xref: /linux/fs/libfs.c (revision 51e49111c00bee76ca403adf7cd617b71a9a0da4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/filelock.h>
10 #include <linux/pagemap.h>
11 #include <linux/slab.h>
12 #include <linux/cred.h>
13 #include <linux/mount.h>
14 #include <linux/vfs.h>
15 #include <linux/quotaops.h>
16 #include <linux/mutex.h>
17 #include <linux/namei.h>
18 #include <linux/exportfs.h>
19 #include <linux/iversion.h>
20 #include <linux/writeback.h>
21 #include <linux/buffer_head.h> /* sync_mapping_buffers */
22 #include <linux/fs_context.h>
23 #include <linux/pseudo_fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/unicode.h>
26 #include <linux/fscrypt.h>
27 #include <linux/pidfs.h>
28 
29 #include <linux/uaccess.h>
30 
31 #include "internal.h"
32 
33 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
34 		   struct kstat *stat, u32 request_mask,
35 		   unsigned int query_flags)
36 {
37 	struct inode *inode = d_inode(path->dentry);
38 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
39 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
40 	return 0;
41 }
42 EXPORT_SYMBOL(simple_getattr);
43 
44 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
45 {
46 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
47 
48 	buf->f_fsid = u64_to_fsid(id);
49 	buf->f_type = dentry->d_sb->s_magic;
50 	buf->f_bsize = PAGE_SIZE;
51 	buf->f_namelen = NAME_MAX;
52 	return 0;
53 }
54 EXPORT_SYMBOL(simple_statfs);
55 
56 /*
57  * Retaining negative dentries for an in-memory filesystem just wastes
58  * memory and lookup time: arrange for them to be deleted immediately.
59  */
60 int always_delete_dentry(const struct dentry *dentry)
61 {
62 	return 1;
63 }
64 EXPORT_SYMBOL(always_delete_dentry);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
75 		spin_lock(&dentry->d_lock);
76 		dentry->d_flags |= DCACHE_DONTCACHE;
77 		spin_unlock(&dentry->d_lock);
78 	}
79 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
80 		return NULL;
81 
82 	d_add(dentry, NULL);
83 	return NULL;
84 }
85 EXPORT_SYMBOL(simple_lookup);
86 
87 int dcache_dir_open(struct inode *inode, struct file *file)
88 {
89 	file->private_data = d_alloc_cursor(file->f_path.dentry);
90 
91 	return file->private_data ? 0 : -ENOMEM;
92 }
93 EXPORT_SYMBOL(dcache_dir_open);
94 
95 int dcache_dir_close(struct inode *inode, struct file *file)
96 {
97 	dput(file->private_data);
98 	return 0;
99 }
100 EXPORT_SYMBOL(dcache_dir_close);
101 
102 /* parent is locked at least shared */
103 /*
104  * Returns an element of siblings' list.
105  * We are looking for <count>th positive after <p>; if
106  * found, dentry is grabbed and returned to caller.
107  * If no such element exists, NULL is returned.
108  */
109 static struct dentry *scan_positives(struct dentry *cursor,
110 					struct hlist_node **p,
111 					loff_t count,
112 					struct dentry *last)
113 {
114 	struct dentry *dentry = cursor->d_parent, *found = NULL;
115 
116 	spin_lock(&dentry->d_lock);
117 	while (*p) {
118 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
119 		p = &d->d_sib.next;
120 		// we must at least skip cursors, to avoid livelocks
121 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
122 			continue;
123 		if (simple_positive(d) && !--count) {
124 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
125 			if (simple_positive(d))
126 				found = dget_dlock(d);
127 			spin_unlock(&d->d_lock);
128 			if (likely(found))
129 				break;
130 			count = 1;
131 		}
132 		if (need_resched()) {
133 			if (!hlist_unhashed(&cursor->d_sib))
134 				__hlist_del(&cursor->d_sib);
135 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
136 			p = &cursor->d_sib.next;
137 			spin_unlock(&dentry->d_lock);
138 			cond_resched();
139 			spin_lock(&dentry->d_lock);
140 		}
141 	}
142 	spin_unlock(&dentry->d_lock);
143 	dput(last);
144 	return found;
145 }
146 
147 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
148 {
149 	struct dentry *dentry = file->f_path.dentry;
150 	switch (whence) {
151 		case 1:
152 			offset += file->f_pos;
153 			fallthrough;
154 		case 0:
155 			if (offset >= 0)
156 				break;
157 			fallthrough;
158 		default:
159 			return -EINVAL;
160 	}
161 	if (offset != file->f_pos) {
162 		struct dentry *cursor = file->private_data;
163 		struct dentry *to = NULL;
164 
165 		inode_lock_shared(dentry->d_inode);
166 
167 		if (offset > 2)
168 			to = scan_positives(cursor, &dentry->d_children.first,
169 					    offset - 2, NULL);
170 		spin_lock(&dentry->d_lock);
171 		hlist_del_init(&cursor->d_sib);
172 		if (to)
173 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
174 		spin_unlock(&dentry->d_lock);
175 		dput(to);
176 
177 		file->f_pos = offset;
178 
179 		inode_unlock_shared(dentry->d_inode);
180 	}
181 	return offset;
182 }
183 EXPORT_SYMBOL(dcache_dir_lseek);
184 
185 /*
186  * Directory is locked and all positive dentries in it are safe, since
187  * for ramfs-type trees they can't go away without unlink() or rmdir(),
188  * both impossible due to the lock on directory.
189  */
190 
191 int dcache_readdir(struct file *file, struct dir_context *ctx)
192 {
193 	struct dentry *dentry = file->f_path.dentry;
194 	struct dentry *cursor = file->private_data;
195 	struct dentry *next = NULL;
196 	struct hlist_node **p;
197 
198 	if (!dir_emit_dots(file, ctx))
199 		return 0;
200 
201 	if (ctx->pos == 2)
202 		p = &dentry->d_children.first;
203 	else
204 		p = &cursor->d_sib.next;
205 
206 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 			      d_inode(next)->i_ino,
209 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
210 			break;
211 		ctx->pos++;
212 		p = &next->d_sib.next;
213 	}
214 	spin_lock(&dentry->d_lock);
215 	hlist_del_init(&cursor->d_sib);
216 	if (next)
217 		hlist_add_before(&cursor->d_sib, &next->d_sib);
218 	spin_unlock(&dentry->d_lock);
219 	dput(next);
220 
221 	return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224 
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 	return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230 
231 const struct file_operations simple_dir_operations = {
232 	.open		= dcache_dir_open,
233 	.release	= dcache_dir_close,
234 	.llseek		= dcache_dir_lseek,
235 	.read		= generic_read_dir,
236 	.iterate_shared	= dcache_readdir,
237 	.fsync		= noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240 
241 const struct inode_operations simple_dir_inode_operations = {
242 	.lookup		= simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245 
246 /* simple_offset_add() never assigns these to a dentry */
247 enum {
248 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
249 	DIR_OFFSET_EOD		= S32_MAX,
250 };
251 
252 /* simple_offset_add() allocation range */
253 enum {
254 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
255 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
256 };
257 
258 static void offset_set(struct dentry *dentry, long offset)
259 {
260 	dentry->d_fsdata = (void *)offset;
261 }
262 
263 static long dentry2offset(struct dentry *dentry)
264 {
265 	return (long)dentry->d_fsdata;
266 }
267 
268 static struct lock_class_key simple_offset_lock_class;
269 
270 /**
271  * simple_offset_init - initialize an offset_ctx
272  * @octx: directory offset map to be initialized
273  *
274  */
275 void simple_offset_init(struct offset_ctx *octx)
276 {
277 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
278 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
279 	octx->next_offset = DIR_OFFSET_MIN;
280 }
281 
282 /**
283  * simple_offset_add - Add an entry to a directory's offset map
284  * @octx: directory offset ctx to be updated
285  * @dentry: new dentry being added
286  *
287  * Returns zero on success. @octx and the dentry's offset are updated.
288  * Otherwise, a negative errno value is returned.
289  */
290 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
291 {
292 	unsigned long offset;
293 	int ret;
294 
295 	if (dentry2offset(dentry) != 0)
296 		return -EBUSY;
297 
298 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
299 				 DIR_OFFSET_MAX, &octx->next_offset,
300 				 GFP_KERNEL);
301 	if (unlikely(ret < 0))
302 		return ret == -EBUSY ? -ENOSPC : ret;
303 
304 	offset_set(dentry, offset);
305 	return 0;
306 }
307 
308 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
309 				 long offset)
310 {
311 	int ret;
312 
313 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
314 	if (ret)
315 		return ret;
316 	offset_set(dentry, offset);
317 	return 0;
318 }
319 
320 /**
321  * simple_offset_remove - Remove an entry to a directory's offset map
322  * @octx: directory offset ctx to be updated
323  * @dentry: dentry being removed
324  *
325  */
326 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
327 {
328 	long offset;
329 
330 	offset = dentry2offset(dentry);
331 	if (offset == 0)
332 		return;
333 
334 	mtree_erase(&octx->mt, offset);
335 	offset_set(dentry, 0);
336 }
337 
338 /**
339  * simple_offset_rename - handle directory offsets for rename
340  * @old_dir: parent directory of source entry
341  * @old_dentry: dentry of source entry
342  * @new_dir: parent_directory of destination entry
343  * @new_dentry: dentry of destination
344  *
345  * Caller provides appropriate serialization.
346  *
347  * User space expects the directory offset value of the replaced
348  * (new) directory entry to be unchanged after a rename.
349  *
350  * Caller must have grabbed a slot for new_dentry in the maple_tree
351  * associated with new_dir, even if dentry is negative.
352  */
353 void simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
354 			  struct inode *new_dir, struct dentry *new_dentry)
355 {
356 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
357 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
358 	long new_offset = dentry2offset(new_dentry);
359 
360 	if (WARN_ON(!new_offset))
361 		return;
362 
363 	simple_offset_remove(old_ctx, old_dentry);
364 	offset_set(new_dentry, 0);
365 	WARN_ON(simple_offset_replace(new_ctx, old_dentry, new_offset));
366 }
367 
368 /**
369  * simple_offset_rename_exchange - exchange rename with directory offsets
370  * @old_dir: parent of dentry being moved
371  * @old_dentry: dentry being moved
372  * @new_dir: destination parent
373  * @new_dentry: destination dentry
374  *
375  * This API preserves the directory offset values. Caller provides
376  * appropriate serialization.
377  *
378  * Returns zero on success. Otherwise a negative errno is returned and the
379  * rename is rolled back.
380  */
381 int simple_offset_rename_exchange(struct inode *old_dir,
382 				  struct dentry *old_dentry,
383 				  struct inode *new_dir,
384 				  struct dentry *new_dentry)
385 {
386 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
387 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
388 	long old_index = dentry2offset(old_dentry);
389 	long new_index = dentry2offset(new_dentry);
390 	int ret;
391 
392 	if (WARN_ON(!old_index || !new_index))
393 		return -EINVAL;
394 
395 	ret = mtree_store(&new_ctx->mt, new_index, old_dentry, GFP_KERNEL);
396 	if (WARN_ON(ret))
397 		return ret;
398 
399 	ret = mtree_store(&old_ctx->mt, old_index, new_dentry, GFP_KERNEL);
400 	if (WARN_ON(ret)) {
401 		mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL);
402 		return ret;
403 	}
404 
405 	offset_set(old_dentry, new_index);
406 	offset_set(new_dentry, old_index);
407 	simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
408 	return 0;
409 }
410 
411 /**
412  * simple_offset_destroy - Release offset map
413  * @octx: directory offset ctx that is about to be destroyed
414  *
415  * During fs teardown (eg. umount), a directory's offset map might still
416  * contain entries. xa_destroy() cleans out anything that remains.
417  */
418 void simple_offset_destroy(struct offset_ctx *octx)
419 {
420 	mtree_destroy(&octx->mt);
421 }
422 
423 /**
424  * offset_dir_llseek - Advance the read position of a directory descriptor
425  * @file: an open directory whose position is to be updated
426  * @offset: a byte offset
427  * @whence: enumerator describing the starting position for this update
428  *
429  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
430  *
431  * Returns the updated read position if successful; otherwise a
432  * negative errno is returned and the read position remains unchanged.
433  */
434 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
435 {
436 	switch (whence) {
437 	case SEEK_CUR:
438 		offset += file->f_pos;
439 		fallthrough;
440 	case SEEK_SET:
441 		if (offset >= 0)
442 			break;
443 		fallthrough;
444 	default:
445 		return -EINVAL;
446 	}
447 
448 	return vfs_setpos(file, offset, LONG_MAX);
449 }
450 
451 static struct dentry *find_positive_dentry(struct dentry *parent,
452 					   struct dentry *dentry,
453 					   bool next)
454 {
455 	struct dentry *found = NULL;
456 
457 	spin_lock(&parent->d_lock);
458 	if (next)
459 		dentry = d_next_sibling(dentry);
460 	else if (!dentry)
461 		dentry = d_first_child(parent);
462 	hlist_for_each_entry_from(dentry, d_sib) {
463 		if (!simple_positive(dentry))
464 			continue;
465 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
466 		if (simple_positive(dentry))
467 			found = dget_dlock(dentry);
468 		spin_unlock(&dentry->d_lock);
469 		if (likely(found))
470 			break;
471 	}
472 	spin_unlock(&parent->d_lock);
473 	return found;
474 }
475 
476 static noinline_for_stack struct dentry *
477 offset_dir_lookup(struct dentry *parent, loff_t offset)
478 {
479 	struct inode *inode = d_inode(parent);
480 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
481 	struct dentry *child, *found = NULL;
482 
483 	MA_STATE(mas, &octx->mt, offset, offset);
484 
485 	if (offset == DIR_OFFSET_FIRST)
486 		found = find_positive_dentry(parent, NULL, false);
487 	else {
488 		rcu_read_lock();
489 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
490 		found = find_positive_dentry(parent, child, false);
491 		rcu_read_unlock();
492 	}
493 	return found;
494 }
495 
496 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
497 {
498 	struct inode *inode = d_inode(dentry);
499 
500 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
501 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
502 }
503 
504 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
505 {
506 	struct dentry *dir = file->f_path.dentry;
507 	struct dentry *dentry;
508 
509 	dentry = offset_dir_lookup(dir, ctx->pos);
510 	if (!dentry)
511 		goto out_eod;
512 	while (true) {
513 		struct dentry *next;
514 
515 		ctx->pos = dentry2offset(dentry);
516 		if (!offset_dir_emit(ctx, dentry))
517 			break;
518 
519 		next = find_positive_dentry(dir, dentry, true);
520 		dput(dentry);
521 
522 		if (!next)
523 			goto out_eod;
524 		dentry = next;
525 	}
526 	dput(dentry);
527 	return;
528 
529 out_eod:
530 	ctx->pos = DIR_OFFSET_EOD;
531 }
532 
533 /**
534  * offset_readdir - Emit entries starting at offset @ctx->pos
535  * @file: an open directory to iterate over
536  * @ctx: directory iteration context
537  *
538  * Caller must hold @file's i_rwsem to prevent insertion or removal of
539  * entries during this call.
540  *
541  * On entry, @ctx->pos contains an offset that represents the first entry
542  * to be read from the directory.
543  *
544  * The operation continues until there are no more entries to read, or
545  * until the ctx->actor indicates there is no more space in the caller's
546  * output buffer.
547  *
548  * On return, @ctx->pos contains an offset that will read the next entry
549  * in this directory when offset_readdir() is called again with @ctx.
550  * Caller places this value in the d_off field of the last entry in the
551  * user's buffer.
552  *
553  * Return values:
554  *   %0 - Complete
555  */
556 static int offset_readdir(struct file *file, struct dir_context *ctx)
557 {
558 	struct dentry *dir = file->f_path.dentry;
559 
560 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
561 
562 	if (!dir_emit_dots(file, ctx))
563 		return 0;
564 	if (ctx->pos != DIR_OFFSET_EOD)
565 		offset_iterate_dir(file, ctx);
566 	return 0;
567 }
568 
569 const struct file_operations simple_offset_dir_operations = {
570 	.llseek		= offset_dir_llseek,
571 	.iterate_shared	= offset_readdir,
572 	.read		= generic_read_dir,
573 	.fsync		= noop_fsync,
574 	.setlease	= generic_setlease,
575 };
576 
577 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
578 {
579 	struct dentry *child = NULL, *d;
580 
581 	spin_lock(&parent->d_lock);
582 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
583 	hlist_for_each_entry_from(d, d_sib) {
584 		if (simple_positive(d)) {
585 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
586 			if (simple_positive(d))
587 				child = dget_dlock(d);
588 			spin_unlock(&d->d_lock);
589 			if (likely(child))
590 				break;
591 		}
592 	}
593 	spin_unlock(&parent->d_lock);
594 	dput(prev);
595 	return child;
596 }
597 EXPORT_SYMBOL(find_next_child);
598 
599 static void __simple_recursive_removal(struct dentry *dentry,
600                               void (*callback)(struct dentry *),
601 			      bool locked)
602 {
603 	struct dentry *this = dget(dentry);
604 	while (true) {
605 		struct dentry *victim = NULL, *child;
606 		struct inode *inode = this->d_inode;
607 
608 		inode_lock_nested(inode, I_MUTEX_CHILD);
609 		if (d_is_dir(this))
610 			inode->i_flags |= S_DEAD;
611 		while ((child = find_next_child(this, victim)) == NULL) {
612 			// kill and ascend
613 			// update metadata while it's still locked
614 			inode_set_ctime_current(inode);
615 			clear_nlink(inode);
616 			inode_unlock(inode);
617 			victim = this;
618 			this = this->d_parent;
619 			inode = this->d_inode;
620 			if (!locked || victim != dentry)
621 				inode_lock_nested(inode, I_MUTEX_CHILD);
622 			if (simple_positive(victim)) {
623 				d_invalidate(victim);	// avoid lost mounts
624 				if (callback)
625 					callback(victim);
626 				fsnotify_delete(inode, d_inode(victim), victim);
627 				d_make_discardable(victim);
628 			}
629 			if (victim == dentry) {
630 				inode_set_mtime_to_ts(inode,
631 						      inode_set_ctime_current(inode));
632 				if (d_is_dir(dentry))
633 					drop_nlink(inode);
634 				if (!locked)
635 					inode_unlock(inode);
636 				dput(dentry);
637 				return;
638 			}
639 		}
640 		inode_unlock(inode);
641 		this = child;
642 	}
643 }
644 
645 void simple_recursive_removal(struct dentry *dentry,
646                               void (*callback)(struct dentry *))
647 {
648 	return __simple_recursive_removal(dentry, callback, false);
649 }
650 EXPORT_SYMBOL(simple_recursive_removal);
651 
652 void simple_remove_by_name(struct dentry *parent, const char *name,
653                            void (*callback)(struct dentry *))
654 {
655 	struct dentry *dentry;
656 
657 	dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent);
658 	if (!IS_ERR(dentry)) {
659 		simple_recursive_removal(dentry, callback);
660 		dput(dentry);	// paired with lookup_noperm_positive_unlocked()
661 	}
662 }
663 EXPORT_SYMBOL(simple_remove_by_name);
664 
665 /* caller holds parent directory with I_MUTEX_PARENT */
666 void locked_recursive_removal(struct dentry *dentry,
667                               void (*callback)(struct dentry *))
668 {
669 	return __simple_recursive_removal(dentry, callback, true);
670 }
671 EXPORT_SYMBOL(locked_recursive_removal);
672 
673 static const struct super_operations simple_super_operations = {
674 	.statfs		= simple_statfs,
675 };
676 
677 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
678 {
679 	struct pseudo_fs_context *ctx = fc->fs_private;
680 	struct inode *root;
681 
682 	s->s_maxbytes = MAX_LFS_FILESIZE;
683 	s->s_blocksize = PAGE_SIZE;
684 	s->s_blocksize_bits = PAGE_SHIFT;
685 	s->s_magic = ctx->magic;
686 	s->s_op = ctx->ops ?: &simple_super_operations;
687 	s->s_export_op = ctx->eops;
688 	s->s_xattr = ctx->xattr;
689 	s->s_time_gran = 1;
690 	s->s_d_flags |= ctx->s_d_flags;
691 	root = new_inode(s);
692 	if (!root)
693 		return -ENOMEM;
694 
695 	/*
696 	 * since this is the first inode, make it number 1. New inodes created
697 	 * after this must take care not to collide with it (by passing
698 	 * max_reserved of 1 to iunique).
699 	 */
700 	root->i_ino = 1;
701 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
702 	simple_inode_init_ts(root);
703 	s->s_root = d_make_root(root);
704 	if (!s->s_root)
705 		return -ENOMEM;
706 	set_default_d_op(s, ctx->dops);
707 	return 0;
708 }
709 
710 static int pseudo_fs_get_tree(struct fs_context *fc)
711 {
712 	return get_tree_nodev(fc, pseudo_fs_fill_super);
713 }
714 
715 static void pseudo_fs_free(struct fs_context *fc)
716 {
717 	kfree(fc->fs_private);
718 }
719 
720 static const struct fs_context_operations pseudo_fs_context_ops = {
721 	.free		= pseudo_fs_free,
722 	.get_tree	= pseudo_fs_get_tree,
723 };
724 
725 /*
726  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
727  * will never be mountable)
728  */
729 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
730 					unsigned long magic)
731 {
732 	struct pseudo_fs_context *ctx;
733 
734 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
735 	if (likely(ctx)) {
736 		ctx->magic = magic;
737 		fc->fs_private = ctx;
738 		fc->ops = &pseudo_fs_context_ops;
739 		fc->sb_flags |= SB_NOUSER;
740 		fc->global = true;
741 	}
742 	return ctx;
743 }
744 EXPORT_SYMBOL(init_pseudo);
745 
746 int simple_open(struct inode *inode, struct file *file)
747 {
748 	if (inode->i_private)
749 		file->private_data = inode->i_private;
750 	return 0;
751 }
752 EXPORT_SYMBOL(simple_open);
753 
754 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
755 {
756 	struct inode *inode = d_inode(old_dentry);
757 
758 	inode_set_mtime_to_ts(dir,
759 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
760 	inc_nlink(inode);
761 	ihold(inode);
762 	d_make_persistent(dentry, inode);
763 	return 0;
764 }
765 EXPORT_SYMBOL(simple_link);
766 
767 int simple_empty(struct dentry *dentry)
768 {
769 	struct dentry *child;
770 	int ret = 0;
771 
772 	spin_lock(&dentry->d_lock);
773 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
774 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
775 		if (simple_positive(child)) {
776 			spin_unlock(&child->d_lock);
777 			goto out;
778 		}
779 		spin_unlock(&child->d_lock);
780 	}
781 	ret = 1;
782 out:
783 	spin_unlock(&dentry->d_lock);
784 	return ret;
785 }
786 EXPORT_SYMBOL(simple_empty);
787 
788 void __simple_unlink(struct inode *dir, struct dentry *dentry)
789 {
790 	struct inode *inode = d_inode(dentry);
791 
792 	inode_set_mtime_to_ts(dir,
793 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
794 	drop_nlink(inode);
795 }
796 EXPORT_SYMBOL(__simple_unlink);
797 
798 void __simple_rmdir(struct inode *dir, struct dentry *dentry)
799 {
800 	drop_nlink(d_inode(dentry));
801 	__simple_unlink(dir, dentry);
802 	drop_nlink(dir);
803 }
804 EXPORT_SYMBOL(__simple_rmdir);
805 
806 int simple_unlink(struct inode *dir, struct dentry *dentry)
807 {
808 	__simple_unlink(dir, dentry);
809 	d_make_discardable(dentry);
810 	return 0;
811 }
812 EXPORT_SYMBOL(simple_unlink);
813 
814 int simple_rmdir(struct inode *dir, struct dentry *dentry)
815 {
816 	if (!simple_empty(dentry))
817 		return -ENOTEMPTY;
818 
819 	__simple_rmdir(dir, dentry);
820 	d_make_discardable(dentry);
821 	return 0;
822 }
823 EXPORT_SYMBOL(simple_rmdir);
824 
825 /**
826  * simple_rename_timestamp - update the various inode timestamps for rename
827  * @old_dir: old parent directory
828  * @old_dentry: dentry that is being renamed
829  * @new_dir: new parent directory
830  * @new_dentry: target for rename
831  *
832  * POSIX mandates that the old and new parent directories have their ctime and
833  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
834  * their ctime updated.
835  */
836 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
837 			     struct inode *new_dir, struct dentry *new_dentry)
838 {
839 	struct inode *newino = d_inode(new_dentry);
840 
841 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
842 	if (new_dir != old_dir)
843 		inode_set_mtime_to_ts(new_dir,
844 				      inode_set_ctime_current(new_dir));
845 	inode_set_ctime_current(d_inode(old_dentry));
846 	if (newino)
847 		inode_set_ctime_current(newino);
848 }
849 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
850 
851 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
852 			   struct inode *new_dir, struct dentry *new_dentry)
853 {
854 	bool old_is_dir = d_is_dir(old_dentry);
855 	bool new_is_dir = d_is_dir(new_dentry);
856 
857 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
858 		if (old_is_dir) {
859 			drop_nlink(old_dir);
860 			inc_nlink(new_dir);
861 		} else {
862 			drop_nlink(new_dir);
863 			inc_nlink(old_dir);
864 		}
865 	}
866 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
867 	return 0;
868 }
869 EXPORT_SYMBOL_GPL(simple_rename_exchange);
870 
871 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
872 		  struct dentry *old_dentry, struct inode *new_dir,
873 		  struct dentry *new_dentry, unsigned int flags)
874 {
875 	int they_are_dirs = d_is_dir(old_dentry);
876 
877 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
878 		return -EINVAL;
879 
880 	if (flags & RENAME_EXCHANGE)
881 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
882 
883 	if (!simple_empty(new_dentry))
884 		return -ENOTEMPTY;
885 
886 	if (d_really_is_positive(new_dentry)) {
887 		simple_unlink(new_dir, new_dentry);
888 		if (they_are_dirs) {
889 			drop_nlink(d_inode(new_dentry));
890 			drop_nlink(old_dir);
891 		}
892 	} else if (they_are_dirs) {
893 		drop_nlink(old_dir);
894 		inc_nlink(new_dir);
895 	}
896 
897 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
898 	return 0;
899 }
900 EXPORT_SYMBOL(simple_rename);
901 
902 /**
903  * simple_setattr - setattr for simple filesystem
904  * @idmap: idmap of the target mount
905  * @dentry: dentry
906  * @iattr: iattr structure
907  *
908  * Returns 0 on success, -error on failure.
909  *
910  * simple_setattr is a simple ->setattr implementation without a proper
911  * implementation of size changes.
912  *
913  * It can either be used for in-memory filesystems or special files
914  * on simple regular filesystems.  Anything that needs to change on-disk
915  * or wire state on size changes needs its own setattr method.
916  */
917 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
918 		   struct iattr *iattr)
919 {
920 	struct inode *inode = d_inode(dentry);
921 	int error;
922 
923 	error = setattr_prepare(idmap, dentry, iattr);
924 	if (error)
925 		return error;
926 
927 	if (iattr->ia_valid & ATTR_SIZE)
928 		truncate_setsize(inode, iattr->ia_size);
929 	setattr_copy(idmap, inode, iattr);
930 	mark_inode_dirty(inode);
931 	return 0;
932 }
933 EXPORT_SYMBOL(simple_setattr);
934 
935 static int simple_read_folio(struct file *file, struct folio *folio)
936 {
937 	folio_zero_range(folio, 0, folio_size(folio));
938 	flush_dcache_folio(folio);
939 	folio_mark_uptodate(folio);
940 	folio_unlock(folio);
941 	return 0;
942 }
943 
944 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
945 			loff_t pos, unsigned len,
946 			struct folio **foliop, void **fsdata)
947 {
948 	struct folio *folio;
949 
950 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
951 			mapping_gfp_mask(mapping));
952 	if (IS_ERR(folio))
953 		return PTR_ERR(folio);
954 
955 	*foliop = folio;
956 
957 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
958 		size_t from = offset_in_folio(folio, pos);
959 
960 		folio_zero_segments(folio, 0, from,
961 				from + len, folio_size(folio));
962 	}
963 	return 0;
964 }
965 EXPORT_SYMBOL(simple_write_begin);
966 
967 /**
968  * simple_write_end - .write_end helper for non-block-device FSes
969  * @iocb: kernel I/O control block
970  * @mapping: 		"
971  * @pos: 		"
972  * @len: 		"
973  * @copied: 		"
974  * @folio: 		"
975  * @fsdata: 		"
976  *
977  * simple_write_end does the minimum needed for updating a folio after
978  * writing is done. It has the same API signature as the .write_end of
979  * address_space_operations vector. So it can just be set onto .write_end for
980  * FSes that don't need any other processing. i_rwsem is assumed to be held
981  * exclusively.
982  * Block based filesystems should use generic_write_end().
983  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
984  * is not called, so a filesystem that actually does store data in .write_inode
985  * should extend on what's done here with a call to mark_inode_dirty() in the
986  * case that i_size has changed.
987  *
988  * Use *ONLY* with simple_read_folio()
989  */
990 static int simple_write_end(const struct kiocb *iocb,
991 			    struct address_space *mapping,
992 			    loff_t pos, unsigned len, unsigned copied,
993 			    struct folio *folio, void *fsdata)
994 {
995 	struct inode *inode = folio->mapping->host;
996 	loff_t last_pos = pos + copied;
997 
998 	/* zero the stale part of the folio if we did a short copy */
999 	if (!folio_test_uptodate(folio)) {
1000 		if (copied < len) {
1001 			size_t from = offset_in_folio(folio, pos);
1002 
1003 			folio_zero_range(folio, from + copied, len - copied);
1004 		}
1005 		folio_mark_uptodate(folio);
1006 	}
1007 	/*
1008 	 * No need to use i_size_read() here, the i_size
1009 	 * cannot change under us because we hold the i_rwsem.
1010 	 */
1011 	if (last_pos > inode->i_size)
1012 		i_size_write(inode, last_pos);
1013 
1014 	folio_mark_dirty(folio);
1015 	folio_unlock(folio);
1016 	folio_put(folio);
1017 
1018 	return copied;
1019 }
1020 
1021 /*
1022  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1023  */
1024 const struct address_space_operations ram_aops = {
1025 	.read_folio	= simple_read_folio,
1026 	.write_begin	= simple_write_begin,
1027 	.write_end	= simple_write_end,
1028 	.dirty_folio	= noop_dirty_folio,
1029 };
1030 EXPORT_SYMBOL(ram_aops);
1031 
1032 /*
1033  * the inodes created here are not hashed. If you use iunique to generate
1034  * unique inode values later for this filesystem, then you must take care
1035  * to pass it an appropriate max_reserved value to avoid collisions.
1036  */
1037 int simple_fill_super(struct super_block *s, unsigned long magic,
1038 		      const struct tree_descr *files)
1039 {
1040 	struct inode *inode;
1041 	struct dentry *dentry;
1042 	int i;
1043 
1044 	s->s_blocksize = PAGE_SIZE;
1045 	s->s_blocksize_bits = PAGE_SHIFT;
1046 	s->s_magic = magic;
1047 	s->s_op = &simple_super_operations;
1048 	s->s_time_gran = 1;
1049 
1050 	inode = new_inode(s);
1051 	if (!inode)
1052 		return -ENOMEM;
1053 	/*
1054 	 * because the root inode is 1, the files array must not contain an
1055 	 * entry at index 1
1056 	 */
1057 	inode->i_ino = 1;
1058 	inode->i_mode = S_IFDIR | 0755;
1059 	simple_inode_init_ts(inode);
1060 	inode->i_op = &simple_dir_inode_operations;
1061 	inode->i_fop = &simple_dir_operations;
1062 	set_nlink(inode, 2);
1063 	s->s_root = d_make_root(inode);
1064 	if (!s->s_root)
1065 		return -ENOMEM;
1066 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1067 		if (!files->name)
1068 			continue;
1069 
1070 		/* warn if it tries to conflict with the root inode */
1071 		if (unlikely(i == 1))
1072 			printk(KERN_WARNING "%s: %s passed in a files array"
1073 				"with an index of 1!\n", __func__,
1074 				s->s_type->name);
1075 
1076 		dentry = d_alloc_name(s->s_root, files->name);
1077 		if (!dentry)
1078 			return -ENOMEM;
1079 		inode = new_inode(s);
1080 		if (!inode) {
1081 			dput(dentry);
1082 			return -ENOMEM;
1083 		}
1084 		inode->i_mode = S_IFREG | files->mode;
1085 		simple_inode_init_ts(inode);
1086 		inode->i_fop = files->ops;
1087 		inode->i_ino = i;
1088 		d_make_persistent(dentry, inode);
1089 		dput(dentry);
1090 	}
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL(simple_fill_super);
1094 
1095 static DEFINE_SPINLOCK(pin_fs_lock);
1096 
1097 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1098 {
1099 	struct vfsmount *mnt = NULL;
1100 	spin_lock(&pin_fs_lock);
1101 	if (unlikely(!*mount)) {
1102 		spin_unlock(&pin_fs_lock);
1103 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1104 		if (IS_ERR(mnt))
1105 			return PTR_ERR(mnt);
1106 		spin_lock(&pin_fs_lock);
1107 		if (!*mount)
1108 			*mount = mnt;
1109 	}
1110 	mntget(*mount);
1111 	++*count;
1112 	spin_unlock(&pin_fs_lock);
1113 	mntput(mnt);
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL(simple_pin_fs);
1117 
1118 void simple_release_fs(struct vfsmount **mount, int *count)
1119 {
1120 	struct vfsmount *mnt;
1121 	spin_lock(&pin_fs_lock);
1122 	mnt = *mount;
1123 	if (!--*count)
1124 		*mount = NULL;
1125 	spin_unlock(&pin_fs_lock);
1126 	mntput(mnt);
1127 }
1128 EXPORT_SYMBOL(simple_release_fs);
1129 
1130 /**
1131  * simple_read_from_buffer - copy data from the buffer to user space
1132  * @to: the user space buffer to read to
1133  * @count: the maximum number of bytes to read
1134  * @ppos: the current position in the buffer
1135  * @from: the buffer to read from
1136  * @available: the size of the buffer
1137  *
1138  * The simple_read_from_buffer() function reads up to @count bytes from the
1139  * buffer @from at offset @ppos into the user space address starting at @to.
1140  *
1141  * On success, the number of bytes read is returned and the offset @ppos is
1142  * advanced by this number, or negative value is returned on error.
1143  **/
1144 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1145 				const void *from, size_t available)
1146 {
1147 	loff_t pos = *ppos;
1148 	size_t ret;
1149 
1150 	if (pos < 0)
1151 		return -EINVAL;
1152 	if (pos >= available || !count)
1153 		return 0;
1154 	if (count > available - pos)
1155 		count = available - pos;
1156 	ret = copy_to_user(to, from + pos, count);
1157 	if (ret == count)
1158 		return -EFAULT;
1159 	count -= ret;
1160 	*ppos = pos + count;
1161 	return count;
1162 }
1163 EXPORT_SYMBOL(simple_read_from_buffer);
1164 
1165 /**
1166  * simple_write_to_buffer - copy data from user space to the buffer
1167  * @to: the buffer to write to
1168  * @available: the size of the buffer
1169  * @ppos: the current position in the buffer
1170  * @from: the user space buffer to read from
1171  * @count: the maximum number of bytes to read
1172  *
1173  * The simple_write_to_buffer() function reads up to @count bytes from the user
1174  * space address starting at @from into the buffer @to at offset @ppos.
1175  *
1176  * On success, the number of bytes written is returned and the offset @ppos is
1177  * advanced by this number, or negative value is returned on error.
1178  **/
1179 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1180 		const void __user *from, size_t count)
1181 {
1182 	loff_t pos = *ppos;
1183 	size_t res;
1184 
1185 	if (pos < 0)
1186 		return -EINVAL;
1187 	if (pos >= available || !count)
1188 		return 0;
1189 	if (count > available - pos)
1190 		count = available - pos;
1191 	res = copy_from_user(to + pos, from, count);
1192 	if (res == count)
1193 		return -EFAULT;
1194 	count -= res;
1195 	*ppos = pos + count;
1196 	return count;
1197 }
1198 EXPORT_SYMBOL(simple_write_to_buffer);
1199 
1200 /**
1201  * memory_read_from_buffer - copy data from the buffer
1202  * @to: the kernel space buffer to read to
1203  * @count: the maximum number of bytes to read
1204  * @ppos: the current position in the buffer
1205  * @from: the buffer to read from
1206  * @available: the size of the buffer
1207  *
1208  * The memory_read_from_buffer() function reads up to @count bytes from the
1209  * buffer @from at offset @ppos into the kernel space address starting at @to.
1210  *
1211  * On success, the number of bytes read is returned and the offset @ppos is
1212  * advanced by this number, or negative value is returned on error.
1213  **/
1214 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1215 				const void *from, size_t available)
1216 {
1217 	loff_t pos = *ppos;
1218 
1219 	if (pos < 0)
1220 		return -EINVAL;
1221 	if (pos >= available)
1222 		return 0;
1223 	if (count > available - pos)
1224 		count = available - pos;
1225 	memcpy(to, from + pos, count);
1226 	*ppos = pos + count;
1227 
1228 	return count;
1229 }
1230 EXPORT_SYMBOL(memory_read_from_buffer);
1231 
1232 /*
1233  * Transaction based IO.
1234  * The file expects a single write which triggers the transaction, and then
1235  * possibly a read which collects the result - which is stored in a
1236  * file-local buffer.
1237  */
1238 
1239 void simple_transaction_set(struct file *file, size_t n)
1240 {
1241 	struct simple_transaction_argresp *ar = file->private_data;
1242 
1243 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1244 
1245 	/*
1246 	 * The barrier ensures that ar->size will really remain zero until
1247 	 * ar->data is ready for reading.
1248 	 */
1249 	smp_mb();
1250 	ar->size = n;
1251 }
1252 EXPORT_SYMBOL(simple_transaction_set);
1253 
1254 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1255 {
1256 	struct simple_transaction_argresp *ar;
1257 	static DEFINE_SPINLOCK(simple_transaction_lock);
1258 
1259 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1260 		return ERR_PTR(-EFBIG);
1261 
1262 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1263 	if (!ar)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	spin_lock(&simple_transaction_lock);
1267 
1268 	/* only one write allowed per open */
1269 	if (file->private_data) {
1270 		spin_unlock(&simple_transaction_lock);
1271 		free_page((unsigned long)ar);
1272 		return ERR_PTR(-EBUSY);
1273 	}
1274 
1275 	file->private_data = ar;
1276 
1277 	spin_unlock(&simple_transaction_lock);
1278 
1279 	if (copy_from_user(ar->data, buf, size))
1280 		return ERR_PTR(-EFAULT);
1281 
1282 	return ar->data;
1283 }
1284 EXPORT_SYMBOL(simple_transaction_get);
1285 
1286 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1287 {
1288 	struct simple_transaction_argresp *ar = file->private_data;
1289 
1290 	if (!ar)
1291 		return 0;
1292 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1293 }
1294 EXPORT_SYMBOL(simple_transaction_read);
1295 
1296 int simple_transaction_release(struct inode *inode, struct file *file)
1297 {
1298 	free_page((unsigned long)file->private_data);
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL(simple_transaction_release);
1302 
1303 /* Simple attribute files */
1304 
1305 struct simple_attr {
1306 	int (*get)(void *, u64 *);
1307 	int (*set)(void *, u64);
1308 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1309 	char set_buf[24];
1310 	void *data;
1311 	const char *fmt;	/* format for read operation */
1312 	struct mutex mutex;	/* protects access to these buffers */
1313 };
1314 
1315 /* simple_attr_open is called by an actual attribute open file operation
1316  * to set the attribute specific access operations. */
1317 int simple_attr_open(struct inode *inode, struct file *file,
1318 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1319 		     const char *fmt)
1320 {
1321 	struct simple_attr *attr;
1322 
1323 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1324 	if (!attr)
1325 		return -ENOMEM;
1326 
1327 	attr->get = get;
1328 	attr->set = set;
1329 	attr->data = inode->i_private;
1330 	attr->fmt = fmt;
1331 	mutex_init(&attr->mutex);
1332 
1333 	file->private_data = attr;
1334 
1335 	return nonseekable_open(inode, file);
1336 }
1337 EXPORT_SYMBOL_GPL(simple_attr_open);
1338 
1339 int simple_attr_release(struct inode *inode, struct file *file)
1340 {
1341 	kfree(file->private_data);
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1345 
1346 /* read from the buffer that is filled with the get function */
1347 ssize_t simple_attr_read(struct file *file, char __user *buf,
1348 			 size_t len, loff_t *ppos)
1349 {
1350 	struct simple_attr *attr;
1351 	size_t size;
1352 	ssize_t ret;
1353 
1354 	attr = file->private_data;
1355 
1356 	if (!attr->get)
1357 		return -EACCES;
1358 
1359 	ret = mutex_lock_interruptible(&attr->mutex);
1360 	if (ret)
1361 		return ret;
1362 
1363 	if (*ppos && attr->get_buf[0]) {
1364 		/* continued read */
1365 		size = strlen(attr->get_buf);
1366 	} else {
1367 		/* first read */
1368 		u64 val;
1369 		ret = attr->get(attr->data, &val);
1370 		if (ret)
1371 			goto out;
1372 
1373 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1374 				 attr->fmt, (unsigned long long)val);
1375 	}
1376 
1377 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1378 out:
1379 	mutex_unlock(&attr->mutex);
1380 	return ret;
1381 }
1382 EXPORT_SYMBOL_GPL(simple_attr_read);
1383 
1384 /* interpret the buffer as a number to call the set function with */
1385 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1386 			  size_t len, loff_t *ppos, bool is_signed)
1387 {
1388 	struct simple_attr *attr;
1389 	unsigned long long val;
1390 	size_t size;
1391 	ssize_t ret;
1392 
1393 	attr = file->private_data;
1394 	if (!attr->set)
1395 		return -EACCES;
1396 
1397 	ret = mutex_lock_interruptible(&attr->mutex);
1398 	if (ret)
1399 		return ret;
1400 
1401 	ret = -EFAULT;
1402 	size = min(sizeof(attr->set_buf) - 1, len);
1403 	if (copy_from_user(attr->set_buf, buf, size))
1404 		goto out;
1405 
1406 	attr->set_buf[size] = '\0';
1407 	if (is_signed)
1408 		ret = kstrtoll(attr->set_buf, 0, &val);
1409 	else
1410 		ret = kstrtoull(attr->set_buf, 0, &val);
1411 	if (ret)
1412 		goto out;
1413 	ret = attr->set(attr->data, val);
1414 	if (ret == 0)
1415 		ret = len; /* on success, claim we got the whole input */
1416 out:
1417 	mutex_unlock(&attr->mutex);
1418 	return ret;
1419 }
1420 
1421 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1422 			  size_t len, loff_t *ppos)
1423 {
1424 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1425 }
1426 EXPORT_SYMBOL_GPL(simple_attr_write);
1427 
1428 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1429 			  size_t len, loff_t *ppos)
1430 {
1431 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1432 }
1433 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1434 
1435 /**
1436  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1437  * @inode:   the object to encode
1438  * @fh:      where to store the file handle fragment
1439  * @max_len: maximum length to store there (in 4 byte units)
1440  * @parent:  parent directory inode, if wanted
1441  *
1442  * This generic encode_fh function assumes that the 32 inode number
1443  * is suitable for locating an inode, and that the generation number
1444  * can be used to check that it is still valid.  It places them in the
1445  * filehandle fragment where export_decode_fh expects to find them.
1446  */
1447 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1448 			    struct inode *parent)
1449 {
1450 	struct fid *fid = (void *)fh;
1451 	int len = *max_len;
1452 	int type = FILEID_INO32_GEN;
1453 
1454 	if (parent && (len < 4)) {
1455 		*max_len = 4;
1456 		return FILEID_INVALID;
1457 	} else if (len < 2) {
1458 		*max_len = 2;
1459 		return FILEID_INVALID;
1460 	}
1461 
1462 	len = 2;
1463 	fid->i32.ino = inode->i_ino;
1464 	fid->i32.gen = inode->i_generation;
1465 	if (parent) {
1466 		fid->i32.parent_ino = parent->i_ino;
1467 		fid->i32.parent_gen = parent->i_generation;
1468 		len = 4;
1469 		type = FILEID_INO32_GEN_PARENT;
1470 	}
1471 	*max_len = len;
1472 	return type;
1473 }
1474 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1475 
1476 /**
1477  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1478  * @sb:		filesystem to do the file handle conversion on
1479  * @fid:	file handle to convert
1480  * @fh_len:	length of the file handle in bytes
1481  * @fh_type:	type of file handle
1482  * @get_inode:	filesystem callback to retrieve inode
1483  *
1484  * This function decodes @fid as long as it has one of the well-known
1485  * Linux filehandle types and calls @get_inode on it to retrieve the
1486  * inode for the object specified in the file handle.
1487  */
1488 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1489 		int fh_len, int fh_type, struct inode *(*get_inode)
1490 			(struct super_block *sb, u64 ino, u32 gen))
1491 {
1492 	struct inode *inode = NULL;
1493 
1494 	if (fh_len < 2)
1495 		return NULL;
1496 
1497 	switch (fh_type) {
1498 	case FILEID_INO32_GEN:
1499 	case FILEID_INO32_GEN_PARENT:
1500 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1501 		break;
1502 	}
1503 
1504 	return d_obtain_alias(inode);
1505 }
1506 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1507 
1508 /**
1509  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1510  * @sb:		filesystem to do the file handle conversion on
1511  * @fid:	file handle to convert
1512  * @fh_len:	length of the file handle in bytes
1513  * @fh_type:	type of file handle
1514  * @get_inode:	filesystem callback to retrieve inode
1515  *
1516  * This function decodes @fid as long as it has one of the well-known
1517  * Linux filehandle types and calls @get_inode on it to retrieve the
1518  * inode for the _parent_ object specified in the file handle if it
1519  * is specified in the file handle, or NULL otherwise.
1520  */
1521 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1522 		int fh_len, int fh_type, struct inode *(*get_inode)
1523 			(struct super_block *sb, u64 ino, u32 gen))
1524 {
1525 	struct inode *inode = NULL;
1526 
1527 	if (fh_len <= 2)
1528 		return NULL;
1529 
1530 	switch (fh_type) {
1531 	case FILEID_INO32_GEN_PARENT:
1532 		inode = get_inode(sb, fid->i32.parent_ino,
1533 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1534 		break;
1535 	}
1536 
1537 	return d_obtain_alias(inode);
1538 }
1539 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1540 
1541 /**
1542  * __generic_file_fsync - generic fsync implementation for simple filesystems
1543  *
1544  * @file:	file to synchronize
1545  * @start:	start offset in bytes
1546  * @end:	end offset in bytes (inclusive)
1547  * @datasync:	only synchronize essential metadata if true
1548  *
1549  * This is a generic implementation of the fsync method for simple
1550  * filesystems which track all non-inode metadata in the buffers list
1551  * hanging off the address_space structure.
1552  */
1553 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1554 				 int datasync)
1555 {
1556 	struct inode *inode = file->f_mapping->host;
1557 	int err;
1558 	int ret;
1559 
1560 	err = file_write_and_wait_range(file, start, end);
1561 	if (err)
1562 		return err;
1563 
1564 	inode_lock(inode);
1565 	ret = sync_mapping_buffers(inode->i_mapping);
1566 	if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1567 		goto out;
1568 	if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1569 		goto out;
1570 
1571 	err = sync_inode_metadata(inode, 1);
1572 	if (ret == 0)
1573 		ret = err;
1574 
1575 out:
1576 	inode_unlock(inode);
1577 	/* check and advance again to catch errors after syncing out buffers */
1578 	err = file_check_and_advance_wb_err(file);
1579 	if (ret == 0)
1580 		ret = err;
1581 	return ret;
1582 }
1583 EXPORT_SYMBOL(__generic_file_fsync);
1584 
1585 /**
1586  * generic_file_fsync - generic fsync implementation for simple filesystems
1587  *			with flush
1588  * @file:	file to synchronize
1589  * @start:	start offset in bytes
1590  * @end:	end offset in bytes (inclusive)
1591  * @datasync:	only synchronize essential metadata if true
1592  *
1593  */
1594 
1595 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1596 		       int datasync)
1597 {
1598 	struct inode *inode = file->f_mapping->host;
1599 	int err;
1600 
1601 	err = __generic_file_fsync(file, start, end, datasync);
1602 	if (err)
1603 		return err;
1604 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1605 }
1606 EXPORT_SYMBOL(generic_file_fsync);
1607 
1608 /**
1609  * generic_check_addressable - Check addressability of file system
1610  * @blocksize_bits:	log of file system block size
1611  * @num_blocks:		number of blocks in file system
1612  *
1613  * Determine whether a file system with @num_blocks blocks (and a
1614  * block size of 2**@blocksize_bits) is addressable by the sector_t
1615  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1616  */
1617 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1618 {
1619 	u64 last_fs_block = num_blocks - 1;
1620 	u64 last_fs_page, max_bytes;
1621 
1622 	if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1623 		return -EFBIG;
1624 
1625 	last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1626 
1627 	if (unlikely(num_blocks == 0))
1628 		return 0;
1629 
1630 	if (blocksize_bits < 9)
1631 		return -EINVAL;
1632 
1633 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1634 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1635 		return -EFBIG;
1636 	}
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(generic_check_addressable);
1640 
1641 /*
1642  * No-op implementation of ->fsync for in-memory filesystems.
1643  */
1644 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1645 {
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(noop_fsync);
1649 
1650 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1651 {
1652 	/*
1653 	 * iomap based filesystems support direct I/O without need for
1654 	 * this callback. However, it still needs to be set in
1655 	 * inode->a_ops so that open/fcntl know that direct I/O is
1656 	 * generally supported.
1657 	 */
1658 	return -EINVAL;
1659 }
1660 EXPORT_SYMBOL_GPL(noop_direct_IO);
1661 
1662 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1663 void kfree_link(void *p)
1664 {
1665 	kfree(p);
1666 }
1667 EXPORT_SYMBOL(kfree_link);
1668 
1669 struct inode *alloc_anon_inode(struct super_block *s)
1670 {
1671 	static const struct address_space_operations anon_aops = {
1672 		.dirty_folio	= noop_dirty_folio,
1673 	};
1674 	struct inode *inode = new_inode_pseudo(s);
1675 
1676 	if (!inode)
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	inode->i_ino = get_next_ino();
1680 	inode->i_mapping->a_ops = &anon_aops;
1681 
1682 	/*
1683 	 * Mark the inode dirty from the very beginning,
1684 	 * that way it will never be moved to the dirty
1685 	 * list because mark_inode_dirty() will think
1686 	 * that it already _is_ on the dirty list.
1687 	 */
1688 	inode_state_assign_raw(inode, I_DIRTY);
1689 	/*
1690 	 * Historically anonymous inodes don't have a type at all and
1691 	 * userspace has come to rely on this.
1692 	 */
1693 	inode->i_mode = S_IRUSR | S_IWUSR;
1694 	inode->i_uid = current_fsuid();
1695 	inode->i_gid = current_fsgid();
1696 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1697 	simple_inode_init_ts(inode);
1698 	return inode;
1699 }
1700 EXPORT_SYMBOL(alloc_anon_inode);
1701 
1702 /**
1703  * simple_get_link - generic helper to get the target of "fast" symlinks
1704  * @dentry: not used here
1705  * @inode: the symlink inode
1706  * @done: not used here
1707  *
1708  * Generic helper for filesystems to use for symlink inodes where a pointer to
1709  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1710  * since as an optimization the path lookup code uses any non-NULL ->i_link
1711  * directly, without calling ->get_link().  But ->get_link() still must be set,
1712  * to mark the inode_operations as being for a symlink.
1713  *
1714  * Return: the symlink target
1715  */
1716 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1717 			    struct delayed_call *done)
1718 {
1719 	return inode->i_link;
1720 }
1721 EXPORT_SYMBOL(simple_get_link);
1722 
1723 const struct inode_operations simple_symlink_inode_operations = {
1724 	.get_link = simple_get_link,
1725 };
1726 EXPORT_SYMBOL(simple_symlink_inode_operations);
1727 
1728 /*
1729  * Operations for a permanently empty directory.
1730  */
1731 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1732 {
1733 	return ERR_PTR(-ENOENT);
1734 }
1735 
1736 static int empty_dir_setattr(struct mnt_idmap *idmap,
1737 			     struct dentry *dentry, struct iattr *attr)
1738 {
1739 	return -EPERM;
1740 }
1741 
1742 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1743 {
1744 	return -EOPNOTSUPP;
1745 }
1746 
1747 static const struct inode_operations empty_dir_inode_operations = {
1748 	.lookup		= empty_dir_lookup,
1749 	.setattr	= empty_dir_setattr,
1750 	.listxattr	= empty_dir_listxattr,
1751 };
1752 
1753 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1754 {
1755 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1756 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1757 }
1758 
1759 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1760 {
1761 	dir_emit_dots(file, ctx);
1762 	return 0;
1763 }
1764 
1765 static const struct file_operations empty_dir_operations = {
1766 	.llseek		= empty_dir_llseek,
1767 	.read		= generic_read_dir,
1768 	.iterate_shared	= empty_dir_readdir,
1769 	.fsync		= noop_fsync,
1770 };
1771 
1772 
1773 void make_empty_dir_inode(struct inode *inode)
1774 {
1775 	set_nlink(inode, 2);
1776 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1777 	inode->i_uid = GLOBAL_ROOT_UID;
1778 	inode->i_gid = GLOBAL_ROOT_GID;
1779 	inode->i_rdev = 0;
1780 	inode->i_size = 0;
1781 	inode->i_blkbits = PAGE_SHIFT;
1782 	inode->i_blocks = 0;
1783 
1784 	inode->i_op = &empty_dir_inode_operations;
1785 	inode->i_opflags &= ~IOP_XATTR;
1786 	inode->i_fop = &empty_dir_operations;
1787 }
1788 
1789 bool is_empty_dir_inode(struct inode *inode)
1790 {
1791 	return (inode->i_fop == &empty_dir_operations) &&
1792 		(inode->i_op == &empty_dir_inode_operations);
1793 }
1794 
1795 #if IS_ENABLED(CONFIG_UNICODE)
1796 /**
1797  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1798  * @dentry:	dentry whose name we are checking against
1799  * @len:	len of name of dentry
1800  * @str:	str pointer to name of dentry
1801  * @name:	Name to compare against
1802  *
1803  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1804  */
1805 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1806 			 const char *str, const struct qstr *name)
1807 {
1808 	const struct dentry *parent;
1809 	const struct inode *dir;
1810 	union shortname_store strbuf;
1811 	struct qstr qstr;
1812 
1813 	/*
1814 	 * Attempt a case-sensitive match first. It is cheaper and
1815 	 * should cover most lookups, including all the sane
1816 	 * applications that expect a case-sensitive filesystem.
1817 	 *
1818 	 * This comparison is safe under RCU because the caller
1819 	 * guarantees the consistency between str and len. See
1820 	 * __d_lookup_rcu_op_compare() for details.
1821 	 */
1822 	if (len == name->len && !memcmp(str, name->name, len))
1823 		return 0;
1824 
1825 	parent = READ_ONCE(dentry->d_parent);
1826 	dir = READ_ONCE(parent->d_inode);
1827 	if (!dir || !IS_CASEFOLDED(dir))
1828 		return 1;
1829 
1830 	qstr.len = len;
1831 	qstr.name = str;
1832 	/*
1833 	 * If the dentry name is stored in-line, then it may be concurrently
1834 	 * modified by a rename.  If this happens, the VFS will eventually retry
1835 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1836 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1837 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1838 	 * As above, len is guaranteed to match str, so the shortname case
1839 	 * is exactly when str points to ->d_shortname.
1840 	 */
1841 	if (qstr.name == dentry->d_shortname.string) {
1842 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1843 		qstr.name = strbuf.string;
1844 		/* prevent compiler from optimizing out the temporary buffer */
1845 		barrier();
1846 	}
1847 
1848 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1849 }
1850 EXPORT_SYMBOL(generic_ci_d_compare);
1851 
1852 /**
1853  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1854  * @dentry:	dentry of the parent directory
1855  * @str:	qstr of name whose hash we should fill in
1856  *
1857  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1858  */
1859 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1860 {
1861 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1862 	struct super_block *sb = dentry->d_sb;
1863 	const struct unicode_map *um = sb->s_encoding;
1864 	int ret;
1865 
1866 	if (!dir || !IS_CASEFOLDED(dir))
1867 		return 0;
1868 
1869 	ret = utf8_casefold_hash(um, dentry, str);
1870 	if (ret < 0 && sb_has_strict_encoding(sb))
1871 		return -EINVAL;
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL(generic_ci_d_hash);
1875 
1876 static const struct dentry_operations generic_ci_dentry_ops = {
1877 	.d_hash = generic_ci_d_hash,
1878 	.d_compare = generic_ci_d_compare,
1879 #ifdef CONFIG_FS_ENCRYPTION
1880 	.d_revalidate = fscrypt_d_revalidate,
1881 #endif
1882 };
1883 
1884 /**
1885  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1886  * This is a filesystem helper for comparison with directory entries.
1887  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1888  *
1889  * @parent: Inode of the parent of the dirent under comparison
1890  * @name: name under lookup.
1891  * @folded_name: Optional pre-folded name under lookup
1892  * @de_name: Dirent name.
1893  * @de_name_len: dirent name length.
1894  *
1895  * Test whether a case-insensitive directory entry matches the filename
1896  * being searched.  If @folded_name is provided, it is used instead of
1897  * recalculating the casefold of @name.
1898  *
1899  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1900  * < 0 on error.
1901  */
1902 int generic_ci_match(const struct inode *parent,
1903 		     const struct qstr *name,
1904 		     const struct qstr *folded_name,
1905 		     const u8 *de_name, u32 de_name_len)
1906 {
1907 	const struct super_block *sb = parent->i_sb;
1908 	const struct unicode_map *um = sb->s_encoding;
1909 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1910 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1911 	int res = 0;
1912 
1913 	if (IS_ENCRYPTED(parent)) {
1914 		const struct fscrypt_str encrypted_name =
1915 			FSTR_INIT((u8 *) de_name, de_name_len);
1916 
1917 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1918 			return -EINVAL;
1919 
1920 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1921 		if (!decrypted_name.name)
1922 			return -ENOMEM;
1923 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1924 						&decrypted_name);
1925 		if (res < 0) {
1926 			kfree(decrypted_name.name);
1927 			return res;
1928 		}
1929 		dirent.name = decrypted_name.name;
1930 		dirent.len = decrypted_name.len;
1931 	}
1932 
1933 	/*
1934 	 * Attempt a case-sensitive match first. It is cheaper and
1935 	 * should cover most lookups, including all the sane
1936 	 * applications that expect a case-sensitive filesystem.
1937 	 */
1938 
1939 	if (dirent.len == name->len &&
1940 	    !memcmp(name->name, dirent.name, dirent.len))
1941 		goto out;
1942 
1943 	if (folded_name->name)
1944 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1945 	else
1946 		res = utf8_strncasecmp(um, name, &dirent);
1947 
1948 out:
1949 	kfree(decrypted_name.name);
1950 	if (res < 0 && sb_has_strict_encoding(sb)) {
1951 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1952 		return 0;
1953 	}
1954 	return !res;
1955 }
1956 EXPORT_SYMBOL(generic_ci_match);
1957 #endif
1958 
1959 #ifdef CONFIG_FS_ENCRYPTION
1960 static const struct dentry_operations generic_encrypted_dentry_ops = {
1961 	.d_revalidate = fscrypt_d_revalidate,
1962 };
1963 #endif
1964 
1965 /**
1966  * generic_set_sb_d_ops - helper for choosing the set of
1967  * filesystem-wide dentry operations for the enabled features
1968  * @sb: superblock to be configured
1969  *
1970  * Filesystems supporting casefolding and/or fscrypt can call this
1971  * helper at mount-time to configure default dentry_operations to the
1972  * best set of dentry operations required for the enabled features.
1973  * The helper must be called after these have been configured, but
1974  * before the root dentry is created.
1975  */
1976 void generic_set_sb_d_ops(struct super_block *sb)
1977 {
1978 #if IS_ENABLED(CONFIG_UNICODE)
1979 	if (sb->s_encoding) {
1980 		set_default_d_op(sb, &generic_ci_dentry_ops);
1981 		return;
1982 	}
1983 #endif
1984 #ifdef CONFIG_FS_ENCRYPTION
1985 	if (sb->s_cop) {
1986 		set_default_d_op(sb, &generic_encrypted_dentry_ops);
1987 		return;
1988 	}
1989 #endif
1990 }
1991 EXPORT_SYMBOL(generic_set_sb_d_ops);
1992 
1993 /**
1994  * inode_maybe_inc_iversion - increments i_version
1995  * @inode: inode with the i_version that should be updated
1996  * @force: increment the counter even if it's not necessary?
1997  *
1998  * Every time the inode is modified, the i_version field must be seen to have
1999  * changed by any observer.
2000  *
2001  * If "force" is set or the QUERIED flag is set, then ensure that we increment
2002  * the value, and clear the queried flag.
2003  *
2004  * In the common case where neither is set, then we can return "false" without
2005  * updating i_version.
2006  *
2007  * If this function returns false, and no other metadata has changed, then we
2008  * can avoid logging the metadata.
2009  */
2010 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2011 {
2012 	u64 cur, new;
2013 
2014 	/*
2015 	 * The i_version field is not strictly ordered with any other inode
2016 	 * information, but the legacy inode_inc_iversion code used a spinlock
2017 	 * to serialize increments.
2018 	 *
2019 	 * We add a full memory barrier to ensure that any de facto ordering
2020 	 * with other state is preserved (either implicitly coming from cmpxchg
2021 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2022 	 * the former).
2023 	 *
2024 	 * These barriers pair with inode_query_iversion().
2025 	 */
2026 	cur = inode_peek_iversion_raw(inode);
2027 	if (!force && !(cur & I_VERSION_QUERIED)) {
2028 		smp_mb();
2029 		cur = inode_peek_iversion_raw(inode);
2030 	}
2031 
2032 	do {
2033 		/* If flag is clear then we needn't do anything */
2034 		if (!force && !(cur & I_VERSION_QUERIED))
2035 			return false;
2036 
2037 		/* Since lowest bit is flag, add 2 to avoid it */
2038 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2039 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2040 	return true;
2041 }
2042 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2043 
2044 /**
2045  * inode_query_iversion - read i_version for later use
2046  * @inode: inode from which i_version should be read
2047  *
2048  * Read the inode i_version counter. This should be used by callers that wish
2049  * to store the returned i_version for later comparison. This will guarantee
2050  * that a later query of the i_version will result in a different value if
2051  * anything has changed.
2052  *
2053  * In this implementation, we fetch the current value, set the QUERIED flag and
2054  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2055  * that fails, we try again with the newly fetched value from the cmpxchg.
2056  */
2057 u64 inode_query_iversion(struct inode *inode)
2058 {
2059 	u64 cur, new;
2060 	bool fenced = false;
2061 
2062 	/*
2063 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2064 	 * inode_maybe_inc_iversion(), see that routine for more details.
2065 	 */
2066 	cur = inode_peek_iversion_raw(inode);
2067 	do {
2068 		/* If flag is already set, then no need to swap */
2069 		if (cur & I_VERSION_QUERIED) {
2070 			if (!fenced)
2071 				smp_mb();
2072 			break;
2073 		}
2074 
2075 		fenced = true;
2076 		new = cur | I_VERSION_QUERIED;
2077 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2078 	return cur >> I_VERSION_QUERIED_SHIFT;
2079 }
2080 EXPORT_SYMBOL(inode_query_iversion);
2081 
2082 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2083 		ssize_t direct_written, ssize_t buffered_written)
2084 {
2085 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2086 	loff_t pos = iocb->ki_pos - buffered_written;
2087 	loff_t end = iocb->ki_pos - 1;
2088 	int err;
2089 
2090 	/*
2091 	 * If the buffered write fallback returned an error, we want to return
2092 	 * the number of bytes which were written by direct I/O, or the error
2093 	 * code if that was zero.
2094 	 *
2095 	 * Note that this differs from normal direct-io semantics, which will
2096 	 * return -EFOO even if some bytes were written.
2097 	 */
2098 	if (unlikely(buffered_written < 0)) {
2099 		if (direct_written)
2100 			return direct_written;
2101 		return buffered_written;
2102 	}
2103 
2104 	/*
2105 	 * We need to ensure that the page cache pages are written to disk and
2106 	 * invalidated to preserve the expected O_DIRECT semantics.
2107 	 */
2108 	err = filemap_write_and_wait_range(mapping, pos, end);
2109 	if (err < 0) {
2110 		/*
2111 		 * We don't know how much we wrote, so just return the number of
2112 		 * bytes which were direct-written
2113 		 */
2114 		iocb->ki_pos -= buffered_written;
2115 		if (direct_written)
2116 			return direct_written;
2117 		return err;
2118 	}
2119 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2120 	return direct_written + buffered_written;
2121 }
2122 EXPORT_SYMBOL_GPL(direct_write_fallback);
2123 
2124 /**
2125  * simple_inode_init_ts - initialize the timestamps for a new inode
2126  * @inode: inode to be initialized
2127  *
2128  * When a new inode is created, most filesystems set the timestamps to the
2129  * current time. Add a helper to do this.
2130  */
2131 struct timespec64 simple_inode_init_ts(struct inode *inode)
2132 {
2133 	struct timespec64 ts = inode_set_ctime_current(inode);
2134 
2135 	inode_set_atime_to_ts(inode, ts);
2136 	inode_set_mtime_to_ts(inode, ts);
2137 	return ts;
2138 }
2139 EXPORT_SYMBOL(simple_inode_init_ts);
2140 
2141 struct dentry *stashed_dentry_get(struct dentry **stashed)
2142 {
2143 	struct dentry *dentry;
2144 
2145 	guard(rcu)();
2146 	dentry = rcu_dereference(*stashed);
2147 	if (!dentry)
2148 		return NULL;
2149 	if (IS_ERR(dentry))
2150 		return dentry;
2151 	if (!lockref_get_not_dead(&dentry->d_lockref))
2152 		return NULL;
2153 	return dentry;
2154 }
2155 
2156 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2157 					  struct super_block *sb,
2158 					  void *data)
2159 {
2160 	struct dentry *dentry;
2161 	struct inode *inode;
2162 	const struct stashed_operations *sops = sb->s_fs_info;
2163 	int ret;
2164 
2165 	inode = new_inode_pseudo(sb);
2166 	if (!inode) {
2167 		sops->put_data(data);
2168 		return ERR_PTR(-ENOMEM);
2169 	}
2170 
2171 	inode->i_flags |= S_IMMUTABLE;
2172 	inode->i_mode = S_IFREG;
2173 	simple_inode_init_ts(inode);
2174 
2175 	ret = sops->init_inode(inode, data);
2176 	if (ret < 0) {
2177 		iput(inode);
2178 		return ERR_PTR(ret);
2179 	}
2180 
2181 	/* Notice when this is changed. */
2182 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2183 
2184 	dentry = d_alloc_anon(sb);
2185 	if (!dentry) {
2186 		iput(inode);
2187 		return ERR_PTR(-ENOMEM);
2188 	}
2189 
2190 	/* Store address of location where dentry's supposed to be stashed. */
2191 	dentry->d_fsdata = stashed;
2192 
2193 	/* @data is now owned by the fs */
2194 	d_instantiate(dentry, inode);
2195 	return dentry;
2196 }
2197 
2198 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2199 {
2200 	guard(rcu)();
2201 	for (;;) {
2202 		struct dentry *old;
2203 
2204 		/* Assume any old dentry was cleared out. */
2205 		old = cmpxchg(stashed, NULL, dentry);
2206 		if (likely(!old))
2207 			return dentry;
2208 
2209 		/* Check if somebody else installed a reusable dentry. */
2210 		if (lockref_get_not_dead(&old->d_lockref))
2211 			return old;
2212 
2213 		/* There's an old dead dentry there, try to take it over. */
2214 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2215 			return dentry;
2216 	}
2217 }
2218 
2219 /**
2220  * path_from_stashed - create path from stashed or new dentry
2221  * @stashed:    where to retrieve or stash dentry
2222  * @mnt:        mnt of the filesystems to use
2223  * @data:       data to store in inode->i_private
2224  * @path:       path to create
2225  *
2226  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2227  * is still valid then it will be reused. If the dentry isn't able the function
2228  * will allocate a new dentry and inode. It will then check again whether it
2229  * can reuse an existing dentry in case one has been added in the meantime or
2230  * update @stashed with the newly added dentry.
2231  *
2232  * Special-purpose helper for nsfs and pidfs.
2233  *
2234  * Return: On success zero and on failure a negative error is returned.
2235  */
2236 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2237 		      struct path *path)
2238 {
2239 	struct dentry *dentry, *res;
2240 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2241 
2242 	/* See if dentry can be reused. */
2243 	res = stashed_dentry_get(stashed);
2244 	if (IS_ERR(res))
2245 		return PTR_ERR(res);
2246 	if (res) {
2247 		sops->put_data(data);
2248 		goto make_path;
2249 	}
2250 
2251 	/* Allocate a new dentry. */
2252 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2253 	if (IS_ERR(dentry))
2254 		return PTR_ERR(dentry);
2255 
2256 	/* Added a new dentry. @data is now owned by the filesystem. */
2257 	if (sops->stash_dentry)
2258 		res = sops->stash_dentry(stashed, dentry);
2259 	else
2260 		res = stash_dentry(stashed, dentry);
2261 	if (IS_ERR(res)) {
2262 		dput(dentry);
2263 		return PTR_ERR(res);
2264 	}
2265 	if (res != dentry)
2266 		dput(dentry);
2267 
2268 make_path:
2269 	path->dentry = res;
2270 	path->mnt = mntget(mnt);
2271 	VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2272 	VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2273 	return 0;
2274 }
2275 
2276 void stashed_dentry_prune(struct dentry *dentry)
2277 {
2278 	struct dentry **stashed = dentry->d_fsdata;
2279 	struct inode *inode = d_inode(dentry);
2280 
2281 	if (WARN_ON_ONCE(!stashed))
2282 		return;
2283 
2284 	if (!inode)
2285 		return;
2286 
2287 	/*
2288 	 * Only replace our own @dentry as someone else might've
2289 	 * already cleared out @dentry and stashed their own
2290 	 * dentry in there.
2291 	 */
2292 	cmpxchg(stashed, dentry, NULL);
2293 }
2294 
2295 /**
2296  * simple_start_creating - prepare to create a given name
2297  * @parent: directory in which to prepare to create the name
2298  * @name:   the name to be created
2299  *
2300  * Required lock is taken and a lookup in performed prior to creating an
2301  * object in a directory.  No permission checking is performed.
2302  *
2303  * Returns: a negative dentry on which vfs_create() or similar may
2304  *  be attempted, or an error.
2305  */
2306 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2307 {
2308 	struct qstr qname = QSTR(name);
2309 	int err;
2310 
2311 	err = lookup_noperm_common(&qname, parent);
2312 	if (err)
2313 		return ERR_PTR(err);
2314 	return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2315 }
2316 EXPORT_SYMBOL(simple_start_creating);
2317 
2318 /* parent must have been held exclusive since simple_start_creating() */
2319 void simple_done_creating(struct dentry *child)
2320 {
2321 	inode_unlock(child->d_parent->d_inode);
2322 	dput(child);
2323 }
2324 EXPORT_SYMBOL(simple_done_creating);
2325