1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_failures_reset_retries - reset all failures to zero
189 * @failures: &struct scsi_failures with specific failure modes set
190 */
scsi_failures_reset_retries(struct scsi_failures * failures)191 void scsi_failures_reset_retries(struct scsi_failures *failures)
192 {
193 struct scsi_failure *failure;
194
195 failures->total_retries = 0;
196
197 for (failure = failures->failure_definitions; failure->result;
198 failure++)
199 failure->retries = 0;
200 }
201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
202
203 /**
204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
205 * @scmd: scsi_cmnd to check.
206 * @failures: scsi_failures struct that lists failures to check for.
207 *
208 * Returns -EAGAIN if the caller should retry else 0.
209 */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)210 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
211 struct scsi_failures *failures)
212 {
213 struct scsi_failure *failure;
214 struct scsi_sense_hdr sshdr;
215 enum sam_status status;
216
217 if (!scmd->result)
218 return 0;
219
220 if (!failures)
221 return 0;
222
223 for (failure = failures->failure_definitions; failure->result;
224 failure++) {
225 if (failure->result == SCMD_FAILURE_RESULT_ANY)
226 goto maybe_retry;
227
228 if (host_byte(scmd->result) &&
229 host_byte(scmd->result) == host_byte(failure->result))
230 goto maybe_retry;
231
232 status = status_byte(scmd->result);
233 if (!status)
234 continue;
235
236 if (failure->result == SCMD_FAILURE_STAT_ANY &&
237 !scsi_status_is_good(scmd->result))
238 goto maybe_retry;
239
240 if (status != status_byte(failure->result))
241 continue;
242
243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
244 failure->sense == SCMD_FAILURE_SENSE_ANY)
245 goto maybe_retry;
246
247 if (!scsi_command_normalize_sense(scmd, &sshdr))
248 return 0;
249
250 if (failure->sense != sshdr.sense_key)
251 continue;
252
253 if (failure->asc == SCMD_FAILURE_ASC_ANY)
254 goto maybe_retry;
255
256 if (failure->asc != sshdr.asc)
257 continue;
258
259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
260 failure->ascq == sshdr.ascq)
261 goto maybe_retry;
262 }
263
264 return 0;
265
266 maybe_retry:
267 if (failure->allowed) {
268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
269 ++failure->retries <= failure->allowed)
270 return -EAGAIN;
271 } else {
272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
273 ++failures->total_retries <= failures->total_allowed)
274 return -EAGAIN;
275 }
276
277 return 0;
278 }
279
280 /**
281 * scsi_execute_cmd - insert request and wait for the result
282 * @sdev: scsi_device
283 * @cmd: scsi command
284 * @opf: block layer request cmd_flags
285 * @buffer: data buffer
286 * @bufflen: len of buffer
287 * @timeout: request timeout in HZ
288 * @ml_retries: number of times SCSI midlayer will retry request
289 * @args: Optional args. See struct definition for field descriptions
290 *
291 * Returns the scsi_cmnd result field if a command was executed, or a negative
292 * Linux error code if we didn't get that far.
293 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
295 blk_opf_t opf, void *buffer, unsigned int bufflen,
296 int timeout, int ml_retries,
297 const struct scsi_exec_args *args)
298 {
299 static const struct scsi_exec_args default_args;
300 struct request *req;
301 struct scsi_cmnd *scmd;
302 int ret;
303
304 if (!args)
305 args = &default_args;
306 else if (WARN_ON_ONCE(args->sense &&
307 args->sense_len != SCSI_SENSE_BUFFERSIZE))
308 return -EINVAL;
309
310 retry:
311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
312 if (IS_ERR(req))
313 return PTR_ERR(req);
314
315 if (bufflen) {
316 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_NOIO);
317 if (ret)
318 goto out;
319 }
320 scmd = blk_mq_rq_to_pdu(req);
321 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
322 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
323 scmd->allowed = ml_retries;
324 scmd->flags |= args->scmd_flags;
325 req->timeout = timeout;
326 req->rq_flags |= RQF_QUIET;
327
328 /*
329 * head injection *required* here otherwise quiesce won't work
330 */
331 blk_execute_rq(req, true);
332
333 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
334 blk_mq_free_request(req);
335 goto retry;
336 }
337
338 /*
339 * Some devices (USB mass-storage in particular) may transfer
340 * garbage data together with a residue indicating that the data
341 * is invalid. Prevent the garbage from being misinterpreted
342 * and prevent security leaks by zeroing out the excess data.
343 */
344 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
345 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
346
347 if (args->resid)
348 *args->resid = scmd->resid_len;
349 if (args->sense)
350 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
351 if (args->sshdr)
352 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
353 args->sshdr);
354
355 ret = scmd->result;
356 out:
357 blk_mq_free_request(req);
358
359 return ret;
360 }
361 EXPORT_SYMBOL(scsi_execute_cmd);
362
363 /*
364 * Wake up the error handler if necessary. Avoid as follows that the error
365 * handler is not woken up if host in-flight requests number ==
366 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
367 * with an RCU read lock in this function to ensure that this function in
368 * its entirety either finishes before scsi_eh_scmd_add() increases the
369 * host_failed counter or that it notices the shost state change made by
370 * scsi_eh_scmd_add().
371 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)372 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
373 {
374 unsigned long flags;
375
376 rcu_read_lock();
377 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
378 if (unlikely(scsi_host_in_recovery(shost))) {
379 /*
380 * Ensure the clear of SCMD_STATE_INFLIGHT is visible to
381 * other CPUs before counting busy requests. Otherwise,
382 * reordering can cause CPUs to race and miss an eh wakeup
383 * when no CPU sees all busy requests as done or timed out.
384 */
385 smp_mb();
386
387 unsigned int busy = scsi_host_busy(shost);
388
389 spin_lock_irqsave(shost->host_lock, flags);
390 if (shost->host_failed || shost->host_eh_scheduled)
391 scsi_eh_wakeup(shost, busy);
392 spin_unlock_irqrestore(shost->host_lock, flags);
393 }
394 rcu_read_unlock();
395 }
396
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)397 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
398 {
399 struct Scsi_Host *shost = sdev->host;
400 struct scsi_target *starget = scsi_target(sdev);
401
402 scsi_dec_host_busy(shost, cmd);
403
404 if (starget->can_queue > 0)
405 atomic_dec(&starget->target_busy);
406
407 if (sdev->budget_map.map)
408 sbitmap_put(&sdev->budget_map, cmd->budget_token);
409 cmd->budget_token = -1;
410 }
411
412 /*
413 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
414 * interrupts disabled.
415 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)416 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
417 {
418 struct scsi_device *current_sdev = data;
419
420 if (sdev != current_sdev)
421 blk_mq_run_hw_queues(sdev->request_queue, true);
422 }
423
424 /*
425 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
426 * and call blk_run_queue for all the scsi_devices on the target -
427 * including current_sdev first.
428 *
429 * Called with *no* scsi locks held.
430 */
scsi_single_lun_run(struct scsi_device * current_sdev)431 static void scsi_single_lun_run(struct scsi_device *current_sdev)
432 {
433 struct Scsi_Host *shost = current_sdev->host;
434 struct scsi_target *starget = scsi_target(current_sdev);
435 unsigned long flags;
436
437 spin_lock_irqsave(shost->host_lock, flags);
438 starget->starget_sdev_user = NULL;
439 spin_unlock_irqrestore(shost->host_lock, flags);
440
441 /*
442 * Call blk_run_queue for all LUNs on the target, starting with
443 * current_sdev. We race with others (to set starget_sdev_user),
444 * but in most cases, we will be first. Ideally, each LU on the
445 * target would get some limited time or requests on the target.
446 */
447 blk_mq_run_hw_queues(current_sdev->request_queue,
448 shost->queuecommand_may_block);
449
450 spin_lock_irqsave(shost->host_lock, flags);
451 if (!starget->starget_sdev_user)
452 __starget_for_each_device(starget, current_sdev,
453 scsi_kick_sdev_queue);
454 spin_unlock_irqrestore(shost->host_lock, flags);
455 }
456
scsi_device_is_busy(struct scsi_device * sdev)457 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
458 {
459 if (scsi_device_busy(sdev) >= sdev->queue_depth)
460 return true;
461 if (atomic_read(&sdev->device_blocked) > 0)
462 return true;
463 return false;
464 }
465
scsi_target_is_busy(struct scsi_target * starget)466 static inline bool scsi_target_is_busy(struct scsi_target *starget)
467 {
468 if (starget->can_queue > 0) {
469 if (atomic_read(&starget->target_busy) >= starget->can_queue)
470 return true;
471 if (atomic_read(&starget->target_blocked) > 0)
472 return true;
473 }
474 return false;
475 }
476
scsi_host_is_busy(struct Scsi_Host * shost)477 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
478 {
479 if (atomic_read(&shost->host_blocked) > 0)
480 return true;
481 if (shost->host_self_blocked)
482 return true;
483 return false;
484 }
485
scsi_starved_list_run(struct Scsi_Host * shost)486 static void scsi_starved_list_run(struct Scsi_Host *shost)
487 {
488 LIST_HEAD(starved_list);
489 struct scsi_device *sdev;
490 unsigned long flags;
491
492 spin_lock_irqsave(shost->host_lock, flags);
493 list_splice_init(&shost->starved_list, &starved_list);
494
495 while (!list_empty(&starved_list)) {
496 struct request_queue *slq;
497
498 /*
499 * As long as shost is accepting commands and we have
500 * starved queues, call blk_run_queue. scsi_request_fn
501 * drops the queue_lock and can add us back to the
502 * starved_list.
503 *
504 * host_lock protects the starved_list and starved_entry.
505 * scsi_request_fn must get the host_lock before checking
506 * or modifying starved_list or starved_entry.
507 */
508 if (scsi_host_is_busy(shost))
509 break;
510
511 sdev = list_entry(starved_list.next,
512 struct scsi_device, starved_entry);
513 list_del_init(&sdev->starved_entry);
514 if (scsi_target_is_busy(scsi_target(sdev))) {
515 list_move_tail(&sdev->starved_entry,
516 &shost->starved_list);
517 continue;
518 }
519
520 /*
521 * Once we drop the host lock, a racing scsi_remove_device()
522 * call may remove the sdev from the starved list and destroy
523 * it and the queue. Mitigate by taking a reference to the
524 * queue and never touching the sdev again after we drop the
525 * host lock. Note: if __scsi_remove_device() invokes
526 * blk_mq_destroy_queue() before the queue is run from this
527 * function then blk_run_queue() will return immediately since
528 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
529 */
530 slq = sdev->request_queue;
531 if (!blk_get_queue(slq))
532 continue;
533 spin_unlock_irqrestore(shost->host_lock, flags);
534
535 blk_mq_run_hw_queues(slq, false);
536 blk_put_queue(slq);
537
538 spin_lock_irqsave(shost->host_lock, flags);
539 }
540 /* put any unprocessed entries back */
541 list_splice(&starved_list, &shost->starved_list);
542 spin_unlock_irqrestore(shost->host_lock, flags);
543 }
544
545 /**
546 * scsi_run_queue - Select a proper request queue to serve next.
547 * @q: last request's queue
548 *
549 * The previous command was completely finished, start a new one if possible.
550 */
scsi_run_queue(struct request_queue * q)551 static void scsi_run_queue(struct request_queue *q)
552 {
553 struct scsi_device *sdev = q->queuedata;
554
555 if (scsi_target(sdev)->single_lun)
556 scsi_single_lun_run(sdev);
557 if (!list_empty(&sdev->host->starved_list))
558 scsi_starved_list_run(sdev->host);
559
560 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
561 blk_mq_kick_requeue_list(q);
562 }
563
scsi_requeue_run_queue(struct work_struct * work)564 void scsi_requeue_run_queue(struct work_struct *work)
565 {
566 struct scsi_device *sdev;
567 struct request_queue *q;
568
569 sdev = container_of(work, struct scsi_device, requeue_work);
570 q = sdev->request_queue;
571 scsi_run_queue(q);
572 }
573
scsi_run_host_queues(struct Scsi_Host * shost)574 void scsi_run_host_queues(struct Scsi_Host *shost)
575 {
576 struct scsi_device *sdev;
577
578 shost_for_each_device(sdev, shost)
579 scsi_run_queue(sdev->request_queue);
580 }
581
scsi_uninit_cmd(struct scsi_cmnd * cmd)582 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
583 {
584 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
585 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
586
587 if (drv->uninit_command)
588 drv->uninit_command(cmd);
589 }
590 }
591
scsi_free_sgtables(struct scsi_cmnd * cmd)592 void scsi_free_sgtables(struct scsi_cmnd *cmd)
593 {
594 if (cmd->sdb.table.nents)
595 sg_free_table_chained(&cmd->sdb.table,
596 SCSI_INLINE_SG_CNT);
597 if (scsi_prot_sg_count(cmd))
598 sg_free_table_chained(&cmd->prot_sdb->table,
599 SCSI_INLINE_PROT_SG_CNT);
600 }
601 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
602
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)603 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
604 {
605 scsi_free_sgtables(cmd);
606 scsi_uninit_cmd(cmd);
607 }
608
scsi_run_queue_async(struct scsi_device * sdev)609 static void scsi_run_queue_async(struct scsi_device *sdev)
610 {
611 if (scsi_host_in_recovery(sdev->host))
612 return;
613
614 if (scsi_target(sdev)->single_lun ||
615 !list_empty(&sdev->host->starved_list)) {
616 kblockd_schedule_work(&sdev->requeue_work);
617 } else {
618 /*
619 * smp_mb() present in sbitmap_queue_clear() or implied in
620 * .end_io is for ordering writing .device_busy in
621 * scsi_device_unbusy() and reading sdev->restarts.
622 */
623 int old = atomic_read(&sdev->restarts);
624
625 /*
626 * ->restarts has to be kept as non-zero if new budget
627 * contention occurs.
628 *
629 * No need to run queue when either another re-run
630 * queue wins in updating ->restarts or a new budget
631 * contention occurs.
632 */
633 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
634 blk_mq_run_hw_queues(sdev->request_queue, true);
635 }
636 }
637
638 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)639 static bool scsi_end_request(struct request *req, blk_status_t error,
640 unsigned int bytes)
641 {
642 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
643 struct scsi_device *sdev = cmd->device;
644 struct request_queue *q = sdev->request_queue;
645
646 if (blk_update_request(req, error, bytes))
647 return true;
648
649 if (q->limits.features & BLK_FEAT_ADD_RANDOM)
650 add_disk_randomness(req->q->disk);
651
652 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
653 !(cmd->flags & SCMD_INITIALIZED));
654 cmd->flags = 0;
655
656 /*
657 * Calling rcu_barrier() is not necessary here because the
658 * SCSI error handler guarantees that the function called by
659 * call_rcu() has been called before scsi_end_request() is
660 * called.
661 */
662 destroy_rcu_head(&cmd->rcu);
663
664 /*
665 * In the MQ case the command gets freed by __blk_mq_end_request,
666 * so we have to do all cleanup that depends on it earlier.
667 *
668 * We also can't kick the queues from irq context, so we
669 * will have to defer it to a workqueue.
670 */
671 scsi_mq_uninit_cmd(cmd);
672
673 /*
674 * queue is still alive, so grab the ref for preventing it
675 * from being cleaned up during running queue.
676 */
677 percpu_ref_get(&q->q_usage_counter);
678
679 __blk_mq_end_request(req, error);
680
681 scsi_run_queue_async(sdev);
682
683 percpu_ref_put(&q->q_usage_counter);
684 return false;
685 }
686
687 /**
688 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
689 * @result: scsi error code
690 *
691 * Translate a SCSI result code into a blk_status_t value.
692 */
scsi_result_to_blk_status(int result)693 static blk_status_t scsi_result_to_blk_status(int result)
694 {
695 /*
696 * Check the scsi-ml byte first in case we converted a host or status
697 * byte.
698 */
699 switch (scsi_ml_byte(result)) {
700 case SCSIML_STAT_OK:
701 break;
702 case SCSIML_STAT_RESV_CONFLICT:
703 return BLK_STS_RESV_CONFLICT;
704 case SCSIML_STAT_NOSPC:
705 return BLK_STS_NOSPC;
706 case SCSIML_STAT_MED_ERROR:
707 return BLK_STS_MEDIUM;
708 case SCSIML_STAT_TGT_FAILURE:
709 return BLK_STS_TARGET;
710 case SCSIML_STAT_DL_TIMEOUT:
711 return BLK_STS_DURATION_LIMIT;
712 }
713
714 switch (host_byte(result)) {
715 case DID_OK:
716 if (scsi_status_is_good(result))
717 return BLK_STS_OK;
718 return BLK_STS_IOERR;
719 case DID_TRANSPORT_FAILFAST:
720 case DID_TRANSPORT_MARGINAL:
721 return BLK_STS_TRANSPORT;
722 default:
723 return BLK_STS_IOERR;
724 }
725 }
726
727 /**
728 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
729 * @rq: request to examine
730 *
731 * Description:
732 * A request could be merge of IOs which require different failure
733 * handling. This function determines the number of bytes which
734 * can be failed from the beginning of the request without
735 * crossing into area which need to be retried further.
736 *
737 * Return:
738 * The number of bytes to fail.
739 */
scsi_rq_err_bytes(const struct request * rq)740 static unsigned int scsi_rq_err_bytes(const struct request *rq)
741 {
742 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
743 unsigned int bytes = 0;
744 struct bio *bio;
745
746 if (!(rq->rq_flags & RQF_MIXED_MERGE))
747 return blk_rq_bytes(rq);
748
749 /*
750 * Currently the only 'mixing' which can happen is between
751 * different fastfail types. We can safely fail portions
752 * which have all the failfast bits that the first one has -
753 * the ones which are at least as eager to fail as the first
754 * one.
755 */
756 for (bio = rq->bio; bio; bio = bio->bi_next) {
757 if ((bio->bi_opf & ff) != ff)
758 break;
759 bytes += bio->bi_iter.bi_size;
760 }
761
762 /* this could lead to infinite loop */
763 BUG_ON(blk_rq_bytes(rq) && !bytes);
764 return bytes;
765 }
766
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)767 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
768 {
769 struct request *req = scsi_cmd_to_rq(cmd);
770 unsigned long wait_for;
771
772 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
773 return false;
774
775 wait_for = (cmd->allowed + 1) * req->timeout;
776 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
777 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
778 wait_for/HZ);
779 return true;
780 }
781 return false;
782 }
783
784 /*
785 * When ALUA transition state is returned, reprep the cmd to
786 * use the ALUA handler's transition timeout. Delay the reprep
787 * 1 sec to avoid aggressive retries of the target in that
788 * state.
789 */
790 #define ALUA_TRANSITION_REPREP_DELAY 1000
791
792 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)793 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
794 {
795 struct request *req = scsi_cmd_to_rq(cmd);
796 int level = 0;
797 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
798 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
799 struct scsi_sense_hdr sshdr;
800 bool sense_valid;
801 bool sense_current = true; /* false implies "deferred sense" */
802 blk_status_t blk_stat;
803
804 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
805 if (sense_valid)
806 sense_current = !scsi_sense_is_deferred(&sshdr);
807
808 blk_stat = scsi_result_to_blk_status(result);
809
810 if (host_byte(result) == DID_RESET) {
811 /* Third party bus reset or reset for error recovery
812 * reasons. Just retry the command and see what
813 * happens.
814 */
815 action = ACTION_RETRY;
816 } else if (sense_valid && sense_current) {
817 switch (sshdr.sense_key) {
818 case UNIT_ATTENTION:
819 if (cmd->device->removable) {
820 /* Detected disc change. Set a bit
821 * and quietly refuse further access.
822 */
823 cmd->device->changed = 1;
824 action = ACTION_FAIL;
825 } else {
826 /* Must have been a power glitch, or a
827 * bus reset. Could not have been a
828 * media change, so we just retry the
829 * command and see what happens.
830 */
831 action = ACTION_RETRY;
832 }
833 break;
834 case ILLEGAL_REQUEST:
835 /* If we had an ILLEGAL REQUEST returned, then
836 * we may have performed an unsupported
837 * command. The only thing this should be
838 * would be a ten byte read where only a six
839 * byte read was supported. Also, on a system
840 * where READ CAPACITY failed, we may have
841 * read past the end of the disk.
842 */
843 if ((cmd->device->use_10_for_rw &&
844 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
845 (cmd->cmnd[0] == READ_10 ||
846 cmd->cmnd[0] == WRITE_10)) {
847 /* This will issue a new 6-byte command. */
848 cmd->device->use_10_for_rw = 0;
849 action = ACTION_REPREP;
850 } else if (sshdr.asc == 0x10) /* DIX */ {
851 action = ACTION_FAIL;
852 blk_stat = BLK_STS_PROTECTION;
853 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
854 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
855 action = ACTION_FAIL;
856 blk_stat = BLK_STS_TARGET;
857 } else
858 action = ACTION_FAIL;
859 break;
860 case ABORTED_COMMAND:
861 action = ACTION_FAIL;
862 if (sshdr.asc == 0x10) /* DIF */
863 blk_stat = BLK_STS_PROTECTION;
864 break;
865 case NOT_READY:
866 /* If the device is in the process of becoming
867 * ready, or has a temporary blockage, retry.
868 */
869 if (sshdr.asc == 0x04) {
870 switch (sshdr.ascq) {
871 case 0x01: /* becoming ready */
872 case 0x04: /* format in progress */
873 case 0x05: /* rebuild in progress */
874 case 0x06: /* recalculation in progress */
875 case 0x07: /* operation in progress */
876 case 0x08: /* Long write in progress */
877 case 0x09: /* self test in progress */
878 case 0x11: /* notify (enable spinup) required */
879 case 0x14: /* space allocation in progress */
880 case 0x1a: /* start stop unit in progress */
881 case 0x1b: /* sanitize in progress */
882 case 0x1d: /* configuration in progress */
883 action = ACTION_DELAYED_RETRY;
884 break;
885 case 0x0a: /* ALUA state transition */
886 action = ACTION_DELAYED_REPREP;
887 break;
888 /*
889 * Depopulation might take many hours,
890 * thus it is not worthwhile to retry.
891 */
892 case 0x24: /* depopulation in progress */
893 case 0x25: /* depopulation restore in progress */
894 fallthrough;
895 default:
896 action = ACTION_FAIL;
897 break;
898 }
899 } else
900 action = ACTION_FAIL;
901 break;
902 case VOLUME_OVERFLOW:
903 /* See SSC3rXX or current. */
904 action = ACTION_FAIL;
905 break;
906 case DATA_PROTECT:
907 action = ACTION_FAIL;
908 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
909 (sshdr.asc == 0x55 &&
910 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
911 /* Insufficient zone resources */
912 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
913 }
914 break;
915 case COMPLETED:
916 fallthrough;
917 default:
918 action = ACTION_FAIL;
919 break;
920 }
921 } else
922 action = ACTION_FAIL;
923
924 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
925 action = ACTION_FAIL;
926
927 switch (action) {
928 case ACTION_FAIL:
929 /* Give up and fail the remainder of the request */
930 if (!(req->rq_flags & RQF_QUIET)) {
931 static DEFINE_RATELIMIT_STATE(_rs,
932 DEFAULT_RATELIMIT_INTERVAL,
933 DEFAULT_RATELIMIT_BURST);
934
935 if (unlikely(scsi_logging_level))
936 level =
937 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
938 SCSI_LOG_MLCOMPLETE_BITS);
939
940 /*
941 * if logging is enabled the failure will be printed
942 * in scsi_log_completion(), so avoid duplicate messages
943 */
944 if (!level && __ratelimit(&_rs)) {
945 scsi_print_result(cmd, NULL, FAILED);
946 if (sense_valid)
947 scsi_print_sense(cmd);
948 scsi_print_command(cmd);
949 }
950 }
951 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
952 return;
953 fallthrough;
954 case ACTION_REPREP:
955 scsi_mq_requeue_cmd(cmd, 0);
956 break;
957 case ACTION_DELAYED_REPREP:
958 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
959 break;
960 case ACTION_RETRY:
961 /* Retry the same command immediately */
962 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
963 break;
964 case ACTION_DELAYED_RETRY:
965 /* Retry the same command after a delay */
966 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
967 break;
968 }
969 }
970
971 /*
972 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
973 * new result that may suppress further error checking. Also modifies
974 * *blk_statp in some cases.
975 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)976 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
977 blk_status_t *blk_statp)
978 {
979 bool sense_valid;
980 bool sense_current = true; /* false implies "deferred sense" */
981 struct request *req = scsi_cmd_to_rq(cmd);
982 struct scsi_sense_hdr sshdr;
983
984 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
985 if (sense_valid)
986 sense_current = !scsi_sense_is_deferred(&sshdr);
987
988 if (blk_rq_is_passthrough(req)) {
989 if (sense_valid) {
990 /*
991 * SG_IO wants current and deferred errors
992 */
993 cmd->sense_len = min(8 + cmd->sense_buffer[7],
994 SCSI_SENSE_BUFFERSIZE);
995 }
996 if (sense_current)
997 *blk_statp = scsi_result_to_blk_status(result);
998 } else if (blk_rq_bytes(req) == 0 && sense_current) {
999 /*
1000 * Flush commands do not transfers any data, and thus cannot use
1001 * good_bytes != blk_rq_bytes(req) as the signal for an error.
1002 * This sets *blk_statp explicitly for the problem case.
1003 */
1004 *blk_statp = scsi_result_to_blk_status(result);
1005 }
1006 /*
1007 * Recovered errors need reporting, but they're always treated as
1008 * success, so fiddle the result code here. For passthrough requests
1009 * we already took a copy of the original into sreq->result which
1010 * is what gets returned to the user
1011 */
1012 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1013 bool do_print = true;
1014 /*
1015 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1016 * skip print since caller wants ATA registers. Only occurs
1017 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1018 */
1019 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1020 do_print = false;
1021 else if (req->rq_flags & RQF_QUIET)
1022 do_print = false;
1023 if (do_print)
1024 scsi_print_sense(cmd);
1025 result = 0;
1026 /* for passthrough, *blk_statp may be set */
1027 *blk_statp = BLK_STS_OK;
1028 }
1029 /*
1030 * Another corner case: the SCSI status byte is non-zero but 'good'.
1031 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1032 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1033 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1034 * intermediate statuses (both obsolete in SAM-4) as good.
1035 */
1036 if ((result & 0xff) && scsi_status_is_good(result)) {
1037 result = 0;
1038 *blk_statp = BLK_STS_OK;
1039 }
1040 return result;
1041 }
1042
1043 /**
1044 * scsi_io_completion - Completion processing for SCSI commands.
1045 * @cmd: command that is finished.
1046 * @good_bytes: number of processed bytes.
1047 *
1048 * We will finish off the specified number of sectors. If we are done, the
1049 * command block will be released and the queue function will be goosed. If we
1050 * are not done then we have to figure out what to do next:
1051 *
1052 * a) We can call scsi_mq_requeue_cmd(). The request will be
1053 * unprepared and put back on the queue. Then a new command will
1054 * be created for it. This should be used if we made forward
1055 * progress, or if we want to switch from READ(10) to READ(6) for
1056 * example.
1057 *
1058 * b) We can call scsi_io_completion_action(). The request will be
1059 * put back on the queue and retried using the same command as
1060 * before, possibly after a delay.
1061 *
1062 * c) We can call scsi_end_request() with blk_stat other than
1063 * BLK_STS_OK, to fail the remainder of the request.
1064 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1065 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1066 {
1067 int result = cmd->result;
1068 struct request *req = scsi_cmd_to_rq(cmd);
1069 blk_status_t blk_stat = BLK_STS_OK;
1070
1071 if (unlikely(result)) /* a nz result may or may not be an error */
1072 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1073
1074 /*
1075 * Next deal with any sectors which we were able to correctly
1076 * handle.
1077 */
1078 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1079 "%u sectors total, %d bytes done.\n",
1080 blk_rq_sectors(req), good_bytes));
1081
1082 /*
1083 * Failed, zero length commands always need to drop down
1084 * to retry code. Fast path should return in this block.
1085 */
1086 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1087 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1088 return; /* no bytes remaining */
1089 }
1090
1091 /* Kill remainder if no retries. */
1092 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1093 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1094 WARN_ONCE(true,
1095 "Bytes remaining after failed, no-retry command");
1096 return;
1097 }
1098
1099 /*
1100 * If there had been no error, but we have leftover bytes in the
1101 * request just queue the command up again.
1102 */
1103 if (likely(result == 0))
1104 scsi_mq_requeue_cmd(cmd, 0);
1105 else
1106 scsi_io_completion_action(cmd, result);
1107 }
1108
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1109 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1110 struct request *rq)
1111 {
1112 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1113 !op_is_write(req_op(rq)) &&
1114 sdev->host->hostt->dma_need_drain(rq);
1115 }
1116
1117 /**
1118 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1119 * @cmd: SCSI command data structure to initialize.
1120 *
1121 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1122 * for @cmd.
1123 *
1124 * Returns:
1125 * * BLK_STS_OK - on success
1126 * * BLK_STS_RESOURCE - if the failure is retryable
1127 * * BLK_STS_IOERR - if the failure is fatal
1128 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1129 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1130 {
1131 struct scsi_device *sdev = cmd->device;
1132 struct request *rq = scsi_cmd_to_rq(cmd);
1133 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1134 struct scatterlist *last_sg = NULL;
1135 blk_status_t ret;
1136 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1137 int count;
1138
1139 if (WARN_ON_ONCE(!nr_segs))
1140 return BLK_STS_IOERR;
1141
1142 /*
1143 * Make sure there is space for the drain. The driver must adjust
1144 * max_hw_segments to be prepared for this.
1145 */
1146 if (need_drain)
1147 nr_segs++;
1148
1149 /*
1150 * If sg table allocation fails, requeue request later.
1151 */
1152 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1153 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1154 return BLK_STS_RESOURCE;
1155
1156 /*
1157 * Next, walk the list, and fill in the addresses and sizes of
1158 * each segment.
1159 */
1160 count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg);
1161
1162 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1163 unsigned int pad_len =
1164 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1165
1166 last_sg->length += pad_len;
1167 cmd->extra_len += pad_len;
1168 }
1169
1170 if (need_drain) {
1171 sg_unmark_end(last_sg);
1172 last_sg = sg_next(last_sg);
1173 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1174 sg_mark_end(last_sg);
1175
1176 cmd->extra_len += sdev->dma_drain_len;
1177 count++;
1178 }
1179
1180 BUG_ON(count > cmd->sdb.table.nents);
1181 cmd->sdb.table.nents = count;
1182 cmd->sdb.length = blk_rq_payload_bytes(rq);
1183
1184 if (blk_integrity_rq(rq)) {
1185 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1186
1187 if (WARN_ON_ONCE(!prot_sdb)) {
1188 /*
1189 * This can happen if someone (e.g. multipath)
1190 * queues a command to a device on an adapter
1191 * that does not support DIX.
1192 */
1193 ret = BLK_STS_IOERR;
1194 goto out_free_sgtables;
1195 }
1196
1197 if (sg_alloc_table_chained(&prot_sdb->table,
1198 rq->nr_integrity_segments,
1199 prot_sdb->table.sgl,
1200 SCSI_INLINE_PROT_SG_CNT)) {
1201 ret = BLK_STS_RESOURCE;
1202 goto out_free_sgtables;
1203 }
1204
1205 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1206 cmd->prot_sdb = prot_sdb;
1207 cmd->prot_sdb->table.nents = count;
1208 }
1209
1210 return BLK_STS_OK;
1211 out_free_sgtables:
1212 scsi_free_sgtables(cmd);
1213 return ret;
1214 }
1215 EXPORT_SYMBOL(scsi_alloc_sgtables);
1216
1217 /**
1218 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1219 * @rq: Request associated with the SCSI command to be initialized.
1220 *
1221 * This function initializes the members of struct scsi_cmnd that must be
1222 * initialized before request processing starts and that won't be
1223 * reinitialized if a SCSI command is requeued.
1224 */
scsi_initialize_rq(struct request * rq)1225 static void scsi_initialize_rq(struct request *rq)
1226 {
1227 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1228
1229 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1230 cmd->cmd_len = MAX_COMMAND_SIZE;
1231 cmd->sense_len = 0;
1232 init_rcu_head(&cmd->rcu);
1233 cmd->jiffies_at_alloc = jiffies;
1234 cmd->retries = 0;
1235 }
1236
1237 /**
1238 * scsi_alloc_request - allocate a block request and partially
1239 * initialize its &scsi_cmnd
1240 * @q: the device's request queue
1241 * @opf: the request operation code
1242 * @flags: block layer allocation flags
1243 *
1244 * Return: &struct request pointer on success or %NULL on failure
1245 */
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1246 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1247 blk_mq_req_flags_t flags)
1248 {
1249 struct request *rq;
1250
1251 rq = blk_mq_alloc_request(q, opf, flags);
1252 if (!IS_ERR(rq))
1253 scsi_initialize_rq(rq);
1254 return rq;
1255 }
1256 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1257
1258 /*
1259 * Only called when the request isn't completed by SCSI, and not freed by
1260 * SCSI
1261 */
scsi_cleanup_rq(struct request * rq)1262 static void scsi_cleanup_rq(struct request *rq)
1263 {
1264 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1265
1266 cmd->flags = 0;
1267
1268 if (rq->rq_flags & RQF_DONTPREP) {
1269 scsi_mq_uninit_cmd(cmd);
1270 rq->rq_flags &= ~RQF_DONTPREP;
1271 }
1272 }
1273
1274 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1275 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1276 {
1277 struct request *rq = scsi_cmd_to_rq(cmd);
1278
1279 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1280 cmd->flags |= SCMD_INITIALIZED;
1281 scsi_initialize_rq(rq);
1282 }
1283
1284 cmd->device = dev;
1285 INIT_LIST_HEAD(&cmd->eh_entry);
1286 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1287 }
1288
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1289 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1290 struct request *req)
1291 {
1292 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1293
1294 /*
1295 * Passthrough requests may transfer data, in which case they must
1296 * a bio attached to them. Or they might contain a SCSI command
1297 * that does not transfer data, in which case they may optionally
1298 * submit a request without an attached bio.
1299 */
1300 if (req->bio) {
1301 blk_status_t ret = scsi_alloc_sgtables(cmd);
1302 if (unlikely(ret != BLK_STS_OK))
1303 return ret;
1304 } else {
1305 BUG_ON(blk_rq_bytes(req));
1306
1307 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1308 }
1309
1310 cmd->transfersize = blk_rq_bytes(req);
1311 return BLK_STS_OK;
1312 }
1313
1314 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1315 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1316 {
1317 switch (sdev->sdev_state) {
1318 case SDEV_CREATED:
1319 return BLK_STS_OK;
1320 case SDEV_OFFLINE:
1321 case SDEV_TRANSPORT_OFFLINE:
1322 /*
1323 * If the device is offline we refuse to process any
1324 * commands. The device must be brought online
1325 * before trying any recovery commands.
1326 */
1327 if (!sdev->offline_already) {
1328 sdev->offline_already = true;
1329 sdev_printk(KERN_ERR, sdev,
1330 "rejecting I/O to offline device\n");
1331 }
1332 return BLK_STS_IOERR;
1333 case SDEV_DEL:
1334 /*
1335 * If the device is fully deleted, we refuse to
1336 * process any commands as well.
1337 */
1338 sdev_printk(KERN_ERR, sdev,
1339 "rejecting I/O to dead device\n");
1340 return BLK_STS_IOERR;
1341 case SDEV_BLOCK:
1342 case SDEV_CREATED_BLOCK:
1343 return BLK_STS_RESOURCE;
1344 case SDEV_QUIESCE:
1345 /*
1346 * If the device is blocked we only accept power management
1347 * commands.
1348 */
1349 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1350 return BLK_STS_RESOURCE;
1351 return BLK_STS_OK;
1352 default:
1353 /*
1354 * For any other not fully online state we only allow
1355 * power management commands.
1356 */
1357 if (req && !(req->rq_flags & RQF_PM))
1358 return BLK_STS_OFFLINE;
1359 return BLK_STS_OK;
1360 }
1361 }
1362
1363 /*
1364 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1365 * and return the token else return -1.
1366 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1367 static inline int scsi_dev_queue_ready(struct request_queue *q,
1368 struct scsi_device *sdev)
1369 {
1370 int token;
1371
1372 if (!sdev->budget_map.map)
1373 return INT_MAX;
1374
1375 token = sbitmap_get(&sdev->budget_map);
1376 if (token < 0)
1377 return -1;
1378
1379 if (!atomic_read(&sdev->device_blocked))
1380 return token;
1381
1382 /*
1383 * Only unblock if no other commands are pending and
1384 * if device_blocked has decreased to zero
1385 */
1386 if (scsi_device_busy(sdev) > 1 ||
1387 atomic_dec_return(&sdev->device_blocked) > 0) {
1388 sbitmap_put(&sdev->budget_map, token);
1389 return -1;
1390 }
1391
1392 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1393 "unblocking device at zero depth\n"));
1394
1395 return token;
1396 }
1397
1398 /*
1399 * scsi_target_queue_ready: checks if there we can send commands to target
1400 * @sdev: scsi device on starget to check.
1401 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1402 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1403 struct scsi_device *sdev)
1404 {
1405 struct scsi_target *starget = scsi_target(sdev);
1406 unsigned int busy;
1407
1408 if (starget->single_lun) {
1409 spin_lock_irq(shost->host_lock);
1410 if (starget->starget_sdev_user &&
1411 starget->starget_sdev_user != sdev) {
1412 spin_unlock_irq(shost->host_lock);
1413 return 0;
1414 }
1415 starget->starget_sdev_user = sdev;
1416 spin_unlock_irq(shost->host_lock);
1417 }
1418
1419 if (starget->can_queue <= 0)
1420 return 1;
1421
1422 busy = atomic_inc_return(&starget->target_busy) - 1;
1423 if (atomic_read(&starget->target_blocked) > 0) {
1424 if (busy)
1425 goto starved;
1426
1427 /*
1428 * unblock after target_blocked iterates to zero
1429 */
1430 if (atomic_dec_return(&starget->target_blocked) > 0)
1431 goto out_dec;
1432
1433 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1434 "unblocking target at zero depth\n"));
1435 }
1436
1437 if (busy >= starget->can_queue)
1438 goto starved;
1439
1440 return 1;
1441
1442 starved:
1443 spin_lock_irq(shost->host_lock);
1444 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1445 spin_unlock_irq(shost->host_lock);
1446 out_dec:
1447 if (starget->can_queue > 0)
1448 atomic_dec(&starget->target_busy);
1449 return 0;
1450 }
1451
1452 /*
1453 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1454 * return 0. We must end up running the queue again whenever 0 is
1455 * returned, else IO can hang.
1456 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1457 static inline int scsi_host_queue_ready(struct request_queue *q,
1458 struct Scsi_Host *shost,
1459 struct scsi_device *sdev,
1460 struct scsi_cmnd *cmd)
1461 {
1462 if (atomic_read(&shost->host_blocked) > 0) {
1463 if (scsi_host_busy(shost) > 0)
1464 goto starved;
1465
1466 /*
1467 * unblock after host_blocked iterates to zero
1468 */
1469 if (atomic_dec_return(&shost->host_blocked) > 0)
1470 goto out_dec;
1471
1472 SCSI_LOG_MLQUEUE(3,
1473 shost_printk(KERN_INFO, shost,
1474 "unblocking host at zero depth\n"));
1475 }
1476
1477 if (shost->host_self_blocked)
1478 goto starved;
1479
1480 /* We're OK to process the command, so we can't be starved */
1481 if (!list_empty(&sdev->starved_entry)) {
1482 spin_lock_irq(shost->host_lock);
1483 if (!list_empty(&sdev->starved_entry))
1484 list_del_init(&sdev->starved_entry);
1485 spin_unlock_irq(shost->host_lock);
1486 }
1487
1488 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1489
1490 return 1;
1491
1492 starved:
1493 spin_lock_irq(shost->host_lock);
1494 if (list_empty(&sdev->starved_entry))
1495 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1496 spin_unlock_irq(shost->host_lock);
1497 out_dec:
1498 scsi_dec_host_busy(shost, cmd);
1499 return 0;
1500 }
1501
1502 /*
1503 * Busy state exporting function for request stacking drivers.
1504 *
1505 * For efficiency, no lock is taken to check the busy state of
1506 * shost/starget/sdev, since the returned value is not guaranteed and
1507 * may be changed after request stacking drivers call the function,
1508 * regardless of taking lock or not.
1509 *
1510 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1511 * needs to return 'not busy'. Otherwise, request stacking drivers
1512 * may hold requests forever.
1513 */
scsi_mq_lld_busy(struct request_queue * q)1514 static bool scsi_mq_lld_busy(struct request_queue *q)
1515 {
1516 struct scsi_device *sdev = q->queuedata;
1517 struct Scsi_Host *shost;
1518
1519 if (blk_queue_dying(q))
1520 return false;
1521
1522 shost = sdev->host;
1523
1524 /*
1525 * Ignore host/starget busy state.
1526 * Since block layer does not have a concept of fairness across
1527 * multiple queues, congestion of host/starget needs to be handled
1528 * in SCSI layer.
1529 */
1530 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1531 return true;
1532
1533 return false;
1534 }
1535
1536 /*
1537 * Block layer request completion callback. May be called from interrupt
1538 * context.
1539 */
scsi_complete(struct request * rq)1540 static void scsi_complete(struct request *rq)
1541 {
1542 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1543 enum scsi_disposition disposition;
1544
1545 if (blk_mq_is_reserved_rq(rq)) {
1546 /* Only pass-through requests are supported in this code path. */
1547 WARN_ON_ONCE(!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)));
1548 scsi_mq_uninit_cmd(cmd);
1549 __blk_mq_end_request(rq, scsi_result_to_blk_status(cmd->result));
1550 return;
1551 }
1552
1553 INIT_LIST_HEAD(&cmd->eh_entry);
1554
1555 atomic_inc(&cmd->device->iodone_cnt);
1556 if (cmd->result)
1557 atomic_inc(&cmd->device->ioerr_cnt);
1558
1559 disposition = scsi_decide_disposition(cmd);
1560 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1561 disposition = SUCCESS;
1562
1563 scsi_log_completion(cmd, disposition);
1564
1565 switch (disposition) {
1566 case SUCCESS:
1567 scsi_finish_command(cmd);
1568 break;
1569 case NEEDS_RETRY:
1570 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1571 break;
1572 case ADD_TO_MLQUEUE:
1573 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1574 break;
1575 default:
1576 scsi_eh_scmd_add(cmd);
1577 break;
1578 }
1579 }
1580
1581 /**
1582 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1583 * @cmd: command block we are dispatching.
1584 *
1585 * Return: nonzero return request was rejected and device's queue needs to be
1586 * plugged.
1587 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1588 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1589 {
1590 struct Scsi_Host *host = cmd->device->host;
1591 int rtn = 0;
1592
1593 atomic_inc(&cmd->device->iorequest_cnt);
1594
1595 /* check if the device is still usable */
1596 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1597 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1598 * returns an immediate error upwards, and signals
1599 * that the device is no longer present */
1600 cmd->result = DID_NO_CONNECT << 16;
1601 goto done;
1602 }
1603
1604 /* Check to see if the scsi lld made this device blocked. */
1605 if (unlikely(scsi_device_blocked(cmd->device))) {
1606 /*
1607 * in blocked state, the command is just put back on
1608 * the device queue. The suspend state has already
1609 * blocked the queue so future requests should not
1610 * occur until the device transitions out of the
1611 * suspend state.
1612 */
1613 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1614 "queuecommand : device blocked\n"));
1615 atomic_dec(&cmd->device->iorequest_cnt);
1616 return SCSI_MLQUEUE_DEVICE_BUSY;
1617 }
1618
1619 /* Store the LUN value in cmnd, if needed. */
1620 if (cmd->device->lun_in_cdb)
1621 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1622 (cmd->device->lun << 5 & 0xe0);
1623
1624 scsi_log_send(cmd);
1625
1626 /*
1627 * Before we queue this command, check if the command
1628 * length exceeds what the host adapter can handle.
1629 */
1630 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1631 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1632 "queuecommand : command too long. "
1633 "cdb_size=%d host->max_cmd_len=%d\n",
1634 cmd->cmd_len, cmd->device->host->max_cmd_len));
1635 cmd->result = (DID_ABORT << 16);
1636 goto done;
1637 }
1638
1639 if (unlikely(host->shost_state == SHOST_DEL)) {
1640 cmd->result = (DID_NO_CONNECT << 16);
1641 goto done;
1642
1643 }
1644
1645 trace_scsi_dispatch_cmd_start(cmd);
1646 rtn = host->hostt->queuecommand(host, cmd);
1647 if (rtn) {
1648 atomic_dec(&cmd->device->iorequest_cnt);
1649 trace_scsi_dispatch_cmd_error(cmd, rtn);
1650 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1651 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1652 rtn = SCSI_MLQUEUE_HOST_BUSY;
1653
1654 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1655 "queuecommand : request rejected\n"));
1656 }
1657
1658 return rtn;
1659 done:
1660 scsi_done(cmd);
1661 return 0;
1662 }
1663
1664 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1665 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1666 {
1667 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1668 sizeof(struct scatterlist);
1669 }
1670
scsi_prepare_cmd(struct request * req)1671 static blk_status_t scsi_prepare_cmd(struct request *req)
1672 {
1673 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1674 struct scsi_device *sdev = req->q->queuedata;
1675 struct Scsi_Host *shost = sdev->host;
1676 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1677 struct scatterlist *sg;
1678
1679 scsi_init_command(sdev, cmd);
1680
1681 cmd->eh_eflags = 0;
1682 cmd->prot_type = 0;
1683 cmd->prot_flags = 0;
1684 cmd->submitter = 0;
1685 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1686 cmd->underflow = 0;
1687 cmd->transfersize = 0;
1688 cmd->host_scribble = NULL;
1689 cmd->result = 0;
1690 cmd->extra_len = 0;
1691 cmd->state = 0;
1692 if (in_flight)
1693 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1694
1695 cmd->prot_op = SCSI_PROT_NORMAL;
1696 if (blk_rq_bytes(req))
1697 cmd->sc_data_direction = rq_dma_dir(req);
1698 else
1699 cmd->sc_data_direction = DMA_NONE;
1700
1701 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1702 cmd->sdb.table.sgl = sg;
1703
1704 if (scsi_host_get_prot(shost)) {
1705 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1706
1707 cmd->prot_sdb->table.sgl =
1708 (struct scatterlist *)(cmd->prot_sdb + 1);
1709 }
1710
1711 /*
1712 * Special handling for passthrough commands, which don't go to the ULP
1713 * at all:
1714 */
1715 if (blk_rq_is_passthrough(req))
1716 return scsi_setup_scsi_cmnd(sdev, req);
1717
1718 if (sdev->handler && sdev->handler->prep_fn) {
1719 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1720
1721 if (ret != BLK_STS_OK)
1722 return ret;
1723 }
1724
1725 /* Usually overridden by the ULP */
1726 cmd->allowed = 0;
1727 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1728 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1729 }
1730
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1731 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1732 {
1733 struct request *req = scsi_cmd_to_rq(cmd);
1734
1735 switch (cmd->submitter) {
1736 case SUBMITTED_BY_BLOCK_LAYER:
1737 break;
1738 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1739 return scsi_eh_done(cmd);
1740 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1741 return;
1742 }
1743
1744 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1745 return;
1746 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1747 return;
1748 trace_scsi_dispatch_cmd_done(cmd);
1749
1750 if (complete_directly)
1751 blk_mq_complete_request_direct(req, scsi_complete);
1752 else
1753 blk_mq_complete_request(req);
1754 }
1755
scsi_done(struct scsi_cmnd * cmd)1756 void scsi_done(struct scsi_cmnd *cmd)
1757 {
1758 scsi_done_internal(cmd, false);
1759 }
1760 EXPORT_SYMBOL(scsi_done);
1761
scsi_done_direct(struct scsi_cmnd * cmd)1762 void scsi_done_direct(struct scsi_cmnd *cmd)
1763 {
1764 scsi_done_internal(cmd, true);
1765 }
1766 EXPORT_SYMBOL(scsi_done_direct);
1767
scsi_mq_put_budget(struct request_queue * q,int budget_token)1768 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1769 {
1770 struct scsi_device *sdev = q->queuedata;
1771
1772 if (sdev->budget_map.map)
1773 sbitmap_put(&sdev->budget_map, budget_token);
1774 }
1775
1776 /*
1777 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1778 * not change behaviour from the previous unplug mechanism, experimentation
1779 * may prove this needs changing.
1780 */
1781 #define SCSI_QUEUE_DELAY 3
1782
scsi_mq_get_budget(struct request_queue * q)1783 static int scsi_mq_get_budget(struct request_queue *q)
1784 {
1785 struct scsi_device *sdev = q->queuedata;
1786 int token = scsi_dev_queue_ready(q, sdev);
1787
1788 if (token >= 0)
1789 return token;
1790
1791 atomic_inc(&sdev->restarts);
1792
1793 /*
1794 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1795 * .restarts must be incremented before .device_busy is read because the
1796 * code in scsi_run_queue_async() depends on the order of these operations.
1797 */
1798 smp_mb__after_atomic();
1799
1800 /*
1801 * If all in-flight requests originated from this LUN are completed
1802 * before reading .device_busy, sdev->device_busy will be observed as
1803 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1804 * soon. Otherwise, completion of one of these requests will observe
1805 * the .restarts flag, and the request queue will be run for handling
1806 * this request, see scsi_end_request().
1807 */
1808 if (unlikely(scsi_device_busy(sdev) == 0 &&
1809 !scsi_device_blocked(sdev)))
1810 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1811 return -1;
1812 }
1813
scsi_mq_set_rq_budget_token(struct request * req,int token)1814 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1815 {
1816 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1817
1818 cmd->budget_token = token;
1819 }
1820
scsi_mq_get_rq_budget_token(struct request * req)1821 static int scsi_mq_get_rq_budget_token(struct request *req)
1822 {
1823 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1824
1825 return cmd->budget_token;
1826 }
1827
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1828 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1829 const struct blk_mq_queue_data *bd)
1830 {
1831 struct request *req = bd->rq;
1832 struct request_queue *q = req->q;
1833 struct scsi_device *sdev = q->queuedata;
1834 struct Scsi_Host *shost = sdev->host;
1835 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1836 blk_status_t ret;
1837 int reason;
1838
1839 WARN_ON_ONCE(cmd->budget_token < 0);
1840
1841 /*
1842 * Bypass the SCSI device, SCSI target and SCSI host checks for
1843 * reserved commands.
1844 */
1845 if (!blk_mq_is_reserved_rq(req)) {
1846 /*
1847 * If the device is not in running state we will reject some or
1848 * all commands.
1849 */
1850 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1851 ret = scsi_device_state_check(sdev, req);
1852 if (ret != BLK_STS_OK)
1853 goto out_put_budget;
1854 }
1855
1856 ret = BLK_STS_RESOURCE;
1857 if (!scsi_target_queue_ready(shost, sdev))
1858 goto out_put_budget;
1859 if (unlikely(scsi_host_in_recovery(shost))) {
1860 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1861 ret = BLK_STS_OFFLINE;
1862 goto out_dec_target_busy;
1863 }
1864 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1865 goto out_dec_target_busy;
1866 }
1867
1868 /*
1869 * Only clear the driver-private command data if the LLD does not supply
1870 * a function to initialize that data.
1871 */
1872 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1873 memset(scsi_cmd_priv(cmd), 0, shost->hostt->cmd_size);
1874
1875 if (!(req->rq_flags & RQF_DONTPREP)) {
1876 ret = scsi_prepare_cmd(req);
1877 if (ret != BLK_STS_OK)
1878 goto out_dec_host_busy;
1879 req->rq_flags |= RQF_DONTPREP;
1880 } else {
1881 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1882 }
1883
1884 cmd->flags &= SCMD_PRESERVED_FLAGS;
1885 if (sdev->simple_tags)
1886 cmd->flags |= SCMD_TAGGED;
1887 if (bd->last)
1888 cmd->flags |= SCMD_LAST;
1889
1890 scsi_set_resid(cmd, 0);
1891 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1892 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1893
1894 blk_mq_start_request(req);
1895 if (blk_mq_is_reserved_rq(req)) {
1896 reason = shost->hostt->queue_reserved_command(shost, cmd);
1897 if (reason) {
1898 ret = BLK_STS_RESOURCE;
1899 goto out_put_budget;
1900 }
1901 return BLK_STS_OK;
1902 }
1903 reason = scsi_dispatch_cmd(cmd);
1904 if (reason) {
1905 scsi_set_blocked(cmd, reason);
1906 ret = BLK_STS_RESOURCE;
1907 goto out_dec_host_busy;
1908 }
1909
1910 return BLK_STS_OK;
1911
1912 out_dec_host_busy:
1913 scsi_dec_host_busy(shost, cmd);
1914 out_dec_target_busy:
1915 if (scsi_target(sdev)->can_queue > 0)
1916 atomic_dec(&scsi_target(sdev)->target_busy);
1917 out_put_budget:
1918 scsi_mq_put_budget(q, cmd->budget_token);
1919 cmd->budget_token = -1;
1920 switch (ret) {
1921 case BLK_STS_OK:
1922 break;
1923 case BLK_STS_RESOURCE:
1924 if (scsi_device_blocked(sdev))
1925 ret = BLK_STS_DEV_RESOURCE;
1926 break;
1927 case BLK_STS_AGAIN:
1928 cmd->result = DID_BUS_BUSY << 16;
1929 if (req->rq_flags & RQF_DONTPREP)
1930 scsi_mq_uninit_cmd(cmd);
1931 break;
1932 default:
1933 if (unlikely(!scsi_device_online(sdev)))
1934 cmd->result = DID_NO_CONNECT << 16;
1935 else
1936 cmd->result = DID_ERROR << 16;
1937 /*
1938 * Make sure to release all allocated resources when
1939 * we hit an error, as we will never see this command
1940 * again.
1941 */
1942 if (req->rq_flags & RQF_DONTPREP)
1943 scsi_mq_uninit_cmd(cmd);
1944 scsi_run_queue_async(sdev);
1945 break;
1946 }
1947 return ret;
1948 }
1949
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1950 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1951 unsigned int hctx_idx, unsigned int numa_node)
1952 {
1953 struct Scsi_Host *shost = set->driver_data;
1954 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1955 struct scatterlist *sg;
1956 int ret = 0;
1957
1958 cmd->sense_buffer =
1959 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1960 if (!cmd->sense_buffer)
1961 return -ENOMEM;
1962
1963 if (scsi_host_get_prot(shost)) {
1964 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1965 shost->hostt->cmd_size;
1966 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1967 }
1968
1969 if (shost->hostt->init_cmd_priv) {
1970 ret = shost->hostt->init_cmd_priv(shost, cmd);
1971 if (ret < 0)
1972 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1973 }
1974
1975 return ret;
1976 }
1977
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1978 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1979 unsigned int hctx_idx)
1980 {
1981 struct Scsi_Host *shost = set->driver_data;
1982 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1983
1984 if (shost->hostt->exit_cmd_priv)
1985 shost->hostt->exit_cmd_priv(shost, cmd);
1986 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1987 }
1988
1989
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1990 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1991 {
1992 struct Scsi_Host *shost = hctx->driver_data;
1993
1994 if (shost->hostt->mq_poll)
1995 return shost->hostt->mq_poll(shost, hctx->queue_num);
1996
1997 return 0;
1998 }
1999
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2000 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2001 unsigned int hctx_idx)
2002 {
2003 struct Scsi_Host *shost = data;
2004
2005 hctx->driver_data = shost;
2006 return 0;
2007 }
2008
scsi_map_queues(struct blk_mq_tag_set * set)2009 static void scsi_map_queues(struct blk_mq_tag_set *set)
2010 {
2011 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2012
2013 if (shost->hostt->map_queues)
2014 return shost->hostt->map_queues(shost);
2015 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2016 }
2017
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)2018 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
2019 {
2020 struct device *dev = shost->dma_dev;
2021
2022 memset(lim, 0, sizeof(*lim));
2023 lim->max_segments =
2024 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
2025
2026 if (scsi_host_prot_dma(shost)) {
2027 shost->sg_prot_tablesize =
2028 min_not_zero(shost->sg_prot_tablesize,
2029 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2030 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2031 lim->max_integrity_segments = shost->sg_prot_tablesize;
2032 }
2033
2034 lim->max_hw_sectors = shost->max_sectors;
2035 lim->seg_boundary_mask = shost->dma_boundary;
2036 lim->max_segment_size = shost->max_segment_size;
2037 lim->virt_boundary_mask = shost->virt_boundary_mask;
2038 lim->dma_alignment = max_t(unsigned int,
2039 shost->dma_alignment, dma_get_cache_alignment() - 1);
2040
2041 /*
2042 * Propagate the DMA formation properties to the dma-mapping layer as
2043 * a courtesy service to the LLDDs. This needs to check that the buses
2044 * actually support the DMA API first, though.
2045 */
2046 if (dev->dma_parms) {
2047 dma_set_seg_boundary(dev, shost->dma_boundary);
2048 dma_set_max_seg_size(dev, shost->max_segment_size);
2049 }
2050 }
2051 EXPORT_SYMBOL_GPL(scsi_init_limits);
2052
2053 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2054 .get_budget = scsi_mq_get_budget,
2055 .put_budget = scsi_mq_put_budget,
2056 .queue_rq = scsi_queue_rq,
2057 .complete = scsi_complete,
2058 .timeout = scsi_timeout,
2059 #ifdef CONFIG_BLK_DEBUG_FS
2060 .show_rq = scsi_show_rq,
2061 #endif
2062 .init_request = scsi_mq_init_request,
2063 .exit_request = scsi_mq_exit_request,
2064 .cleanup_rq = scsi_cleanup_rq,
2065 .busy = scsi_mq_lld_busy,
2066 .map_queues = scsi_map_queues,
2067 .init_hctx = scsi_init_hctx,
2068 .poll = scsi_mq_poll,
2069 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2070 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2071 };
2072
2073
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2074 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2075 {
2076 struct Scsi_Host *shost = hctx->driver_data;
2077
2078 shost->hostt->commit_rqs(shost, hctx->queue_num);
2079 }
2080
2081 static const struct blk_mq_ops scsi_mq_ops = {
2082 .get_budget = scsi_mq_get_budget,
2083 .put_budget = scsi_mq_put_budget,
2084 .queue_rq = scsi_queue_rq,
2085 .commit_rqs = scsi_commit_rqs,
2086 .complete = scsi_complete,
2087 .timeout = scsi_timeout,
2088 #ifdef CONFIG_BLK_DEBUG_FS
2089 .show_rq = scsi_show_rq,
2090 #endif
2091 .init_request = scsi_mq_init_request,
2092 .exit_request = scsi_mq_exit_request,
2093 .cleanup_rq = scsi_cleanup_rq,
2094 .busy = scsi_mq_lld_busy,
2095 .map_queues = scsi_map_queues,
2096 .init_hctx = scsi_init_hctx,
2097 .poll = scsi_mq_poll,
2098 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2099 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2100 };
2101
scsi_mq_setup_tags(struct Scsi_Host * shost)2102 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2103 {
2104 unsigned int cmd_size, sgl_size;
2105 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2106
2107 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2108 scsi_mq_inline_sgl_size(shost));
2109 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2110 if (scsi_host_get_prot(shost))
2111 cmd_size += sizeof(struct scsi_data_buffer) +
2112 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2113
2114 memset(tag_set, 0, sizeof(*tag_set));
2115 if (shost->hostt->commit_rqs)
2116 tag_set->ops = &scsi_mq_ops;
2117 else
2118 tag_set->ops = &scsi_mq_ops_no_commit;
2119 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2120 tag_set->nr_maps = shost->nr_maps ? : 1;
2121 tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds;
2122 tag_set->reserved_tags = shost->nr_reserved_cmds;
2123 tag_set->cmd_size = cmd_size;
2124 tag_set->numa_node = dev_to_node(shost->dma_dev);
2125 if (shost->hostt->tag_alloc_policy_rr)
2126 tag_set->flags |= BLK_MQ_F_TAG_RR;
2127 if (shost->queuecommand_may_block)
2128 tag_set->flags |= BLK_MQ_F_BLOCKING;
2129 tag_set->driver_data = shost;
2130 if (shost->host_tagset)
2131 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2132
2133 return blk_mq_alloc_tag_set(tag_set);
2134 }
2135
scsi_mq_free_tags(struct kref * kref)2136 void scsi_mq_free_tags(struct kref *kref)
2137 {
2138 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2139 tagset_refcnt);
2140
2141 blk_mq_free_tag_set(&shost->tag_set);
2142 complete(&shost->tagset_freed);
2143 }
2144
2145 /**
2146 * scsi_get_internal_cmd() - Allocate an internal SCSI command.
2147 * @sdev: SCSI device from which to allocate the command
2148 * @data_direction: Data direction for the allocated command
2149 * @flags: request allocation flags, e.g. BLK_MQ_REQ_RESERVED or
2150 * BLK_MQ_REQ_NOWAIT.
2151 *
2152 * Allocates a SCSI command for internal LLDD use.
2153 */
scsi_get_internal_cmd(struct scsi_device * sdev,enum dma_data_direction data_direction,blk_mq_req_flags_t flags)2154 struct scsi_cmnd *scsi_get_internal_cmd(struct scsi_device *sdev,
2155 enum dma_data_direction data_direction,
2156 blk_mq_req_flags_t flags)
2157 {
2158 enum req_op op = data_direction == DMA_TO_DEVICE ? REQ_OP_DRV_OUT :
2159 REQ_OP_DRV_IN;
2160 struct scsi_cmnd *scmd;
2161 struct request *rq;
2162
2163 rq = scsi_alloc_request(sdev->request_queue, op, flags);
2164 if (IS_ERR(rq))
2165 return NULL;
2166 scmd = blk_mq_rq_to_pdu(rq);
2167 scmd->device = sdev;
2168
2169 return scmd;
2170 }
2171 EXPORT_SYMBOL_GPL(scsi_get_internal_cmd);
2172
2173 /**
2174 * scsi_put_internal_cmd() - Free an internal SCSI command.
2175 * @scmd: SCSI command to be freed
2176 */
scsi_put_internal_cmd(struct scsi_cmnd * scmd)2177 void scsi_put_internal_cmd(struct scsi_cmnd *scmd)
2178 {
2179 blk_mq_free_request(blk_mq_rq_from_pdu(scmd));
2180 }
2181 EXPORT_SYMBOL_GPL(scsi_put_internal_cmd);
2182
2183 /**
2184 * scsi_device_from_queue - return sdev associated with a request_queue
2185 * @q: The request queue to return the sdev from
2186 *
2187 * Return the sdev associated with a request queue or NULL if the
2188 * request_queue does not reference a SCSI device.
2189 */
scsi_device_from_queue(struct request_queue * q)2190 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2191 {
2192 struct scsi_device *sdev = NULL;
2193
2194 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2195 q->mq_ops == &scsi_mq_ops)
2196 sdev = q->queuedata;
2197 if (!sdev || !get_device(&sdev->sdev_gendev))
2198 sdev = NULL;
2199
2200 return sdev;
2201 }
2202 /*
2203 * pktcdvd should have been integrated into the SCSI layers, but for historical
2204 * reasons like the old IDE driver it isn't. This export allows it to safely
2205 * probe if a given device is a SCSI one and only attach to that.
2206 */
2207 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2208 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2209 #endif
2210
2211 /**
2212 * scsi_block_requests - Utility function used by low-level drivers to prevent
2213 * further commands from being queued to the device.
2214 * @shost: host in question
2215 *
2216 * There is no timer nor any other means by which the requests get unblocked
2217 * other than the low-level driver calling scsi_unblock_requests().
2218 */
scsi_block_requests(struct Scsi_Host * shost)2219 void scsi_block_requests(struct Scsi_Host *shost)
2220 {
2221 shost->host_self_blocked = 1;
2222 }
2223 EXPORT_SYMBOL(scsi_block_requests);
2224
2225 /**
2226 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2227 * further commands to be queued to the device.
2228 * @shost: host in question
2229 *
2230 * There is no timer nor any other means by which the requests get unblocked
2231 * other than the low-level driver calling scsi_unblock_requests(). This is done
2232 * as an API function so that changes to the internals of the scsi mid-layer
2233 * won't require wholesale changes to drivers that use this feature.
2234 */
scsi_unblock_requests(struct Scsi_Host * shost)2235 void scsi_unblock_requests(struct Scsi_Host *shost)
2236 {
2237 shost->host_self_blocked = 0;
2238 scsi_run_host_queues(shost);
2239 }
2240 EXPORT_SYMBOL(scsi_unblock_requests);
2241
scsi_exit_queue(void)2242 void scsi_exit_queue(void)
2243 {
2244 kmem_cache_destroy(scsi_sense_cache);
2245 }
2246
2247 /**
2248 * scsi_mode_select - issue a mode select
2249 * @sdev: SCSI device to be queried
2250 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2251 * @sp: Save page bit (0 == don't save, 1 == save)
2252 * @buffer: request buffer (may not be smaller than eight bytes)
2253 * @len: length of request buffer.
2254 * @timeout: command timeout
2255 * @retries: number of retries before failing
2256 * @data: returns a structure abstracting the mode header data
2257 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2258 * must be SCSI_SENSE_BUFFERSIZE big.
2259 *
2260 * Returns zero if successful; negative error number or scsi
2261 * status on error
2262 *
2263 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2264 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2265 unsigned char *buffer, int len, int timeout, int retries,
2266 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2267 {
2268 unsigned char cmd[10];
2269 unsigned char *real_buffer;
2270 const struct scsi_exec_args exec_args = {
2271 .sshdr = sshdr,
2272 };
2273 int ret;
2274
2275 memset(cmd, 0, sizeof(cmd));
2276 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2277
2278 /*
2279 * Use MODE SELECT(10) if the device asked for it or if the mode page
2280 * and the mode select header cannot fit within the maximumm 255 bytes
2281 * of the MODE SELECT(6) command.
2282 */
2283 if (sdev->use_10_for_ms ||
2284 len + 4 > 255 ||
2285 data->block_descriptor_length > 255) {
2286 if (len > 65535 - 8)
2287 return -EINVAL;
2288 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2289 if (!real_buffer)
2290 return -ENOMEM;
2291 memcpy(real_buffer + 8, buffer, len);
2292 len += 8;
2293 real_buffer[0] = 0;
2294 real_buffer[1] = 0;
2295 real_buffer[2] = data->medium_type;
2296 real_buffer[3] = data->device_specific;
2297 real_buffer[4] = data->longlba ? 0x01 : 0;
2298 real_buffer[5] = 0;
2299 put_unaligned_be16(data->block_descriptor_length,
2300 &real_buffer[6]);
2301
2302 cmd[0] = MODE_SELECT_10;
2303 put_unaligned_be16(len, &cmd[7]);
2304 } else {
2305 if (data->longlba)
2306 return -EINVAL;
2307
2308 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2309 if (!real_buffer)
2310 return -ENOMEM;
2311 memcpy(real_buffer + 4, buffer, len);
2312 len += 4;
2313 real_buffer[0] = 0;
2314 real_buffer[1] = data->medium_type;
2315 real_buffer[2] = data->device_specific;
2316 real_buffer[3] = data->block_descriptor_length;
2317
2318 cmd[0] = MODE_SELECT;
2319 cmd[4] = len;
2320 }
2321
2322 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2323 timeout, retries, &exec_args);
2324 kfree(real_buffer);
2325 return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(scsi_mode_select);
2328
2329 /**
2330 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2331 * @sdev: SCSI device to be queried
2332 * @dbd: set to prevent mode sense from returning block descriptors
2333 * @modepage: mode page being requested
2334 * @subpage: sub-page of the mode page being requested
2335 * @buffer: request buffer (may not be smaller than eight bytes)
2336 * @len: length of request buffer.
2337 * @timeout: command timeout
2338 * @retries: number of retries before failing
2339 * @data: returns a structure abstracting the mode header data
2340 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2341 * must be SCSI_SENSE_BUFFERSIZE big.
2342 *
2343 * Returns zero if successful, or a negative error number on failure
2344 */
2345 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2346 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2347 unsigned char *buffer, int len, int timeout, int retries,
2348 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2349 {
2350 unsigned char cmd[12];
2351 int use_10_for_ms;
2352 int header_length;
2353 int result;
2354 struct scsi_sense_hdr my_sshdr;
2355 struct scsi_failure failure_defs[] = {
2356 {
2357 .sense = UNIT_ATTENTION,
2358 .asc = SCMD_FAILURE_ASC_ANY,
2359 .ascq = SCMD_FAILURE_ASCQ_ANY,
2360 .allowed = retries,
2361 .result = SAM_STAT_CHECK_CONDITION,
2362 },
2363 {}
2364 };
2365 struct scsi_failures failures = {
2366 .failure_definitions = failure_defs,
2367 };
2368 const struct scsi_exec_args exec_args = {
2369 /* caller might not be interested in sense, but we need it */
2370 .sshdr = sshdr ? : &my_sshdr,
2371 .failures = &failures,
2372 };
2373
2374 memset(data, 0, sizeof(*data));
2375 memset(&cmd[0], 0, 12);
2376
2377 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2378 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2379 cmd[2] = modepage;
2380 cmd[3] = subpage;
2381
2382 sshdr = exec_args.sshdr;
2383
2384 retry:
2385 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2386
2387 if (use_10_for_ms) {
2388 if (len < 8 || len > 65535)
2389 return -EINVAL;
2390
2391 cmd[0] = MODE_SENSE_10;
2392 put_unaligned_be16(len, &cmd[7]);
2393 header_length = 8;
2394 } else {
2395 if (len < 4)
2396 return -EINVAL;
2397
2398 cmd[0] = MODE_SENSE;
2399 cmd[4] = len;
2400 header_length = 4;
2401 }
2402
2403 memset(buffer, 0, len);
2404
2405 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2406 timeout, retries, &exec_args);
2407 if (result < 0)
2408 return result;
2409
2410 /* This code looks awful: what it's doing is making sure an
2411 * ILLEGAL REQUEST sense return identifies the actual command
2412 * byte as the problem. MODE_SENSE commands can return
2413 * ILLEGAL REQUEST if the code page isn't supported */
2414
2415 if (!scsi_status_is_good(result)) {
2416 if (scsi_sense_valid(sshdr)) {
2417 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2418 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2419 /*
2420 * Invalid command operation code: retry using
2421 * MODE SENSE(6) if this was a MODE SENSE(10)
2422 * request, except if the request mode page is
2423 * too large for MODE SENSE single byte
2424 * allocation length field.
2425 */
2426 if (use_10_for_ms) {
2427 if (len > 255)
2428 return -EIO;
2429 sdev->use_10_for_ms = 0;
2430 goto retry;
2431 }
2432 }
2433 }
2434 return -EIO;
2435 }
2436 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2437 (modepage == 6 || modepage == 8))) {
2438 /* Initio breakage? */
2439 header_length = 0;
2440 data->length = 13;
2441 data->medium_type = 0;
2442 data->device_specific = 0;
2443 data->longlba = 0;
2444 data->block_descriptor_length = 0;
2445 } else if (use_10_for_ms) {
2446 data->length = get_unaligned_be16(&buffer[0]) + 2;
2447 data->medium_type = buffer[2];
2448 data->device_specific = buffer[3];
2449 data->longlba = buffer[4] & 0x01;
2450 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2451 } else {
2452 data->length = buffer[0] + 1;
2453 data->medium_type = buffer[1];
2454 data->device_specific = buffer[2];
2455 data->block_descriptor_length = buffer[3];
2456 }
2457 data->header_length = header_length;
2458
2459 return 0;
2460 }
2461 EXPORT_SYMBOL(scsi_mode_sense);
2462
2463 /**
2464 * scsi_test_unit_ready - test if unit is ready
2465 * @sdev: scsi device to change the state of.
2466 * @timeout: command timeout
2467 * @retries: number of retries before failing
2468 * @sshdr: outpout pointer for decoded sense information.
2469 *
2470 * Returns zero if successful or an error if TUR failed. For
2471 * removable media, UNIT_ATTENTION sets ->changed flag.
2472 **/
2473 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2474 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2475 struct scsi_sense_hdr *sshdr)
2476 {
2477 char cmd[] = {
2478 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2479 };
2480 const struct scsi_exec_args exec_args = {
2481 .sshdr = sshdr,
2482 };
2483 int result;
2484
2485 /* try to eat the UNIT_ATTENTION if there are enough retries */
2486 do {
2487 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2488 timeout, 1, &exec_args);
2489 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2490 sshdr->sense_key == UNIT_ATTENTION)
2491 sdev->changed = 1;
2492 } while (result > 0 && scsi_sense_valid(sshdr) &&
2493 sshdr->sense_key == UNIT_ATTENTION && --retries);
2494
2495 return result;
2496 }
2497 EXPORT_SYMBOL(scsi_test_unit_ready);
2498
2499 /**
2500 * scsi_device_set_state - Take the given device through the device state model.
2501 * @sdev: scsi device to change the state of.
2502 * @state: state to change to.
2503 *
2504 * Returns zero if successful or an error if the requested
2505 * transition is illegal.
2506 */
2507 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2508 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2509 {
2510 enum scsi_device_state oldstate = sdev->sdev_state;
2511
2512 if (state == oldstate)
2513 return 0;
2514
2515 switch (state) {
2516 case SDEV_CREATED:
2517 switch (oldstate) {
2518 case SDEV_CREATED_BLOCK:
2519 break;
2520 default:
2521 goto illegal;
2522 }
2523 break;
2524
2525 case SDEV_RUNNING:
2526 switch (oldstate) {
2527 case SDEV_CREATED:
2528 case SDEV_OFFLINE:
2529 case SDEV_TRANSPORT_OFFLINE:
2530 case SDEV_QUIESCE:
2531 case SDEV_BLOCK:
2532 break;
2533 default:
2534 goto illegal;
2535 }
2536 break;
2537
2538 case SDEV_QUIESCE:
2539 switch (oldstate) {
2540 case SDEV_RUNNING:
2541 case SDEV_OFFLINE:
2542 case SDEV_TRANSPORT_OFFLINE:
2543 break;
2544 default:
2545 goto illegal;
2546 }
2547 break;
2548
2549 case SDEV_OFFLINE:
2550 case SDEV_TRANSPORT_OFFLINE:
2551 switch (oldstate) {
2552 case SDEV_CREATED:
2553 case SDEV_RUNNING:
2554 case SDEV_QUIESCE:
2555 case SDEV_BLOCK:
2556 break;
2557 default:
2558 goto illegal;
2559 }
2560 break;
2561
2562 case SDEV_BLOCK:
2563 switch (oldstate) {
2564 case SDEV_RUNNING:
2565 case SDEV_CREATED_BLOCK:
2566 case SDEV_QUIESCE:
2567 case SDEV_OFFLINE:
2568 break;
2569 default:
2570 goto illegal;
2571 }
2572 break;
2573
2574 case SDEV_CREATED_BLOCK:
2575 switch (oldstate) {
2576 case SDEV_CREATED:
2577 break;
2578 default:
2579 goto illegal;
2580 }
2581 break;
2582
2583 case SDEV_CANCEL:
2584 switch (oldstate) {
2585 case SDEV_CREATED:
2586 case SDEV_RUNNING:
2587 case SDEV_QUIESCE:
2588 case SDEV_OFFLINE:
2589 case SDEV_TRANSPORT_OFFLINE:
2590 break;
2591 default:
2592 goto illegal;
2593 }
2594 break;
2595
2596 case SDEV_DEL:
2597 switch (oldstate) {
2598 case SDEV_CREATED:
2599 case SDEV_RUNNING:
2600 case SDEV_OFFLINE:
2601 case SDEV_TRANSPORT_OFFLINE:
2602 case SDEV_CANCEL:
2603 case SDEV_BLOCK:
2604 case SDEV_CREATED_BLOCK:
2605 break;
2606 default:
2607 goto illegal;
2608 }
2609 break;
2610
2611 }
2612 sdev->offline_already = false;
2613 sdev->sdev_state = state;
2614 return 0;
2615
2616 illegal:
2617 SCSI_LOG_ERROR_RECOVERY(1,
2618 sdev_printk(KERN_ERR, sdev,
2619 "Illegal state transition %s->%s",
2620 scsi_device_state_name(oldstate),
2621 scsi_device_state_name(state))
2622 );
2623 return -EINVAL;
2624 }
2625 EXPORT_SYMBOL(scsi_device_set_state);
2626
2627 /**
2628 * scsi_evt_emit - emit a single SCSI device uevent
2629 * @sdev: associated SCSI device
2630 * @evt: event to emit
2631 *
2632 * Send a single uevent (scsi_event) to the associated scsi_device.
2633 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2634 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2635 {
2636 int idx = 0;
2637 char *envp[3];
2638
2639 switch (evt->evt_type) {
2640 case SDEV_EVT_MEDIA_CHANGE:
2641 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2642 break;
2643 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2644 scsi_rescan_device(sdev);
2645 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2646 break;
2647 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2648 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2649 break;
2650 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2651 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2652 break;
2653 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2654 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2655 break;
2656 case SDEV_EVT_LUN_CHANGE_REPORTED:
2657 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2658 break;
2659 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2660 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2661 break;
2662 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2663 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2664 break;
2665 default:
2666 /* do nothing */
2667 break;
2668 }
2669
2670 envp[idx++] = NULL;
2671
2672 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2673 }
2674
2675 /**
2676 * scsi_evt_thread - send a uevent for each scsi event
2677 * @work: work struct for scsi_device
2678 *
2679 * Dispatch queued events to their associated scsi_device kobjects
2680 * as uevents.
2681 */
scsi_evt_thread(struct work_struct * work)2682 void scsi_evt_thread(struct work_struct *work)
2683 {
2684 struct scsi_device *sdev;
2685 enum scsi_device_event evt_type;
2686 LIST_HEAD(event_list);
2687
2688 sdev = container_of(work, struct scsi_device, event_work);
2689
2690 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2691 if (test_and_clear_bit(evt_type, sdev->pending_events))
2692 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2693
2694 while (1) {
2695 struct scsi_event *evt;
2696 struct list_head *this, *tmp;
2697 unsigned long flags;
2698
2699 spin_lock_irqsave(&sdev->list_lock, flags);
2700 list_splice_init(&sdev->event_list, &event_list);
2701 spin_unlock_irqrestore(&sdev->list_lock, flags);
2702
2703 if (list_empty(&event_list))
2704 break;
2705
2706 list_for_each_safe(this, tmp, &event_list) {
2707 evt = list_entry(this, struct scsi_event, node);
2708 list_del(&evt->node);
2709 scsi_evt_emit(sdev, evt);
2710 kfree(evt);
2711 }
2712 }
2713 }
2714
2715 /**
2716 * sdev_evt_send - send asserted event to uevent thread
2717 * @sdev: scsi_device event occurred on
2718 * @evt: event to send
2719 *
2720 * Assert scsi device event asynchronously.
2721 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2722 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2723 {
2724 unsigned long flags;
2725
2726 #if 0
2727 /* FIXME: currently this check eliminates all media change events
2728 * for polled devices. Need to update to discriminate between AN
2729 * and polled events */
2730 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2731 kfree(evt);
2732 return;
2733 }
2734 #endif
2735
2736 spin_lock_irqsave(&sdev->list_lock, flags);
2737 list_add_tail(&evt->node, &sdev->event_list);
2738 schedule_work(&sdev->event_work);
2739 spin_unlock_irqrestore(&sdev->list_lock, flags);
2740 }
2741 EXPORT_SYMBOL_GPL(sdev_evt_send);
2742
2743 /**
2744 * sdev_evt_alloc - allocate a new scsi event
2745 * @evt_type: type of event to allocate
2746 * @gfpflags: GFP flags for allocation
2747 *
2748 * Allocates and returns a new scsi_event.
2749 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2750 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2751 gfp_t gfpflags)
2752 {
2753 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2754 if (!evt)
2755 return NULL;
2756
2757 evt->evt_type = evt_type;
2758 INIT_LIST_HEAD(&evt->node);
2759
2760 /* evt_type-specific initialization, if any */
2761 switch (evt_type) {
2762 case SDEV_EVT_MEDIA_CHANGE:
2763 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2764 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2765 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2766 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2767 case SDEV_EVT_LUN_CHANGE_REPORTED:
2768 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2769 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2770 default:
2771 /* do nothing */
2772 break;
2773 }
2774
2775 return evt;
2776 }
2777 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2778
2779 /**
2780 * sdev_evt_send_simple - send asserted event to uevent thread
2781 * @sdev: scsi_device event occurred on
2782 * @evt_type: type of event to send
2783 * @gfpflags: GFP flags for allocation
2784 *
2785 * Assert scsi device event asynchronously, given an event type.
2786 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2787 void sdev_evt_send_simple(struct scsi_device *sdev,
2788 enum scsi_device_event evt_type, gfp_t gfpflags)
2789 {
2790 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2791 if (!evt) {
2792 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2793 evt_type);
2794 return;
2795 }
2796
2797 sdev_evt_send(sdev, evt);
2798 }
2799 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2800
2801 /**
2802 * scsi_device_quiesce - Block all commands except power management.
2803 * @sdev: scsi device to quiesce.
2804 *
2805 * This works by trying to transition to the SDEV_QUIESCE state
2806 * (which must be a legal transition). When the device is in this
2807 * state, only power management requests will be accepted, all others will
2808 * be deferred.
2809 *
2810 * Must be called with user context, may sleep.
2811 *
2812 * Returns zero if successful or an error if not.
2813 */
2814 int
scsi_device_quiesce(struct scsi_device * sdev)2815 scsi_device_quiesce(struct scsi_device *sdev)
2816 {
2817 struct request_queue *q = sdev->request_queue;
2818 unsigned int memflags;
2819 int err;
2820
2821 /*
2822 * It is allowed to call scsi_device_quiesce() multiple times from
2823 * the same context but concurrent scsi_device_quiesce() calls are
2824 * not allowed.
2825 */
2826 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2827
2828 if (sdev->quiesced_by == current)
2829 return 0;
2830
2831 blk_set_pm_only(q);
2832
2833 memflags = blk_mq_freeze_queue(q);
2834 /*
2835 * Ensure that the effect of blk_set_pm_only() will be visible
2836 * for percpu_ref_tryget() callers that occur after the queue
2837 * unfreeze even if the queue was already frozen before this function
2838 * was called. See also https://lwn.net/Articles/573497/.
2839 */
2840 synchronize_rcu();
2841 blk_mq_unfreeze_queue(q, memflags);
2842
2843 mutex_lock(&sdev->state_mutex);
2844 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2845 if (err == 0)
2846 sdev->quiesced_by = current;
2847 else
2848 blk_clear_pm_only(q);
2849 mutex_unlock(&sdev->state_mutex);
2850
2851 return err;
2852 }
2853 EXPORT_SYMBOL(scsi_device_quiesce);
2854
2855 /**
2856 * scsi_device_resume - Restart user issued commands to a quiesced device.
2857 * @sdev: scsi device to resume.
2858 *
2859 * Moves the device from quiesced back to running and restarts the
2860 * queues.
2861 *
2862 * Must be called with user context, may sleep.
2863 */
scsi_device_resume(struct scsi_device * sdev)2864 void scsi_device_resume(struct scsi_device *sdev)
2865 {
2866 /* check if the device state was mutated prior to resume, and if
2867 * so assume the state is being managed elsewhere (for example
2868 * device deleted during suspend)
2869 */
2870 mutex_lock(&sdev->state_mutex);
2871 if (sdev->sdev_state == SDEV_QUIESCE)
2872 scsi_device_set_state(sdev, SDEV_RUNNING);
2873 if (sdev->quiesced_by) {
2874 sdev->quiesced_by = NULL;
2875 blk_clear_pm_only(sdev->request_queue);
2876 }
2877 mutex_unlock(&sdev->state_mutex);
2878 }
2879 EXPORT_SYMBOL(scsi_device_resume);
2880
2881 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2882 device_quiesce_fn(struct scsi_device *sdev, void *data)
2883 {
2884 scsi_device_quiesce(sdev);
2885 }
2886
2887 void
scsi_target_quiesce(struct scsi_target * starget)2888 scsi_target_quiesce(struct scsi_target *starget)
2889 {
2890 starget_for_each_device(starget, NULL, device_quiesce_fn);
2891 }
2892 EXPORT_SYMBOL(scsi_target_quiesce);
2893
2894 static void
device_resume_fn(struct scsi_device * sdev,void * data)2895 device_resume_fn(struct scsi_device *sdev, void *data)
2896 {
2897 scsi_device_resume(sdev);
2898 }
2899
2900 void
scsi_target_resume(struct scsi_target * starget)2901 scsi_target_resume(struct scsi_target *starget)
2902 {
2903 starget_for_each_device(starget, NULL, device_resume_fn);
2904 }
2905 EXPORT_SYMBOL(scsi_target_resume);
2906
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2907 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2908 {
2909 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2910 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2911
2912 return 0;
2913 }
2914
scsi_start_queue(struct scsi_device * sdev)2915 void scsi_start_queue(struct scsi_device *sdev)
2916 {
2917 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2918 blk_mq_unquiesce_queue(sdev->request_queue);
2919 }
2920
scsi_stop_queue(struct scsi_device * sdev)2921 static void scsi_stop_queue(struct scsi_device *sdev)
2922 {
2923 /*
2924 * The atomic variable of ->queue_stopped covers that
2925 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2926 *
2927 * The caller needs to wait until quiesce is done.
2928 */
2929 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2930 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2931 }
2932
2933 /**
2934 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2935 * @sdev: device to block
2936 *
2937 * Pause SCSI command processing on the specified device. Does not sleep.
2938 *
2939 * Returns zero if successful or a negative error code upon failure.
2940 *
2941 * Notes:
2942 * This routine transitions the device to the SDEV_BLOCK state (which must be
2943 * a legal transition). When the device is in this state, command processing
2944 * is paused until the device leaves the SDEV_BLOCK state. See also
2945 * scsi_internal_device_unblock_nowait().
2946 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2947 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2948 {
2949 int ret = __scsi_internal_device_block_nowait(sdev);
2950
2951 /*
2952 * The device has transitioned to SDEV_BLOCK. Stop the
2953 * block layer from calling the midlayer with this device's
2954 * request queue.
2955 */
2956 if (!ret)
2957 scsi_stop_queue(sdev);
2958 return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2961
2962 /**
2963 * scsi_device_block - try to transition to the SDEV_BLOCK state
2964 * @sdev: device to block
2965 * @data: dummy argument, ignored
2966 *
2967 * Pause SCSI command processing on the specified device. Callers must wait
2968 * until all ongoing scsi_queue_rq() calls have finished after this function
2969 * returns.
2970 *
2971 * Note:
2972 * This routine transitions the device to the SDEV_BLOCK state (which must be
2973 * a legal transition). When the device is in this state, command processing
2974 * is paused until the device leaves the SDEV_BLOCK state. See also
2975 * scsi_internal_device_unblock().
2976 */
scsi_device_block(struct scsi_device * sdev,void * data)2977 static void scsi_device_block(struct scsi_device *sdev, void *data)
2978 {
2979 int err;
2980 enum scsi_device_state state;
2981
2982 mutex_lock(&sdev->state_mutex);
2983 err = __scsi_internal_device_block_nowait(sdev);
2984 state = sdev->sdev_state;
2985 if (err == 0)
2986 /*
2987 * scsi_stop_queue() must be called with the state_mutex
2988 * held. Otherwise a simultaneous scsi_start_queue() call
2989 * might unquiesce the queue before we quiesce it.
2990 */
2991 scsi_stop_queue(sdev);
2992
2993 mutex_unlock(&sdev->state_mutex);
2994
2995 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2996 __func__, dev_name(&sdev->sdev_gendev), state);
2997 }
2998
2999 /**
3000 * scsi_internal_device_unblock_nowait - resume a device after a block request
3001 * @sdev: device to resume
3002 * @new_state: state to set the device to after unblocking
3003 *
3004 * Restart the device queue for a previously suspended SCSI device. Does not
3005 * sleep.
3006 *
3007 * Returns zero if successful or a negative error code upon failure.
3008 *
3009 * Notes:
3010 * This routine transitions the device to the SDEV_RUNNING state or to one of
3011 * the offline states (which must be a legal transition) allowing the midlayer
3012 * to goose the queue for this device.
3013 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)3014 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3015 enum scsi_device_state new_state)
3016 {
3017 switch (new_state) {
3018 case SDEV_RUNNING:
3019 case SDEV_TRANSPORT_OFFLINE:
3020 break;
3021 default:
3022 return -EINVAL;
3023 }
3024
3025 /*
3026 * Try to transition the scsi device to SDEV_RUNNING or one of the
3027 * offlined states and goose the device queue if successful.
3028 */
3029 switch (sdev->sdev_state) {
3030 case SDEV_BLOCK:
3031 case SDEV_TRANSPORT_OFFLINE:
3032 sdev->sdev_state = new_state;
3033 break;
3034 case SDEV_CREATED_BLOCK:
3035 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3036 new_state == SDEV_OFFLINE)
3037 sdev->sdev_state = new_state;
3038 else
3039 sdev->sdev_state = SDEV_CREATED;
3040 break;
3041 case SDEV_CANCEL:
3042 case SDEV_OFFLINE:
3043 break;
3044 default:
3045 return -EINVAL;
3046 }
3047 scsi_start_queue(sdev);
3048
3049 return 0;
3050 }
3051 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3052
3053 /**
3054 * scsi_internal_device_unblock - resume a device after a block request
3055 * @sdev: device to resume
3056 * @new_state: state to set the device to after unblocking
3057 *
3058 * Restart the device queue for a previously suspended SCSI device. May sleep.
3059 *
3060 * Returns zero if successful or a negative error code upon failure.
3061 *
3062 * Notes:
3063 * This routine transitions the device to the SDEV_RUNNING state or to one of
3064 * the offline states (which must be a legal transition) allowing the midlayer
3065 * to goose the queue for this device.
3066 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3067 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3068 enum scsi_device_state new_state)
3069 {
3070 int ret;
3071
3072 mutex_lock(&sdev->state_mutex);
3073 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3074 mutex_unlock(&sdev->state_mutex);
3075
3076 return ret;
3077 }
3078
3079 static int
target_block(struct device * dev,void * data)3080 target_block(struct device *dev, void *data)
3081 {
3082 if (scsi_is_target_device(dev))
3083 starget_for_each_device(to_scsi_target(dev), NULL,
3084 scsi_device_block);
3085 return 0;
3086 }
3087
3088 /**
3089 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3090 * @dev: a parent device of one or more scsi_target devices
3091 * @shost: the Scsi_Host to which this device belongs
3092 *
3093 * Iterate over all children of @dev, which should be scsi_target devices,
3094 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3095 * ongoing scsi_queue_rq() calls to finish. May sleep.
3096 *
3097 * Note:
3098 * @dev must not itself be a scsi_target device.
3099 */
3100 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3101 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3102 {
3103 WARN_ON_ONCE(scsi_is_target_device(dev));
3104 device_for_each_child(dev, NULL, target_block);
3105 blk_mq_wait_quiesce_done(&shost->tag_set);
3106 }
3107 EXPORT_SYMBOL_GPL(scsi_block_targets);
3108
3109 static void
device_unblock(struct scsi_device * sdev,void * data)3110 device_unblock(struct scsi_device *sdev, void *data)
3111 {
3112 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3113 }
3114
3115 static int
target_unblock(struct device * dev,void * data)3116 target_unblock(struct device *dev, void *data)
3117 {
3118 if (scsi_is_target_device(dev))
3119 starget_for_each_device(to_scsi_target(dev), data,
3120 device_unblock);
3121 return 0;
3122 }
3123
3124 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3125 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3126 {
3127 if (scsi_is_target_device(dev))
3128 starget_for_each_device(to_scsi_target(dev), &new_state,
3129 device_unblock);
3130 else
3131 device_for_each_child(dev, &new_state, target_unblock);
3132 }
3133 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3134
3135 /**
3136 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3137 * @shost: device to block
3138 *
3139 * Pause SCSI command processing for all logical units associated with the SCSI
3140 * host and wait until pending scsi_queue_rq() calls have finished.
3141 *
3142 * Returns zero if successful or a negative error code upon failure.
3143 */
3144 int
scsi_host_block(struct Scsi_Host * shost)3145 scsi_host_block(struct Scsi_Host *shost)
3146 {
3147 struct scsi_device *sdev;
3148 int ret;
3149
3150 /*
3151 * Call scsi_internal_device_block_nowait so we can avoid
3152 * calling synchronize_rcu() for each LUN.
3153 */
3154 shost_for_each_device(sdev, shost) {
3155 mutex_lock(&sdev->state_mutex);
3156 ret = scsi_internal_device_block_nowait(sdev);
3157 mutex_unlock(&sdev->state_mutex);
3158 if (ret) {
3159 scsi_device_put(sdev);
3160 return ret;
3161 }
3162 }
3163
3164 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3165 blk_mq_wait_quiesce_done(&shost->tag_set);
3166
3167 return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(scsi_host_block);
3170
3171 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3172 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3173 {
3174 struct scsi_device *sdev;
3175 int ret = 0;
3176
3177 shost_for_each_device(sdev, shost) {
3178 ret = scsi_internal_device_unblock(sdev, new_state);
3179 if (ret) {
3180 scsi_device_put(sdev);
3181 break;
3182 }
3183 }
3184 return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3187
3188 /**
3189 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3190 * @sgl: scatter-gather list
3191 * @sg_count: number of segments in sg
3192 * @offset: offset in bytes into sg, on return offset into the mapped area
3193 * @len: bytes to map, on return number of bytes mapped
3194 *
3195 * Returns virtual address of the start of the mapped page
3196 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3197 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3198 size_t *offset, size_t *len)
3199 {
3200 int i;
3201 size_t sg_len = 0, len_complete = 0;
3202 struct scatterlist *sg;
3203 struct page *page;
3204
3205 WARN_ON(!irqs_disabled());
3206
3207 for_each_sg(sgl, sg, sg_count, i) {
3208 len_complete = sg_len; /* Complete sg-entries */
3209 sg_len += sg->length;
3210 if (sg_len > *offset)
3211 break;
3212 }
3213
3214 if (unlikely(i == sg_count)) {
3215 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3216 "elements %d\n",
3217 __func__, sg_len, *offset, sg_count);
3218 WARN_ON(1);
3219 return NULL;
3220 }
3221
3222 /* Offset starting from the beginning of first page in this sg-entry */
3223 *offset = *offset - len_complete + sg->offset;
3224
3225 page = sg_page(sg) + (*offset >> PAGE_SHIFT);
3226 *offset &= ~PAGE_MASK;
3227
3228 /* Bytes in this sg-entry from *offset to the end of the page */
3229 sg_len = PAGE_SIZE - *offset;
3230 if (*len > sg_len)
3231 *len = sg_len;
3232
3233 return kmap_atomic(page);
3234 }
3235 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3236
3237 /**
3238 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3239 * @virt: virtual address to be unmapped
3240 */
scsi_kunmap_atomic_sg(void * virt)3241 void scsi_kunmap_atomic_sg(void *virt)
3242 {
3243 kunmap_atomic(virt);
3244 }
3245 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3246
sdev_disable_disk_events(struct scsi_device * sdev)3247 void sdev_disable_disk_events(struct scsi_device *sdev)
3248 {
3249 atomic_inc(&sdev->disk_events_disable_depth);
3250 }
3251 EXPORT_SYMBOL(sdev_disable_disk_events);
3252
sdev_enable_disk_events(struct scsi_device * sdev)3253 void sdev_enable_disk_events(struct scsi_device *sdev)
3254 {
3255 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3256 return;
3257 atomic_dec(&sdev->disk_events_disable_depth);
3258 }
3259 EXPORT_SYMBOL(sdev_enable_disk_events);
3260
designator_prio(const unsigned char * d)3261 static unsigned char designator_prio(const unsigned char *d)
3262 {
3263 if (d[1] & 0x30)
3264 /* not associated with LUN */
3265 return 0;
3266
3267 if (d[3] == 0)
3268 /* invalid length */
3269 return 0;
3270
3271 /*
3272 * Order of preference for lun descriptor:
3273 * - SCSI name string
3274 * - NAA IEEE Registered Extended
3275 * - EUI-64 based 16-byte
3276 * - EUI-64 based 12-byte
3277 * - NAA IEEE Registered
3278 * - NAA IEEE Extended
3279 * - EUI-64 based 8-byte
3280 * - SCSI name string (truncated)
3281 * - T10 Vendor ID
3282 * as longer descriptors reduce the likelyhood
3283 * of identification clashes.
3284 */
3285
3286 switch (d[1] & 0xf) {
3287 case 8:
3288 /* SCSI name string, variable-length UTF-8 */
3289 return 9;
3290 case 3:
3291 switch (d[4] >> 4) {
3292 case 6:
3293 /* NAA registered extended */
3294 return 8;
3295 case 5:
3296 /* NAA registered */
3297 return 5;
3298 case 4:
3299 /* NAA extended */
3300 return 4;
3301 case 3:
3302 /* NAA locally assigned */
3303 return 1;
3304 default:
3305 break;
3306 }
3307 break;
3308 case 2:
3309 switch (d[3]) {
3310 case 16:
3311 /* EUI64-based, 16 byte */
3312 return 7;
3313 case 12:
3314 /* EUI64-based, 12 byte */
3315 return 6;
3316 case 8:
3317 /* EUI64-based, 8 byte */
3318 return 3;
3319 default:
3320 break;
3321 }
3322 break;
3323 case 1:
3324 /* T10 vendor ID */
3325 return 1;
3326 default:
3327 break;
3328 }
3329
3330 return 0;
3331 }
3332
3333 /**
3334 * scsi_vpd_lun_id - return a unique device identification
3335 * @sdev: SCSI device
3336 * @id: buffer for the identification
3337 * @id_len: length of the buffer
3338 *
3339 * Copies a unique device identification into @id based
3340 * on the information in the VPD page 0x83 of the device.
3341 * The string will be formatted as a SCSI name string.
3342 *
3343 * Returns the length of the identification or error on failure.
3344 * If the identifier is longer than the supplied buffer the actual
3345 * identifier length is returned and the buffer is not zero-padded.
3346 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3347 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3348 {
3349 u8 cur_id_prio = 0;
3350 u8 cur_id_size = 0;
3351 const unsigned char *d, *cur_id_str;
3352 const struct scsi_vpd *vpd_pg83;
3353 int id_size = -EINVAL;
3354
3355 rcu_read_lock();
3356 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3357 if (!vpd_pg83) {
3358 rcu_read_unlock();
3359 return -ENXIO;
3360 }
3361
3362 /* The id string must be at least 20 bytes + terminating NULL byte */
3363 if (id_len < 21) {
3364 rcu_read_unlock();
3365 return -EINVAL;
3366 }
3367
3368 memset(id, 0, id_len);
3369 for (d = vpd_pg83->data + 4;
3370 d < vpd_pg83->data + vpd_pg83->len;
3371 d += d[3] + 4) {
3372 u8 prio = designator_prio(d);
3373
3374 if (prio == 0 || cur_id_prio > prio)
3375 continue;
3376
3377 switch (d[1] & 0xf) {
3378 case 0x1:
3379 /* T10 Vendor ID */
3380 if (cur_id_size > d[3])
3381 break;
3382 cur_id_prio = prio;
3383 cur_id_size = d[3];
3384 if (cur_id_size + 4 > id_len)
3385 cur_id_size = id_len - 4;
3386 cur_id_str = d + 4;
3387 id_size = snprintf(id, id_len, "t10.%*pE",
3388 cur_id_size, cur_id_str);
3389 break;
3390 case 0x2:
3391 /* EUI-64 */
3392 cur_id_prio = prio;
3393 cur_id_size = d[3];
3394 cur_id_str = d + 4;
3395 switch (cur_id_size) {
3396 case 8:
3397 id_size = snprintf(id, id_len,
3398 "eui.%8phN",
3399 cur_id_str);
3400 break;
3401 case 12:
3402 id_size = snprintf(id, id_len,
3403 "eui.%12phN",
3404 cur_id_str);
3405 break;
3406 case 16:
3407 id_size = snprintf(id, id_len,
3408 "eui.%16phN",
3409 cur_id_str);
3410 break;
3411 default:
3412 break;
3413 }
3414 break;
3415 case 0x3:
3416 /* NAA */
3417 cur_id_prio = prio;
3418 cur_id_size = d[3];
3419 cur_id_str = d + 4;
3420 switch (cur_id_size) {
3421 case 8:
3422 id_size = snprintf(id, id_len,
3423 "naa.%8phN",
3424 cur_id_str);
3425 break;
3426 case 16:
3427 id_size = snprintf(id, id_len,
3428 "naa.%16phN",
3429 cur_id_str);
3430 break;
3431 default:
3432 break;
3433 }
3434 break;
3435 case 0x8:
3436 /* SCSI name string */
3437 if (cur_id_size > d[3])
3438 break;
3439 /* Prefer others for truncated descriptor */
3440 if (d[3] > id_len) {
3441 prio = 2;
3442 if (cur_id_prio > prio)
3443 break;
3444 }
3445 cur_id_prio = prio;
3446 cur_id_size = id_size = d[3];
3447 cur_id_str = d + 4;
3448 if (cur_id_size >= id_len)
3449 cur_id_size = id_len - 1;
3450 memcpy(id, cur_id_str, cur_id_size);
3451 break;
3452 default:
3453 break;
3454 }
3455 }
3456 rcu_read_unlock();
3457
3458 return id_size;
3459 }
3460 EXPORT_SYMBOL(scsi_vpd_lun_id);
3461
3462 /**
3463 * scsi_vpd_tpg_id - return a target port group identifier
3464 * @sdev: SCSI device
3465 * @rel_id: pointer to return relative target port in if not %NULL
3466 *
3467 * Returns the Target Port Group identifier from the information
3468 * from VPD page 0x83 of the device.
3469 * Optionally sets @rel_id to the relative target port on success.
3470 *
3471 * Return: the identifier or error on failure.
3472 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3473 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3474 {
3475 const unsigned char *d;
3476 const struct scsi_vpd *vpd_pg83;
3477 int group_id = -EAGAIN, rel_port = -1;
3478
3479 rcu_read_lock();
3480 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3481 if (!vpd_pg83) {
3482 rcu_read_unlock();
3483 return -ENXIO;
3484 }
3485
3486 d = vpd_pg83->data + 4;
3487 while (d < vpd_pg83->data + vpd_pg83->len) {
3488 switch (d[1] & 0xf) {
3489 case 0x4:
3490 /* Relative target port */
3491 rel_port = get_unaligned_be16(&d[6]);
3492 break;
3493 case 0x5:
3494 /* Target port group */
3495 group_id = get_unaligned_be16(&d[6]);
3496 break;
3497 default:
3498 break;
3499 }
3500 d += d[3] + 4;
3501 }
3502 rcu_read_unlock();
3503
3504 if (group_id >= 0 && rel_id && rel_port != -1)
3505 *rel_id = rel_port;
3506
3507 return group_id;
3508 }
3509 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3510
3511 /**
3512 * scsi_build_sense - build sense data for a command
3513 * @scmd: scsi command for which the sense should be formatted
3514 * @desc: Sense format (non-zero == descriptor format,
3515 * 0 == fixed format)
3516 * @key: Sense key
3517 * @asc: Additional sense code
3518 * @ascq: Additional sense code qualifier
3519 *
3520 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3521 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3522 {
3523 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3524 scmd->result = SAM_STAT_CHECK_CONDITION;
3525 }
3526 EXPORT_SYMBOL_GPL(scsi_build_sense);
3527
3528 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3529 #include "scsi_lib_test.c"
3530 #endif
3531