(struct work_struct *w)
2824 {
2825 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2826 	unsigned int commit_start, commit_sections;
2827 	unsigned int i, j, n;
2828 	struct bio *flushes;
2829 
2830 	timer_delete(&ic->autocommit_timer);
2831 
2832 	if (ic->mode == 'I')
2833 		return;
2834 
2835 	spin_lock_irq(&ic->endio_wait.lock);
2836 	flushes = bio_list_get(&ic->flush_bio_list);
2837 	if (unlikely(ic->mode != 'J')) {
2838 		spin_unlock_irq(&ic->endio_wait.lock);
2839 		dm_integrity_flush_buffers(ic, true);
2840 		goto release_flush_bios;
2841 	}
2842 
2843 	pad_uncommitted(ic);
2844 	commit_start = ic->uncommitted_section;
2845 	commit_sections = ic->n_uncommitted_sections;
2846 	spin_unlock_irq(&ic->endio_wait.lock);
2847 
2848 	if (!commit_sections)
2849 		goto release_flush_bios;
2850 
2851 	ic->wrote_to_journal = true;
2852 
2853 	i = commit_start;
2854 	for (n = 0; n < commit_sections; n++) {
2855 		for (j = 0; j < ic->journal_section_entries; j++) {
2856 			struct journal_entry *je;
2857 
2858 			je = access_journal_entry(ic, i, j);
2859 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2860 		}
2861 		for (j = 0; j < ic->journal_section_sectors; j++) {
2862 			struct journal_sector *js;
2863 
2864 			js = access_journal(ic, i, j);
2865 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2866 		}
2867 		i++;
2868 		if (unlikely(i >= ic->journal_sections))
2869 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2870 		wraparound_section(ic, &i);
2871 	}
2872 	smp_rmb();
2873 
2874 	write_journal(ic, commit_start, commit_sections);
2875 
2876 	spin_lock_irq(&ic->endio_wait.lock);
2877 	ic->uncommitted_section += commit_sections;
2878 	wraparound_section(ic, &ic->uncommitted_section);
2879 	ic->n_uncommitted_sections -= commit_sections;
2880 	ic->n_committed_sections += commit_sections;
2881 	spin_unlock_irq(&ic->endio_wait.lock);
2882 
2883 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2884 		queue_work(ic->writer_wq, &ic->writer_work);
2885 
2886 release_flush_bios:
2887 	while (flushes) {
2888 		struct bio *next = flushes->bi_next;
2889 
2890 		flushes->bi_next = NULL;
2891 		do_endio(ic, flushes);
2892 		flushes = next;
2893 	}
2894 }
2895 
complete_copy_from_journal(unsigned long error,void * context)2896 static void complete_copy_from_journal(unsigned long error, void *context)
2897 {
2898 	struct journal_io *io = context;
2899 	struct journal_completion *comp = io->comp;
2900 	struct dm_integrity_c *ic = comp->ic;
2901 
2902 	remove_range(ic, &io->range);
2903 	mempool_free(io, &ic->journal_io_mempool);
2904 	if (unlikely(error != 0))
2905 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2906 	complete_journal_op(comp);
2907 }
2908 
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2909 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2910 			       struct journal_entry *je)
2911 {
2912 	unsigned int s = 0;
2913 
2914 	do {
2915 		js->commit_id = je->last_bytes[s];
2916 		js++;
2917 	} while (++s < ic->sectors_per_block);
2918 }
2919 
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2920 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2921 			     unsigned int write_sections, bool from_replay)
2922 {
2923 	unsigned int i, j, n;
2924 	struct journal_completion comp;
2925 	struct blk_plug plug;
2926 
2927 	blk_start_plug(&plug);
2928 
2929 	comp.ic = ic;
2930 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2931 	init_completion(&comp.comp);
2932 
2933 	i = write_start;
2934 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2935 #ifndef INTERNAL_VERIFY
2936 		if (unlikely(from_replay))
2937 #endif
2938 			rw_section_mac(ic, i, false);
2939 		for (j = 0; j < ic->journal_section_entries; j++) {
2940 			struct journal_entry *je = access_journal_entry(ic, i, j);
2941 			sector_t sec, area, offset;
2942 			unsigned int k, l, next_loop;
2943 			sector_t metadata_block;
2944 			unsigned int metadata_offset;
2945 			struct journal_io *io;
2946 
2947 			if (journal_entry_is_unused(je))
2948 				continue;
2949 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2950 			sec = journal_entry_get_sector(je);
2951 			if (unlikely(from_replay)) {
2952 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2953 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2954 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2955 				}
2956 				if (unlikely(sec >= ic->provided_data_sectors)) {
2957 					journal_entry_set_unused(je);
2958 					continue;
2959 				}
2960 			}
2961 			get_area_and_offset(ic, sec, &area, &offset);
2962 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2963 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2964 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2965 				sector_t sec2, area2, offset2;
2966 
2967 				if (journal_entry_is_unused(je2))
2968 					break;
2969 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2970 				sec2 = journal_entry_get_sector(je2);
2971 				if (unlikely(sec2 >= ic->provided_data_sectors))
2972 					break;
2973 				get_area_and_offset(ic, sec2, &area2, &offset2);
2974 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2975 					break;
2976 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2977 			}
2978 			next_loop = k - 1;
2979 
2980 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2981 			io->comp = &comp;
2982 			io->range.logical_sector = sec;
2983 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2984 
2985 			spin_lock_irq(&ic->endio_wait.lock);
2986 			add_new_range_and_wait(ic, &io->range);
2987 
2988 			if (likely(!from_replay)) {
2989 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2990 
2991 				/* don't write if there is newer committed sector */
2992 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2993 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2994 
2995 					journal_entry_set_unused(je2);
2996 					remove_journal_node(ic, &section_node[j]);
2997 					j++;
2998 					sec += ic->sectors_per_block;
2999 					offset += ic->sectors_per_block;
3000 				}
3001 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
3002 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
3003 
3004 					journal_entry_set_unused(je2);
3005 					remove_journal_node(ic, &section_node[k - 1]);
3006 					k--;
3007 				}
3008 				if (j == k) {
3009 					remove_range_unlocked(ic, &io->range);
3010 					spin_unlock_irq(&ic->endio_wait.lock);
3011 					mempool_free(io, &ic->journal_io_mempool);
3012 					goto skip_io;
3013 				}
3014 				for (l = j; l < k; l++)
3015 					remove_journal_node(ic, &section_node[l]);
3016 			}
3017 			spin_unlock_irq(&ic->endio_wait.lock);
3018 
3019 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3020 			for (l = j; l < k; l++) {
3021 				int r;
3022 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
3023 
3024 				if (
3025 #ifndef INTERNAL_VERIFY
3026 				    unlikely(from_replay) &&
3027 #endif
3028 				    ic->internal_hash) {
3029 					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
3030 					struct journal_sector *js = access_journal_data(ic, i, l);
3031 					void *js_page = integrity_identity(ic, (char *)js - offset_in_page(js));
3032 					unsigned js_offset = offset_in_page(js);
3033 
3034 					integrity_sector_checksum(ic, &ic->journal_ahash_req, sec + ((l - j) << ic->sb->log2_sectors_per_block),
3035 								  js_page, js_offset, test_tag);
3036 					if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
3037 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
3038 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
3039 					}
3040 				}
3041 
3042 				journal_entry_set_unused(je2);
3043 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
3044 							ic->tag_size, TAG_WRITE);
3045 				if (unlikely(r))
3046 					dm_integrity_io_error(ic, "reading tags", r);
3047 			}
3048 
3049 			atomic_inc(&comp.in_flight);
3050 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
3051 					  (k - j) << ic->sb->log2_sectors_per_block,
3052 					  get_data_sector(ic, area, offset),
3053 					  complete_copy_from_journal, io);
3054 skip_io:
3055 			j = next_loop;
3056 		}
3057 	}
3058 
3059 	dm_bufio_write_dirty_buffers_async(ic->bufio);
3060 
3061 	blk_finish_plug(&plug);
3062 
3063 	complete_journal_op(&comp);
3064 	wait_for_completion_io(&comp.comp);
3065 
3066 	dm_integrity_flush_buffers(ic, true);
3067 }
3068 
integrity_writer(struct work_struct * w)3069 static void integrity_writer(struct work_struct *w)
3070 {
3071 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
3072 	unsigned int write_start, write_sections;
3073 	unsigned int prev_free_sectors;
3074 
3075 	spin_lock_irq(&ic->endio_wait.lock);
3076 	write_start = ic->committed_section;
3077 	write_sections = ic->n_committed_sections;
3078 	spin_unlock_irq(&ic->endio_wait.lock);
3079 
3080 	if (!write_sections)
3081 		return;
3082 
3083 	do_journal_write(ic, write_start, write_sections, false);
3084 
3085 	spin_lock_irq(&ic->endio_wait.lock);
3086 
3087 	ic->committed_section += write_sections;
3088 	wraparound_section(ic, &ic->committed_section);
3089 	ic->n_committed_sections -= write_sections;
3090 
3091 	prev_free_sectors = ic->free_sectors;
3092 	ic->free_sectors += write_sections * ic->journal_section_entries;
3093 	if (unlikely(!prev_free_sectors))
3094 		wake_up_locked(&ic->endio_wait);
3095 
3096 	spin_unlock_irq(&ic->endio_wait.lock);
3097 }
3098 
recalc_write_super(struct dm_integrity_c * ic)3099 static void recalc_write_super(struct dm_integrity_c *ic)
3100 {
3101 	int r;
3102 
3103 	dm_integrity_flush_buffers(ic, false);
3104 	if (dm_integrity_failed(ic))
3105 		return;
3106 
3107 	r = sync_rw_sb(ic, REQ_OP_WRITE);
3108 	if (unlikely(r))
3109 		dm_integrity_io_error(ic, "writing superblock", r);
3110 }
3111 
integrity_recalc(struct work_struct * w)3112 static void integrity_recalc(struct work_struct *w)
3113 {
3114 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3115 	size_t recalc_tags_size;
3116 	u8 *recalc_buffer = NULL;
3117 	u8 *recalc_tags = NULL;
3118 	struct ahash_request *ahash_req = NULL;
3119 	struct dm_integrity_range range;
3120 	struct dm_io_request io_req;
3121 	struct dm_io_region io_loc;
3122 	sector_t area, offset;
3123 	sector_t metadata_block;
3124 	unsigned int metadata_offset;
3125 	sector_t logical_sector, n_sectors;
3126 	__u8 *t;
3127 	unsigned int i;
3128 	int r;
3129 	unsigned int super_counter = 0;
3130 	unsigned recalc_sectors = RECALC_SECTORS;
3131 
3132 retry:
3133 	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3134 	if (!recalc_buffer) {
3135 oom:
3136 		recalc_sectors >>= 1;
3137 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3138 			goto retry;
3139 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3140 		goto free_ret;
3141 	}
3142 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3143 	if (ic->internal_hash_digestsize > ic->tag_size)
3144 		recalc_tags_size += ic->internal_hash_digestsize - ic->tag_size;
3145 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3146 	if (!recalc_tags) {
3147 		kfree(recalc_buffer);
3148 		recalc_buffer = NULL;
3149 		goto oom;
3150 	}
3151 
3152 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3153 
3154 	spin_lock_irq(&ic->endio_wait.lock);
3155 
3156 next_chunk:
3157 
3158 	if (unlikely(dm_post_suspending(ic->ti)))
3159 		goto unlock_ret;
3160 
3161 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3162 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3163 		if (ic->mode == 'B') {
3164 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3165 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3166 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3167 		}
3168 		goto unlock_ret;
3169 	}
3170 
3171 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
3172 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3173 	if (!ic->meta_dev)
3174 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3175 
3176 	add_new_range_and_wait(ic, &range);
3177 	spin_unlock_irq(&ic->endio_wait.lock);
3178 	logical_sector = range.logical_sector;
3179 	n_sectors = range.n_sectors;
3180 
3181 	if (ic->mode == 'B') {
3182 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3183 			goto advance_and_next;
3184 
3185 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3186 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3187 			logical_sector += ic->sectors_per_block;
3188 			n_sectors -= ic->sectors_per_block;
3189 			cond_resched();
3190 		}
3191 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3192 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3193 			n_sectors -= ic->sectors_per_block;
3194 			cond_resched();
3195 		}
3196 		get_area_and_offset(ic, logical_sector, &area, &offset);
3197 	}
3198 
3199 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3200 
3201 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3202 		recalc_write_super(ic);
3203 		if (ic->mode == 'B')
3204 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3205 
3206 		super_counter = 0;
3207 	}
3208 
3209 	if (unlikely(dm_integrity_failed(ic)))
3210 		goto err;
3211 
3212 	io_req.bi_opf = REQ_OP_READ;
3213 	io_req.mem.type = DM_IO_KMEM;
3214 	io_req.mem.ptr.addr = recalc_buffer;
3215 	io_req.notify.fn = NULL;
3216 	io_req.client = ic->io;
3217 	io_loc.bdev = ic->dev->bdev;
3218 	io_loc.sector = get_data_sector(ic, area, offset);
3219 	io_loc.count = n_sectors;
3220 
3221 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3222 	if (unlikely(r)) {
3223 		dm_integrity_io_error(ic, "reading data", r);
3224 		goto err;
3225 	}
3226 
3227 	t = recalc_tags;
3228 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3229 		void *ptr = recalc_buffer + (i << SECTOR_SHIFT);
3230 		void *ptr_page = integrity_identity(ic, (char *)ptr - offset_in_page(ptr));
3231 		unsigned ptr_offset = offset_in_page(ptr);
3232 		integrity_sector_checksum(ic, &ahash_req, logical_sector + i, ptr_page, ptr_offset, t);
3233 		t += ic->tag_size;
3234 	}
3235 
3236 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3237 
3238 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3239 	if (unlikely(r)) {
3240 		dm_integrity_io_error(ic, "writing tags", r);
3241 		goto err;
3242 	}
3243 
3244 	if (ic->mode == 'B') {
3245 		sector_t start, end;
3246 
3247 		start = (range.logical_sector >>
3248 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3249 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3250 		end = ((range.logical_sector + range.n_sectors) >>
3251 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3252 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3253 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3254 	}
3255 
3256 advance_and_next:
3257 	cond_resched();
3258 
3259 	spin_lock_irq(&ic->endio_wait.lock);
3260 	remove_range_unlocked(ic, &range);
3261 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3262 	goto next_chunk;
3263 
3264 err:
3265 	remove_range(ic, &range);
3266 	goto free_ret;
3267 
3268 unlock_ret:
3269 	spin_unlock_irq(&ic->endio_wait.lock);
3270 
3271 	recalc_write_super(ic);
3272 
3273 free_ret:
3274 	kfree(recalc_buffer);
3275 	kvfree(recalc_tags);
3276 	mempool_free(ahash_req, &ic->ahash_req_pool);
3277 }
3278 
integrity_recalc_inline(struct work_struct * w)3279 static void integrity_recalc_inline(struct work_struct *w)
3280 {
3281 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3282 	size_t recalc_tags_size;
3283 	u8 *recalc_buffer = NULL;
3284 	u8 *recalc_tags = NULL;
3285 	struct ahash_request *ahash_req = NULL;
3286 	struct dm_integrity_range range;
3287 	struct bio *bio;
3288 	struct bio_integrity_payload *bip;
3289 	__u8 *t;
3290 	unsigned int i;
3291 	int r;
3292 	unsigned ret;
3293 	unsigned int super_counter = 0;
3294 	unsigned recalc_sectors = RECALC_SECTORS;
3295 
3296 retry:
3297 	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3298 	if (!recalc_buffer) {
3299 oom:
3300 		recalc_sectors >>= 1;
3301 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3302 			goto retry;
3303 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3304 		goto free_ret;
3305 	}
3306 
3307 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3308 	if (ic->internal_hash_digestsize > ic->tuple_size)
3309 		recalc_tags_size += ic->internal_hash_digestsize - ic->tuple_size;
3310 	recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3311 	if (!recalc_tags) {
3312 		kfree(recalc_buffer);
3313 		recalc_buffer = NULL;
3314 		goto oom;
3315 	}
3316 
3317 	spin_lock_irq(&ic->endio_wait.lock);
3318 
3319 next_chunk:
3320 	if (unlikely(dm_post_suspending(ic->ti)))
3321 		goto unlock_ret;
3322 
3323 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3324 	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3325 		goto unlock_ret;
3326 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3327 
3328 	add_new_range_and_wait(ic, &range);
3329 	spin_unlock_irq(&ic->endio_wait.lock);
3330 
3331 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3332 		recalc_write_super(ic);
3333 		super_counter = 0;
3334 	}
3335 
3336 	if (unlikely(dm_integrity_failed(ic)))
3337 		goto err;
3338 
3339 	DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3340 
3341 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3342 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3343 	bio_add_virt_nofail(bio, recalc_buffer,
3344 			range.n_sectors << SECTOR_SHIFT);
3345 	r = submit_bio_wait(bio);
3346 	bio_put(bio);
3347 	if (unlikely(r)) {
3348 		dm_integrity_io_error(ic, "reading data", r);
3349 		goto err;
3350 	}
3351 
3352 	t = recalc_tags;
3353 	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3354 		void *ptr = recalc_buffer + (i << SECTOR_SHIFT);
3355 		void *ptr_page = integrity_identity(ic, (char *)ptr - offset_in_page(ptr));
3356 		unsigned ptr_offset = offset_in_page(ptr);
3357 		memset(t, 0, ic->tuple_size);
3358 		integrity_sector_checksum(ic, &ahash_req, range.logical_sector + i, ptr_page, ptr_offset, t);
3359 		t += ic->tuple_size;
3360 	}
3361 
3362 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3363 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3364 	bio_add_virt_nofail(bio, recalc_buffer,
3365 			range.n_sectors << SECTOR_SHIFT);
3366 
3367 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3368 	if (unlikely(IS_ERR(bip))) {
3369 		bio_put(bio);
3370 		DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3371 		goto err;
3372 	}
3373 	ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3374 	if (unlikely(ret != t - recalc_tags)) {
3375 		bio_put(bio);
3376 		dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3377 		goto err;
3378 	}
3379 
3380 	r = submit_bio_wait(bio);
3381 	bio_put(bio);
3382 	if (unlikely(r)) {
3383 		dm_integrity_io_error(ic, "writing data", r);
3384 		goto err;
3385 	}
3386 
3387 	cond_resched();
3388 	spin_lock_irq(&ic->endio_wait.lock);
3389 	remove_range_unlocked(ic, &range);
3390 #ifdef CONFIG_64BIT
3391 	/* Paired with smp_load_acquire in dm_integrity_map_inline. */
3392 	smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3393 #else
3394 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3395 #endif
3396 	goto next_chunk;
3397 
3398 err:
3399 	remove_range(ic, &range);
3400 	goto free_ret;
3401 
3402 unlock_ret:
3403 	spin_unlock_irq(&ic->endio_wait.lock);
3404 
3405 	recalc_write_super(ic);
3406 
3407 free_ret:
3408 	kfree(recalc_buffer);
3409 	kfree(recalc_tags);
3410 	mempool_free(ahash_req, &ic->ahash_req_pool);
3411 }
3412 
bitmap_block_work(struct work_struct * w)3413 static void bitmap_block_work(struct work_struct *w)
3414 {
3415 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3416 	struct dm_integrity_c *ic = bbs->ic;
3417 	struct bio *bio;
3418 	struct bio_list bio_queue;
3419 	struct bio_list waiting;
3420 
3421 	bio_list_init(&waiting);
3422 
3423 	spin_lock(&bbs->bio_queue_lock);
3424 	bio_queue = bbs->bio_queue;
3425 	bio_list_init(&bbs->bio_queue);
3426 	spin_unlock(&bbs->bio_queue_lock);
3427 
3428 	while ((bio = bio_list_pop(&bio_queue))) {
3429 		struct dm_integrity_io *dio;
3430 
3431 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3432 
3433 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3434 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3435 			remove_range(ic, &dio->range);
3436 			INIT_WORK(&dio->work, integrity_bio_wait);
3437 			queue_work(ic->offload_wq, &dio->work);
3438 		} else {
3439 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3440 					dio->range.n_sectors, BITMAP_OP_SET);
3441 			bio_list_add(&waiting, bio);
3442 		}
3443 	}
3444 
3445 	if (bio_list_empty(&waiting))
3446 		return;
3447 
3448 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3449 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3450 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3451 
3452 	while ((bio = bio_list_pop(&waiting))) {
3453 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3454 
3455 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3456 				dio->range.n_sectors, BITMAP_OP_SET);
3457 
3458 		remove_range(ic, &dio->range);
3459 		INIT_WORK(&dio->work, integrity_bio_wait);
3460 		queue_work(ic->offload_wq, &dio->work);
3461 	}
3462 
3463 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3464 }
3465 
bitmap_flush_work(struct work_struct * work)3466 static void bitmap_flush_work(struct work_struct *work)
3467 {
3468 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3469 	struct dm_integrity_range range;
3470 	unsigned long limit;
3471 	struct bio *bio;
3472 
3473 	dm_integrity_flush_buffers(ic, false);
3474 
3475 	range.logical_sector = 0;
3476 	range.n_sectors = ic->provided_data_sectors;
3477 
3478 	spin_lock_irq(&ic->endio_wait.lock);
3479 	add_new_range_and_wait(ic, &range);
3480 	spin_unlock_irq(&ic->endio_wait.lock);
3481 
3482 	dm_integrity_flush_buffers(ic, true);
3483 
3484 	limit = ic->provided_data_sectors;
3485 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3486 		limit = le64_to_cpu(ic->sb->recalc_sector)
3487 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3488 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3489 	}
3490 	/*DEBUG_print("zeroing journal\n");*/
3491 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3492 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3493 
3494 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3495 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3496 
3497 	spin_lock_irq(&ic->endio_wait.lock);
3498 	remove_range_unlocked(ic, &range);
3499 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3500 		bio_endio(bio);
3501 		spin_unlock_irq(&ic->endio_wait.lock);
3502 		spin_lock_irq(&ic->endio_wait.lock);
3503 	}
3504 	spin_unlock_irq(&ic->endio_wait.lock);
3505 }
3506 
3507 
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)3508 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3509 			 unsigned int n_sections, unsigned char commit_seq)
3510 {
3511 	unsigned int i, j, n;
3512 
3513 	if (!n_sections)
3514 		return;
3515 
3516 	for (n = 0; n < n_sections; n++) {
3517 		i = start_section + n;
3518 		wraparound_section(ic, &i);
3519 		for (j = 0; j < ic->journal_section_sectors; j++) {
3520 			struct journal_sector *js = access_journal(ic, i, j);
3521 
3522 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3523 			memset(&js->sectors, 0, sizeof(js->sectors));
3524 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3525 		}
3526 		for (j = 0; j < ic->journal_section_entries; j++) {
3527 			struct journal_entry *je = access_journal_entry(ic, i, j);
3528 
3529 			journal_entry_set_unused(je);
3530 		}
3531 	}
3532 
3533 	write_journal(ic, start_section, n_sections);
3534 }
3535 
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3536 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3537 {
3538 	unsigned char k;
3539 
3540 	for (k = 0; k < N_COMMIT_IDS; k++) {
3541 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3542 			return k;
3543 	}
3544 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3545 	return -EIO;
3546 }
3547 
replay_journal(struct dm_integrity_c * ic)3548 static void replay_journal(struct dm_integrity_c *ic)
3549 {
3550 	unsigned int i, j;
3551 	bool used_commit_ids[N_COMMIT_IDS];
3552 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3553 	unsigned int write_start, write_sections;
3554 	unsigned int continue_section;
3555 	bool journal_empty;
3556 	unsigned char unused, last_used, want_commit_seq;
3557 
3558 	if (ic->mode == 'R')
3559 		return;
3560 
3561 	if (ic->journal_uptodate)
3562 		return;
3563 
3564 	last_used = 0;
3565 	write_start = 0;
3566 
3567 	if (!ic->just_formatted) {
3568 		DEBUG_print("reading journal\n");
3569 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3570 		if (ic->journal_io)
3571 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3572 		if (ic->journal_io) {
3573 			struct journal_completion crypt_comp;
3574 
3575 			crypt_comp.ic = ic;
3576 			init_completion(&crypt_comp.comp);
3577 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3578 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3579 			wait_for_completion(&crypt_comp.comp);
3580 		}
3581 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3582 	}
3583 
3584 	if (dm_integrity_failed(ic))
3585 		goto clear_journal;
3586 
3587 	journal_empty = true;
3588 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3589 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3590 	for (i = 0; i < ic->journal_sections; i++) {
3591 		for (j = 0; j < ic->journal_section_sectors; j++) {
3592 			int k;
3593 			struct journal_sector *js = access_journal(ic, i, j);
3594 
3595 			k = find_commit_seq(ic, i, j, js->commit_id);
3596 			if (k < 0)
3597 				goto clear_journal;
3598 			used_commit_ids[k] = true;
3599 			max_commit_id_sections[k] = i;
3600 		}
3601 		if (journal_empty) {
3602 			for (j = 0; j < ic->journal_section_entries; j++) {
3603 				struct journal_entry *je = access_journal_entry(ic, i, j);
3604 
3605 				if (!journal_entry_is_unused(je)) {
3606 					journal_empty = false;
3607 					break;
3608 				}
3609 			}
3610 		}
3611 	}
3612 
3613 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3614 		unused = N_COMMIT_IDS - 1;
3615 		while (unused && !used_commit_ids[unused - 1])
3616 			unused--;
3617 	} else {
3618 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3619 			if (!used_commit_ids[unused])
3620 				break;
3621 		if (unused == N_COMMIT_IDS) {
3622 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3623 			goto clear_journal;
3624 		}
3625 	}
3626 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3627 		    unused, used_commit_ids[0], used_commit_ids[1],
3628 		    used_commit_ids[2], used_commit_ids[3]);
3629 
3630 	last_used = prev_commit_seq(unused);
3631 	want_commit_seq = prev_commit_seq(last_used);
3632 
3633 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3634 		journal_empty = true;
3635 
3636 	write_start = max_commit_id_sections[last_used] + 1;
3637 	if (unlikely(write_start >= ic->journal_sections))
3638 		want_commit_seq = next_commit_seq(want_commit_seq);
3639 	wraparound_section(ic, &write_start);
3640 
3641 	i = write_start;
3642 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3643 		for (j = 0; j < ic->journal_section_sectors; j++) {
3644 			struct journal_sector *js = access_journal(ic, i, j);
3645 
3646 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3647 				/*
3648 				 * This could be caused by crash during writing.
3649 				 * We won't replay the inconsistent part of the
3650 				 * journal.
3651 				 */
3652 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3653 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3654 				goto brk;
3655 			}
3656 		}
3657 		i++;
3658 		if (unlikely(i >= ic->journal_sections))
3659 			want_commit_seq = next_commit_seq(want_commit_seq);
3660 		wraparound_section(ic, &i);
3661 	}
3662 brk:
3663 
3664 	if (!journal_empty) {
3665 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3666 			    write_sections, write_start, want_commit_seq);
3667 		do_journal_write(ic, write_start, write_sections, true);
3668 	}
3669 
3670 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3671 		continue_section = write_start;
3672 		ic->commit_seq = want_commit_seq;
3673 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3674 	} else {
3675 		unsigned int s;
3676 		unsigned char erase_seq;
3677 
3678 clear_journal:
3679 		DEBUG_print("clearing journal\n");
3680 
3681 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3682 		s = write_start;
3683 		init_journal(ic, s, 1, erase_seq);
3684 		s++;
3685 		wraparound_section(ic, &s);
3686 		if (ic->journal_sections >= 2) {
3687 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3688 			s += ic->journal_sections - 2;
3689 			wraparound_section(ic, &s);
3690 			init_journal(ic, s, 1, erase_seq);
3691 		}
3692 
3693 		continue_section = 0;
3694 		ic->commit_seq = next_commit_seq(erase_seq);
3695 	}
3696 
3697 	ic->committed_section = continue_section;
3698 	ic->n_committed_sections = 0;
3699 
3700 	ic->uncommitted_section = continue_section;
3701 	ic->n_uncommitted_sections = 0;
3702 
3703 	ic->free_section = continue_section;
3704 	ic->free_section_entry = 0;
3705 	ic->free_sectors = ic->journal_entries;
3706 
3707 	ic->journal_tree_root = RB_ROOT;
3708 	for (i = 0; i < ic->journal_entries; i++)
3709 		init_journal_node(&ic->journal_tree[i]);
3710 }
3711 
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3712 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3713 {
3714 	DEBUG_print("%s\n", __func__);
3715 
3716 	if (ic->mode == 'B') {
3717 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3718 		ic->synchronous_mode = 1;
3719 
3720 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3721 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3722 		flush_workqueue(ic->commit_wq);
3723 	}
3724 }
3725 
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3726 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3727 {
3728 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3729 
3730 	DEBUG_print("%s\n", __func__);
3731 
3732 	dm_integrity_enter_synchronous_mode(ic);
3733 
3734 	return NOTIFY_DONE;
3735 }
3736 
dm_integrity_postsuspend(struct dm_target * ti)3737 static void dm_integrity_postsuspend(struct dm_target *ti)
3738 {
3739 	struct dm_integrity_c *ic = ti->private;
3740 	int r;
3741 
3742 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3743 
3744 	timer_delete_sync(&ic->autocommit_timer);
3745 
3746 	if (ic->recalc_wq)
3747 		drain_workqueue(ic->recalc_wq);
3748 
3749 	if (ic->mode == 'B')
3750 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3751 
3752 	queue_work(ic->commit_wq, &ic->commit_work);
3753 	drain_workqueue(ic->commit_wq);
3754 
3755 	if (ic->mode == 'J') {
3756 		queue_work(ic->writer_wq, &ic->writer_work);
3757 		drain_workqueue(ic->writer_wq);
3758 		dm_integrity_flush_buffers(ic, true);
3759 		if (ic->wrote_to_journal) {
3760 			init_journal(ic, ic->free_section,
3761 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3762 			if (ic->free_section) {
3763 				init_journal(ic, 0, ic->free_section,
3764 					     next_commit_seq(ic->commit_seq));
3765 			}
3766 		}
3767 	}
3768 
3769 	if (ic->mode == 'B') {
3770 		dm_integrity_flush_buffers(ic, true);
3771 #if 1
3772 		/* set to 0 to test bitmap replay code */
3773 		init_journal(ic, 0, ic->journal_sections, 0);
3774 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3775 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3776 		if (unlikely(r))
3777 			dm_integrity_io_error(ic, "writing superblock", r);
3778 #endif
3779 	}
3780 
3781 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3782 
3783 	ic->journal_uptodate = true;
3784 }
3785 
dm_integrity_resume(struct dm_target * ti)3786 static void dm_integrity_resume(struct dm_target *ti)
3787 {
3788 	struct dm_integrity_c *ic = ti->private;
3789 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3790 	int r;
3791 
3792 	DEBUG_print("resume\n");
3793 
3794 	ic->wrote_to_journal = false;
3795 
3796 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3797 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3798 		    ic->mode == 'B' &&
3799 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3800 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3801 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3802 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3803 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3804 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3805 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3806 		}
3807 
3808 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3809 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3810 		if (unlikely(r))
3811 			dm_integrity_io_error(ic, "writing superblock", r);
3812 	}
3813 
3814 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3815 		DEBUG_print("resume dirty_bitmap\n");
3816 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3817 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3818 		if (ic->mode == 'B') {
3819 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3820 			    !ic->reset_recalculate_flag) {
3821 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3822 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3823 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3824 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3825 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3826 					ic->sb->recalc_sector = cpu_to_le64(0);
3827 				}
3828 			} else {
3829 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3830 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3831 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3832 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3833 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3834 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3835 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3836 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3837 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3838 				ic->sb->recalc_sector = cpu_to_le64(0);
3839 			}
3840 		} else {
3841 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3842 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3843 			    ic->reset_recalculate_flag) {
3844 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3845 				ic->sb->recalc_sector = cpu_to_le64(0);
3846 			}
3847 			init_journal(ic, 0, ic->journal_sections, 0);
3848 			replay_journal(ic);
3849 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3850 		}
3851 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3852 		if (unlikely(r))
3853 			dm_integrity_io_error(ic, "writing superblock", r);
3854 	} else {
3855 		replay_journal(ic);
3856 		if (ic->reset_recalculate_flag) {
3857 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3858 			ic->sb->recalc_sector = cpu_to_le64(0);
3859 		}
3860 		if (ic->mode == 'B') {
3861 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3862 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3863 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3864 			if (unlikely(r))
3865 				dm_integrity_io_error(ic, "writing superblock", r);
3866 
3867 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3868 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3869 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3870 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3871 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3872 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3873 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3874 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3875 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3876 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3877 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3878 			}
3879 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3880 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3881 		}
3882 	}
3883 
3884 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3885 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3886 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3887 
3888 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3889 		if (recalc_pos < ic->provided_data_sectors) {
3890 			queue_work(ic->recalc_wq, &ic->recalc_work);
3891 		} else if (recalc_pos > ic->provided_data_sectors) {
3892 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3893 			recalc_write_super(ic);
3894 		}
3895 	}
3896 
3897 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3898 	ic->reboot_notifier.next = NULL;
3899 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3900 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3901 
3902 #if 0
3903 	/* set to 1 to stress test synchronous mode */
3904 	dm_integrity_enter_synchronous_mode(ic);
3905 #endif
3906 }
3907 
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3908 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3909 				unsigned int status_flags, char *result, unsigned int maxlen)
3910 {
3911 	struct dm_integrity_c *ic = ti->private;
3912 	unsigned int arg_count;
3913 	size_t sz = 0;
3914 
3915 	switch (type) {
3916 	case STATUSTYPE_INFO:
3917 		DMEMIT("%llu %llu",
3918 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3919 			ic->provided_data_sectors);
3920 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3921 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3922 		else
3923 			DMEMIT(" -");
3924 		break;
3925 
3926 	case STATUSTYPE_TABLE: {
3927 		arg_count = 1; /* buffer_sectors */
3928 		arg_count += !!ic->meta_dev;
3929 		arg_count += ic->sectors_per_block != 1;
3930 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3931 		arg_count += ic->reset_recalculate_flag;
3932 		arg_count += ic->discard;
3933 		arg_count += ic->mode != 'I'; /* interleave_sectors */
3934 		arg_count += ic->mode == 'J'; /* journal_sectors */
3935 		arg_count += ic->mode == 'J'; /* journal_watermark */
3936 		arg_count += ic->mode == 'J'; /* commit_time */
3937 		arg_count += ic->mode == 'B'; /* sectors_per_bit */
3938 		arg_count += ic->mode == 'B'; /* bitmap_flush_interval */
3939 		arg_count += !!ic->internal_hash_alg.alg_string;
3940 		arg_count += !!ic->journal_crypt_alg.alg_string;
3941 		arg_count += !!ic->journal_mac_alg.alg_string;
3942 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3943 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3944 		arg_count += ic->legacy_recalculate;
3945 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3946 		       ic->tag_size, ic->mode, arg_count);
3947 		if (ic->meta_dev)
3948 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3949 		if (ic->sectors_per_block != 1)
3950 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3951 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3952 			DMEMIT(" recalculate");
3953 		if (ic->reset_recalculate_flag)
3954 			DMEMIT(" reset_recalculate");
3955 		if (ic->discard)
3956 			DMEMIT(" allow_discards");
3957 		if (ic->mode != 'I')
3958 			DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3959 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3960 		if (ic->mode == 'J') {
3961 			__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3962 
3963 			watermark_percentage += ic->journal_entries / 2;
3964 			do_div(watermark_percentage, ic->journal_entries);
3965 			DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3966 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3967 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3968 		}
3969 		if (ic->mode == 'B') {
3970 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3971 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3972 		}
3973 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3974 			DMEMIT(" fix_padding");
3975 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3976 			DMEMIT(" fix_hmac");
3977 		if (ic->legacy_recalculate)
3978 			DMEMIT(" legacy_recalculate");
3979 
3980 #define EMIT_ALG(a, n)							\
3981 		do {							\
3982 			if (ic->a.alg_string) {				\
3983 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3984 				if (ic->a.key_string)			\
3985 					DMEMIT(":%s", ic->a.key_string);\
3986 			}						\
3987 		} while (0)
3988 		EMIT_ALG(internal_hash_alg, "internal_hash");
3989 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3990 		EMIT_ALG(journal_mac_alg, "journal_mac");
3991 		break;
3992 	}
3993 	case STATUSTYPE_IMA:
3994 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3995 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3996 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3997 
3998 		if (ic->meta_dev)
3999 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
4000 		if (ic->sectors_per_block != 1)
4001 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
4002 
4003 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
4004 		       'y' : 'n');
4005 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
4006 		DMEMIT(",fix_padding=%c",
4007 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
4008 		DMEMIT(",fix_hmac=%c",
4009 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
4010 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
4011 
4012 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
4013 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
4014 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
4015 		DMEMIT(";");
4016 		break;
4017 	}
4018 }
4019 
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4020 static int dm_integrity_iterate_devices(struct dm_target *ti,
4021 					iterate_devices_callout_fn fn, void *data)
4022 {
4023 	struct dm_integrity_c *ic = ti->private;
4024 
4025 	if (!ic->meta_dev)
4026 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
4027 	else
4028 		return fn(ti, ic->dev, 0, ti->len, data);
4029 }
4030 
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)4031 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
4032 {
4033 	struct dm_integrity_c *ic = ti->private;
4034 
4035 	if (ic->sectors_per_block > 1) {
4036 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
4037 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
4038 		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
4039 		limits->dma_alignment = limits->logical_block_size - 1;
4040 		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
4041 	}
4042 
4043 	if (!ic->internal_hash) {
4044 		struct blk_integrity *bi = &limits->integrity;
4045 
4046 		memset(bi, 0, sizeof(*bi));
4047 		bi->metadata_size = ic->tag_size;
4048 		bi->tag_size = bi->metadata_size;
4049 		bi->interval_exp =
4050 			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
4051 	}
4052 
4053 	limits->max_integrity_segments = USHRT_MAX;
4054 }
4055 
calculate_journal_section_size(struct dm_integrity_c * ic)4056 static void calculate_journal_section_size(struct dm_integrity_c *ic)
4057 {
4058 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
4059 
4060 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
4061 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
4062 					 JOURNAL_ENTRY_ROUNDUP);
4063 
4064 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
4065 		sector_space -= JOURNAL_MAC_PER_SECTOR;
4066 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
4067 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
4068 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
4069 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
4070 }
4071 
calculate_device_limits(struct dm_integrity_c * ic)4072 static int calculate_device_limits(struct dm_integrity_c *ic)
4073 {
4074 	__u64 initial_sectors;
4075 
4076 	calculate_journal_section_size(ic);
4077 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
4078 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
4079 		return -EINVAL;
4080 	ic->initial_sectors = initial_sectors;
4081 
4082 	if (ic->mode == 'I') {
4083 		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
4084 			return -EINVAL;
4085 	} else if (!ic->meta_dev) {
4086 		sector_t last_sector, last_area, last_offset;
4087 
4088 		/* we have to maintain excessive padding for compatibility with existing volumes */
4089 		__u64 metadata_run_padding =
4090 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
4091 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
4092 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
4093 
4094 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
4095 					    metadata_run_padding) >> SECTOR_SHIFT;
4096 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
4097 			ic->log2_metadata_run = __ffs(ic->metadata_run);
4098 		else
4099 			ic->log2_metadata_run = -1;
4100 
4101 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
4102 		last_sector = get_data_sector(ic, last_area, last_offset);
4103 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
4104 			return -EINVAL;
4105 	} else {
4106 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4107 
4108 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
4109 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
4110 		meta_size <<= ic->log2_buffer_sectors;
4111 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
4112 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
4113 			return -EINVAL;
4114 		ic->metadata_run = 1;
4115 		ic->log2_metadata_run = 0;
4116 	}
4117 
4118 	return 0;
4119 }
4120 
get_provided_data_sectors(struct dm_integrity_c * ic)4121 static void get_provided_data_sectors(struct dm_integrity_c *ic)
4122 {
4123 	if (!ic->meta_dev) {
4124 		int test_bit;
4125 
4126 		ic->provided_data_sectors = 0;
4127 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
4128 			__u64 prev_data_sectors = ic->provided_data_sectors;
4129 
4130 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
4131 			if (calculate_device_limits(ic))
4132 				ic->provided_data_sectors = prev_data_sectors;
4133 		}
4134 	} else {
4135 		ic->provided_data_sectors = ic->data_device_sectors;
4136 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4137 	}
4138 }
4139 
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)4140 static int initialize_superblock(struct dm_integrity_c *ic,
4141 				 unsigned int journal_sectors, unsigned int interleave_sectors)
4142 {
4143 	unsigned int journal_sections;
4144 	int test_bit;
4145 
4146 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4147 	memcpy(ic->sb->magic, SB_MAGIC, 8);
4148 	if (ic->mode == 'I')
4149 		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4150 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4151 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4152 	if (ic->journal_mac_alg.alg_string)
4153 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4154 
4155 	calculate_journal_section_size(ic);
4156 	journal_sections = journal_sectors / ic->journal_section_sectors;
4157 	if (!journal_sections)
4158 		journal_sections = 1;
4159 	if (ic->mode == 'I')
4160 		journal_sections = 0;
4161 
4162 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4163 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4164 		get_random_bytes(ic->sb->salt, SALT_SIZE);
4165 	}
4166 
4167 	if (!ic->meta_dev) {
4168 		if (ic->fix_padding)
4169 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4170 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
4171 		if (!interleave_sectors)
4172 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4173 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4174 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4175 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4176 
4177 		get_provided_data_sectors(ic);
4178 		if (!ic->provided_data_sectors)
4179 			return -EINVAL;
4180 	} else {
4181 		ic->sb->log2_interleave_sectors = 0;
4182 
4183 		get_provided_data_sectors(ic);
4184 		if (!ic->provided_data_sectors)
4185 			return -EINVAL;
4186 
4187 try_smaller_buffer:
4188 		ic->sb->journal_sections = cpu_to_le32(0);
4189 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4190 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4191 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4192 
4193 			if (test_journal_sections > journal_sections)
4194 				continue;
4195 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4196 			if (calculate_device_limits(ic))
4197 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4198 
4199 		}
4200 		if (!le32_to_cpu(ic->sb->journal_sections)) {
4201 			if (ic->log2_buffer_sectors > 3) {
4202 				ic->log2_buffer_sectors--;
4203 				goto try_smaller_buffer;
4204 			}
4205 			return -EINVAL;
4206 		}
4207 	}
4208 
4209 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4210 
4211 	sb_set_version(ic);
4212 
4213 	return 0;
4214 }
4215 
dm_integrity_free_page_list(struct page_list * pl)4216 static void dm_integrity_free_page_list(struct page_list *pl)
4217 {
4218 	unsigned int i;
4219 
4220 	if (!pl)
4221 		return;
4222 	for (i = 0; pl[i].page; i++)
4223 		__free_page(pl[i].page);
4224 	kvfree(pl);
4225 }
4226 
dm_integrity_alloc_page_list(unsigned int n_pages)4227 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4228 {
4229 	struct page_list *pl;
4230 	unsigned int i;
4231 
4232 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4233 	if (!pl)
4234 		return NULL;
4235 
4236 	for (i = 0; i < n_pages; i++) {
4237 		pl[i].page = alloc_page(GFP_KERNEL);
4238 		if (!pl[i].page) {
4239 			dm_integrity_free_page_list(pl);
4240 			return NULL;
4241 		}
4242 		if (i)
4243 			pl[i - 1].next = &pl[i];
4244 	}
4245 	pl[i].page = NULL;
4246 	pl[i].next = NULL;
4247 
4248 	return pl;
4249 }
4250 
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)4251 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4252 {
4253 	unsigned int i;
4254 
4255 	for (i = 0; i < ic->journal_sections; i++)
4256 		kvfree(sl[i]);
4257 	kvfree(sl);
4258 }
4259 
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)4260 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4261 								   struct page_list *pl)
4262 {
4263 	struct scatterlist **sl;
4264 	unsigned int i;
4265 
4266 	sl = kvmalloc_array(ic->journal_sections,
4267 			    sizeof(struct scatterlist *),
4268 			    GFP_KERNEL | __GFP_ZERO);
4269 	if (!sl)
4270 		return NULL;
4271 
4272 	for (i = 0; i < ic->journal_sections; i++) {
4273 		struct scatterlist *s;
4274 		unsigned int start_index, start_offset;
4275 		unsigned int end_index, end_offset;
4276 		unsigned int n_pages;
4277 		unsigned int idx;
4278 
4279 		page_list_location(ic, i, 0, &start_index, &start_offset);
4280 		page_list_location(ic, i, ic->journal_section_sectors - 1,
4281 				   &end_index, &end_offset);
4282 
4283 		n_pages = (end_index - start_index + 1);
4284 
4285 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4286 				   GFP_KERNEL);
4287 		if (!s) {
4288 			dm_integrity_free_journal_scatterlist(ic, sl);
4289 			return NULL;
4290 		}
4291 
4292 		sg_init_table(s, n_pages);
4293 		for (idx = start_index; idx <= end_index; idx++) {
4294 			char *va = lowmem_page_address(pl[idx].page);
4295 			unsigned int start = 0, end = PAGE_SIZE;
4296 
4297 			if (idx == start_index)
4298 				start = start_offset;
4299 			if (idx == end_index)
4300 				end = end_offset + (1 << SECTOR_SHIFT);
4301 			sg_set_buf(&s[idx - start_index], va + start, end - start);
4302 		}
4303 
4304 		sl[i] = s;
4305 	}
4306 
4307 	return sl;
4308 }
4309 
free_alg(struct alg_spec * a)4310 static void free_alg(struct alg_spec *a)
4311 {
4312 	kfree_sensitive(a->alg_string);
4313 	kfree_sensitive(a->key);
4314 	memset(a, 0, sizeof(*a));
4315 }
4316 
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)4317 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4318 {
4319 	char *k;
4320 
4321 	free_alg(a);
4322 
4323 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4324 	if (!a->alg_string)
4325 		goto nomem;
4326 
4327 	k = strchr(a->alg_string, ':');
4328 	if (k) {
4329 		*k = 0;
4330 		a->key_string = k + 1;
4331 		if (strlen(a->key_string) & 1)
4332 			goto inval;
4333 
4334 		a->key_size = strlen(a->key_string) / 2;
4335 		a->key = kmalloc(a->key_size, GFP_KERNEL);
4336 		if (!a->key)
4337 			goto nomem;
4338 		if (hex2bin(a->key, a->key_string, a->key_size))
4339 			goto inval;
4340 	}
4341 
4342 	return 0;
4343 inval:
4344 	*error = error_inval;
4345 	return -EINVAL;
4346 nomem:
4347 	*error = "Out of memory for an argument";
4348 	return -ENOMEM;
4349 }
4350 
get_mac(struct crypto_shash ** shash,struct crypto_ahash ** ahash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)4351 static int get_mac(struct crypto_shash **shash, struct crypto_ahash **ahash,
4352 		   struct alg_spec *a, char **error, char *error_alg, char *error_key)
4353 {
4354 	int r;
4355 
4356 	if (a->alg_string) {
4357 		if (shash) {
4358 			*shash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4359 			if (IS_ERR(*shash)) {
4360 				*shash = NULL;
4361 				goto try_ahash;
4362 			}
4363 			if (a->key) {
4364 				r = crypto_shash_setkey(*shash, a->key, a->key_size);
4365 				if (r) {
4366 					*error = error_key;
4367 					return r;
4368 				}
4369 			} else if (crypto_shash_get_flags(*shash) & CRYPTO_TFM_NEED_KEY) {
4370 				*error = error_key;
4371 				return -ENOKEY;
4372 			}
4373 			return 0;
4374 		}
4375 try_ahash:
4376 		if (ahash) {
4377 			*ahash = crypto_alloc_ahash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4378 			if (IS_ERR(*ahash)) {
4379 				*error = error_alg;
4380 				r = PTR_ERR(*ahash);
4381 				*ahash = NULL;
4382 				return r;
4383 			}
4384 			if (a->key) {
4385 				r = crypto_ahash_setkey(*ahash, a->key, a->key_size);
4386 				if (r) {
4387 					*error = error_key;
4388 					return r;
4389 				}
4390 			} else if (crypto_ahash_get_flags(*ahash) & CRYPTO_TFM_NEED_KEY) {
4391 				*error = error_key;
4392 				return -ENOKEY;
4393 			}
4394 			return 0;
4395 		}
4396 		*error = error_alg;
4397 		return -ENOENT;
4398 	}
4399 
4400 	return 0;
4401 }
4402 
create_journal(struct dm_integrity_c * ic,char ** error)4403 static int create_journal(struct dm_integrity_c *ic, char **error)
4404 {
4405 	int r = 0;
4406 	unsigned int i;
4407 	__u64 journal_pages, journal_desc_size, journal_tree_size;
4408 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4409 	struct skcipher_request *req = NULL;
4410 
4411 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4412 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4413 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4414 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4415 
4416 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4417 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4418 	journal_desc_size = journal_pages * sizeof(struct page_list);
4419 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4420 		*error = "Journal doesn't fit into memory";
4421 		r = -ENOMEM;
4422 		goto bad;
4423 	}
4424 	ic->journal_pages = journal_pages;
4425 
4426 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4427 	if (!ic->journal) {
4428 		*error = "Could not allocate memory for journal";
4429 		r = -ENOMEM;
4430 		goto bad;
4431 	}
4432 	if (ic->journal_crypt_alg.alg_string) {
4433 		unsigned int ivsize, blocksize;
4434 		struct journal_completion comp;
4435 
4436 		comp.ic = ic;
4437 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4438 		if (IS_ERR(ic->journal_crypt)) {
4439 			*error = "Invalid journal cipher";
4440 			r = PTR_ERR(ic->journal_crypt);
4441 			ic->journal_crypt = NULL;
4442 			goto bad;
4443 		}
4444 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4445 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4446 
4447 		if (ic->journal_crypt_alg.key) {
4448 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4449 						   ic->journal_crypt_alg.key_size);
4450 			if (r) {
4451 				*error = "Error setting encryption key";
4452 				goto bad;
4453 			}
4454 		}
4455 		DEBUG_print("cipher %s, block size %u iv size %u\n",
4456 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4457 
4458 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4459 		if (!ic->journal_io) {
4460 			*error = "Could not allocate memory for journal io";
4461 			r = -ENOMEM;
4462 			goto bad;
4463 		}
4464 
4465 		if (blocksize == 1) {
4466 			struct scatterlist *sg;
4467 
4468 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4469 			if (!req) {
4470 				*error = "Could not allocate crypt request";
4471 				r = -ENOMEM;
4472 				goto bad;
4473 			}
4474 
4475 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4476 			if (!crypt_iv) {
4477 				*error = "Could not allocate iv";
4478 				r = -ENOMEM;
4479 				goto bad;
4480 			}
4481 
4482 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4483 			if (!ic->journal_xor) {
4484 				*error = "Could not allocate memory for journal xor";
4485 				r = -ENOMEM;
4486 				goto bad;
4487 			}
4488 
4489 			sg = kvmalloc_array(ic->journal_pages + 1,
4490 					    sizeof(struct scatterlist),
4491 					    GFP_KERNEL);
4492 			if (!sg) {
4493 				*error = "Unable to allocate sg list";
4494 				r = -ENOMEM;
4495 				goto bad;
4496 			}
4497 			sg_init_table(sg, ic->journal_pages + 1);
4498 			for (i = 0; i < ic->journal_pages; i++) {
4499 				char *va = lowmem_page_address(ic->journal_xor[i].page);
4500 
4501 				clear_page(va);
4502 				sg_set_buf(&sg[i], va, PAGE_SIZE);
4503 			}
4504 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4505 
4506 			skcipher_request_set_crypt(req, sg, sg,
4507 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4508 			init_completion(&comp.comp);
4509 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4510 			if (do_crypt(true, req, &comp))
4511 				wait_for_completion(&comp.comp);
4512 			kvfree(sg);
4513 			r = dm_integrity_failed(ic);
4514 			if (r) {
4515 				*error = "Unable to encrypt journal";
4516 				goto bad;
4517 			}
4518 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4519 
4520 			crypto_free_skcipher(ic->journal_crypt);
4521 			ic->journal_crypt = NULL;
4522 		} else {
4523 			unsigned int crypt_len = roundup(ivsize, blocksize);
4524 
4525 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4526 			if (!req) {
4527 				*error = "Could not allocate crypt request";
4528 				r = -ENOMEM;
4529 				goto bad;
4530 			}
4531 
4532 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4533 			if (!crypt_iv) {
4534 				*error = "Could not allocate iv";
4535 				r = -ENOMEM;
4536 				goto bad;
4537 			}
4538 
4539 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4540 			if (!crypt_data) {
4541 				*error = "Unable to allocate crypt data";
4542 				r = -ENOMEM;
4543 				goto bad;
4544 			}
4545 
4546 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4547 			if (!ic->journal_scatterlist) {
4548 				*error = "Unable to allocate sg list";
4549 				r = -ENOMEM;
4550 				goto bad;
4551 			}
4552 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4553 			if (!ic->journal_io_scatterlist) {
4554 				*error = "Unable to allocate sg list";
4555 				r = -ENOMEM;
4556 				goto bad;
4557 			}
4558 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4559 							 sizeof(struct skcipher_request *),
4560 							 GFP_KERNEL | __GFP_ZERO);
4561 			if (!ic->sk_requests) {
4562 				*error = "Unable to allocate sk requests";
4563 				r = -ENOMEM;
4564 				goto bad;
4565 			}
4566 			for (i = 0; i < ic->journal_sections; i++) {
4567 				struct scatterlist sg;
4568 				struct skcipher_request *section_req;
4569 				__le32 section_le = cpu_to_le32(i);
4570 
4571 				memset(crypt_iv, 0x00, ivsize);
4572 				memset(crypt_data, 0x00, crypt_len);
4573 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4574 
4575 				sg_init_one(&sg, crypt_data, crypt_len);
4576 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4577 				init_completion(&comp.comp);
4578 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4579 				if (do_crypt(true, req, &comp))
4580 					wait_for_completion(&comp.comp);
4581 
4582 				r = dm_integrity_failed(ic);
4583 				if (r) {
4584 					*error = "Unable to generate iv";
4585 					goto bad;
4586 				}
4587 
4588 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4589 				if (!section_req) {
4590 					*error = "Unable to allocate crypt request";
4591 					r = -ENOMEM;
4592 					goto bad;
4593 				}
4594 				section_req->iv = kmalloc_array(ivsize, 2,
4595 								GFP_KERNEL);
4596 				if (!section_req->iv) {
4597 					skcipher_request_free(section_req);
4598 					*error = "Unable to allocate iv";
4599 					r = -ENOMEM;
4600 					goto bad;
4601 				}
4602 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4603 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4604 				ic->sk_requests[i] = section_req;
4605 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4606 			}
4607 		}
4608 	}
4609 
4610 	for (i = 0; i < N_COMMIT_IDS; i++) {
4611 		unsigned int j;
4612 
4613 retest_commit_id:
4614 		for (j = 0; j < i; j++) {
4615 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4616 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4617 				goto retest_commit_id;
4618 			}
4619 		}
4620 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4621 	}
4622 
4623 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4624 	if (journal_tree_size > ULONG_MAX) {
4625 		*error = "Journal doesn't fit into memory";
4626 		r = -ENOMEM;
4627 		goto bad;
4628 	}
4629 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4630 	if (!ic->journal_tree) {
4631 		*error = "Could not allocate memory for journal tree";
4632 		r = -ENOMEM;
4633 	}
4634 bad:
4635 	kfree(crypt_data);
4636 	kfree(crypt_iv);
4637 	skcipher_request_free(req);
4638 
4639 	return r;
4640 }
4641 
4642 /*
4643  * Construct a integrity mapping
4644  *
4645  * Arguments:
4646  *	device
4647  *	offset from the start of the device
4648  *	tag size
4649  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4650  *	number of optional arguments
4651  *	optional arguments:
4652  *		journal_sectors
4653  *		interleave_sectors
4654  *		buffer_sectors
4655  *		journal_watermark
4656  *		commit_time
4657  *		meta_device
4658  *		block_size
4659  *		sectors_per_bit
4660  *		bitmap_flush_interval
4661  *		internal_hash
4662  *		journal_crypt
4663  *		journal_mac
4664  *		recalculate
4665  */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4666 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4667 {
4668 	struct dm_integrity_c *ic;
4669 	char dummy;
4670 	int r;
4671 	unsigned int extra_args;
4672 	struct dm_arg_set as;
4673 	static const struct dm_arg _args[] = {
4674 		{0, 18, "Invalid number of feature args"},
4675 	};
4676 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4677 	bool should_write_sb;
4678 	__u64 threshold;
4679 	unsigned long long start;
4680 	__s8 log2_sectors_per_bitmap_bit = -1;
4681 	__s8 log2_blocks_per_bitmap_bit;
4682 	__u64 bits_in_journal;
4683 	__u64 n_bitmap_bits;
4684 
4685 #define DIRECT_ARGUMENTS	4
4686 
4687 	if (argc <= DIRECT_ARGUMENTS) {
4688 		ti->error = "Invalid argument count";
4689 		return -EINVAL;
4690 	}
4691 
4692 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4693 	if (!ic) {
4694 		ti->error = "Cannot allocate integrity context";
4695 		return -ENOMEM;
4696 	}
4697 	ti->private = ic;
4698 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4699 	ic->ti = ti;
4700 
4701 	ic->in_progress = RB_ROOT;
4702 	INIT_LIST_HEAD(&ic->wait_list);
4703 	init_waitqueue_head(&ic->endio_wait);
4704 	bio_list_init(&ic->flush_bio_list);
4705 	init_waitqueue_head(&ic->copy_to_journal_wait);
4706 	init_completion(&ic->crypto_backoff);
4707 	atomic64_set(&ic->number_of_mismatches, 0);
4708 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4709 
4710 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4711 	if (r) {
4712 		ti->error = "Device lookup failed";
4713 		goto bad;
4714 	}
4715 
4716 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4717 		ti->error = "Invalid starting offset";
4718 		r = -EINVAL;
4719 		goto bad;
4720 	}
4721 	ic->start = start;
4722 
4723 	if (strcmp(argv[2], "-")) {
4724 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4725 			ti->error = "Invalid tag size";
4726 			r = -EINVAL;
4727 			goto bad;
4728 		}
4729 	}
4730 
4731 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4732 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4733 	    !strcmp(argv[3], "I")) {
4734 		ic->mode = argv[3][0];
4735 	} else {
4736 		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4737 		r = -EINVAL;
4738 		goto bad;
4739 	}
4740 
4741 	journal_sectors = 0;
4742 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4743 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4744 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4745 	sync_msec = DEFAULT_SYNC_MSEC;
4746 	ic->sectors_per_block = 1;
4747 
4748 	as.argc = argc - DIRECT_ARGUMENTS;
4749 	as.argv = argv + DIRECT_ARGUMENTS;
4750 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4751 	if (r)
4752 		goto bad;
4753 
4754 	while (extra_args--) {
4755 		const char *opt_string;
4756 		unsigned int val;
4757 		unsigned long long llval;
4758 
4759 		opt_string = dm_shift_arg(&as);
4760 		if (!opt_string) {
4761 			r = -EINVAL;
4762 			ti->error = "Not enough feature arguments";
4763 			goto bad;
4764 		}
4765 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4766 			journal_sectors = val ? val : 1;
4767 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4768 			interleave_sectors = val;
4769 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4770 			buffer_sectors = val;
4771 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4772 			journal_watermark = val;
4773 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4774 			sync_msec = val;
4775 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4776 			if (ic->meta_dev) {
4777 				dm_put_device(ti, ic->meta_dev);
4778 				ic->meta_dev = NULL;
4779 			}
4780 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4781 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4782 			if (r) {
4783 				ti->error = "Device lookup failed";
4784 				goto bad;
4785 			}
4786 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4787 			if (val < 1 << SECTOR_SHIFT ||
4788 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4789 			    (val & (val - 1))) {
4790 				r = -EINVAL;
4791 				ti->error = "Invalid block_size argument";
4792 				goto bad;
4793 			}
4794 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4795 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4796 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4797 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4798 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4799 				r = -EINVAL;
4800 				ti->error = "Invalid bitmap_flush_interval argument";
4801 				goto bad;
4802 			}
4803 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4804 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4805 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4806 					    "Invalid internal_hash argument");
4807 			if (r)
4808 				goto bad;
4809 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4810 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4811 					    "Invalid journal_crypt argument");
4812 			if (r)
4813 				goto bad;
4814 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4815 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4816 					    "Invalid journal_mac argument");
4817 			if (r)
4818 				goto bad;
4819 		} else if (!strcmp(opt_string, "recalculate")) {
4820 			ic->recalculate_flag = true;
4821 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4822 			ic->recalculate_flag = true;
4823 			ic->reset_recalculate_flag = true;
4824 		} else if (!strcmp(opt_string, "allow_discards")) {
4825 			ic->discard = true;
4826 		} else if (!strcmp(opt_string, "fix_padding")) {
4827 			ic->fix_padding = true;
4828 		} else if (!strcmp(opt_string, "fix_hmac")) {
4829 			ic->fix_hmac = true;
4830 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4831 			ic->legacy_recalculate = true;
4832 		} else {
4833 			r = -EINVAL;
4834 			ti->error = "Invalid argument";
4835 			goto bad;
4836 		}
4837 	}
4838 
4839 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4840 	if (!ic->meta_dev)
4841 		ic->meta_device_sectors = ic->data_device_sectors;
4842 	else
4843 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4844 
4845 	if (!journal_sectors) {
4846 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4847 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4848 	}
4849 
4850 	if (!buffer_sectors)
4851 		buffer_sectors = 1;
4852 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4853 
4854 	r = get_mac(&ic->internal_shash, &ic->internal_ahash, &ic->internal_hash_alg, &ti->error,
4855 		    "Invalid internal hash", "Error setting internal hash key");
4856 	if (r)
4857 		goto bad;
4858 	if (ic->internal_shash) {
4859 		ic->internal_hash = true;
4860 		ic->internal_hash_digestsize = crypto_shash_digestsize(ic->internal_shash);
4861 	}
4862 	if (ic->internal_ahash) {
4863 		ic->internal_hash = true;
4864 		ic->internal_hash_digestsize = crypto_ahash_digestsize(ic->internal_ahash);
4865 		r = mempool_init_kmalloc_pool(&ic->ahash_req_pool, AHASH_MEMPOOL,
4866 					      sizeof(struct ahash_request) + crypto_ahash_reqsize(ic->internal_ahash));
4867 		if (r) {
4868 			ti->error = "Cannot allocate mempool";
4869 			goto bad;
4870 		}
4871 	}
4872 
4873 	r = get_mac(&ic->journal_mac, NULL, &ic->journal_mac_alg, &ti->error,
4874 		    "Invalid journal mac", "Error setting journal mac key");
4875 	if (r)
4876 		goto bad;
4877 
4878 	if (!ic->tag_size) {
4879 		if (!ic->internal_hash) {
4880 			ti->error = "Unknown tag size";
4881 			r = -EINVAL;
4882 			goto bad;
4883 		}
4884 		ic->tag_size = ic->internal_hash_digestsize;
4885 	}
4886 	if (ic->tag_size > MAX_TAG_SIZE) {
4887 		ti->error = "Too big tag size";
4888 		r = -EINVAL;
4889 		goto bad;
4890 	}
4891 	if (!(ic->tag_size & (ic->tag_size - 1)))
4892 		ic->log2_tag_size = __ffs(ic->tag_size);
4893 	else
4894 		ic->log2_tag_size = -1;
4895 
4896 	if (ic->mode == 'I') {
4897 		struct blk_integrity *bi;
4898 		if (ic->meta_dev) {
4899 			r = -EINVAL;
4900 			ti->error = "Metadata device not supported in inline mode";
4901 			goto bad;
4902 		}
4903 		if (!ic->internal_hash_alg.alg_string) {
4904 			r = -EINVAL;
4905 			ti->error = "Internal hash not set in inline mode";
4906 			goto bad;
4907 		}
4908 		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4909 			r = -EINVAL;
4910 			ti->error = "Journal crypt not supported in inline mode";
4911 			goto bad;
4912 		}
4913 		if (ic->discard) {
4914 			r = -EINVAL;
4915 			ti->error = "Discards not supported in inline mode";
4916 			goto bad;
4917 		}
4918 		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4919 		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4920 			r = -EINVAL;
4921 			ti->error = "Integrity profile not supported";
4922 			goto bad;
4923 		}
4924 		/*printk("tag_size: %u, metadata_size: %u\n", bi->tag_size, bi->metadata_size);*/
4925 		if (bi->metadata_size < ic->tag_size) {
4926 			r = -EINVAL;
4927 			ti->error = "The integrity profile is smaller than tag size";
4928 			goto bad;
4929 		}
4930 		if ((unsigned long)bi->metadata_size > PAGE_SIZE / 2) {
4931 			r = -EINVAL;
4932 			ti->error = "Too big tuple size";
4933 			goto bad;
4934 		}
4935 		ic->tuple_size = bi->metadata_size;
4936 		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4937 			r = -EINVAL;
4938 			ti->error = "Integrity profile sector size mismatch";
4939 			goto bad;
4940 		}
4941 	}
4942 
4943 	if (ic->mode == 'B' && !ic->internal_hash) {
4944 		r = -EINVAL;
4945 		ti->error = "Bitmap mode can be only used with internal hash";
4946 		goto bad;
4947 	}
4948 
4949 	if (ic->discard && !ic->internal_hash) {
4950 		r = -EINVAL;
4951 		ti->error = "Discard can be only used with internal hash";
4952 		goto bad;
4953 	}
4954 
4955 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4956 	ic->autocommit_msec = sync_msec;
4957 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4958 
4959 	ic->io = dm_io_client_create();
4960 	if (IS_ERR(ic->io)) {
4961 		r = PTR_ERR(ic->io);
4962 		ic->io = NULL;
4963 		ti->error = "Cannot allocate dm io";
4964 		goto bad;
4965 	}
4966 
4967 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4968 	if (r) {
4969 		ti->error = "Cannot allocate mempool";
4970 		goto bad;
4971 	}
4972 
4973 	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4974 	if (r) {
4975 		ti->error = "Cannot allocate mempool";
4976 		goto bad;
4977 	}
4978 
4979 	if (ic->mode == 'I') {
4980 		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4981 		if (r) {
4982 			ti->error = "Cannot allocate bio set";
4983 			goto bad;
4984 		}
4985 		r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4986 		if (r) {
4987 			ti->error = "Cannot allocate bio set";
4988 			goto bad;
4989 		}
4990 	}
4991 
4992 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4993 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4994 	if (!ic->metadata_wq) {
4995 		ti->error = "Cannot allocate workqueue";
4996 		r = -ENOMEM;
4997 		goto bad;
4998 	}
4999 
5000 	/*
5001 	 * If this workqueue weren't ordered, it would cause bio reordering
5002 	 * and reduced performance.
5003 	 */
5004 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
5005 	if (!ic->wait_wq) {
5006 		ti->error = "Cannot allocate workqueue";
5007 		r = -ENOMEM;
5008 		goto bad;
5009 	}
5010 
5011 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
5012 					  METADATA_WORKQUEUE_MAX_ACTIVE);
5013 	if (!ic->offload_wq) {
5014 		ti->error = "Cannot allocate workqueue";
5015 		r = -ENOMEM;
5016 		goto bad;
5017 	}
5018 
5019 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
5020 	if (!ic->commit_wq) {
5021 		ti->error = "Cannot allocate workqueue";
5022 		r = -ENOMEM;
5023 		goto bad;
5024 	}
5025 	INIT_WORK(&ic->commit_work, integrity_commit);
5026 
5027 	if (ic->mode == 'J' || ic->mode == 'B') {
5028 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
5029 		if (!ic->writer_wq) {
5030 			ti->error = "Cannot allocate workqueue";
5031 			r = -ENOMEM;
5032 			goto bad;
5033 		}
5034 		INIT_WORK(&ic->writer_work, integrity_writer);
5035 	}
5036 
5037 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
5038 	if (!ic->sb) {
5039 		r = -ENOMEM;
5040 		ti->error = "Cannot allocate superblock area";
5041 		goto bad;
5042 	}
5043 
5044 	r = sync_rw_sb(ic, REQ_OP_READ);
5045 	if (r) {
5046 		ti->error = "Error reading superblock";
5047 		goto bad;
5048 	}
5049 	should_write_sb = false;
5050 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
5051 		if (ic->mode != 'R') {
5052 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
5053 				r = -EINVAL;
5054 				ti->error = "The device is not initialized";
5055 				goto bad;
5056 			}
5057 		}
5058 
5059 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
5060 		if (r) {
5061 			ti->error = "Could not initialize superblock";
5062 			goto bad;
5063 		}
5064 		if (ic->mode != 'R')
5065 			should_write_sb = true;
5066 	}
5067 
5068 	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
5069 		r = -EINVAL;
5070 		ti->error = "Unknown version";
5071 		goto bad;
5072 	}
5073 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
5074 		r = -EINVAL;
5075 		ti->error = "Inline flag mismatch";
5076 		goto bad;
5077 	}
5078 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
5079 		r = -EINVAL;
5080 		ti->error = "Tag size doesn't match the information in superblock";
5081 		goto bad;
5082 	}
5083 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
5084 		r = -EINVAL;
5085 		ti->error = "Block size doesn't match the information in superblock";
5086 		goto bad;
5087 	}
5088 	if (ic->mode != 'I') {
5089 		if (!le32_to_cpu(ic->sb->journal_sections)) {
5090 			r = -EINVAL;
5091 			ti->error = "Corrupted superblock, journal_sections is 0";
5092 			goto bad;
5093 		}
5094 	} else {
5095 		if (le32_to_cpu(ic->sb->journal_sections)) {
5096 			r = -EINVAL;
5097 			ti->error = "Corrupted superblock, journal_sections is not 0";
5098 			goto bad;
5099 		}
5100 	}
5101 	/* make sure that ti->max_io_len doesn't overflow */
5102 	if (!ic->meta_dev) {
5103 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
5104 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
5105 			r = -EINVAL;
5106 			ti->error = "Invalid interleave_sectors in the superblock";
5107 			goto bad;
5108 		}
5109 	} else {
5110 		if (ic->sb->log2_interleave_sectors) {
5111 			r = -EINVAL;
5112 			ti->error = "Invalid interleave_sectors in the superblock";
5113 			goto bad;
5114 		}
5115 	}
5116 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
5117 		r = -EINVAL;
5118 		ti->error = "Journal mac mismatch";
5119 		goto bad;
5120 	}
5121 
5122 	get_provided_data_sectors(ic);
5123 	if (!ic->provided_data_sectors) {
5124 		r = -EINVAL;
5125 		ti->error = "The device is too small";
5126 		goto bad;
5127 	}
5128 
5129 try_smaller_buffer:
5130 	r = calculate_device_limits(ic);
5131 	if (r) {
5132 		if (ic->meta_dev) {
5133 			if (ic->log2_buffer_sectors > 3) {
5134 				ic->log2_buffer_sectors--;
5135 				goto try_smaller_buffer;
5136 			}
5137 		}
5138 		ti->error = "The device is too small";
5139 		goto bad;
5140 	}
5141 
5142 	if (log2_sectors_per_bitmap_bit < 0)
5143 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
5144 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
5145 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
5146 
5147 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
5148 	if (bits_in_journal > UINT_MAX)
5149 		bits_in_journal = UINT_MAX;
5150 	if (bits_in_journal)
5151 		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
5152 			log2_sectors_per_bitmap_bit++;
5153 
5154 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
5155 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
5156 	if (should_write_sb)
5157 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
5158 
5159 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
5160 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
5161 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
5162 
5163 	if (!ic->meta_dev)
5164 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
5165 
5166 	if (ti->len > ic->provided_data_sectors) {
5167 		r = -EINVAL;
5168 		ti->error = "Not enough provided sectors for requested mapping size";
5169 		goto bad;
5170 	}
5171 
5172 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5173 	threshold += 50;
5174 	do_div(threshold, 100);
5175 	ic->free_sectors_threshold = threshold;
5176 
5177 	DEBUG_print("initialized:\n");
5178 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5179 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
5180 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5181 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
5182 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
5183 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5184 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
5185 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5186 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5187 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
5188 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
5189 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
5190 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5191 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5192 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
5193 
5194 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5195 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5196 		ic->sb->recalc_sector = cpu_to_le64(0);
5197 	}
5198 
5199 	if (ic->internal_hash) {
5200 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5201 		if (!ic->recalc_wq) {
5202 			ti->error = "Cannot allocate workqueue";
5203 			r = -ENOMEM;
5204 			goto bad;
5205 		}
5206 		INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5207 	} else {
5208 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5209 			ti->error = "Recalculate can only be specified with internal_hash";
5210 			r = -EINVAL;
5211 			goto bad;
5212 		}
5213 	}
5214 
5215 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5216 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5217 	    dm_integrity_disable_recalculate(ic)) {
5218 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5219 		r = -EOPNOTSUPP;
5220 		goto bad;
5221 	}
5222 
5223 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5224 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5225 	if (IS_ERR(ic->bufio)) {
5226 		r = PTR_ERR(ic->bufio);
5227 		ti->error = "Cannot initialize dm-bufio";
5228 		ic->bufio = NULL;
5229 		goto bad;
5230 	}
5231 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5232 
5233 	if (ic->mode != 'R' && ic->mode != 'I') {
5234 		r = create_journal(ic, &ti->error);
5235 		if (r)
5236 			goto bad;
5237 
5238 	}
5239 
5240 	if (ic->mode == 'B') {
5241 		unsigned int i;
5242 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5243 
5244 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5245 		if (!ic->recalc_bitmap) {
5246 			ti->error = "Could not allocate memory for bitmap";
5247 			r = -ENOMEM;
5248 			goto bad;
5249 		}
5250 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5251 		if (!ic->may_write_bitmap) {
5252 			ti->error = "Could not allocate memory for bitmap";
5253 			r = -ENOMEM;
5254 			goto bad;
5255 		}
5256 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5257 		if (!ic->bbs) {
5258 			ti->error = "Could not allocate memory for bitmap";
5259 			r = -ENOMEM;
5260 			goto bad;
5261 		}
5262 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5263 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
5264 			struct bitmap_block_status *bbs = &ic->bbs[i];
5265 			unsigned int sector, pl_index, pl_offset;
5266 
5267 			INIT_WORK(&bbs->work, bitmap_block_work);
5268 			bbs->ic = ic;
5269 			bbs->idx = i;
5270 			bio_list_init(&bbs->bio_queue);
5271 			spin_lock_init(&bbs->bio_queue_lock);
5272 
5273 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5274 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5275 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5276 
5277 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5278 		}
5279 	}
5280 
5281 	if (should_write_sb) {
5282 		init_journal(ic, 0, ic->journal_sections, 0);
5283 		r = dm_integrity_failed(ic);
5284 		if (unlikely(r)) {
5285 			ti->error = "Error initializing journal";
5286 			goto bad;
5287 		}
5288 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5289 		if (r) {
5290 			ti->error = "Error initializing superblock";
5291 			goto bad;
5292 		}
5293 		ic->just_formatted = true;
5294 	}
5295 
5296 	if (!ic->meta_dev && ic->mode != 'I') {
5297 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5298 		if (r)
5299 			goto bad;
5300 	}
5301 	if (ic->mode == 'B') {
5302 		unsigned int max_io_len;
5303 
5304 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5305 		if (!max_io_len)
5306 			max_io_len = 1U << 31;
5307 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5308 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5309 			r = dm_set_target_max_io_len(ti, max_io_len);
5310 			if (r)
5311 				goto bad;
5312 		}
5313 	}
5314 
5315 	ti->num_flush_bios = 1;
5316 	ti->flush_supported = true;
5317 	if (ic->discard)
5318 		ti->num_discard_bios = 1;
5319 
5320 	if (ic->mode == 'I')
5321 		ti->mempool_needs_integrity = true;
5322 
5323 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5324 	return 0;
5325 
5326 bad:
5327 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5328 	dm_integrity_dtr(ti);
5329 	return r;
5330 }
5331 
dm_integrity_dtr(struct dm_target * ti)5332 static void dm_integrity_dtr(struct dm_target *ti)
5333 {
5334 	struct dm_integrity_c *ic = ti->private;
5335 
5336 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5337 	BUG_ON(!list_empty(&ic->wait_list));
5338 
5339 	if (ic->mode == 'B' && ic->bitmap_flush_work.work.func)
5340 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
5341 	if (ic->metadata_wq)
5342 		destroy_workqueue(ic->metadata_wq);
5343 	if (ic->wait_wq)
5344 		destroy_workqueue(ic->wait_wq);
5345 	if (ic->offload_wq)
5346 		destroy_workqueue(ic->offload_wq);
5347 	if (ic->commit_wq)
5348 		destroy_workqueue(ic->commit_wq);
5349 	if (ic->writer_wq)
5350 		destroy_workqueue(ic->writer_wq);
5351 	if (ic->recalc_wq)
5352 		destroy_workqueue(ic->recalc_wq);
5353 	kvfree(ic->bbs);
5354 	if (ic->bufio)
5355 		dm_bufio_client_destroy(ic->bufio);
5356 	mempool_free(ic->journal_ahash_req, &ic->ahash_req_pool);
5357 	mempool_exit(&ic->ahash_req_pool);
5358 	bioset_exit(&ic->recalc_bios);
5359 	bioset_exit(&ic->recheck_bios);
5360 	mempool_exit(&ic->recheck_pool);
5361 	mempool_exit(&ic->journal_io_mempool);
5362 	if (ic->io)
5363 		dm_io_client_destroy(ic->io);
5364 	if (ic->dev)
5365 		dm_put_device(ti, ic->dev);
5366 	if (ic->meta_dev)
5367 		dm_put_device(ti, ic->meta_dev);
5368 	dm_integrity_free_page_list(ic->journal);
5369 	dm_integrity_free_page_list(ic->journal_io);
5370 	dm_integrity_free_page_list(ic->journal_xor);
5371 	dm_integrity_free_page_list(ic->recalc_bitmap);
5372 	dm_integrity_free_page_list(ic->may_write_bitmap);
5373 	if (ic->journal_scatterlist)
5374 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5375 	if (ic->journal_io_scatterlist)
5376 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5377 	if (ic->sk_requests) {
5378 		unsigned int i;
5379 
5380 		for (i = 0; i < ic->journal_sections; i++) {
5381 			struct skcipher_request *req;
5382 
5383 			req = ic->sk_requests[i];
5384 			if (req) {
5385 				kfree_sensitive(req->iv);
5386 				skcipher_request_free(req);
5387 			}
5388 		}
5389 		kvfree(ic->sk_requests);
5390 	}
5391 	kvfree(ic->journal_tree);
5392 	if (ic->sb)
5393 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5394 
5395 	if (ic->internal_shash)
5396 		crypto_free_shash(ic->internal_shash);
5397 	if (ic->internal_ahash)
5398 		crypto_free_ahash(ic->internal_ahash);
5399 	free_alg(&ic->internal_hash_alg);
5400 
5401 	if (ic->journal_crypt)
5402 		crypto_free_skcipher(ic->journal_crypt);
5403 	free_alg(&ic->journal_crypt_alg);
5404 
5405 	if (ic->journal_mac)
5406 		crypto_free_shash(ic->journal_mac);
5407 	free_alg(&ic->journal_mac_alg);
5408 
5409 	kfree(ic);
5410 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5411 }
5412 
5413 static struct target_type integrity_target = {
5414 	.name			= "integrity",
5415 	.version		= {1, 14, 0},
5416 	.module			= THIS_MODULE,
5417 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5418 	.ctr			= dm_integrity_ctr,
5419 	.dtr			= dm_integrity_dtr,
5420 	.map			= dm_integrity_map,
5421 	.end_io			= dm_integrity_end_io,
5422 	.postsuspend		= dm_integrity_postsuspend,
5423 	.resume			= dm_integrity_resume,
5424 	.status			= dm_integrity_status,
5425 	.iterate_devices	= dm_integrity_iterate_devices,
5426 	.io_hints		= dm_integrity_io_hints,
5427 };
5428 
dm_integrity_init(void)5429 static int __init dm_integrity_init(void)
5430 {
5431 	int r;
5432 
5433 	journal_io_cache = kmem_cache_create("integrity_journal_io",
5434 					     sizeof(struct journal_io), 0, 0, NULL);
5435 	if (!journal_io_cache) {
5436 		DMERR("can't allocate journal io cache");
5437 		return -ENOMEM;
5438 	}
5439 
5440 	r = dm_register_target(&integrity_target);
5441 	if (r < 0) {
5442 		kmem_cache_destroy(journal_io_cache);
5443 		return r;
5444 	}
5445 
5446 	return 0;
5447 }
5448 
dm_integrity_exit(void)5449 static void __exit dm_integrity_exit(void)
5450 {
5451 	dm_unregister_target(&integrity_target);
5452 	kmem_cache_destroy(journal_io_cache);
5453 }
5454 
5455 module_init(dm_integrity_init);
5456 module_exit(dm_integrity_exit);
5457 
5458 MODULE_AUTHOR("Milan Broz");
5459 MODULE_AUTHOR("Mikulas Patocka");
5460 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5461 MODULE_LICENSE("GPL");
5462