1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 #include "print-tree.h"
40
41 /*
42 * Unlock folio after btrfs_file_write() is done with it.
43 */
btrfs_drop_folio(struct btrfs_fs_info * fs_info,struct folio * folio,u64 pos,u64 copied)44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 u64 pos, u64 copied)
46 {
47 u64 block_start = round_down(pos, fs_info->sectorsize);
48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49
50 ASSERT(block_len <= U32_MAX);
51 /*
52 * Folio checked is some magic around finding folios that have been
53 * modified without going through btrfs_dirty_folio(). Clear it here.
54 * There should be no need to mark the pages accessed as
55 * prepare_one_folio() should have marked them accessed in
56 * prepare_one_folio() via find_or_create_page()
57 */
58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 folio_unlock(folio);
60 folio_put(folio);
61 }
62
63 /*
64 * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65 * - Mark newly dirtied folio as DELALLOC in the io tree.
66 * Used to advise which range is to be written back.
67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68 * - Update inode size for past EOF write
69 */
btrfs_dirty_folio(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 size_t write_bytes, struct extent_state **cached, bool noreserve)
72 {
73 struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 int ret = 0;
75 u64 num_bytes;
76 u64 start_pos;
77 u64 end_of_last_block;
78 u64 end_pos = pos + write_bytes;
79 loff_t isize = i_size_read(&inode->vfs_inode);
80 unsigned int extra_bits = 0;
81
82 if (write_bytes == 0)
83 return 0;
84
85 if (noreserve)
86 extra_bits |= EXTENT_NORESERVE;
87
88 start_pos = round_down(pos, fs_info->sectorsize);
89 num_bytes = round_up(write_bytes + pos - start_pos,
90 fs_info->sectorsize);
91 ASSERT(num_bytes <= U32_MAX);
92 ASSERT(folio_pos(folio) <= pos &&
93 folio_next_pos(folio) >= pos + write_bytes);
94
95 end_of_last_block = start_pos + num_bytes - 1;
96
97 /*
98 * The pages may have already been dirty, clear out old accounting so
99 * we can set things up properly
100 */
101 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
102 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
103 cached);
104
105 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
106 extra_bits, cached);
107 if (ret)
108 return ret;
109
110 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
111 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
112 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
113
114 /*
115 * we've only changed i_size in ram, and we haven't updated
116 * the disk i_size. There is no need to log the inode
117 * at this time.
118 */
119 if (end_pos > isize)
120 i_size_write(&inode->vfs_inode, end_pos);
121 return 0;
122 }
123
124 /*
125 * this is very complex, but the basic idea is to drop all extents
126 * in the range start - end. hint_block is filled in with a block number
127 * that would be a good hint to the block allocator for this file.
128 *
129 * If an extent intersects the range but is not entirely inside the range
130 * it is either truncated or split. Anything entirely inside the range
131 * is deleted from the tree.
132 *
133 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
134 * to deal with that. We set the field 'bytes_found' of the arguments structure
135 * with the number of allocated bytes found in the target range, so that the
136 * caller can update the inode's number of bytes in an atomic way when
137 * replacing extents in a range to avoid races with stat(2).
138 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)139 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root, struct btrfs_inode *inode,
141 struct btrfs_drop_extents_args *args)
142 {
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct extent_buffer *leaf;
145 struct btrfs_file_extent_item *fi;
146 struct btrfs_key key;
147 struct btrfs_key new_key;
148 u64 ino = btrfs_ino(inode);
149 u64 search_start = args->start;
150 u64 disk_bytenr = 0;
151 u64 num_bytes = 0;
152 u64 extent_offset = 0;
153 u64 extent_end = 0;
154 u64 last_end = args->start;
155 int del_nr = 0;
156 int del_slot = 0;
157 int extent_type;
158 int recow;
159 int ret;
160 int modify_tree = -1;
161 int update_refs;
162 int found = 0;
163 struct btrfs_path *path = args->path;
164
165 args->bytes_found = 0;
166 args->extent_inserted = false;
167
168 /* Must always have a path if ->replace_extent is true */
169 ASSERT(!(args->replace_extent && !args->path));
170
171 if (!path) {
172 path = btrfs_alloc_path();
173 if (!path) {
174 ret = -ENOMEM;
175 goto out;
176 }
177 }
178
179 if (args->drop_cache)
180 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
181
182 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
183 modify_tree = 0;
184
185 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
186 while (1) {
187 recow = 0;
188 ret = btrfs_lookup_file_extent(trans, root, path, ino,
189 search_start, modify_tree);
190 if (ret < 0)
191 break;
192 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
193 leaf = path->nodes[0];
194 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
195 if (key.objectid == ino &&
196 key.type == BTRFS_EXTENT_DATA_KEY)
197 path->slots[0]--;
198 }
199 ret = 0;
200 next_slot:
201 leaf = path->nodes[0];
202 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
203 if (WARN_ON(del_nr > 0)) {
204 btrfs_print_leaf(leaf);
205 ret = -EINVAL;
206 break;
207 }
208 ret = btrfs_next_leaf(root, path);
209 if (ret < 0)
210 break;
211 if (ret > 0) {
212 ret = 0;
213 break;
214 }
215 leaf = path->nodes[0];
216 recow = 1;
217 }
218
219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
220
221 if (key.objectid > ino)
222 break;
223 if (WARN_ON_ONCE(key.objectid < ino) ||
224 key.type < BTRFS_EXTENT_DATA_KEY) {
225 ASSERT(del_nr == 0);
226 path->slots[0]++;
227 goto next_slot;
228 }
229 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
230 break;
231
232 fi = btrfs_item_ptr(leaf, path->slots[0],
233 struct btrfs_file_extent_item);
234 extent_type = btrfs_file_extent_type(leaf, fi);
235
236 if (extent_type == BTRFS_FILE_EXTENT_REG ||
237 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
238 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
239 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
240 extent_offset = btrfs_file_extent_offset(leaf, fi);
241 extent_end = key.offset +
242 btrfs_file_extent_num_bytes(leaf, fi);
243 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
244 extent_end = key.offset +
245 btrfs_file_extent_ram_bytes(leaf, fi);
246 } else {
247 /* can't happen */
248 BUG();
249 }
250
251 /*
252 * Don't skip extent items representing 0 byte lengths. They
253 * used to be created (bug) if while punching holes we hit
254 * -ENOSPC condition. So if we find one here, just ensure we
255 * delete it, otherwise we would insert a new file extent item
256 * with the same key (offset) as that 0 bytes length file
257 * extent item in the call to setup_items_for_insert() later
258 * in this function.
259 */
260 if (extent_end == key.offset && extent_end >= search_start) {
261 last_end = extent_end;
262 goto delete_extent_item;
263 }
264
265 if (extent_end <= search_start) {
266 path->slots[0]++;
267 goto next_slot;
268 }
269
270 found = 1;
271 search_start = max(key.offset, args->start);
272 if (recow || !modify_tree) {
273 modify_tree = -1;
274 btrfs_release_path(path);
275 continue;
276 }
277
278 /*
279 * | - range to drop - |
280 * | -------- extent -------- |
281 */
282 if (args->start > key.offset && args->end < extent_end) {
283 if (WARN_ON(del_nr > 0)) {
284 btrfs_print_leaf(leaf);
285 ret = -EINVAL;
286 break;
287 }
288 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
289 ret = -EOPNOTSUPP;
290 break;
291 }
292
293 memcpy(&new_key, &key, sizeof(new_key));
294 new_key.offset = args->start;
295 ret = btrfs_duplicate_item(trans, root, path,
296 &new_key);
297 if (ret == -EAGAIN) {
298 btrfs_release_path(path);
299 continue;
300 }
301 if (ret < 0)
302 break;
303
304 leaf = path->nodes[0];
305 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
306 struct btrfs_file_extent_item);
307 btrfs_set_file_extent_num_bytes(leaf, fi,
308 args->start - key.offset);
309
310 fi = btrfs_item_ptr(leaf, path->slots[0],
311 struct btrfs_file_extent_item);
312
313 extent_offset += args->start - key.offset;
314 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
315 btrfs_set_file_extent_num_bytes(leaf, fi,
316 extent_end - args->start);
317
318 if (update_refs && disk_bytenr > 0) {
319 struct btrfs_ref ref = {
320 .action = BTRFS_ADD_DELAYED_REF,
321 .bytenr = disk_bytenr,
322 .num_bytes = num_bytes,
323 .parent = 0,
324 .owning_root = btrfs_root_id(root),
325 .ref_root = btrfs_root_id(root),
326 };
327 btrfs_init_data_ref(&ref, new_key.objectid,
328 args->start - extent_offset,
329 0, false);
330 ret = btrfs_inc_extent_ref(trans, &ref);
331 if (unlikely(ret)) {
332 btrfs_abort_transaction(trans, ret);
333 break;
334 }
335 }
336 key.offset = args->start;
337 }
338 /*
339 * From here on out we will have actually dropped something, so
340 * last_end can be updated.
341 */
342 last_end = extent_end;
343
344 /*
345 * | ---- range to drop ----- |
346 * | -------- extent -------- |
347 */
348 if (args->start <= key.offset && args->end < extent_end) {
349 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
350 ret = -EOPNOTSUPP;
351 break;
352 }
353
354 memcpy(&new_key, &key, sizeof(new_key));
355 new_key.offset = args->end;
356 btrfs_set_item_key_safe(trans, path, &new_key);
357
358 extent_offset += args->end - key.offset;
359 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
360 btrfs_set_file_extent_num_bytes(leaf, fi,
361 extent_end - args->end);
362 if (update_refs && disk_bytenr > 0)
363 args->bytes_found += args->end - key.offset;
364 break;
365 }
366
367 search_start = extent_end;
368 /*
369 * | ---- range to drop ----- |
370 * | -------- extent -------- |
371 */
372 if (args->start > key.offset && args->end >= extent_end) {
373 if (WARN_ON(del_nr > 0)) {
374 btrfs_print_leaf(leaf);
375 ret = -EINVAL;
376 break;
377 }
378 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
379 ret = -EOPNOTSUPP;
380 break;
381 }
382
383 btrfs_set_file_extent_num_bytes(leaf, fi,
384 args->start - key.offset);
385 if (update_refs && disk_bytenr > 0)
386 args->bytes_found += extent_end - args->start;
387 if (args->end == extent_end)
388 break;
389
390 path->slots[0]++;
391 goto next_slot;
392 }
393
394 /*
395 * | ---- range to drop ----- |
396 * | ------ extent ------ |
397 */
398 if (args->start <= key.offset && args->end >= extent_end) {
399 delete_extent_item:
400 if (del_nr == 0) {
401 del_slot = path->slots[0];
402 del_nr = 1;
403 } else {
404 if (WARN_ON(del_slot + del_nr != path->slots[0])) {
405 btrfs_print_leaf(leaf);
406 ret = -EINVAL;
407 break;
408 }
409 del_nr++;
410 }
411
412 if (update_refs &&
413 extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 args->bytes_found += extent_end - key.offset;
415 extent_end = ALIGN(extent_end,
416 fs_info->sectorsize);
417 } else if (update_refs && disk_bytenr > 0) {
418 struct btrfs_ref ref = {
419 .action = BTRFS_DROP_DELAYED_REF,
420 .bytenr = disk_bytenr,
421 .num_bytes = num_bytes,
422 .parent = 0,
423 .owning_root = btrfs_root_id(root),
424 .ref_root = btrfs_root_id(root),
425 };
426 btrfs_init_data_ref(&ref, key.objectid,
427 key.offset - extent_offset,
428 0, false);
429 ret = btrfs_free_extent(trans, &ref);
430 if (unlikely(ret)) {
431 btrfs_abort_transaction(trans, ret);
432 break;
433 }
434 args->bytes_found += extent_end - key.offset;
435 }
436
437 if (args->end == extent_end)
438 break;
439
440 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
441 path->slots[0]++;
442 goto next_slot;
443 }
444
445 ret = btrfs_del_items(trans, root, path, del_slot,
446 del_nr);
447 if (unlikely(ret)) {
448 btrfs_abort_transaction(trans, ret);
449 break;
450 }
451
452 del_nr = 0;
453 del_slot = 0;
454
455 btrfs_release_path(path);
456 continue;
457 }
458
459 BUG();
460 }
461
462 if (!ret && del_nr > 0) {
463 /*
464 * Set path->slots[0] to first slot, so that after the delete
465 * if items are move off from our leaf to its immediate left or
466 * right neighbor leafs, we end up with a correct and adjusted
467 * path->slots[0] for our insertion (if args->replace_extent).
468 */
469 path->slots[0] = del_slot;
470 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
471 if (ret)
472 btrfs_abort_transaction(trans, ret);
473 }
474
475 leaf = path->nodes[0];
476 /*
477 * If btrfs_del_items() was called, it might have deleted a leaf, in
478 * which case it unlocked our path, so check path->locks[0] matches a
479 * write lock.
480 */
481 if (!ret && args->replace_extent &&
482 path->locks[0] == BTRFS_WRITE_LOCK &&
483 btrfs_leaf_free_space(leaf) >=
484 sizeof(struct btrfs_item) + args->extent_item_size) {
485
486 key.objectid = ino;
487 key.type = BTRFS_EXTENT_DATA_KEY;
488 key.offset = args->start;
489 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
490 struct btrfs_key slot_key;
491
492 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
493 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
494 path->slots[0]++;
495 }
496 btrfs_setup_item_for_insert(trans, root, path, &key,
497 args->extent_item_size);
498 args->extent_inserted = true;
499 }
500
501 if (!args->path)
502 btrfs_free_path(path);
503 else if (!args->extent_inserted)
504 btrfs_release_path(path);
505 out:
506 args->drop_end = found ? min(args->end, last_end) : args->end;
507
508 return ret;
509 }
510
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)511 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
512 u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
513 {
514 struct btrfs_file_extent_item *fi;
515 struct btrfs_key key;
516 u64 extent_end;
517
518 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
519 return false;
520
521 btrfs_item_key_to_cpu(leaf, &key, slot);
522 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
523 return false;
524
525 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
526 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
527 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
528 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
529 btrfs_file_extent_compression(leaf, fi) ||
530 btrfs_file_extent_encryption(leaf, fi) ||
531 btrfs_file_extent_other_encoding(leaf, fi))
532 return false;
533
534 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
535 if ((*start && *start != key.offset) || (*end && *end != extent_end))
536 return false;
537
538 *start = key.offset;
539 *end = extent_end;
540 return true;
541 }
542
543 /*
544 * Mark extent in the range start - end as written.
545 *
546 * This changes extent type from 'pre-allocated' to 'regular'. If only
547 * part of extent is marked as written, the extent will be split into
548 * two or three.
549 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)550 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
551 struct btrfs_inode *inode, u64 start, u64 end)
552 {
553 struct btrfs_root *root = inode->root;
554 struct extent_buffer *leaf;
555 BTRFS_PATH_AUTO_FREE(path);
556 struct btrfs_file_extent_item *fi;
557 struct btrfs_ref ref = { 0 };
558 struct btrfs_key key;
559 struct btrfs_key new_key;
560 u64 bytenr;
561 u64 num_bytes;
562 u64 extent_end;
563 u64 orig_offset;
564 u64 other_start;
565 u64 other_end;
566 u64 split;
567 int del_nr = 0;
568 int del_slot = 0;
569 int recow;
570 int ret = 0;
571 u64 ino = btrfs_ino(inode);
572
573 path = btrfs_alloc_path();
574 if (!path)
575 return -ENOMEM;
576 again:
577 recow = 0;
578 split = start;
579 key.objectid = ino;
580 key.type = BTRFS_EXTENT_DATA_KEY;
581 key.offset = split;
582
583 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
584 if (ret < 0)
585 goto out;
586 if (ret > 0 && path->slots[0] > 0)
587 path->slots[0]--;
588
589 leaf = path->nodes[0];
590 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
591 if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) {
592 ret = -EINVAL;
593 btrfs_abort_transaction(trans, ret);
594 goto out;
595 }
596 fi = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_file_extent_item);
598 if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) {
599 ret = -EINVAL;
600 btrfs_abort_transaction(trans, ret);
601 goto out;
602 }
603 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
604 if (unlikely(key.offset > start || extent_end < end)) {
605 ret = -EINVAL;
606 btrfs_abort_transaction(trans, ret);
607 goto out;
608 }
609
610 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
611 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
612 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
613 memcpy(&new_key, &key, sizeof(new_key));
614
615 if (start == key.offset && end < extent_end) {
616 other_start = 0;
617 other_end = start;
618 if (extent_mergeable(leaf, path->slots[0] - 1,
619 ino, bytenr, orig_offset,
620 &other_start, &other_end)) {
621 new_key.offset = end;
622 btrfs_set_item_key_safe(trans, path, &new_key);
623 fi = btrfs_item_ptr(leaf, path->slots[0],
624 struct btrfs_file_extent_item);
625 btrfs_set_file_extent_generation(leaf, fi,
626 trans->transid);
627 btrfs_set_file_extent_num_bytes(leaf, fi,
628 extent_end - end);
629 btrfs_set_file_extent_offset(leaf, fi,
630 end - orig_offset);
631 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
632 struct btrfs_file_extent_item);
633 btrfs_set_file_extent_generation(leaf, fi,
634 trans->transid);
635 btrfs_set_file_extent_num_bytes(leaf, fi,
636 end - other_start);
637 goto out;
638 }
639 }
640
641 if (start > key.offset && end == extent_end) {
642 other_start = end;
643 other_end = 0;
644 if (extent_mergeable(leaf, path->slots[0] + 1,
645 ino, bytenr, orig_offset,
646 &other_start, &other_end)) {
647 fi = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_file_extent_item);
649 btrfs_set_file_extent_num_bytes(leaf, fi,
650 start - key.offset);
651 btrfs_set_file_extent_generation(leaf, fi,
652 trans->transid);
653 path->slots[0]++;
654 new_key.offset = start;
655 btrfs_set_item_key_safe(trans, path, &new_key);
656
657 fi = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_file_extent_item);
659 btrfs_set_file_extent_generation(leaf, fi,
660 trans->transid);
661 btrfs_set_file_extent_num_bytes(leaf, fi,
662 other_end - start);
663 btrfs_set_file_extent_offset(leaf, fi,
664 start - orig_offset);
665 goto out;
666 }
667 }
668
669 while (start > key.offset || end < extent_end) {
670 if (key.offset == start)
671 split = end;
672
673 new_key.offset = split;
674 ret = btrfs_duplicate_item(trans, root, path, &new_key);
675 if (ret == -EAGAIN) {
676 btrfs_release_path(path);
677 goto again;
678 }
679 if (unlikely(ret < 0)) {
680 btrfs_abort_transaction(trans, ret);
681 goto out;
682 }
683
684 leaf = path->nodes[0];
685 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
686 struct btrfs_file_extent_item);
687 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
688 btrfs_set_file_extent_num_bytes(leaf, fi,
689 split - key.offset);
690
691 fi = btrfs_item_ptr(leaf, path->slots[0],
692 struct btrfs_file_extent_item);
693
694 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
695 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
696 btrfs_set_file_extent_num_bytes(leaf, fi,
697 extent_end - split);
698
699 ref.action = BTRFS_ADD_DELAYED_REF;
700 ref.bytenr = bytenr;
701 ref.num_bytes = num_bytes;
702 ref.parent = 0;
703 ref.owning_root = btrfs_root_id(root);
704 ref.ref_root = btrfs_root_id(root);
705 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
706 ret = btrfs_inc_extent_ref(trans, &ref);
707 if (unlikely(ret)) {
708 btrfs_abort_transaction(trans, ret);
709 goto out;
710 }
711
712 if (split == start) {
713 key.offset = start;
714 } else {
715 if (unlikely(start != key.offset)) {
716 ret = -EINVAL;
717 btrfs_abort_transaction(trans, ret);
718 goto out;
719 }
720 path->slots[0]--;
721 extent_end = end;
722 }
723 recow = 1;
724 }
725
726 other_start = end;
727 other_end = 0;
728
729 ref.action = BTRFS_DROP_DELAYED_REF;
730 ref.bytenr = bytenr;
731 ref.num_bytes = num_bytes;
732 ref.parent = 0;
733 ref.owning_root = btrfs_root_id(root);
734 ref.ref_root = btrfs_root_id(root);
735 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
736 if (extent_mergeable(leaf, path->slots[0] + 1,
737 ino, bytenr, orig_offset,
738 &other_start, &other_end)) {
739 if (recow) {
740 btrfs_release_path(path);
741 goto again;
742 }
743 extent_end = other_end;
744 del_slot = path->slots[0] + 1;
745 del_nr++;
746 ret = btrfs_free_extent(trans, &ref);
747 if (unlikely(ret)) {
748 btrfs_abort_transaction(trans, ret);
749 goto out;
750 }
751 }
752 other_start = 0;
753 other_end = start;
754 if (extent_mergeable(leaf, path->slots[0] - 1,
755 ino, bytenr, orig_offset,
756 &other_start, &other_end)) {
757 if (recow) {
758 btrfs_release_path(path);
759 goto again;
760 }
761 key.offset = other_start;
762 del_slot = path->slots[0];
763 del_nr++;
764 ret = btrfs_free_extent(trans, &ref);
765 if (unlikely(ret)) {
766 btrfs_abort_transaction(trans, ret);
767 goto out;
768 }
769 }
770 if (del_nr == 0) {
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 btrfs_set_file_extent_type(leaf, fi,
774 BTRFS_FILE_EXTENT_REG);
775 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
776 } else {
777 fi = btrfs_item_ptr(leaf, del_slot - 1,
778 struct btrfs_file_extent_item);
779 btrfs_set_file_extent_type(leaf, fi,
780 BTRFS_FILE_EXTENT_REG);
781 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
782 btrfs_set_file_extent_num_bytes(leaf, fi,
783 extent_end - key.offset);
784
785 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
786 if (unlikely(ret < 0)) {
787 btrfs_abort_transaction(trans, ret);
788 goto out;
789 }
790 }
791 out:
792 return ret;
793 }
794
795 /*
796 * On error return an unlocked folio and the error value
797 * On success return a locked folio and 0
798 */
prepare_uptodate_folio(struct inode * inode,struct folio * folio,u64 pos,u64 len)799 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
800 u64 len)
801 {
802 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
803 u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio));
804 const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
805 int ret = 0;
806
807 if (folio_test_uptodate(folio))
808 return 0;
809
810 if (IS_ALIGNED(clamp_start, blocksize) &&
811 IS_ALIGNED(clamp_end, blocksize))
812 return 0;
813
814 ret = btrfs_read_folio(NULL, folio);
815 if (ret)
816 return ret;
817 folio_lock(folio);
818 if (unlikely(!folio_test_uptodate(folio))) {
819 folio_unlock(folio);
820 return -EIO;
821 }
822
823 /*
824 * Since btrfs_read_folio() will unlock the folio before it returns,
825 * there is a window where btrfs_release_folio() can be called to
826 * release the page. Here we check both inode mapping and page
827 * private to make sure the page was not released.
828 *
829 * The private flag check is essential for subpage as we need to store
830 * extra bitmap using folio private.
831 */
832 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
833 folio_unlock(folio);
834 return -EAGAIN;
835 }
836 return 0;
837 }
838
get_prepare_gfp_flags(struct inode * inode,bool nowait)839 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
840 {
841 gfp_t gfp;
842
843 gfp = btrfs_alloc_write_mask(inode->i_mapping);
844 if (nowait) {
845 gfp &= ~__GFP_DIRECT_RECLAIM;
846 gfp |= GFP_NOWAIT;
847 }
848
849 return gfp;
850 }
851
852 /*
853 * Get folio into the page cache and lock it.
854 */
prepare_one_folio(struct inode * inode,struct folio ** folio_ret,loff_t pos,size_t write_bytes,bool nowait)855 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
856 loff_t pos, size_t write_bytes,
857 bool nowait)
858 {
859 const pgoff_t index = pos >> PAGE_SHIFT;
860 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
861 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
862 fgf_set_order(write_bytes);
863 struct folio *folio;
864 int ret = 0;
865
866 again:
867 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
868 if (IS_ERR(folio))
869 return PTR_ERR(folio);
870
871 ret = set_folio_extent_mapped(folio);
872 if (ret < 0) {
873 folio_unlock(folio);
874 folio_put(folio);
875 return ret;
876 }
877 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
878 if (ret) {
879 /* The folio is already unlocked. */
880 folio_put(folio);
881 if (!nowait && ret == -EAGAIN) {
882 ret = 0;
883 goto again;
884 }
885 return ret;
886 }
887 *folio_ret = folio;
888 return 0;
889 }
890
891 /*
892 * Locks the extent and properly waits for data=ordered extents to finish
893 * before allowing the folios to be modified if need.
894 *
895 * Return:
896 * 1 - the extent is locked
897 * 0 - the extent is not locked, and everything is OK
898 * -EAGAIN - need to prepare the folios again
899 */
900 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)901 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
902 loff_t pos, size_t write_bytes,
903 u64 *lockstart, u64 *lockend, bool nowait,
904 struct extent_state **cached_state)
905 {
906 struct btrfs_fs_info *fs_info = inode->root->fs_info;
907 u64 start_pos;
908 u64 last_pos;
909 int ret = 0;
910
911 start_pos = round_down(pos, fs_info->sectorsize);
912 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
913
914 if (start_pos < inode->vfs_inode.i_size) {
915 struct btrfs_ordered_extent *ordered;
916
917 if (nowait) {
918 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
919 last_pos, cached_state)) {
920 folio_unlock(folio);
921 folio_put(folio);
922 return -EAGAIN;
923 }
924 } else {
925 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
926 cached_state);
927 }
928
929 ordered = btrfs_lookup_ordered_range(inode, start_pos,
930 last_pos - start_pos + 1);
931 if (ordered &&
932 ordered->file_offset + ordered->num_bytes > start_pos &&
933 ordered->file_offset <= last_pos) {
934 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
935 cached_state);
936 folio_unlock(folio);
937 folio_put(folio);
938 btrfs_start_ordered_extent(ordered);
939 btrfs_put_ordered_extent(ordered);
940 return -EAGAIN;
941 }
942 if (ordered)
943 btrfs_put_ordered_extent(ordered);
944
945 *lockstart = start_pos;
946 *lockend = last_pos;
947 ret = 1;
948 }
949
950 /*
951 * We should be called after prepare_one_folio() which should have locked
952 * all pages in the range.
953 */
954 WARN_ON(!folio_test_locked(folio));
955
956 return ret;
957 }
958
959 /*
960 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
961 *
962 * @pos: File offset.
963 * @write_bytes: The length to write, will be updated to the nocow writeable
964 * range.
965 * @nowait: Indicate if we can block or not (non-blocking IO context).
966 *
967 * This function will flush ordered extents in the range to ensure proper
968 * nocow checks.
969 *
970 * Return:
971 * > 0 If we can nocow, and updates @write_bytes.
972 * 0 If we can't do a nocow write.
973 * -EAGAIN If we can't do a nocow write because snapshotting of the inode's
974 * root is in progress or because we are in a non-blocking IO
975 * context and need to block (@nowait is true).
976 * < 0 If an error happened.
977 *
978 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
979 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)980 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
981 size_t *write_bytes, bool nowait)
982 {
983 struct btrfs_fs_info *fs_info = inode->root->fs_info;
984 struct btrfs_root *root = inode->root;
985 struct extent_state *cached_state = NULL;
986 u64 lockstart, lockend;
987 u64 cur_offset;
988 int ret = 0;
989
990 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
991 return 0;
992
993 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
994 return -EAGAIN;
995
996 lockstart = round_down(pos, fs_info->sectorsize);
997 lockend = round_up(pos + *write_bytes,
998 fs_info->sectorsize) - 1;
999
1000 if (nowait) {
1001 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1002 &cached_state)) {
1003 btrfs_drew_write_unlock(&root->snapshot_lock);
1004 return -EAGAIN;
1005 }
1006 } else {
1007 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1008 &cached_state);
1009 }
1010
1011 cur_offset = lockstart;
1012 while (cur_offset < lockend) {
1013 u64 num_bytes = lockend - cur_offset + 1;
1014
1015 ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait);
1016 if (ret <= 0) {
1017 /*
1018 * If cur_offset == lockstart it means we haven't found
1019 * any extent against which we can NOCOW, so unlock the
1020 * snapshot lock.
1021 */
1022 if (cur_offset == lockstart)
1023 btrfs_drew_write_unlock(&root->snapshot_lock);
1024 break;
1025 }
1026 cur_offset += num_bytes;
1027 }
1028
1029 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1030
1031 /*
1032 * cur_offset > lockstart means there's at least a partial range we can
1033 * NOCOW, and that range can cover one or more extents.
1034 */
1035 if (cur_offset > lockstart) {
1036 *write_bytes = min_t(size_t, *write_bytes, cur_offset - pos);
1037 return 1;
1038 }
1039
1040 return ret;
1041 }
1042
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1043 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1044 {
1045 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1046 }
1047
btrfs_write_check(struct kiocb * iocb,size_t count)1048 int btrfs_write_check(struct kiocb *iocb, size_t count)
1049 {
1050 struct file *file = iocb->ki_filp;
1051 struct inode *inode = file_inode(file);
1052 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1053 loff_t pos = iocb->ki_pos;
1054 int ret;
1055 loff_t oldsize;
1056
1057 /*
1058 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1059 * prealloc flags, as without those flags we always have to COW. We will
1060 * later check if we can really COW into the target range (using
1061 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1062 */
1063 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1064 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1065 return -EAGAIN;
1066
1067 ret = file_remove_privs(file);
1068 if (ret)
1069 return ret;
1070
1071 /*
1072 * We reserve space for updating the inode when we reserve space for the
1073 * extent we are going to write, so we will enospc out there. We don't
1074 * need to start yet another transaction to update the inode as we will
1075 * update the inode when we finish writing whatever data we write.
1076 */
1077 if (!IS_NOCMTIME(inode)) {
1078 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1079 inode_inc_iversion(inode);
1080 }
1081
1082 oldsize = i_size_read(inode);
1083 if (pos > oldsize) {
1084 /* Expand hole size to cover write data, preventing empty gap */
1085 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1086
1087 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1088 if (ret)
1089 return ret;
1090 }
1091
1092 return 0;
1093 }
1094
release_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 start,u64 len,bool only_release_metadata)1095 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1096 u64 start, u64 len, bool only_release_metadata)
1097 {
1098 if (len == 0)
1099 return;
1100
1101 if (only_release_metadata) {
1102 btrfs_check_nocow_unlock(inode);
1103 btrfs_delalloc_release_metadata(inode, len, true);
1104 } else {
1105 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1106
1107 btrfs_delalloc_release_space(inode, data_reserved,
1108 round_down(start, fs_info->sectorsize),
1109 len, true);
1110 }
1111 }
1112
1113 /*
1114 * Reserve data and metadata space for this buffered write range.
1115 *
1116 * Return >0 for the number of bytes reserved, which is always block aligned.
1117 * Return <0 for error.
1118 */
reserve_space(struct btrfs_inode * inode,struct extent_changeset ** data_reserved,u64 start,size_t * len,bool nowait,bool * only_release_metadata)1119 static ssize_t reserve_space(struct btrfs_inode *inode,
1120 struct extent_changeset **data_reserved,
1121 u64 start, size_t *len, bool nowait,
1122 bool *only_release_metadata)
1123 {
1124 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1125 const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1126 size_t reserve_bytes;
1127 int ret;
1128
1129 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1130 if (ret < 0) {
1131 int can_nocow;
1132
1133 if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1134 return -EAGAIN;
1135
1136 /*
1137 * If we don't have to COW at the offset, reserve metadata only.
1138 * write_bytes may get smaller than requested here.
1139 */
1140 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1141 if (can_nocow < 0)
1142 ret = can_nocow;
1143 if (can_nocow > 0)
1144 ret = 0;
1145 if (ret)
1146 return ret;
1147 *only_release_metadata = true;
1148 }
1149
1150 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1151 WARN_ON(reserve_bytes == 0);
1152 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1153 reserve_bytes, nowait);
1154 if (ret) {
1155 if (!*only_release_metadata)
1156 btrfs_free_reserved_data_space(inode, *data_reserved,
1157 start, *len);
1158 else
1159 btrfs_check_nocow_unlock(inode);
1160
1161 if (nowait && ret == -ENOSPC)
1162 ret = -EAGAIN;
1163 return ret;
1164 }
1165 return reserve_bytes;
1166 }
1167
1168 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
shrink_reserved_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 reserved_start,u64 reserved_len,u64 new_len,bool only_release_metadata)1169 static void shrink_reserved_space(struct btrfs_inode *inode,
1170 struct extent_changeset *data_reserved,
1171 u64 reserved_start, u64 reserved_len,
1172 u64 new_len, bool only_release_metadata)
1173 {
1174 const u64 diff = reserved_len - new_len;
1175
1176 ASSERT(new_len <= reserved_len);
1177 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1178 if (only_release_metadata)
1179 btrfs_delalloc_release_metadata(inode, diff, true);
1180 else
1181 btrfs_delalloc_release_space(inode, data_reserved,
1182 reserved_start + new_len, diff, true);
1183 }
1184
1185 /* Calculate the maximum amount of bytes we can write into one folio. */
calc_write_bytes(const struct btrfs_inode * inode,const struct iov_iter * iter,u64 start)1186 static size_t calc_write_bytes(const struct btrfs_inode *inode,
1187 const struct iov_iter *iter, u64 start)
1188 {
1189 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1190
1191 return min(max_folio_size - (start & (max_folio_size - 1)),
1192 iov_iter_count(iter));
1193 }
1194
1195 /*
1196 * Do the heavy-lifting work to copy one range into one folio of the page cache.
1197 *
1198 * Return > 0 in case we copied all bytes or just some of them.
1199 * Return 0 if no bytes were copied, in which case the caller should retry.
1200 * Return <0 on error.
1201 */
copy_one_range(struct btrfs_inode * inode,struct iov_iter * iter,struct extent_changeset ** data_reserved,u64 start,bool nowait)1202 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1203 struct extent_changeset **data_reserved, u64 start,
1204 bool nowait)
1205 {
1206 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1207 struct extent_state *cached_state = NULL;
1208 size_t write_bytes = calc_write_bytes(inode, iter, start);
1209 size_t copied;
1210 const u64 reserved_start = round_down(start, fs_info->sectorsize);
1211 u64 reserved_len;
1212 struct folio *folio = NULL;
1213 int extents_locked;
1214 u64 lockstart;
1215 u64 lockend;
1216 bool only_release_metadata = false;
1217 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1218 int ret;
1219
1220 /*
1221 * Fault all pages before locking them in prepare_one_folio() to avoid
1222 * recursive lock.
1223 */
1224 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1225 return -EFAULT;
1226 extent_changeset_release(*data_reserved);
1227 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1228 &only_release_metadata);
1229 if (ret < 0)
1230 return ret;
1231 reserved_len = ret;
1232 /* Write range must be inside the reserved range. */
1233 ASSERT(reserved_start <= start);
1234 ASSERT(start + write_bytes <= reserved_start + reserved_len);
1235
1236 again:
1237 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1238 bdp_flags);
1239 if (ret) {
1240 btrfs_delalloc_release_extents(inode, reserved_len);
1241 release_space(inode, *data_reserved, reserved_start, reserved_len,
1242 only_release_metadata);
1243 return ret;
1244 }
1245
1246 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1247 if (ret) {
1248 btrfs_delalloc_release_extents(inode, reserved_len);
1249 release_space(inode, *data_reserved, reserved_start, reserved_len,
1250 only_release_metadata);
1251 return ret;
1252 }
1253
1254 /*
1255 * The reserved range goes beyond the current folio, shrink the reserved
1256 * space to the folio boundary.
1257 */
1258 if (reserved_start + reserved_len > folio_next_pos(folio)) {
1259 const u64 last_block = folio_next_pos(folio);
1260
1261 shrink_reserved_space(inode, *data_reserved, reserved_start,
1262 reserved_len, last_block - reserved_start,
1263 only_release_metadata);
1264 write_bytes = last_block - start;
1265 reserved_len = last_block - reserved_start;
1266 }
1267
1268 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1269 write_bytes, &lockstart,
1270 &lockend, nowait,
1271 &cached_state);
1272 if (extents_locked < 0) {
1273 if (!nowait && extents_locked == -EAGAIN)
1274 goto again;
1275
1276 btrfs_delalloc_release_extents(inode, reserved_len);
1277 release_space(inode, *data_reserved, reserved_start, reserved_len,
1278 only_release_metadata);
1279 ret = extents_locked;
1280 return ret;
1281 }
1282
1283 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1284 write_bytes, iter);
1285 flush_dcache_folio(folio);
1286
1287 if (unlikely(copied < write_bytes)) {
1288 u64 last_block;
1289
1290 /*
1291 * The original write range doesn't need an uptodate folio as
1292 * the range is block aligned. But now a short copy happened.
1293 * We cannot handle it without an uptodate folio.
1294 *
1295 * So just revert the range and we will retry.
1296 */
1297 if (!folio_test_uptodate(folio)) {
1298 iov_iter_revert(iter, copied);
1299 copied = 0;
1300 }
1301
1302 /* No copied bytes, unlock, release reserved space and exit. */
1303 if (copied == 0) {
1304 if (extents_locked)
1305 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1306 &cached_state);
1307 else
1308 btrfs_free_extent_state(cached_state);
1309 btrfs_delalloc_release_extents(inode, reserved_len);
1310 release_space(inode, *data_reserved, reserved_start, reserved_len,
1311 only_release_metadata);
1312 btrfs_drop_folio(fs_info, folio, start, copied);
1313 return 0;
1314 }
1315
1316 /* Release the reserved space beyond the last block. */
1317 last_block = round_up(start + copied, fs_info->sectorsize);
1318
1319 shrink_reserved_space(inode, *data_reserved, reserved_start,
1320 reserved_len, last_block - reserved_start,
1321 only_release_metadata);
1322 reserved_len = last_block - reserved_start;
1323 }
1324
1325 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1326 only_release_metadata);
1327 /*
1328 * If we have not locked the extent range, because the range's start
1329 * offset is >= i_size, we might still have a non-NULL cached extent
1330 * state, acquired while marking the extent range as delalloc through
1331 * btrfs_dirty_page(). Therefore free any possible cached extent state
1332 * to avoid a memory leak.
1333 */
1334 if (extents_locked)
1335 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1336 else
1337 btrfs_free_extent_state(cached_state);
1338
1339 btrfs_delalloc_release_extents(inode, reserved_len);
1340 if (ret) {
1341 btrfs_drop_folio(fs_info, folio, start, copied);
1342 release_space(inode, *data_reserved, reserved_start, reserved_len,
1343 only_release_metadata);
1344 return ret;
1345 }
1346 if (only_release_metadata)
1347 btrfs_check_nocow_unlock(inode);
1348
1349 btrfs_drop_folio(fs_info, folio, start, copied);
1350 return copied;
1351 }
1352
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * iter)1353 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1354 {
1355 struct file *file = iocb->ki_filp;
1356 loff_t pos;
1357 struct inode *inode = file_inode(file);
1358 struct extent_changeset *data_reserved = NULL;
1359 size_t num_written = 0;
1360 ssize_t ret;
1361 loff_t old_isize;
1362 unsigned int ilock_flags = 0;
1363 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1364
1365 if (nowait)
1366 ilock_flags |= BTRFS_ILOCK_TRY;
1367
1368 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1369 if (ret < 0)
1370 return ret;
1371
1372 /*
1373 * We can only trust the isize with inode lock held, or it can race with
1374 * other buffered writes and cause incorrect call of
1375 * pagecache_isize_extended() to overwrite existing data.
1376 */
1377 old_isize = i_size_read(inode);
1378
1379 ret = generic_write_checks(iocb, iter);
1380 if (ret <= 0)
1381 goto out;
1382
1383 ret = btrfs_write_check(iocb, ret);
1384 if (ret < 0)
1385 goto out;
1386
1387 pos = iocb->ki_pos;
1388 while (iov_iter_count(iter) > 0) {
1389 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1390 if (ret < 0)
1391 break;
1392 pos += ret;
1393 num_written += ret;
1394 cond_resched();
1395 }
1396
1397 extent_changeset_free(data_reserved);
1398 if (num_written > 0) {
1399 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1400 iocb->ki_pos += num_written;
1401 }
1402 out:
1403 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1404 return num_written ? num_written : ret;
1405 }
1406
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1407 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1408 const struct btrfs_ioctl_encoded_io_args *encoded)
1409 {
1410 struct file *file = iocb->ki_filp;
1411 struct inode *inode = file_inode(file);
1412 loff_t count;
1413 ssize_t ret;
1414
1415 btrfs_inode_lock(BTRFS_I(inode), 0);
1416 count = encoded->len;
1417 ret = generic_write_checks_count(iocb, &count);
1418 if (ret == 0 && count != encoded->len) {
1419 /*
1420 * The write got truncated by generic_write_checks_count(). We
1421 * can't do a partial encoded write.
1422 */
1423 ret = -EFBIG;
1424 }
1425 if (ret || encoded->len == 0)
1426 goto out;
1427
1428 ret = btrfs_write_check(iocb, encoded->len);
1429 if (ret < 0)
1430 goto out;
1431
1432 ret = btrfs_do_encoded_write(iocb, from, encoded);
1433 out:
1434 btrfs_inode_unlock(BTRFS_I(inode), 0);
1435 return ret;
1436 }
1437
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1438 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1439 const struct btrfs_ioctl_encoded_io_args *encoded)
1440 {
1441 struct file *file = iocb->ki_filp;
1442 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1443 ssize_t num_written, num_sync;
1444
1445 /*
1446 * If the fs flips readonly due to some impossible error, although we
1447 * have opened a file as writable, we have to stop this write operation
1448 * to ensure consistency.
1449 */
1450 if (BTRFS_FS_ERROR(inode->root->fs_info))
1451 return -EROFS;
1452
1453 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1454 return -EOPNOTSUPP;
1455
1456 if (encoded) {
1457 num_written = btrfs_encoded_write(iocb, from, encoded);
1458 num_sync = encoded->len;
1459 } else if (iocb->ki_flags & IOCB_DIRECT) {
1460 num_written = btrfs_direct_write(iocb, from);
1461 num_sync = num_written;
1462 } else {
1463 num_written = btrfs_buffered_write(iocb, from);
1464 num_sync = num_written;
1465 }
1466
1467 btrfs_set_inode_last_sub_trans(inode);
1468
1469 if (num_sync > 0) {
1470 num_sync = generic_write_sync(iocb, num_sync);
1471 if (num_sync < 0)
1472 num_written = num_sync;
1473 }
1474
1475 return num_written;
1476 }
1477
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1478 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1479 {
1480 return btrfs_do_write_iter(iocb, from, NULL);
1481 }
1482
btrfs_release_file(struct inode * inode,struct file * filp)1483 int btrfs_release_file(struct inode *inode, struct file *filp)
1484 {
1485 struct btrfs_file_private *private = filp->private_data;
1486
1487 if (private) {
1488 kfree(private->filldir_buf);
1489 btrfs_free_extent_state(private->llseek_cached_state);
1490 kfree(private);
1491 filp->private_data = NULL;
1492 }
1493
1494 /*
1495 * Set by setattr when we are about to truncate a file from a non-zero
1496 * size to a zero size. This tries to flush down new bytes that may
1497 * have been written if the application were using truncate to replace
1498 * a file in place.
1499 */
1500 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1501 &BTRFS_I(inode)->runtime_flags))
1502 filemap_flush(inode->i_mapping);
1503 return 0;
1504 }
1505
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1506 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1507 {
1508 int ret;
1509 struct blk_plug plug;
1510
1511 /*
1512 * This is only called in fsync, which would do synchronous writes, so
1513 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1514 * multiple disks using raid profile, a large IO can be split to
1515 * several segments of stripe length (currently 64K).
1516 */
1517 blk_start_plug(&plug);
1518 ret = btrfs_fdatawrite_range(inode, start, end);
1519 blk_finish_plug(&plug);
1520
1521 return ret;
1522 }
1523
skip_inode_logging(const struct btrfs_log_ctx * ctx)1524 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1525 {
1526 struct btrfs_inode *inode = ctx->inode;
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528
1529 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1530 list_empty(&ctx->ordered_extents))
1531 return true;
1532
1533 /*
1534 * If we are doing a fast fsync we can not bail out if the inode's
1535 * last_trans is <= then the last committed transaction, because we only
1536 * update the last_trans of the inode during ordered extent completion,
1537 * and for a fast fsync we don't wait for that, we only wait for the
1538 * writeback to complete.
1539 */
1540 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1541 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1542 list_empty(&ctx->ordered_extents)))
1543 return true;
1544
1545 return false;
1546 }
1547
1548 /*
1549 * fsync call for both files and directories. This logs the inode into
1550 * the tree log instead of forcing full commits whenever possible.
1551 *
1552 * It needs to call filemap_fdatawait so that all ordered extent updates are
1553 * in the metadata btree are up to date for copying to the log.
1554 *
1555 * It drops the inode mutex before doing the tree log commit. This is an
1556 * important optimization for directories because holding the mutex prevents
1557 * new operations on the dir while we write to disk.
1558 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1559 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1560 {
1561 struct dentry *dentry = file_dentry(file);
1562 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1563 struct btrfs_root *root = inode->root;
1564 struct btrfs_fs_info *fs_info = root->fs_info;
1565 struct btrfs_trans_handle *trans;
1566 struct btrfs_log_ctx ctx;
1567 int ret = 0, err;
1568 u64 len;
1569 bool full_sync;
1570 bool skip_ilock = false;
1571
1572 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1573 skip_ilock = true;
1574 current->journal_info = NULL;
1575 btrfs_assert_inode_locked(inode);
1576 }
1577
1578 trace_btrfs_sync_file(file, datasync);
1579
1580 btrfs_init_log_ctx(&ctx, inode);
1581
1582 /*
1583 * Always set the range to a full range, otherwise we can get into
1584 * several problems, from missing file extent items to represent holes
1585 * when not using the NO_HOLES feature, to log tree corruption due to
1586 * races between hole detection during logging and completion of ordered
1587 * extents outside the range, to missing checksums due to ordered extents
1588 * for which we flushed only a subset of their pages.
1589 */
1590 start = 0;
1591 end = LLONG_MAX;
1592 len = (u64)LLONG_MAX + 1;
1593
1594 /*
1595 * We write the dirty pages in the range and wait until they complete
1596 * out of the ->i_mutex. If so, we can flush the dirty pages by
1597 * multi-task, and make the performance up. See
1598 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1599 */
1600 ret = start_ordered_ops(inode, start, end);
1601 if (ret)
1602 goto out;
1603
1604 if (skip_ilock)
1605 down_write(&inode->i_mmap_lock);
1606 else
1607 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1608
1609 atomic_inc(&root->log_batch);
1610
1611 /*
1612 * Before we acquired the inode's lock and the mmap lock, someone may
1613 * have dirtied more pages in the target range. We need to make sure
1614 * that writeback for any such pages does not start while we are logging
1615 * the inode, because if it does, any of the following might happen when
1616 * we are not doing a full inode sync:
1617 *
1618 * 1) We log an extent after its writeback finishes but before its
1619 * checksums are added to the csum tree, leading to -EIO errors
1620 * when attempting to read the extent after a log replay.
1621 *
1622 * 2) We can end up logging an extent before its writeback finishes.
1623 * Therefore after the log replay we will have a file extent item
1624 * pointing to an unwritten extent (and no data checksums as well).
1625 *
1626 * So trigger writeback for any eventual new dirty pages and then we
1627 * wait for all ordered extents to complete below.
1628 */
1629 ret = start_ordered_ops(inode, start, end);
1630 if (ret) {
1631 if (skip_ilock)
1632 up_write(&inode->i_mmap_lock);
1633 else
1634 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1635 goto out;
1636 }
1637
1638 /*
1639 * Always check for the full sync flag while holding the inode's lock,
1640 * to avoid races with other tasks. The flag must be either set all the
1641 * time during logging or always off all the time while logging.
1642 * We check the flag here after starting delalloc above, because when
1643 * running delalloc the full sync flag may be set if we need to drop
1644 * extra extent map ranges due to temporary memory allocation failures.
1645 */
1646 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1647
1648 /*
1649 * We have to do this here to avoid the priority inversion of waiting on
1650 * IO of a lower priority task while holding a transaction open.
1651 *
1652 * For a full fsync we wait for the ordered extents to complete while
1653 * for a fast fsync we wait just for writeback to complete, and then
1654 * attach the ordered extents to the transaction so that a transaction
1655 * commit waits for their completion, to avoid data loss if we fsync,
1656 * the current transaction commits before the ordered extents complete
1657 * and a power failure happens right after that.
1658 *
1659 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1660 * logical address recorded in the ordered extent may change. We need
1661 * to wait for the IO to stabilize the logical address.
1662 */
1663 if (full_sync || btrfs_is_zoned(fs_info)) {
1664 ret = btrfs_wait_ordered_range(inode, start, len);
1665 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1666 } else {
1667 /*
1668 * Get our ordered extents as soon as possible to avoid doing
1669 * checksum lookups in the csum tree, and use instead the
1670 * checksums attached to the ordered extents.
1671 */
1672 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1673 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1674 if (ret)
1675 goto out_release_extents;
1676
1677 /*
1678 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1679 * starting and waiting for writeback, because for buffered IO
1680 * it may have been set during the end IO callback
1681 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1682 * case an error happened and we need to wait for ordered
1683 * extents to complete so that any extent maps that point to
1684 * unwritten locations are dropped and we don't log them.
1685 */
1686 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1687 ret = btrfs_wait_ordered_range(inode, start, len);
1688 }
1689
1690 if (ret)
1691 goto out_release_extents;
1692
1693 atomic_inc(&root->log_batch);
1694
1695 if (skip_inode_logging(&ctx)) {
1696 /*
1697 * We've had everything committed since the last time we were
1698 * modified so clear this flag in case it was set for whatever
1699 * reason, it's no longer relevant.
1700 */
1701 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1702 /*
1703 * An ordered extent might have started before and completed
1704 * already with io errors, in which case the inode was not
1705 * updated and we end up here. So check the inode's mapping
1706 * for any errors that might have happened since we last
1707 * checked called fsync.
1708 */
1709 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1710 goto out_release_extents;
1711 }
1712
1713 btrfs_init_log_ctx_scratch_eb(&ctx);
1714
1715 /*
1716 * We use start here because we will need to wait on the IO to complete
1717 * in btrfs_sync_log, which could require joining a transaction (for
1718 * example checking cross references in the nocow path). If we use join
1719 * here we could get into a situation where we're waiting on IO to
1720 * happen that is blocked on a transaction trying to commit. With start
1721 * we inc the extwriter counter, so we wait for all extwriters to exit
1722 * before we start blocking joiners. This comment is to keep somebody
1723 * from thinking they are super smart and changing this to
1724 * btrfs_join_transaction *cough*Josef*cough*.
1725 */
1726 trans = btrfs_start_transaction(root, 0);
1727 if (IS_ERR(trans)) {
1728 ret = PTR_ERR(trans);
1729 goto out_release_extents;
1730 }
1731 trans->in_fsync = true;
1732
1733 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1734 /*
1735 * Scratch eb no longer needed, release before syncing log or commit
1736 * transaction, to avoid holding unnecessary memory during such long
1737 * operations.
1738 */
1739 if (ctx.scratch_eb) {
1740 free_extent_buffer(ctx.scratch_eb);
1741 ctx.scratch_eb = NULL;
1742 }
1743 btrfs_release_log_ctx_extents(&ctx);
1744 if (ret < 0) {
1745 /* Fallthrough and commit/free transaction. */
1746 ret = BTRFS_LOG_FORCE_COMMIT;
1747 }
1748
1749 /* we've logged all the items and now have a consistent
1750 * version of the file in the log. It is possible that
1751 * someone will come in and modify the file, but that's
1752 * fine because the log is consistent on disk, and we
1753 * have references to all of the file's extents
1754 *
1755 * It is possible that someone will come in and log the
1756 * file again, but that will end up using the synchronization
1757 * inside btrfs_sync_log to keep things safe.
1758 */
1759 if (skip_ilock)
1760 up_write(&inode->i_mmap_lock);
1761 else
1762 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1763
1764 if (ret == BTRFS_NO_LOG_SYNC) {
1765 ret = btrfs_end_transaction(trans);
1766 goto out;
1767 }
1768
1769 /* We successfully logged the inode, attempt to sync the log. */
1770 if (!ret) {
1771 ret = btrfs_sync_log(trans, root, &ctx);
1772 if (!ret) {
1773 ret = btrfs_end_transaction(trans);
1774 goto out;
1775 }
1776 }
1777
1778 /*
1779 * At this point we need to commit the transaction because we had
1780 * btrfs_need_log_full_commit() or some other error.
1781 *
1782 * If we didn't do a full sync we have to stop the trans handle, wait on
1783 * the ordered extents, start it again and commit the transaction. If
1784 * we attempt to wait on the ordered extents here we could deadlock with
1785 * something like fallocate() that is holding the extent lock trying to
1786 * start a transaction while some other thread is trying to commit the
1787 * transaction while we (fsync) are currently holding the transaction
1788 * open.
1789 */
1790 if (!full_sync) {
1791 ret = btrfs_end_transaction(trans);
1792 if (ret)
1793 goto out;
1794 ret = btrfs_wait_ordered_range(inode, start, len);
1795 if (ret)
1796 goto out;
1797
1798 /*
1799 * This is safe to use here because we're only interested in
1800 * making sure the transaction that had the ordered extents is
1801 * committed. We aren't waiting on anything past this point,
1802 * we're purely getting the transaction and committing it.
1803 */
1804 trans = btrfs_attach_transaction_barrier(root);
1805 if (IS_ERR(trans)) {
1806 ret = PTR_ERR(trans);
1807
1808 /*
1809 * We committed the transaction and there's no currently
1810 * running transaction, this means everything we care
1811 * about made it to disk and we are done.
1812 */
1813 if (ret == -ENOENT)
1814 ret = 0;
1815 goto out;
1816 }
1817 }
1818
1819 ret = btrfs_commit_transaction(trans);
1820 out:
1821 free_extent_buffer(ctx.scratch_eb);
1822 ASSERT(list_empty(&ctx.list));
1823 ASSERT(list_empty(&ctx.conflict_inodes));
1824 err = file_check_and_advance_wb_err(file);
1825 if (!ret)
1826 ret = err;
1827 return ret > 0 ? -EIO : ret;
1828
1829 out_release_extents:
1830 btrfs_release_log_ctx_extents(&ctx);
1831 if (skip_ilock)
1832 up_write(&inode->i_mmap_lock);
1833 else
1834 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1835 goto out;
1836 }
1837
1838 /*
1839 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1840 * called from a page fault handler when a page is first dirtied. Hence we must
1841 * be careful to check for EOF conditions here. We set the page up correctly
1842 * for a written page which means we get ENOSPC checking when writing into
1843 * holes and correct delalloc and unwritten extent mapping on filesystems that
1844 * support these features.
1845 *
1846 * We are not allowed to take the i_mutex here so we have to play games to
1847 * protect against truncate races as the page could now be beyond EOF. Because
1848 * truncate_setsize() writes the inode size before removing pages, once we have
1849 * the page lock we can determine safely if the page is beyond EOF. If it is not
1850 * beyond EOF, then the page is guaranteed safe against truncation until we
1851 * unlock the page.
1852 */
btrfs_page_mkwrite(struct vm_fault * vmf)1853 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1854 {
1855 struct page *page = vmf->page;
1856 struct folio *folio = page_folio(page);
1857 struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file));
1858 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1859 struct extent_io_tree *io_tree = &inode->io_tree;
1860 struct btrfs_ordered_extent *ordered;
1861 struct extent_state *cached_state = NULL;
1862 struct extent_changeset *data_reserved = NULL;
1863 unsigned long zero_start;
1864 loff_t size;
1865 size_t fsize = folio_size(folio);
1866 int ret;
1867 bool only_release_metadata = false;
1868 u64 reserved_space;
1869 u64 page_start;
1870 u64 page_end;
1871 u64 end;
1872
1873 reserved_space = fsize;
1874
1875 sb_start_pagefault(inode->vfs_inode.i_sb);
1876 page_start = folio_pos(folio);
1877 page_end = page_start + folio_size(folio) - 1;
1878 end = page_end;
1879
1880 /*
1881 * Reserving delalloc space after obtaining the page lock can lead to
1882 * deadlock. For example, if a dirty page is locked by this function
1883 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1884 * dirty page write out, then the btrfs_writepages() function could
1885 * end up waiting indefinitely to get a lock on the page currently
1886 * being processed by btrfs_page_mkwrite() function.
1887 */
1888 ret = btrfs_check_data_free_space(inode, &data_reserved, page_start,
1889 reserved_space, false);
1890 if (ret < 0) {
1891 size_t write_bytes = reserved_space;
1892
1893 if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0)
1894 goto out_noreserve;
1895
1896 only_release_metadata = true;
1897
1898 /*
1899 * Can't write the whole range, there may be shared extents or
1900 * holes in the range, bail out with @only_release_metadata set
1901 * to true so that we unlock the nocow lock before returning the
1902 * error.
1903 */
1904 if (write_bytes < reserved_space)
1905 goto out_noreserve;
1906 }
1907 ret = btrfs_delalloc_reserve_metadata(inode, reserved_space,
1908 reserved_space, false);
1909 if (ret < 0) {
1910 if (!only_release_metadata)
1911 btrfs_free_reserved_data_space(inode, data_reserved,
1912 page_start, reserved_space);
1913 goto out_noreserve;
1914 }
1915
1916 ret = file_update_time(vmf->vma->vm_file);
1917 if (ret < 0)
1918 goto out;
1919 again:
1920 down_read(&inode->i_mmap_lock);
1921 folio_lock(folio);
1922 size = i_size_read(&inode->vfs_inode);
1923
1924 if ((folio->mapping != inode->vfs_inode.i_mapping) ||
1925 (page_start >= size)) {
1926 /* Page got truncated out from underneath us. */
1927 goto out_unlock;
1928 }
1929 folio_wait_writeback(folio);
1930
1931 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1932 ret = set_folio_extent_mapped(folio);
1933 if (ret < 0) {
1934 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1935 goto out_unlock;
1936 }
1937
1938 /*
1939 * We can't set the delalloc bits if there are pending ordered
1940 * extents. Drop our locks and wait for them to finish.
1941 */
1942 ordered = btrfs_lookup_ordered_range(inode, page_start, fsize);
1943 if (ordered) {
1944 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1945 folio_unlock(folio);
1946 up_read(&inode->i_mmap_lock);
1947 btrfs_start_ordered_extent(ordered);
1948 btrfs_put_ordered_extent(ordered);
1949 goto again;
1950 }
1951
1952 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1953 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1954 if (reserved_space < fsize) {
1955 const u64 to_free = fsize - reserved_space;
1956
1957 end = page_start + reserved_space - 1;
1958 if (only_release_metadata)
1959 btrfs_delalloc_release_metadata(inode, to_free, true);
1960 else
1961 btrfs_delalloc_release_space(inode, data_reserved,
1962 end + 1, to_free, true);
1963 }
1964 }
1965
1966 /*
1967 * page_mkwrite gets called when the page is firstly dirtied after it's
1968 * faulted in, but write(2) could also dirty a page and set delalloc
1969 * bits, thus in this case for space account reason, we still need to
1970 * clear any delalloc bits within this page range since we have to
1971 * reserve data&meta space before lock_page() (see above comments).
1972 */
1973 btrfs_clear_extent_bit(io_tree, page_start, end,
1974 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1975 EXTENT_DEFRAG, &cached_state);
1976
1977 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state);
1978 if (ret < 0) {
1979 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1980 goto out_unlock;
1981 }
1982
1983 /* Page is wholly or partially inside EOF. */
1984 if (page_start + folio_size(folio) > size)
1985 zero_start = offset_in_folio(folio, size);
1986 else
1987 zero_start = fsize;
1988
1989 if (zero_start != fsize)
1990 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1991
1992 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1993 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1994 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1995
1996 btrfs_set_inode_last_sub_trans(inode);
1997
1998 if (only_release_metadata)
1999 btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE,
2000 &cached_state);
2001
2002 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
2003 up_read(&inode->i_mmap_lock);
2004
2005 btrfs_delalloc_release_extents(inode, fsize);
2006 if (only_release_metadata)
2007 btrfs_check_nocow_unlock(inode);
2008 sb_end_pagefault(inode->vfs_inode.i_sb);
2009 extent_changeset_free(data_reserved);
2010 return VM_FAULT_LOCKED;
2011
2012 out_unlock:
2013 folio_unlock(folio);
2014 up_read(&inode->i_mmap_lock);
2015 out:
2016 btrfs_delalloc_release_extents(inode, fsize);
2017 if (only_release_metadata)
2018 btrfs_delalloc_release_metadata(inode, reserved_space, true);
2019 else
2020 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2021 reserved_space, true);
2022 extent_changeset_free(data_reserved);
2023 out_noreserve:
2024 if (only_release_metadata)
2025 btrfs_check_nocow_unlock(inode);
2026
2027 sb_end_pagefault(inode->vfs_inode.i_sb);
2028
2029 if (ret < 0)
2030 return vmf_error(ret);
2031
2032 /* Make the VM retry the fault. */
2033 return VM_FAULT_NOPAGE;
2034 }
2035
2036 static const struct vm_operations_struct btrfs_file_vm_ops = {
2037 .fault = filemap_fault,
2038 .map_pages = filemap_map_pages,
2039 .page_mkwrite = btrfs_page_mkwrite,
2040 };
2041
btrfs_file_mmap_prepare(struct vm_area_desc * desc)2042 static int btrfs_file_mmap_prepare(struct vm_area_desc *desc)
2043 {
2044 struct file *filp = desc->file;
2045 struct address_space *mapping = filp->f_mapping;
2046
2047 if (!mapping->a_ops->read_folio)
2048 return -ENOEXEC;
2049
2050 file_accessed(filp);
2051 desc->vm_ops = &btrfs_file_vm_ops;
2052
2053 return 0;
2054 }
2055
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2056 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2057 int slot, u64 start, u64 end)
2058 {
2059 struct btrfs_file_extent_item *fi;
2060 struct btrfs_key key;
2061
2062 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2063 return false;
2064
2065 btrfs_item_key_to_cpu(leaf, &key, slot);
2066 if (key.objectid != btrfs_ino(inode) ||
2067 key.type != BTRFS_EXTENT_DATA_KEY)
2068 return false;
2069
2070 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2071
2072 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2073 return false;
2074
2075 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2076 return false;
2077
2078 if (key.offset == end)
2079 return true;
2080 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2081 return true;
2082 return false;
2083 }
2084
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2085 static int fill_holes(struct btrfs_trans_handle *trans,
2086 struct btrfs_inode *inode,
2087 struct btrfs_path *path, u64 offset, u64 end)
2088 {
2089 struct btrfs_fs_info *fs_info = trans->fs_info;
2090 struct btrfs_root *root = inode->root;
2091 struct extent_buffer *leaf;
2092 struct btrfs_file_extent_item *fi;
2093 struct extent_map *hole_em;
2094 struct btrfs_key key;
2095 int ret;
2096
2097 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2098 goto out;
2099
2100 key.objectid = btrfs_ino(inode);
2101 key.type = BTRFS_EXTENT_DATA_KEY;
2102 key.offset = offset;
2103
2104 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2105 if (ret <= 0) {
2106 /*
2107 * We should have dropped this offset, so if we find it then
2108 * something has gone horribly wrong.
2109 */
2110 if (ret == 0)
2111 ret = -EINVAL;
2112 return ret;
2113 }
2114
2115 leaf = path->nodes[0];
2116 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2117 u64 num_bytes;
2118
2119 path->slots[0]--;
2120 fi = btrfs_item_ptr(leaf, path->slots[0],
2121 struct btrfs_file_extent_item);
2122 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2123 end - offset;
2124 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2125 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2126 btrfs_set_file_extent_offset(leaf, fi, 0);
2127 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2128 goto out;
2129 }
2130
2131 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2132 u64 num_bytes;
2133
2134 key.offset = offset;
2135 btrfs_set_item_key_safe(trans, path, &key);
2136 fi = btrfs_item_ptr(leaf, path->slots[0],
2137 struct btrfs_file_extent_item);
2138 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2139 offset;
2140 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2141 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2142 btrfs_set_file_extent_offset(leaf, fi, 0);
2143 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2144 goto out;
2145 }
2146 btrfs_release_path(path);
2147
2148 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2149 end - offset);
2150 if (ret)
2151 return ret;
2152
2153 out:
2154 btrfs_release_path(path);
2155
2156 hole_em = btrfs_alloc_extent_map();
2157 if (!hole_em) {
2158 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2159 btrfs_set_inode_full_sync(inode);
2160 } else {
2161 hole_em->start = offset;
2162 hole_em->len = end - offset;
2163 hole_em->ram_bytes = hole_em->len;
2164
2165 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2166 hole_em->disk_num_bytes = 0;
2167 hole_em->generation = trans->transid;
2168
2169 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2170 btrfs_free_extent_map(hole_em);
2171 if (ret)
2172 btrfs_set_inode_full_sync(inode);
2173 }
2174
2175 return 0;
2176 }
2177
2178 /*
2179 * Find a hole extent on given inode and change start/len to the end of hole
2180 * extent.(hole/vacuum extent whose em->start <= start &&
2181 * em->start + em->len > start)
2182 * When a hole extent is found, return 1 and modify start/len.
2183 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2184 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2185 {
2186 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2187 struct extent_map *em;
2188 int ret = 0;
2189
2190 em = btrfs_get_extent(inode, NULL,
2191 round_down(*start, fs_info->sectorsize),
2192 round_up(*len, fs_info->sectorsize));
2193 if (IS_ERR(em))
2194 return PTR_ERR(em);
2195
2196 /* Hole or vacuum extent(only exists in no-hole mode) */
2197 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2198 ret = 1;
2199 *len = em->start + em->len > *start + *len ?
2200 0 : *start + *len - em->start - em->len;
2201 *start = em->start + em->len;
2202 }
2203 btrfs_free_extent_map(em);
2204 return ret;
2205 }
2206
2207 /*
2208 * Check if there is no folio in the range.
2209 *
2210 * We cannot utilize filemap_range_has_page() in a filemap with large folios
2211 * as we can hit the following false positive:
2212 *
2213 * start end
2214 * | |
2215 * |//|//|//|//| | | | | | | | |//|//|
2216 * \ / \ /
2217 * Folio A Folio B
2218 *
2219 * That large folio A and B cover the start and end indexes.
2220 * In that case filemap_range_has_page() will always return true, but the above
2221 * case is fine for btrfs_punch_hole_lock_range() usage.
2222 *
2223 * So here we only ensure that no other folios is in the range, excluding the
2224 * head/tail large folio.
2225 */
check_range_has_page(struct inode * inode,u64 start,u64 end)2226 static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2227 {
2228 struct folio_batch fbatch;
2229 bool ret = false;
2230 /*
2231 * For subpage case, if the range is not at page boundary, we could
2232 * have pages at the leading/tailing part of the range.
2233 * This could lead to dead loop since filemap_range_has_page()
2234 * will always return true.
2235 * So here we need to do extra page alignment for
2236 * filemap_range_has_page().
2237 *
2238 * And do not decrease page_lockend right now, as it can be 0.
2239 */
2240 const u64 page_lockstart = round_up(start, PAGE_SIZE);
2241 const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2242 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2243 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2244 pgoff_t tmp = start_index;
2245 int found_folios;
2246
2247 /* The same page or adjacent pages. */
2248 if (page_lockend <= page_lockstart)
2249 return false;
2250
2251 folio_batch_init(&fbatch);
2252 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2253 for (int i = 0; i < found_folios; i++) {
2254 struct folio *folio = fbatch.folios[i];
2255
2256 /* A large folio begins before the start. Not a target. */
2257 if (folio->index < start_index)
2258 continue;
2259 /* A large folio extends beyond the end. Not a target. */
2260 if (folio_next_index(folio) > end_index)
2261 continue;
2262 /* A folio doesn't cover the head/tail index. Found a target. */
2263 ret = true;
2264 break;
2265 }
2266 folio_batch_release(&fbatch);
2267 return ret;
2268 }
2269
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2270 static void btrfs_punch_hole_lock_range(struct inode *inode,
2271 const u64 lockstart, const u64 lockend,
2272 struct extent_state **cached_state)
2273 {
2274 while (1) {
2275 truncate_pagecache_range(inode, lockstart, lockend);
2276
2277 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2278 cached_state);
2279 /*
2280 * We can't have ordered extents in the range, nor dirty/writeback
2281 * pages, because we have locked the inode's VFS lock in exclusive
2282 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2283 * we have flushed all delalloc in the range and we have waited
2284 * for any ordered extents in the range to complete.
2285 * We can race with anyone reading pages from this range, so after
2286 * locking the range check if we have pages in the range, and if
2287 * we do, unlock the range and retry.
2288 */
2289 if (!check_range_has_page(inode, lockstart, lockend))
2290 break;
2291
2292 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2293 cached_state);
2294 }
2295
2296 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2297 }
2298
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2299 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2300 struct btrfs_inode *inode,
2301 struct btrfs_path *path,
2302 struct btrfs_replace_extent_info *extent_info,
2303 const u64 replace_len,
2304 const u64 bytes_to_drop)
2305 {
2306 struct btrfs_fs_info *fs_info = trans->fs_info;
2307 struct btrfs_root *root = inode->root;
2308 struct btrfs_file_extent_item *extent;
2309 struct extent_buffer *leaf;
2310 struct btrfs_key key;
2311 int slot;
2312 int ret;
2313
2314 if (replace_len == 0)
2315 return 0;
2316
2317 if (extent_info->disk_offset == 0 &&
2318 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2319 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2320 return 0;
2321 }
2322
2323 key.objectid = btrfs_ino(inode);
2324 key.type = BTRFS_EXTENT_DATA_KEY;
2325 key.offset = extent_info->file_offset;
2326 ret = btrfs_insert_empty_item(trans, root, path, &key,
2327 sizeof(struct btrfs_file_extent_item));
2328 if (ret)
2329 return ret;
2330 leaf = path->nodes[0];
2331 slot = path->slots[0];
2332 write_extent_buffer(leaf, extent_info->extent_buf,
2333 btrfs_item_ptr_offset(leaf, slot),
2334 sizeof(struct btrfs_file_extent_item));
2335 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2336 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2337 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2338 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2339 if (extent_info->is_new_extent)
2340 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2341 btrfs_release_path(path);
2342
2343 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2344 replace_len);
2345 if (ret)
2346 return ret;
2347
2348 /* If it's a hole, nothing more needs to be done. */
2349 if (extent_info->disk_offset == 0) {
2350 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2351 return 0;
2352 }
2353
2354 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2355
2356 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2357 key.objectid = extent_info->disk_offset;
2358 key.type = BTRFS_EXTENT_ITEM_KEY;
2359 key.offset = extent_info->disk_len;
2360 ret = btrfs_alloc_reserved_file_extent(trans, root,
2361 btrfs_ino(inode),
2362 extent_info->file_offset,
2363 extent_info->qgroup_reserved,
2364 &key);
2365 } else {
2366 struct btrfs_ref ref = {
2367 .action = BTRFS_ADD_DELAYED_REF,
2368 .bytenr = extent_info->disk_offset,
2369 .num_bytes = extent_info->disk_len,
2370 .owning_root = btrfs_root_id(root),
2371 .ref_root = btrfs_root_id(root),
2372 };
2373 u64 ref_offset;
2374
2375 ref_offset = extent_info->file_offset - extent_info->data_offset;
2376 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2377 ret = btrfs_inc_extent_ref(trans, &ref);
2378 }
2379
2380 extent_info->insertions++;
2381
2382 return ret;
2383 }
2384
2385 /*
2386 * The respective range must have been previously locked, as well as the inode.
2387 * The end offset is inclusive (last byte of the range).
2388 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2389 * the file range with an extent.
2390 * When not punching a hole, we don't want to end up in a state where we dropped
2391 * extents without inserting a new one, so we must abort the transaction to avoid
2392 * a corruption.
2393 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2394 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2395 struct btrfs_path *path, const u64 start,
2396 const u64 end,
2397 struct btrfs_replace_extent_info *extent_info,
2398 struct btrfs_trans_handle **trans_out)
2399 {
2400 struct btrfs_drop_extents_args drop_args = { 0 };
2401 struct btrfs_root *root = inode->root;
2402 struct btrfs_fs_info *fs_info = root->fs_info;
2403 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2404 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2405 struct btrfs_trans_handle *trans = NULL;
2406 struct btrfs_block_rsv rsv;
2407 unsigned int rsv_count;
2408 u64 cur_offset;
2409 u64 len = end - start;
2410 int ret = 0;
2411
2412 if (end <= start)
2413 return -EINVAL;
2414
2415 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
2416 rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1);
2417 rsv.failfast = true;
2418
2419 /*
2420 * 1 - update the inode
2421 * 1 - removing the extents in the range
2422 * 1 - adding the hole extent if no_holes isn't set or if we are
2423 * replacing the range with a new extent
2424 */
2425 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2426 rsv_count = 3;
2427 else
2428 rsv_count = 2;
2429
2430 trans = btrfs_start_transaction(root, rsv_count);
2431 if (IS_ERR(trans)) {
2432 ret = PTR_ERR(trans);
2433 trans = NULL;
2434 goto out_release;
2435 }
2436
2437 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
2438 min_size, false);
2439 if (WARN_ON(ret))
2440 goto out_trans;
2441 trans->block_rsv = &rsv;
2442
2443 cur_offset = start;
2444 drop_args.path = path;
2445 drop_args.end = end + 1;
2446 drop_args.drop_cache = true;
2447 while (cur_offset < end) {
2448 drop_args.start = cur_offset;
2449 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2450 /* If we are punching a hole decrement the inode's byte count */
2451 if (!extent_info)
2452 btrfs_update_inode_bytes(inode, 0,
2453 drop_args.bytes_found);
2454 if (ret != -ENOSPC) {
2455 /*
2456 * The only time we don't want to abort is if we are
2457 * attempting to clone a partial inline extent, in which
2458 * case we'll get EOPNOTSUPP. However if we aren't
2459 * clone we need to abort no matter what, because if we
2460 * got EOPNOTSUPP via prealloc then we messed up and
2461 * need to abort.
2462 */
2463 if (unlikely(ret &&
2464 (ret != -EOPNOTSUPP ||
2465 (extent_info && extent_info->is_new_extent))))
2466 btrfs_abort_transaction(trans, ret);
2467 break;
2468 }
2469
2470 trans->block_rsv = &fs_info->trans_block_rsv;
2471
2472 if (!extent_info && cur_offset < drop_args.drop_end &&
2473 cur_offset < ino_size) {
2474 ret = fill_holes(trans, inode, path, cur_offset,
2475 drop_args.drop_end);
2476 if (unlikely(ret)) {
2477 /*
2478 * If we failed then we didn't insert our hole
2479 * entries for the area we dropped, so now the
2480 * fs is corrupted, so we must abort the
2481 * transaction.
2482 */
2483 btrfs_abort_transaction(trans, ret);
2484 break;
2485 }
2486 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2487 /*
2488 * We are past the i_size here, but since we didn't
2489 * insert holes we need to clear the mapped area so we
2490 * know to not set disk_i_size in this area until a new
2491 * file extent is inserted here.
2492 */
2493 ret = btrfs_inode_clear_file_extent_range(inode,
2494 cur_offset,
2495 drop_args.drop_end - cur_offset);
2496 if (unlikely(ret)) {
2497 /*
2498 * We couldn't clear our area, so we could
2499 * presumably adjust up and corrupt the fs, so
2500 * we need to abort.
2501 */
2502 btrfs_abort_transaction(trans, ret);
2503 break;
2504 }
2505 }
2506
2507 if (extent_info &&
2508 drop_args.drop_end > extent_info->file_offset) {
2509 u64 replace_len = drop_args.drop_end -
2510 extent_info->file_offset;
2511
2512 ret = btrfs_insert_replace_extent(trans, inode, path,
2513 extent_info, replace_len,
2514 drop_args.bytes_found);
2515 if (unlikely(ret)) {
2516 btrfs_abort_transaction(trans, ret);
2517 break;
2518 }
2519 extent_info->data_len -= replace_len;
2520 extent_info->data_offset += replace_len;
2521 extent_info->file_offset += replace_len;
2522 }
2523
2524 /*
2525 * We are releasing our handle on the transaction, balance the
2526 * dirty pages of the btree inode and flush delayed items, and
2527 * then get a new transaction handle, which may now point to a
2528 * new transaction in case someone else may have committed the
2529 * transaction we used to replace/drop file extent items. So
2530 * bump the inode's iversion and update mtime and ctime except
2531 * if we are called from a dedupe context. This is because a
2532 * power failure/crash may happen after the transaction is
2533 * committed and before we finish replacing/dropping all the
2534 * file extent items we need.
2535 */
2536 inode_inc_iversion(&inode->vfs_inode);
2537
2538 if (!extent_info || extent_info->update_times)
2539 inode_set_mtime_to_ts(&inode->vfs_inode,
2540 inode_set_ctime_current(&inode->vfs_inode));
2541
2542 ret = btrfs_update_inode(trans, inode);
2543 if (ret)
2544 break;
2545
2546 btrfs_end_transaction(trans);
2547 btrfs_btree_balance_dirty(fs_info);
2548
2549 trans = btrfs_start_transaction(root, rsv_count);
2550 if (IS_ERR(trans)) {
2551 ret = PTR_ERR(trans);
2552 trans = NULL;
2553 break;
2554 }
2555
2556 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2557 &rsv, min_size, false);
2558 if (WARN_ON(ret))
2559 break;
2560 trans->block_rsv = &rsv;
2561
2562 cur_offset = drop_args.drop_end;
2563 len = end - cur_offset;
2564 if (!extent_info && len) {
2565 ret = find_first_non_hole(inode, &cur_offset, &len);
2566 if (unlikely(ret < 0))
2567 break;
2568 if (ret && !len) {
2569 ret = 0;
2570 break;
2571 }
2572 }
2573 }
2574
2575 /*
2576 * If we were cloning, force the next fsync to be a full one since we
2577 * we replaced (or just dropped in the case of cloning holes when
2578 * NO_HOLES is enabled) file extent items and did not setup new extent
2579 * maps for the replacement extents (or holes).
2580 */
2581 if (extent_info && !extent_info->is_new_extent)
2582 btrfs_set_inode_full_sync(inode);
2583
2584 if (ret)
2585 goto out_trans;
2586
2587 trans->block_rsv = &fs_info->trans_block_rsv;
2588 /*
2589 * If we are using the NO_HOLES feature we might have had already an
2590 * hole that overlaps a part of the region [lockstart, lockend] and
2591 * ends at (or beyond) lockend. Since we have no file extent items to
2592 * represent holes, drop_end can be less than lockend and so we must
2593 * make sure we have an extent map representing the existing hole (the
2594 * call to __btrfs_drop_extents() might have dropped the existing extent
2595 * map representing the existing hole), otherwise the fast fsync path
2596 * will not record the existence of the hole region
2597 * [existing_hole_start, lockend].
2598 */
2599 if (drop_args.drop_end <= end)
2600 drop_args.drop_end = end + 1;
2601 /*
2602 * Don't insert file hole extent item if it's for a range beyond eof
2603 * (because it's useless) or if it represents a 0 bytes range (when
2604 * cur_offset == drop_end).
2605 */
2606 if (!extent_info && cur_offset < ino_size &&
2607 cur_offset < drop_args.drop_end) {
2608 ret = fill_holes(trans, inode, path, cur_offset,
2609 drop_args.drop_end);
2610 if (unlikely(ret)) {
2611 /* Same comment as above. */
2612 btrfs_abort_transaction(trans, ret);
2613 goto out_trans;
2614 }
2615 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2616 /* See the comment in the loop above for the reasoning here. */
2617 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2618 drop_args.drop_end - cur_offset);
2619 if (unlikely(ret)) {
2620 btrfs_abort_transaction(trans, ret);
2621 goto out_trans;
2622 }
2623
2624 }
2625 if (extent_info) {
2626 ret = btrfs_insert_replace_extent(trans, inode, path,
2627 extent_info, extent_info->data_len,
2628 drop_args.bytes_found);
2629 if (unlikely(ret)) {
2630 btrfs_abort_transaction(trans, ret);
2631 goto out_trans;
2632 }
2633 }
2634
2635 out_trans:
2636 if (!trans)
2637 goto out_release;
2638
2639 trans->block_rsv = &fs_info->trans_block_rsv;
2640 if (ret)
2641 btrfs_end_transaction(trans);
2642 else
2643 *trans_out = trans;
2644 out_release:
2645 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
2646 return ret;
2647 }
2648
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2649 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2650 {
2651 struct inode *inode = file_inode(file);
2652 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2653 struct btrfs_root *root = BTRFS_I(inode)->root;
2654 struct extent_state *cached_state = NULL;
2655 struct btrfs_path *path;
2656 struct btrfs_trans_handle *trans = NULL;
2657 u64 lockstart;
2658 u64 lockend;
2659 u64 tail_start;
2660 u64 tail_len;
2661 const u64 orig_start = offset;
2662 const u64 orig_end = offset + len - 1;
2663 int ret = 0;
2664 bool same_block;
2665 u64 ino_size;
2666 bool truncated_block = false;
2667 bool updated_inode = false;
2668
2669 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2670
2671 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2672 if (ret)
2673 goto out_only_mutex;
2674
2675 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2676 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2677 if (ret < 0)
2678 goto out_only_mutex;
2679 if (ret && !len) {
2680 /* Already in a large hole */
2681 ret = 0;
2682 goto out_only_mutex;
2683 }
2684
2685 ret = file_modified(file);
2686 if (ret)
2687 goto out_only_mutex;
2688
2689 lockstart = round_up(offset, fs_info->sectorsize);
2690 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2691 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2692 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2693 /*
2694 * Only do this if we are in the same block and we aren't doing the
2695 * entire block.
2696 */
2697 if (same_block && len < fs_info->sectorsize) {
2698 if (offset < ino_size) {
2699 truncated_block = true;
2700 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2701 orig_start, orig_end);
2702 } else {
2703 ret = 0;
2704 }
2705 goto out_only_mutex;
2706 }
2707
2708 /* zero back part of the first block */
2709 if (offset < ino_size) {
2710 truncated_block = true;
2711 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2712 if (ret) {
2713 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2714 return ret;
2715 }
2716 }
2717
2718 /* Check the aligned pages after the first unaligned page,
2719 * if offset != orig_start, which means the first unaligned page
2720 * including several following pages are already in holes,
2721 * the extra check can be skipped */
2722 if (offset == orig_start) {
2723 /* after truncate page, check hole again */
2724 len = offset + len - lockstart;
2725 offset = lockstart;
2726 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2727 if (ret < 0)
2728 goto out_only_mutex;
2729 if (ret && !len) {
2730 ret = 0;
2731 goto out_only_mutex;
2732 }
2733 lockstart = offset;
2734 }
2735
2736 /* Check the tail unaligned part is in a hole */
2737 tail_start = lockend + 1;
2738 tail_len = offset + len - tail_start;
2739 if (tail_len) {
2740 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2741 if (unlikely(ret < 0))
2742 goto out_only_mutex;
2743 if (!ret) {
2744 /* zero the front end of the last page */
2745 if (tail_start + tail_len < ino_size) {
2746 truncated_block = true;
2747 ret = btrfs_truncate_block(BTRFS_I(inode),
2748 tail_start + tail_len - 1,
2749 orig_start, orig_end);
2750 if (ret)
2751 goto out_only_mutex;
2752 }
2753 }
2754 }
2755
2756 if (lockend < lockstart) {
2757 ret = 0;
2758 goto out_only_mutex;
2759 }
2760
2761 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2762
2763 path = btrfs_alloc_path();
2764 if (!path) {
2765 ret = -ENOMEM;
2766 goto out;
2767 }
2768
2769 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2770 lockend, NULL, &trans);
2771 btrfs_free_path(path);
2772 if (ret)
2773 goto out;
2774
2775 ASSERT(trans != NULL);
2776 inode_inc_iversion(inode);
2777 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2778 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2779 updated_inode = true;
2780 btrfs_end_transaction(trans);
2781 btrfs_btree_balance_dirty(fs_info);
2782 out:
2783 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2784 &cached_state);
2785 out_only_mutex:
2786 if (!updated_inode && truncated_block && !ret) {
2787 /*
2788 * If we only end up zeroing part of a page, we still need to
2789 * update the inode item, so that all the time fields are
2790 * updated as well as the necessary btrfs inode in memory fields
2791 * for detecting, at fsync time, if the inode isn't yet in the
2792 * log tree or it's there but not up to date.
2793 */
2794 struct timespec64 now = inode_set_ctime_current(inode);
2795
2796 inode_inc_iversion(inode);
2797 inode_set_mtime_to_ts(inode, now);
2798 trans = btrfs_start_transaction(root, 1);
2799 if (IS_ERR(trans)) {
2800 ret = PTR_ERR(trans);
2801 } else {
2802 int ret2;
2803
2804 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2805 ret2 = btrfs_end_transaction(trans);
2806 if (!ret)
2807 ret = ret2;
2808 }
2809 }
2810 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2811 return ret;
2812 }
2813
2814 /* Helper structure to record which range is already reserved */
2815 struct falloc_range {
2816 struct list_head list;
2817 u64 start;
2818 u64 len;
2819 };
2820
2821 /*
2822 * Helper function to add falloc range
2823 *
2824 * Caller should have locked the larger range of extent containing
2825 * [start, len)
2826 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2827 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2828 {
2829 struct falloc_range *range = NULL;
2830
2831 if (!list_empty(head)) {
2832 /*
2833 * As fallocate iterates by bytenr order, we only need to check
2834 * the last range.
2835 */
2836 range = list_last_entry(head, struct falloc_range, list);
2837 if (range->start + range->len == start) {
2838 range->len += len;
2839 return 0;
2840 }
2841 }
2842
2843 range = kmalloc(sizeof(*range), GFP_KERNEL);
2844 if (!range)
2845 return -ENOMEM;
2846 range->start = start;
2847 range->len = len;
2848 list_add_tail(&range->list, head);
2849 return 0;
2850 }
2851
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2852 static int btrfs_fallocate_update_isize(struct inode *inode,
2853 const u64 end,
2854 const int mode)
2855 {
2856 struct btrfs_trans_handle *trans;
2857 struct btrfs_root *root = BTRFS_I(inode)->root;
2858 u64 range_start;
2859 u64 range_end;
2860 int ret;
2861 int ret2;
2862
2863 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2864 return 0;
2865
2866 range_start = round_down(i_size_read(inode), root->fs_info->sectorsize);
2867 range_end = round_up(end, root->fs_info->sectorsize);
2868
2869 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start,
2870 range_end - range_start);
2871 if (ret)
2872 return ret;
2873
2874 trans = btrfs_start_transaction(root, 1);
2875 if (IS_ERR(trans))
2876 return PTR_ERR(trans);
2877
2878 inode_set_ctime_current(inode);
2879 i_size_write(inode, end);
2880 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2881 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2882 ret2 = btrfs_end_transaction(trans);
2883
2884 return ret ? ret : ret2;
2885 }
2886
2887 enum {
2888 RANGE_BOUNDARY_WRITTEN_EXTENT,
2889 RANGE_BOUNDARY_PREALLOC_EXTENT,
2890 RANGE_BOUNDARY_HOLE,
2891 };
2892
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2893 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2894 u64 offset)
2895 {
2896 const u64 sectorsize = inode->root->fs_info->sectorsize;
2897 struct extent_map *em;
2898 int ret;
2899
2900 offset = round_down(offset, sectorsize);
2901 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2902 if (IS_ERR(em))
2903 return PTR_ERR(em);
2904
2905 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2906 ret = RANGE_BOUNDARY_HOLE;
2907 else if (em->flags & EXTENT_FLAG_PREALLOC)
2908 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2909 else
2910 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2911
2912 btrfs_free_extent_map(em);
2913 return ret;
2914 }
2915
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2916 static int btrfs_zero_range(struct inode *inode,
2917 loff_t offset,
2918 loff_t len,
2919 const int mode)
2920 {
2921 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2922 struct extent_map *em;
2923 struct extent_changeset *data_reserved = NULL;
2924 int ret;
2925 u64 alloc_hint = 0;
2926 const u64 sectorsize = fs_info->sectorsize;
2927 const u64 orig_start = offset;
2928 const u64 orig_end = offset + len - 1;
2929 u64 alloc_start = round_down(offset, sectorsize);
2930 u64 alloc_end = round_up(offset + len, sectorsize);
2931 u64 bytes_to_reserve = 0;
2932 bool space_reserved = false;
2933
2934 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2935 alloc_end - alloc_start);
2936 if (IS_ERR(em)) {
2937 ret = PTR_ERR(em);
2938 goto out;
2939 }
2940
2941 /*
2942 * Avoid hole punching and extent allocation for some cases. More cases
2943 * could be considered, but these are unlikely common and we keep things
2944 * as simple as possible for now. Also, intentionally, if the target
2945 * range contains one or more prealloc extents together with regular
2946 * extents and holes, we drop all the existing extents and allocate a
2947 * new prealloc extent, so that we get a larger contiguous disk extent.
2948 */
2949 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2950 const u64 em_end = em->start + em->len;
2951
2952 if (em_end >= offset + len) {
2953 /*
2954 * The whole range is already a prealloc extent,
2955 * do nothing except updating the inode's i_size if
2956 * needed.
2957 */
2958 btrfs_free_extent_map(em);
2959 ret = btrfs_fallocate_update_isize(inode, offset + len,
2960 mode);
2961 goto out;
2962 }
2963 /*
2964 * Part of the range is already a prealloc extent, so operate
2965 * only on the remaining part of the range.
2966 */
2967 alloc_start = em_end;
2968 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2969 len = offset + len - alloc_start;
2970 offset = alloc_start;
2971 alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2972 }
2973 btrfs_free_extent_map(em);
2974
2975 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2976 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2977 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2978 if (IS_ERR(em)) {
2979 ret = PTR_ERR(em);
2980 goto out;
2981 }
2982
2983 if (em->flags & EXTENT_FLAG_PREALLOC) {
2984 btrfs_free_extent_map(em);
2985 ret = btrfs_fallocate_update_isize(inode, offset + len,
2986 mode);
2987 goto out;
2988 }
2989 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2990 btrfs_free_extent_map(em);
2991 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2992 orig_start, orig_end);
2993 if (!ret)
2994 ret = btrfs_fallocate_update_isize(inode,
2995 offset + len,
2996 mode);
2997 return ret;
2998 }
2999 btrfs_free_extent_map(em);
3000 alloc_start = round_down(offset, sectorsize);
3001 alloc_end = alloc_start + sectorsize;
3002 goto reserve_space;
3003 }
3004
3005 alloc_start = round_up(offset, sectorsize);
3006 alloc_end = round_down(offset + len, sectorsize);
3007
3008 /*
3009 * For unaligned ranges, check the pages at the boundaries, they might
3010 * map to an extent, in which case we need to partially zero them, or
3011 * they might map to a hole, in which case we need our allocation range
3012 * to cover them.
3013 */
3014 if (!IS_ALIGNED(offset, sectorsize)) {
3015 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3016 offset);
3017 if (ret < 0)
3018 goto out;
3019 if (ret == RANGE_BOUNDARY_HOLE) {
3020 alloc_start = round_down(offset, sectorsize);
3021 ret = 0;
3022 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3023 ret = btrfs_truncate_block(BTRFS_I(inode), offset,
3024 orig_start, orig_end);
3025 if (ret)
3026 goto out;
3027 } else {
3028 ret = 0;
3029 }
3030 }
3031
3032 if (!IS_ALIGNED(offset + len, sectorsize)) {
3033 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3034 offset + len);
3035 if (ret < 0)
3036 goto out;
3037 if (ret == RANGE_BOUNDARY_HOLE) {
3038 alloc_end = round_up(offset + len, sectorsize);
3039 ret = 0;
3040 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3041 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
3042 orig_start, orig_end);
3043 if (ret)
3044 goto out;
3045 } else {
3046 ret = 0;
3047 }
3048 }
3049
3050 reserve_space:
3051 if (alloc_start < alloc_end) {
3052 struct extent_state *cached_state = NULL;
3053 const u64 lockstart = alloc_start;
3054 const u64 lockend = alloc_end - 1;
3055
3056 bytes_to_reserve = alloc_end - alloc_start;
3057 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3058 bytes_to_reserve);
3059 if (ret < 0)
3060 goto out;
3061 space_reserved = true;
3062 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3063 &cached_state);
3064 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3065 alloc_start, bytes_to_reserve);
3066 if (ret) {
3067 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3068 lockend, &cached_state);
3069 goto out;
3070 }
3071 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3072 alloc_end - alloc_start,
3073 fs_info->sectorsize,
3074 offset + len, &alloc_hint);
3075 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3076 &cached_state);
3077 /* btrfs_prealloc_file_range releases reserved space on error */
3078 if (ret) {
3079 space_reserved = false;
3080 goto out;
3081 }
3082 }
3083 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3084 out:
3085 if (ret && space_reserved)
3086 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3087 alloc_start, bytes_to_reserve);
3088 extent_changeset_free(data_reserved);
3089
3090 return ret;
3091 }
3092
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3093 static long btrfs_fallocate(struct file *file, int mode,
3094 loff_t offset, loff_t len)
3095 {
3096 struct inode *inode = file_inode(file);
3097 struct extent_state *cached_state = NULL;
3098 struct extent_changeset *data_reserved = NULL;
3099 struct falloc_range *range;
3100 struct falloc_range *tmp;
3101 LIST_HEAD(reserve_list);
3102 u64 cur_offset;
3103 u64 last_byte;
3104 u64 alloc_start;
3105 u64 alloc_end;
3106 u64 alloc_hint = 0;
3107 u64 locked_end;
3108 u64 actual_end = 0;
3109 u64 data_space_needed = 0;
3110 u64 data_space_reserved = 0;
3111 u64 qgroup_reserved = 0;
3112 struct extent_map *em;
3113 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3114 int ret;
3115
3116 /* Do not allow fallocate in ZONED mode */
3117 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3118 return -EOPNOTSUPP;
3119
3120 alloc_start = round_down(offset, blocksize);
3121 alloc_end = round_up(offset + len, blocksize);
3122 cur_offset = alloc_start;
3123
3124 /* Make sure we aren't being give some crap mode */
3125 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3126 FALLOC_FL_ZERO_RANGE))
3127 return -EOPNOTSUPP;
3128
3129 if (mode & FALLOC_FL_PUNCH_HOLE)
3130 return btrfs_punch_hole(file, offset, len);
3131
3132 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3133
3134 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3135 ret = inode_newsize_ok(inode, offset + len);
3136 if (ret)
3137 goto out;
3138 }
3139
3140 ret = file_modified(file);
3141 if (ret)
3142 goto out;
3143
3144 /*
3145 * TODO: Move these two operations after we have checked
3146 * accurate reserved space, or fallocate can still fail but
3147 * with page truncated or size expanded.
3148 *
3149 * But that's a minor problem and won't do much harm BTW.
3150 */
3151 if (alloc_start > inode->i_size) {
3152 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3153 alloc_start);
3154 if (ret)
3155 goto out;
3156 } else if (offset + len > inode->i_size) {
3157 /*
3158 * If we are fallocating from the end of the file onward we
3159 * need to zero out the end of the block if i_size lands in the
3160 * middle of a block.
3161 */
3162 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3163 inode->i_size, (u64)-1);
3164 if (ret)
3165 goto out;
3166 }
3167
3168 /*
3169 * We have locked the inode at the VFS level (in exclusive mode) and we
3170 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3171 * locking the file range, flush all dealloc in the range and wait for
3172 * all ordered extents in the range to complete. After this we can lock
3173 * the file range and, due to the previous locking we did, we know there
3174 * can't be more delalloc or ordered extents in the range.
3175 */
3176 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3177 alloc_end - alloc_start);
3178 if (ret)
3179 goto out;
3180
3181 if (mode & FALLOC_FL_ZERO_RANGE) {
3182 ret = btrfs_zero_range(inode, offset, len, mode);
3183 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3184 return ret;
3185 }
3186
3187 locked_end = alloc_end - 1;
3188 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3189 &cached_state);
3190
3191 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3192
3193 /* First, check if we exceed the qgroup limit */
3194 while (cur_offset < alloc_end) {
3195 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3196 alloc_end - cur_offset);
3197 if (IS_ERR(em)) {
3198 ret = PTR_ERR(em);
3199 break;
3200 }
3201 last_byte = min(btrfs_extent_map_end(em), alloc_end);
3202 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3203 last_byte = ALIGN(last_byte, blocksize);
3204 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3205 (cur_offset >= inode->i_size &&
3206 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3207 const u64 range_len = last_byte - cur_offset;
3208
3209 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3210 if (ret < 0) {
3211 btrfs_free_extent_map(em);
3212 break;
3213 }
3214 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3215 &data_reserved, cur_offset, range_len);
3216 if (ret < 0) {
3217 btrfs_free_extent_map(em);
3218 break;
3219 }
3220 qgroup_reserved += range_len;
3221 data_space_needed += range_len;
3222 }
3223 btrfs_free_extent_map(em);
3224 cur_offset = last_byte;
3225 }
3226
3227 if (!ret && data_space_needed > 0) {
3228 /*
3229 * We are safe to reserve space here as we can't have delalloc
3230 * in the range, see above.
3231 */
3232 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3233 data_space_needed);
3234 if (!ret)
3235 data_space_reserved = data_space_needed;
3236 }
3237
3238 /*
3239 * If ret is still 0, means we're OK to fallocate.
3240 * Or just cleanup the list and exit.
3241 */
3242 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3243 if (!ret) {
3244 ret = btrfs_prealloc_file_range(inode, mode,
3245 range->start,
3246 range->len, blocksize,
3247 offset + len, &alloc_hint);
3248 /*
3249 * btrfs_prealloc_file_range() releases space even
3250 * if it returns an error.
3251 */
3252 data_space_reserved -= range->len;
3253 qgroup_reserved -= range->len;
3254 } else if (data_space_reserved > 0) {
3255 btrfs_free_reserved_data_space(BTRFS_I(inode),
3256 data_reserved, range->start,
3257 range->len);
3258 data_space_reserved -= range->len;
3259 qgroup_reserved -= range->len;
3260 } else if (qgroup_reserved > 0) {
3261 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3262 range->start, range->len, NULL);
3263 qgroup_reserved -= range->len;
3264 }
3265 list_del(&range->list);
3266 kfree(range);
3267 }
3268 if (ret < 0)
3269 goto out_unlock;
3270
3271 /*
3272 * We didn't need to allocate any more space, but we still extended the
3273 * size of the file so we need to update i_size and the inode item.
3274 */
3275 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3276 out_unlock:
3277 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3278 &cached_state);
3279 out:
3280 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3281 extent_changeset_free(data_reserved);
3282 return ret;
3283 }
3284
3285 /*
3286 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3287 * that has unflushed and/or flushing delalloc. There might be other adjacent
3288 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3289 * looping while it gets adjacent subranges, and merging them together.
3290 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3291 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3292 struct extent_state **cached_state,
3293 bool *search_io_tree,
3294 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3295 {
3296 u64 len = end + 1 - start;
3297 u64 delalloc_len = 0;
3298 struct btrfs_ordered_extent *oe;
3299 u64 oe_start;
3300 u64 oe_end;
3301
3302 /*
3303 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3304 * means we have delalloc (dirty pages) for which writeback has not
3305 * started yet.
3306 */
3307 if (*search_io_tree) {
3308 spin_lock(&inode->lock);
3309 if (inode->delalloc_bytes > 0) {
3310 spin_unlock(&inode->lock);
3311 *delalloc_start_ret = start;
3312 delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3313 delalloc_start_ret, end,
3314 len, EXTENT_DELALLOC, 1,
3315 cached_state);
3316 } else {
3317 spin_unlock(&inode->lock);
3318 }
3319 }
3320
3321 if (delalloc_len > 0) {
3322 /*
3323 * If delalloc was found then *delalloc_start_ret has a sector size
3324 * aligned value (rounded down).
3325 */
3326 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3327
3328 if (*delalloc_start_ret == start) {
3329 /* Delalloc for the whole range, nothing more to do. */
3330 if (*delalloc_end_ret == end)
3331 return true;
3332 /* Else trim our search range for ordered extents. */
3333 start = *delalloc_end_ret + 1;
3334 len = end + 1 - start;
3335 }
3336 } else {
3337 /* No delalloc, future calls don't need to search again. */
3338 *search_io_tree = false;
3339 }
3340
3341 /*
3342 * Now also check if there's any ordered extent in the range.
3343 * We do this because:
3344 *
3345 * 1) When delalloc is flushed, the file range is locked, we clear the
3346 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3347 * an ordered extent for the write. So we might just have been called
3348 * after delalloc is flushed and before the ordered extent completes
3349 * and inserts the new file extent item in the subvolume's btree;
3350 *
3351 * 2) We may have an ordered extent created by flushing delalloc for a
3352 * subrange that starts before the subrange we found marked with
3353 * EXTENT_DELALLOC in the io tree.
3354 *
3355 * We could also use the extent map tree to find such delalloc that is
3356 * being flushed, but using the ordered extents tree is more efficient
3357 * because it's usually much smaller as ordered extents are removed from
3358 * the tree once they complete. With the extent maps, we may have them
3359 * in the extent map tree for a very long time, and they were either
3360 * created by previous writes or loaded by read operations.
3361 */
3362 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3363 if (!oe)
3364 return (delalloc_len > 0);
3365
3366 /* The ordered extent may span beyond our search range. */
3367 oe_start = max(oe->file_offset, start);
3368 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3369
3370 btrfs_put_ordered_extent(oe);
3371
3372 /* Don't have unflushed delalloc, return the ordered extent range. */
3373 if (delalloc_len == 0) {
3374 *delalloc_start_ret = oe_start;
3375 *delalloc_end_ret = oe_end;
3376 return true;
3377 }
3378
3379 /*
3380 * We have both unflushed delalloc (io_tree) and an ordered extent.
3381 * If the ranges are adjacent returned a combined range, otherwise
3382 * return the leftmost range.
3383 */
3384 if (oe_start < *delalloc_start_ret) {
3385 if (oe_end < *delalloc_start_ret)
3386 *delalloc_end_ret = oe_end;
3387 *delalloc_start_ret = oe_start;
3388 } else if (*delalloc_end_ret + 1 == oe_start) {
3389 *delalloc_end_ret = oe_end;
3390 }
3391
3392 return true;
3393 }
3394
3395 /*
3396 * Check if there's delalloc in a given range.
3397 *
3398 * @inode: The inode.
3399 * @start: The start offset of the range. It does not need to be
3400 * sector size aligned.
3401 * @end: The end offset (inclusive value) of the search range.
3402 * It does not need to be sector size aligned.
3403 * @cached_state: Extent state record used for speeding up delalloc
3404 * searches in the inode's io_tree. Can be NULL.
3405 * @delalloc_start_ret: Output argument, set to the start offset of the
3406 * subrange found with delalloc (may not be sector size
3407 * aligned).
3408 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3409 * of the subrange found with delalloc.
3410 *
3411 * Returns true if a subrange with delalloc is found within the given range, and
3412 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3413 * end offsets of the subrange.
3414 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3415 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3416 struct extent_state **cached_state,
3417 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3418 {
3419 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3420 u64 prev_delalloc_end = 0;
3421 bool search_io_tree = true;
3422 bool ret = false;
3423
3424 while (cur_offset <= end) {
3425 u64 delalloc_start;
3426 u64 delalloc_end;
3427 bool delalloc;
3428
3429 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3430 cached_state, &search_io_tree,
3431 &delalloc_start,
3432 &delalloc_end);
3433 if (!delalloc)
3434 break;
3435
3436 if (prev_delalloc_end == 0) {
3437 /* First subrange found. */
3438 *delalloc_start_ret = max(delalloc_start, start);
3439 *delalloc_end_ret = delalloc_end;
3440 ret = true;
3441 } else if (delalloc_start == prev_delalloc_end + 1) {
3442 /* Subrange adjacent to the previous one, merge them. */
3443 *delalloc_end_ret = delalloc_end;
3444 } else {
3445 /* Subrange not adjacent to the previous one, exit. */
3446 break;
3447 }
3448
3449 prev_delalloc_end = delalloc_end;
3450 cur_offset = delalloc_end + 1;
3451 cond_resched();
3452 }
3453
3454 return ret;
3455 }
3456
3457 /*
3458 * Check if there's a hole or delalloc range in a range representing a hole (or
3459 * prealloc extent) found in the inode's subvolume btree.
3460 *
3461 * @inode: The inode.
3462 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3463 * @start: Start offset of the hole region. It does not need to be sector
3464 * size aligned.
3465 * @end: End offset (inclusive value) of the hole region. It does not
3466 * need to be sector size aligned.
3467 * @start_ret: Return parameter, used to set the start of the subrange in the
3468 * hole that matches the search criteria (seek mode), if such
3469 * subrange is found (return value of the function is true).
3470 * The value returned here may not be sector size aligned.
3471 *
3472 * Returns true if a subrange matching the given seek mode is found, and if one
3473 * is found, it updates @start_ret with the start of the subrange.
3474 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3475 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3476 struct extent_state **cached_state,
3477 u64 start, u64 end, u64 *start_ret)
3478 {
3479 u64 delalloc_start;
3480 u64 delalloc_end;
3481 bool delalloc;
3482
3483 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3484 &delalloc_start, &delalloc_end);
3485 if (delalloc && whence == SEEK_DATA) {
3486 *start_ret = delalloc_start;
3487 return true;
3488 }
3489
3490 if (delalloc && whence == SEEK_HOLE) {
3491 /*
3492 * We found delalloc but it starts after out start offset. So we
3493 * have a hole between our start offset and the delalloc start.
3494 */
3495 if (start < delalloc_start) {
3496 *start_ret = start;
3497 return true;
3498 }
3499 /*
3500 * Delalloc range starts at our start offset.
3501 * If the delalloc range's length is smaller than our range,
3502 * then it means we have a hole that starts where the delalloc
3503 * subrange ends.
3504 */
3505 if (delalloc_end < end) {
3506 *start_ret = delalloc_end + 1;
3507 return true;
3508 }
3509
3510 /* There's delalloc for the whole range. */
3511 return false;
3512 }
3513
3514 if (!delalloc && whence == SEEK_HOLE) {
3515 *start_ret = start;
3516 return true;
3517 }
3518
3519 /*
3520 * No delalloc in the range and we are seeking for data. The caller has
3521 * to iterate to the next extent item in the subvolume btree.
3522 */
3523 return false;
3524 }
3525
find_desired_extent(struct file * file,loff_t offset,int whence)3526 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3527 {
3528 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3529 struct btrfs_file_private *private;
3530 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3531 struct extent_state *cached_state = NULL;
3532 struct extent_state **delalloc_cached_state;
3533 const loff_t i_size = i_size_read(&inode->vfs_inode);
3534 const u64 ino = btrfs_ino(inode);
3535 struct btrfs_root *root = inode->root;
3536 struct btrfs_path *path;
3537 struct btrfs_key key;
3538 u64 last_extent_end;
3539 u64 lockstart;
3540 u64 lockend;
3541 u64 start;
3542 int ret;
3543 bool found = false;
3544
3545 if (i_size == 0 || offset >= i_size)
3546 return -ENXIO;
3547
3548 /*
3549 * Quick path. If the inode has no prealloc extents and its number of
3550 * bytes used matches its i_size, then it can not have holes.
3551 */
3552 if (whence == SEEK_HOLE &&
3553 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3554 inode_get_bytes(&inode->vfs_inode) == i_size)
3555 return i_size;
3556
3557 spin_lock(&inode->lock);
3558 private = file->private_data;
3559 spin_unlock(&inode->lock);
3560
3561 if (private && private->owner_task != current) {
3562 /*
3563 * Not allocated by us, don't use it as its cached state is used
3564 * by the task that allocated it and we don't want neither to
3565 * mess with it nor get incorrect results because it reflects an
3566 * invalid state for the current task.
3567 */
3568 private = NULL;
3569 } else if (!private) {
3570 private = kzalloc(sizeof(*private), GFP_KERNEL);
3571 /*
3572 * No worries if memory allocation failed.
3573 * The private structure is used only for speeding up multiple
3574 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3575 * so everything will still be correct.
3576 */
3577 if (private) {
3578 bool free = false;
3579
3580 private->owner_task = current;
3581
3582 spin_lock(&inode->lock);
3583 if (file->private_data)
3584 free = true;
3585 else
3586 file->private_data = private;
3587 spin_unlock(&inode->lock);
3588
3589 if (free) {
3590 kfree(private);
3591 private = NULL;
3592 }
3593 }
3594 }
3595
3596 if (private)
3597 delalloc_cached_state = &private->llseek_cached_state;
3598 else
3599 delalloc_cached_state = NULL;
3600
3601 /*
3602 * offset can be negative, in this case we start finding DATA/HOLE from
3603 * the very start of the file.
3604 */
3605 start = max_t(loff_t, 0, offset);
3606
3607 lockstart = round_down(start, fs_info->sectorsize);
3608 lockend = round_up(i_size, fs_info->sectorsize);
3609 if (lockend <= lockstart)
3610 lockend = lockstart + fs_info->sectorsize;
3611 lockend--;
3612
3613 path = btrfs_alloc_path();
3614 if (!path)
3615 return -ENOMEM;
3616 path->reada = READA_FORWARD;
3617
3618 key.objectid = ino;
3619 key.type = BTRFS_EXTENT_DATA_KEY;
3620 key.offset = start;
3621
3622 last_extent_end = lockstart;
3623
3624 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3625
3626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3627 if (ret < 0) {
3628 goto out;
3629 } else if (ret > 0 && path->slots[0] > 0) {
3630 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3631 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3632 path->slots[0]--;
3633 }
3634
3635 while (start < i_size) {
3636 struct extent_buffer *leaf = path->nodes[0];
3637 struct btrfs_file_extent_item *extent;
3638 u64 extent_end;
3639 u8 type;
3640
3641 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3642 ret = btrfs_next_leaf(root, path);
3643 if (ret < 0)
3644 goto out;
3645 else if (ret > 0)
3646 break;
3647
3648 leaf = path->nodes[0];
3649 }
3650
3651 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3652 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3653 break;
3654
3655 extent_end = btrfs_file_extent_end(path);
3656
3657 /*
3658 * In the first iteration we may have a slot that points to an
3659 * extent that ends before our start offset, so skip it.
3660 */
3661 if (extent_end <= start) {
3662 path->slots[0]++;
3663 continue;
3664 }
3665
3666 /* We have an implicit hole, NO_HOLES feature is likely set. */
3667 if (last_extent_end < key.offset) {
3668 u64 search_start = last_extent_end;
3669 u64 found_start;
3670
3671 /*
3672 * First iteration, @start matches @offset and it's
3673 * within the hole.
3674 */
3675 if (start == offset)
3676 search_start = offset;
3677
3678 found = find_desired_extent_in_hole(inode, whence,
3679 delalloc_cached_state,
3680 search_start,
3681 key.offset - 1,
3682 &found_start);
3683 if (found) {
3684 start = found_start;
3685 break;
3686 }
3687 /*
3688 * Didn't find data or a hole (due to delalloc) in the
3689 * implicit hole range, so need to analyze the extent.
3690 */
3691 }
3692
3693 extent = btrfs_item_ptr(leaf, path->slots[0],
3694 struct btrfs_file_extent_item);
3695 type = btrfs_file_extent_type(leaf, extent);
3696
3697 /*
3698 * Can't access the extent's disk_bytenr field if this is an
3699 * inline extent, since at that offset, it's where the extent
3700 * data starts.
3701 */
3702 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3703 (type == BTRFS_FILE_EXTENT_REG &&
3704 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3705 /*
3706 * Explicit hole or prealloc extent, search for delalloc.
3707 * A prealloc extent is treated like a hole.
3708 */
3709 u64 search_start = key.offset;
3710 u64 found_start;
3711
3712 /*
3713 * First iteration, @start matches @offset and it's
3714 * within the hole.
3715 */
3716 if (start == offset)
3717 search_start = offset;
3718
3719 found = find_desired_extent_in_hole(inode, whence,
3720 delalloc_cached_state,
3721 search_start,
3722 extent_end - 1,
3723 &found_start);
3724 if (found) {
3725 start = found_start;
3726 break;
3727 }
3728 /*
3729 * Didn't find data or a hole (due to delalloc) in the
3730 * implicit hole range, so need to analyze the next
3731 * extent item.
3732 */
3733 } else {
3734 /*
3735 * Found a regular or inline extent.
3736 * If we are seeking for data, adjust the start offset
3737 * and stop, we're done.
3738 */
3739 if (whence == SEEK_DATA) {
3740 start = max_t(u64, key.offset, offset);
3741 found = true;
3742 break;
3743 }
3744 /*
3745 * Else, we are seeking for a hole, check the next file
3746 * extent item.
3747 */
3748 }
3749
3750 start = extent_end;
3751 last_extent_end = extent_end;
3752 path->slots[0]++;
3753 if (fatal_signal_pending(current)) {
3754 ret = -EINTR;
3755 goto out;
3756 }
3757 cond_resched();
3758 }
3759
3760 /* We have an implicit hole from the last extent found up to i_size. */
3761 if (!found && start < i_size) {
3762 found = find_desired_extent_in_hole(inode, whence,
3763 delalloc_cached_state, start,
3764 i_size - 1, &start);
3765 if (!found)
3766 start = i_size;
3767 }
3768
3769 out:
3770 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3771 btrfs_free_path(path);
3772
3773 if (ret < 0)
3774 return ret;
3775
3776 if (whence == SEEK_DATA && start >= i_size)
3777 return -ENXIO;
3778
3779 return min_t(loff_t, start, i_size);
3780 }
3781
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3782 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3783 {
3784 struct inode *inode = file->f_mapping->host;
3785
3786 switch (whence) {
3787 default:
3788 return generic_file_llseek(file, offset, whence);
3789 case SEEK_DATA:
3790 case SEEK_HOLE:
3791 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3792 offset = find_desired_extent(file, offset, whence);
3793 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3794 break;
3795 }
3796
3797 if (offset < 0)
3798 return offset;
3799
3800 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3801 }
3802
btrfs_file_open(struct inode * inode,struct file * filp)3803 static int btrfs_file_open(struct inode *inode, struct file *filp)
3804 {
3805 int ret;
3806
3807 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3808
3809 ret = fsverity_file_open(inode, filp);
3810 if (ret)
3811 return ret;
3812 return generic_file_open(inode, filp);
3813 }
3814
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3815 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3816 {
3817 ssize_t ret = 0;
3818
3819 if (iocb->ki_flags & IOCB_DIRECT) {
3820 ret = btrfs_direct_read(iocb, to);
3821 if (ret < 0 || !iov_iter_count(to) ||
3822 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3823 return ret;
3824 }
3825
3826 return filemap_read(iocb, to, ret);
3827 }
3828
3829 const struct file_operations btrfs_file_operations = {
3830 .llseek = btrfs_file_llseek,
3831 .read_iter = btrfs_file_read_iter,
3832 .splice_read = filemap_splice_read,
3833 .write_iter = btrfs_file_write_iter,
3834 .splice_write = iter_file_splice_write,
3835 .mmap_prepare = btrfs_file_mmap_prepare,
3836 .open = btrfs_file_open,
3837 .release = btrfs_release_file,
3838 .get_unmapped_area = thp_get_unmapped_area,
3839 .fsync = btrfs_sync_file,
3840 .fallocate = btrfs_fallocate,
3841 .unlocked_ioctl = btrfs_ioctl,
3842 #ifdef CONFIG_COMPAT
3843 .compat_ioctl = btrfs_compat_ioctl,
3844 #endif
3845 .remap_file_range = btrfs_remap_file_range,
3846 .uring_cmd = btrfs_uring_cmd,
3847 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3848 };
3849
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3850 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3851 {
3852 struct address_space *mapping = inode->vfs_inode.i_mapping;
3853 int ret;
3854
3855 /*
3856 * So with compression we will find and lock a dirty page and clear the
3857 * first one as dirty, setup an async extent, and immediately return
3858 * with the entire range locked but with nobody actually marked with
3859 * writeback. So we can't just filemap_write_and_wait_range() and
3860 * expect it to work since it will just kick off a thread to do the
3861 * actual work. So we need to call filemap_fdatawrite_range _again_
3862 * since it will wait on the page lock, which won't be unlocked until
3863 * after the pages have been marked as writeback and so we're good to go
3864 * from there. We have to do this otherwise we'll miss the ordered
3865 * extents and that results in badness. Please Josef, do not think you
3866 * know better and pull this out at some point in the future, it is
3867 * right and you are wrong.
3868 */
3869 ret = filemap_fdatawrite_range(mapping, start, end);
3870 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3871 ret = filemap_fdatawrite_range(mapping, start, end);
3872
3873 return ret;
3874 }
3875