1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14
15 #include "trace.h"
16 #include "trace_output.h"
17
18 #define DEFAULT_SYS_FILTER_MESSAGE \
19 "### global filter ###\n" \
20 "# Use this to set filters for multiple events.\n" \
21 "# Only events with the given fields will be affected.\n" \
22 "# If no events are modified, an error message will be displayed here"
23
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS \
26 C( OP_GLOB, "~" ), \
27 C( OP_NE, "!=" ), \
28 C( OP_EQ, "==" ), \
29 C( OP_LE, "<=" ), \
30 C( OP_LT, "<" ), \
31 C( OP_GE, ">=" ), \
32 C( OP_GT, ">" ), \
33 C( OP_BAND, "&" ), \
34 C( OP_MAX, NULL )
35
36 #undef C
37 #define C(a, b) a
38
39 enum filter_op_ids { OPS };
40
41 #undef C
42 #define C(a, b) b
43
44 static const char * ops[] = { OPS };
45
46 enum filter_pred_fn {
47 FILTER_PRED_FN_NOP,
48 FILTER_PRED_FN_64,
49 FILTER_PRED_FN_64_CPUMASK,
50 FILTER_PRED_FN_S64,
51 FILTER_PRED_FN_U64,
52 FILTER_PRED_FN_32,
53 FILTER_PRED_FN_32_CPUMASK,
54 FILTER_PRED_FN_S32,
55 FILTER_PRED_FN_U32,
56 FILTER_PRED_FN_16,
57 FILTER_PRED_FN_16_CPUMASK,
58 FILTER_PRED_FN_S16,
59 FILTER_PRED_FN_U16,
60 FILTER_PRED_FN_8,
61 FILTER_PRED_FN_8_CPUMASK,
62 FILTER_PRED_FN_S8,
63 FILTER_PRED_FN_U8,
64 FILTER_PRED_FN_COMM,
65 FILTER_PRED_FN_STRING,
66 FILTER_PRED_FN_STRLOC,
67 FILTER_PRED_FN_STRRELLOC,
68 FILTER_PRED_FN_PCHAR_USER,
69 FILTER_PRED_FN_PCHAR,
70 FILTER_PRED_FN_CPU,
71 FILTER_PRED_FN_CPU_CPUMASK,
72 FILTER_PRED_FN_CPUMASK,
73 FILTER_PRED_FN_CPUMASK_CPU,
74 FILTER_PRED_FN_FUNCTION,
75 FILTER_PRED_FN_,
76 FILTER_PRED_TEST_VISITED,
77 };
78
79 struct filter_pred {
80 struct regex *regex;
81 struct cpumask *mask;
82 unsigned short *ops;
83 struct ftrace_event_field *field;
84 u64 val;
85 u64 val2;
86 enum filter_pred_fn fn_num;
87 int offset;
88 int not;
89 int op;
90 };
91
92 /*
93 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
94 * pred_funcs_##type below must match the order of them above.
95 */
96 #define PRED_FUNC_START OP_LE
97 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
98
99 #define ERRORS \
100 C(NONE, "No error"), \
101 C(INVALID_OP, "Invalid operator"), \
102 C(TOO_MANY_OPEN, "Too many '('"), \
103 C(TOO_MANY_CLOSE, "Too few '('"), \
104 C(MISSING_QUOTE, "Missing matching quote"), \
105 C(MISSING_BRACE_OPEN, "Missing '{'"), \
106 C(MISSING_BRACE_CLOSE, "Missing '}'"), \
107 C(OPERAND_TOO_LONG, "Operand too long"), \
108 C(EXPECT_STRING, "Expecting string field"), \
109 C(EXPECT_DIGIT, "Expecting numeric field"), \
110 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
111 C(FIELD_NOT_FOUND, "Field not found"), \
112 C(ILLEGAL_INTVAL, "Illegal integer value"), \
113 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
114 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
115 C(INVALID_FILTER, "Meaningless filter expression"), \
116 C(INVALID_CPULIST, "Invalid cpulist"), \
117 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
118 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
119 C(NO_FUNCTION, "Function not found"), \
120 C(ERRNO, "Error"), \
121 C(NO_FILTER, "No filter found")
122
123 #undef C
124 #define C(a, b) FILT_ERR_##a
125
126 enum { ERRORS };
127
128 #undef C
129 #define C(a, b) b
130
131 static const char *err_text[] = { ERRORS };
132
133 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)134 static bool is_not(const char *str)
135 {
136 switch (str[1]) {
137 case '=':
138 case '~':
139 return false;
140 }
141 return true;
142 }
143
144 /**
145 * struct prog_entry - a singe entry in the filter program
146 * @target: Index to jump to on a branch (actually one minus the index)
147 * @when_to_branch: The value of the result of the predicate to do a branch
148 * @pred: The predicate to execute.
149 */
150 struct prog_entry {
151 int target;
152 int when_to_branch;
153 struct filter_pred *pred;
154 };
155
156 /**
157 * update_preds - assign a program entry a label target
158 * @prog: The program array
159 * @N: The index of the current entry in @prog
160 * @invert: What to assign a program entry for its branch condition
161 *
162 * The program entry at @N has a target that points to the index of a program
163 * entry that can have its target and when_to_branch fields updated.
164 * Update the current program entry denoted by index @N target field to be
165 * that of the updated entry. This will denote the entry to update if
166 * we are processing an "||" after an "&&".
167 */
update_preds(struct prog_entry * prog,int N,int invert)168 static void update_preds(struct prog_entry *prog, int N, int invert)
169 {
170 int t, s;
171
172 t = prog[N].target;
173 s = prog[t].target;
174 prog[t].when_to_branch = invert;
175 prog[t].target = N;
176 prog[N].target = s;
177 }
178
179 struct filter_parse_error {
180 int lasterr;
181 int lasterr_pos;
182 };
183
parse_error(struct filter_parse_error * pe,int err,int pos)184 static void parse_error(struct filter_parse_error *pe, int err, int pos)
185 {
186 pe->lasterr = err;
187 pe->lasterr_pos = pos;
188 }
189
190 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
191 struct filter_parse_error *pe,
192 struct filter_pred **pred);
193
194 enum {
195 INVERT = 1,
196 PROCESS_AND = 2,
197 PROCESS_OR = 4,
198 };
199
free_predicate(struct filter_pred * pred)200 static void free_predicate(struct filter_pred *pred)
201 {
202 if (pred) {
203 kfree(pred->regex);
204 kfree(pred->mask);
205 kfree(pred);
206 }
207 }
208
209 /*
210 * Without going into a formal proof, this explains the method that is used in
211 * parsing the logical expressions.
212 *
213 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
214 * The first pass will convert it into the following program:
215 *
216 * n1: r=a; l1: if (!r) goto l4;
217 * n2: r=b; l2: if (!r) goto l4;
218 * n3: r=c; r=!r; l3: if (r) goto l4;
219 * n4: r=g; r=!r; l4: if (r) goto l5;
220 * n5: r=d; l5: if (r) goto T
221 * n6: r=e; l6: if (!r) goto l7;
222 * n7: r=f; r=!r; l7: if (!r) goto F
223 * T: return TRUE
224 * F: return FALSE
225 *
226 * To do this, we use a data structure to represent each of the above
227 * predicate and conditions that has:
228 *
229 * predicate, when_to_branch, invert, target
230 *
231 * The "predicate" will hold the function to determine the result "r".
232 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
233 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
234 * The "invert" holds whether the value should be reversed before testing.
235 * The "target" contains the label "l#" to jump to.
236 *
237 * A stack is created to hold values when parentheses are used.
238 *
239 * To simplify the logic, the labels will start at 0 and not 1.
240 *
241 * The possible invert values are 1 and 0. The number of "!"s that are in scope
242 * before the predicate determines the invert value, if the number is odd then
243 * the invert value is 1 and 0 otherwise. This means the invert value only
244 * needs to be toggled when a new "!" is introduced compared to what is stored
245 * on the stack, where parentheses were used.
246 *
247 * The top of the stack and "invert" are initialized to zero.
248 *
249 * ** FIRST PASS **
250 *
251 * #1 A loop through all the tokens is done:
252 *
253 * #2 If the token is an "(", the stack is push, and the current stack value
254 * gets the current invert value, and the loop continues to the next token.
255 * The top of the stack saves the "invert" value to keep track of what
256 * the current inversion is. As "!(a && !b || c)" would require all
257 * predicates being affected separately by the "!" before the parentheses.
258 * And that would end up being equivalent to "(!a || b) && !c"
259 *
260 * #3 If the token is an "!", the current "invert" value gets inverted, and
261 * the loop continues. Note, if the next token is a predicate, then
262 * this "invert" value is only valid for the current program entry,
263 * and does not affect other predicates later on.
264 *
265 * The only other acceptable token is the predicate string.
266 *
267 * #4 A new entry into the program is added saving: the predicate and the
268 * current value of "invert". The target is currently assigned to the
269 * previous program index (this will not be its final value).
270 *
271 * #5 We now enter another loop and look at the next token. The only valid
272 * tokens are ")", "&&", "||" or end of the input string "\0".
273 *
274 * #6 The invert variable is reset to the current value saved on the top of
275 * the stack.
276 *
277 * #7 The top of the stack holds not only the current invert value, but also
278 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
279 * precedence than "||". That is "a && b || c && d" is equivalent to
280 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
281 * to be processed. This is the case if an "&&" was the last token. If it was
282 * then we call update_preds(). This takes the program, the current index in
283 * the program, and the current value of "invert". More will be described
284 * below about this function.
285 *
286 * #8 If the next token is "&&" then we set a flag in the top of the stack
287 * that denotes that "&&" needs to be processed, break out of this loop
288 * and continue with the outer loop.
289 *
290 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
291 * This is called with the program, the current index in the program, but
292 * this time with an inverted value of "invert" (that is !invert). This is
293 * because the value taken will become the "when_to_branch" value of the
294 * program.
295 * Note, this is called when the next token is not an "&&". As stated before,
296 * "&&" takes higher precedence, and "||" should not be processed yet if the
297 * next logical operation is "&&".
298 *
299 * #10 If the next token is "||" then we set a flag in the top of the stack
300 * that denotes that "||" needs to be processed, break out of this loop
301 * and continue with the outer loop.
302 *
303 * #11 If this is the end of the input string "\0" then we break out of both
304 * loops.
305 *
306 * #12 Otherwise, the next token is ")", where we pop the stack and continue
307 * this inner loop.
308 *
309 * Now to discuss the update_pred() function, as that is key to the setting up
310 * of the program. Remember the "target" of the program is initialized to the
311 * previous index and not the "l" label. The target holds the index into the
312 * program that gets affected by the operand. Thus if we have something like
313 * "a || b && c", when we process "a" the target will be "-1" (undefined).
314 * When we process "b", its target is "0", which is the index of "a", as that's
315 * the predicate that is affected by "||". But because the next token after "b"
316 * is "&&" we don't call update_preds(). Instead continue to "c". As the
317 * next token after "c" is not "&&" but the end of input, we first process the
318 * "&&" by calling update_preds() for the "&&" then we process the "||" by
319 * calling updates_preds() with the values for processing "||".
320 *
321 * What does that mean? What update_preds() does is to first save the "target"
322 * of the program entry indexed by the current program entry's "target"
323 * (remember the "target" is initialized to previous program entry), and then
324 * sets that "target" to the current index which represents the label "l#".
325 * That entry's "when_to_branch" is set to the value passed in (the "invert"
326 * or "!invert"). Then it sets the current program entry's target to the saved
327 * "target" value (the old value of the program that had its "target" updated
328 * to the label).
329 *
330 * Looking back at "a || b && c", we have the following steps:
331 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
332 * "||" - flag that we need to process "||"; continue outer loop
333 * "b" - prog[1] = { "b", X, 0 }
334 * "&&" - flag that we need to process "&&"; continue outer loop
335 * (Notice we did not process "||")
336 * "c" - prog[2] = { "c", X, 1 }
337 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
338 * t = prog[2].target; // t = 1
339 * s = prog[t].target; // s = 0
340 * prog[t].target = 2; // Set target to "l2"
341 * prog[t].when_to_branch = 0;
342 * prog[2].target = s;
343 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
344 * t = prog[2].target; // t = 0
345 * s = prog[t].target; // s = -1
346 * prog[t].target = 2; // Set target to "l2"
347 * prog[t].when_to_branch = 1;
348 * prog[2].target = s;
349 *
350 * #13 Which brings us to the final step of the first pass, which is to set
351 * the last program entry's when_to_branch and target, which will be
352 * when_to_branch = 0; target = N; ( the label after the program entry after
353 * the last program entry processed above).
354 *
355 * If we denote "TRUE" to be the entry after the last program entry processed,
356 * and "FALSE" the program entry after that, we are now done with the first
357 * pass.
358 *
359 * Making the above "a || b && c" have a program of:
360 * prog[0] = { "a", 1, 2 }
361 * prog[1] = { "b", 0, 2 }
362 * prog[2] = { "c", 0, 3 }
363 *
364 * Which translates into:
365 * n0: r = a; l0: if (r) goto l2;
366 * n1: r = b; l1: if (!r) goto l2;
367 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
368 * T: return TRUE; l3:
369 * F: return FALSE
370 *
371 * Although, after the first pass, the program is correct, it is
372 * inefficient. The simple sample of "a || b && c" could be easily been
373 * converted into:
374 * n0: r = a; if (r) goto T
375 * n1: r = b; if (!r) goto F
376 * n2: r = c; if (!r) goto F
377 * T: return TRUE;
378 * F: return FALSE;
379 *
380 * The First Pass is over the input string. The next too passes are over
381 * the program itself.
382 *
383 * ** SECOND PASS **
384 *
385 * Which brings us to the second pass. If a jump to a label has the
386 * same condition as that label, it can instead jump to its target.
387 * The original example of "a && !(!b || (c && g)) || d || e && !f"
388 * where the first pass gives us:
389 *
390 * n1: r=a; l1: if (!r) goto l4;
391 * n2: r=b; l2: if (!r) goto l4;
392 * n3: r=c; r=!r; l3: if (r) goto l4;
393 * n4: r=g; r=!r; l4: if (r) goto l5;
394 * n5: r=d; l5: if (r) goto T
395 * n6: r=e; l6: if (!r) goto l7;
396 * n7: r=f; r=!r; l7: if (!r) goto F:
397 * T: return TRUE;
398 * F: return FALSE
399 *
400 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
401 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
402 * to go directly to T. To accomplish this, we start from the last
403 * entry in the program and work our way back. If the target of the entry
404 * has the same "when_to_branch" then we could use that entry's target.
405 * Doing this, the above would end up as:
406 *
407 * n1: r=a; l1: if (!r) goto l4;
408 * n2: r=b; l2: if (!r) goto l4;
409 * n3: r=c; r=!r; l3: if (r) goto T;
410 * n4: r=g; r=!r; l4: if (r) goto T;
411 * n5: r=d; l5: if (r) goto T;
412 * n6: r=e; l6: if (!r) goto F;
413 * n7: r=f; r=!r; l7: if (!r) goto F;
414 * T: return TRUE
415 * F: return FALSE
416 *
417 * In that same pass, if the "when_to_branch" doesn't match, we can simply
418 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
419 * where "l4: if (r) goto T;", then we can convert l2 to be:
420 * "l2: if (!r) goto n5;".
421 *
422 * This will have the second pass give us:
423 * n1: r=a; l1: if (!r) goto n5;
424 * n2: r=b; l2: if (!r) goto n5;
425 * n3: r=c; r=!r; l3: if (r) goto T;
426 * n4: r=g; r=!r; l4: if (r) goto T;
427 * n5: r=d; l5: if (r) goto T
428 * n6: r=e; l6: if (!r) goto F;
429 * n7: r=f; r=!r; l7: if (!r) goto F
430 * T: return TRUE
431 * F: return FALSE
432 *
433 * Notice, all the "l#" labels are no longer used, and they can now
434 * be discarded.
435 *
436 * ** THIRD PASS **
437 *
438 * For the third pass we deal with the inverts. As they simply just
439 * make the "when_to_branch" get inverted, a simple loop over the
440 * program to that does: "when_to_branch ^= invert;" will do the
441 * job, leaving us with:
442 * n1: r=a; if (!r) goto n5;
443 * n2: r=b; if (!r) goto n5;
444 * n3: r=c: if (!r) goto T;
445 * n4: r=g; if (!r) goto T;
446 * n5: r=d; if (r) goto T
447 * n6: r=e; if (!r) goto F;
448 * n7: r=f; if (r) goto F
449 * T: return TRUE
450 * F: return FALSE
451 *
452 * As "r = a; if (!r) goto n5;" is obviously the same as
453 * "if (!a) goto n5;" without doing anything we can interpret the
454 * program as:
455 * n1: if (!a) goto n5;
456 * n2: if (!b) goto n5;
457 * n3: if (!c) goto T;
458 * n4: if (!g) goto T;
459 * n5: if (d) goto T
460 * n6: if (!e) goto F;
461 * n7: if (f) goto F
462 * T: return TRUE
463 * F: return FALSE
464 *
465 * Since the inverts are discarded at the end, there's no reason to store
466 * them in the program array (and waste memory). A separate array to hold
467 * the inverts is used and freed at the end.
468 */
469 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)470 predicate_parse(const char *str, int nr_parens, int nr_preds,
471 parse_pred_fn parse_pred, void *data,
472 struct filter_parse_error *pe)
473 {
474 struct prog_entry *prog_stack;
475 struct prog_entry *prog;
476 const char *ptr = str;
477 char *inverts = NULL;
478 int *op_stack;
479 int *top;
480 int invert = 0;
481 int ret = -ENOMEM;
482 int len;
483 int N = 0;
484 int i;
485
486 nr_preds += 2; /* For TRUE and FALSE */
487
488 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
489 if (!op_stack)
490 return ERR_PTR(-ENOMEM);
491 prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
492 if (!prog_stack) {
493 parse_error(pe, -ENOMEM, 0);
494 goto out_free;
495 }
496 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
497 if (!inverts) {
498 parse_error(pe, -ENOMEM, 0);
499 goto out_free;
500 }
501
502 top = op_stack;
503 prog = prog_stack;
504 *top = 0;
505
506 /* First pass */
507 while (*ptr) { /* #1 */
508 const char *next = ptr++;
509
510 if (isspace(*next))
511 continue;
512
513 switch (*next) {
514 case '(': /* #2 */
515 if (top - op_stack > nr_parens) {
516 ret = -EINVAL;
517 goto out_free;
518 }
519 *(++top) = invert;
520 continue;
521 case '!': /* #3 */
522 if (!is_not(next))
523 break;
524 invert = !invert;
525 continue;
526 }
527
528 if (N >= nr_preds) {
529 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
530 goto out_free;
531 }
532
533 inverts[N] = invert; /* #4 */
534 prog[N].target = N-1;
535
536 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
537 if (len < 0) {
538 ret = len;
539 goto out_free;
540 }
541 ptr = next + len;
542
543 N++;
544
545 ret = -1;
546 while (1) { /* #5 */
547 next = ptr++;
548 if (isspace(*next))
549 continue;
550
551 switch (*next) {
552 case ')':
553 case '\0':
554 break;
555 case '&':
556 case '|':
557 /* accepting only "&&" or "||" */
558 if (next[1] == next[0]) {
559 ptr++;
560 break;
561 }
562 fallthrough;
563 default:
564 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
565 next - str);
566 goto out_free;
567 }
568
569 invert = *top & INVERT;
570
571 if (*top & PROCESS_AND) { /* #7 */
572 update_preds(prog, N - 1, invert);
573 *top &= ~PROCESS_AND;
574 }
575 if (*next == '&') { /* #8 */
576 *top |= PROCESS_AND;
577 break;
578 }
579 if (*top & PROCESS_OR) { /* #9 */
580 update_preds(prog, N - 1, !invert);
581 *top &= ~PROCESS_OR;
582 }
583 if (*next == '|') { /* #10 */
584 *top |= PROCESS_OR;
585 break;
586 }
587 if (!*next) /* #11 */
588 goto out;
589
590 if (top == op_stack) {
591 ret = -1;
592 /* Too few '(' */
593 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
594 goto out_free;
595 }
596 top--; /* #12 */
597 }
598 }
599 out:
600 if (top != op_stack) {
601 /* Too many '(' */
602 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
603 goto out_free;
604 }
605
606 if (!N) {
607 /* No program? */
608 ret = -EINVAL;
609 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
610 goto out_free;
611 }
612
613 prog[N].pred = NULL; /* #13 */
614 prog[N].target = 1; /* TRUE */
615 prog[N+1].pred = NULL;
616 prog[N+1].target = 0; /* FALSE */
617 prog[N-1].target = N;
618 prog[N-1].when_to_branch = false;
619
620 /* Second Pass */
621 for (i = N-1 ; i--; ) {
622 int target = prog[i].target;
623 if (prog[i].when_to_branch == prog[target].when_to_branch)
624 prog[i].target = prog[target].target;
625 }
626
627 /* Third Pass */
628 for (i = 0; i < N; i++) {
629 invert = inverts[i] ^ prog[i].when_to_branch;
630 prog[i].when_to_branch = invert;
631 /* Make sure the program always moves forward */
632 if (WARN_ON(prog[i].target <= i)) {
633 ret = -EINVAL;
634 goto out_free;
635 }
636 }
637
638 kfree(op_stack);
639 kfree(inverts);
640 return prog;
641 out_free:
642 kfree(op_stack);
643 kfree(inverts);
644 if (prog_stack) {
645 for (i = 0; prog_stack[i].pred; i++)
646 free_predicate(prog_stack[i].pred);
647 kfree(prog_stack);
648 }
649 return ERR_PTR(ret);
650 }
651
652 static inline int
do_filter_cpumask(int op,const struct cpumask * mask,const struct cpumask * cmp)653 do_filter_cpumask(int op, const struct cpumask *mask, const struct cpumask *cmp)
654 {
655 switch (op) {
656 case OP_EQ:
657 return cpumask_equal(mask, cmp);
658 case OP_NE:
659 return !cpumask_equal(mask, cmp);
660 case OP_BAND:
661 return cpumask_intersects(mask, cmp);
662 default:
663 return 0;
664 }
665 }
666
667 /* Optimisation of do_filter_cpumask() for scalar fields */
668 static inline int
do_filter_scalar_cpumask(int op,unsigned int cpu,const struct cpumask * mask)669 do_filter_scalar_cpumask(int op, unsigned int cpu, const struct cpumask *mask)
670 {
671 /*
672 * Per the weight-of-one cpumask optimisations, the mask passed in this
673 * function has a weight >= 2, so it is never equal to a single scalar.
674 */
675 switch (op) {
676 case OP_EQ:
677 return false;
678 case OP_NE:
679 return true;
680 case OP_BAND:
681 return cpumask_test_cpu(cpu, mask);
682 default:
683 return 0;
684 }
685 }
686
687 static inline int
do_filter_cpumask_scalar(int op,const struct cpumask * mask,unsigned int cpu)688 do_filter_cpumask_scalar(int op, const struct cpumask *mask, unsigned int cpu)
689 {
690 switch (op) {
691 case OP_EQ:
692 return cpumask_test_cpu(cpu, mask) &&
693 cpumask_nth(1, mask) >= nr_cpu_ids;
694 case OP_NE:
695 return !cpumask_test_cpu(cpu, mask) ||
696 cpumask_nth(1, mask) < nr_cpu_ids;
697 case OP_BAND:
698 return cpumask_test_cpu(cpu, mask);
699 default:
700 return 0;
701 }
702 }
703
704 enum pred_cmp_types {
705 PRED_CMP_TYPE_NOP,
706 PRED_CMP_TYPE_LT,
707 PRED_CMP_TYPE_LE,
708 PRED_CMP_TYPE_GT,
709 PRED_CMP_TYPE_GE,
710 PRED_CMP_TYPE_BAND,
711 };
712
713 #define DEFINE_COMPARISON_PRED(type) \
714 static int filter_pred_##type(struct filter_pred *pred, void *event) \
715 { \
716 switch (pred->op) { \
717 case OP_LT: { \
718 type *addr = (type *)(event + pred->offset); \
719 type val = (type)pred->val; \
720 return *addr < val; \
721 } \
722 case OP_LE: { \
723 type *addr = (type *)(event + pred->offset); \
724 type val = (type)pred->val; \
725 return *addr <= val; \
726 } \
727 case OP_GT: { \
728 type *addr = (type *)(event + pred->offset); \
729 type val = (type)pred->val; \
730 return *addr > val; \
731 } \
732 case OP_GE: { \
733 type *addr = (type *)(event + pred->offset); \
734 type val = (type)pred->val; \
735 return *addr >= val; \
736 } \
737 case OP_BAND: { \
738 type *addr = (type *)(event + pred->offset); \
739 type val = (type)pred->val; \
740 return !!(*addr & val); \
741 } \
742 default: \
743 return 0; \
744 } \
745 }
746
747 #define DEFINE_CPUMASK_COMPARISON_PRED(size) \
748 static int filter_pred_##size##_cpumask(struct filter_pred *pred, void *event) \
749 { \
750 u##size *addr = (u##size *)(event + pred->offset); \
751 unsigned int cpu = *addr; \
752 \
753 if (cpu >= nr_cpu_ids) \
754 return 0; \
755 \
756 return do_filter_scalar_cpumask(pred->op, cpu, pred->mask); \
757 }
758
759 #define DEFINE_EQUALITY_PRED(size) \
760 static int filter_pred_##size(struct filter_pred *pred, void *event) \
761 { \
762 u##size *addr = (u##size *)(event + pred->offset); \
763 u##size val = (u##size)pred->val; \
764 int match; \
765 \
766 match = (val == *addr) ^ pred->not; \
767 \
768 return match; \
769 }
770
771 DEFINE_COMPARISON_PRED(s64);
772 DEFINE_COMPARISON_PRED(u64);
773 DEFINE_COMPARISON_PRED(s32);
774 DEFINE_COMPARISON_PRED(u32);
775 DEFINE_COMPARISON_PRED(s16);
776 DEFINE_COMPARISON_PRED(u16);
777 DEFINE_COMPARISON_PRED(s8);
778 DEFINE_COMPARISON_PRED(u8);
779
780 DEFINE_CPUMASK_COMPARISON_PRED(64);
781 DEFINE_CPUMASK_COMPARISON_PRED(32);
782 DEFINE_CPUMASK_COMPARISON_PRED(16);
783 DEFINE_CPUMASK_COMPARISON_PRED(8);
784
785 DEFINE_EQUALITY_PRED(64);
786 DEFINE_EQUALITY_PRED(32);
787 DEFINE_EQUALITY_PRED(16);
788 DEFINE_EQUALITY_PRED(8);
789
790 /* user space strings temp buffer */
791 #define USTRING_BUF_SIZE 1024
792
793 struct ustring_buffer {
794 char buffer[USTRING_BUF_SIZE];
795 };
796
797 static __percpu struct ustring_buffer *ustring_per_cpu;
798
test_string(char * str)799 static __always_inline char *test_string(char *str)
800 {
801 struct ustring_buffer *ubuf;
802 char *kstr;
803
804 if (!ustring_per_cpu)
805 return NULL;
806
807 ubuf = this_cpu_ptr(ustring_per_cpu);
808 kstr = ubuf->buffer;
809
810 /* For safety, do not trust the string pointer */
811 if (strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE) < 0)
812 return NULL;
813 return kstr;
814 }
815
test_ustring(char * str)816 static __always_inline char *test_ustring(char *str)
817 {
818 struct ustring_buffer *ubuf;
819 char __user *ustr;
820 char *kstr;
821
822 if (!ustring_per_cpu)
823 return NULL;
824
825 ubuf = this_cpu_ptr(ustring_per_cpu);
826 kstr = ubuf->buffer;
827
828 /* user space address? */
829 ustr = (char __user *)str;
830 if (strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE) < 0)
831 return NULL;
832
833 return kstr;
834 }
835
836 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)837 static int filter_pred_string(struct filter_pred *pred, void *event)
838 {
839 char *addr = (char *)(event + pred->offset);
840 int cmp, match;
841
842 cmp = pred->regex->match(addr, pred->regex, pred->regex->field_len);
843
844 match = cmp ^ pred->not;
845
846 return match;
847 }
848
filter_pchar(struct filter_pred * pred,char * str)849 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
850 {
851 int cmp, match;
852 int len;
853
854 len = strlen(str) + 1; /* including tailing '\0' */
855 cmp = pred->regex->match(str, pred->regex, len);
856
857 match = cmp ^ pred->not;
858
859 return match;
860 }
861 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)862 static int filter_pred_pchar(struct filter_pred *pred, void *event)
863 {
864 char **addr = (char **)(event + pred->offset);
865 char *str;
866
867 str = test_string(*addr);
868 if (!str)
869 return 0;
870
871 return filter_pchar(pred, str);
872 }
873
874 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)875 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
876 {
877 char **addr = (char **)(event + pred->offset);
878 char *str;
879
880 str = test_ustring(*addr);
881 if (!str)
882 return 0;
883
884 return filter_pchar(pred, str);
885 }
886
887 /*
888 * Filter predicate for dynamic sized arrays of characters.
889 * These are implemented through a list of strings at the end
890 * of the entry.
891 * Also each of these strings have a field in the entry which
892 * contains its offset from the beginning of the entry.
893 * We have then first to get this field, dereference it
894 * and add it to the address of the entry, and at last we have
895 * the address of the string.
896 */
filter_pred_strloc(struct filter_pred * pred,void * event)897 static int filter_pred_strloc(struct filter_pred *pred, void *event)
898 {
899 u32 str_item = *(u32 *)(event + pred->offset);
900 int str_loc = str_item & 0xffff;
901 int str_len = str_item >> 16;
902 char *addr = (char *)(event + str_loc);
903 int cmp, match;
904
905 cmp = pred->regex->match(addr, pred->regex, str_len);
906
907 match = cmp ^ pred->not;
908
909 return match;
910 }
911
912 /*
913 * Filter predicate for relative dynamic sized arrays of characters.
914 * These are implemented through a list of strings at the end
915 * of the entry as same as dynamic string.
916 * The difference is that the relative one records the location offset
917 * from the field itself, not the event entry.
918 */
filter_pred_strrelloc(struct filter_pred * pred,void * event)919 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
920 {
921 u32 *item = (u32 *)(event + pred->offset);
922 u32 str_item = *item;
923 int str_loc = str_item & 0xffff;
924 int str_len = str_item >> 16;
925 char *addr = (char *)(&item[1]) + str_loc;
926 int cmp, match;
927
928 cmp = pred->regex->match(addr, pred->regex, str_len);
929
930 match = cmp ^ pred->not;
931
932 return match;
933 }
934
935 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)936 static int filter_pred_cpu(struct filter_pred *pred, void *event)
937 {
938 int cpu, cmp;
939
940 cpu = raw_smp_processor_id();
941 cmp = pred->val;
942
943 switch (pred->op) {
944 case OP_EQ:
945 return cpu == cmp;
946 case OP_NE:
947 return cpu != cmp;
948 case OP_LT:
949 return cpu < cmp;
950 case OP_LE:
951 return cpu <= cmp;
952 case OP_GT:
953 return cpu > cmp;
954 case OP_GE:
955 return cpu >= cmp;
956 default:
957 return 0;
958 }
959 }
960
961 /* Filter predicate for current CPU vs user-provided cpumask */
filter_pred_cpu_cpumask(struct filter_pred * pred,void * event)962 static int filter_pred_cpu_cpumask(struct filter_pred *pred, void *event)
963 {
964 int cpu = raw_smp_processor_id();
965
966 return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);
967 }
968
969 /* Filter predicate for cpumask field vs user-provided cpumask */
filter_pred_cpumask(struct filter_pred * pred,void * event)970 static int filter_pred_cpumask(struct filter_pred *pred, void *event)
971 {
972 u32 item = *(u32 *)(event + pred->offset);
973 int loc = item & 0xffff;
974 const struct cpumask *mask = (event + loc);
975 const struct cpumask *cmp = pred->mask;
976
977 return do_filter_cpumask(pred->op, mask, cmp);
978 }
979
980 /* Filter predicate for cpumask field vs user-provided scalar */
filter_pred_cpumask_cpu(struct filter_pred * pred,void * event)981 static int filter_pred_cpumask_cpu(struct filter_pred *pred, void *event)
982 {
983 u32 item = *(u32 *)(event + pred->offset);
984 int loc = item & 0xffff;
985 const struct cpumask *mask = (event + loc);
986 unsigned int cpu = pred->val;
987
988 return do_filter_cpumask_scalar(pred->op, mask, cpu);
989 }
990
991 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)992 static int filter_pred_comm(struct filter_pred *pred, void *event)
993 {
994 int cmp;
995
996 cmp = pred->regex->match(current->comm, pred->regex,
997 TASK_COMM_LEN);
998 return cmp ^ pred->not;
999 }
1000
1001 /* Filter predicate for functions. */
filter_pred_function(struct filter_pred * pred,void * event)1002 static int filter_pred_function(struct filter_pred *pred, void *event)
1003 {
1004 unsigned long *addr = (unsigned long *)(event + pred->offset);
1005 unsigned long start = (unsigned long)pred->val;
1006 unsigned long end = (unsigned long)pred->val2;
1007 int ret = *addr >= start && *addr < end;
1008
1009 return pred->op == OP_EQ ? ret : !ret;
1010 }
1011
1012 /*
1013 * regex_match_foo - Basic regex callbacks
1014 *
1015 * @str: the string to be searched
1016 * @r: the regex structure containing the pattern string
1017 * @len: the length of the string to be searched (including '\0')
1018 *
1019 * Note:
1020 * - @str might not be NULL-terminated if it's of type DYN_STRING
1021 * RDYN_STRING, or STATIC_STRING, unless @len is zero.
1022 */
1023
regex_match_full(char * str,struct regex * r,int len)1024 static int regex_match_full(char *str, struct regex *r, int len)
1025 {
1026 /* len of zero means str is dynamic and ends with '\0' */
1027 if (!len)
1028 return strcmp(str, r->pattern) == 0;
1029
1030 return strncmp(str, r->pattern, len) == 0;
1031 }
1032
regex_match_front(char * str,struct regex * r,int len)1033 static int regex_match_front(char *str, struct regex *r, int len)
1034 {
1035 if (len && len < r->len)
1036 return 0;
1037
1038 return strncmp(str, r->pattern, r->len) == 0;
1039 }
1040
regex_match_middle(char * str,struct regex * r,int len)1041 static int regex_match_middle(char *str, struct regex *r, int len)
1042 {
1043 if (!len)
1044 return strstr(str, r->pattern) != NULL;
1045
1046 return strnstr(str, r->pattern, len) != NULL;
1047 }
1048
regex_match_end(char * str,struct regex * r,int len)1049 static int regex_match_end(char *str, struct regex *r, int len)
1050 {
1051 int strlen = len - 1;
1052
1053 if (strlen >= r->len &&
1054 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
1055 return 1;
1056 return 0;
1057 }
1058
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)1059 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
1060 {
1061 if (glob_match(r->pattern, str))
1062 return 1;
1063 return 0;
1064 }
1065
1066 /**
1067 * filter_parse_regex - parse a basic regex
1068 * @buff: the raw regex
1069 * @len: length of the regex
1070 * @search: will point to the beginning of the string to compare
1071 * @not: tell whether the match will have to be inverted
1072 *
1073 * This passes in a buffer containing a regex and this function will
1074 * set search to point to the search part of the buffer and
1075 * return the type of search it is (see enum above).
1076 * This does modify buff.
1077 *
1078 * Returns enum type.
1079 * search returns the pointer to use for comparison.
1080 * not returns 1 if buff started with a '!'
1081 * 0 otherwise.
1082 */
filter_parse_regex(char * buff,int len,char ** search,int * not)1083 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
1084 {
1085 int type = MATCH_FULL;
1086 int i;
1087
1088 if (buff[0] == '!') {
1089 *not = 1;
1090 buff++;
1091 len--;
1092 } else
1093 *not = 0;
1094
1095 *search = buff;
1096
1097 if (isdigit(buff[0]))
1098 return MATCH_INDEX;
1099
1100 for (i = 0; i < len; i++) {
1101 if (buff[i] == '*') {
1102 if (!i) {
1103 type = MATCH_END_ONLY;
1104 } else if (i == len - 1) {
1105 if (type == MATCH_END_ONLY)
1106 type = MATCH_MIDDLE_ONLY;
1107 else
1108 type = MATCH_FRONT_ONLY;
1109 buff[i] = 0;
1110 break;
1111 } else { /* pattern continues, use full glob */
1112 return MATCH_GLOB;
1113 }
1114 } else if (strchr("[?\\", buff[i])) {
1115 return MATCH_GLOB;
1116 }
1117 }
1118 if (buff[0] == '*')
1119 *search = buff + 1;
1120
1121 return type;
1122 }
1123
filter_build_regex(struct filter_pred * pred)1124 static void filter_build_regex(struct filter_pred *pred)
1125 {
1126 struct regex *r = pred->regex;
1127 char *search;
1128 enum regex_type type = MATCH_FULL;
1129
1130 if (pred->op == OP_GLOB) {
1131 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
1132 r->len = strlen(search);
1133 memmove(r->pattern, search, r->len+1);
1134 }
1135
1136 switch (type) {
1137 /* MATCH_INDEX should not happen, but if it does, match full */
1138 case MATCH_INDEX:
1139 case MATCH_FULL:
1140 r->match = regex_match_full;
1141 break;
1142 case MATCH_FRONT_ONLY:
1143 r->match = regex_match_front;
1144 break;
1145 case MATCH_MIDDLE_ONLY:
1146 r->match = regex_match_middle;
1147 break;
1148 case MATCH_END_ONLY:
1149 r->match = regex_match_end;
1150 break;
1151 case MATCH_GLOB:
1152 r->match = regex_match_glob;
1153 break;
1154 }
1155 }
1156
1157
1158 #ifdef CONFIG_FTRACE_STARTUP_TEST
1159 static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1160 #else
test_pred_visited_fn(struct filter_pred * pred,void * event)1161 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1162 {
1163 return 0;
1164 }
1165 #endif
1166
1167
1168 static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1169
1170 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)1171 int filter_match_preds(struct event_filter *filter, void *rec)
1172 {
1173 struct prog_entry *prog;
1174 int i;
1175
1176 /* no filter is considered a match */
1177 if (!filter)
1178 return 1;
1179
1180 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1181 prog = rcu_dereference_raw(filter->prog);
1182 if (!prog)
1183 return 1;
1184
1185 for (i = 0; prog[i].pred; i++) {
1186 struct filter_pred *pred = prog[i].pred;
1187 int match = filter_pred_fn_call(pred, rec);
1188 if (match == prog[i].when_to_branch)
1189 i = prog[i].target;
1190 }
1191 return prog[i].target;
1192 }
1193 EXPORT_SYMBOL_GPL(filter_match_preds);
1194
remove_filter_string(struct event_filter * filter)1195 static void remove_filter_string(struct event_filter *filter)
1196 {
1197 if (!filter)
1198 return;
1199
1200 kfree(filter->filter_string);
1201 filter->filter_string = NULL;
1202 }
1203
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1204 static void append_filter_err(struct trace_array *tr,
1205 struct filter_parse_error *pe,
1206 struct event_filter *filter)
1207 {
1208 struct trace_seq *s;
1209 int pos = pe->lasterr_pos;
1210 char *buf;
1211 int len;
1212
1213 if (WARN_ON(!filter->filter_string))
1214 return;
1215
1216 s = kmalloc(sizeof(*s), GFP_KERNEL);
1217 if (!s)
1218 return;
1219 trace_seq_init(s);
1220
1221 len = strlen(filter->filter_string);
1222 if (pos > len)
1223 pos = len;
1224
1225 /* indexing is off by one */
1226 if (pos)
1227 pos++;
1228
1229 trace_seq_puts(s, filter->filter_string);
1230 if (pe->lasterr > 0) {
1231 trace_seq_printf(s, "\n%*s", pos, "^");
1232 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1233 tracing_log_err(tr, "event filter parse error",
1234 filter->filter_string, err_text,
1235 pe->lasterr, pe->lasterr_pos);
1236 } else {
1237 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1238 tracing_log_err(tr, "event filter parse error",
1239 filter->filter_string, err_text,
1240 FILT_ERR_ERRNO, 0);
1241 }
1242 trace_seq_putc(s, 0);
1243 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1244 if (buf) {
1245 kfree(filter->filter_string);
1246 filter->filter_string = buf;
1247 }
1248 kfree(s);
1249 }
1250
event_filter(struct trace_event_file * file)1251 static inline struct event_filter *event_filter(struct trace_event_file *file)
1252 {
1253 return rcu_dereference_protected(file->filter,
1254 lockdep_is_held(&event_mutex));
1255
1256 }
1257
1258 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1259 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1260 {
1261 struct event_filter *filter = event_filter(file);
1262
1263 if (filter && filter->filter_string)
1264 trace_seq_printf(s, "%s\n", filter->filter_string);
1265 else
1266 trace_seq_puts(s, "none\n");
1267 }
1268
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1269 void print_subsystem_event_filter(struct event_subsystem *system,
1270 struct trace_seq *s)
1271 {
1272 struct event_filter *filter;
1273
1274 mutex_lock(&event_mutex);
1275 filter = system->filter;
1276 if (filter && filter->filter_string)
1277 trace_seq_printf(s, "%s\n", filter->filter_string);
1278 else
1279 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1280 mutex_unlock(&event_mutex);
1281 }
1282
free_prog(struct event_filter * filter)1283 static void free_prog(struct event_filter *filter)
1284 {
1285 struct prog_entry *prog;
1286 int i;
1287
1288 prog = rcu_access_pointer(filter->prog);
1289 if (!prog)
1290 return;
1291
1292 for (i = 0; prog[i].pred; i++)
1293 free_predicate(prog[i].pred);
1294 kfree(prog);
1295 }
1296
filter_disable(struct trace_event_file * file)1297 static void filter_disable(struct trace_event_file *file)
1298 {
1299 unsigned long old_flags = file->flags;
1300
1301 file->flags &= ~EVENT_FILE_FL_FILTERED;
1302
1303 if (old_flags != file->flags)
1304 trace_buffered_event_disable();
1305 }
1306
__free_filter(struct event_filter * filter)1307 static void __free_filter(struct event_filter *filter)
1308 {
1309 if (!filter)
1310 return;
1311
1312 free_prog(filter);
1313 kfree(filter->filter_string);
1314 kfree(filter);
1315 }
1316
free_event_filter(struct event_filter * filter)1317 void free_event_filter(struct event_filter *filter)
1318 {
1319 __free_filter(filter);
1320 }
1321
__remove_filter(struct trace_event_file * file)1322 static inline void __remove_filter(struct trace_event_file *file)
1323 {
1324 filter_disable(file);
1325 remove_filter_string(event_filter(file));
1326 }
1327
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1328 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1329 struct trace_array *tr)
1330 {
1331 struct trace_event_file *file;
1332
1333 list_for_each_entry(file, &tr->events, list) {
1334 if (file->system != dir)
1335 continue;
1336 __remove_filter(file);
1337 }
1338 }
1339
1340 struct filter_list {
1341 struct list_head list;
1342 struct event_filter *filter;
1343 };
1344
1345 struct filter_head {
1346 struct list_head list;
1347 union {
1348 struct rcu_head rcu;
1349 struct rcu_work rwork;
1350 };
1351 };
1352
free_filter_list(struct filter_head * filter_list)1353 static void free_filter_list(struct filter_head *filter_list)
1354 {
1355 struct filter_list *filter_item, *tmp;
1356
1357 list_for_each_entry_safe(filter_item, tmp, &filter_list->list, list) {
1358 __free_filter(filter_item->filter);
1359 list_del(&filter_item->list);
1360 kfree(filter_item);
1361 }
1362 kfree(filter_list);
1363 }
1364
free_filter_list_work(struct work_struct * work)1365 static void free_filter_list_work(struct work_struct *work)
1366 {
1367 struct filter_head *filter_list;
1368
1369 filter_list = container_of(to_rcu_work(work), struct filter_head, rwork);
1370 free_filter_list(filter_list);
1371 }
1372
free_filter_list_tasks(struct rcu_head * rhp)1373 static void free_filter_list_tasks(struct rcu_head *rhp)
1374 {
1375 struct filter_head *filter_list = container_of(rhp, struct filter_head, rcu);
1376
1377 INIT_RCU_WORK(&filter_list->rwork, free_filter_list_work);
1378 queue_rcu_work(system_wq, &filter_list->rwork);
1379 }
1380
1381 /*
1382 * The tracepoint_synchronize_unregister() is a double rcu call.
1383 * It calls synchronize_rcu_tasks_trace() followed by synchronize_rcu().
1384 * Instead of waiting for it, simply call these via the call_rcu*()
1385 * variants.
1386 */
delay_free_filter(struct filter_head * head)1387 static void delay_free_filter(struct filter_head *head)
1388 {
1389 call_rcu_tasks_trace(&head->rcu, free_filter_list_tasks);
1390 }
1391
try_delay_free_filter(struct event_filter * filter)1392 static void try_delay_free_filter(struct event_filter *filter)
1393 {
1394 struct filter_head *head;
1395 struct filter_list *item;
1396
1397 head = kmalloc(sizeof(*head), GFP_KERNEL);
1398 if (!head)
1399 goto free_now;
1400
1401 INIT_LIST_HEAD(&head->list);
1402
1403 item = kmalloc(sizeof(*item), GFP_KERNEL);
1404 if (!item) {
1405 kfree(head);
1406 goto free_now;
1407 }
1408
1409 item->filter = filter;
1410 list_add_tail(&item->list, &head->list);
1411 delay_free_filter(head);
1412 return;
1413
1414 free_now:
1415 /* Make sure the filter is not being used */
1416 tracepoint_synchronize_unregister();
1417 __free_filter(filter);
1418 }
1419
__free_subsystem_filter(struct trace_event_file * file)1420 static inline void __free_subsystem_filter(struct trace_event_file *file)
1421 {
1422 __free_filter(event_filter(file));
1423 file->filter = NULL;
1424 }
1425
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1426 static inline void event_set_filter(struct trace_event_file *file,
1427 struct event_filter *filter)
1428 {
1429 rcu_assign_pointer(file->filter, filter);
1430 }
1431
event_clear_filter(struct trace_event_file * file)1432 static inline void event_clear_filter(struct trace_event_file *file)
1433 {
1434 RCU_INIT_POINTER(file->filter, NULL);
1435 }
1436
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr,struct event_filter * filter)1437 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1438 struct trace_array *tr,
1439 struct event_filter *filter)
1440 {
1441 struct trace_event_file *file;
1442 struct filter_head *head;
1443 struct filter_list *item;
1444
1445 head = kmalloc(sizeof(*head), GFP_KERNEL);
1446 if (!head)
1447 goto free_now;
1448
1449 INIT_LIST_HEAD(&head->list);
1450
1451 list_for_each_entry(file, &tr->events, list) {
1452 if (file->system != dir)
1453 continue;
1454 item = kmalloc(sizeof(*item), GFP_KERNEL);
1455 if (!item)
1456 goto free_now;
1457 item->filter = event_filter(file);
1458 list_add_tail(&item->list, &head->list);
1459 event_clear_filter(file);
1460 }
1461
1462 item = kmalloc(sizeof(*item), GFP_KERNEL);
1463 if (!item)
1464 goto free_now;
1465
1466 item->filter = filter;
1467 list_add_tail(&item->list, &head->list);
1468
1469 delay_free_filter(head);
1470 return;
1471 free_now:
1472 tracepoint_synchronize_unregister();
1473
1474 if (head)
1475 free_filter_list(head);
1476
1477 list_for_each_entry(file, &tr->events, list) {
1478 if (file->system != dir || !file->filter)
1479 continue;
1480 __free_subsystem_filter(file);
1481 }
1482 __free_filter(filter);
1483 }
1484
filter_assign_type(const char * type)1485 int filter_assign_type(const char *type)
1486 {
1487 if (strstr(type, "__data_loc")) {
1488 if (strstr(type, "char"))
1489 return FILTER_DYN_STRING;
1490 if (strstr(type, "cpumask_t"))
1491 return FILTER_CPUMASK;
1492 }
1493
1494 if (strstr(type, "__rel_loc") && strstr(type, "char"))
1495 return FILTER_RDYN_STRING;
1496
1497 if (strchr(type, '[') && strstr(type, "char"))
1498 return FILTER_STATIC_STRING;
1499
1500 if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1501 return FILTER_PTR_STRING;
1502
1503 return FILTER_OTHER;
1504 }
1505
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1506 static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1507 int field_size, int field_is_signed)
1508 {
1509 enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1510 int pred_func_index = -1;
1511
1512 switch (op) {
1513 case OP_EQ:
1514 case OP_NE:
1515 break;
1516 default:
1517 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1518 return fn;
1519 pred_func_index = op - PRED_FUNC_START;
1520 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1521 return fn;
1522 }
1523
1524 switch (field_size) {
1525 case 8:
1526 if (pred_func_index < 0)
1527 fn = FILTER_PRED_FN_64;
1528 else if (field_is_signed)
1529 fn = FILTER_PRED_FN_S64;
1530 else
1531 fn = FILTER_PRED_FN_U64;
1532 break;
1533 case 4:
1534 if (pred_func_index < 0)
1535 fn = FILTER_PRED_FN_32;
1536 else if (field_is_signed)
1537 fn = FILTER_PRED_FN_S32;
1538 else
1539 fn = FILTER_PRED_FN_U32;
1540 break;
1541 case 2:
1542 if (pred_func_index < 0)
1543 fn = FILTER_PRED_FN_16;
1544 else if (field_is_signed)
1545 fn = FILTER_PRED_FN_S16;
1546 else
1547 fn = FILTER_PRED_FN_U16;
1548 break;
1549 case 1:
1550 if (pred_func_index < 0)
1551 fn = FILTER_PRED_FN_8;
1552 else if (field_is_signed)
1553 fn = FILTER_PRED_FN_S8;
1554 else
1555 fn = FILTER_PRED_FN_U8;
1556 break;
1557 }
1558
1559 return fn;
1560 }
1561
1562
filter_pred_fn_call(struct filter_pred * pred,void * event)1563 static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1564 {
1565 switch (pred->fn_num) {
1566 case FILTER_PRED_FN_64:
1567 return filter_pred_64(pred, event);
1568 case FILTER_PRED_FN_64_CPUMASK:
1569 return filter_pred_64_cpumask(pred, event);
1570 case FILTER_PRED_FN_S64:
1571 return filter_pred_s64(pred, event);
1572 case FILTER_PRED_FN_U64:
1573 return filter_pred_u64(pred, event);
1574 case FILTER_PRED_FN_32:
1575 return filter_pred_32(pred, event);
1576 case FILTER_PRED_FN_32_CPUMASK:
1577 return filter_pred_32_cpumask(pred, event);
1578 case FILTER_PRED_FN_S32:
1579 return filter_pred_s32(pred, event);
1580 case FILTER_PRED_FN_U32:
1581 return filter_pred_u32(pred, event);
1582 case FILTER_PRED_FN_16:
1583 return filter_pred_16(pred, event);
1584 case FILTER_PRED_FN_16_CPUMASK:
1585 return filter_pred_16_cpumask(pred, event);
1586 case FILTER_PRED_FN_S16:
1587 return filter_pred_s16(pred, event);
1588 case FILTER_PRED_FN_U16:
1589 return filter_pred_u16(pred, event);
1590 case FILTER_PRED_FN_8:
1591 return filter_pred_8(pred, event);
1592 case FILTER_PRED_FN_8_CPUMASK:
1593 return filter_pred_8_cpumask(pred, event);
1594 case FILTER_PRED_FN_S8:
1595 return filter_pred_s8(pred, event);
1596 case FILTER_PRED_FN_U8:
1597 return filter_pred_u8(pred, event);
1598 case FILTER_PRED_FN_COMM:
1599 return filter_pred_comm(pred, event);
1600 case FILTER_PRED_FN_STRING:
1601 return filter_pred_string(pred, event);
1602 case FILTER_PRED_FN_STRLOC:
1603 return filter_pred_strloc(pred, event);
1604 case FILTER_PRED_FN_STRRELLOC:
1605 return filter_pred_strrelloc(pred, event);
1606 case FILTER_PRED_FN_PCHAR_USER:
1607 return filter_pred_pchar_user(pred, event);
1608 case FILTER_PRED_FN_PCHAR:
1609 return filter_pred_pchar(pred, event);
1610 case FILTER_PRED_FN_CPU:
1611 return filter_pred_cpu(pred, event);
1612 case FILTER_PRED_FN_CPU_CPUMASK:
1613 return filter_pred_cpu_cpumask(pred, event);
1614 case FILTER_PRED_FN_CPUMASK:
1615 return filter_pred_cpumask(pred, event);
1616 case FILTER_PRED_FN_CPUMASK_CPU:
1617 return filter_pred_cpumask_cpu(pred, event);
1618 case FILTER_PRED_FN_FUNCTION:
1619 return filter_pred_function(pred, event);
1620 case FILTER_PRED_TEST_VISITED:
1621 return test_pred_visited_fn(pred, event);
1622 default:
1623 return 0;
1624 }
1625 }
1626
1627 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1628 static int parse_pred(const char *str, void *data,
1629 int pos, struct filter_parse_error *pe,
1630 struct filter_pred **pred_ptr)
1631 {
1632 struct trace_event_call *call = data;
1633 struct ftrace_event_field *field;
1634 struct filter_pred *pred = NULL;
1635 unsigned long offset;
1636 unsigned long size;
1637 unsigned long ip;
1638 char num_buf[24]; /* Big enough to hold an address */
1639 char *field_name;
1640 char *name;
1641 bool function = false;
1642 bool ustring = false;
1643 char q;
1644 u64 val;
1645 int len;
1646 int ret;
1647 int op;
1648 int s;
1649 int i = 0;
1650
1651 /* First find the field to associate to */
1652 while (isspace(str[i]))
1653 i++;
1654 s = i;
1655
1656 while (isalnum(str[i]) || str[i] == '_')
1657 i++;
1658
1659 len = i - s;
1660
1661 if (!len)
1662 return -1;
1663
1664 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1665 if (!field_name)
1666 return -ENOMEM;
1667
1668 /* Make sure that the field exists */
1669
1670 field = trace_find_event_field(call, field_name);
1671 kfree(field_name);
1672 if (!field) {
1673 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1674 return -EINVAL;
1675 }
1676
1677 /* See if the field is a user space string */
1678 if ((len = str_has_prefix(str + i, ".ustring"))) {
1679 ustring = true;
1680 i += len;
1681 }
1682
1683 /* See if the field is a kernel function name */
1684 if ((len = str_has_prefix(str + i, ".function"))) {
1685 function = true;
1686 i += len;
1687 }
1688
1689 while (isspace(str[i]))
1690 i++;
1691
1692 /* Make sure this op is supported */
1693 for (op = 0; ops[op]; op++) {
1694 /* This is why '<=' must come before '<' in ops[] */
1695 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1696 break;
1697 }
1698
1699 if (!ops[op]) {
1700 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1701 goto err_free;
1702 }
1703
1704 i += strlen(ops[op]);
1705
1706 while (isspace(str[i]))
1707 i++;
1708
1709 s = i;
1710
1711 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1712 if (!pred)
1713 return -ENOMEM;
1714
1715 pred->field = field;
1716 pred->offset = field->offset;
1717 pred->op = op;
1718
1719 if (function) {
1720 /* The field must be the same size as long */
1721 if (field->size != sizeof(long)) {
1722 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1723 goto err_free;
1724 }
1725
1726 /* Function only works with '==' or '!=' and an unquoted string */
1727 switch (op) {
1728 case OP_NE:
1729 case OP_EQ:
1730 break;
1731 default:
1732 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1733 goto err_free;
1734 }
1735
1736 if (isdigit(str[i])) {
1737 /* We allow 0xDEADBEEF */
1738 while (isalnum(str[i]))
1739 i++;
1740
1741 len = i - s;
1742 /* 0xfeedfacedeadbeef is 18 chars max */
1743 if (len >= sizeof(num_buf)) {
1744 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1745 goto err_free;
1746 }
1747
1748 memcpy(num_buf, str + s, len);
1749 num_buf[len] = 0;
1750
1751 ret = kstrtoul(num_buf, 0, &ip);
1752 if (ret) {
1753 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1754 goto err_free;
1755 }
1756 } else {
1757 s = i;
1758 for (; str[i] && !isspace(str[i]); i++)
1759 ;
1760
1761 len = i - s;
1762 name = kmemdup_nul(str + s, len, GFP_KERNEL);
1763 if (!name)
1764 goto err_mem;
1765 ip = kallsyms_lookup_name(name);
1766 kfree(name);
1767 if (!ip) {
1768 parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1769 goto err_free;
1770 }
1771 }
1772
1773 /* Now find the function start and end address */
1774 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
1775 parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1776 goto err_free;
1777 }
1778
1779 pred->fn_num = FILTER_PRED_FN_FUNCTION;
1780 pred->val = ip - offset;
1781 pred->val2 = pred->val + size;
1782
1783 } else if (ftrace_event_is_function(call)) {
1784 /*
1785 * Perf does things different with function events.
1786 * It only allows an "ip" field, and expects a string.
1787 * But the string does not need to be surrounded by quotes.
1788 * If it is a string, the assigned function as a nop,
1789 * (perf doesn't use it) and grab everything.
1790 */
1791 if (strcmp(field->name, "ip") != 0) {
1792 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1793 goto err_free;
1794 }
1795 pred->fn_num = FILTER_PRED_FN_NOP;
1796
1797 /*
1798 * Quotes are not required, but if they exist then we need
1799 * to read them till we hit a matching one.
1800 */
1801 if (str[i] == '\'' || str[i] == '"')
1802 q = str[i];
1803 else
1804 q = 0;
1805
1806 for (i++; str[i]; i++) {
1807 if (q && str[i] == q)
1808 break;
1809 if (!q && (str[i] == ')' || str[i] == '&' ||
1810 str[i] == '|'))
1811 break;
1812 }
1813 /* Skip quotes */
1814 if (q)
1815 s++;
1816 len = i - s;
1817 if (len >= MAX_FILTER_STR_VAL) {
1818 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1819 goto err_free;
1820 }
1821
1822 pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1823 if (!pred->regex)
1824 goto err_mem;
1825 pred->regex->len = len;
1826 memcpy(pred->regex->pattern, str + s, len);
1827 pred->regex->pattern[len] = 0;
1828
1829 } else if (!strncmp(str + i, "CPUS", 4)) {
1830 unsigned int maskstart;
1831 bool single;
1832 char *tmp;
1833
1834 switch (field->filter_type) {
1835 case FILTER_CPUMASK:
1836 case FILTER_CPU:
1837 case FILTER_OTHER:
1838 break;
1839 default:
1840 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1841 goto err_free;
1842 }
1843
1844 switch (op) {
1845 case OP_EQ:
1846 case OP_NE:
1847 case OP_BAND:
1848 break;
1849 default:
1850 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1851 goto err_free;
1852 }
1853
1854 /* Skip CPUS */
1855 i += 4;
1856 if (str[i++] != '{') {
1857 parse_error(pe, FILT_ERR_MISSING_BRACE_OPEN, pos + i);
1858 goto err_free;
1859 }
1860 maskstart = i;
1861
1862 /* Walk the cpulist until closing } */
1863 for (; str[i] && str[i] != '}'; i++)
1864 ;
1865
1866 if (str[i] != '}') {
1867 parse_error(pe, FILT_ERR_MISSING_BRACE_CLOSE, pos + i);
1868 goto err_free;
1869 }
1870
1871 if (maskstart == i) {
1872 parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1873 goto err_free;
1874 }
1875
1876 /* Copy the cpulist between { and } */
1877 tmp = kmalloc((i - maskstart) + 1, GFP_KERNEL);
1878 if (!tmp)
1879 goto err_mem;
1880
1881 strscpy(tmp, str + maskstart, (i - maskstart) + 1);
1882 pred->mask = kzalloc(cpumask_size(), GFP_KERNEL);
1883 if (!pred->mask) {
1884 kfree(tmp);
1885 goto err_mem;
1886 }
1887
1888 /* Now parse it */
1889 if (cpulist_parse(tmp, pred->mask)) {
1890 kfree(tmp);
1891 parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1892 goto err_free;
1893 }
1894 kfree(tmp);
1895
1896 /* Move along */
1897 i++;
1898
1899 /*
1900 * Optimisation: if the user-provided mask has a weight of one
1901 * then we can treat it as a scalar input.
1902 */
1903 single = cpumask_weight(pred->mask) == 1;
1904 if (single) {
1905 pred->val = cpumask_first(pred->mask);
1906 kfree(pred->mask);
1907 pred->mask = NULL;
1908 }
1909
1910 if (field->filter_type == FILTER_CPUMASK) {
1911 pred->fn_num = single ?
1912 FILTER_PRED_FN_CPUMASK_CPU :
1913 FILTER_PRED_FN_CPUMASK;
1914 } else if (field->filter_type == FILTER_CPU) {
1915 if (single) {
1916 if (pred->op == OP_BAND)
1917 pred->op = OP_EQ;
1918
1919 pred->fn_num = FILTER_PRED_FN_CPU;
1920 } else {
1921 pred->fn_num = FILTER_PRED_FN_CPU_CPUMASK;
1922 }
1923 } else if (single) {
1924 if (pred->op == OP_BAND)
1925 pred->op = OP_EQ;
1926
1927 pred->fn_num = select_comparison_fn(pred->op, field->size, false);
1928 if (pred->op == OP_NE)
1929 pred->not = 1;
1930 } else {
1931 switch (field->size) {
1932 case 8:
1933 pred->fn_num = FILTER_PRED_FN_64_CPUMASK;
1934 break;
1935 case 4:
1936 pred->fn_num = FILTER_PRED_FN_32_CPUMASK;
1937 break;
1938 case 2:
1939 pred->fn_num = FILTER_PRED_FN_16_CPUMASK;
1940 break;
1941 case 1:
1942 pred->fn_num = FILTER_PRED_FN_8_CPUMASK;
1943 break;
1944 }
1945 }
1946
1947 /* This is either a string, or an integer */
1948 } else if (str[i] == '\'' || str[i] == '"') {
1949 char q = str[i];
1950
1951 /* Make sure the op is OK for strings */
1952 switch (op) {
1953 case OP_NE:
1954 pred->not = 1;
1955 fallthrough;
1956 case OP_GLOB:
1957 case OP_EQ:
1958 break;
1959 default:
1960 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1961 goto err_free;
1962 }
1963
1964 /* Make sure the field is OK for strings */
1965 if (!is_string_field(field)) {
1966 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1967 goto err_free;
1968 }
1969
1970 for (i++; str[i]; i++) {
1971 if (str[i] == q)
1972 break;
1973 }
1974 if (!str[i]) {
1975 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1976 goto err_free;
1977 }
1978
1979 /* Skip quotes */
1980 s++;
1981 len = i - s;
1982 if (len >= MAX_FILTER_STR_VAL) {
1983 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1984 goto err_free;
1985 }
1986
1987 pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1988 if (!pred->regex)
1989 goto err_mem;
1990 pred->regex->len = len;
1991 memcpy(pred->regex->pattern, str + s, len);
1992 pred->regex->pattern[len] = 0;
1993
1994 filter_build_regex(pred);
1995
1996 if (field->filter_type == FILTER_COMM) {
1997 pred->fn_num = FILTER_PRED_FN_COMM;
1998
1999 } else if (field->filter_type == FILTER_STATIC_STRING) {
2000 pred->fn_num = FILTER_PRED_FN_STRING;
2001 pred->regex->field_len = field->size;
2002
2003 } else if (field->filter_type == FILTER_DYN_STRING) {
2004 pred->fn_num = FILTER_PRED_FN_STRLOC;
2005 } else if (field->filter_type == FILTER_RDYN_STRING)
2006 pred->fn_num = FILTER_PRED_FN_STRRELLOC;
2007 else {
2008
2009 if (!ustring_per_cpu) {
2010 /* Once allocated, keep it around for good */
2011 ustring_per_cpu = alloc_percpu(struct ustring_buffer);
2012 if (!ustring_per_cpu)
2013 goto err_mem;
2014 }
2015
2016 if (ustring)
2017 pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
2018 else
2019 pred->fn_num = FILTER_PRED_FN_PCHAR;
2020 }
2021 /* go past the last quote */
2022 i++;
2023
2024 } else if (isdigit(str[i]) || str[i] == '-') {
2025
2026 /* Make sure the field is not a string */
2027 if (is_string_field(field)) {
2028 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
2029 goto err_free;
2030 }
2031
2032 if (op == OP_GLOB) {
2033 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
2034 goto err_free;
2035 }
2036
2037 if (str[i] == '-')
2038 i++;
2039
2040 /* We allow 0xDEADBEEF */
2041 while (isalnum(str[i]))
2042 i++;
2043
2044 len = i - s;
2045 /* 0xfeedfacedeadbeef is 18 chars max */
2046 if (len >= sizeof(num_buf)) {
2047 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
2048 goto err_free;
2049 }
2050
2051 memcpy(num_buf, str + s, len);
2052 num_buf[len] = 0;
2053
2054 /* Make sure it is a value */
2055 if (field->is_signed)
2056 ret = kstrtoll(num_buf, 0, &val);
2057 else
2058 ret = kstrtoull(num_buf, 0, &val);
2059 if (ret) {
2060 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
2061 goto err_free;
2062 }
2063
2064 pred->val = val;
2065
2066 if (field->filter_type == FILTER_CPU)
2067 pred->fn_num = FILTER_PRED_FN_CPU;
2068 else {
2069 pred->fn_num = select_comparison_fn(pred->op, field->size,
2070 field->is_signed);
2071 if (pred->op == OP_NE)
2072 pred->not = 1;
2073 }
2074
2075 } else {
2076 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
2077 goto err_free;
2078 }
2079
2080 *pred_ptr = pred;
2081 return i;
2082
2083 err_free:
2084 free_predicate(pred);
2085 return -EINVAL;
2086 err_mem:
2087 free_predicate(pred);
2088 return -ENOMEM;
2089 }
2090
2091 enum {
2092 TOO_MANY_CLOSE = -1,
2093 TOO_MANY_OPEN = -2,
2094 MISSING_QUOTE = -3,
2095 };
2096
2097 /*
2098 * Read the filter string once to calculate the number of predicates
2099 * as well as how deep the parentheses go.
2100 *
2101 * Returns:
2102 * 0 - everything is fine (err is undefined)
2103 * -1 - too many ')'
2104 * -2 - too many '('
2105 * -3 - No matching quote
2106 */
calc_stack(const char * str,int * parens,int * preds,int * err)2107 static int calc_stack(const char *str, int *parens, int *preds, int *err)
2108 {
2109 bool is_pred = false;
2110 int nr_preds = 0;
2111 int open = 1; /* Count the expression as "(E)" */
2112 int last_quote = 0;
2113 int max_open = 1;
2114 int quote = 0;
2115 int i;
2116
2117 *err = 0;
2118
2119 for (i = 0; str[i]; i++) {
2120 if (isspace(str[i]))
2121 continue;
2122 if (quote) {
2123 if (str[i] == quote)
2124 quote = 0;
2125 continue;
2126 }
2127
2128 switch (str[i]) {
2129 case '\'':
2130 case '"':
2131 quote = str[i];
2132 last_quote = i;
2133 break;
2134 case '|':
2135 case '&':
2136 if (str[i+1] != str[i])
2137 break;
2138 is_pred = false;
2139 continue;
2140 case '(':
2141 is_pred = false;
2142 open++;
2143 if (open > max_open)
2144 max_open = open;
2145 continue;
2146 case ')':
2147 is_pred = false;
2148 if (open == 1) {
2149 *err = i;
2150 return TOO_MANY_CLOSE;
2151 }
2152 open--;
2153 continue;
2154 }
2155 if (!is_pred) {
2156 nr_preds++;
2157 is_pred = true;
2158 }
2159 }
2160
2161 if (quote) {
2162 *err = last_quote;
2163 return MISSING_QUOTE;
2164 }
2165
2166 if (open != 1) {
2167 int level = open;
2168
2169 /* find the bad open */
2170 for (i--; i; i--) {
2171 if (quote) {
2172 if (str[i] == quote)
2173 quote = 0;
2174 continue;
2175 }
2176 switch (str[i]) {
2177 case '(':
2178 if (level == open) {
2179 *err = i;
2180 return TOO_MANY_OPEN;
2181 }
2182 level--;
2183 break;
2184 case ')':
2185 level++;
2186 break;
2187 case '\'':
2188 case '"':
2189 quote = str[i];
2190 break;
2191 }
2192 }
2193 /* First character is the '(' with missing ')' */
2194 *err = 0;
2195 return TOO_MANY_OPEN;
2196 }
2197
2198 /* Set the size of the required stacks */
2199 *parens = max_open;
2200 *preds = nr_preds;
2201 return 0;
2202 }
2203
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)2204 static int process_preds(struct trace_event_call *call,
2205 const char *filter_string,
2206 struct event_filter *filter,
2207 struct filter_parse_error *pe)
2208 {
2209 struct prog_entry *prog;
2210 int nr_parens;
2211 int nr_preds;
2212 int index;
2213 int ret;
2214
2215 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
2216 if (ret < 0) {
2217 switch (ret) {
2218 case MISSING_QUOTE:
2219 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
2220 break;
2221 case TOO_MANY_OPEN:
2222 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
2223 break;
2224 default:
2225 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
2226 }
2227 return ret;
2228 }
2229
2230 if (!nr_preds)
2231 return -EINVAL;
2232
2233 prog = predicate_parse(filter_string, nr_parens, nr_preds,
2234 parse_pred, call, pe);
2235 if (IS_ERR(prog))
2236 return PTR_ERR(prog);
2237
2238 rcu_assign_pointer(filter->prog, prog);
2239 return 0;
2240 }
2241
event_set_filtered_flag(struct trace_event_file * file)2242 static inline void event_set_filtered_flag(struct trace_event_file *file)
2243 {
2244 unsigned long old_flags = file->flags;
2245
2246 file->flags |= EVENT_FILE_FL_FILTERED;
2247
2248 if (old_flags != file->flags)
2249 trace_buffered_event_enable();
2250 }
2251
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)2252 static int process_system_preds(struct trace_subsystem_dir *dir,
2253 struct trace_array *tr,
2254 struct filter_parse_error *pe,
2255 char *filter_string)
2256 {
2257 struct trace_event_file *file;
2258 struct filter_list *filter_item;
2259 struct event_filter *filter = NULL;
2260 struct filter_head *filter_list;
2261 bool fail = true;
2262 int err;
2263
2264 filter_list = kmalloc(sizeof(*filter_list), GFP_KERNEL);
2265 if (!filter_list)
2266 return -ENOMEM;
2267
2268 INIT_LIST_HEAD(&filter_list->list);
2269
2270 list_for_each_entry(file, &tr->events, list) {
2271
2272 if (file->system != dir)
2273 continue;
2274
2275 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2276 if (!filter)
2277 goto fail_mem;
2278
2279 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2280 if (!filter->filter_string)
2281 goto fail_mem;
2282
2283 err = process_preds(file->event_call, filter_string, filter, pe);
2284 if (err) {
2285 filter_disable(file);
2286 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2287 append_filter_err(tr, pe, filter);
2288 } else
2289 event_set_filtered_flag(file);
2290
2291
2292 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
2293 if (!filter_item)
2294 goto fail_mem;
2295
2296 list_add_tail(&filter_item->list, &filter_list->list);
2297 /*
2298 * Regardless of if this returned an error, we still
2299 * replace the filter for the call.
2300 */
2301 filter_item->filter = event_filter(file);
2302 event_set_filter(file, filter);
2303 filter = NULL;
2304
2305 fail = false;
2306 }
2307
2308 if (fail)
2309 goto fail;
2310
2311 /*
2312 * The calls can still be using the old filters.
2313 * Do a synchronize_rcu() and to ensure all calls are
2314 * done with them before we free them.
2315 */
2316 delay_free_filter(filter_list);
2317 return 0;
2318 fail:
2319 /* No call succeeded */
2320 free_filter_list(filter_list);
2321 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2322 return -EINVAL;
2323 fail_mem:
2324 __free_filter(filter);
2325
2326 /* If any call succeeded, we still need to sync */
2327 if (!fail)
2328 delay_free_filter(filter_list);
2329 else
2330 free_filter_list(filter_list);
2331
2332 return -ENOMEM;
2333 }
2334
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)2335 static int create_filter_start(char *filter_string, bool set_str,
2336 struct filter_parse_error **pse,
2337 struct event_filter **filterp)
2338 {
2339 struct event_filter *filter;
2340 struct filter_parse_error *pe = NULL;
2341 int err = 0;
2342
2343 if (WARN_ON_ONCE(*pse || *filterp))
2344 return -EINVAL;
2345
2346 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2347 if (filter && set_str) {
2348 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2349 if (!filter->filter_string)
2350 err = -ENOMEM;
2351 }
2352
2353 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2354
2355 if (!filter || !pe || err) {
2356 kfree(pe);
2357 __free_filter(filter);
2358 return -ENOMEM;
2359 }
2360
2361 /* we're committed to creating a new filter */
2362 *filterp = filter;
2363 *pse = pe;
2364
2365 return 0;
2366 }
2367
create_filter_finish(struct filter_parse_error * pe)2368 static void create_filter_finish(struct filter_parse_error *pe)
2369 {
2370 kfree(pe);
2371 }
2372
2373 /**
2374 * create_filter - create a filter for a trace_event_call
2375 * @tr: the trace array associated with these events
2376 * @call: trace_event_call to create a filter for
2377 * @filter_string: filter string
2378 * @set_str: remember @filter_str and enable detailed error in filter
2379 * @filterp: out param for created filter (always updated on return)
2380 * Must be a pointer that references a NULL pointer.
2381 *
2382 * Creates a filter for @call with @filter_str. If @set_str is %true,
2383 * @filter_str is copied and recorded in the new filter.
2384 *
2385 * On success, returns 0 and *@filterp points to the new filter. On
2386 * failure, returns -errno and *@filterp may point to %NULL or to a new
2387 * filter. In the latter case, the returned filter contains error
2388 * information if @set_str is %true and the caller is responsible for
2389 * freeing it.
2390 */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)2391 static int create_filter(struct trace_array *tr,
2392 struct trace_event_call *call,
2393 char *filter_string, bool set_str,
2394 struct event_filter **filterp)
2395 {
2396 struct filter_parse_error *pe = NULL;
2397 int err;
2398
2399 /* filterp must point to NULL */
2400 if (WARN_ON(*filterp))
2401 *filterp = NULL;
2402
2403 err = create_filter_start(filter_string, set_str, &pe, filterp);
2404 if (err)
2405 return err;
2406
2407 err = process_preds(call, filter_string, *filterp, pe);
2408 if (err && set_str)
2409 append_filter_err(tr, pe, *filterp);
2410 create_filter_finish(pe);
2411
2412 return err;
2413 }
2414
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)2415 int create_event_filter(struct trace_array *tr,
2416 struct trace_event_call *call,
2417 char *filter_str, bool set_str,
2418 struct event_filter **filterp)
2419 {
2420 return create_filter(tr, call, filter_str, set_str, filterp);
2421 }
2422
2423 /**
2424 * create_system_filter - create a filter for an event subsystem
2425 * @dir: the descriptor for the subsystem directory
2426 * @filter_str: filter string
2427 * @filterp: out param for created filter (always updated on return)
2428 *
2429 * Identical to create_filter() except that it creates a subsystem filter
2430 * and always remembers @filter_str.
2431 */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)2432 static int create_system_filter(struct trace_subsystem_dir *dir,
2433 char *filter_str, struct event_filter **filterp)
2434 {
2435 struct filter_parse_error *pe = NULL;
2436 int err;
2437
2438 err = create_filter_start(filter_str, true, &pe, filterp);
2439 if (!err) {
2440 err = process_system_preds(dir, dir->tr, pe, filter_str);
2441 if (!err) {
2442 /* System filters just show a default message */
2443 kfree((*filterp)->filter_string);
2444 (*filterp)->filter_string = NULL;
2445 } else {
2446 append_filter_err(dir->tr, pe, *filterp);
2447 }
2448 }
2449 create_filter_finish(pe);
2450
2451 return err;
2452 }
2453
2454 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)2455 int apply_event_filter(struct trace_event_file *file, char *filter_string)
2456 {
2457 struct trace_event_call *call = file->event_call;
2458 struct event_filter *filter = NULL;
2459 int err;
2460
2461 if (file->flags & EVENT_FILE_FL_FREED)
2462 return -ENODEV;
2463
2464 if (!strcmp(strstrip(filter_string), "0")) {
2465 filter_disable(file);
2466 filter = event_filter(file);
2467
2468 if (!filter)
2469 return 0;
2470
2471 event_clear_filter(file);
2472
2473 try_delay_free_filter(filter);
2474
2475 return 0;
2476 }
2477
2478 err = create_filter(file->tr, call, filter_string, true, &filter);
2479
2480 /*
2481 * Always swap the call filter with the new filter
2482 * even if there was an error. If there was an error
2483 * in the filter, we disable the filter and show the error
2484 * string
2485 */
2486 if (filter) {
2487 struct event_filter *tmp;
2488
2489 tmp = event_filter(file);
2490 if (!err)
2491 event_set_filtered_flag(file);
2492 else
2493 filter_disable(file);
2494
2495 event_set_filter(file, filter);
2496
2497 if (tmp)
2498 try_delay_free_filter(tmp);
2499 }
2500
2501 return err;
2502 }
2503
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)2504 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2505 char *filter_string)
2506 {
2507 struct event_subsystem *system = dir->subsystem;
2508 struct trace_array *tr = dir->tr;
2509 struct event_filter *filter = NULL;
2510 int err = 0;
2511
2512 guard(mutex)(&event_mutex);
2513
2514 /* Make sure the system still has events */
2515 if (!dir->nr_events)
2516 return -ENODEV;
2517
2518 if (!strcmp(strstrip(filter_string), "0")) {
2519 filter_free_subsystem_preds(dir, tr);
2520 remove_filter_string(system->filter);
2521 filter = system->filter;
2522 system->filter = NULL;
2523 /* Ensure all filters are no longer used */
2524 filter_free_subsystem_filters(dir, tr, filter);
2525 return 0;
2526 }
2527
2528 err = create_system_filter(dir, filter_string, &filter);
2529 if (filter) {
2530 /*
2531 * No event actually uses the system filter
2532 * we can free it without synchronize_rcu().
2533 */
2534 __free_filter(system->filter);
2535 system->filter = filter;
2536 }
2537
2538 return err;
2539 }
2540
2541 #ifdef CONFIG_PERF_EVENTS
2542
ftrace_profile_free_filter(struct perf_event * event)2543 void ftrace_profile_free_filter(struct perf_event *event)
2544 {
2545 struct event_filter *filter = event->filter;
2546
2547 event->filter = NULL;
2548 __free_filter(filter);
2549 }
2550
2551 struct function_filter_data {
2552 struct ftrace_ops *ops;
2553 int first_filter;
2554 int first_notrace;
2555 };
2556
2557 #ifdef CONFIG_FUNCTION_TRACER
2558 static char **
ftrace_function_filter_re(char * buf,int len,int * count)2559 ftrace_function_filter_re(char *buf, int len, int *count)
2560 {
2561 char *str, **re;
2562
2563 str = kstrndup(buf, len, GFP_KERNEL);
2564 if (!str)
2565 return NULL;
2566
2567 /*
2568 * The argv_split function takes white space
2569 * as a separator, so convert ',' into spaces.
2570 */
2571 strreplace(str, ',', ' ');
2572
2573 re = argv_split(GFP_KERNEL, str, count);
2574 kfree(str);
2575 return re;
2576 }
2577
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2578 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2579 int reset, char *re, int len)
2580 {
2581 int ret;
2582
2583 if (filter)
2584 ret = ftrace_set_filter(ops, re, len, reset);
2585 else
2586 ret = ftrace_set_notrace(ops, re, len, reset);
2587
2588 return ret;
2589 }
2590
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2591 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2592 struct function_filter_data *data)
2593 {
2594 int i, re_cnt, ret = -EINVAL;
2595 int *reset;
2596 char **re;
2597
2598 reset = filter ? &data->first_filter : &data->first_notrace;
2599
2600 /*
2601 * The 'ip' field could have multiple filters set, separated
2602 * either by space or comma. We first cut the filter and apply
2603 * all pieces separately.
2604 */
2605 re = ftrace_function_filter_re(buf, len, &re_cnt);
2606 if (!re)
2607 return -EINVAL;
2608
2609 for (i = 0; i < re_cnt; i++) {
2610 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2611 re[i], strlen(re[i]));
2612 if (ret)
2613 break;
2614
2615 if (*reset)
2616 *reset = 0;
2617 }
2618
2619 argv_free(re);
2620 return ret;
2621 }
2622
ftrace_function_check_pred(struct filter_pred * pred)2623 static int ftrace_function_check_pred(struct filter_pred *pred)
2624 {
2625 struct ftrace_event_field *field = pred->field;
2626
2627 /*
2628 * Check the predicate for function trace, verify:
2629 * - only '==' and '!=' is used
2630 * - the 'ip' field is used
2631 */
2632 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2633 return -EINVAL;
2634
2635 if (strcmp(field->name, "ip"))
2636 return -EINVAL;
2637
2638 return 0;
2639 }
2640
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2641 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2642 struct function_filter_data *data)
2643 {
2644 int ret;
2645
2646 /* Checking the node is valid for function trace. */
2647 ret = ftrace_function_check_pred(pred);
2648 if (ret)
2649 return ret;
2650
2651 return __ftrace_function_set_filter(pred->op == OP_EQ,
2652 pred->regex->pattern,
2653 pred->regex->len,
2654 data);
2655 }
2656
is_or(struct prog_entry * prog,int i)2657 static bool is_or(struct prog_entry *prog, int i)
2658 {
2659 int target;
2660
2661 /*
2662 * Only "||" is allowed for function events, thus,
2663 * all true branches should jump to true, and any
2664 * false branch should jump to false.
2665 */
2666 target = prog[i].target + 1;
2667 /* True and false have NULL preds (all prog entries should jump to one */
2668 if (prog[target].pred)
2669 return false;
2670
2671 /* prog[target].target is 1 for TRUE, 0 for FALSE */
2672 return prog[i].when_to_branch == prog[target].target;
2673 }
2674
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2675 static int ftrace_function_set_filter(struct perf_event *event,
2676 struct event_filter *filter)
2677 {
2678 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2679 lockdep_is_held(&event_mutex));
2680 struct function_filter_data data = {
2681 .first_filter = 1,
2682 .first_notrace = 1,
2683 .ops = &event->ftrace_ops,
2684 };
2685 int i;
2686
2687 for (i = 0; prog[i].pred; i++) {
2688 struct filter_pred *pred = prog[i].pred;
2689
2690 if (!is_or(prog, i))
2691 return -EINVAL;
2692
2693 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2694 return -EINVAL;
2695 }
2696 return 0;
2697 }
2698 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2699 static int ftrace_function_set_filter(struct perf_event *event,
2700 struct event_filter *filter)
2701 {
2702 return -ENODEV;
2703 }
2704 #endif /* CONFIG_FUNCTION_TRACER */
2705
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2706 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2707 char *filter_str)
2708 {
2709 int err;
2710 struct event_filter *filter = NULL;
2711 struct trace_event_call *call;
2712
2713 guard(mutex)(&event_mutex);
2714
2715 call = event->tp_event;
2716
2717 if (!call)
2718 return -EINVAL;
2719
2720 if (event->filter)
2721 return -EEXIST;
2722
2723 err = create_filter(NULL, call, filter_str, false, &filter);
2724 if (err)
2725 goto free_filter;
2726
2727 if (ftrace_event_is_function(call))
2728 err = ftrace_function_set_filter(event, filter);
2729 else
2730 event->filter = filter;
2731
2732 free_filter:
2733 if (err || ftrace_event_is_function(call))
2734 __free_filter(filter);
2735
2736 return err;
2737 }
2738
2739 #endif /* CONFIG_PERF_EVENTS */
2740
2741 #ifdef CONFIG_FTRACE_STARTUP_TEST
2742
2743 #include <linux/types.h>
2744 #include <linux/tracepoint.h>
2745
2746 #define CREATE_TRACE_POINTS
2747 #include "trace_events_filter_test.h"
2748
2749 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2750 { \
2751 .filter = FILTER, \
2752 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2753 .e = ve, .f = vf, .g = vg, .h = vh }, \
2754 .match = m, \
2755 .not_visited = nvisit, \
2756 }
2757 #define YES 1
2758 #define NO 0
2759
2760 static struct test_filter_data_t {
2761 char *filter;
2762 struct trace_event_raw_ftrace_test_filter rec;
2763 int match;
2764 char *not_visited;
2765 } test_filter_data[] = {
2766 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2767 "e == 1 && f == 1 && g == 1 && h == 1"
2768 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2769 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2770 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2771 #undef FILTER
2772 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2773 "e == 1 || f == 1 || g == 1 || h == 1"
2774 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2775 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2776 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2777 #undef FILTER
2778 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2779 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2780 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2781 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2782 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2783 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2784 #undef FILTER
2785 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2786 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2787 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2788 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2789 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2790 #undef FILTER
2791 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2792 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2793 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2794 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2795 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2796 #undef FILTER
2797 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2798 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2799 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2800 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2801 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2802 #undef FILTER
2803 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2804 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2805 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2806 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2807 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2808 #undef FILTER
2809 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2810 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2811 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2812 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2813 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2814 };
2815
2816 #undef DATA_REC
2817 #undef FILTER
2818 #undef YES
2819 #undef NO
2820
2821 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2822
2823 static int test_pred_visited;
2824
test_pred_visited_fn(struct filter_pred * pred,void * event)2825 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2826 {
2827 struct ftrace_event_field *field = pred->field;
2828
2829 test_pred_visited = 1;
2830 printk(KERN_INFO "\npred visited %s\n", field->name);
2831 return 1;
2832 }
2833
update_pred_fn(struct event_filter * filter,char * fields)2834 static void update_pred_fn(struct event_filter *filter, char *fields)
2835 {
2836 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2837 lockdep_is_held(&event_mutex));
2838 int i;
2839
2840 for (i = 0; prog[i].pred; i++) {
2841 struct filter_pred *pred = prog[i].pred;
2842 struct ftrace_event_field *field = pred->field;
2843
2844 WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2845
2846 if (!field) {
2847 WARN_ONCE(1, "all leafs should have field defined %d", i);
2848 continue;
2849 }
2850
2851 if (!strchr(fields, *field->name))
2852 continue;
2853
2854 pred->fn_num = FILTER_PRED_TEST_VISITED;
2855 }
2856 }
2857
ftrace_test_event_filter(void)2858 static __init int ftrace_test_event_filter(void)
2859 {
2860 int i;
2861
2862 printk(KERN_INFO "Testing ftrace filter: ");
2863
2864 for (i = 0; i < DATA_CNT; i++) {
2865 struct event_filter *filter = NULL;
2866 struct test_filter_data_t *d = &test_filter_data[i];
2867 int err;
2868
2869 err = create_filter(NULL, &event_ftrace_test_filter,
2870 d->filter, false, &filter);
2871 if (err) {
2872 printk(KERN_INFO
2873 "Failed to get filter for '%s', err %d\n",
2874 d->filter, err);
2875 __free_filter(filter);
2876 break;
2877 }
2878
2879 /* Needed to dereference filter->prog */
2880 mutex_lock(&event_mutex);
2881 /*
2882 * The preemption disabling is not really needed for self
2883 * tests, but the rcu dereference will complain without it.
2884 */
2885 preempt_disable();
2886 if (*d->not_visited)
2887 update_pred_fn(filter, d->not_visited);
2888
2889 test_pred_visited = 0;
2890 err = filter_match_preds(filter, &d->rec);
2891 preempt_enable();
2892
2893 mutex_unlock(&event_mutex);
2894
2895 __free_filter(filter);
2896
2897 if (test_pred_visited) {
2898 printk(KERN_INFO
2899 "Failed, unwanted pred visited for filter %s\n",
2900 d->filter);
2901 break;
2902 }
2903
2904 if (err != d->match) {
2905 printk(KERN_INFO
2906 "Failed to match filter '%s', expected %d\n",
2907 d->filter, d->match);
2908 break;
2909 }
2910 }
2911
2912 if (i == DATA_CNT)
2913 printk(KERN_CONT "OK\n");
2914
2915 /* Need to call ftrace_test_filter to prevent a warning */
2916 if (!trace_ftrace_test_filter_enabled())
2917 trace_ftrace_test_filter(1, 2, 3, 4, 5, 6, 7, 8);
2918
2919 return 0;
2920 }
2921
2922 late_initcall(ftrace_test_event_filter);
2923
2924 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2925