1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
lo_calculate_size(struct loop_device * lo,struct file * file)140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file)
141 {
142 loff_t loopsize;
143 int ret;
144
145 if (S_ISBLK(file_inode(file)->i_mode)) {
146 loopsize = i_size_read(file->f_mapping->host);
147 } else {
148 struct kstat stat;
149
150 /*
151 * Get the accurate file size. This provides better results than
152 * cached inode data, particularly for network filesystems where
153 * metadata may be stale.
154 */
155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0);
156 if (ret)
157 return 0;
158
159 loopsize = stat.size;
160 }
161
162 if (lo->lo_offset > 0)
163 loopsize -= lo->lo_offset;
164 /* offset is beyond i_size, weird but possible */
165 if (loopsize < 0)
166 return 0;
167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 loopsize = lo->lo_sizelimit;
169 /*
170 * Unfortunately, if we want to do I/O on the device,
171 * the number of 512-byte sectors has to fit into a sector_t.
172 */
173 return loopsize >> 9;
174 }
175
176 /*
177 * We support direct I/O only if lo_offset is aligned with the logical I/O size
178 * of backing device, and the logical block size of loop is bigger than that of
179 * the backing device.
180 */
lo_can_use_dio(struct loop_device * lo)181 static bool lo_can_use_dio(struct loop_device *lo)
182 {
183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
184 return false;
185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
186 return false;
187 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
188 return false;
189 return true;
190 }
191
192 /*
193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
195 * disabled when the device block size is too small or the offset is unaligned.
196 *
197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
198 * not the originally passed in one.
199 */
loop_update_dio(struct loop_device * lo)200 static inline void loop_update_dio(struct loop_device *lo)
201 {
202 lockdep_assert_held(&lo->lo_mutex);
203 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
204 lo->lo_queue->mq_freeze_depth == 0);
205
206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
208 }
209
210 /**
211 * loop_set_size() - sets device size and notifies userspace
212 * @lo: struct loop_device to set the size for
213 * @size: new size of the loop device
214 *
215 * Callers must validate that the size passed into this function fits into
216 * a sector_t, eg using loop_validate_size()
217 */
loop_set_size(struct loop_device * lo,loff_t size)218 static void loop_set_size(struct loop_device *lo, loff_t size)
219 {
220 if (!set_capacity_and_notify(lo->lo_disk, size))
221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
222 }
223
loop_clear_limits(struct loop_device * lo,int mode)224 static void loop_clear_limits(struct loop_device *lo, int mode)
225 {
226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
227
228 if (mode & FALLOC_FL_ZERO_RANGE)
229 lim.max_write_zeroes_sectors = 0;
230
231 if (mode & FALLOC_FL_PUNCH_HOLE) {
232 lim.max_hw_discard_sectors = 0;
233 lim.discard_granularity = 0;
234 }
235
236 /*
237 * XXX: this updates the queue limits without freezing the queue, which
238 * is against the locking protocol and dangerous. But we can't just
239 * freeze the queue as we're inside the ->queue_rq method here. So this
240 * should move out into a workqueue unless we get the file operations to
241 * advertise if they support specific fallocate operations.
242 */
243 queue_limits_commit_update(lo->lo_queue, &lim);
244 }
245
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
247 int mode)
248 {
249 /*
250 * We use fallocate to manipulate the space mappings used by the image
251 * a.k.a. discard/zerorange.
252 */
253 struct file *file = lo->lo_backing_file;
254 int ret;
255
256 mode |= FALLOC_FL_KEEP_SIZE;
257
258 if (!bdev_max_discard_sectors(lo->lo_device))
259 return -EOPNOTSUPP;
260
261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
263 return -EIO;
264
265 /*
266 * We initially configure the limits in a hope that fallocate is
267 * supported and clear them here if that turns out not to be true.
268 */
269 if (unlikely(ret == -EOPNOTSUPP))
270 loop_clear_limits(lo, mode);
271
272 return ret;
273 }
274
lo_req_flush(struct loop_device * lo,struct request * rq)275 static int lo_req_flush(struct loop_device *lo, struct request *rq)
276 {
277 int ret = vfs_fsync(lo->lo_backing_file, 0);
278 if (unlikely(ret && ret != -EINVAL))
279 ret = -EIO;
280
281 return ret;
282 }
283
lo_complete_rq(struct request * rq)284 static void lo_complete_rq(struct request *rq)
285 {
286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
287 blk_status_t ret = BLK_STS_OK;
288
289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
290 req_op(rq) != REQ_OP_READ) {
291 if (cmd->ret < 0)
292 ret = errno_to_blk_status(cmd->ret);
293 goto end_io;
294 }
295
296 /*
297 * Short READ - if we got some data, advance our request and
298 * retry it. If we got no data, end the rest with EIO.
299 */
300 if (cmd->ret) {
301 blk_update_request(rq, BLK_STS_OK, cmd->ret);
302 cmd->ret = 0;
303 blk_mq_requeue_request(rq, true);
304 } else {
305 struct bio *bio = rq->bio;
306
307 while (bio) {
308 zero_fill_bio(bio);
309 bio = bio->bi_next;
310 }
311
312 ret = BLK_STS_IOERR;
313 end_io:
314 blk_mq_end_request(rq, ret);
315 }
316 }
317
lo_rw_aio_do_completion(struct loop_cmd * cmd)318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
319 {
320 struct request *rq = blk_mq_rq_from_pdu(cmd);
321
322 if (!atomic_dec_and_test(&cmd->ref))
323 return;
324 kfree(cmd->bvec);
325 cmd->bvec = NULL;
326 if (req_op(rq) == REQ_OP_WRITE)
327 kiocb_end_write(&cmd->iocb);
328 if (likely(!blk_should_fake_timeout(rq->q)))
329 blk_mq_complete_request(rq);
330 }
331
lo_rw_aio_complete(struct kiocb * iocb,long ret)332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
333 {
334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
335
336 cmd->ret = ret;
337 lo_rw_aio_do_completion(cmd);
338 }
339
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
341 loff_t pos, int rw)
342 {
343 struct iov_iter iter;
344 struct req_iterator rq_iter;
345 struct bio_vec *bvec;
346 struct request *rq = blk_mq_rq_from_pdu(cmd);
347 struct bio *bio = rq->bio;
348 struct file *file = lo->lo_backing_file;
349 struct bio_vec tmp;
350 unsigned int offset;
351 int nr_bvec = 0;
352 int ret;
353
354 rq_for_each_bvec(tmp, rq, rq_iter)
355 nr_bvec++;
356
357 if (rq->bio != rq->biotail) {
358
359 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
360 GFP_NOIO);
361 if (!bvec)
362 return -EIO;
363 cmd->bvec = bvec;
364
365 /*
366 * The bios of the request may be started from the middle of
367 * the 'bvec' because of bio splitting, so we can't directly
368 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
369 * API will take care of all details for us.
370 */
371 rq_for_each_bvec(tmp, rq, rq_iter) {
372 *bvec = tmp;
373 bvec++;
374 }
375 bvec = cmd->bvec;
376 offset = 0;
377 } else {
378 /*
379 * Same here, this bio may be started from the middle of the
380 * 'bvec' because of bio splitting, so offset from the bvec
381 * must be passed to iov iterator
382 */
383 offset = bio->bi_iter.bi_bvec_done;
384 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
385 }
386 atomic_set(&cmd->ref, 2);
387
388 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
389 iter.iov_offset = offset;
390
391 cmd->iocb.ki_pos = pos;
392 cmd->iocb.ki_filp = file;
393 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
394 if (cmd->use_aio) {
395 cmd->iocb.ki_complete = lo_rw_aio_complete;
396 cmd->iocb.ki_flags = IOCB_DIRECT;
397 } else {
398 cmd->iocb.ki_complete = NULL;
399 cmd->iocb.ki_flags = 0;
400 }
401
402 if (rw == ITER_SOURCE) {
403 kiocb_start_write(&cmd->iocb);
404 ret = file->f_op->write_iter(&cmd->iocb, &iter);
405 } else
406 ret = file->f_op->read_iter(&cmd->iocb, &iter);
407
408 lo_rw_aio_do_completion(cmd);
409
410 if (ret != -EIOCBQUEUED)
411 lo_rw_aio_complete(&cmd->iocb, ret);
412 return -EIOCBQUEUED;
413 }
414
do_req_filebacked(struct loop_device * lo,struct request * rq)415 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
416 {
417 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
418 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
419
420 switch (req_op(rq)) {
421 case REQ_OP_FLUSH:
422 return lo_req_flush(lo, rq);
423 case REQ_OP_WRITE_ZEROES:
424 /*
425 * If the caller doesn't want deallocation, call zeroout to
426 * write zeroes the range. Otherwise, punch them out.
427 */
428 return lo_fallocate(lo, rq, pos,
429 (rq->cmd_flags & REQ_NOUNMAP) ?
430 FALLOC_FL_ZERO_RANGE :
431 FALLOC_FL_PUNCH_HOLE);
432 case REQ_OP_DISCARD:
433 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
434 case REQ_OP_WRITE:
435 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
436 case REQ_OP_READ:
437 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
438 default:
439 WARN_ON_ONCE(1);
440 return -EIO;
441 }
442 }
443
loop_reread_partitions(struct loop_device * lo)444 static void loop_reread_partitions(struct loop_device *lo)
445 {
446 int rc;
447
448 mutex_lock(&lo->lo_disk->open_mutex);
449 rc = bdev_disk_changed(lo->lo_disk, false);
450 mutex_unlock(&lo->lo_disk->open_mutex);
451 if (rc)
452 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
453 __func__, lo->lo_number, lo->lo_file_name, rc);
454 }
455
loop_query_min_dio_size(struct loop_device * lo)456 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
457 {
458 struct file *file = lo->lo_backing_file;
459 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
460 struct kstat st;
461
462 /*
463 * Use the minimal dio alignment of the file system if provided.
464 */
465 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
466 (st.result_mask & STATX_DIOALIGN))
467 return st.dio_offset_align;
468
469 /*
470 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
471 * a handful of file systems support the STATX_DIOALIGN flag.
472 */
473 if (sb_bdev)
474 return bdev_logical_block_size(sb_bdev);
475 return SECTOR_SIZE;
476 }
477
is_loop_device(struct file * file)478 static inline int is_loop_device(struct file *file)
479 {
480 struct inode *i = file->f_mapping->host;
481
482 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
483 }
484
loop_validate_file(struct file * file,struct block_device * bdev)485 static int loop_validate_file(struct file *file, struct block_device *bdev)
486 {
487 struct inode *inode = file->f_mapping->host;
488 struct file *f = file;
489
490 /* Avoid recursion */
491 while (is_loop_device(f)) {
492 struct loop_device *l;
493
494 lockdep_assert_held(&loop_validate_mutex);
495 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
496 return -EBADF;
497
498 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
499 if (l->lo_state != Lo_bound)
500 return -EINVAL;
501 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
502 rmb();
503 f = l->lo_backing_file;
504 }
505 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
506 return -EINVAL;
507 return 0;
508 }
509
loop_assign_backing_file(struct loop_device * lo,struct file * file)510 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
511 {
512 lo->lo_backing_file = file;
513 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
514 mapping_set_gfp_mask(file->f_mapping,
515 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
516 if (lo->lo_backing_file->f_flags & O_DIRECT)
517 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
518 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
519 }
520
loop_check_backing_file(struct file * file)521 static int loop_check_backing_file(struct file *file)
522 {
523 if (!file->f_op->read_iter)
524 return -EINVAL;
525
526 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
527 return -EINVAL;
528
529 return 0;
530 }
531
532 /*
533 * loop_change_fd switched the backing store of a loopback device to
534 * a new file. This is useful for operating system installers to free up
535 * the original file and in High Availability environments to switch to
536 * an alternative location for the content in case of server meltdown.
537 * This can only work if the loop device is used read-only, and if the
538 * new backing store is the same size and type as the old backing store.
539 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)540 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
541 unsigned int arg)
542 {
543 struct file *file = fget(arg);
544 struct file *old_file;
545 unsigned int memflags;
546 int error;
547 bool partscan;
548 bool is_loop;
549
550 if (!file)
551 return -EBADF;
552
553 error = loop_check_backing_file(file);
554 if (error)
555 return error;
556
557 /* suppress uevents while reconfiguring the device */
558 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
559
560 is_loop = is_loop_device(file);
561 error = loop_global_lock_killable(lo, is_loop);
562 if (error)
563 goto out_putf;
564 error = -ENXIO;
565 if (lo->lo_state != Lo_bound)
566 goto out_err;
567
568 /* the loop device has to be read-only */
569 error = -EINVAL;
570 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
571 goto out_err;
572
573 error = loop_validate_file(file, bdev);
574 if (error)
575 goto out_err;
576
577 old_file = lo->lo_backing_file;
578
579 error = -EINVAL;
580
581 /* size of the new backing store needs to be the same */
582 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file))
583 goto out_err;
584
585 /*
586 * We might switch to direct I/O mode for the loop device, write back
587 * all dirty data the page cache now that so that the individual I/O
588 * operations don't have to do that.
589 */
590 vfs_fsync(file, 0);
591
592 /* and ... switch */
593 disk_force_media_change(lo->lo_disk);
594 memflags = blk_mq_freeze_queue(lo->lo_queue);
595 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
596 loop_assign_backing_file(lo, file);
597 loop_update_dio(lo);
598 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
599 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
600 loop_global_unlock(lo, is_loop);
601
602 /*
603 * Flush loop_validate_file() before fput(), for l->lo_backing_file
604 * might be pointing at old_file which might be the last reference.
605 */
606 if (!is_loop) {
607 mutex_lock(&loop_validate_mutex);
608 mutex_unlock(&loop_validate_mutex);
609 }
610 /*
611 * We must drop file reference outside of lo_mutex as dropping
612 * the file ref can take open_mutex which creates circular locking
613 * dependency.
614 */
615 fput(old_file);
616 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
617 if (partscan)
618 loop_reread_partitions(lo);
619
620 error = 0;
621 done:
622 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
623 return error;
624
625 out_err:
626 loop_global_unlock(lo, is_loop);
627 out_putf:
628 fput(file);
629 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
630 goto done;
631 }
632
633 /* loop sysfs attributes */
634
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))635 static ssize_t loop_attr_show(struct device *dev, char *page,
636 ssize_t (*callback)(struct loop_device *, char *))
637 {
638 struct gendisk *disk = dev_to_disk(dev);
639 struct loop_device *lo = disk->private_data;
640
641 return callback(lo, page);
642 }
643
644 #define LOOP_ATTR_RO(_name) \
645 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
646 static ssize_t loop_attr_do_show_##_name(struct device *d, \
647 struct device_attribute *attr, char *b) \
648 { \
649 return loop_attr_show(d, b, loop_attr_##_name##_show); \
650 } \
651 static struct device_attribute loop_attr_##_name = \
652 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
653
loop_attr_backing_file_show(struct loop_device * lo,char * buf)654 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
655 {
656 ssize_t ret;
657 char *p = NULL;
658
659 spin_lock_irq(&lo->lo_lock);
660 if (lo->lo_backing_file)
661 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
662 spin_unlock_irq(&lo->lo_lock);
663
664 if (IS_ERR_OR_NULL(p))
665 ret = PTR_ERR(p);
666 else {
667 ret = strlen(p);
668 memmove(buf, p, ret);
669 buf[ret++] = '\n';
670 buf[ret] = 0;
671 }
672
673 return ret;
674 }
675
loop_attr_offset_show(struct loop_device * lo,char * buf)676 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
677 {
678 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
679 }
680
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)681 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
682 {
683 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
684 }
685
loop_attr_autoclear_show(struct loop_device * lo,char * buf)686 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
687 {
688 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
689
690 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
691 }
692
loop_attr_partscan_show(struct loop_device * lo,char * buf)693 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
694 {
695 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
696
697 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
698 }
699
loop_attr_dio_show(struct loop_device * lo,char * buf)700 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
701 {
702 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
703
704 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
705 }
706
707 LOOP_ATTR_RO(backing_file);
708 LOOP_ATTR_RO(offset);
709 LOOP_ATTR_RO(sizelimit);
710 LOOP_ATTR_RO(autoclear);
711 LOOP_ATTR_RO(partscan);
712 LOOP_ATTR_RO(dio);
713
714 static struct attribute *loop_attrs[] = {
715 &loop_attr_backing_file.attr,
716 &loop_attr_offset.attr,
717 &loop_attr_sizelimit.attr,
718 &loop_attr_autoclear.attr,
719 &loop_attr_partscan.attr,
720 &loop_attr_dio.attr,
721 NULL,
722 };
723
724 static struct attribute_group loop_attribute_group = {
725 .name = "loop",
726 .attrs= loop_attrs,
727 };
728
loop_sysfs_init(struct loop_device * lo)729 static void loop_sysfs_init(struct loop_device *lo)
730 {
731 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
732 &loop_attribute_group);
733 }
734
loop_sysfs_exit(struct loop_device * lo)735 static void loop_sysfs_exit(struct loop_device *lo)
736 {
737 if (lo->sysfs_inited)
738 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
739 &loop_attribute_group);
740 }
741
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)742 static void loop_get_discard_config(struct loop_device *lo,
743 u32 *granularity, u32 *max_discard_sectors)
744 {
745 struct file *file = lo->lo_backing_file;
746 struct inode *inode = file->f_mapping->host;
747 struct kstatfs sbuf;
748
749 /*
750 * If the backing device is a block device, mirror its zeroing
751 * capability. Set the discard sectors to the block device's zeroing
752 * capabilities because loop discards result in blkdev_issue_zeroout(),
753 * not blkdev_issue_discard(). This maintains consistent behavior with
754 * file-backed loop devices: discarded regions read back as zero.
755 */
756 if (S_ISBLK(inode->i_mode)) {
757 struct block_device *bdev = I_BDEV(inode);
758
759 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
760 *granularity = bdev_discard_granularity(bdev);
761
762 /*
763 * We use punch hole to reclaim the free space used by the
764 * image a.k.a. discard.
765 */
766 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
767 *max_discard_sectors = UINT_MAX >> 9;
768 *granularity = sbuf.f_bsize;
769 }
770 }
771
772 struct loop_worker {
773 struct rb_node rb_node;
774 struct work_struct work;
775 struct list_head cmd_list;
776 struct list_head idle_list;
777 struct loop_device *lo;
778 struct cgroup_subsys_state *blkcg_css;
779 unsigned long last_ran_at;
780 };
781
782 static void loop_workfn(struct work_struct *work);
783
784 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)785 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
786 {
787 return !css || css == blkcg_root_css;
788 }
789 #else
queue_on_root_worker(struct cgroup_subsys_state * css)790 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
791 {
792 return !css;
793 }
794 #endif
795
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)796 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
797 {
798 struct rb_node **node, *parent = NULL;
799 struct loop_worker *cur_worker, *worker = NULL;
800 struct work_struct *work;
801 struct list_head *cmd_list;
802
803 spin_lock_irq(&lo->lo_work_lock);
804
805 if (queue_on_root_worker(cmd->blkcg_css))
806 goto queue_work;
807
808 node = &lo->worker_tree.rb_node;
809
810 while (*node) {
811 parent = *node;
812 cur_worker = container_of(*node, struct loop_worker, rb_node);
813 if (cur_worker->blkcg_css == cmd->blkcg_css) {
814 worker = cur_worker;
815 break;
816 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
817 node = &(*node)->rb_left;
818 } else {
819 node = &(*node)->rb_right;
820 }
821 }
822 if (worker)
823 goto queue_work;
824
825 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
826 /*
827 * In the event we cannot allocate a worker, just queue on the
828 * rootcg worker and issue the I/O as the rootcg
829 */
830 if (!worker) {
831 cmd->blkcg_css = NULL;
832 if (cmd->memcg_css)
833 css_put(cmd->memcg_css);
834 cmd->memcg_css = NULL;
835 goto queue_work;
836 }
837
838 worker->blkcg_css = cmd->blkcg_css;
839 css_get(worker->blkcg_css);
840 INIT_WORK(&worker->work, loop_workfn);
841 INIT_LIST_HEAD(&worker->cmd_list);
842 INIT_LIST_HEAD(&worker->idle_list);
843 worker->lo = lo;
844 rb_link_node(&worker->rb_node, parent, node);
845 rb_insert_color(&worker->rb_node, &lo->worker_tree);
846 queue_work:
847 if (worker) {
848 /*
849 * We need to remove from the idle list here while
850 * holding the lock so that the idle timer doesn't
851 * free the worker
852 */
853 if (!list_empty(&worker->idle_list))
854 list_del_init(&worker->idle_list);
855 work = &worker->work;
856 cmd_list = &worker->cmd_list;
857 } else {
858 work = &lo->rootcg_work;
859 cmd_list = &lo->rootcg_cmd_list;
860 }
861 list_add_tail(&cmd->list_entry, cmd_list);
862 queue_work(lo->workqueue, work);
863 spin_unlock_irq(&lo->lo_work_lock);
864 }
865
loop_set_timer(struct loop_device * lo)866 static void loop_set_timer(struct loop_device *lo)
867 {
868 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
869 }
870
loop_free_idle_workers(struct loop_device * lo,bool delete_all)871 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
872 {
873 struct loop_worker *pos, *worker;
874
875 spin_lock_irq(&lo->lo_work_lock);
876 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
877 idle_list) {
878 if (!delete_all &&
879 time_is_after_jiffies(worker->last_ran_at +
880 LOOP_IDLE_WORKER_TIMEOUT))
881 break;
882 list_del(&worker->idle_list);
883 rb_erase(&worker->rb_node, &lo->worker_tree);
884 css_put(worker->blkcg_css);
885 kfree(worker);
886 }
887 if (!list_empty(&lo->idle_worker_list))
888 loop_set_timer(lo);
889 spin_unlock_irq(&lo->lo_work_lock);
890 }
891
loop_free_idle_workers_timer(struct timer_list * timer)892 static void loop_free_idle_workers_timer(struct timer_list *timer)
893 {
894 struct loop_device *lo = container_of(timer, struct loop_device, timer);
895
896 return loop_free_idle_workers(lo, false);
897 }
898
899 /**
900 * loop_set_status_from_info - configure device from loop_info
901 * @lo: struct loop_device to configure
902 * @info: struct loop_info64 to configure the device with
903 *
904 * Configures the loop device parameters according to the passed
905 * in loop_info64 configuration.
906 */
907 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)908 loop_set_status_from_info(struct loop_device *lo,
909 const struct loop_info64 *info)
910 {
911 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
912 return -EINVAL;
913
914 switch (info->lo_encrypt_type) {
915 case LO_CRYPT_NONE:
916 break;
917 case LO_CRYPT_XOR:
918 pr_warn("support for the xor transformation has been removed.\n");
919 return -EINVAL;
920 case LO_CRYPT_CRYPTOAPI:
921 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
922 return -EINVAL;
923 default:
924 return -EINVAL;
925 }
926
927 /* Avoid assigning overflow values */
928 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
929 return -EOVERFLOW;
930
931 lo->lo_offset = info->lo_offset;
932 lo->lo_sizelimit = info->lo_sizelimit;
933
934 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
935 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
936 return 0;
937 }
938
loop_default_blocksize(struct loop_device * lo)939 static unsigned int loop_default_blocksize(struct loop_device *lo)
940 {
941 /* In case of direct I/O, match underlying minimum I/O size */
942 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
943 return lo->lo_min_dio_size;
944 return SECTOR_SIZE;
945 }
946
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)947 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
948 unsigned int bsize)
949 {
950 struct file *file = lo->lo_backing_file;
951 struct inode *inode = file->f_mapping->host;
952 struct block_device *backing_bdev = NULL;
953 u32 granularity = 0, max_discard_sectors = 0;
954
955 if (S_ISBLK(inode->i_mode))
956 backing_bdev = I_BDEV(inode);
957 else if (inode->i_sb->s_bdev)
958 backing_bdev = inode->i_sb->s_bdev;
959
960 if (!bsize)
961 bsize = loop_default_blocksize(lo);
962
963 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
964
965 lim->logical_block_size = bsize;
966 lim->physical_block_size = bsize;
967 lim->io_min = bsize;
968 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
969 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
970 lim->features |= BLK_FEAT_WRITE_CACHE;
971 if (backing_bdev && !bdev_nonrot(backing_bdev))
972 lim->features |= BLK_FEAT_ROTATIONAL;
973 lim->max_hw_discard_sectors = max_discard_sectors;
974 lim->max_write_zeroes_sectors = max_discard_sectors;
975 if (max_discard_sectors)
976 lim->discard_granularity = granularity;
977 else
978 lim->discard_granularity = 0;
979 }
980
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)981 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
982 struct block_device *bdev,
983 const struct loop_config *config)
984 {
985 struct file *file = fget(config->fd);
986 struct queue_limits lim;
987 int error;
988 loff_t size;
989 bool partscan;
990 bool is_loop;
991
992 if (!file)
993 return -EBADF;
994
995 error = loop_check_backing_file(file);
996 if (error)
997 return error;
998
999 is_loop = is_loop_device(file);
1000
1001 /* This is safe, since we have a reference from open(). */
1002 __module_get(THIS_MODULE);
1003
1004 /*
1005 * If we don't hold exclusive handle for the device, upgrade to it
1006 * here to avoid changing device under exclusive owner.
1007 */
1008 if (!(mode & BLK_OPEN_EXCL)) {
1009 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1010 if (error)
1011 goto out_putf;
1012 }
1013
1014 error = loop_global_lock_killable(lo, is_loop);
1015 if (error)
1016 goto out_bdev;
1017
1018 error = -EBUSY;
1019 if (lo->lo_state != Lo_unbound)
1020 goto out_unlock;
1021
1022 error = loop_validate_file(file, bdev);
1023 if (error)
1024 goto out_unlock;
1025
1026 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1027 error = -EINVAL;
1028 goto out_unlock;
1029 }
1030
1031 error = loop_set_status_from_info(lo, &config->info);
1032 if (error)
1033 goto out_unlock;
1034 lo->lo_flags = config->info.lo_flags;
1035
1036 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1037 !file->f_op->write_iter)
1038 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1039
1040 if (!lo->workqueue) {
1041 lo->workqueue = alloc_workqueue("loop%d",
1042 WQ_UNBOUND | WQ_FREEZABLE,
1043 0, lo->lo_number);
1044 if (!lo->workqueue) {
1045 error = -ENOMEM;
1046 goto out_unlock;
1047 }
1048 }
1049
1050 /* suppress uevents while reconfiguring the device */
1051 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1052
1053 disk_force_media_change(lo->lo_disk);
1054 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1055
1056 lo->lo_device = bdev;
1057 loop_assign_backing_file(lo, file);
1058
1059 lim = queue_limits_start_update(lo->lo_queue);
1060 loop_update_limits(lo, &lim, config->block_size);
1061 /* No need to freeze the queue as the device isn't bound yet. */
1062 error = queue_limits_commit_update(lo->lo_queue, &lim);
1063 if (error)
1064 goto out_unlock;
1065
1066 /*
1067 * We might switch to direct I/O mode for the loop device, write back
1068 * all dirty data the page cache now that so that the individual I/O
1069 * operations don't have to do that.
1070 */
1071 vfs_fsync(file, 0);
1072
1073 loop_update_dio(lo);
1074 loop_sysfs_init(lo);
1075
1076 size = lo_calculate_size(lo, file);
1077 loop_set_size(lo, size);
1078
1079 /* Order wrt reading lo_state in loop_validate_file(). */
1080 wmb();
1081
1082 lo->lo_state = Lo_bound;
1083 if (part_shift)
1084 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1085 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1086 if (partscan)
1087 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1088
1089 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1090 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1091
1092 loop_global_unlock(lo, is_loop);
1093 if (partscan)
1094 loop_reread_partitions(lo);
1095
1096 if (!(mode & BLK_OPEN_EXCL))
1097 bd_abort_claiming(bdev, loop_configure);
1098
1099 return 0;
1100
1101 out_unlock:
1102 loop_global_unlock(lo, is_loop);
1103 out_bdev:
1104 if (!(mode & BLK_OPEN_EXCL))
1105 bd_abort_claiming(bdev, loop_configure);
1106 out_putf:
1107 fput(file);
1108 /* This is safe: open() is still holding a reference. */
1109 module_put(THIS_MODULE);
1110 return error;
1111 }
1112
__loop_clr_fd(struct loop_device * lo)1113 static void __loop_clr_fd(struct loop_device *lo)
1114 {
1115 struct queue_limits lim;
1116 struct file *filp;
1117 gfp_t gfp = lo->old_gfp_mask;
1118
1119 spin_lock_irq(&lo->lo_lock);
1120 filp = lo->lo_backing_file;
1121 lo->lo_backing_file = NULL;
1122 spin_unlock_irq(&lo->lo_lock);
1123
1124 lo->lo_device = NULL;
1125 lo->lo_offset = 0;
1126 lo->lo_sizelimit = 0;
1127 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1128
1129 /*
1130 * Reset the block size to the default.
1131 *
1132 * No queue freezing needed because this is called from the final
1133 * ->release call only, so there can't be any outstanding I/O.
1134 */
1135 lim = queue_limits_start_update(lo->lo_queue);
1136 lim.logical_block_size = SECTOR_SIZE;
1137 lim.physical_block_size = SECTOR_SIZE;
1138 lim.io_min = SECTOR_SIZE;
1139 queue_limits_commit_update(lo->lo_queue, &lim);
1140
1141 invalidate_disk(lo->lo_disk);
1142 loop_sysfs_exit(lo);
1143 /* let user-space know about this change */
1144 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1145 mapping_set_gfp_mask(filp->f_mapping, gfp);
1146 /* This is safe: open() is still holding a reference. */
1147 module_put(THIS_MODULE);
1148
1149 disk_force_media_change(lo->lo_disk);
1150
1151 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1152 int err;
1153
1154 /*
1155 * open_mutex has been held already in release path, so don't
1156 * acquire it if this function is called in such case.
1157 *
1158 * If the reread partition isn't from release path, lo_refcnt
1159 * must be at least one and it can only become zero when the
1160 * current holder is released.
1161 */
1162 err = bdev_disk_changed(lo->lo_disk, false);
1163 if (err)
1164 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1165 __func__, lo->lo_number, err);
1166 /* Device is gone, no point in returning error */
1167 }
1168
1169 /*
1170 * lo->lo_state is set to Lo_unbound here after above partscan has
1171 * finished. There cannot be anybody else entering __loop_clr_fd() as
1172 * Lo_rundown state protects us from all the other places trying to
1173 * change the 'lo' device.
1174 */
1175 lo->lo_flags = 0;
1176 if (!part_shift)
1177 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1178 mutex_lock(&lo->lo_mutex);
1179 lo->lo_state = Lo_unbound;
1180 mutex_unlock(&lo->lo_mutex);
1181
1182 /*
1183 * Need not hold lo_mutex to fput backing file. Calling fput holding
1184 * lo_mutex triggers a circular lock dependency possibility warning as
1185 * fput can take open_mutex which is usually taken before lo_mutex.
1186 */
1187 fput(filp);
1188 }
1189
loop_clr_fd(struct loop_device * lo)1190 static int loop_clr_fd(struct loop_device *lo)
1191 {
1192 int err;
1193
1194 /*
1195 * Since lo_ioctl() is called without locks held, it is possible that
1196 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1197 *
1198 * Therefore, use global lock when setting Lo_rundown state in order to
1199 * make sure that loop_validate_file() will fail if the "struct file"
1200 * which loop_configure()/loop_change_fd() found via fget() was this
1201 * loop device.
1202 */
1203 err = loop_global_lock_killable(lo, true);
1204 if (err)
1205 return err;
1206 if (lo->lo_state != Lo_bound) {
1207 loop_global_unlock(lo, true);
1208 return -ENXIO;
1209 }
1210 /*
1211 * Mark the device for removing the backing device on last close.
1212 * If we are the only opener, also switch the state to roundown here to
1213 * prevent new openers from coming in.
1214 */
1215
1216 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1217 if (disk_openers(lo->lo_disk) == 1)
1218 lo->lo_state = Lo_rundown;
1219 loop_global_unlock(lo, true);
1220
1221 return 0;
1222 }
1223
1224 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1225 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1226 {
1227 int err;
1228 bool partscan = false;
1229 bool size_changed = false;
1230 unsigned int memflags;
1231
1232 err = mutex_lock_killable(&lo->lo_mutex);
1233 if (err)
1234 return err;
1235 if (lo->lo_state != Lo_bound) {
1236 err = -ENXIO;
1237 goto out_unlock;
1238 }
1239
1240 if (lo->lo_offset != info->lo_offset ||
1241 lo->lo_sizelimit != info->lo_sizelimit) {
1242 size_changed = true;
1243 sync_blockdev(lo->lo_device);
1244 invalidate_bdev(lo->lo_device);
1245 }
1246
1247 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1248 memflags = blk_mq_freeze_queue(lo->lo_queue);
1249
1250 err = loop_set_status_from_info(lo, info);
1251 if (err)
1252 goto out_unfreeze;
1253
1254 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1255 (info->lo_flags & LO_FLAGS_PARTSCAN);
1256
1257 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1258 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1259
1260 /* update the direct I/O flag if lo_offset changed */
1261 loop_update_dio(lo);
1262
1263 out_unfreeze:
1264 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1265 if (partscan)
1266 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1267 if (!err && size_changed) {
1268 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file);
1269 loop_set_size(lo, new_size);
1270 }
1271 out_unlock:
1272 mutex_unlock(&lo->lo_mutex);
1273 if (partscan)
1274 loop_reread_partitions(lo);
1275
1276 return err;
1277 }
1278
1279 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1280 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1281 {
1282 struct path path;
1283 struct kstat stat;
1284 int ret;
1285
1286 ret = mutex_lock_killable(&lo->lo_mutex);
1287 if (ret)
1288 return ret;
1289 if (lo->lo_state != Lo_bound) {
1290 mutex_unlock(&lo->lo_mutex);
1291 return -ENXIO;
1292 }
1293
1294 memset(info, 0, sizeof(*info));
1295 info->lo_number = lo->lo_number;
1296 info->lo_offset = lo->lo_offset;
1297 info->lo_sizelimit = lo->lo_sizelimit;
1298 info->lo_flags = lo->lo_flags;
1299 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1300
1301 /* Drop lo_mutex while we call into the filesystem. */
1302 path = lo->lo_backing_file->f_path;
1303 path_get(&path);
1304 mutex_unlock(&lo->lo_mutex);
1305 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1306 if (!ret) {
1307 info->lo_device = huge_encode_dev(stat.dev);
1308 info->lo_inode = stat.ino;
1309 info->lo_rdevice = huge_encode_dev(stat.rdev);
1310 }
1311 path_put(&path);
1312 return ret;
1313 }
1314
1315 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1316 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1317 {
1318 memset(info64, 0, sizeof(*info64));
1319 info64->lo_number = info->lo_number;
1320 info64->lo_device = info->lo_device;
1321 info64->lo_inode = info->lo_inode;
1322 info64->lo_rdevice = info->lo_rdevice;
1323 info64->lo_offset = info->lo_offset;
1324 info64->lo_sizelimit = 0;
1325 info64->lo_flags = info->lo_flags;
1326 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1327 }
1328
1329 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1330 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1331 {
1332 memset(info, 0, sizeof(*info));
1333 info->lo_number = info64->lo_number;
1334 info->lo_device = info64->lo_device;
1335 info->lo_inode = info64->lo_inode;
1336 info->lo_rdevice = info64->lo_rdevice;
1337 info->lo_offset = info64->lo_offset;
1338 info->lo_flags = info64->lo_flags;
1339 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1340
1341 /* error in case values were truncated */
1342 if (info->lo_device != info64->lo_device ||
1343 info->lo_rdevice != info64->lo_rdevice ||
1344 info->lo_inode != info64->lo_inode ||
1345 info->lo_offset != info64->lo_offset)
1346 return -EOVERFLOW;
1347
1348 return 0;
1349 }
1350
1351 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1352 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1353 {
1354 struct loop_info info;
1355 struct loop_info64 info64;
1356
1357 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1358 return -EFAULT;
1359 loop_info64_from_old(&info, &info64);
1360 return loop_set_status(lo, &info64);
1361 }
1362
1363 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1364 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1365 {
1366 struct loop_info64 info64;
1367
1368 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1369 return -EFAULT;
1370 return loop_set_status(lo, &info64);
1371 }
1372
1373 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1374 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1375 struct loop_info info;
1376 struct loop_info64 info64;
1377 int err;
1378
1379 if (!arg)
1380 return -EINVAL;
1381 err = loop_get_status(lo, &info64);
1382 if (!err)
1383 err = loop_info64_to_old(&info64, &info);
1384 if (!err && copy_to_user(arg, &info, sizeof(info)))
1385 err = -EFAULT;
1386
1387 return err;
1388 }
1389
1390 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1391 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1392 struct loop_info64 info64;
1393 int err;
1394
1395 if (!arg)
1396 return -EINVAL;
1397 err = loop_get_status(lo, &info64);
1398 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1399 err = -EFAULT;
1400
1401 return err;
1402 }
1403
loop_set_capacity(struct loop_device * lo)1404 static int loop_set_capacity(struct loop_device *lo)
1405 {
1406 loff_t size;
1407
1408 if (unlikely(lo->lo_state != Lo_bound))
1409 return -ENXIO;
1410
1411 size = lo_calculate_size(lo, lo->lo_backing_file);
1412 loop_set_size(lo, size);
1413
1414 return 0;
1415 }
1416
loop_set_dio(struct loop_device * lo,unsigned long arg)1417 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1418 {
1419 bool use_dio = !!arg;
1420 unsigned int memflags;
1421
1422 if (lo->lo_state != Lo_bound)
1423 return -ENXIO;
1424 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1425 return 0;
1426
1427 if (use_dio) {
1428 if (!lo_can_use_dio(lo))
1429 return -EINVAL;
1430 /* flush dirty pages before starting to use direct I/O */
1431 vfs_fsync(lo->lo_backing_file, 0);
1432 }
1433
1434 memflags = blk_mq_freeze_queue(lo->lo_queue);
1435 if (use_dio)
1436 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1437 else
1438 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1439 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1440 return 0;
1441 }
1442
loop_set_block_size(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,unsigned long arg)1443 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1444 struct block_device *bdev, unsigned long arg)
1445 {
1446 struct queue_limits lim;
1447 unsigned int memflags;
1448 int err = 0;
1449
1450 /*
1451 * If we don't hold exclusive handle for the device, upgrade to it
1452 * here to avoid changing device under exclusive owner.
1453 */
1454 if (!(mode & BLK_OPEN_EXCL)) {
1455 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1456 if (err)
1457 return err;
1458 }
1459
1460 err = mutex_lock_killable(&lo->lo_mutex);
1461 if (err)
1462 goto abort_claim;
1463
1464 if (lo->lo_state != Lo_bound) {
1465 err = -ENXIO;
1466 goto unlock;
1467 }
1468
1469 if (lo->lo_queue->limits.logical_block_size == arg)
1470 goto unlock;
1471
1472 sync_blockdev(lo->lo_device);
1473 invalidate_bdev(lo->lo_device);
1474
1475 lim = queue_limits_start_update(lo->lo_queue);
1476 loop_update_limits(lo, &lim, arg);
1477
1478 memflags = blk_mq_freeze_queue(lo->lo_queue);
1479 err = queue_limits_commit_update(lo->lo_queue, &lim);
1480 loop_update_dio(lo);
1481 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1482
1483 unlock:
1484 mutex_unlock(&lo->lo_mutex);
1485 abort_claim:
1486 if (!(mode & BLK_OPEN_EXCL))
1487 bd_abort_claiming(bdev, loop_set_block_size);
1488 return err;
1489 }
1490
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1491 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1492 unsigned long arg)
1493 {
1494 int err;
1495
1496 err = mutex_lock_killable(&lo->lo_mutex);
1497 if (err)
1498 return err;
1499 switch (cmd) {
1500 case LOOP_SET_CAPACITY:
1501 err = loop_set_capacity(lo);
1502 break;
1503 case LOOP_SET_DIRECT_IO:
1504 err = loop_set_dio(lo, arg);
1505 break;
1506 default:
1507 err = -EINVAL;
1508 }
1509 mutex_unlock(&lo->lo_mutex);
1510 return err;
1511 }
1512
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1513 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1514 unsigned int cmd, unsigned long arg)
1515 {
1516 struct loop_device *lo = bdev->bd_disk->private_data;
1517 void __user *argp = (void __user *) arg;
1518 int err;
1519
1520 switch (cmd) {
1521 case LOOP_SET_FD: {
1522 /*
1523 * Legacy case - pass in a zeroed out struct loop_config with
1524 * only the file descriptor set , which corresponds with the
1525 * default parameters we'd have used otherwise.
1526 */
1527 struct loop_config config;
1528
1529 memset(&config, 0, sizeof(config));
1530 config.fd = arg;
1531
1532 return loop_configure(lo, mode, bdev, &config);
1533 }
1534 case LOOP_CONFIGURE: {
1535 struct loop_config config;
1536
1537 if (copy_from_user(&config, argp, sizeof(config)))
1538 return -EFAULT;
1539
1540 return loop_configure(lo, mode, bdev, &config);
1541 }
1542 case LOOP_CHANGE_FD:
1543 return loop_change_fd(lo, bdev, arg);
1544 case LOOP_CLR_FD:
1545 return loop_clr_fd(lo);
1546 case LOOP_SET_STATUS:
1547 err = -EPERM;
1548 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1549 err = loop_set_status_old(lo, argp);
1550 break;
1551 case LOOP_GET_STATUS:
1552 return loop_get_status_old(lo, argp);
1553 case LOOP_SET_STATUS64:
1554 err = -EPERM;
1555 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1556 err = loop_set_status64(lo, argp);
1557 break;
1558 case LOOP_GET_STATUS64:
1559 return loop_get_status64(lo, argp);
1560 case LOOP_SET_BLOCK_SIZE:
1561 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1562 return -EPERM;
1563 return loop_set_block_size(lo, mode, bdev, arg);
1564 case LOOP_SET_CAPACITY:
1565 case LOOP_SET_DIRECT_IO:
1566 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1567 return -EPERM;
1568 fallthrough;
1569 default:
1570 err = lo_simple_ioctl(lo, cmd, arg);
1571 break;
1572 }
1573
1574 return err;
1575 }
1576
1577 #ifdef CONFIG_COMPAT
1578 struct compat_loop_info {
1579 compat_int_t lo_number; /* ioctl r/o */
1580 compat_dev_t lo_device; /* ioctl r/o */
1581 compat_ulong_t lo_inode; /* ioctl r/o */
1582 compat_dev_t lo_rdevice; /* ioctl r/o */
1583 compat_int_t lo_offset;
1584 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1585 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1586 compat_int_t lo_flags; /* ioctl r/o */
1587 char lo_name[LO_NAME_SIZE];
1588 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1589 compat_ulong_t lo_init[2];
1590 char reserved[4];
1591 };
1592
1593 /*
1594 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1595 * - noinlined to reduce stack space usage in main part of driver
1596 */
1597 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1598 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1599 struct loop_info64 *info64)
1600 {
1601 struct compat_loop_info info;
1602
1603 if (copy_from_user(&info, arg, sizeof(info)))
1604 return -EFAULT;
1605
1606 memset(info64, 0, sizeof(*info64));
1607 info64->lo_number = info.lo_number;
1608 info64->lo_device = info.lo_device;
1609 info64->lo_inode = info.lo_inode;
1610 info64->lo_rdevice = info.lo_rdevice;
1611 info64->lo_offset = info.lo_offset;
1612 info64->lo_sizelimit = 0;
1613 info64->lo_flags = info.lo_flags;
1614 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1615 return 0;
1616 }
1617
1618 /*
1619 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1620 * - noinlined to reduce stack space usage in main part of driver
1621 */
1622 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1623 loop_info64_to_compat(const struct loop_info64 *info64,
1624 struct compat_loop_info __user *arg)
1625 {
1626 struct compat_loop_info info;
1627
1628 memset(&info, 0, sizeof(info));
1629 info.lo_number = info64->lo_number;
1630 info.lo_device = info64->lo_device;
1631 info.lo_inode = info64->lo_inode;
1632 info.lo_rdevice = info64->lo_rdevice;
1633 info.lo_offset = info64->lo_offset;
1634 info.lo_flags = info64->lo_flags;
1635 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1636
1637 /* error in case values were truncated */
1638 if (info.lo_device != info64->lo_device ||
1639 info.lo_rdevice != info64->lo_rdevice ||
1640 info.lo_inode != info64->lo_inode ||
1641 info.lo_offset != info64->lo_offset)
1642 return -EOVERFLOW;
1643
1644 if (copy_to_user(arg, &info, sizeof(info)))
1645 return -EFAULT;
1646 return 0;
1647 }
1648
1649 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1650 loop_set_status_compat(struct loop_device *lo,
1651 const struct compat_loop_info __user *arg)
1652 {
1653 struct loop_info64 info64;
1654 int ret;
1655
1656 ret = loop_info64_from_compat(arg, &info64);
1657 if (ret < 0)
1658 return ret;
1659 return loop_set_status(lo, &info64);
1660 }
1661
1662 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1663 loop_get_status_compat(struct loop_device *lo,
1664 struct compat_loop_info __user *arg)
1665 {
1666 struct loop_info64 info64;
1667 int err;
1668
1669 if (!arg)
1670 return -EINVAL;
1671 err = loop_get_status(lo, &info64);
1672 if (!err)
1673 err = loop_info64_to_compat(&info64, arg);
1674 return err;
1675 }
1676
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1677 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1678 unsigned int cmd, unsigned long arg)
1679 {
1680 struct loop_device *lo = bdev->bd_disk->private_data;
1681 int err;
1682
1683 switch(cmd) {
1684 case LOOP_SET_STATUS:
1685 err = loop_set_status_compat(lo,
1686 (const struct compat_loop_info __user *)arg);
1687 break;
1688 case LOOP_GET_STATUS:
1689 err = loop_get_status_compat(lo,
1690 (struct compat_loop_info __user *)arg);
1691 break;
1692 case LOOP_SET_CAPACITY:
1693 case LOOP_CLR_FD:
1694 case LOOP_GET_STATUS64:
1695 case LOOP_SET_STATUS64:
1696 case LOOP_CONFIGURE:
1697 arg = (unsigned long) compat_ptr(arg);
1698 fallthrough;
1699 case LOOP_SET_FD:
1700 case LOOP_CHANGE_FD:
1701 case LOOP_SET_BLOCK_SIZE:
1702 case LOOP_SET_DIRECT_IO:
1703 err = lo_ioctl(bdev, mode, cmd, arg);
1704 break;
1705 default:
1706 err = -ENOIOCTLCMD;
1707 break;
1708 }
1709 return err;
1710 }
1711 #endif
1712
lo_open(struct gendisk * disk,blk_mode_t mode)1713 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1714 {
1715 struct loop_device *lo = disk->private_data;
1716 int err;
1717
1718 err = mutex_lock_killable(&lo->lo_mutex);
1719 if (err)
1720 return err;
1721
1722 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1723 err = -ENXIO;
1724 mutex_unlock(&lo->lo_mutex);
1725 return err;
1726 }
1727
lo_release(struct gendisk * disk)1728 static void lo_release(struct gendisk *disk)
1729 {
1730 struct loop_device *lo = disk->private_data;
1731 bool need_clear = false;
1732
1733 if (disk_openers(disk) > 0)
1734 return;
1735 /*
1736 * Clear the backing device information if this is the last close of
1737 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1738 * has been called.
1739 */
1740
1741 mutex_lock(&lo->lo_mutex);
1742 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1743 lo->lo_state = Lo_rundown;
1744
1745 need_clear = (lo->lo_state == Lo_rundown);
1746 mutex_unlock(&lo->lo_mutex);
1747
1748 if (need_clear)
1749 __loop_clr_fd(lo);
1750 }
1751
lo_free_disk(struct gendisk * disk)1752 static void lo_free_disk(struct gendisk *disk)
1753 {
1754 struct loop_device *lo = disk->private_data;
1755
1756 if (lo->workqueue)
1757 destroy_workqueue(lo->workqueue);
1758 loop_free_idle_workers(lo, true);
1759 timer_shutdown_sync(&lo->timer);
1760 mutex_destroy(&lo->lo_mutex);
1761 kfree(lo);
1762 }
1763
1764 static const struct block_device_operations lo_fops = {
1765 .owner = THIS_MODULE,
1766 .open = lo_open,
1767 .release = lo_release,
1768 .ioctl = lo_ioctl,
1769 #ifdef CONFIG_COMPAT
1770 .compat_ioctl = lo_compat_ioctl,
1771 #endif
1772 .free_disk = lo_free_disk,
1773 };
1774
1775 /*
1776 * And now the modules code and kernel interface.
1777 */
1778
1779 /*
1780 * If max_loop is specified, create that many devices upfront.
1781 * This also becomes a hard limit. If max_loop is not specified,
1782 * the default isn't a hard limit (as before commit 85c50197716c
1783 * changed the default value from 0 for max_loop=0 reasons), just
1784 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1785 * init time. Loop devices can be requested on-demand with the
1786 * /dev/loop-control interface, or be instantiated by accessing
1787 * a 'dead' device node.
1788 */
1789 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1790
1791 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1792 static bool max_loop_specified;
1793
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1794 static int max_loop_param_set_int(const char *val,
1795 const struct kernel_param *kp)
1796 {
1797 int ret;
1798
1799 ret = param_set_int(val, kp);
1800 if (ret < 0)
1801 return ret;
1802
1803 max_loop_specified = true;
1804 return 0;
1805 }
1806
1807 static const struct kernel_param_ops max_loop_param_ops = {
1808 .set = max_loop_param_set_int,
1809 .get = param_get_int,
1810 };
1811
1812 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1813 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1814 #else
1815 module_param(max_loop, int, 0444);
1816 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1817 #endif
1818
1819 module_param(max_part, int, 0444);
1820 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1821
1822 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1823
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1824 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1825 {
1826 int qd, ret;
1827
1828 ret = kstrtoint(s, 0, &qd);
1829 if (ret < 0)
1830 return ret;
1831 if (qd < 1)
1832 return -EINVAL;
1833 hw_queue_depth = qd;
1834 return 0;
1835 }
1836
1837 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1838 .set = loop_set_hw_queue_depth,
1839 .get = param_get_int,
1840 };
1841
1842 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1843 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1844
1845 MODULE_DESCRIPTION("Loopback device support");
1846 MODULE_LICENSE("GPL");
1847 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1848
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1849 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1850 const struct blk_mq_queue_data *bd)
1851 {
1852 struct request *rq = bd->rq;
1853 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1854 struct loop_device *lo = rq->q->queuedata;
1855
1856 blk_mq_start_request(rq);
1857
1858 if (lo->lo_state != Lo_bound)
1859 return BLK_STS_IOERR;
1860
1861 switch (req_op(rq)) {
1862 case REQ_OP_FLUSH:
1863 case REQ_OP_DISCARD:
1864 case REQ_OP_WRITE_ZEROES:
1865 cmd->use_aio = false;
1866 break;
1867 default:
1868 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1869 break;
1870 }
1871
1872 /* always use the first bio's css */
1873 cmd->blkcg_css = NULL;
1874 cmd->memcg_css = NULL;
1875 #ifdef CONFIG_BLK_CGROUP
1876 if (rq->bio) {
1877 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1878 #ifdef CONFIG_MEMCG
1879 if (cmd->blkcg_css) {
1880 cmd->memcg_css =
1881 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1882 &memory_cgrp_subsys);
1883 }
1884 #endif
1885 }
1886 #endif
1887 loop_queue_work(lo, cmd);
1888
1889 return BLK_STS_OK;
1890 }
1891
loop_handle_cmd(struct loop_cmd * cmd)1892 static void loop_handle_cmd(struct loop_cmd *cmd)
1893 {
1894 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1895 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1896 struct request *rq = blk_mq_rq_from_pdu(cmd);
1897 const bool write = op_is_write(req_op(rq));
1898 struct loop_device *lo = rq->q->queuedata;
1899 int ret = 0;
1900 struct mem_cgroup *old_memcg = NULL;
1901
1902 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1903 ret = -EIO;
1904 goto failed;
1905 }
1906
1907 if (cmd_blkcg_css)
1908 kthread_associate_blkcg(cmd_blkcg_css);
1909 if (cmd_memcg_css)
1910 old_memcg = set_active_memcg(
1911 mem_cgroup_from_css(cmd_memcg_css));
1912
1913 /*
1914 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1915 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1916 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1917 * not yet been completed.
1918 */
1919 ret = do_req_filebacked(lo, rq);
1920
1921 if (cmd_blkcg_css)
1922 kthread_associate_blkcg(NULL);
1923
1924 if (cmd_memcg_css) {
1925 set_active_memcg(old_memcg);
1926 css_put(cmd_memcg_css);
1927 }
1928 failed:
1929 /* complete non-aio request */
1930 if (ret != -EIOCBQUEUED) {
1931 if (ret == -EOPNOTSUPP)
1932 cmd->ret = ret;
1933 else
1934 cmd->ret = ret ? -EIO : 0;
1935 if (likely(!blk_should_fake_timeout(rq->q)))
1936 blk_mq_complete_request(rq);
1937 }
1938 }
1939
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1940 static void loop_process_work(struct loop_worker *worker,
1941 struct list_head *cmd_list, struct loop_device *lo)
1942 {
1943 int orig_flags = current->flags;
1944 struct loop_cmd *cmd;
1945
1946 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1947 spin_lock_irq(&lo->lo_work_lock);
1948 while (!list_empty(cmd_list)) {
1949 cmd = container_of(
1950 cmd_list->next, struct loop_cmd, list_entry);
1951 list_del(cmd_list->next);
1952 spin_unlock_irq(&lo->lo_work_lock);
1953
1954 loop_handle_cmd(cmd);
1955 cond_resched();
1956
1957 spin_lock_irq(&lo->lo_work_lock);
1958 }
1959
1960 /*
1961 * We only add to the idle list if there are no pending cmds
1962 * *and* the worker will not run again which ensures that it
1963 * is safe to free any worker on the idle list
1964 */
1965 if (worker && !work_pending(&worker->work)) {
1966 worker->last_ran_at = jiffies;
1967 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1968 loop_set_timer(lo);
1969 }
1970 spin_unlock_irq(&lo->lo_work_lock);
1971 current->flags = orig_flags;
1972 }
1973
loop_workfn(struct work_struct * work)1974 static void loop_workfn(struct work_struct *work)
1975 {
1976 struct loop_worker *worker =
1977 container_of(work, struct loop_worker, work);
1978 loop_process_work(worker, &worker->cmd_list, worker->lo);
1979 }
1980
loop_rootcg_workfn(struct work_struct * work)1981 static void loop_rootcg_workfn(struct work_struct *work)
1982 {
1983 struct loop_device *lo =
1984 container_of(work, struct loop_device, rootcg_work);
1985 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1986 }
1987
1988 static const struct blk_mq_ops loop_mq_ops = {
1989 .queue_rq = loop_queue_rq,
1990 .complete = lo_complete_rq,
1991 };
1992
loop_add(int i)1993 static int loop_add(int i)
1994 {
1995 struct queue_limits lim = {
1996 /*
1997 * Random number picked from the historic block max_sectors cap.
1998 */
1999 .max_hw_sectors = 2560u,
2000 };
2001 struct loop_device *lo;
2002 struct gendisk *disk;
2003 int err;
2004
2005 err = -ENOMEM;
2006 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2007 if (!lo)
2008 goto out;
2009 lo->worker_tree = RB_ROOT;
2010 INIT_LIST_HEAD(&lo->idle_worker_list);
2011 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2012 lo->lo_state = Lo_unbound;
2013
2014 err = mutex_lock_killable(&loop_ctl_mutex);
2015 if (err)
2016 goto out_free_dev;
2017
2018 /* allocate id, if @id >= 0, we're requesting that specific id */
2019 if (i >= 0) {
2020 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2021 if (err == -ENOSPC)
2022 err = -EEXIST;
2023 } else {
2024 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2025 }
2026 mutex_unlock(&loop_ctl_mutex);
2027 if (err < 0)
2028 goto out_free_dev;
2029 i = err;
2030
2031 lo->tag_set.ops = &loop_mq_ops;
2032 lo->tag_set.nr_hw_queues = 1;
2033 lo->tag_set.queue_depth = hw_queue_depth;
2034 lo->tag_set.numa_node = NUMA_NO_NODE;
2035 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2036 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2037 lo->tag_set.driver_data = lo;
2038
2039 err = blk_mq_alloc_tag_set(&lo->tag_set);
2040 if (err)
2041 goto out_free_idr;
2042
2043 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2044 if (IS_ERR(disk)) {
2045 err = PTR_ERR(disk);
2046 goto out_cleanup_tags;
2047 }
2048 lo->lo_queue = lo->lo_disk->queue;
2049
2050 /*
2051 * Disable partition scanning by default. The in-kernel partition
2052 * scanning can be requested individually per-device during its
2053 * setup. Userspace can always add and remove partitions from all
2054 * devices. The needed partition minors are allocated from the
2055 * extended minor space, the main loop device numbers will continue
2056 * to match the loop minors, regardless of the number of partitions
2057 * used.
2058 *
2059 * If max_part is given, partition scanning is globally enabled for
2060 * all loop devices. The minors for the main loop devices will be
2061 * multiples of max_part.
2062 *
2063 * Note: Global-for-all-devices, set-only-at-init, read-only module
2064 * parameteters like 'max_loop' and 'max_part' make things needlessly
2065 * complicated, are too static, inflexible and may surprise
2066 * userspace tools. Parameters like this in general should be avoided.
2067 */
2068 if (!part_shift)
2069 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2070 mutex_init(&lo->lo_mutex);
2071 lo->lo_number = i;
2072 spin_lock_init(&lo->lo_lock);
2073 spin_lock_init(&lo->lo_work_lock);
2074 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2075 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2076 disk->major = LOOP_MAJOR;
2077 disk->first_minor = i << part_shift;
2078 disk->minors = 1 << part_shift;
2079 disk->fops = &lo_fops;
2080 disk->private_data = lo;
2081 disk->queue = lo->lo_queue;
2082 disk->events = DISK_EVENT_MEDIA_CHANGE;
2083 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2084 sprintf(disk->disk_name, "loop%d", i);
2085 /* Make this loop device reachable from pathname. */
2086 err = add_disk(disk);
2087 if (err)
2088 goto out_cleanup_disk;
2089
2090 /* Show this loop device. */
2091 mutex_lock(&loop_ctl_mutex);
2092 lo->idr_visible = true;
2093 mutex_unlock(&loop_ctl_mutex);
2094
2095 return i;
2096
2097 out_cleanup_disk:
2098 put_disk(disk);
2099 out_cleanup_tags:
2100 blk_mq_free_tag_set(&lo->tag_set);
2101 out_free_idr:
2102 mutex_lock(&loop_ctl_mutex);
2103 idr_remove(&loop_index_idr, i);
2104 mutex_unlock(&loop_ctl_mutex);
2105 out_free_dev:
2106 kfree(lo);
2107 out:
2108 return err;
2109 }
2110
loop_remove(struct loop_device * lo)2111 static void loop_remove(struct loop_device *lo)
2112 {
2113 /* Make this loop device unreachable from pathname. */
2114 del_gendisk(lo->lo_disk);
2115 blk_mq_free_tag_set(&lo->tag_set);
2116
2117 mutex_lock(&loop_ctl_mutex);
2118 idr_remove(&loop_index_idr, lo->lo_number);
2119 mutex_unlock(&loop_ctl_mutex);
2120
2121 put_disk(lo->lo_disk);
2122 }
2123
2124 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2125 static void loop_probe(dev_t dev)
2126 {
2127 int idx = MINOR(dev) >> part_shift;
2128
2129 if (max_loop_specified && max_loop && idx >= max_loop)
2130 return;
2131 loop_add(idx);
2132 }
2133 #else
2134 #define loop_probe NULL
2135 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2136
loop_control_remove(int idx)2137 static int loop_control_remove(int idx)
2138 {
2139 struct loop_device *lo;
2140 int ret;
2141
2142 if (idx < 0) {
2143 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2144 return -EINVAL;
2145 }
2146
2147 /* Hide this loop device for serialization. */
2148 ret = mutex_lock_killable(&loop_ctl_mutex);
2149 if (ret)
2150 return ret;
2151 lo = idr_find(&loop_index_idr, idx);
2152 if (!lo || !lo->idr_visible)
2153 ret = -ENODEV;
2154 else
2155 lo->idr_visible = false;
2156 mutex_unlock(&loop_ctl_mutex);
2157 if (ret)
2158 return ret;
2159
2160 /* Check whether this loop device can be removed. */
2161 ret = mutex_lock_killable(&lo->lo_mutex);
2162 if (ret)
2163 goto mark_visible;
2164 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2165 mutex_unlock(&lo->lo_mutex);
2166 ret = -EBUSY;
2167 goto mark_visible;
2168 }
2169 /* Mark this loop device as no more bound, but not quite unbound yet */
2170 lo->lo_state = Lo_deleting;
2171 mutex_unlock(&lo->lo_mutex);
2172
2173 loop_remove(lo);
2174 return 0;
2175
2176 mark_visible:
2177 /* Show this loop device again. */
2178 mutex_lock(&loop_ctl_mutex);
2179 lo->idr_visible = true;
2180 mutex_unlock(&loop_ctl_mutex);
2181 return ret;
2182 }
2183
loop_control_get_free(int idx)2184 static int loop_control_get_free(int idx)
2185 {
2186 struct loop_device *lo;
2187 int id, ret;
2188
2189 ret = mutex_lock_killable(&loop_ctl_mutex);
2190 if (ret)
2191 return ret;
2192 idr_for_each_entry(&loop_index_idr, lo, id) {
2193 /* Hitting a race results in creating a new loop device which is harmless. */
2194 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2195 goto found;
2196 }
2197 mutex_unlock(&loop_ctl_mutex);
2198 return loop_add(-1);
2199 found:
2200 mutex_unlock(&loop_ctl_mutex);
2201 return id;
2202 }
2203
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2204 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2205 unsigned long parm)
2206 {
2207 switch (cmd) {
2208 case LOOP_CTL_ADD:
2209 return loop_add(parm);
2210 case LOOP_CTL_REMOVE:
2211 return loop_control_remove(parm);
2212 case LOOP_CTL_GET_FREE:
2213 return loop_control_get_free(parm);
2214 default:
2215 return -ENOSYS;
2216 }
2217 }
2218
2219 static const struct file_operations loop_ctl_fops = {
2220 .open = nonseekable_open,
2221 .unlocked_ioctl = loop_control_ioctl,
2222 .compat_ioctl = loop_control_ioctl,
2223 .owner = THIS_MODULE,
2224 .llseek = noop_llseek,
2225 };
2226
2227 static struct miscdevice loop_misc = {
2228 .minor = LOOP_CTRL_MINOR,
2229 .name = "loop-control",
2230 .fops = &loop_ctl_fops,
2231 };
2232
2233 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2234 MODULE_ALIAS("devname:loop-control");
2235
loop_init(void)2236 static int __init loop_init(void)
2237 {
2238 int i;
2239 int err;
2240
2241 part_shift = 0;
2242 if (max_part > 0) {
2243 part_shift = fls(max_part);
2244
2245 /*
2246 * Adjust max_part according to part_shift as it is exported
2247 * to user space so that user can decide correct minor number
2248 * if [s]he want to create more devices.
2249 *
2250 * Note that -1 is required because partition 0 is reserved
2251 * for the whole disk.
2252 */
2253 max_part = (1UL << part_shift) - 1;
2254 }
2255
2256 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2257 err = -EINVAL;
2258 goto err_out;
2259 }
2260
2261 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2262 err = -EINVAL;
2263 goto err_out;
2264 }
2265
2266 err = misc_register(&loop_misc);
2267 if (err < 0)
2268 goto err_out;
2269
2270
2271 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2272 err = -EIO;
2273 goto misc_out;
2274 }
2275
2276 /* pre-create number of devices given by config or max_loop */
2277 for (i = 0; i < max_loop; i++)
2278 loop_add(i);
2279
2280 printk(KERN_INFO "loop: module loaded\n");
2281 return 0;
2282
2283 misc_out:
2284 misc_deregister(&loop_misc);
2285 err_out:
2286 return err;
2287 }
2288
loop_exit(void)2289 static void __exit loop_exit(void)
2290 {
2291 struct loop_device *lo;
2292 int id;
2293
2294 unregister_blkdev(LOOP_MAJOR, "loop");
2295 misc_deregister(&loop_misc);
2296
2297 /*
2298 * There is no need to use loop_ctl_mutex here, for nobody else can
2299 * access loop_index_idr when this module is unloading (unless forced
2300 * module unloading is requested). If this is not a clean unloading,
2301 * we have no means to avoid kernel crash.
2302 */
2303 idr_for_each_entry(&loop_index_idr, lo, id)
2304 loop_remove(lo);
2305
2306 idr_destroy(&loop_index_idr);
2307 }
2308
2309 module_init(loop_init);
2310 module_exit(loop_exit);
2311
2312 #ifndef MODULE
max_loop_setup(char * str)2313 static int __init max_loop_setup(char *str)
2314 {
2315 max_loop = simple_strtol(str, NULL, 0);
2316 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2317 max_loop_specified = true;
2318 #endif
2319 return 1;
2320 }
2321
2322 __setup("max_loop=", max_loop_setup);
2323 #endif
2324