xref: /linux/arch/x86/kvm/x86.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 
94 /*
95  * Note, kvm_caps fields should *never* have default values, all fields must be
96  * recomputed from scratch during vendor module load, e.g. to account for a
97  * vendor module being reloaded with different module parameters.
98  */
99 struct kvm_caps kvm_caps __read_mostly;
100 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
101 
102 struct kvm_host_values kvm_host __read_mostly;
103 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
104 
105 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
106 
107 #define emul_to_vcpu(ctxt) \
108 	((struct kvm_vcpu *)(ctxt)->vcpu)
109 
110 /* EFER defaults:
111  * - enable syscall per default because its emulated by KVM
112  * - enable LME and LMA per default on 64 bit KVM
113  */
114 #ifdef CONFIG_X86_64
115 static
116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
117 #else
118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
119 #endif
120 
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122 
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124 
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127 
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134 
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 
138 static DEFINE_MUTEX(vendor_module_lock);
139 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
140 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
141 
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
143 
144 #define KVM_X86_OP(func)					     \
145 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
146 				*(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152 
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
155 
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
159 
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
162 
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
165 
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
169 
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, 0444);
172 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
173 
174 /*
175  * Flags to manipulate forced emulation behavior (any non-zero value will
176  * enable forced emulation).
177  */
178 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
179 static int __read_mostly force_emulation_prefix;
180 module_param(force_emulation_prefix, int, 0644);
181 
182 int __read_mostly pi_inject_timer = -1;
183 module_param(pi_inject_timer, bint, 0644);
184 
185 /* Enable/disable PMU virtualization */
186 bool __read_mostly enable_pmu = true;
187 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
188 module_param(enable_pmu, bool, 0444);
189 
190 bool __read_mostly eager_page_split = true;
191 module_param(eager_page_split, bool, 0644);
192 
193 /* Enable/disable SMT_RSB bug mitigation */
194 static bool __read_mostly mitigate_smt_rsb;
195 module_param(mitigate_smt_rsb, bool, 0444);
196 
197 /*
198  * Restoring the host value for MSRs that are only consumed when running in
199  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200  * returns to userspace, i.e. the kernel can run with the guest's value.
201  */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203 
204 struct kvm_user_return_msrs {
205 	struct user_return_notifier urn;
206 	bool registered;
207 	struct kvm_user_return_msr_values {
208 		u64 host;
209 		u64 curr;
210 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212 
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217 
218 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222 
223 #define XFEATURE_MASK_CET_ALL	(XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
224 /*
225  * Note, KVM supports exposing PT to the guest, but does not support context
226  * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
227  * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
228  * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
229  */
230 #define KVM_SUPPORTED_XSS	(XFEATURE_MASK_CET_ALL)
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
237 
238 bool __read_mostly enable_ipiv = true;
239 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
240 
241 bool __read_mostly enable_device_posted_irqs = true;
242 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 static struct kmem_cache *x86_emulator_cache;
318 
319 /*
320  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
321  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
322  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
323  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
324  * MSRs that KVM emulates without strictly requiring host support.
325  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
326  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
327  * msrs_to_save and emulated_msrs.
328  */
329 
330 static const u32 msrs_to_save_base[] = {
331 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
332 	MSR_STAR,
333 #ifdef CONFIG_X86_64
334 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
335 #endif
336 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
337 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
338 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
339 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
340 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
341 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
342 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
343 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
344 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
345 	MSR_IA32_UMWAIT_CONTROL,
346 
347 	MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
348 
349 	MSR_IA32_U_CET, MSR_IA32_S_CET,
350 	MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
351 	MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
352 };
353 
354 static const u32 msrs_to_save_pmu[] = {
355 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
356 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
357 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
358 	MSR_CORE_PERF_GLOBAL_CTRL,
359 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
360 
361 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
362 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
363 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
364 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
365 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
366 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
367 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
368 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
369 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
370 
371 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
372 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
373 
374 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
375 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
376 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
377 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
378 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
379 
380 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
381 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
382 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
383 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
384 };
385 
386 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
387 			ARRAY_SIZE(msrs_to_save_pmu)];
388 static unsigned num_msrs_to_save;
389 
390 static const u32 emulated_msrs_all[] = {
391 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
392 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
393 
394 #ifdef CONFIG_KVM_HYPERV
395 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
396 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
397 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
398 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
399 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
400 	HV_X64_MSR_RESET,
401 	HV_X64_MSR_VP_INDEX,
402 	HV_X64_MSR_VP_RUNTIME,
403 	HV_X64_MSR_SCONTROL,
404 	HV_X64_MSR_STIMER0_CONFIG,
405 	HV_X64_MSR_VP_ASSIST_PAGE,
406 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
407 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
408 	HV_X64_MSR_SYNDBG_OPTIONS,
409 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
410 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
411 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
412 #endif
413 
414 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
415 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
416 
417 	MSR_IA32_TSC_ADJUST,
418 	MSR_IA32_TSC_DEADLINE,
419 	MSR_IA32_ARCH_CAPABILITIES,
420 	MSR_IA32_PERF_CAPABILITIES,
421 	MSR_IA32_MISC_ENABLE,
422 	MSR_IA32_MCG_STATUS,
423 	MSR_IA32_MCG_CTL,
424 	MSR_IA32_MCG_EXT_CTL,
425 	MSR_IA32_SMBASE,
426 	MSR_SMI_COUNT,
427 	MSR_PLATFORM_INFO,
428 	MSR_MISC_FEATURES_ENABLES,
429 	MSR_AMD64_VIRT_SPEC_CTRL,
430 	MSR_AMD64_TSC_RATIO,
431 	MSR_IA32_POWER_CTL,
432 	MSR_IA32_UCODE_REV,
433 
434 	/*
435 	 * KVM always supports the "true" VMX control MSRs, even if the host
436 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
437 	 * doesn't strictly require them to exist in the host (ignoring that
438 	 * KVM would refuse to load in the first place if the core set of MSRs
439 	 * aren't supported).
440 	 */
441 	MSR_IA32_VMX_BASIC,
442 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
443 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
444 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
445 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
446 	MSR_IA32_VMX_MISC,
447 	MSR_IA32_VMX_CR0_FIXED0,
448 	MSR_IA32_VMX_CR4_FIXED0,
449 	MSR_IA32_VMX_VMCS_ENUM,
450 	MSR_IA32_VMX_PROCBASED_CTLS2,
451 	MSR_IA32_VMX_EPT_VPID_CAP,
452 	MSR_IA32_VMX_VMFUNC,
453 
454 	MSR_K7_HWCR,
455 	MSR_KVM_POLL_CONTROL,
456 };
457 
458 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
459 static unsigned num_emulated_msrs;
460 
461 /*
462  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
463  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
464  * feature MSRs, but are handled separately to allow expedited lookups.
465  */
466 static const u32 msr_based_features_all_except_vmx[] = {
467 	MSR_AMD64_DE_CFG,
468 	MSR_IA32_UCODE_REV,
469 	MSR_IA32_ARCH_CAPABILITIES,
470 	MSR_IA32_PERF_CAPABILITIES,
471 	MSR_PLATFORM_INFO,
472 };
473 
474 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
475 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
476 static unsigned int num_msr_based_features;
477 
478 /*
479  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
480  * patch, are immutable once the vCPU model is defined.
481  */
kvm_is_immutable_feature_msr(u32 msr)482 static bool kvm_is_immutable_feature_msr(u32 msr)
483 {
484 	int i;
485 
486 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
487 		return true;
488 
489 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
490 		if (msr == msr_based_features_all_except_vmx[i])
491 			return msr != MSR_IA32_UCODE_REV;
492 	}
493 
494 	return false;
495 }
496 
kvm_is_advertised_msr(u32 msr_index)497 static bool kvm_is_advertised_msr(u32 msr_index)
498 {
499 	unsigned int i;
500 
501 	for (i = 0; i < num_msrs_to_save; i++) {
502 		if (msrs_to_save[i] == msr_index)
503 			return true;
504 	}
505 
506 	for (i = 0; i < num_emulated_msrs; i++) {
507 		if (emulated_msrs[i] == msr_index)
508 			return true;
509 	}
510 
511 	return false;
512 }
513 
514 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
515 			    bool host_initiated);
516 
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)517 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
518 					     u64 *data, bool host_initiated,
519 					     enum kvm_msr_access rw,
520 					     msr_access_t msr_access_fn)
521 {
522 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
523 	int ret;
524 
525 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
526 
527 	/*
528 	 * Zero the data on read failures to avoid leaking stack data to the
529 	 * guest and/or userspace, e.g. if the failure is ignored below.
530 	 */
531 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
532 	if (ret && rw == MSR_TYPE_R)
533 		*data = 0;
534 
535 	if (ret != KVM_MSR_RET_UNSUPPORTED)
536 		return ret;
537 
538 	/*
539 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
540 	 * advertises to userspace, even if an MSR isn't fully supported.
541 	 * Simply check that @data is '0', which covers both the write '0' case
542 	 * and all reads (in which case @data is zeroed on failure; see above).
543 	 */
544 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
545 		return 0;
546 
547 	if (!ignore_msrs) {
548 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
549 				      op, msr, *data);
550 		return ret;
551 	}
552 
553 	if (report_ignored_msrs)
554 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
555 
556 	return 0;
557 }
558 
kvm_alloc_emulator_cache(void)559 static struct kmem_cache *kvm_alloc_emulator_cache(void)
560 {
561 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
562 	unsigned int size = sizeof(struct x86_emulate_ctxt);
563 
564 	return kmem_cache_create_usercopy("x86_emulator", size,
565 					  __alignof__(struct x86_emulate_ctxt),
566 					  SLAB_ACCOUNT, useroffset,
567 					  size - useroffset, NULL);
568 }
569 
570 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
571 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)572 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
573 {
574 	int i;
575 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
576 		vcpu->arch.apf.gfns[i] = ~0;
577 }
578 
kvm_on_user_return(struct user_return_notifier * urn)579 static void kvm_on_user_return(struct user_return_notifier *urn)
580 {
581 	unsigned slot;
582 	struct kvm_user_return_msrs *msrs
583 		= container_of(urn, struct kvm_user_return_msrs, urn);
584 	struct kvm_user_return_msr_values *values;
585 	unsigned long flags;
586 
587 	/*
588 	 * Disabling irqs at this point since the following code could be
589 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
590 	 */
591 	local_irq_save(flags);
592 	if (msrs->registered) {
593 		msrs->registered = false;
594 		user_return_notifier_unregister(urn);
595 	}
596 	local_irq_restore(flags);
597 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
598 		values = &msrs->values[slot];
599 		if (values->host != values->curr) {
600 			wrmsrq(kvm_uret_msrs_list[slot], values->host);
601 			values->curr = values->host;
602 		}
603 	}
604 }
605 
kvm_probe_user_return_msr(u32 msr)606 static int kvm_probe_user_return_msr(u32 msr)
607 {
608 	u64 val;
609 	int ret;
610 
611 	preempt_disable();
612 	ret = rdmsrq_safe(msr, &val);
613 	if (ret)
614 		goto out;
615 	ret = wrmsrq_safe(msr, val);
616 out:
617 	preempt_enable();
618 	return ret;
619 }
620 
kvm_add_user_return_msr(u32 msr)621 int kvm_add_user_return_msr(u32 msr)
622 {
623 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
624 
625 	if (kvm_probe_user_return_msr(msr))
626 		return -1;
627 
628 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
629 	return kvm_nr_uret_msrs++;
630 }
631 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
632 
kvm_find_user_return_msr(u32 msr)633 int kvm_find_user_return_msr(u32 msr)
634 {
635 	int i;
636 
637 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
638 		if (kvm_uret_msrs_list[i] == msr)
639 			return i;
640 	}
641 	return -1;
642 }
643 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
644 
kvm_user_return_msr_cpu_online(void)645 static void kvm_user_return_msr_cpu_online(void)
646 {
647 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
648 	u64 value;
649 	int i;
650 
651 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
652 		rdmsrq_safe(kvm_uret_msrs_list[i], &value);
653 		msrs->values[i].host = value;
654 		msrs->values[i].curr = value;
655 	}
656 }
657 
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)658 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
659 {
660 	if (!msrs->registered) {
661 		msrs->urn.on_user_return = kvm_on_user_return;
662 		user_return_notifier_register(&msrs->urn);
663 		msrs->registered = true;
664 	}
665 }
666 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)667 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
668 {
669 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
670 	int err;
671 
672 	value = (value & mask) | (msrs->values[slot].host & ~mask);
673 	if (value == msrs->values[slot].curr)
674 		return 0;
675 	err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
676 	if (err)
677 		return 1;
678 
679 	msrs->values[slot].curr = value;
680 	kvm_user_return_register_notifier(msrs);
681 	return 0;
682 }
683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
684 
kvm_user_return_msr_update_cache(unsigned int slot,u64 value)685 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
686 {
687 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
688 
689 	msrs->values[slot].curr = value;
690 	kvm_user_return_register_notifier(msrs);
691 }
692 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache);
693 
kvm_get_user_return_msr(unsigned int slot)694 u64 kvm_get_user_return_msr(unsigned int slot)
695 {
696 	return this_cpu_ptr(user_return_msrs)->values[slot].curr;
697 }
698 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
699 
drop_user_return_notifiers(void)700 static void drop_user_return_notifiers(void)
701 {
702 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
703 
704 	if (msrs->registered)
705 		kvm_on_user_return(&msrs->urn);
706 }
707 
708 /*
709  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
710  *
711  * Hardware virtualization extension instructions may fault if a reboot turns
712  * off virtualization while processes are running.  Usually after catching the
713  * fault we just panic; during reboot instead the instruction is ignored.
714  */
kvm_spurious_fault(void)715 noinstr void kvm_spurious_fault(void)
716 {
717 	/* Fault while not rebooting.  We want the trace. */
718 	BUG_ON(!kvm_rebooting);
719 }
720 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
721 
722 #define EXCPT_BENIGN		0
723 #define EXCPT_CONTRIBUTORY	1
724 #define EXCPT_PF		2
725 
exception_class(int vector)726 static int exception_class(int vector)
727 {
728 	switch (vector) {
729 	case PF_VECTOR:
730 		return EXCPT_PF;
731 	case DE_VECTOR:
732 	case TS_VECTOR:
733 	case NP_VECTOR:
734 	case SS_VECTOR:
735 	case GP_VECTOR:
736 		return EXCPT_CONTRIBUTORY;
737 	default:
738 		break;
739 	}
740 	return EXCPT_BENIGN;
741 }
742 
743 #define EXCPT_FAULT		0
744 #define EXCPT_TRAP		1
745 #define EXCPT_ABORT		2
746 #define EXCPT_INTERRUPT		3
747 #define EXCPT_DB		4
748 
exception_type(int vector)749 static int exception_type(int vector)
750 {
751 	unsigned int mask;
752 
753 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
754 		return EXCPT_INTERRUPT;
755 
756 	mask = 1 << vector;
757 
758 	/*
759 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
760 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
761 	 */
762 	if (mask & (1 << DB_VECTOR))
763 		return EXCPT_DB;
764 
765 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
766 		return EXCPT_TRAP;
767 
768 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
769 		return EXCPT_ABORT;
770 
771 	/* Reserved exceptions will result in fault */
772 	return EXCPT_FAULT;
773 }
774 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)775 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
776 				   struct kvm_queued_exception *ex)
777 {
778 	if (!ex->has_payload)
779 		return;
780 
781 	switch (ex->vector) {
782 	case DB_VECTOR:
783 		/*
784 		 * "Certain debug exceptions may clear bit 0-3.  The
785 		 * remaining contents of the DR6 register are never
786 		 * cleared by the processor".
787 		 */
788 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
789 		/*
790 		 * In order to reflect the #DB exception payload in guest
791 		 * dr6, three components need to be considered: active low
792 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
793 		 * DR6_BS and DR6_BT)
794 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
795 		 * In the target guest dr6:
796 		 * FIXED_1 bits should always be set.
797 		 * Active low bits should be cleared if 1-setting in payload.
798 		 * Active high bits should be set if 1-setting in payload.
799 		 *
800 		 * Note, the payload is compatible with the pending debug
801 		 * exceptions/exit qualification under VMX, that active_low bits
802 		 * are active high in payload.
803 		 * So they need to be flipped for DR6.
804 		 */
805 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
806 		vcpu->arch.dr6 |= ex->payload;
807 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
808 
809 		/*
810 		 * The #DB payload is defined as compatible with the 'pending
811 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
812 		 * defined in the 'pending debug exceptions' field (enabled
813 		 * breakpoint), it is reserved and must be zero in DR6.
814 		 */
815 		vcpu->arch.dr6 &= ~BIT(12);
816 		break;
817 	case PF_VECTOR:
818 		vcpu->arch.cr2 = ex->payload;
819 		break;
820 	}
821 
822 	ex->has_payload = false;
823 	ex->payload = 0;
824 }
825 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
826 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)827 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
828 				       bool has_error_code, u32 error_code,
829 				       bool has_payload, unsigned long payload)
830 {
831 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
832 
833 	ex->vector = vector;
834 	ex->injected = false;
835 	ex->pending = true;
836 	ex->has_error_code = has_error_code;
837 	ex->error_code = error_code;
838 	ex->has_payload = has_payload;
839 	ex->payload = payload;
840 }
841 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)842 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
843 				   bool has_error, u32 error_code,
844 				   bool has_payload, unsigned long payload)
845 {
846 	u32 prev_nr;
847 	int class1, class2;
848 
849 	kvm_make_request(KVM_REQ_EVENT, vcpu);
850 
851 	/*
852 	 * If the exception is destined for L2, morph it to a VM-Exit if L1
853 	 * wants to intercept the exception.
854 	 */
855 	if (is_guest_mode(vcpu) &&
856 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
857 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
858 					   has_payload, payload);
859 		return;
860 	}
861 
862 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
863 	queue:
864 		vcpu->arch.exception.pending = true;
865 		vcpu->arch.exception.injected = false;
866 
867 		vcpu->arch.exception.has_error_code = has_error;
868 		vcpu->arch.exception.vector = nr;
869 		vcpu->arch.exception.error_code = error_code;
870 		vcpu->arch.exception.has_payload = has_payload;
871 		vcpu->arch.exception.payload = payload;
872 		if (!is_guest_mode(vcpu))
873 			kvm_deliver_exception_payload(vcpu,
874 						      &vcpu->arch.exception);
875 		return;
876 	}
877 
878 	/* to check exception */
879 	prev_nr = vcpu->arch.exception.vector;
880 	if (prev_nr == DF_VECTOR) {
881 		/* triple fault -> shutdown */
882 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
883 		return;
884 	}
885 	class1 = exception_class(prev_nr);
886 	class2 = exception_class(nr);
887 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
888 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
889 		/*
890 		 * Synthesize #DF.  Clear the previously injected or pending
891 		 * exception so as not to incorrectly trigger shutdown.
892 		 */
893 		vcpu->arch.exception.injected = false;
894 		vcpu->arch.exception.pending = false;
895 
896 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
897 	} else {
898 		/* replace previous exception with a new one in a hope
899 		   that instruction re-execution will regenerate lost
900 		   exception */
901 		goto queue;
902 	}
903 }
904 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)905 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
906 {
907 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
908 }
909 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
910 
911 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)912 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
913 			   unsigned long payload)
914 {
915 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
916 }
917 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
918 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)919 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
920 				    u32 error_code, unsigned long payload)
921 {
922 	kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
923 }
924 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)925 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
926 			   bool has_error_code, u32 error_code)
927 {
928 
929 	/*
930 	 * On VM-Entry, an exception can be pending if and only if event
931 	 * injection was blocked by nested_run_pending.  In that case, however,
932 	 * vcpu_enter_guest() requests an immediate exit, and the guest
933 	 * shouldn't proceed far enough to need reinjection.
934 	 */
935 	WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
936 
937 	/*
938 	 * Do not check for interception when injecting an event for L2, as the
939 	 * exception was checked for intercept when it was original queued, and
940 	 * re-checking is incorrect if _L1_ injected the exception, in which
941 	 * case it's exempt from interception.
942 	 */
943 	kvm_make_request(KVM_REQ_EVENT, vcpu);
944 
945 	vcpu->arch.exception.injected = true;
946 	vcpu->arch.exception.has_error_code = has_error_code;
947 	vcpu->arch.exception.vector = nr;
948 	vcpu->arch.exception.error_code = error_code;
949 	vcpu->arch.exception.has_payload = false;
950 	vcpu->arch.exception.payload = 0;
951 }
952 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
953 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)954 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
955 {
956 	if (err)
957 		kvm_inject_gp(vcpu, 0);
958 	else
959 		return kvm_skip_emulated_instruction(vcpu);
960 
961 	return 1;
962 }
963 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
964 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)965 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
966 {
967 	if (err) {
968 		kvm_inject_gp(vcpu, 0);
969 		return 1;
970 	}
971 
972 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
973 				       EMULTYPE_COMPLETE_USER_EXIT);
974 }
975 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)976 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
977 {
978 	++vcpu->stat.pf_guest;
979 
980 	/*
981 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
982 	 * whether or not L1 wants to intercept "regular" #PF.
983 	 */
984 	if (is_guest_mode(vcpu) && fault->async_page_fault)
985 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
986 					   true, fault->error_code,
987 					   true, fault->address);
988 	else
989 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
990 					fault->address);
991 }
992 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)993 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
994 				    struct x86_exception *fault)
995 {
996 	struct kvm_mmu *fault_mmu;
997 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
998 
999 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
1000 					       vcpu->arch.walk_mmu;
1001 
1002 	/*
1003 	 * Invalidate the TLB entry for the faulting address, if it exists,
1004 	 * else the access will fault indefinitely (and to emulate hardware).
1005 	 */
1006 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
1007 	    !(fault->error_code & PFERR_RSVD_MASK))
1008 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1009 					KVM_MMU_ROOT_CURRENT);
1010 
1011 	fault_mmu->inject_page_fault(vcpu, fault);
1012 }
1013 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1014 
kvm_inject_nmi(struct kvm_vcpu * vcpu)1015 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1016 {
1017 	atomic_inc(&vcpu->arch.nmi_queued);
1018 	kvm_make_request(KVM_REQ_NMI, vcpu);
1019 }
1020 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1021 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1022 {
1023 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1024 }
1025 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1026 
1027 /*
1028  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
1029  * a #GP and return false.
1030  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1031 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1032 {
1033 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1034 		return true;
1035 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1036 	return false;
1037 }
1038 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1039 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1040 {
1041 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1042 		return true;
1043 
1044 	kvm_queue_exception(vcpu, UD_VECTOR);
1045 	return false;
1046 }
1047 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1048 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1049 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1050 {
1051 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1052 }
1053 
1054 /*
1055  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1056  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1057 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1058 {
1059 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1060 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1061 	gpa_t real_gpa;
1062 	int i;
1063 	int ret;
1064 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1065 
1066 	/*
1067 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1068 	 * to an L1 GPA.
1069 	 */
1070 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1071 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1072 	if (real_gpa == INVALID_GPA)
1073 		return 0;
1074 
1075 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1076 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1077 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1078 	if (ret < 0)
1079 		return 0;
1080 
1081 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1082 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1083 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1084 			return 0;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1090 	 * Shadow page roots need to be reconstructed instead.
1091 	 */
1092 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1093 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1094 
1095 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1096 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1097 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1098 	vcpu->arch.pdptrs_from_userspace = false;
1099 
1100 	return 1;
1101 }
1102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1103 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1104 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1105 {
1106 #ifdef CONFIG_X86_64
1107 	if (cr0 & 0xffffffff00000000UL)
1108 		return false;
1109 #endif
1110 
1111 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1112 		return false;
1113 
1114 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1115 		return false;
1116 
1117 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1118 }
1119 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1120 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1121 {
1122 	/*
1123 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1124 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1125 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1126 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1127 	 * translations does the right thing, but there's no need to unload the
1128 	 * root as CR0.WP doesn't affect SPTEs.
1129 	 */
1130 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1131 		if (!(cr0 & X86_CR0_PG))
1132 			return;
1133 
1134 		if (tdp_enabled) {
1135 			kvm_init_mmu(vcpu);
1136 			return;
1137 		}
1138 	}
1139 
1140 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1141 		kvm_clear_async_pf_completion_queue(vcpu);
1142 		kvm_async_pf_hash_reset(vcpu);
1143 
1144 		/*
1145 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1146 		 * perspective.
1147 		 */
1148 		if (!(cr0 & X86_CR0_PG))
1149 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1150 	}
1151 
1152 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 }
1155 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1156 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1157 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1158 {
1159 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1160 
1161 	if (!kvm_is_valid_cr0(vcpu, cr0))
1162 		return 1;
1163 
1164 	cr0 |= X86_CR0_ET;
1165 
1166 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1167 	cr0 &= ~CR0_RESERVED_BITS;
1168 
1169 #ifdef CONFIG_X86_64
1170 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1171 	    (cr0 & X86_CR0_PG)) {
1172 		int cs_db, cs_l;
1173 
1174 		if (!is_pae(vcpu))
1175 			return 1;
1176 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1177 		if (cs_l)
1178 			return 1;
1179 	}
1180 #endif
1181 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1182 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1183 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1184 		return 1;
1185 
1186 	if (!(cr0 & X86_CR0_PG) &&
1187 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1188 		return 1;
1189 
1190 	if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1191 		return 1;
1192 
1193 	kvm_x86_call(set_cr0)(vcpu, cr0);
1194 
1195 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1196 
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1200 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1201 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1202 {
1203 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1204 }
1205 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1206 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1207 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1208 {
1209 	if (vcpu->arch.guest_state_protected)
1210 		return;
1211 
1212 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1213 
1214 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1215 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1216 
1217 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1218 		    vcpu->arch.ia32_xss != kvm_host.xss)
1219 			wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1220 	}
1221 
1222 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1223 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1224 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1225 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1226 		wrpkru(vcpu->arch.pkru);
1227 }
1228 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state);
1229 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1230 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1231 {
1232 	if (vcpu->arch.guest_state_protected)
1233 		return;
1234 
1235 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1236 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1237 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1238 		vcpu->arch.pkru = rdpkru();
1239 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1240 			wrpkru(vcpu->arch.host_pkru);
1241 	}
1242 
1243 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1244 
1245 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1246 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1247 
1248 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1249 		    vcpu->arch.ia32_xss != kvm_host.xss)
1250 			wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1251 	}
1252 
1253 }
1254 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state);
1255 
1256 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1257 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1258 {
1259 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1260 }
1261 #endif
1262 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1263 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1264 {
1265 	u64 xcr0 = xcr;
1266 	u64 old_xcr0 = vcpu->arch.xcr0;
1267 	u64 valid_bits;
1268 
1269 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1270 	if (index != XCR_XFEATURE_ENABLED_MASK)
1271 		return 1;
1272 	if (!(xcr0 & XFEATURE_MASK_FP))
1273 		return 1;
1274 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1275 		return 1;
1276 
1277 	/*
1278 	 * Do not allow the guest to set bits that we do not support
1279 	 * saving.  However, xcr0 bit 0 is always set, even if the
1280 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1281 	 */
1282 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1283 	if (xcr0 & ~valid_bits)
1284 		return 1;
1285 
1286 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1287 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1288 		return 1;
1289 
1290 	if (xcr0 & XFEATURE_MASK_AVX512) {
1291 		if (!(xcr0 & XFEATURE_MASK_YMM))
1292 			return 1;
1293 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1294 			return 1;
1295 	}
1296 
1297 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1298 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1299 		return 1;
1300 
1301 	vcpu->arch.xcr0 = xcr0;
1302 
1303 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1304 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1308 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1309 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1310 {
1311 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1312 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1313 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1314 		kvm_inject_gp(vcpu, 0);
1315 		return 1;
1316 	}
1317 
1318 	return kvm_skip_emulated_instruction(vcpu);
1319 }
1320 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1321 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1322 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1323 {
1324 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1325 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1326 }
1327 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1328 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1329 {
1330 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1331 		kvm_mmu_reset_context(vcpu);
1332 
1333 	/*
1334 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1335 	 * according to the SDM; however, stale prev_roots could be reused
1336 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1337 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1338 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1339 	 * so fall through.
1340 	 */
1341 	if (!tdp_enabled &&
1342 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1343 		kvm_mmu_unload(vcpu);
1344 
1345 	/*
1346 	 * The TLB has to be flushed for all PCIDs if any of the following
1347 	 * (architecturally required) changes happen:
1348 	 * - CR4.PCIDE is changed from 1 to 0
1349 	 * - CR4.PGE is toggled
1350 	 *
1351 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1352 	 */
1353 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1354 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1355 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1356 
1357 	/*
1358 	 * The TLB has to be flushed for the current PCID if any of the
1359 	 * following (architecturally required) changes happen:
1360 	 * - CR4.SMEP is changed from 0 to 1
1361 	 * - CR4.PAE is toggled
1362 	 */
1363 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1364 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1365 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1366 
1367 }
1368 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1369 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1370 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1371 {
1372 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1373 
1374 	if (!kvm_is_valid_cr4(vcpu, cr4))
1375 		return 1;
1376 
1377 	if (is_long_mode(vcpu)) {
1378 		if (!(cr4 & X86_CR4_PAE))
1379 			return 1;
1380 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1381 			return 1;
1382 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1383 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1384 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1385 		return 1;
1386 
1387 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1388 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1389 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1390 			return 1;
1391 	}
1392 
1393 	if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1394 		return 1;
1395 
1396 	kvm_x86_call(set_cr4)(vcpu, cr4);
1397 
1398 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1399 
1400 	return 0;
1401 }
1402 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1403 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1404 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1405 {
1406 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1407 	unsigned long roots_to_free = 0;
1408 	int i;
1409 
1410 	/*
1411 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1412 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1413 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1414 	 * the invalidation, but the guest's TLB entries need to be flushed as
1415 	 * the CPU may have cached entries in its TLB for the target PCID.
1416 	 */
1417 	if (unlikely(tdp_enabled)) {
1418 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1419 		return;
1420 	}
1421 
1422 	/*
1423 	 * If neither the current CR3 nor any of the prev_roots use the given
1424 	 * PCID, then nothing needs to be done here because a resync will
1425 	 * happen anyway before switching to any other CR3.
1426 	 */
1427 	if (kvm_get_active_pcid(vcpu) == pcid) {
1428 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1429 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1430 	}
1431 
1432 	/*
1433 	 * If PCID is disabled, there is no need to free prev_roots even if the
1434 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1435 	 * with PCIDE=0.
1436 	 */
1437 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1438 		return;
1439 
1440 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1441 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1442 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1443 
1444 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1445 }
1446 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1447 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1448 {
1449 	bool skip_tlb_flush = false;
1450 	unsigned long pcid = 0;
1451 #ifdef CONFIG_X86_64
1452 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1453 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1454 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1455 		pcid = cr3 & X86_CR3_PCID_MASK;
1456 	}
1457 #endif
1458 
1459 	/* PDPTRs are always reloaded for PAE paging. */
1460 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1461 		goto handle_tlb_flush;
1462 
1463 	/*
1464 	 * Do not condition the GPA check on long mode, this helper is used to
1465 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1466 	 * the current vCPU mode is accurate.
1467 	 */
1468 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1469 		return 1;
1470 
1471 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1472 		return 1;
1473 
1474 	if (cr3 != kvm_read_cr3(vcpu))
1475 		kvm_mmu_new_pgd(vcpu, cr3);
1476 
1477 	vcpu->arch.cr3 = cr3;
1478 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1479 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1480 
1481 handle_tlb_flush:
1482 	/*
1483 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1484 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1485 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1486 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1487 	 * i.e. only PCID=0 can be relevant.
1488 	 */
1489 	if (!skip_tlb_flush)
1490 		kvm_invalidate_pcid(vcpu, pcid);
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1495 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1496 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1497 {
1498 	if (cr8 & CR8_RESERVED_BITS)
1499 		return 1;
1500 	if (lapic_in_kernel(vcpu))
1501 		kvm_lapic_set_tpr(vcpu, cr8);
1502 	else
1503 		vcpu->arch.cr8 = cr8;
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1507 
kvm_get_cr8(struct kvm_vcpu * vcpu)1508 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1509 {
1510 	if (lapic_in_kernel(vcpu))
1511 		return kvm_lapic_get_cr8(vcpu);
1512 	else
1513 		return vcpu->arch.cr8;
1514 }
1515 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1516 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1517 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1518 {
1519 	int i;
1520 
1521 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1522 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1523 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1524 	}
1525 }
1526 
kvm_update_dr7(struct kvm_vcpu * vcpu)1527 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1528 {
1529 	unsigned long dr7;
1530 
1531 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1532 		dr7 = vcpu->arch.guest_debug_dr7;
1533 	else
1534 		dr7 = vcpu->arch.dr7;
1535 	kvm_x86_call(set_dr7)(vcpu, dr7);
1536 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1537 	if (dr7 & DR7_BP_EN_MASK)
1538 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1539 }
1540 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1541 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1542 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1543 {
1544 	u64 fixed = DR6_FIXED_1;
1545 
1546 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1547 		fixed |= DR6_RTM;
1548 
1549 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1550 		fixed |= DR6_BUS_LOCK;
1551 	return fixed;
1552 }
1553 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1554 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1555 {
1556 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1557 
1558 	switch (dr) {
1559 	case 0 ... 3:
1560 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1561 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1562 			vcpu->arch.eff_db[dr] = val;
1563 		break;
1564 	case 4:
1565 	case 6:
1566 		if (!kvm_dr6_valid(val))
1567 			return 1; /* #GP */
1568 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1569 		break;
1570 	case 5:
1571 	default: /* 7 */
1572 		if (!kvm_dr7_valid(val))
1573 			return 1; /* #GP */
1574 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1575 		kvm_update_dr7(vcpu);
1576 		break;
1577 	}
1578 
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1582 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1583 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1584 {
1585 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1586 
1587 	switch (dr) {
1588 	case 0 ... 3:
1589 		return vcpu->arch.db[array_index_nospec(dr, size)];
1590 	case 4:
1591 	case 6:
1592 		return vcpu->arch.dr6;
1593 	case 5:
1594 	default: /* 7 */
1595 		return vcpu->arch.dr7;
1596 	}
1597 }
1598 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1599 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1600 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1601 {
1602 	u32 pmc = kvm_rcx_read(vcpu);
1603 	u64 data;
1604 
1605 	if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1606 		kvm_inject_gp(vcpu, 0);
1607 		return 1;
1608 	}
1609 
1610 	kvm_rax_write(vcpu, (u32)data);
1611 	kvm_rdx_write(vcpu, data >> 32);
1612 	return kvm_skip_emulated_instruction(vcpu);
1613 }
1614 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1615 
1616 /*
1617  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1618  * does not yet virtualize. These include:
1619  *   10 - MISC_PACKAGE_CTRLS
1620  *   11 - ENERGY_FILTERING_CTL
1621  *   12 - DOITM
1622  *   18 - FB_CLEAR_CTRL
1623  *   21 - XAPIC_DISABLE_STATUS
1624  *   23 - OVERCLOCKING_STATUS
1625  */
1626 
1627 #define KVM_SUPPORTED_ARCH_CAP \
1628 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1629 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1630 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1631 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1632 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1633 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1634 
kvm_get_arch_capabilities(void)1635 static u64 kvm_get_arch_capabilities(void)
1636 {
1637 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1638 
1639 	/*
1640 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1641 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1642 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1643 	 * L1 guests, so it need not worry about its own (L2) guests.
1644 	 */
1645 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1646 
1647 	/*
1648 	 * If we're doing cache flushes (either "always" or "cond")
1649 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1650 	 * If an outer hypervisor is doing the cache flush for us
1651 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1652 	 * capability to the guest too, and if EPT is disabled we're not
1653 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1654 	 * require a nested hypervisor to do a flush of its own.
1655 	 */
1656 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1657 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1658 
1659 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1660 		data |= ARCH_CAP_RDCL_NO;
1661 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1662 		data |= ARCH_CAP_SSB_NO;
1663 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1664 		data |= ARCH_CAP_MDS_NO;
1665 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1666 		data |= ARCH_CAP_RFDS_NO;
1667 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1668 		data |= ARCH_CAP_ITS_NO;
1669 
1670 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1671 		/*
1672 		 * If RTM=0 because the kernel has disabled TSX, the host might
1673 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1674 		 * and therefore knows that there cannot be TAA) but keep
1675 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1676 		 * and we want to allow migrating those guests to tsx=off hosts.
1677 		 */
1678 		data &= ~ARCH_CAP_TAA_NO;
1679 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1680 		data |= ARCH_CAP_TAA_NO;
1681 	} else {
1682 		/*
1683 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1684 		 * host so the guest can choose between disabling TSX or
1685 		 * using VERW to clear CPU buffers.
1686 		 */
1687 	}
1688 
1689 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1690 		data |= ARCH_CAP_GDS_NO;
1691 
1692 	return data;
1693 }
1694 
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1695 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1696 			       bool host_initiated)
1697 {
1698 	WARN_ON_ONCE(!host_initiated);
1699 
1700 	switch (index) {
1701 	case MSR_IA32_ARCH_CAPABILITIES:
1702 		*data = kvm_get_arch_capabilities();
1703 		break;
1704 	case MSR_IA32_PERF_CAPABILITIES:
1705 		*data = kvm_caps.supported_perf_cap;
1706 		break;
1707 	case MSR_PLATFORM_INFO:
1708 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1709 		break;
1710 	case MSR_IA32_UCODE_REV:
1711 		rdmsrq_safe(index, data);
1712 		break;
1713 	default:
1714 		return kvm_x86_call(get_feature_msr)(index, data);
1715 	}
1716 	return 0;
1717 }
1718 
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1719 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1720 {
1721 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1722 				 kvm_get_feature_msr);
1723 }
1724 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 		return false;
1729 
1730 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 		return false;
1732 
1733 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1734 		return false;
1735 
1736 	if (efer & (EFER_LME | EFER_LMA) &&
1737 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1738 		return false;
1739 
1740 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1741 		return false;
1742 
1743 	return true;
1744 
1745 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 	if (efer & efer_reserved_bits)
1749 		return false;
1750 
1751 	return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1754 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	u64 old_efer = vcpu->arch.efer;
1758 	u64 efer = msr_info->data;
1759 	int r;
1760 
1761 	if (efer & efer_reserved_bits)
1762 		return 1;
1763 
1764 	if (!msr_info->host_initiated) {
1765 		if (!__kvm_valid_efer(vcpu, efer))
1766 			return 1;
1767 
1768 		if (is_paging(vcpu) &&
1769 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 			return 1;
1771 	}
1772 
1773 	efer &= ~EFER_LMA;
1774 	efer |= vcpu->arch.efer & EFER_LMA;
1775 
1776 	r = kvm_x86_call(set_efer)(vcpu, efer);
1777 	if (r) {
1778 		WARN_ON(r > 0);
1779 		return r;
1780 	}
1781 
1782 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 		kvm_mmu_reset_context(vcpu);
1784 
1785 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1786 	    (efer & EFER_SVME))
1787 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1788 
1789 	return 0;
1790 }
1791 
kvm_enable_efer_bits(u64 mask)1792 void kvm_enable_efer_bits(u64 mask)
1793 {
1794        efer_reserved_bits &= ~mask;
1795 }
1796 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1797 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1798 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1799 {
1800 	struct kvm_x86_msr_filter *msr_filter;
1801 	struct msr_bitmap_range *ranges;
1802 	struct kvm *kvm = vcpu->kvm;
1803 	bool allowed;
1804 	int idx;
1805 	u32 i;
1806 
1807 	/* x2APIC MSRs do not support filtering. */
1808 	if (index >= 0x800 && index <= 0x8ff)
1809 		return true;
1810 
1811 	idx = srcu_read_lock(&kvm->srcu);
1812 
1813 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1814 	if (!msr_filter) {
1815 		allowed = true;
1816 		goto out;
1817 	}
1818 
1819 	allowed = msr_filter->default_allow;
1820 	ranges = msr_filter->ranges;
1821 
1822 	for (i = 0; i < msr_filter->count; i++) {
1823 		u32 start = ranges[i].base;
1824 		u32 end = start + ranges[i].nmsrs;
1825 		u32 flags = ranges[i].flags;
1826 		unsigned long *bitmap = ranges[i].bitmap;
1827 
1828 		if ((index >= start) && (index < end) && (flags & type)) {
1829 			allowed = test_bit(index - start, bitmap);
1830 			break;
1831 		}
1832 	}
1833 
1834 out:
1835 	srcu_read_unlock(&kvm->srcu, idx);
1836 
1837 	return allowed;
1838 }
1839 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1840 
1841 /*
1842  * Write @data into the MSR specified by @index.  Select MSR specific fault
1843  * checks are bypassed if @host_initiated is %true.
1844  * Returns 0 on success, non-0 otherwise.
1845  * Assumes vcpu_load() was already called.
1846  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1847 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1848 			 bool host_initiated)
1849 {
1850 	struct msr_data msr;
1851 
1852 	switch (index) {
1853 	case MSR_FS_BASE:
1854 	case MSR_GS_BASE:
1855 	case MSR_KERNEL_GS_BASE:
1856 	case MSR_CSTAR:
1857 	case MSR_LSTAR:
1858 		if (is_noncanonical_msr_address(data, vcpu))
1859 			return 1;
1860 		break;
1861 	case MSR_IA32_SYSENTER_EIP:
1862 	case MSR_IA32_SYSENTER_ESP:
1863 		/*
1864 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1865 		 * non-canonical address is written on Intel but not on
1866 		 * AMD (which ignores the top 32-bits, because it does
1867 		 * not implement 64-bit SYSENTER).
1868 		 *
1869 		 * 64-bit code should hence be able to write a non-canonical
1870 		 * value on AMD.  Making the address canonical ensures that
1871 		 * vmentry does not fail on Intel after writing a non-canonical
1872 		 * value, and that something deterministic happens if the guest
1873 		 * invokes 64-bit SYSENTER.
1874 		 */
1875 		data = __canonical_address(data, max_host_virt_addr_bits());
1876 		break;
1877 	case MSR_TSC_AUX:
1878 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1879 			return 1;
1880 
1881 		if (!host_initiated &&
1882 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1883 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1884 			return 1;
1885 
1886 		/*
1887 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1888 		 * incomplete and conflicting architectural behavior.  Current
1889 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1890 		 * reserved and always read as zeros.  Enforce Intel's reserved
1891 		 * bits check if the guest CPU is Intel compatible, otherwise
1892 		 * clear the bits.  This ensures cross-vendor migration will
1893 		 * provide consistent behavior for the guest.
1894 		 */
1895 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1896 			return 1;
1897 
1898 		data = (u32)data;
1899 		break;
1900 	case MSR_IA32_U_CET:
1901 	case MSR_IA32_S_CET:
1902 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1903 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1904 			return KVM_MSR_RET_UNSUPPORTED;
1905 		if (!kvm_is_valid_u_s_cet(vcpu, data))
1906 			return 1;
1907 		break;
1908 	case MSR_KVM_INTERNAL_GUEST_SSP:
1909 		if (!host_initiated)
1910 			return 1;
1911 		fallthrough;
1912 		/*
1913 		 * Note that the MSR emulation here is flawed when a vCPU
1914 		 * doesn't support the Intel 64 architecture. The expected
1915 		 * architectural behavior in this case is that the upper 32
1916 		 * bits do not exist and should always read '0'. However,
1917 		 * because the actual hardware on which the virtual CPU is
1918 		 * running does support Intel 64, XRSTORS/XSAVES in the
1919 		 * guest could observe behavior that violates the
1920 		 * architecture. Intercepting XRSTORS/XSAVES for this
1921 		 * special case isn't deemed worthwhile.
1922 		 */
1923 	case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1924 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1925 			return KVM_MSR_RET_UNSUPPORTED;
1926 		/*
1927 		 * MSR_IA32_INT_SSP_TAB is not present on processors that do
1928 		 * not support Intel 64 architecture.
1929 		 */
1930 		if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1931 			return KVM_MSR_RET_UNSUPPORTED;
1932 		if (is_noncanonical_msr_address(data, vcpu))
1933 			return 1;
1934 		/* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1935 		if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1936 			return 1;
1937 		break;
1938 	}
1939 
1940 	msr.data = data;
1941 	msr.index = index;
1942 	msr.host_initiated = host_initiated;
1943 
1944 	return kvm_x86_call(set_msr)(vcpu, &msr);
1945 }
1946 
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1947 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1948 			bool host_initiated)
1949 {
1950 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1951 }
1952 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1953 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1954 				     u32 index, u64 data, bool host_initiated)
1955 {
1956 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1957 				 _kvm_set_msr);
1958 }
1959 
1960 /*
1961  * Read the MSR specified by @index into @data.  Select MSR specific fault
1962  * checks are bypassed if @host_initiated is %true.
1963  * Returns 0 on success, non-0 otherwise.
1964  * Assumes vcpu_load() was already called.
1965  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1966 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1967 			 bool host_initiated)
1968 {
1969 	struct msr_data msr;
1970 	int ret;
1971 
1972 	switch (index) {
1973 	case MSR_TSC_AUX:
1974 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1975 			return 1;
1976 
1977 		if (!host_initiated &&
1978 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1979 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1980 			return 1;
1981 		break;
1982 	case MSR_IA32_U_CET:
1983 	case MSR_IA32_S_CET:
1984 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1985 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1986 			return KVM_MSR_RET_UNSUPPORTED;
1987 		break;
1988 	case MSR_KVM_INTERNAL_GUEST_SSP:
1989 		if (!host_initiated)
1990 			return 1;
1991 		fallthrough;
1992 	case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1993 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1994 			return KVM_MSR_RET_UNSUPPORTED;
1995 		break;
1996 	}
1997 
1998 	msr.index = index;
1999 	msr.host_initiated = host_initiated;
2000 
2001 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
2002 	if (!ret)
2003 		*data = msr.data;
2004 	return ret;
2005 }
2006 
kvm_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2007 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2008 {
2009 	return __kvm_set_msr(vcpu, index, data, true);
2010 }
2011 
kvm_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2012 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2013 {
2014 	return __kvm_get_msr(vcpu, index, data, true);
2015 }
2016 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)2017 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2018 				     u32 index, u64 *data, bool host_initiated)
2019 {
2020 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2021 				 __kvm_get_msr);
2022 }
2023 
__kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2024 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2025 {
2026 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
2027 }
2028 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2029 
__kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2030 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2031 {
2032 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
2033 }
2034 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2035 
kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2036 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2037 {
2038 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2039 		return KVM_MSR_RET_FILTERED;
2040 
2041 	return __kvm_emulate_msr_read(vcpu, index, data);
2042 }
2043 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2044 
kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2045 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2046 {
2047 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2048 		return KVM_MSR_RET_FILTERED;
2049 
2050 	return __kvm_emulate_msr_write(vcpu, index, data);
2051 }
2052 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2053 
2054 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)2055 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057 	if (!vcpu->run->msr.error) {
2058 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2059 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2060 	}
2061 }
2062 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2063 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2064 {
2065 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2066 }
2067 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2068 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2069 {
2070 	complete_userspace_rdmsr(vcpu);
2071 	return complete_emulated_msr_access(vcpu);
2072 }
2073 
complete_fast_msr_access(struct kvm_vcpu * vcpu)2074 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2075 {
2076 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2077 }
2078 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2079 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2080 {
2081 	complete_userspace_rdmsr(vcpu);
2082 	return complete_fast_msr_access(vcpu);
2083 }
2084 
complete_fast_rdmsr_imm(struct kvm_vcpu * vcpu)2085 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2086 {
2087 	if (!vcpu->run->msr.error)
2088 		kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2089 				   vcpu->run->msr.data);
2090 
2091 	return complete_fast_msr_access(vcpu);
2092 }
2093 
kvm_msr_reason(int r)2094 static u64 kvm_msr_reason(int r)
2095 {
2096 	switch (r) {
2097 	case KVM_MSR_RET_UNSUPPORTED:
2098 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2099 	case KVM_MSR_RET_FILTERED:
2100 		return KVM_MSR_EXIT_REASON_FILTER;
2101 	default:
2102 		return KVM_MSR_EXIT_REASON_INVAL;
2103 	}
2104 }
2105 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2106 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2107 			      u32 exit_reason, u64 data,
2108 			      int (*completion)(struct kvm_vcpu *vcpu),
2109 			      int r)
2110 {
2111 	u64 msr_reason = kvm_msr_reason(r);
2112 
2113 	/* Check if the user wanted to know about this MSR fault */
2114 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2115 		return 0;
2116 
2117 	vcpu->run->exit_reason = exit_reason;
2118 	vcpu->run->msr.error = 0;
2119 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2120 	vcpu->run->msr.reason = msr_reason;
2121 	vcpu->run->msr.index = index;
2122 	vcpu->run->msr.data = data;
2123 	vcpu->arch.complete_userspace_io = completion;
2124 
2125 	return 1;
2126 }
2127 
__kvm_emulate_rdmsr(struct kvm_vcpu * vcpu,u32 msr,int reg,int (* complete_rdmsr)(struct kvm_vcpu *))2128 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2129 			       int (*complete_rdmsr)(struct kvm_vcpu *))
2130 {
2131 	u64 data;
2132 	int r;
2133 
2134 	r = kvm_emulate_msr_read(vcpu, msr, &data);
2135 
2136 	if (!r) {
2137 		trace_kvm_msr_read(msr, data);
2138 
2139 		if (reg < 0) {
2140 			kvm_rax_write(vcpu, data & -1u);
2141 			kvm_rdx_write(vcpu, (data >> 32) & -1u);
2142 		} else {
2143 			kvm_register_write(vcpu, reg, data);
2144 		}
2145 	} else {
2146 		/* MSR read failed? See if we should ask user space */
2147 		if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2148 				       complete_rdmsr, r))
2149 			return 0;
2150 		trace_kvm_msr_read_ex(msr);
2151 	}
2152 
2153 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2154 }
2155 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2156 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2157 {
2158 	return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2159 				   complete_fast_rdmsr);
2160 }
2161 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2162 
kvm_emulate_rdmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2163 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2164 {
2165 	vcpu->arch.cui_rdmsr_imm_reg = reg;
2166 
2167 	return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2168 }
2169 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2170 
__kvm_emulate_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2171 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2172 {
2173 	int r;
2174 
2175 	r = kvm_emulate_msr_write(vcpu, msr, data);
2176 	if (!r) {
2177 		trace_kvm_msr_write(msr, data);
2178 	} else {
2179 		/* MSR write failed? See if we should ask user space */
2180 		if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2181 				       complete_fast_msr_access, r))
2182 			return 0;
2183 		/* Signal all other negative errors to userspace */
2184 		if (r < 0)
2185 			return r;
2186 		trace_kvm_msr_write_ex(msr, data);
2187 	}
2188 
2189 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2190 }
2191 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2192 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2193 {
2194 	return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2195 				   kvm_read_edx_eax(vcpu));
2196 }
2197 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2198 
kvm_emulate_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2199 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2200 {
2201 	return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2202 }
2203 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2204 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2205 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2206 {
2207 	return kvm_skip_emulated_instruction(vcpu);
2208 }
2209 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2210 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2211 {
2212 	/* Treat an INVD instruction as a NOP and just skip it. */
2213 	return kvm_emulate_as_nop(vcpu);
2214 }
2215 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2216 
handle_fastpath_invd(struct kvm_vcpu * vcpu)2217 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2218 {
2219 	if (!kvm_emulate_invd(vcpu))
2220 		return EXIT_FASTPATH_EXIT_USERSPACE;
2221 
2222 	return EXIT_FASTPATH_REENTER_GUEST;
2223 }
2224 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2225 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2226 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2227 {
2228 	kvm_queue_exception(vcpu, UD_VECTOR);
2229 	return 1;
2230 }
2231 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2232 
2233 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2234 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2235 {
2236 	bool enabled;
2237 
2238 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2239 		goto emulate_as_nop;
2240 
2241 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2242 		enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2243 	else
2244 		enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2245 
2246 	if (!enabled)
2247 		return kvm_handle_invalid_op(vcpu);
2248 
2249 emulate_as_nop:
2250 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2251 	return kvm_emulate_as_nop(vcpu);
2252 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2253 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2254 {
2255 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2256 }
2257 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2258 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2259 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2260 {
2261 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2262 }
2263 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2264 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2265 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2266 {
2267 	xfer_to_guest_mode_prepare();
2268 
2269 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2270 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2271 }
2272 
__handle_fastpath_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2273 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2274 {
2275 	switch (msr) {
2276 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2277 		if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2278 		    kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2279 			return EXIT_FASTPATH_NONE;
2280 		break;
2281 	case MSR_IA32_TSC_DEADLINE:
2282 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2283 		break;
2284 	default:
2285 		return EXIT_FASTPATH_NONE;
2286 	}
2287 
2288 	trace_kvm_msr_write(msr, data);
2289 
2290 	if (!kvm_skip_emulated_instruction(vcpu))
2291 		return EXIT_FASTPATH_EXIT_USERSPACE;
2292 
2293 	return EXIT_FASTPATH_REENTER_GUEST;
2294 }
2295 
handle_fastpath_wrmsr(struct kvm_vcpu * vcpu)2296 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2297 {
2298 	return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2299 				       kvm_read_edx_eax(vcpu));
2300 }
2301 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2302 
handle_fastpath_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2303 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2304 {
2305 	return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2306 }
2307 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2308 
2309 /*
2310  * Adapt set_msr() to msr_io()'s calling convention
2311  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2312 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2313 {
2314 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2315 }
2316 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2317 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2318 {
2319 	u64 val;
2320 
2321 	/*
2322 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2323 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2324 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2325 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2326 	 * all MSRs when emulating RESET.
2327 	 */
2328 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2329 	    (do_get_msr(vcpu, index, &val) || *data != val))
2330 		return -EINVAL;
2331 
2332 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2333 }
2334 
2335 #ifdef CONFIG_X86_64
2336 struct pvclock_clock {
2337 	int vclock_mode;
2338 	u64 cycle_last;
2339 	u64 mask;
2340 	u32 mult;
2341 	u32 shift;
2342 	u64 base_cycles;
2343 	u64 offset;
2344 };
2345 
2346 struct pvclock_gtod_data {
2347 	seqcount_t	seq;
2348 
2349 	struct pvclock_clock clock; /* extract of a clocksource struct */
2350 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2351 
2352 	ktime_t		offs_boot;
2353 	u64		wall_time_sec;
2354 };
2355 
2356 static struct pvclock_gtod_data pvclock_gtod_data;
2357 
update_pvclock_gtod(struct timekeeper * tk)2358 static void update_pvclock_gtod(struct timekeeper *tk)
2359 {
2360 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2361 
2362 	write_seqcount_begin(&vdata->seq);
2363 
2364 	/* copy pvclock gtod data */
2365 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2366 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2367 	vdata->clock.mask		= tk->tkr_mono.mask;
2368 	vdata->clock.mult		= tk->tkr_mono.mult;
2369 	vdata->clock.shift		= tk->tkr_mono.shift;
2370 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2371 	vdata->clock.offset		= tk->tkr_mono.base;
2372 
2373 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2374 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2375 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2376 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2377 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2378 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2379 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2380 
2381 	vdata->wall_time_sec            = tk->xtime_sec;
2382 
2383 	vdata->offs_boot		= tk->offs_boot;
2384 
2385 	write_seqcount_end(&vdata->seq);
2386 }
2387 
get_kvmclock_base_ns(void)2388 static s64 get_kvmclock_base_ns(void)
2389 {
2390 	/* Count up from boot time, but with the frequency of the raw clock.  */
2391 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2392 }
2393 #else
get_kvmclock_base_ns(void)2394 static s64 get_kvmclock_base_ns(void)
2395 {
2396 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2397 	return ktime_get_boottime_ns();
2398 }
2399 #endif
2400 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2401 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2402 {
2403 	int version;
2404 	int r;
2405 	struct pvclock_wall_clock wc;
2406 	u32 wc_sec_hi;
2407 	u64 wall_nsec;
2408 
2409 	if (!wall_clock)
2410 		return;
2411 
2412 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2413 	if (r)
2414 		return;
2415 
2416 	if (version & 1)
2417 		++version;  /* first time write, random junk */
2418 
2419 	++version;
2420 
2421 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2422 		return;
2423 
2424 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2425 
2426 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2427 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2428 	wc.version = version;
2429 
2430 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2431 
2432 	if (sec_hi_ofs) {
2433 		wc_sec_hi = wall_nsec >> 32;
2434 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2435 				&wc_sec_hi, sizeof(wc_sec_hi));
2436 	}
2437 
2438 	version++;
2439 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2440 }
2441 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2442 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2443 				  bool old_msr, bool host_initiated)
2444 {
2445 	struct kvm_arch *ka = &vcpu->kvm->arch;
2446 
2447 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2448 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2449 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2450 
2451 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2452 	}
2453 
2454 	vcpu->arch.time = system_time;
2455 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2456 
2457 	/* we verify if the enable bit is set... */
2458 	if (system_time & 1)
2459 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2460 				 sizeof(struct pvclock_vcpu_time_info));
2461 	else
2462 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2463 
2464 	return;
2465 }
2466 
div_frac(uint32_t dividend,uint32_t divisor)2467 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2468 {
2469 	do_shl32_div32(dividend, divisor);
2470 	return dividend;
2471 }
2472 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2473 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2474 			       s8 *pshift, u32 *pmultiplier)
2475 {
2476 	uint64_t scaled64;
2477 	int32_t  shift = 0;
2478 	uint64_t tps64;
2479 	uint32_t tps32;
2480 
2481 	tps64 = base_hz;
2482 	scaled64 = scaled_hz;
2483 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2484 		tps64 >>= 1;
2485 		shift--;
2486 	}
2487 
2488 	tps32 = (uint32_t)tps64;
2489 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2490 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2491 			scaled64 >>= 1;
2492 		else
2493 			tps32 <<= 1;
2494 		shift++;
2495 	}
2496 
2497 	*pshift = shift;
2498 	*pmultiplier = div_frac(scaled64, tps32);
2499 }
2500 
2501 #ifdef CONFIG_X86_64
2502 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2503 #endif
2504 
2505 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2506 static unsigned long max_tsc_khz;
2507 
adjust_tsc_khz(u32 khz,s32 ppm)2508 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2509 {
2510 	u64 v = (u64)khz * (1000000 + ppm);
2511 	do_div(v, 1000000);
2512 	return v;
2513 }
2514 
2515 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2516 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2517 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2518 {
2519 	u64 ratio;
2520 
2521 	/* Guest TSC same frequency as host TSC? */
2522 	if (!scale) {
2523 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2524 		return 0;
2525 	}
2526 
2527 	/* TSC scaling supported? */
2528 	if (!kvm_caps.has_tsc_control) {
2529 		if (user_tsc_khz > tsc_khz) {
2530 			vcpu->arch.tsc_catchup = 1;
2531 			vcpu->arch.tsc_always_catchup = 1;
2532 			return 0;
2533 		} else {
2534 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2535 			return -1;
2536 		}
2537 	}
2538 
2539 	/* TSC scaling required  - calculate ratio */
2540 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2541 				user_tsc_khz, tsc_khz);
2542 
2543 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2544 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2545 			            user_tsc_khz);
2546 		return -1;
2547 	}
2548 
2549 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2550 	return 0;
2551 }
2552 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2553 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2554 {
2555 	u32 thresh_lo, thresh_hi;
2556 	int use_scaling = 0;
2557 
2558 	/* tsc_khz can be zero if TSC calibration fails */
2559 	if (user_tsc_khz == 0) {
2560 		/* set tsc_scaling_ratio to a safe value */
2561 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2562 		return -1;
2563 	}
2564 
2565 	/* Compute a scale to convert nanoseconds in TSC cycles */
2566 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2567 			   &vcpu->arch.virtual_tsc_shift,
2568 			   &vcpu->arch.virtual_tsc_mult);
2569 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2570 
2571 	/*
2572 	 * Compute the variation in TSC rate which is acceptable
2573 	 * within the range of tolerance and decide if the
2574 	 * rate being applied is within that bounds of the hardware
2575 	 * rate.  If so, no scaling or compensation need be done.
2576 	 */
2577 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2578 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2579 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2580 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2581 			 user_tsc_khz, thresh_lo, thresh_hi);
2582 		use_scaling = 1;
2583 	}
2584 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2585 }
2586 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2587 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2588 {
2589 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2590 				      vcpu->arch.virtual_tsc_mult,
2591 				      vcpu->arch.virtual_tsc_shift);
2592 	tsc += vcpu->arch.this_tsc_write;
2593 	return tsc;
2594 }
2595 
2596 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2597 static inline bool gtod_is_based_on_tsc(int mode)
2598 {
2599 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2600 }
2601 #endif
2602 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2603 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2604 {
2605 #ifdef CONFIG_X86_64
2606 	struct kvm_arch *ka = &vcpu->kvm->arch;
2607 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2608 
2609 	/*
2610 	 * To use the masterclock, the host clocksource must be based on TSC
2611 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2612 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2613 	 */
2614 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2615 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2616 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2617 
2618 	/*
2619 	 * Request a masterclock update if the masterclock needs to be toggled
2620 	 * on/off, or when starting a new generation and the masterclock is
2621 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2622 	 * taken _after_ the new generation is created).
2623 	 */
2624 	if ((ka->use_master_clock && new_generation) ||
2625 	    (ka->use_master_clock != use_master_clock))
2626 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2627 
2628 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2629 			    atomic_read(&vcpu->kvm->online_vcpus),
2630 		            ka->use_master_clock, gtod->clock.vclock_mode);
2631 #endif
2632 }
2633 
2634 /*
2635  * Multiply tsc by a fixed point number represented by ratio.
2636  *
2637  * The most significant 64-N bits (mult) of ratio represent the
2638  * integral part of the fixed point number; the remaining N bits
2639  * (frac) represent the fractional part, ie. ratio represents a fixed
2640  * point number (mult + frac * 2^(-N)).
2641  *
2642  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2643  */
__scale_tsc(u64 ratio,u64 tsc)2644 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2645 {
2646 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2647 }
2648 
kvm_scale_tsc(u64 tsc,u64 ratio)2649 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2650 {
2651 	u64 _tsc = tsc;
2652 
2653 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2654 		_tsc = __scale_tsc(ratio, tsc);
2655 
2656 	return _tsc;
2657 }
2658 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2659 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2660 {
2661 	u64 tsc;
2662 
2663 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2664 
2665 	return target_tsc - tsc;
2666 }
2667 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2668 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2669 {
2670 	return vcpu->arch.l1_tsc_offset +
2671 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2672 }
2673 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2674 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2675 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2676 {
2677 	u64 nested_offset;
2678 
2679 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2680 		nested_offset = l1_offset;
2681 	else
2682 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2683 						kvm_caps.tsc_scaling_ratio_frac_bits);
2684 
2685 	nested_offset += l2_offset;
2686 	return nested_offset;
2687 }
2688 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2689 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2690 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2691 {
2692 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2693 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2694 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2695 
2696 	return l1_multiplier;
2697 }
2698 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2699 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2700 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2701 {
2702 	if (vcpu->arch.guest_tsc_protected)
2703 		return;
2704 
2705 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2706 				   vcpu->arch.l1_tsc_offset,
2707 				   l1_offset);
2708 
2709 	vcpu->arch.l1_tsc_offset = l1_offset;
2710 
2711 	/*
2712 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2713 	 * according to the spec this should set L1's TSC (as opposed to
2714 	 * setting L1's offset for L2).
2715 	 */
2716 	if (is_guest_mode(vcpu))
2717 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2718 			l1_offset,
2719 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2720 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2721 	else
2722 		vcpu->arch.tsc_offset = l1_offset;
2723 
2724 	kvm_x86_call(write_tsc_offset)(vcpu);
2725 }
2726 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2727 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2728 {
2729 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2730 
2731 	/* Userspace is changing the multiplier while L2 is active */
2732 	if (is_guest_mode(vcpu))
2733 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2734 			l1_multiplier,
2735 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2736 	else
2737 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2738 
2739 	if (kvm_caps.has_tsc_control)
2740 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2741 }
2742 
kvm_check_tsc_unstable(void)2743 static inline bool kvm_check_tsc_unstable(void)
2744 {
2745 #ifdef CONFIG_X86_64
2746 	/*
2747 	 * TSC is marked unstable when we're running on Hyper-V,
2748 	 * 'TSC page' clocksource is good.
2749 	 */
2750 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2751 		return false;
2752 #endif
2753 	return check_tsc_unstable();
2754 }
2755 
2756 /*
2757  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2758  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2759  * participates in.
2760  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2761 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2762 				  u64 ns, bool matched, bool user_set_tsc)
2763 {
2764 	struct kvm *kvm = vcpu->kvm;
2765 
2766 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2767 
2768 	if (vcpu->arch.guest_tsc_protected)
2769 		return;
2770 
2771 	if (user_set_tsc)
2772 		vcpu->kvm->arch.user_set_tsc = true;
2773 
2774 	/*
2775 	 * We also track th most recent recorded KHZ, write and time to
2776 	 * allow the matching interval to be extended at each write.
2777 	 */
2778 	kvm->arch.last_tsc_nsec = ns;
2779 	kvm->arch.last_tsc_write = tsc;
2780 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2781 	kvm->arch.last_tsc_offset = offset;
2782 
2783 	vcpu->arch.last_guest_tsc = tsc;
2784 
2785 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2786 
2787 	if (!matched) {
2788 		/*
2789 		 * We split periods of matched TSC writes into generations.
2790 		 * For each generation, we track the original measured
2791 		 * nanosecond time, offset, and write, so if TSCs are in
2792 		 * sync, we can match exact offset, and if not, we can match
2793 		 * exact software computation in compute_guest_tsc()
2794 		 *
2795 		 * These values are tracked in kvm->arch.cur_xxx variables.
2796 		 */
2797 		kvm->arch.cur_tsc_generation++;
2798 		kvm->arch.cur_tsc_nsec = ns;
2799 		kvm->arch.cur_tsc_write = tsc;
2800 		kvm->arch.cur_tsc_offset = offset;
2801 		kvm->arch.nr_vcpus_matched_tsc = 0;
2802 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2803 		kvm->arch.nr_vcpus_matched_tsc++;
2804 	}
2805 
2806 	/* Keep track of which generation this VCPU has synchronized to */
2807 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2808 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2809 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2810 
2811 	kvm_track_tsc_matching(vcpu, !matched);
2812 }
2813 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2814 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2815 {
2816 	u64 data = user_value ? *user_value : 0;
2817 	struct kvm *kvm = vcpu->kvm;
2818 	u64 offset, ns, elapsed;
2819 	unsigned long flags;
2820 	bool matched = false;
2821 	bool synchronizing = false;
2822 
2823 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2824 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2825 	ns = get_kvmclock_base_ns();
2826 	elapsed = ns - kvm->arch.last_tsc_nsec;
2827 
2828 	if (vcpu->arch.virtual_tsc_khz) {
2829 		if (data == 0) {
2830 			/*
2831 			 * Force synchronization when creating a vCPU, or when
2832 			 * userspace explicitly writes a zero value.
2833 			 */
2834 			synchronizing = true;
2835 		} else if (kvm->arch.user_set_tsc) {
2836 			u64 tsc_exp = kvm->arch.last_tsc_write +
2837 						nsec_to_cycles(vcpu, elapsed);
2838 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2839 			/*
2840 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2841 			 * a small delta (1 second) of virtual cycle time against the
2842 			 * previously set vCPU, we assume that they were intended to be
2843 			 * in sync and the delta was only due to the racy nature of the
2844 			 * legacy API.
2845 			 *
2846 			 * This trick falls down when restoring a guest which genuinely
2847 			 * has been running for less time than the 1 second of imprecision
2848 			 * which we allow for in the legacy API. In this case, the first
2849 			 * value written by userspace (on any vCPU) should not be subject
2850 			 * to this 'correction' to make it sync up with values that only
2851 			 * come from the kernel's default vCPU creation. Make the 1-second
2852 			 * slop hack only trigger if the user_set_tsc flag is already set.
2853 			 */
2854 			synchronizing = data < tsc_exp + tsc_hz &&
2855 					data + tsc_hz > tsc_exp;
2856 		}
2857 	}
2858 
2859 
2860 	/*
2861 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2862 	 * TSC, we add elapsed time in this computation.  We could let the
2863 	 * compensation code attempt to catch up if we fall behind, but
2864 	 * it's better to try to match offsets from the beginning.
2865          */
2866 	if (synchronizing &&
2867 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2868 		if (!kvm_check_tsc_unstable()) {
2869 			offset = kvm->arch.cur_tsc_offset;
2870 		} else {
2871 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2872 			data += delta;
2873 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2874 		}
2875 		matched = true;
2876 	}
2877 
2878 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2879 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2880 }
2881 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2882 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2883 					   s64 adjustment)
2884 {
2885 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2886 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2887 }
2888 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2889 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2890 {
2891 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2892 		WARN_ON(adjustment < 0);
2893 	adjustment = kvm_scale_tsc((u64) adjustment,
2894 				   vcpu->arch.l1_tsc_scaling_ratio);
2895 	adjust_tsc_offset_guest(vcpu, adjustment);
2896 }
2897 
2898 #ifdef CONFIG_X86_64
2899 
read_tsc(void)2900 static u64 read_tsc(void)
2901 {
2902 	u64 ret = (u64)rdtsc_ordered();
2903 	u64 last = pvclock_gtod_data.clock.cycle_last;
2904 
2905 	if (likely(ret >= last))
2906 		return ret;
2907 
2908 	/*
2909 	 * GCC likes to generate cmov here, but this branch is extremely
2910 	 * predictable (it's just a function of time and the likely is
2911 	 * very likely) and there's a data dependence, so force GCC
2912 	 * to generate a branch instead.  I don't barrier() because
2913 	 * we don't actually need a barrier, and if this function
2914 	 * ever gets inlined it will generate worse code.
2915 	 */
2916 	asm volatile ("");
2917 	return last;
2918 }
2919 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2920 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2921 			  int *mode)
2922 {
2923 	u64 tsc_pg_val;
2924 	long v;
2925 
2926 	switch (clock->vclock_mode) {
2927 	case VDSO_CLOCKMODE_HVCLOCK:
2928 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2929 					 tsc_timestamp, &tsc_pg_val)) {
2930 			/* TSC page valid */
2931 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2932 			v = (tsc_pg_val - clock->cycle_last) &
2933 				clock->mask;
2934 		} else {
2935 			/* TSC page invalid */
2936 			*mode = VDSO_CLOCKMODE_NONE;
2937 		}
2938 		break;
2939 	case VDSO_CLOCKMODE_TSC:
2940 		*mode = VDSO_CLOCKMODE_TSC;
2941 		*tsc_timestamp = read_tsc();
2942 		v = (*tsc_timestamp - clock->cycle_last) &
2943 			clock->mask;
2944 		break;
2945 	default:
2946 		*mode = VDSO_CLOCKMODE_NONE;
2947 	}
2948 
2949 	if (*mode == VDSO_CLOCKMODE_NONE)
2950 		*tsc_timestamp = v = 0;
2951 
2952 	return v * clock->mult;
2953 }
2954 
2955 /*
2956  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2957  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2958  */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2959 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2960 {
2961 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2962 	unsigned long seq;
2963 	int mode;
2964 	u64 ns;
2965 
2966 	do {
2967 		seq = read_seqcount_begin(&gtod->seq);
2968 		ns = gtod->raw_clock.base_cycles;
2969 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2970 		ns >>= gtod->raw_clock.shift;
2971 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2972 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2973 	*t = ns;
2974 
2975 	return mode;
2976 }
2977 
2978 /*
2979  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2980  * no boot time offset.
2981  */
do_monotonic(s64 * t,u64 * tsc_timestamp)2982 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2983 {
2984 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2985 	unsigned long seq;
2986 	int mode;
2987 	u64 ns;
2988 
2989 	do {
2990 		seq = read_seqcount_begin(&gtod->seq);
2991 		ns = gtod->clock.base_cycles;
2992 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2993 		ns >>= gtod->clock.shift;
2994 		ns += ktime_to_ns(gtod->clock.offset);
2995 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2996 	*t = ns;
2997 
2998 	return mode;
2999 }
3000 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)3001 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
3002 {
3003 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
3004 	unsigned long seq;
3005 	int mode;
3006 	u64 ns;
3007 
3008 	do {
3009 		seq = read_seqcount_begin(&gtod->seq);
3010 		ts->tv_sec = gtod->wall_time_sec;
3011 		ns = gtod->clock.base_cycles;
3012 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
3013 		ns >>= gtod->clock.shift;
3014 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
3015 
3016 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3017 	ts->tv_nsec = ns;
3018 
3019 	return mode;
3020 }
3021 
3022 /*
3023  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3024  * reports the TSC value from which it do so. Returns true if host is
3025  * using TSC based clocksource.
3026  */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3027 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3028 {
3029 	/* checked again under seqlock below */
3030 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3031 		return false;
3032 
3033 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3034 						     tsc_timestamp));
3035 }
3036 
3037 /*
3038  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3039  * so. Returns true if host is using TSC based clocksource.
3040  */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3041 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3042 {
3043 	/* checked again under seqlock below */
3044 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3045 		return false;
3046 
3047 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3048 						 tsc_timestamp));
3049 }
3050 
3051 /*
3052  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
3053  * so. Returns true if host is using TSC based clocksource.
3054  *
3055  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
3056  * for that.
3057  */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)3058 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3059 					   u64 *tsc_timestamp)
3060 {
3061 	/* checked again under seqlock below */
3062 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3063 		return false;
3064 
3065 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3066 }
3067 #endif
3068 
3069 /*
3070  *
3071  * Assuming a stable TSC across physical CPUS, and a stable TSC
3072  * across virtual CPUs, the following condition is possible.
3073  * Each numbered line represents an event visible to both
3074  * CPUs at the next numbered event.
3075  *
3076  * "timespecX" represents host monotonic time. "tscX" represents
3077  * RDTSC value.
3078  *
3079  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
3080  *
3081  * 1.  read timespec0,tsc0
3082  * 2.					| timespec1 = timespec0 + N
3083  * 					| tsc1 = tsc0 + M
3084  * 3. transition to guest		| transition to guest
3085  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
3086  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
3087  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3088  *
3089  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3090  *
3091  * 	- ret0 < ret1
3092  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3093  *		...
3094  *	- 0 < N - M => M < N
3095  *
3096  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3097  * always the case (the difference between two distinct xtime instances
3098  * might be smaller then the difference between corresponding TSC reads,
3099  * when updating guest vcpus pvclock areas).
3100  *
3101  * To avoid that problem, do not allow visibility of distinct
3102  * system_timestamp/tsc_timestamp values simultaneously: use a master
3103  * copy of host monotonic time values. Update that master copy
3104  * in lockstep.
3105  *
3106  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3107  *
3108  */
3109 
pvclock_update_vm_gtod_copy(struct kvm * kvm)3110 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3111 {
3112 #ifdef CONFIG_X86_64
3113 	struct kvm_arch *ka = &kvm->arch;
3114 	int vclock_mode;
3115 	bool host_tsc_clocksource, vcpus_matched;
3116 
3117 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3118 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3119 			atomic_read(&kvm->online_vcpus));
3120 
3121 	/*
3122 	 * If the host uses TSC clock, then passthrough TSC as stable
3123 	 * to the guest.
3124 	 */
3125 	host_tsc_clocksource = kvm_get_time_and_clockread(
3126 					&ka->master_kernel_ns,
3127 					&ka->master_cycle_now);
3128 
3129 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3130 				&& !ka->backwards_tsc_observed
3131 				&& !ka->boot_vcpu_runs_old_kvmclock;
3132 
3133 	if (ka->use_master_clock)
3134 		atomic_set(&kvm_guest_has_master_clock, 1);
3135 
3136 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3137 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3138 					vcpus_matched);
3139 #endif
3140 }
3141 
kvm_make_mclock_inprogress_request(struct kvm * kvm)3142 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3143 {
3144 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3145 }
3146 
__kvm_start_pvclock_update(struct kvm * kvm)3147 static void __kvm_start_pvclock_update(struct kvm *kvm)
3148 {
3149 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3150 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3151 }
3152 
kvm_start_pvclock_update(struct kvm * kvm)3153 static void kvm_start_pvclock_update(struct kvm *kvm)
3154 {
3155 	kvm_make_mclock_inprogress_request(kvm);
3156 
3157 	/* no guest entries from this point */
3158 	__kvm_start_pvclock_update(kvm);
3159 }
3160 
kvm_end_pvclock_update(struct kvm * kvm)3161 static void kvm_end_pvclock_update(struct kvm *kvm)
3162 {
3163 	struct kvm_arch *ka = &kvm->arch;
3164 	struct kvm_vcpu *vcpu;
3165 	unsigned long i;
3166 
3167 	write_seqcount_end(&ka->pvclock_sc);
3168 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3169 	kvm_for_each_vcpu(i, vcpu, kvm)
3170 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171 
3172 	/* guest entries allowed */
3173 	kvm_for_each_vcpu(i, vcpu, kvm)
3174 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3175 }
3176 
kvm_update_masterclock(struct kvm * kvm)3177 static void kvm_update_masterclock(struct kvm *kvm)
3178 {
3179 	kvm_hv_request_tsc_page_update(kvm);
3180 	kvm_start_pvclock_update(kvm);
3181 	pvclock_update_vm_gtod_copy(kvm);
3182 	kvm_end_pvclock_update(kvm);
3183 }
3184 
3185 /*
3186  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3187  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3188  * can change during boot even if the TSC is constant, as it's possible for KVM
3189  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3190  * notification when calibration completes, but practically speaking calibration
3191  * will complete before userspace is alive enough to create VMs.
3192  */
get_cpu_tsc_khz(void)3193 static unsigned long get_cpu_tsc_khz(void)
3194 {
3195 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3196 		return tsc_khz;
3197 	else
3198 		return __this_cpu_read(cpu_tsc_khz);
3199 }
3200 
3201 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3202 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3203 {
3204 	struct kvm_arch *ka = &kvm->arch;
3205 	struct pvclock_vcpu_time_info hv_clock;
3206 
3207 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3208 	get_cpu();
3209 
3210 	data->flags = 0;
3211 	if (ka->use_master_clock &&
3212 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3213 #ifdef CONFIG_X86_64
3214 		struct timespec64 ts;
3215 
3216 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3217 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3218 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3219 		} else
3220 #endif
3221 		data->host_tsc = rdtsc();
3222 
3223 		data->flags |= KVM_CLOCK_TSC_STABLE;
3224 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3225 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3226 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3227 				   &hv_clock.tsc_shift,
3228 				   &hv_clock.tsc_to_system_mul);
3229 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3230 	} else {
3231 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3232 	}
3233 
3234 	put_cpu();
3235 }
3236 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3237 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3238 {
3239 	struct kvm_arch *ka = &kvm->arch;
3240 	unsigned seq;
3241 
3242 	do {
3243 		seq = read_seqcount_begin(&ka->pvclock_sc);
3244 		__get_kvmclock(kvm, data);
3245 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3246 }
3247 
get_kvmclock_ns(struct kvm * kvm)3248 u64 get_kvmclock_ns(struct kvm *kvm)
3249 {
3250 	struct kvm_clock_data data;
3251 
3252 	get_kvmclock(kvm, &data);
3253 	return data.clock;
3254 }
3255 
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3256 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3257 				    struct kvm_vcpu *vcpu,
3258 				    struct gfn_to_pfn_cache *gpc,
3259 				    unsigned int offset)
3260 {
3261 	struct pvclock_vcpu_time_info *guest_hv_clock;
3262 	struct pvclock_vcpu_time_info hv_clock;
3263 	unsigned long flags;
3264 
3265 	memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3266 
3267 	read_lock_irqsave(&gpc->lock, flags);
3268 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3269 		read_unlock_irqrestore(&gpc->lock, flags);
3270 
3271 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3272 			return;
3273 
3274 		read_lock_irqsave(&gpc->lock, flags);
3275 	}
3276 
3277 	guest_hv_clock = (void *)(gpc->khva + offset);
3278 
3279 	/*
3280 	 * This VCPU is paused, but it's legal for a guest to read another
3281 	 * VCPU's kvmclock, so we really have to follow the specification where
3282 	 * it says that version is odd if data is being modified, and even after
3283 	 * it is consistent.
3284 	 */
3285 
3286 	guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3287 	smp_wmb();
3288 
3289 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3290 	hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3291 
3292 	memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3293 
3294 	smp_wmb();
3295 
3296 	guest_hv_clock->version = ++hv_clock.version;
3297 
3298 	kvm_gpc_mark_dirty_in_slot(gpc);
3299 	read_unlock_irqrestore(&gpc->lock, flags);
3300 
3301 	trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3302 }
3303 
kvm_guest_time_update(struct kvm_vcpu * v)3304 int kvm_guest_time_update(struct kvm_vcpu *v)
3305 {
3306 	struct pvclock_vcpu_time_info hv_clock = {};
3307 	unsigned long flags, tgt_tsc_khz;
3308 	unsigned seq;
3309 	struct kvm_vcpu_arch *vcpu = &v->arch;
3310 	struct kvm_arch *ka = &v->kvm->arch;
3311 	s64 kernel_ns;
3312 	u64 tsc_timestamp, host_tsc;
3313 	bool use_master_clock;
3314 
3315 	kernel_ns = 0;
3316 	host_tsc = 0;
3317 
3318 	/*
3319 	 * If the host uses TSC clock, then passthrough TSC as stable
3320 	 * to the guest.
3321 	 */
3322 	do {
3323 		seq = read_seqcount_begin(&ka->pvclock_sc);
3324 		use_master_clock = ka->use_master_clock;
3325 		if (use_master_clock) {
3326 			host_tsc = ka->master_cycle_now;
3327 			kernel_ns = ka->master_kernel_ns;
3328 		}
3329 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3330 
3331 	/* Keep irq disabled to prevent changes to the clock */
3332 	local_irq_save(flags);
3333 	tgt_tsc_khz = get_cpu_tsc_khz();
3334 	if (unlikely(tgt_tsc_khz == 0)) {
3335 		local_irq_restore(flags);
3336 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3337 		return 1;
3338 	}
3339 	if (!use_master_clock) {
3340 		host_tsc = rdtsc();
3341 		kernel_ns = get_kvmclock_base_ns();
3342 	}
3343 
3344 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3345 
3346 	/*
3347 	 * We may have to catch up the TSC to match elapsed wall clock
3348 	 * time for two reasons, even if kvmclock is used.
3349 	 *   1) CPU could have been running below the maximum TSC rate
3350 	 *   2) Broken TSC compensation resets the base at each VCPU
3351 	 *      entry to avoid unknown leaps of TSC even when running
3352 	 *      again on the same CPU.  This may cause apparent elapsed
3353 	 *      time to disappear, and the guest to stand still or run
3354 	 *	very slowly.
3355 	 */
3356 	if (vcpu->tsc_catchup) {
3357 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3358 		if (tsc > tsc_timestamp) {
3359 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3360 			tsc_timestamp = tsc;
3361 		}
3362 	}
3363 
3364 	local_irq_restore(flags);
3365 
3366 	/* With all the info we got, fill in the values */
3367 
3368 	if (kvm_caps.has_tsc_control) {
3369 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3370 					    v->arch.l1_tsc_scaling_ratio);
3371 		tgt_tsc_khz = tgt_tsc_khz ? : 1;
3372 	}
3373 
3374 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3375 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3376 				   &vcpu->pvclock_tsc_shift,
3377 				   &vcpu->pvclock_tsc_mul);
3378 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3379 	}
3380 
3381 	hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3382 	hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3383 	hv_clock.tsc_timestamp = tsc_timestamp;
3384 	hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3385 	vcpu->last_guest_tsc = tsc_timestamp;
3386 
3387 	/* If the host uses TSC clocksource, then it is stable */
3388 	hv_clock.flags = 0;
3389 	if (use_master_clock)
3390 		hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3391 
3392 	if (vcpu->pv_time.active) {
3393 		/*
3394 		 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3395 		 * historic behavior is to only process the request if kvmclock
3396 		 * is active/enabled.
3397 		 */
3398 		if (vcpu->pvclock_set_guest_stopped_request) {
3399 			hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3400 			vcpu->pvclock_set_guest_stopped_request = false;
3401 		}
3402 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3403 
3404 		hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3405 	}
3406 
3407 	kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3408 
3409 #ifdef CONFIG_KVM_XEN
3410 	/*
3411 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3412 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3413 	 * This default behaviour led to bugs in some guest kernels which cause
3414 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3415 	 *
3416 	 * Note!  Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3417 	 */
3418 	if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3419 		hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3420 
3421 	if (vcpu->xen.vcpu_info_cache.active)
3422 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3423 					offsetof(struct compat_vcpu_info, time));
3424 	if (vcpu->xen.vcpu_time_info_cache.active)
3425 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3426 #endif
3427 	return 0;
3428 }
3429 
3430 /*
3431  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3432  * which it started (i.e. its epoch, when its kvmclock was zero).
3433  *
3434  * In fact those clocks are subtly different; wall clock frequency is
3435  * adjusted by NTP and has leap seconds, while the kvmclock is a
3436  * simple function of the TSC without any such adjustment.
3437  *
3438  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3439  * that and kvmclock, but even that would be subject to change over
3440  * time.
3441  *
3442  * Attempt to calculate the epoch at a given moment using the *same*
3443  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3444  * wallclock and kvmclock times, and subtracting one from the other.
3445  *
3446  * Fall back to using their values at slightly different moments by
3447  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3448  */
kvm_get_wall_clock_epoch(struct kvm * kvm)3449 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3450 {
3451 #ifdef CONFIG_X86_64
3452 	struct pvclock_vcpu_time_info hv_clock;
3453 	struct kvm_arch *ka = &kvm->arch;
3454 	unsigned long seq, local_tsc_khz;
3455 	struct timespec64 ts;
3456 	uint64_t host_tsc;
3457 
3458 	do {
3459 		seq = read_seqcount_begin(&ka->pvclock_sc);
3460 
3461 		local_tsc_khz = 0;
3462 		if (!ka->use_master_clock)
3463 			break;
3464 
3465 		/*
3466 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3467 		 * on the same CPU.
3468 		 */
3469 		get_cpu();
3470 
3471 		local_tsc_khz = get_cpu_tsc_khz();
3472 
3473 		if (local_tsc_khz &&
3474 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3475 			local_tsc_khz = 0; /* Fall back to old method */
3476 
3477 		put_cpu();
3478 
3479 		/*
3480 		 * These values must be snapshotted within the seqcount loop.
3481 		 * After that, it's just mathematics which can happen on any
3482 		 * CPU at any time.
3483 		 */
3484 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3485 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3486 
3487 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3488 
3489 	/*
3490 	 * If the conditions were right, and obtaining the wallclock+TSC was
3491 	 * successful, calculate the KVM clock at the corresponding time and
3492 	 * subtract one from the other to get the guest's epoch in nanoseconds
3493 	 * since 1970-01-01.
3494 	 */
3495 	if (local_tsc_khz) {
3496 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3497 				   &hv_clock.tsc_shift,
3498 				   &hv_clock.tsc_to_system_mul);
3499 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3500 			__pvclock_read_cycles(&hv_clock, host_tsc);
3501 	}
3502 #endif
3503 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3504 }
3505 
3506 /*
3507  * kvmclock updates which are isolated to a given vcpu, such as
3508  * vcpu->cpu migration, should not allow system_timestamp from
3509  * the rest of the vcpus to remain static. Otherwise ntp frequency
3510  * correction applies to one vcpu's system_timestamp but not
3511  * the others.
3512  *
3513  * So in those cases, request a kvmclock update for all vcpus.
3514  * We need to rate-limit these requests though, as they can
3515  * considerably slow guests that have a large number of vcpus.
3516  * The time for a remote vcpu to update its kvmclock is bound
3517  * by the delay we use to rate-limit the updates.
3518  */
3519 
3520 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3521 
kvmclock_update_fn(struct work_struct * work)3522 static void kvmclock_update_fn(struct work_struct *work)
3523 {
3524 	unsigned long i;
3525 	struct delayed_work *dwork = to_delayed_work(work);
3526 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3527 					   kvmclock_update_work);
3528 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3529 	struct kvm_vcpu *vcpu;
3530 
3531 	kvm_for_each_vcpu(i, vcpu, kvm) {
3532 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3533 		kvm_vcpu_kick(vcpu);
3534 	}
3535 }
3536 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3537 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3538 {
3539 	struct kvm *kvm = v->kvm;
3540 
3541 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3542 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3543 					KVMCLOCK_UPDATE_DELAY);
3544 }
3545 
3546 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3547 
kvmclock_sync_fn(struct work_struct * work)3548 static void kvmclock_sync_fn(struct work_struct *work)
3549 {
3550 	struct delayed_work *dwork = to_delayed_work(work);
3551 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3552 					   kvmclock_sync_work);
3553 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3554 
3555 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3556 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3557 					KVMCLOCK_SYNC_PERIOD);
3558 }
3559 
3560 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3561 static bool is_mci_control_msr(u32 msr)
3562 {
3563 	return (msr & 3) == 0;
3564 }
is_mci_status_msr(u32 msr)3565 static bool is_mci_status_msr(u32 msr)
3566 {
3567 	return (msr & 3) == 1;
3568 }
3569 
3570 /*
3571  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3572  */
can_set_mci_status(struct kvm_vcpu * vcpu)3573 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3574 {
3575 	/* McStatusWrEn enabled? */
3576 	if (guest_cpuid_is_amd_compatible(vcpu))
3577 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3578 
3579 	return false;
3580 }
3581 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3582 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3583 {
3584 	u64 mcg_cap = vcpu->arch.mcg_cap;
3585 	unsigned bank_num = mcg_cap & 0xff;
3586 	u32 msr = msr_info->index;
3587 	u64 data = msr_info->data;
3588 	u32 offset, last_msr;
3589 
3590 	switch (msr) {
3591 	case MSR_IA32_MCG_STATUS:
3592 		vcpu->arch.mcg_status = data;
3593 		break;
3594 	case MSR_IA32_MCG_CTL:
3595 		if (!(mcg_cap & MCG_CTL_P) &&
3596 		    (data || !msr_info->host_initiated))
3597 			return 1;
3598 		if (data != 0 && data != ~(u64)0)
3599 			return 1;
3600 		vcpu->arch.mcg_ctl = data;
3601 		break;
3602 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3603 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3604 		if (msr > last_msr)
3605 			return 1;
3606 
3607 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3608 			return 1;
3609 		/* An attempt to write a 1 to a reserved bit raises #GP */
3610 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3611 			return 1;
3612 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3613 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3614 		vcpu->arch.mci_ctl2_banks[offset] = data;
3615 		break;
3616 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3617 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3618 		if (msr > last_msr)
3619 			return 1;
3620 
3621 		/*
3622 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3623 		 * values are architecturally undefined.  But, some Linux
3624 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3625 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3626 		 * other bits in order to avoid an uncaught #GP in the guest.
3627 		 *
3628 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3629 		 * single-bit ECC data errors.
3630 		 */
3631 		if (is_mci_control_msr(msr) &&
3632 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3633 			return 1;
3634 
3635 		/*
3636 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3637 		 * AMD-based CPUs allow non-zero values, but if and only if
3638 		 * HWCR[McStatusWrEn] is set.
3639 		 */
3640 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3641 		    data != 0 && !can_set_mci_status(vcpu))
3642 			return 1;
3643 
3644 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3645 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3646 		vcpu->arch.mce_banks[offset] = data;
3647 		break;
3648 	default:
3649 		return 1;
3650 	}
3651 	return 0;
3652 }
3653 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3654 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3655 {
3656 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3657 
3658 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3659 }
3660 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3661 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3662 {
3663 	gpa_t gpa = data & ~0x3f;
3664 
3665 	/* Bits 4:5 are reserved, Should be zero */
3666 	if (data & 0x30)
3667 		return 1;
3668 
3669 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3670 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3671 		return 1;
3672 
3673 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3674 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3675 		return 1;
3676 
3677 	if (!lapic_in_kernel(vcpu))
3678 		return data ? 1 : 0;
3679 
3680 	vcpu->arch.apf.msr_en_val = data;
3681 
3682 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3683 		kvm_clear_async_pf_completion_queue(vcpu);
3684 		kvm_async_pf_hash_reset(vcpu);
3685 		return 0;
3686 	}
3687 
3688 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3689 					sizeof(u64)))
3690 		return 1;
3691 
3692 	vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3693 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3694 
3695 	kvm_async_pf_wakeup_all(vcpu);
3696 
3697 	return 0;
3698 }
3699 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3700 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3701 {
3702 	/* Bits 8-63 are reserved */
3703 	if (data >> 8)
3704 		return 1;
3705 
3706 	if (!lapic_in_kernel(vcpu))
3707 		return 1;
3708 
3709 	vcpu->arch.apf.msr_int_val = data;
3710 
3711 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3712 
3713 	return 0;
3714 }
3715 
kvmclock_reset(struct kvm_vcpu * vcpu)3716 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3717 {
3718 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3719 	vcpu->arch.time = 0;
3720 }
3721 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3722 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3723 {
3724 	++vcpu->stat.tlb_flush;
3725 	kvm_x86_call(flush_tlb_all)(vcpu);
3726 
3727 	/* Flushing all ASIDs flushes the current ASID... */
3728 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3729 }
3730 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3731 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3732 {
3733 	++vcpu->stat.tlb_flush;
3734 
3735 	if (!tdp_enabled) {
3736 		/*
3737 		 * A TLB flush on behalf of the guest is equivalent to
3738 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3739 		 * a forced sync of the shadow page tables.  Ensure all the
3740 		 * roots are synced and the guest TLB in hardware is clean.
3741 		 */
3742 		kvm_mmu_sync_roots(vcpu);
3743 		kvm_mmu_sync_prev_roots(vcpu);
3744 	}
3745 
3746 	kvm_x86_call(flush_tlb_guest)(vcpu);
3747 
3748 	/*
3749 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3750 	 * grained flushing.
3751 	 */
3752 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3753 }
3754 
3755 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3756 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3757 {
3758 	++vcpu->stat.tlb_flush;
3759 	kvm_x86_call(flush_tlb_current)(vcpu);
3760 }
3761 
3762 /*
3763  * Service "local" TLB flush requests, which are specific to the current MMU
3764  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3765  * TLB flushes that are targeted at an MMU context also need to be serviced
3766  * prior before nested VM-Enter/VM-Exit.
3767  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3768 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3769 {
3770 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3771 		kvm_vcpu_flush_tlb_current(vcpu);
3772 
3773 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3774 		kvm_vcpu_flush_tlb_guest(vcpu);
3775 }
3776 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3777 
record_steal_time(struct kvm_vcpu * vcpu)3778 static void record_steal_time(struct kvm_vcpu *vcpu)
3779 {
3780 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3781 	struct kvm_steal_time __user *st;
3782 	struct kvm_memslots *slots;
3783 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3784 	u64 steal;
3785 	u32 version;
3786 
3787 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3788 		kvm_xen_runstate_set_running(vcpu);
3789 		return;
3790 	}
3791 
3792 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3793 		return;
3794 
3795 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3796 		return;
3797 
3798 	slots = kvm_memslots(vcpu->kvm);
3799 
3800 	if (unlikely(slots->generation != ghc->generation ||
3801 		     gpa != ghc->gpa ||
3802 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3803 		/* We rely on the fact that it fits in a single page. */
3804 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3805 
3806 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3807 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3808 			return;
3809 	}
3810 
3811 	st = (struct kvm_steal_time __user *)ghc->hva;
3812 	/*
3813 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3814 	 * expensive IPIs.
3815 	 */
3816 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3817 		u8 st_preempted = 0;
3818 		int err = -EFAULT;
3819 
3820 		if (!user_access_begin(st, sizeof(*st)))
3821 			return;
3822 
3823 		asm volatile("1: xchgb %0, %2\n"
3824 			     "xor %1, %1\n"
3825 			     "2:\n"
3826 			     _ASM_EXTABLE_UA(1b, 2b)
3827 			     : "+q" (st_preempted),
3828 			       "+&r" (err),
3829 			       "+m" (st->preempted));
3830 		if (err)
3831 			goto out;
3832 
3833 		user_access_end();
3834 
3835 		vcpu->arch.st.preempted = 0;
3836 
3837 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3838 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3839 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3840 			kvm_vcpu_flush_tlb_guest(vcpu);
3841 
3842 		if (!user_access_begin(st, sizeof(*st)))
3843 			goto dirty;
3844 	} else {
3845 		if (!user_access_begin(st, sizeof(*st)))
3846 			return;
3847 
3848 		unsafe_put_user(0, &st->preempted, out);
3849 		vcpu->arch.st.preempted = 0;
3850 	}
3851 
3852 	unsafe_get_user(version, &st->version, out);
3853 	if (version & 1)
3854 		version += 1;  /* first time write, random junk */
3855 
3856 	version += 1;
3857 	unsafe_put_user(version, &st->version, out);
3858 
3859 	smp_wmb();
3860 
3861 	unsafe_get_user(steal, &st->steal, out);
3862 	steal += current->sched_info.run_delay -
3863 		vcpu->arch.st.last_steal;
3864 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3865 	unsafe_put_user(steal, &st->steal, out);
3866 
3867 	version += 1;
3868 	unsafe_put_user(version, &st->version, out);
3869 
3870  out:
3871 	user_access_end();
3872  dirty:
3873 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3874 }
3875 
3876 /*
3877  * Returns true if the MSR in question is managed via XSTATE, i.e. is context
3878  * switched with the rest of guest FPU state.  Note!  S_CET is _not_ context
3879  * switched via XSTATE even though it _is_ saved/restored via XSAVES/XRSTORS.
3880  * Because S_CET is loaded on VM-Enter and VM-Exit via dedicated VMCS fields,
3881  * the value saved/restored via XSTATE is always the host's value.  That detail
3882  * is _extremely_ important, as the guest's S_CET must _never_ be resident in
3883  * hardware while executing in the host.  Loading guest values for U_CET and
3884  * PL[0-3]_SSP while executing in the kernel is safe, as U_CET is specific to
3885  * userspace, and PL[0-3]_SSP are only consumed when transitioning to lower
3886  * privilege levels, i.e. are effectively only consumed by userspace as well.
3887  */
is_xstate_managed_msr(struct kvm_vcpu * vcpu,u32 msr)3888 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3889 {
3890 	if (!vcpu)
3891 		return false;
3892 
3893 	switch (msr) {
3894 	case MSR_IA32_U_CET:
3895 		return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3896 		       guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3897 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3898 		return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3899 	default:
3900 		return false;
3901 	}
3902 }
3903 
3904 /*
3905  * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3906  * MSR that is managed via XSTATE.  Note, the caller is responsible for doing
3907  * the initial FPU load, this helper only ensures that guest state is resident
3908  * in hardware (the kernel can load its FPU state in IRQ context).
3909  */
kvm_access_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info,int access)3910 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3911 						  struct msr_data *msr_info,
3912 						  int access)
3913 {
3914 	BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3915 
3916 	KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3917 	KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3918 
3919 	kvm_fpu_get();
3920 	if (access == MSR_TYPE_R)
3921 		rdmsrq(msr_info->index, msr_info->data);
3922 	else
3923 		wrmsrq(msr_info->index, msr_info->data);
3924 	kvm_fpu_put();
3925 }
3926 
kvm_set_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3927 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3928 {
3929 	kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3930 }
3931 
kvm_get_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3932 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3933 {
3934 	kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3935 }
3936 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3937 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3938 {
3939 	u32 msr = msr_info->index;
3940 	u64 data = msr_info->data;
3941 
3942 	/*
3943 	 * Do not allow host-initiated writes to trigger the Xen hypercall
3944 	 * page setup; it could incur locking paths which are not expected
3945 	 * if userspace sets the MSR in an unusual location.
3946 	 */
3947 	if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3948 	    !msr_info->host_initiated)
3949 		return kvm_xen_write_hypercall_page(vcpu, data);
3950 
3951 	switch (msr) {
3952 	case MSR_AMD64_NB_CFG:
3953 	case MSR_IA32_UCODE_WRITE:
3954 	case MSR_VM_HSAVE_PA:
3955 	case MSR_AMD64_PATCH_LOADER:
3956 	case MSR_AMD64_BU_CFG2:
3957 	case MSR_AMD64_DC_CFG:
3958 	case MSR_AMD64_TW_CFG:
3959 	case MSR_F15H_EX_CFG:
3960 		break;
3961 
3962 	case MSR_IA32_UCODE_REV:
3963 		if (msr_info->host_initiated)
3964 			vcpu->arch.microcode_version = data;
3965 		break;
3966 	case MSR_IA32_ARCH_CAPABILITIES:
3967 		if (!msr_info->host_initiated ||
3968 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3969 			return KVM_MSR_RET_UNSUPPORTED;
3970 		vcpu->arch.arch_capabilities = data;
3971 		break;
3972 	case MSR_IA32_PERF_CAPABILITIES:
3973 		if (!msr_info->host_initiated ||
3974 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3975 			return KVM_MSR_RET_UNSUPPORTED;
3976 
3977 		if (data & ~kvm_caps.supported_perf_cap)
3978 			return 1;
3979 
3980 		/*
3981 		 * Note, this is not just a performance optimization!  KVM
3982 		 * disallows changing feature MSRs after the vCPU has run; PMU
3983 		 * refresh will bug the VM if called after the vCPU has run.
3984 		 */
3985 		if (vcpu->arch.perf_capabilities == data)
3986 			break;
3987 
3988 		vcpu->arch.perf_capabilities = data;
3989 		kvm_pmu_refresh(vcpu);
3990 		break;
3991 	case MSR_IA32_PRED_CMD: {
3992 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3993 
3994 		if (!msr_info->host_initiated) {
3995 			if ((!guest_has_pred_cmd_msr(vcpu)))
3996 				return 1;
3997 
3998 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3999 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
4000 				reserved_bits |= PRED_CMD_IBPB;
4001 
4002 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
4003 				reserved_bits |= PRED_CMD_SBPB;
4004 		}
4005 
4006 		if (!boot_cpu_has(X86_FEATURE_IBPB))
4007 			reserved_bits |= PRED_CMD_IBPB;
4008 
4009 		if (!boot_cpu_has(X86_FEATURE_SBPB))
4010 			reserved_bits |= PRED_CMD_SBPB;
4011 
4012 		if (data & reserved_bits)
4013 			return 1;
4014 
4015 		if (!data)
4016 			break;
4017 
4018 		wrmsrq(MSR_IA32_PRED_CMD, data);
4019 		break;
4020 	}
4021 	case MSR_IA32_FLUSH_CMD:
4022 		if (!msr_info->host_initiated &&
4023 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
4024 			return 1;
4025 
4026 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
4027 			return 1;
4028 		if (!data)
4029 			break;
4030 
4031 		wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
4032 		break;
4033 	case MSR_EFER:
4034 		return set_efer(vcpu, msr_info);
4035 	case MSR_K7_HWCR:
4036 		data &= ~(u64)0x40;	/* ignore flush filter disable */
4037 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
4038 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
4039 
4040 		/*
4041 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
4042 		 * through at least v6.6 whine if TscFreqSel is clear,
4043 		 * depending on F/M/S.
4044 		 */
4045 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4046 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4047 			return 1;
4048 		}
4049 		vcpu->arch.msr_hwcr = data;
4050 		break;
4051 	case MSR_FAM10H_MMIO_CONF_BASE:
4052 		if (data != 0) {
4053 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4054 			return 1;
4055 		}
4056 		break;
4057 	case MSR_IA32_CR_PAT:
4058 		if (!kvm_pat_valid(data))
4059 			return 1;
4060 
4061 		vcpu->arch.pat = data;
4062 		break;
4063 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4064 	case MSR_MTRRdefType:
4065 		return kvm_mtrr_set_msr(vcpu, msr, data);
4066 	case MSR_IA32_APICBASE:
4067 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4068 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4069 		return kvm_x2apic_msr_write(vcpu, msr, data);
4070 	case MSR_IA32_TSC_DEADLINE:
4071 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
4072 		break;
4073 	case MSR_IA32_TSC_ADJUST:
4074 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4075 			if (!msr_info->host_initiated) {
4076 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4077 				adjust_tsc_offset_guest(vcpu, adj);
4078 				/* Before back to guest, tsc_timestamp must be adjusted
4079 				 * as well, otherwise guest's percpu pvclock time could jump.
4080 				 */
4081 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4082 			}
4083 			vcpu->arch.ia32_tsc_adjust_msr = data;
4084 		}
4085 		break;
4086 	case MSR_IA32_MISC_ENABLE: {
4087 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4088 
4089 		if (!msr_info->host_initiated) {
4090 			/* RO bits */
4091 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4092 				return 1;
4093 
4094 			/* R bits, i.e. writes are ignored, but don't fault. */
4095 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4096 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4097 		}
4098 
4099 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4100 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
4101 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4102 				return 1;
4103 			vcpu->arch.ia32_misc_enable_msr = data;
4104 			vcpu->arch.cpuid_dynamic_bits_dirty = true;
4105 		} else {
4106 			vcpu->arch.ia32_misc_enable_msr = data;
4107 		}
4108 		break;
4109 	}
4110 	case MSR_IA32_SMBASE:
4111 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4112 			return 1;
4113 		vcpu->arch.smbase = data;
4114 		break;
4115 	case MSR_IA32_POWER_CTL:
4116 		vcpu->arch.msr_ia32_power_ctl = data;
4117 		break;
4118 	case MSR_IA32_TSC:
4119 		if (msr_info->host_initiated) {
4120 			kvm_synchronize_tsc(vcpu, &data);
4121 		} else if (!vcpu->arch.guest_tsc_protected) {
4122 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4123 			adjust_tsc_offset_guest(vcpu, adj);
4124 			vcpu->arch.ia32_tsc_adjust_msr += adj;
4125 		}
4126 		break;
4127 	case MSR_IA32_XSS:
4128 		if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4129 			return KVM_MSR_RET_UNSUPPORTED;
4130 
4131 		if (data & ~vcpu->arch.guest_supported_xss)
4132 			return 1;
4133 		if (vcpu->arch.ia32_xss == data)
4134 			break;
4135 		vcpu->arch.ia32_xss = data;
4136 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
4137 		break;
4138 	case MSR_SMI_COUNT:
4139 		if (!msr_info->host_initiated)
4140 			return 1;
4141 		vcpu->arch.smi_count = data;
4142 		break;
4143 	case MSR_KVM_WALL_CLOCK_NEW:
4144 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4145 			return 1;
4146 
4147 		vcpu->kvm->arch.wall_clock = data;
4148 		kvm_write_wall_clock(vcpu->kvm, data, 0);
4149 		break;
4150 	case MSR_KVM_WALL_CLOCK:
4151 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4152 			return 1;
4153 
4154 		vcpu->kvm->arch.wall_clock = data;
4155 		kvm_write_wall_clock(vcpu->kvm, data, 0);
4156 		break;
4157 	case MSR_KVM_SYSTEM_TIME_NEW:
4158 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4159 			return 1;
4160 
4161 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4162 		break;
4163 	case MSR_KVM_SYSTEM_TIME:
4164 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4165 			return 1;
4166 
4167 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4168 		break;
4169 	case MSR_KVM_ASYNC_PF_EN:
4170 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4171 			return 1;
4172 
4173 		if (kvm_pv_enable_async_pf(vcpu, data))
4174 			return 1;
4175 		break;
4176 	case MSR_KVM_ASYNC_PF_INT:
4177 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4178 			return 1;
4179 
4180 		if (kvm_pv_enable_async_pf_int(vcpu, data))
4181 			return 1;
4182 		break;
4183 	case MSR_KVM_ASYNC_PF_ACK:
4184 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4185 			return 1;
4186 		if (data & 0x1) {
4187 			vcpu->arch.apf.pageready_pending = false;
4188 			kvm_check_async_pf_completion(vcpu);
4189 		}
4190 		break;
4191 	case MSR_KVM_STEAL_TIME:
4192 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4193 			return 1;
4194 
4195 		if (unlikely(!sched_info_on()))
4196 			return 1;
4197 
4198 		if (data & KVM_STEAL_RESERVED_MASK)
4199 			return 1;
4200 
4201 		vcpu->arch.st.msr_val = data;
4202 
4203 		if (!(data & KVM_MSR_ENABLED))
4204 			break;
4205 
4206 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4207 
4208 		break;
4209 	case MSR_KVM_PV_EOI_EN:
4210 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4211 			return 1;
4212 
4213 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4214 			return 1;
4215 		break;
4216 
4217 	case MSR_KVM_POLL_CONTROL:
4218 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4219 			return 1;
4220 
4221 		/* only enable bit supported */
4222 		if (data & (-1ULL << 1))
4223 			return 1;
4224 
4225 		vcpu->arch.msr_kvm_poll_control = data;
4226 		break;
4227 
4228 	case MSR_IA32_MCG_CTL:
4229 	case MSR_IA32_MCG_STATUS:
4230 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4231 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4232 		return set_msr_mce(vcpu, msr_info);
4233 
4234 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4235 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4236 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4237 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4238 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4239 			return kvm_pmu_set_msr(vcpu, msr_info);
4240 
4241 		if (data)
4242 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4243 		break;
4244 	case MSR_K7_CLK_CTL:
4245 		/*
4246 		 * Ignore all writes to this no longer documented MSR.
4247 		 * Writes are only relevant for old K7 processors,
4248 		 * all pre-dating SVM, but a recommended workaround from
4249 		 * AMD for these chips. It is possible to specify the
4250 		 * affected processor models on the command line, hence
4251 		 * the need to ignore the workaround.
4252 		 */
4253 		break;
4254 #ifdef CONFIG_KVM_HYPERV
4255 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4256 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4257 	case HV_X64_MSR_SYNDBG_OPTIONS:
4258 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4259 	case HV_X64_MSR_CRASH_CTL:
4260 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4261 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4262 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4263 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4264 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4265 		return kvm_hv_set_msr_common(vcpu, msr, data,
4266 					     msr_info->host_initiated);
4267 #endif
4268 	case MSR_IA32_BBL_CR_CTL3:
4269 		/* Drop writes to this legacy MSR -- see rdmsr
4270 		 * counterpart for further detail.
4271 		 */
4272 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4273 		break;
4274 	case MSR_AMD64_OSVW_ID_LENGTH:
4275 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4276 			return 1;
4277 		vcpu->arch.osvw.length = data;
4278 		break;
4279 	case MSR_AMD64_OSVW_STATUS:
4280 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4281 			return 1;
4282 		vcpu->arch.osvw.status = data;
4283 		break;
4284 	case MSR_PLATFORM_INFO:
4285 		if (!msr_info->host_initiated)
4286 			return 1;
4287 		vcpu->arch.msr_platform_info = data;
4288 		break;
4289 	case MSR_MISC_FEATURES_ENABLES:
4290 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4291 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4292 		     !supports_cpuid_fault(vcpu)))
4293 			return 1;
4294 		vcpu->arch.msr_misc_features_enables = data;
4295 		break;
4296 #ifdef CONFIG_X86_64
4297 	case MSR_IA32_XFD:
4298 		if (!msr_info->host_initiated &&
4299 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4300 			return 1;
4301 
4302 		if (data & ~kvm_guest_supported_xfd(vcpu))
4303 			return 1;
4304 
4305 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4306 		break;
4307 	case MSR_IA32_XFD_ERR:
4308 		if (!msr_info->host_initiated &&
4309 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4310 			return 1;
4311 
4312 		if (data & ~kvm_guest_supported_xfd(vcpu))
4313 			return 1;
4314 
4315 		vcpu->arch.guest_fpu.xfd_err = data;
4316 		break;
4317 #endif
4318 	case MSR_IA32_U_CET:
4319 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4320 		kvm_set_xstate_msr(vcpu, msr_info);
4321 		break;
4322 	default:
4323 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4324 			return kvm_pmu_set_msr(vcpu, msr_info);
4325 
4326 		return KVM_MSR_RET_UNSUPPORTED;
4327 	}
4328 	return 0;
4329 }
4330 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4331 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4332 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4333 {
4334 	u64 data;
4335 	u64 mcg_cap = vcpu->arch.mcg_cap;
4336 	unsigned bank_num = mcg_cap & 0xff;
4337 	u32 offset, last_msr;
4338 
4339 	switch (msr) {
4340 	case MSR_IA32_P5_MC_ADDR:
4341 	case MSR_IA32_P5_MC_TYPE:
4342 		data = 0;
4343 		break;
4344 	case MSR_IA32_MCG_CAP:
4345 		data = vcpu->arch.mcg_cap;
4346 		break;
4347 	case MSR_IA32_MCG_CTL:
4348 		if (!(mcg_cap & MCG_CTL_P) && !host)
4349 			return 1;
4350 		data = vcpu->arch.mcg_ctl;
4351 		break;
4352 	case MSR_IA32_MCG_STATUS:
4353 		data = vcpu->arch.mcg_status;
4354 		break;
4355 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4356 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4357 		if (msr > last_msr)
4358 			return 1;
4359 
4360 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4361 			return 1;
4362 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4363 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4364 		data = vcpu->arch.mci_ctl2_banks[offset];
4365 		break;
4366 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4367 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4368 		if (msr > last_msr)
4369 			return 1;
4370 
4371 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4372 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4373 		data = vcpu->arch.mce_banks[offset];
4374 		break;
4375 	default:
4376 		return 1;
4377 	}
4378 	*pdata = data;
4379 	return 0;
4380 }
4381 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4382 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4383 {
4384 	switch (msr_info->index) {
4385 	case MSR_IA32_PLATFORM_ID:
4386 	case MSR_IA32_EBL_CR_POWERON:
4387 	case MSR_IA32_LASTBRANCHFROMIP:
4388 	case MSR_IA32_LASTBRANCHTOIP:
4389 	case MSR_IA32_LASTINTFROMIP:
4390 	case MSR_IA32_LASTINTTOIP:
4391 	case MSR_AMD64_SYSCFG:
4392 	case MSR_K8_TSEG_ADDR:
4393 	case MSR_K8_TSEG_MASK:
4394 	case MSR_VM_HSAVE_PA:
4395 	case MSR_K8_INT_PENDING_MSG:
4396 	case MSR_AMD64_NB_CFG:
4397 	case MSR_FAM10H_MMIO_CONF_BASE:
4398 	case MSR_AMD64_BU_CFG2:
4399 	case MSR_IA32_PERF_CTL:
4400 	case MSR_AMD64_DC_CFG:
4401 	case MSR_AMD64_TW_CFG:
4402 	case MSR_F15H_EX_CFG:
4403 	/*
4404 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4405 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4406 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4407 	 * so for existing CPU-specific MSRs.
4408 	 */
4409 	case MSR_RAPL_POWER_UNIT:
4410 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4411 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4412 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4413 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4414 		msr_info->data = 0;
4415 		break;
4416 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4417 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4418 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4419 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4420 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4421 			return kvm_pmu_get_msr(vcpu, msr_info);
4422 		msr_info->data = 0;
4423 		break;
4424 	case MSR_IA32_UCODE_REV:
4425 		msr_info->data = vcpu->arch.microcode_version;
4426 		break;
4427 	case MSR_IA32_ARCH_CAPABILITIES:
4428 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4429 			return KVM_MSR_RET_UNSUPPORTED;
4430 		msr_info->data = vcpu->arch.arch_capabilities;
4431 		break;
4432 	case MSR_IA32_PERF_CAPABILITIES:
4433 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4434 			return KVM_MSR_RET_UNSUPPORTED;
4435 		msr_info->data = vcpu->arch.perf_capabilities;
4436 		break;
4437 	case MSR_IA32_POWER_CTL:
4438 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4439 		break;
4440 	case MSR_IA32_TSC: {
4441 		/*
4442 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4443 		 * even when not intercepted. AMD manual doesn't explicitly
4444 		 * state this but appears to behave the same.
4445 		 *
4446 		 * On userspace reads and writes, however, we unconditionally
4447 		 * return L1's TSC value to ensure backwards-compatible
4448 		 * behavior for migration.
4449 		 */
4450 		u64 offset, ratio;
4451 
4452 		if (msr_info->host_initiated) {
4453 			offset = vcpu->arch.l1_tsc_offset;
4454 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4455 		} else {
4456 			offset = vcpu->arch.tsc_offset;
4457 			ratio = vcpu->arch.tsc_scaling_ratio;
4458 		}
4459 
4460 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4461 		break;
4462 	}
4463 	case MSR_IA32_CR_PAT:
4464 		msr_info->data = vcpu->arch.pat;
4465 		break;
4466 	case MSR_MTRRcap:
4467 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4468 	case MSR_MTRRdefType:
4469 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4470 	case 0xcd: /* fsb frequency */
4471 		msr_info->data = 3;
4472 		break;
4473 		/*
4474 		 * MSR_EBC_FREQUENCY_ID
4475 		 * Conservative value valid for even the basic CPU models.
4476 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4477 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4478 		 * and 266MHz for model 3, or 4. Set Core Clock
4479 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4480 		 * 31:24) even though these are only valid for CPU
4481 		 * models > 2, however guests may end up dividing or
4482 		 * multiplying by zero otherwise.
4483 		 */
4484 	case MSR_EBC_FREQUENCY_ID:
4485 		msr_info->data = 1 << 24;
4486 		break;
4487 	case MSR_IA32_APICBASE:
4488 		msr_info->data = vcpu->arch.apic_base;
4489 		break;
4490 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4491 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4492 	case MSR_IA32_TSC_DEADLINE:
4493 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4494 		break;
4495 	case MSR_IA32_TSC_ADJUST:
4496 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4497 		break;
4498 	case MSR_IA32_MISC_ENABLE:
4499 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4500 		break;
4501 	case MSR_IA32_SMBASE:
4502 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4503 			return 1;
4504 		msr_info->data = vcpu->arch.smbase;
4505 		break;
4506 	case MSR_SMI_COUNT:
4507 		msr_info->data = vcpu->arch.smi_count;
4508 		break;
4509 	case MSR_IA32_PERF_STATUS:
4510 		/* TSC increment by tick */
4511 		msr_info->data = 1000ULL;
4512 		/* CPU multiplier */
4513 		msr_info->data |= (((uint64_t)4ULL) << 40);
4514 		break;
4515 	case MSR_EFER:
4516 		msr_info->data = vcpu->arch.efer;
4517 		break;
4518 	case MSR_KVM_WALL_CLOCK:
4519 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4520 			return 1;
4521 
4522 		msr_info->data = vcpu->kvm->arch.wall_clock;
4523 		break;
4524 	case MSR_KVM_WALL_CLOCK_NEW:
4525 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4526 			return 1;
4527 
4528 		msr_info->data = vcpu->kvm->arch.wall_clock;
4529 		break;
4530 	case MSR_KVM_SYSTEM_TIME:
4531 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4532 			return 1;
4533 
4534 		msr_info->data = vcpu->arch.time;
4535 		break;
4536 	case MSR_KVM_SYSTEM_TIME_NEW:
4537 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4538 			return 1;
4539 
4540 		msr_info->data = vcpu->arch.time;
4541 		break;
4542 	case MSR_KVM_ASYNC_PF_EN:
4543 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4544 			return 1;
4545 
4546 		msr_info->data = vcpu->arch.apf.msr_en_val;
4547 		break;
4548 	case MSR_KVM_ASYNC_PF_INT:
4549 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4550 			return 1;
4551 
4552 		msr_info->data = vcpu->arch.apf.msr_int_val;
4553 		break;
4554 	case MSR_KVM_ASYNC_PF_ACK:
4555 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4556 			return 1;
4557 
4558 		msr_info->data = 0;
4559 		break;
4560 	case MSR_KVM_STEAL_TIME:
4561 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4562 			return 1;
4563 
4564 		msr_info->data = vcpu->arch.st.msr_val;
4565 		break;
4566 	case MSR_KVM_PV_EOI_EN:
4567 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4568 			return 1;
4569 
4570 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4571 		break;
4572 	case MSR_KVM_POLL_CONTROL:
4573 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4574 			return 1;
4575 
4576 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4577 		break;
4578 	case MSR_IA32_P5_MC_ADDR:
4579 	case MSR_IA32_P5_MC_TYPE:
4580 	case MSR_IA32_MCG_CAP:
4581 	case MSR_IA32_MCG_CTL:
4582 	case MSR_IA32_MCG_STATUS:
4583 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4584 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4585 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4586 				   msr_info->host_initiated);
4587 	case MSR_IA32_XSS:
4588 		if (!msr_info->host_initiated &&
4589 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4590 			return 1;
4591 		msr_info->data = vcpu->arch.ia32_xss;
4592 		break;
4593 	case MSR_K7_CLK_CTL:
4594 		/*
4595 		 * Provide expected ramp-up count for K7. All other
4596 		 * are set to zero, indicating minimum divisors for
4597 		 * every field.
4598 		 *
4599 		 * This prevents guest kernels on AMD host with CPU
4600 		 * type 6, model 8 and higher from exploding due to
4601 		 * the rdmsr failing.
4602 		 */
4603 		msr_info->data = 0x20000000;
4604 		break;
4605 #ifdef CONFIG_KVM_HYPERV
4606 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4607 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4608 	case HV_X64_MSR_SYNDBG_OPTIONS:
4609 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4610 	case HV_X64_MSR_CRASH_CTL:
4611 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4612 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4613 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4614 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4615 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4616 		return kvm_hv_get_msr_common(vcpu,
4617 					     msr_info->index, &msr_info->data,
4618 					     msr_info->host_initiated);
4619 #endif
4620 	case MSR_IA32_BBL_CR_CTL3:
4621 		/* This legacy MSR exists but isn't fully documented in current
4622 		 * silicon.  It is however accessed by winxp in very narrow
4623 		 * scenarios where it sets bit #19, itself documented as
4624 		 * a "reserved" bit.  Best effort attempt to source coherent
4625 		 * read data here should the balance of the register be
4626 		 * interpreted by the guest:
4627 		 *
4628 		 * L2 cache control register 3: 64GB range, 256KB size,
4629 		 * enabled, latency 0x1, configured
4630 		 */
4631 		msr_info->data = 0xbe702111;
4632 		break;
4633 	case MSR_AMD64_OSVW_ID_LENGTH:
4634 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4635 			return 1;
4636 		msr_info->data = vcpu->arch.osvw.length;
4637 		break;
4638 	case MSR_AMD64_OSVW_STATUS:
4639 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4640 			return 1;
4641 		msr_info->data = vcpu->arch.osvw.status;
4642 		break;
4643 	case MSR_PLATFORM_INFO:
4644 		if (!msr_info->host_initiated &&
4645 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4646 			return 1;
4647 		msr_info->data = vcpu->arch.msr_platform_info;
4648 		break;
4649 	case MSR_MISC_FEATURES_ENABLES:
4650 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4651 		break;
4652 	case MSR_K7_HWCR:
4653 		msr_info->data = vcpu->arch.msr_hwcr;
4654 		break;
4655 #ifdef CONFIG_X86_64
4656 	case MSR_IA32_XFD:
4657 		if (!msr_info->host_initiated &&
4658 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4659 			return 1;
4660 
4661 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4662 		break;
4663 	case MSR_IA32_XFD_ERR:
4664 		if (!msr_info->host_initiated &&
4665 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4666 			return 1;
4667 
4668 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4669 		break;
4670 #endif
4671 	case MSR_IA32_U_CET:
4672 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4673 		kvm_get_xstate_msr(vcpu, msr_info);
4674 		break;
4675 	default:
4676 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4677 			return kvm_pmu_get_msr(vcpu, msr_info);
4678 
4679 		return KVM_MSR_RET_UNSUPPORTED;
4680 	}
4681 	return 0;
4682 }
4683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4684 
4685 /*
4686  * Read or write a bunch of msrs. All parameters are kernel addresses.
4687  *
4688  * @return number of msrs set successfully.
4689  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4690 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4691 		    struct kvm_msr_entry *entries,
4692 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4693 				  unsigned index, u64 *data))
4694 {
4695 	bool fpu_loaded = false;
4696 	int i;
4697 
4698 	for (i = 0; i < msrs->nmsrs; ++i) {
4699 		/*
4700 		 * If userspace is accessing one or more XSTATE-managed MSRs,
4701 		 * temporarily load the guest's FPU state so that the guest's
4702 		 * MSR value(s) is resident in hardware and thus can be accessed
4703 		 * via RDMSR/WRMSR.
4704 		 */
4705 		if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4706 			kvm_load_guest_fpu(vcpu);
4707 			fpu_loaded = true;
4708 		}
4709 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4710 			break;
4711 	}
4712 	if (fpu_loaded)
4713 		kvm_put_guest_fpu(vcpu);
4714 
4715 	return i;
4716 }
4717 
4718 /*
4719  * Read or write a bunch of msrs. Parameters are user addresses.
4720  *
4721  * @return number of msrs set successfully.
4722  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4723 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4724 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4725 				unsigned index, u64 *data),
4726 		  int writeback)
4727 {
4728 	struct kvm_msrs msrs;
4729 	struct kvm_msr_entry *entries;
4730 	unsigned size;
4731 	int r;
4732 
4733 	r = -EFAULT;
4734 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4735 		goto out;
4736 
4737 	r = -E2BIG;
4738 	if (msrs.nmsrs >= MAX_IO_MSRS)
4739 		goto out;
4740 
4741 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4742 	entries = memdup_user(user_msrs->entries, size);
4743 	if (IS_ERR(entries)) {
4744 		r = PTR_ERR(entries);
4745 		goto out;
4746 	}
4747 
4748 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4749 
4750 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4751 		r = -EFAULT;
4752 
4753 	kfree(entries);
4754 out:
4755 	return r;
4756 }
4757 
kvm_can_mwait_in_guest(void)4758 static inline bool kvm_can_mwait_in_guest(void)
4759 {
4760 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4761 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4762 		boot_cpu_has(X86_FEATURE_ARAT);
4763 }
4764 
kvm_get_allowed_disable_exits(void)4765 static u64 kvm_get_allowed_disable_exits(void)
4766 {
4767 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4768 
4769 	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4770 		r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4771 
4772 	if (!mitigate_smt_rsb) {
4773 		r |= KVM_X86_DISABLE_EXITS_HLT |
4774 			KVM_X86_DISABLE_EXITS_CSTATE;
4775 
4776 		if (kvm_can_mwait_in_guest())
4777 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4778 	}
4779 	return r;
4780 }
4781 
4782 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4783 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4784 					    struct kvm_cpuid2 __user *cpuid_arg)
4785 {
4786 	struct kvm_cpuid2 cpuid;
4787 	int r;
4788 
4789 	r = -EFAULT;
4790 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4791 		return r;
4792 
4793 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4794 	if (r)
4795 		return r;
4796 
4797 	r = -EFAULT;
4798 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4799 		return r;
4800 
4801 	return 0;
4802 }
4803 #endif
4804 
kvm_is_vm_type_supported(unsigned long type)4805 static bool kvm_is_vm_type_supported(unsigned long type)
4806 {
4807 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4808 }
4809 
kvm_sync_valid_fields(struct kvm * kvm)4810 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4811 {
4812 	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4813 }
4814 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4815 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4816 {
4817 	int r = 0;
4818 
4819 	switch (ext) {
4820 	case KVM_CAP_IRQCHIP:
4821 	case KVM_CAP_HLT:
4822 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4823 	case KVM_CAP_SET_TSS_ADDR:
4824 	case KVM_CAP_EXT_CPUID:
4825 	case KVM_CAP_EXT_EMUL_CPUID:
4826 	case KVM_CAP_CLOCKSOURCE:
4827 #ifdef CONFIG_KVM_IOAPIC
4828 	case KVM_CAP_PIT:
4829 	case KVM_CAP_PIT2:
4830 	case KVM_CAP_PIT_STATE2:
4831 	case KVM_CAP_REINJECT_CONTROL:
4832 #endif
4833 	case KVM_CAP_NOP_IO_DELAY:
4834 	case KVM_CAP_MP_STATE:
4835 	case KVM_CAP_SYNC_MMU:
4836 	case KVM_CAP_USER_NMI:
4837 	case KVM_CAP_IRQ_INJECT_STATUS:
4838 	case KVM_CAP_IOEVENTFD:
4839 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4840 
4841 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4842 	case KVM_CAP_VCPU_EVENTS:
4843 #ifdef CONFIG_KVM_HYPERV
4844 	case KVM_CAP_HYPERV:
4845 	case KVM_CAP_HYPERV_VAPIC:
4846 	case KVM_CAP_HYPERV_SPIN:
4847 	case KVM_CAP_HYPERV_TIME:
4848 	case KVM_CAP_HYPERV_SYNIC:
4849 	case KVM_CAP_HYPERV_SYNIC2:
4850 	case KVM_CAP_HYPERV_VP_INDEX:
4851 	case KVM_CAP_HYPERV_EVENTFD:
4852 	case KVM_CAP_HYPERV_TLBFLUSH:
4853 	case KVM_CAP_HYPERV_SEND_IPI:
4854 	case KVM_CAP_HYPERV_CPUID:
4855 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4856 	case KVM_CAP_SYS_HYPERV_CPUID:
4857 #endif
4858 	case KVM_CAP_PCI_SEGMENT:
4859 	case KVM_CAP_DEBUGREGS:
4860 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4861 	case KVM_CAP_XSAVE:
4862 	case KVM_CAP_ASYNC_PF:
4863 	case KVM_CAP_ASYNC_PF_INT:
4864 	case KVM_CAP_GET_TSC_KHZ:
4865 	case KVM_CAP_KVMCLOCK_CTRL:
4866 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4867 	case KVM_CAP_TSC_DEADLINE_TIMER:
4868 	case KVM_CAP_DISABLE_QUIRKS:
4869 	case KVM_CAP_SET_BOOT_CPU_ID:
4870  	case KVM_CAP_SPLIT_IRQCHIP:
4871 	case KVM_CAP_IMMEDIATE_EXIT:
4872 	case KVM_CAP_PMU_EVENT_FILTER:
4873 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4874 	case KVM_CAP_GET_MSR_FEATURES:
4875 	case KVM_CAP_MSR_PLATFORM_INFO:
4876 	case KVM_CAP_EXCEPTION_PAYLOAD:
4877 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4878 	case KVM_CAP_SET_GUEST_DEBUG:
4879 	case KVM_CAP_LAST_CPU:
4880 	case KVM_CAP_X86_USER_SPACE_MSR:
4881 	case KVM_CAP_X86_MSR_FILTER:
4882 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4883 #ifdef CONFIG_X86_SGX_KVM
4884 	case KVM_CAP_SGX_ATTRIBUTE:
4885 #endif
4886 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4887 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4888 	case KVM_CAP_SREGS2:
4889 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4890 	case KVM_CAP_VCPU_ATTRIBUTES:
4891 	case KVM_CAP_SYS_ATTRIBUTES:
4892 	case KVM_CAP_VAPIC:
4893 	case KVM_CAP_ENABLE_CAP:
4894 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4895 	case KVM_CAP_IRQFD_RESAMPLE:
4896 	case KVM_CAP_MEMORY_FAULT_INFO:
4897 	case KVM_CAP_X86_GUEST_MODE:
4898 	case KVM_CAP_ONE_REG:
4899 		r = 1;
4900 		break;
4901 	case KVM_CAP_PRE_FAULT_MEMORY:
4902 		r = tdp_enabled;
4903 		break;
4904 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4905 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4906 		break;
4907 	case KVM_CAP_EXIT_HYPERCALL:
4908 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4909 		break;
4910 	case KVM_CAP_SET_GUEST_DEBUG2:
4911 		return KVM_GUESTDBG_VALID_MASK;
4912 #ifdef CONFIG_KVM_XEN
4913 	case KVM_CAP_XEN_HVM:
4914 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4915 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4916 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4917 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4918 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4919 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4920 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4921 		if (sched_info_on())
4922 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4923 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4924 		break;
4925 #endif
4926 	case KVM_CAP_SYNC_REGS:
4927 		r = kvm_sync_valid_fields(kvm);
4928 		break;
4929 	case KVM_CAP_ADJUST_CLOCK:
4930 		r = KVM_CLOCK_VALID_FLAGS;
4931 		break;
4932 	case KVM_CAP_X86_DISABLE_EXITS:
4933 		r = kvm_get_allowed_disable_exits();
4934 		break;
4935 	case KVM_CAP_X86_SMM:
4936 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4937 			break;
4938 
4939 		/* SMBASE is usually relocated above 1M on modern chipsets,
4940 		 * and SMM handlers might indeed rely on 4G segment limits,
4941 		 * so do not report SMM to be available if real mode is
4942 		 * emulated via vm86 mode.  Still, do not go to great lengths
4943 		 * to avoid userspace's usage of the feature, because it is a
4944 		 * fringe case that is not enabled except via specific settings
4945 		 * of the module parameters.
4946 		 */
4947 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4948 		break;
4949 	case KVM_CAP_NR_VCPUS:
4950 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4951 		break;
4952 	case KVM_CAP_MAX_VCPUS:
4953 		r = KVM_MAX_VCPUS;
4954 		if (kvm)
4955 			r = kvm->max_vcpus;
4956 		break;
4957 	case KVM_CAP_MAX_VCPU_ID:
4958 		r = KVM_MAX_VCPU_IDS;
4959 		break;
4960 	case KVM_CAP_PV_MMU:	/* obsolete */
4961 		r = 0;
4962 		break;
4963 	case KVM_CAP_MCE:
4964 		r = KVM_MAX_MCE_BANKS;
4965 		break;
4966 	case KVM_CAP_XCRS:
4967 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4968 		break;
4969 	case KVM_CAP_TSC_CONTROL:
4970 	case KVM_CAP_VM_TSC_CONTROL:
4971 		r = kvm_caps.has_tsc_control;
4972 		break;
4973 	case KVM_CAP_X2APIC_API:
4974 		r = KVM_X2APIC_API_VALID_FLAGS;
4975 		break;
4976 	case KVM_CAP_NESTED_STATE:
4977 		r = kvm_x86_ops.nested_ops->get_state ?
4978 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4979 		break;
4980 #ifdef CONFIG_KVM_HYPERV
4981 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4982 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4983 		break;
4984 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4985 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4986 		break;
4987 #endif
4988 	case KVM_CAP_SMALLER_MAXPHYADDR:
4989 		r = (int) allow_smaller_maxphyaddr;
4990 		break;
4991 	case KVM_CAP_STEAL_TIME:
4992 		r = sched_info_on();
4993 		break;
4994 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4995 		if (kvm_caps.has_bus_lock_exit)
4996 			r = KVM_BUS_LOCK_DETECTION_OFF |
4997 			    KVM_BUS_LOCK_DETECTION_EXIT;
4998 		else
4999 			r = 0;
5000 		break;
5001 	case KVM_CAP_XSAVE2: {
5002 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
5003 		if (r < sizeof(struct kvm_xsave))
5004 			r = sizeof(struct kvm_xsave);
5005 		break;
5006 	}
5007 	case KVM_CAP_PMU_CAPABILITY:
5008 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
5009 		break;
5010 	case KVM_CAP_DISABLE_QUIRKS2:
5011 		r = kvm_caps.supported_quirks;
5012 		break;
5013 	case KVM_CAP_X86_NOTIFY_VMEXIT:
5014 		r = kvm_caps.has_notify_vmexit;
5015 		break;
5016 	case KVM_CAP_VM_TYPES:
5017 		r = kvm_caps.supported_vm_types;
5018 		break;
5019 	case KVM_CAP_READONLY_MEM:
5020 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
5021 		break;
5022 	default:
5023 		break;
5024 	}
5025 	return r;
5026 }
5027 
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)5028 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
5029 {
5030 	if (attr->group) {
5031 		if (kvm_x86_ops.dev_get_attr)
5032 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
5033 		return -ENXIO;
5034 	}
5035 
5036 	switch (attr->attr) {
5037 	case KVM_X86_XCOMP_GUEST_SUPP:
5038 		*val = kvm_caps.supported_xcr0;
5039 		return 0;
5040 	default:
5041 		return -ENXIO;
5042 	}
5043 }
5044 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)5045 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5046 {
5047 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5048 	int r;
5049 	u64 val;
5050 
5051 	r = __kvm_x86_dev_get_attr(attr, &val);
5052 	if (r < 0)
5053 		return r;
5054 
5055 	if (put_user(val, uaddr))
5056 		return -EFAULT;
5057 
5058 	return 0;
5059 }
5060 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)5061 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5062 {
5063 	u64 val;
5064 
5065 	return __kvm_x86_dev_get_attr(attr, &val);
5066 }
5067 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5068 long kvm_arch_dev_ioctl(struct file *filp,
5069 			unsigned int ioctl, unsigned long arg)
5070 {
5071 	void __user *argp = (void __user *)arg;
5072 	long r;
5073 
5074 	switch (ioctl) {
5075 	case KVM_GET_MSR_INDEX_LIST: {
5076 		struct kvm_msr_list __user *user_msr_list = argp;
5077 		struct kvm_msr_list msr_list;
5078 		unsigned n;
5079 
5080 		r = -EFAULT;
5081 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5082 			goto out;
5083 		n = msr_list.nmsrs;
5084 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5085 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5086 			goto out;
5087 		r = -E2BIG;
5088 		if (n < msr_list.nmsrs)
5089 			goto out;
5090 		r = -EFAULT;
5091 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5092 				 num_msrs_to_save * sizeof(u32)))
5093 			goto out;
5094 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5095 				 &emulated_msrs,
5096 				 num_emulated_msrs * sizeof(u32)))
5097 			goto out;
5098 		r = 0;
5099 		break;
5100 	}
5101 	case KVM_GET_SUPPORTED_CPUID:
5102 	case KVM_GET_EMULATED_CPUID: {
5103 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5104 		struct kvm_cpuid2 cpuid;
5105 
5106 		r = -EFAULT;
5107 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5108 			goto out;
5109 
5110 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5111 					    ioctl);
5112 		if (r)
5113 			goto out;
5114 
5115 		r = -EFAULT;
5116 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5117 			goto out;
5118 		r = 0;
5119 		break;
5120 	}
5121 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
5122 		r = -EFAULT;
5123 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5124 				 sizeof(kvm_caps.supported_mce_cap)))
5125 			goto out;
5126 		r = 0;
5127 		break;
5128 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5129 		struct kvm_msr_list __user *user_msr_list = argp;
5130 		struct kvm_msr_list msr_list;
5131 		unsigned int n;
5132 
5133 		r = -EFAULT;
5134 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5135 			goto out;
5136 		n = msr_list.nmsrs;
5137 		msr_list.nmsrs = num_msr_based_features;
5138 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5139 			goto out;
5140 		r = -E2BIG;
5141 		if (n < msr_list.nmsrs)
5142 			goto out;
5143 		r = -EFAULT;
5144 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
5145 				 num_msr_based_features * sizeof(u32)))
5146 			goto out;
5147 		r = 0;
5148 		break;
5149 	}
5150 	case KVM_GET_MSRS:
5151 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
5152 		break;
5153 #ifdef CONFIG_KVM_HYPERV
5154 	case KVM_GET_SUPPORTED_HV_CPUID:
5155 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5156 		break;
5157 #endif
5158 	case KVM_GET_DEVICE_ATTR: {
5159 		struct kvm_device_attr attr;
5160 		r = -EFAULT;
5161 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5162 			break;
5163 		r = kvm_x86_dev_get_attr(&attr);
5164 		break;
5165 	}
5166 	case KVM_HAS_DEVICE_ATTR: {
5167 		struct kvm_device_attr attr;
5168 		r = -EFAULT;
5169 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5170 			break;
5171 		r = kvm_x86_dev_has_attr(&attr);
5172 		break;
5173 	}
5174 	default:
5175 		r = -EINVAL;
5176 		break;
5177 	}
5178 out:
5179 	return r;
5180 }
5181 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)5182 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5183 {
5184 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5185 }
5186 
5187 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5188 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5189 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5190 {
5191 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5192 
5193 	vcpu->arch.l1tf_flush_l1d = true;
5194 
5195 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5196 		pmu->need_cleanup = true;
5197 		kvm_make_request(KVM_REQ_PMU, vcpu);
5198 	}
5199 
5200 	/* Address WBINVD may be executed by guest */
5201 	if (need_emulate_wbinvd(vcpu)) {
5202 		if (kvm_x86_call(has_wbinvd_exit)())
5203 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5204 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5205 			wbinvd_on_cpu(vcpu->cpu);
5206 	}
5207 
5208 	kvm_x86_call(vcpu_load)(vcpu, cpu);
5209 
5210 	if (vcpu != per_cpu(last_vcpu, cpu)) {
5211 		/*
5212 		 * Flush the branch predictor when switching vCPUs on the same
5213 		 * physical CPU, as each vCPU needs its own branch prediction
5214 		 * domain.  No IBPB is needed when switching between L1 and L2
5215 		 * on the same vCPU unless IBRS is advertised to the vCPU; that
5216 		 * is handled on the nested VM-Exit path.
5217 		 */
5218 		if (static_branch_likely(&switch_vcpu_ibpb))
5219 			indirect_branch_prediction_barrier();
5220 		per_cpu(last_vcpu, cpu) = vcpu;
5221 	}
5222 
5223 	/* Save host pkru register if supported */
5224 	vcpu->arch.host_pkru = read_pkru();
5225 
5226 	/* Apply any externally detected TSC adjustments (due to suspend) */
5227 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5228 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5229 		vcpu->arch.tsc_offset_adjustment = 0;
5230 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5231 	}
5232 
5233 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5234 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5235 				rdtsc() - vcpu->arch.last_host_tsc;
5236 		if (tsc_delta < 0)
5237 			mark_tsc_unstable("KVM discovered backwards TSC");
5238 
5239 		if (kvm_check_tsc_unstable()) {
5240 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5241 						vcpu->arch.last_guest_tsc);
5242 			kvm_vcpu_write_tsc_offset(vcpu, offset);
5243 			if (!vcpu->arch.guest_tsc_protected)
5244 				vcpu->arch.tsc_catchup = 1;
5245 		}
5246 
5247 		if (kvm_lapic_hv_timer_in_use(vcpu))
5248 			kvm_lapic_restart_hv_timer(vcpu);
5249 
5250 		/*
5251 		 * On a host with synchronized TSC, there is no need to update
5252 		 * kvmclock on vcpu->cpu migration
5253 		 */
5254 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5255 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5256 		if (vcpu->cpu != cpu)
5257 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5258 		vcpu->cpu = cpu;
5259 	}
5260 
5261 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5262 }
5263 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5264 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5265 {
5266 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5267 	struct kvm_steal_time __user *st;
5268 	struct kvm_memslots *slots;
5269 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5270 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5271 
5272 	/*
5273 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5274 	 * an instruction boundary and will not trigger guest emulation of any
5275 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5276 	 * when this is true, for example allowing the vCPU to be marked
5277 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5278 	 */
5279 	if (!vcpu->arch.at_instruction_boundary) {
5280 		vcpu->stat.preemption_other++;
5281 		return;
5282 	}
5283 
5284 	vcpu->stat.preemption_reported++;
5285 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5286 		return;
5287 
5288 	if (vcpu->arch.st.preempted)
5289 		return;
5290 
5291 	/* This happens on process exit */
5292 	if (unlikely(current->mm != vcpu->kvm->mm))
5293 		return;
5294 
5295 	slots = kvm_memslots(vcpu->kvm);
5296 
5297 	if (unlikely(slots->generation != ghc->generation ||
5298 		     gpa != ghc->gpa ||
5299 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5300 		return;
5301 
5302 	st = (struct kvm_steal_time __user *)ghc->hva;
5303 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5304 
5305 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5306 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5307 
5308 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5309 }
5310 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5312 {
5313 	int idx;
5314 
5315 	if (vcpu->preempted) {
5316 		/*
5317 		 * Assume protected guests are in-kernel.  Inefficient yielding
5318 		 * due to false positives is preferable to never yielding due
5319 		 * to false negatives.
5320 		 */
5321 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5322 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5323 
5324 		/*
5325 		 * Take the srcu lock as memslots will be accessed to check the gfn
5326 		 * cache generation against the memslots generation.
5327 		 */
5328 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5329 		if (kvm_xen_msr_enabled(vcpu->kvm))
5330 			kvm_xen_runstate_set_preempted(vcpu);
5331 		else
5332 			kvm_steal_time_set_preempted(vcpu);
5333 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5334 	}
5335 
5336 	kvm_x86_call(vcpu_put)(vcpu);
5337 	vcpu->arch.last_host_tsc = rdtsc();
5338 }
5339 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5340 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5341 				    struct kvm_lapic_state *s)
5342 {
5343 	if (vcpu->arch.apic->guest_apic_protected)
5344 		return -EINVAL;
5345 
5346 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5347 
5348 	return kvm_apic_get_state(vcpu, s);
5349 }
5350 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5352 				    struct kvm_lapic_state *s)
5353 {
5354 	int r;
5355 
5356 	if (vcpu->arch.apic->guest_apic_protected)
5357 		return -EINVAL;
5358 
5359 	r = kvm_apic_set_state(vcpu, s);
5360 	if (r)
5361 		return r;
5362 	update_cr8_intercept(vcpu);
5363 
5364 	return 0;
5365 }
5366 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5367 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5368 {
5369 	/*
5370 	 * We can accept userspace's request for interrupt injection
5371 	 * as long as we have a place to store the interrupt number.
5372 	 * The actual injection will happen when the CPU is able to
5373 	 * deliver the interrupt.
5374 	 */
5375 	if (kvm_cpu_has_extint(vcpu))
5376 		return false;
5377 
5378 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5379 	return (!lapic_in_kernel(vcpu) ||
5380 		kvm_apic_accept_pic_intr(vcpu));
5381 }
5382 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5383 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5384 {
5385 	/*
5386 	 * Do not cause an interrupt window exit if an exception
5387 	 * is pending or an event needs reinjection; userspace
5388 	 * might want to inject the interrupt manually using KVM_SET_REGS
5389 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5390 	 * instruction boundary and with no events half-injected.
5391 	 */
5392 	return (kvm_arch_interrupt_allowed(vcpu) &&
5393 		kvm_cpu_accept_dm_intr(vcpu) &&
5394 		!kvm_event_needs_reinjection(vcpu) &&
5395 		!kvm_is_exception_pending(vcpu));
5396 }
5397 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5398 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5399 				    struct kvm_interrupt *irq)
5400 {
5401 	if (irq->irq >= KVM_NR_INTERRUPTS)
5402 		return -EINVAL;
5403 
5404 	if (!irqchip_in_kernel(vcpu->kvm)) {
5405 		kvm_queue_interrupt(vcpu, irq->irq, false);
5406 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5407 		return 0;
5408 	}
5409 
5410 	/*
5411 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5412 	 * fail for in-kernel 8259.
5413 	 */
5414 	if (pic_in_kernel(vcpu->kvm))
5415 		return -ENXIO;
5416 
5417 	if (vcpu->arch.pending_external_vector != -1)
5418 		return -EEXIST;
5419 
5420 	vcpu->arch.pending_external_vector = irq->irq;
5421 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5422 	return 0;
5423 }
5424 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5425 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5426 {
5427 	kvm_inject_nmi(vcpu);
5428 
5429 	return 0;
5430 }
5431 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5432 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5433 					   struct kvm_tpr_access_ctl *tac)
5434 {
5435 	if (tac->flags)
5436 		return -EINVAL;
5437 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5438 	return 0;
5439 }
5440 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5441 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5442 					u64 mcg_cap)
5443 {
5444 	int r;
5445 	unsigned bank_num = mcg_cap & 0xff, bank;
5446 
5447 	r = -EINVAL;
5448 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5449 		goto out;
5450 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5451 		goto out;
5452 	r = 0;
5453 	vcpu->arch.mcg_cap = mcg_cap;
5454 	/* Init IA32_MCG_CTL to all 1s */
5455 	if (mcg_cap & MCG_CTL_P)
5456 		vcpu->arch.mcg_ctl = ~(u64)0;
5457 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5458 	for (bank = 0; bank < bank_num; bank++) {
5459 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5460 		if (mcg_cap & MCG_CMCI_P)
5461 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5462 	}
5463 
5464 	kvm_apic_after_set_mcg_cap(vcpu);
5465 
5466 	kvm_x86_call(setup_mce)(vcpu);
5467 out:
5468 	return r;
5469 }
5470 
5471 /*
5472  * Validate this is an UCNA (uncorrectable no action) error by checking the
5473  * MCG_STATUS and MCi_STATUS registers:
5474  * - none of the bits for Machine Check Exceptions are set
5475  * - both the VAL (valid) and UC (uncorrectable) bits are set
5476  * MCI_STATUS_PCC - Processor Context Corrupted
5477  * MCI_STATUS_S - Signaled as a Machine Check Exception
5478  * MCI_STATUS_AR - Software recoverable Action Required
5479  */
is_ucna(struct kvm_x86_mce * mce)5480 static bool is_ucna(struct kvm_x86_mce *mce)
5481 {
5482 	return	!mce->mcg_status &&
5483 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5484 		(mce->status & MCI_STATUS_VAL) &&
5485 		(mce->status & MCI_STATUS_UC);
5486 }
5487 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5488 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5489 {
5490 	u64 mcg_cap = vcpu->arch.mcg_cap;
5491 
5492 	banks[1] = mce->status;
5493 	banks[2] = mce->addr;
5494 	banks[3] = mce->misc;
5495 	vcpu->arch.mcg_status = mce->mcg_status;
5496 
5497 	if (!(mcg_cap & MCG_CMCI_P) ||
5498 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5499 		return 0;
5500 
5501 	if (lapic_in_kernel(vcpu))
5502 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5503 
5504 	return 0;
5505 }
5506 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5507 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5508 				      struct kvm_x86_mce *mce)
5509 {
5510 	u64 mcg_cap = vcpu->arch.mcg_cap;
5511 	unsigned bank_num = mcg_cap & 0xff;
5512 	u64 *banks = vcpu->arch.mce_banks;
5513 
5514 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5515 		return -EINVAL;
5516 
5517 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5518 
5519 	if (is_ucna(mce))
5520 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5521 
5522 	/*
5523 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5524 	 * reporting is disabled
5525 	 */
5526 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5527 	    vcpu->arch.mcg_ctl != ~(u64)0)
5528 		return 0;
5529 	/*
5530 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5531 	 * reporting is disabled for the bank
5532 	 */
5533 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5534 		return 0;
5535 	if (mce->status & MCI_STATUS_UC) {
5536 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5537 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5538 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5539 			return 0;
5540 		}
5541 		if (banks[1] & MCI_STATUS_VAL)
5542 			mce->status |= MCI_STATUS_OVER;
5543 		banks[2] = mce->addr;
5544 		banks[3] = mce->misc;
5545 		vcpu->arch.mcg_status = mce->mcg_status;
5546 		banks[1] = mce->status;
5547 		kvm_queue_exception(vcpu, MC_VECTOR);
5548 	} else if (!(banks[1] & MCI_STATUS_VAL)
5549 		   || !(banks[1] & MCI_STATUS_UC)) {
5550 		if (banks[1] & MCI_STATUS_VAL)
5551 			mce->status |= MCI_STATUS_OVER;
5552 		banks[2] = mce->addr;
5553 		banks[3] = mce->misc;
5554 		banks[1] = mce->status;
5555 	} else
5556 		banks[1] |= MCI_STATUS_OVER;
5557 	return 0;
5558 }
5559 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5560 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5561 					       struct kvm_vcpu_events *events)
5562 {
5563 	struct kvm_queued_exception *ex;
5564 
5565 	process_nmi(vcpu);
5566 
5567 #ifdef CONFIG_KVM_SMM
5568 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5569 		process_smi(vcpu);
5570 #endif
5571 
5572 	/*
5573 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5574 	 * the only time there can be two queued exceptions is if there's a
5575 	 * non-exiting _injected_ exception, and a pending exiting exception.
5576 	 * In that case, ignore the VM-Exiting exception as it's an extension
5577 	 * of the injected exception.
5578 	 */
5579 	if (vcpu->arch.exception_vmexit.pending &&
5580 	    !vcpu->arch.exception.pending &&
5581 	    !vcpu->arch.exception.injected)
5582 		ex = &vcpu->arch.exception_vmexit;
5583 	else
5584 		ex = &vcpu->arch.exception;
5585 
5586 	/*
5587 	 * In guest mode, payload delivery should be deferred if the exception
5588 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5589 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5590 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5591 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5592 	 * the payload if the capability hasn't been requested.
5593 	 */
5594 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5595 	    ex->pending && ex->has_payload)
5596 		kvm_deliver_exception_payload(vcpu, ex);
5597 
5598 	memset(events, 0, sizeof(*events));
5599 
5600 	/*
5601 	 * The API doesn't provide the instruction length for software
5602 	 * exceptions, so don't report them. As long as the guest RIP
5603 	 * isn't advanced, we should expect to encounter the exception
5604 	 * again.
5605 	 */
5606 	if (!kvm_exception_is_soft(ex->vector)) {
5607 		events->exception.injected = ex->injected;
5608 		events->exception.pending = ex->pending;
5609 		/*
5610 		 * For ABI compatibility, deliberately conflate
5611 		 * pending and injected exceptions when
5612 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5613 		 */
5614 		if (!vcpu->kvm->arch.exception_payload_enabled)
5615 			events->exception.injected |= ex->pending;
5616 	}
5617 	events->exception.nr = ex->vector;
5618 	events->exception.has_error_code = ex->has_error_code;
5619 	events->exception.error_code = ex->error_code;
5620 	events->exception_has_payload = ex->has_payload;
5621 	events->exception_payload = ex->payload;
5622 
5623 	events->interrupt.injected =
5624 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5625 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5626 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5627 
5628 	events->nmi.injected = vcpu->arch.nmi_injected;
5629 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5630 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5631 
5632 	/* events->sipi_vector is never valid when reporting to user space */
5633 
5634 #ifdef CONFIG_KVM_SMM
5635 	events->smi.smm = is_smm(vcpu);
5636 	events->smi.pending = vcpu->arch.smi_pending;
5637 	events->smi.smm_inside_nmi =
5638 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5639 #endif
5640 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5641 
5642 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5643 			 | KVM_VCPUEVENT_VALID_SHADOW
5644 			 | KVM_VCPUEVENT_VALID_SMM);
5645 	if (vcpu->kvm->arch.exception_payload_enabled)
5646 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5647 	if (vcpu->kvm->arch.triple_fault_event) {
5648 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5649 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5650 	}
5651 }
5652 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5653 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5654 					      struct kvm_vcpu_events *events)
5655 {
5656 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5657 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5658 			      | KVM_VCPUEVENT_VALID_SHADOW
5659 			      | KVM_VCPUEVENT_VALID_SMM
5660 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5661 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5662 		return -EINVAL;
5663 
5664 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5665 		if (!vcpu->kvm->arch.exception_payload_enabled)
5666 			return -EINVAL;
5667 		if (events->exception.pending)
5668 			events->exception.injected = 0;
5669 		else
5670 			events->exception_has_payload = 0;
5671 	} else {
5672 		events->exception.pending = 0;
5673 		events->exception_has_payload = 0;
5674 	}
5675 
5676 	if ((events->exception.injected || events->exception.pending) &&
5677 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5678 		return -EINVAL;
5679 
5680 	process_nmi(vcpu);
5681 
5682 	/*
5683 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5684 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5685 	 * pending exceptions, already-injected exceptions are not subject to
5686 	 * intercpetion.  Note, userspace that conflates pending and injected
5687 	 * is hosed, and will incorrectly convert an injected exception into a
5688 	 * pending exception, which in turn may cause a spurious VM-Exit.
5689 	 */
5690 	vcpu->arch.exception_from_userspace = events->exception.pending;
5691 
5692 	vcpu->arch.exception_vmexit.pending = false;
5693 
5694 	vcpu->arch.exception.injected = events->exception.injected;
5695 	vcpu->arch.exception.pending = events->exception.pending;
5696 	vcpu->arch.exception.vector = events->exception.nr;
5697 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5698 	vcpu->arch.exception.error_code = events->exception.error_code;
5699 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5700 	vcpu->arch.exception.payload = events->exception_payload;
5701 
5702 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5703 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5704 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5705 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5706 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5707 						   events->interrupt.shadow);
5708 
5709 	vcpu->arch.nmi_injected = events->nmi.injected;
5710 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5711 		vcpu->arch.nmi_pending = 0;
5712 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5713 		if (events->nmi.pending)
5714 			kvm_make_request(KVM_REQ_NMI, vcpu);
5715 	}
5716 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5717 
5718 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5719 	    lapic_in_kernel(vcpu))
5720 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5721 
5722 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5723 #ifdef CONFIG_KVM_SMM
5724 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5725 			kvm_leave_nested(vcpu);
5726 			kvm_smm_changed(vcpu, events->smi.smm);
5727 		}
5728 
5729 		vcpu->arch.smi_pending = events->smi.pending;
5730 
5731 		if (events->smi.smm) {
5732 			if (events->smi.smm_inside_nmi)
5733 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5734 			else
5735 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5736 		}
5737 
5738 #else
5739 		if (events->smi.smm || events->smi.pending ||
5740 		    events->smi.smm_inside_nmi)
5741 			return -EINVAL;
5742 #endif
5743 
5744 		if (lapic_in_kernel(vcpu)) {
5745 			if (events->smi.latched_init)
5746 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5747 			else
5748 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5749 		}
5750 	}
5751 
5752 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5753 		if (!vcpu->kvm->arch.triple_fault_event)
5754 			return -EINVAL;
5755 		if (events->triple_fault.pending)
5756 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5757 		else
5758 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5759 	}
5760 
5761 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5762 
5763 	return 0;
5764 }
5765 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5766 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5767 					    struct kvm_debugregs *dbgregs)
5768 {
5769 	unsigned int i;
5770 
5771 	if (vcpu->kvm->arch.has_protected_state &&
5772 	    vcpu->arch.guest_state_protected)
5773 		return -EINVAL;
5774 
5775 	memset(dbgregs, 0, sizeof(*dbgregs));
5776 
5777 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5778 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5779 		dbgregs->db[i] = vcpu->arch.db[i];
5780 
5781 	dbgregs->dr6 = vcpu->arch.dr6;
5782 	dbgregs->dr7 = vcpu->arch.dr7;
5783 	return 0;
5784 }
5785 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5786 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5787 					    struct kvm_debugregs *dbgregs)
5788 {
5789 	unsigned int i;
5790 
5791 	if (vcpu->kvm->arch.has_protected_state &&
5792 	    vcpu->arch.guest_state_protected)
5793 		return -EINVAL;
5794 
5795 	if (dbgregs->flags)
5796 		return -EINVAL;
5797 
5798 	if (!kvm_dr6_valid(dbgregs->dr6))
5799 		return -EINVAL;
5800 	if (!kvm_dr7_valid(dbgregs->dr7))
5801 		return -EINVAL;
5802 
5803 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5804 		vcpu->arch.db[i] = dbgregs->db[i];
5805 
5806 	kvm_update_dr0123(vcpu);
5807 	vcpu->arch.dr6 = dbgregs->dr6;
5808 	vcpu->arch.dr7 = dbgregs->dr7;
5809 	kvm_update_dr7(vcpu);
5810 
5811 	return 0;
5812 }
5813 
5814 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5815 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5816 					 u8 *state, unsigned int size)
5817 {
5818 	/*
5819 	 * Only copy state for features that are enabled for the guest.  The
5820 	 * state itself isn't problematic, but setting bits in the header for
5821 	 * features that are supported in *this* host but not exposed to the
5822 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5823 	 * compatible host without the features that are NOT exposed to the
5824 	 * guest.
5825 	 *
5826 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5827 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5828 	 * supported by the host.
5829 	 */
5830 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5831 			     XFEATURE_MASK_FPSSE;
5832 
5833 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5834 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5835 
5836 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5837 				       supported_xcr0, vcpu->arch.pkru);
5838 	return 0;
5839 }
5840 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5841 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5842 					struct kvm_xsave *guest_xsave)
5843 {
5844 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5845 					     sizeof(guest_xsave->region));
5846 }
5847 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5848 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5849 					struct kvm_xsave *guest_xsave)
5850 {
5851 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5852 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5853 
5854 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5855 					      guest_xsave->region,
5856 					      kvm_caps.supported_xcr0,
5857 					      &vcpu->arch.pkru);
5858 }
5859 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5860 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5861 				       struct kvm_xcrs *guest_xcrs)
5862 {
5863 	if (vcpu->kvm->arch.has_protected_state &&
5864 	    vcpu->arch.guest_state_protected)
5865 		return -EINVAL;
5866 
5867 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5868 		guest_xcrs->nr_xcrs = 0;
5869 		return 0;
5870 	}
5871 
5872 	guest_xcrs->nr_xcrs = 1;
5873 	guest_xcrs->flags = 0;
5874 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5875 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5876 	return 0;
5877 }
5878 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5879 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5880 				       struct kvm_xcrs *guest_xcrs)
5881 {
5882 	int i, r = 0;
5883 
5884 	if (vcpu->kvm->arch.has_protected_state &&
5885 	    vcpu->arch.guest_state_protected)
5886 		return -EINVAL;
5887 
5888 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5889 		return -EINVAL;
5890 
5891 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5892 		return -EINVAL;
5893 
5894 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5895 		/* Only support XCR0 currently */
5896 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5897 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5898 				guest_xcrs->xcrs[i].value);
5899 			break;
5900 		}
5901 	if (r)
5902 		r = -EINVAL;
5903 	return r;
5904 }
5905 
5906 /*
5907  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5908  * stopped by the hypervisor.  This function will be called from the host only.
5909  * EINVAL is returned when the host attempts to set the flag for a guest that
5910  * does not support pv clocks.
5911  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5912 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5913 {
5914 	if (!vcpu->arch.pv_time.active)
5915 		return -EINVAL;
5916 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5917 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5918 	return 0;
5919 }
5920 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5921 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5922 				 struct kvm_device_attr *attr)
5923 {
5924 	int r;
5925 
5926 	switch (attr->attr) {
5927 	case KVM_VCPU_TSC_OFFSET:
5928 		r = 0;
5929 		break;
5930 	default:
5931 		r = -ENXIO;
5932 	}
5933 
5934 	return r;
5935 }
5936 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5937 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5938 				 struct kvm_device_attr *attr)
5939 {
5940 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5941 	int r;
5942 
5943 	switch (attr->attr) {
5944 	case KVM_VCPU_TSC_OFFSET:
5945 		r = -EFAULT;
5946 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5947 			break;
5948 		r = 0;
5949 		break;
5950 	default:
5951 		r = -ENXIO;
5952 	}
5953 
5954 	return r;
5955 }
5956 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5957 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5958 				 struct kvm_device_attr *attr)
5959 {
5960 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5961 	struct kvm *kvm = vcpu->kvm;
5962 	int r;
5963 
5964 	switch (attr->attr) {
5965 	case KVM_VCPU_TSC_OFFSET: {
5966 		u64 offset, tsc, ns;
5967 		unsigned long flags;
5968 		bool matched;
5969 
5970 		r = -EFAULT;
5971 		if (get_user(offset, uaddr))
5972 			break;
5973 
5974 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5975 
5976 		matched = (vcpu->arch.virtual_tsc_khz &&
5977 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5978 			   kvm->arch.last_tsc_offset == offset);
5979 
5980 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5981 		ns = get_kvmclock_base_ns();
5982 
5983 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5984 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5985 
5986 		r = 0;
5987 		break;
5988 	}
5989 	default:
5990 		r = -ENXIO;
5991 	}
5992 
5993 	return r;
5994 }
5995 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5996 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5997 				      unsigned int ioctl,
5998 				      void __user *argp)
5999 {
6000 	struct kvm_device_attr attr;
6001 	int r;
6002 
6003 	if (copy_from_user(&attr, argp, sizeof(attr)))
6004 		return -EFAULT;
6005 
6006 	if (attr.group != KVM_VCPU_TSC_CTRL)
6007 		return -ENXIO;
6008 
6009 	switch (ioctl) {
6010 	case KVM_HAS_DEVICE_ATTR:
6011 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
6012 		break;
6013 	case KVM_GET_DEVICE_ATTR:
6014 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
6015 		break;
6016 	case KVM_SET_DEVICE_ATTR:
6017 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
6018 		break;
6019 	}
6020 
6021 	return r;
6022 }
6023 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)6024 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
6025 				     struct kvm_enable_cap *cap)
6026 {
6027 	if (cap->flags)
6028 		return -EINVAL;
6029 
6030 	switch (cap->cap) {
6031 #ifdef CONFIG_KVM_HYPERV
6032 	case KVM_CAP_HYPERV_SYNIC2:
6033 		if (cap->args[0])
6034 			return -EINVAL;
6035 		fallthrough;
6036 
6037 	case KVM_CAP_HYPERV_SYNIC:
6038 		if (!irqchip_in_kernel(vcpu->kvm))
6039 			return -EINVAL;
6040 		return kvm_hv_activate_synic(vcpu, cap->cap ==
6041 					     KVM_CAP_HYPERV_SYNIC2);
6042 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6043 		{
6044 			int r;
6045 			uint16_t vmcs_version;
6046 			void __user *user_ptr;
6047 
6048 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
6049 				return -ENOTTY;
6050 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6051 			if (!r) {
6052 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
6053 				if (copy_to_user(user_ptr, &vmcs_version,
6054 						 sizeof(vmcs_version)))
6055 					r = -EFAULT;
6056 			}
6057 			return r;
6058 		}
6059 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6060 		if (!kvm_x86_ops.enable_l2_tlb_flush)
6061 			return -ENOTTY;
6062 
6063 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6064 
6065 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
6066 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6067 #endif
6068 
6069 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6070 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
6071 		return 0;
6072 	default:
6073 		return -EINVAL;
6074 	}
6075 }
6076 
6077 struct kvm_x86_reg_id {
6078 	__u32 index;
6079 	__u8  type;
6080 	__u8  rsvd1;
6081 	__u8  rsvd2:4;
6082 	__u8  size:4;
6083 	__u8  x86;
6084 };
6085 
kvm_translate_kvm_reg(struct kvm_vcpu * vcpu,struct kvm_x86_reg_id * reg)6086 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6087 				 struct kvm_x86_reg_id *reg)
6088 {
6089 	switch (reg->index) {
6090 	case KVM_REG_GUEST_SSP:
6091 		/*
6092 		 * FIXME: If host-initiated accesses are ever exempted from
6093 		 * ignore_msrs (in kvm_do_msr_access()), drop this manual check
6094 		 * and rely on KVM's standard checks to reject accesses to regs
6095 		 * that don't exist.
6096 		 */
6097 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6098 			return -EINVAL;
6099 
6100 		reg->type = KVM_X86_REG_TYPE_MSR;
6101 		reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6102 		break;
6103 	default:
6104 		return -EINVAL;
6105 	}
6106 	return 0;
6107 }
6108 
kvm_get_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6109 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6110 {
6111 	u64 val;
6112 
6113 	if (do_get_msr(vcpu, msr, &val))
6114 		return -EINVAL;
6115 
6116 	if (put_user(val, user_val))
6117 		return -EFAULT;
6118 
6119 	return 0;
6120 }
6121 
kvm_set_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6122 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6123 {
6124 	u64 val;
6125 
6126 	if (get_user(val, user_val))
6127 		return -EFAULT;
6128 
6129 	if (do_set_msr(vcpu, msr, &val))
6130 		return -EINVAL;
6131 
6132 	return 0;
6133 }
6134 
kvm_get_set_one_reg(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)6135 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6136 			       void __user *argp)
6137 {
6138 	struct kvm_one_reg one_reg;
6139 	struct kvm_x86_reg_id *reg;
6140 	u64 __user *user_val;
6141 	bool load_fpu;
6142 	int r;
6143 
6144 	if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6145 		return -EFAULT;
6146 
6147 	if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6148 		return -EINVAL;
6149 
6150 	reg = (struct kvm_x86_reg_id *)&one_reg.id;
6151 	if (reg->rsvd1 || reg->rsvd2)
6152 		return -EINVAL;
6153 
6154 	if (reg->type == KVM_X86_REG_TYPE_KVM) {
6155 		r = kvm_translate_kvm_reg(vcpu, reg);
6156 		if (r)
6157 			return r;
6158 	}
6159 
6160 	if (reg->type != KVM_X86_REG_TYPE_MSR)
6161 		return -EINVAL;
6162 
6163 	if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6164 		return -EINVAL;
6165 
6166 	guard(srcu)(&vcpu->kvm->srcu);
6167 
6168 	load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6169 	if (load_fpu)
6170 		kvm_load_guest_fpu(vcpu);
6171 
6172 	user_val = u64_to_user_ptr(one_reg.addr);
6173 	if (ioctl == KVM_GET_ONE_REG)
6174 		r = kvm_get_one_msr(vcpu, reg->index, user_val);
6175 	else
6176 		r = kvm_set_one_msr(vcpu, reg->index, user_val);
6177 
6178 	if (load_fpu)
6179 		kvm_put_guest_fpu(vcpu);
6180 	return r;
6181 }
6182 
kvm_get_reg_list(struct kvm_vcpu * vcpu,struct kvm_reg_list __user * user_list)6183 static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6184 			    struct kvm_reg_list __user *user_list)
6185 {
6186 	u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6187 	u64 user_nr_regs;
6188 
6189 	if (get_user(user_nr_regs, &user_list->n))
6190 		return -EFAULT;
6191 
6192 	if (put_user(nr_regs, &user_list->n))
6193 		return -EFAULT;
6194 
6195 	if (user_nr_regs < nr_regs)
6196 		return -E2BIG;
6197 
6198 	if (nr_regs &&
6199 	    put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6200 		return -EFAULT;
6201 
6202 	return 0;
6203 }
6204 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6205 long kvm_arch_vcpu_ioctl(struct file *filp,
6206 			 unsigned int ioctl, unsigned long arg)
6207 {
6208 	struct kvm_vcpu *vcpu = filp->private_data;
6209 	void __user *argp = (void __user *)arg;
6210 	int r;
6211 	union {
6212 		struct kvm_sregs2 *sregs2;
6213 		struct kvm_lapic_state *lapic;
6214 		struct kvm_xsave *xsave;
6215 		struct kvm_xcrs *xcrs;
6216 		void *buffer;
6217 	} u;
6218 
6219 	vcpu_load(vcpu);
6220 
6221 	u.buffer = NULL;
6222 	switch (ioctl) {
6223 	case KVM_GET_LAPIC: {
6224 		r = -EINVAL;
6225 		if (!lapic_in_kernel(vcpu))
6226 			goto out;
6227 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6228 
6229 		r = -ENOMEM;
6230 		if (!u.lapic)
6231 			goto out;
6232 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6233 		if (r)
6234 			goto out;
6235 		r = -EFAULT;
6236 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6237 			goto out;
6238 		r = 0;
6239 		break;
6240 	}
6241 	case KVM_SET_LAPIC: {
6242 		r = -EINVAL;
6243 		if (!lapic_in_kernel(vcpu))
6244 			goto out;
6245 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
6246 		if (IS_ERR(u.lapic)) {
6247 			r = PTR_ERR(u.lapic);
6248 			goto out_nofree;
6249 		}
6250 
6251 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6252 		break;
6253 	}
6254 	case KVM_INTERRUPT: {
6255 		struct kvm_interrupt irq;
6256 
6257 		r = -EFAULT;
6258 		if (copy_from_user(&irq, argp, sizeof(irq)))
6259 			goto out;
6260 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6261 		break;
6262 	}
6263 	case KVM_NMI: {
6264 		r = kvm_vcpu_ioctl_nmi(vcpu);
6265 		break;
6266 	}
6267 	case KVM_SMI: {
6268 		r = kvm_inject_smi(vcpu);
6269 		break;
6270 	}
6271 	case KVM_SET_CPUID: {
6272 		struct kvm_cpuid __user *cpuid_arg = argp;
6273 		struct kvm_cpuid cpuid;
6274 
6275 		r = -EFAULT;
6276 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6277 			goto out;
6278 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6279 		break;
6280 	}
6281 	case KVM_SET_CPUID2: {
6282 		struct kvm_cpuid2 __user *cpuid_arg = argp;
6283 		struct kvm_cpuid2 cpuid;
6284 
6285 		r = -EFAULT;
6286 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6287 			goto out;
6288 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6289 					      cpuid_arg->entries);
6290 		break;
6291 	}
6292 	case KVM_GET_CPUID2: {
6293 		struct kvm_cpuid2 __user *cpuid_arg = argp;
6294 		struct kvm_cpuid2 cpuid;
6295 
6296 		r = -EFAULT;
6297 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6298 			goto out;
6299 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6300 					      cpuid_arg->entries);
6301 		if (r)
6302 			goto out;
6303 		r = -EFAULT;
6304 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6305 			goto out;
6306 		r = 0;
6307 		break;
6308 	}
6309 	case KVM_GET_MSRS: {
6310 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
6311 		r = msr_io(vcpu, argp, do_get_msr, 1);
6312 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6313 		break;
6314 	}
6315 	case KVM_SET_MSRS: {
6316 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
6317 		r = msr_io(vcpu, argp, do_set_msr, 0);
6318 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6319 		break;
6320 	}
6321 	case KVM_GET_ONE_REG:
6322 	case KVM_SET_ONE_REG:
6323 		r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6324 		break;
6325 	case KVM_GET_REG_LIST:
6326 		r = kvm_get_reg_list(vcpu, argp);
6327 		break;
6328 	case KVM_TPR_ACCESS_REPORTING: {
6329 		struct kvm_tpr_access_ctl tac;
6330 
6331 		r = -EFAULT;
6332 		if (copy_from_user(&tac, argp, sizeof(tac)))
6333 			goto out;
6334 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6335 		if (r)
6336 			goto out;
6337 		r = -EFAULT;
6338 		if (copy_to_user(argp, &tac, sizeof(tac)))
6339 			goto out;
6340 		r = 0;
6341 		break;
6342 	};
6343 	case KVM_SET_VAPIC_ADDR: {
6344 		struct kvm_vapic_addr va;
6345 		int idx;
6346 
6347 		r = -EINVAL;
6348 		if (!lapic_in_kernel(vcpu))
6349 			goto out;
6350 		r = -EFAULT;
6351 		if (copy_from_user(&va, argp, sizeof(va)))
6352 			goto out;
6353 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6354 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6355 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6356 		break;
6357 	}
6358 	case KVM_X86_SETUP_MCE: {
6359 		u64 mcg_cap;
6360 
6361 		r = -EFAULT;
6362 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6363 			goto out;
6364 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6365 		break;
6366 	}
6367 	case KVM_X86_SET_MCE: {
6368 		struct kvm_x86_mce mce;
6369 
6370 		r = -EFAULT;
6371 		if (copy_from_user(&mce, argp, sizeof(mce)))
6372 			goto out;
6373 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6374 		break;
6375 	}
6376 	case KVM_GET_VCPU_EVENTS: {
6377 		struct kvm_vcpu_events events;
6378 
6379 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6380 
6381 		r = -EFAULT;
6382 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6383 			break;
6384 		r = 0;
6385 		break;
6386 	}
6387 	case KVM_SET_VCPU_EVENTS: {
6388 		struct kvm_vcpu_events events;
6389 
6390 		r = -EFAULT;
6391 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6392 			break;
6393 
6394 		kvm_vcpu_srcu_read_lock(vcpu);
6395 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6396 		kvm_vcpu_srcu_read_unlock(vcpu);
6397 		break;
6398 	}
6399 	case KVM_GET_DEBUGREGS: {
6400 		struct kvm_debugregs dbgregs;
6401 
6402 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6403 		if (r < 0)
6404 			break;
6405 
6406 		r = -EFAULT;
6407 		if (copy_to_user(argp, &dbgregs,
6408 				 sizeof(struct kvm_debugregs)))
6409 			break;
6410 		r = 0;
6411 		break;
6412 	}
6413 	case KVM_SET_DEBUGREGS: {
6414 		struct kvm_debugregs dbgregs;
6415 
6416 		r = -EFAULT;
6417 		if (copy_from_user(&dbgregs, argp,
6418 				   sizeof(struct kvm_debugregs)))
6419 			break;
6420 
6421 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6422 		break;
6423 	}
6424 	case KVM_GET_XSAVE: {
6425 		r = -EINVAL;
6426 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6427 			break;
6428 
6429 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6430 		r = -ENOMEM;
6431 		if (!u.xsave)
6432 			break;
6433 
6434 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6435 		if (r < 0)
6436 			break;
6437 
6438 		r = -EFAULT;
6439 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6440 			break;
6441 		r = 0;
6442 		break;
6443 	}
6444 	case KVM_SET_XSAVE: {
6445 		int size = vcpu->arch.guest_fpu.uabi_size;
6446 
6447 		u.xsave = memdup_user(argp, size);
6448 		if (IS_ERR(u.xsave)) {
6449 			r = PTR_ERR(u.xsave);
6450 			goto out_nofree;
6451 		}
6452 
6453 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6454 		break;
6455 	}
6456 
6457 	case KVM_GET_XSAVE2: {
6458 		int size = vcpu->arch.guest_fpu.uabi_size;
6459 
6460 		u.xsave = kzalloc(size, GFP_KERNEL);
6461 		r = -ENOMEM;
6462 		if (!u.xsave)
6463 			break;
6464 
6465 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6466 		if (r < 0)
6467 			break;
6468 
6469 		r = -EFAULT;
6470 		if (copy_to_user(argp, u.xsave, size))
6471 			break;
6472 
6473 		r = 0;
6474 		break;
6475 	}
6476 
6477 	case KVM_GET_XCRS: {
6478 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6479 		r = -ENOMEM;
6480 		if (!u.xcrs)
6481 			break;
6482 
6483 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6484 		if (r < 0)
6485 			break;
6486 
6487 		r = -EFAULT;
6488 		if (copy_to_user(argp, u.xcrs,
6489 				 sizeof(struct kvm_xcrs)))
6490 			break;
6491 		r = 0;
6492 		break;
6493 	}
6494 	case KVM_SET_XCRS: {
6495 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6496 		if (IS_ERR(u.xcrs)) {
6497 			r = PTR_ERR(u.xcrs);
6498 			goto out_nofree;
6499 		}
6500 
6501 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6502 		break;
6503 	}
6504 	case KVM_SET_TSC_KHZ: {
6505 		u32 user_tsc_khz;
6506 
6507 		r = -EINVAL;
6508 
6509 		if (vcpu->arch.guest_tsc_protected)
6510 			goto out;
6511 
6512 		user_tsc_khz = (u32)arg;
6513 
6514 		if (kvm_caps.has_tsc_control &&
6515 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6516 			goto out;
6517 
6518 		if (user_tsc_khz == 0)
6519 			user_tsc_khz = tsc_khz;
6520 
6521 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6522 			r = 0;
6523 
6524 		goto out;
6525 	}
6526 	case KVM_GET_TSC_KHZ: {
6527 		r = vcpu->arch.virtual_tsc_khz;
6528 		goto out;
6529 	}
6530 	case KVM_KVMCLOCK_CTRL: {
6531 		r = kvm_set_guest_paused(vcpu);
6532 		goto out;
6533 	}
6534 	case KVM_ENABLE_CAP: {
6535 		struct kvm_enable_cap cap;
6536 
6537 		r = -EFAULT;
6538 		if (copy_from_user(&cap, argp, sizeof(cap)))
6539 			goto out;
6540 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6541 		break;
6542 	}
6543 	case KVM_GET_NESTED_STATE: {
6544 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6545 		u32 user_data_size;
6546 
6547 		r = -EINVAL;
6548 		if (!kvm_x86_ops.nested_ops->get_state)
6549 			break;
6550 
6551 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6552 		r = -EFAULT;
6553 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6554 			break;
6555 
6556 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6557 						     user_data_size);
6558 		if (r < 0)
6559 			break;
6560 
6561 		if (r > user_data_size) {
6562 			if (put_user(r, &user_kvm_nested_state->size))
6563 				r = -EFAULT;
6564 			else
6565 				r = -E2BIG;
6566 			break;
6567 		}
6568 
6569 		r = 0;
6570 		break;
6571 	}
6572 	case KVM_SET_NESTED_STATE: {
6573 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6574 		struct kvm_nested_state kvm_state;
6575 		int idx;
6576 
6577 		r = -EINVAL;
6578 		if (!kvm_x86_ops.nested_ops->set_state)
6579 			break;
6580 
6581 		r = -EFAULT;
6582 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6583 			break;
6584 
6585 		r = -EINVAL;
6586 		if (kvm_state.size < sizeof(kvm_state))
6587 			break;
6588 
6589 		if (kvm_state.flags &
6590 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6591 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6592 		      | KVM_STATE_NESTED_GIF_SET))
6593 			break;
6594 
6595 		/* nested_run_pending implies guest_mode.  */
6596 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6597 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6598 			break;
6599 
6600 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6601 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6602 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6603 		break;
6604 	}
6605 #ifdef CONFIG_KVM_HYPERV
6606 	case KVM_GET_SUPPORTED_HV_CPUID:
6607 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6608 		break;
6609 #endif
6610 #ifdef CONFIG_KVM_XEN
6611 	case KVM_XEN_VCPU_GET_ATTR: {
6612 		struct kvm_xen_vcpu_attr xva;
6613 
6614 		r = -EFAULT;
6615 		if (copy_from_user(&xva, argp, sizeof(xva)))
6616 			goto out;
6617 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6618 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6619 			r = -EFAULT;
6620 		break;
6621 	}
6622 	case KVM_XEN_VCPU_SET_ATTR: {
6623 		struct kvm_xen_vcpu_attr xva;
6624 
6625 		r = -EFAULT;
6626 		if (copy_from_user(&xva, argp, sizeof(xva)))
6627 			goto out;
6628 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6629 		break;
6630 	}
6631 #endif
6632 	case KVM_GET_SREGS2: {
6633 		r = -EINVAL;
6634 		if (vcpu->kvm->arch.has_protected_state &&
6635 		    vcpu->arch.guest_state_protected)
6636 			goto out;
6637 
6638 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6639 		r = -ENOMEM;
6640 		if (!u.sregs2)
6641 			goto out;
6642 		__get_sregs2(vcpu, u.sregs2);
6643 		r = -EFAULT;
6644 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6645 			goto out;
6646 		r = 0;
6647 		break;
6648 	}
6649 	case KVM_SET_SREGS2: {
6650 		r = -EINVAL;
6651 		if (vcpu->kvm->arch.has_protected_state &&
6652 		    vcpu->arch.guest_state_protected)
6653 			goto out;
6654 
6655 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6656 		if (IS_ERR(u.sregs2)) {
6657 			r = PTR_ERR(u.sregs2);
6658 			u.sregs2 = NULL;
6659 			goto out;
6660 		}
6661 		r = __set_sregs2(vcpu, u.sregs2);
6662 		break;
6663 	}
6664 	case KVM_HAS_DEVICE_ATTR:
6665 	case KVM_GET_DEVICE_ATTR:
6666 	case KVM_SET_DEVICE_ATTR:
6667 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6668 		break;
6669 	case KVM_MEMORY_ENCRYPT_OP:
6670 		r = -ENOTTY;
6671 		if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6672 			goto out;
6673 		r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6674 		break;
6675 	default:
6676 		r = -EINVAL;
6677 	}
6678 out:
6679 	kfree(u.buffer);
6680 out_nofree:
6681 	vcpu_put(vcpu);
6682 	return r;
6683 }
6684 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6685 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6686 {
6687 	return VM_FAULT_SIGBUS;
6688 }
6689 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6690 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6691 {
6692 	int ret;
6693 
6694 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6695 		return -EINVAL;
6696 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6697 	return ret;
6698 }
6699 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6700 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6701 					      u64 ident_addr)
6702 {
6703 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6704 }
6705 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6706 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6707 					 unsigned long kvm_nr_mmu_pages)
6708 {
6709 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6710 		return -EINVAL;
6711 
6712 	mutex_lock(&kvm->slots_lock);
6713 
6714 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6715 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6716 
6717 	mutex_unlock(&kvm->slots_lock);
6718 	return 0;
6719 }
6720 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6721 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6722 {
6723 
6724 	/*
6725 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6726 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6727 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6728 	 * VM-Exit.
6729 	 */
6730 	struct kvm_vcpu *vcpu;
6731 	unsigned long i;
6732 
6733 	if (!kvm->arch.cpu_dirty_log_size)
6734 		return;
6735 
6736 	kvm_for_each_vcpu(i, vcpu, kvm)
6737 		kvm_vcpu_kick(vcpu);
6738 }
6739 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6740 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6741 			    struct kvm_enable_cap *cap)
6742 {
6743 	int r;
6744 
6745 	if (cap->flags)
6746 		return -EINVAL;
6747 
6748 	switch (cap->cap) {
6749 	case KVM_CAP_DISABLE_QUIRKS2:
6750 		r = -EINVAL;
6751 		if (cap->args[0] & ~kvm_caps.supported_quirks)
6752 			break;
6753 		fallthrough;
6754 	case KVM_CAP_DISABLE_QUIRKS:
6755 		kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6756 		r = 0;
6757 		break;
6758 	case KVM_CAP_SPLIT_IRQCHIP: {
6759 		mutex_lock(&kvm->lock);
6760 		r = -EINVAL;
6761 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6762 			goto split_irqchip_unlock;
6763 		r = -EEXIST;
6764 		if (irqchip_in_kernel(kvm))
6765 			goto split_irqchip_unlock;
6766 		if (kvm->created_vcpus)
6767 			goto split_irqchip_unlock;
6768 		/* Pairs with irqchip_in_kernel. */
6769 		smp_wmb();
6770 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6771 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6772 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6773 		r = 0;
6774 split_irqchip_unlock:
6775 		mutex_unlock(&kvm->lock);
6776 		break;
6777 	}
6778 	case KVM_CAP_X2APIC_API:
6779 		r = -EINVAL;
6780 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6781 			break;
6782 
6783 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6784 			kvm->arch.x2apic_format = true;
6785 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6786 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6787 
6788 		r = 0;
6789 		break;
6790 	case KVM_CAP_X86_DISABLE_EXITS:
6791 		r = -EINVAL;
6792 		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6793 			break;
6794 
6795 		mutex_lock(&kvm->lock);
6796 		if (kvm->created_vcpus)
6797 			goto disable_exits_unlock;
6798 
6799 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6800 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6801 
6802 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6803 		    cpu_smt_possible() &&
6804 		    (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6805 				      KVM_X86_DISABLE_EXITS_APERFMPERF)))
6806 			pr_warn_once(SMT_RSB_MSG);
6807 
6808 		kvm_disable_exits(kvm, cap->args[0]);
6809 		r = 0;
6810 disable_exits_unlock:
6811 		mutex_unlock(&kvm->lock);
6812 		break;
6813 	case KVM_CAP_MSR_PLATFORM_INFO:
6814 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6815 		r = 0;
6816 		break;
6817 	case KVM_CAP_EXCEPTION_PAYLOAD:
6818 		kvm->arch.exception_payload_enabled = cap->args[0];
6819 		r = 0;
6820 		break;
6821 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6822 		kvm->arch.triple_fault_event = cap->args[0];
6823 		r = 0;
6824 		break;
6825 	case KVM_CAP_X86_USER_SPACE_MSR:
6826 		r = -EINVAL;
6827 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6828 			break;
6829 		kvm->arch.user_space_msr_mask = cap->args[0];
6830 		r = 0;
6831 		break;
6832 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6833 		r = -EINVAL;
6834 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6835 			break;
6836 
6837 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6838 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6839 			break;
6840 
6841 		if (kvm_caps.has_bus_lock_exit &&
6842 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6843 			kvm->arch.bus_lock_detection_enabled = true;
6844 		r = 0;
6845 		break;
6846 #ifdef CONFIG_X86_SGX_KVM
6847 	case KVM_CAP_SGX_ATTRIBUTE: {
6848 		unsigned long allowed_attributes = 0;
6849 
6850 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6851 		if (r)
6852 			break;
6853 
6854 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6855 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6856 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6857 			kvm->arch.sgx_provisioning_allowed = true;
6858 		else
6859 			r = -EINVAL;
6860 		break;
6861 	}
6862 #endif
6863 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6864 		r = -EINVAL;
6865 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6866 			break;
6867 
6868 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6869 		break;
6870 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6871 		r = -EINVAL;
6872 		if (!kvm_x86_ops.vm_move_enc_context_from)
6873 			break;
6874 
6875 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6876 		break;
6877 	case KVM_CAP_EXIT_HYPERCALL:
6878 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6879 			r = -EINVAL;
6880 			break;
6881 		}
6882 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6883 		r = 0;
6884 		break;
6885 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6886 		r = -EINVAL;
6887 		if (cap->args[0] & ~1)
6888 			break;
6889 		kvm->arch.exit_on_emulation_error = cap->args[0];
6890 		r = 0;
6891 		break;
6892 	case KVM_CAP_PMU_CAPABILITY:
6893 		r = -EINVAL;
6894 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6895 			break;
6896 
6897 		mutex_lock(&kvm->lock);
6898 		if (!kvm->created_vcpus) {
6899 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6900 			r = 0;
6901 		}
6902 		mutex_unlock(&kvm->lock);
6903 		break;
6904 	case KVM_CAP_MAX_VCPU_ID:
6905 		r = -EINVAL;
6906 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6907 			break;
6908 
6909 		mutex_lock(&kvm->lock);
6910 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6911 			;
6912 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6913 			r = 0;
6914 		} else if (!kvm->arch.max_vcpu_ids) {
6915 			kvm->arch.max_vcpu_ids = cap->args[0];
6916 			r = 0;
6917 		}
6918 		mutex_unlock(&kvm->lock);
6919 		break;
6920 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6921 		r = -EINVAL;
6922 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6923 			break;
6924 		if (!kvm_caps.has_notify_vmexit)
6925 			break;
6926 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6927 			break;
6928 		mutex_lock(&kvm->lock);
6929 		if (!kvm->created_vcpus) {
6930 			kvm->arch.notify_window = cap->args[0] >> 32;
6931 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6932 			r = 0;
6933 		}
6934 		mutex_unlock(&kvm->lock);
6935 		break;
6936 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6937 		r = -EINVAL;
6938 
6939 		/*
6940 		 * Since the risk of disabling NX hugepages is a guest crashing
6941 		 * the system, ensure the userspace process has permission to
6942 		 * reboot the system.
6943 		 *
6944 		 * Note that unlike the reboot() syscall, the process must have
6945 		 * this capability in the root namespace because exposing
6946 		 * /dev/kvm into a container does not limit the scope of the
6947 		 * iTLB multihit bug to that container. In other words,
6948 		 * this must use capable(), not ns_capable().
6949 		 */
6950 		if (!capable(CAP_SYS_BOOT)) {
6951 			r = -EPERM;
6952 			break;
6953 		}
6954 
6955 		if (cap->args[0])
6956 			break;
6957 
6958 		mutex_lock(&kvm->lock);
6959 		if (!kvm->created_vcpus) {
6960 			kvm->arch.disable_nx_huge_pages = true;
6961 			r = 0;
6962 		}
6963 		mutex_unlock(&kvm->lock);
6964 		break;
6965 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6966 		u64 bus_cycle_ns = cap->args[0];
6967 		u64 unused;
6968 
6969 		/*
6970 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6971 		 * divide value that can be programmed in APIC_TDCR.
6972 		 */
6973 		r = -EINVAL;
6974 		if (!bus_cycle_ns ||
6975 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6976 			break;
6977 
6978 		r = 0;
6979 		mutex_lock(&kvm->lock);
6980 		if (!irqchip_in_kernel(kvm))
6981 			r = -ENXIO;
6982 		else if (kvm->created_vcpus)
6983 			r = -EINVAL;
6984 		else
6985 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6986 		mutex_unlock(&kvm->lock);
6987 		break;
6988 	}
6989 	default:
6990 		r = -EINVAL;
6991 		break;
6992 	}
6993 	return r;
6994 }
6995 
kvm_alloc_msr_filter(bool default_allow)6996 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6997 {
6998 	struct kvm_x86_msr_filter *msr_filter;
6999 
7000 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
7001 	if (!msr_filter)
7002 		return NULL;
7003 
7004 	msr_filter->default_allow = default_allow;
7005 	return msr_filter;
7006 }
7007 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)7008 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
7009 {
7010 	u32 i;
7011 
7012 	if (!msr_filter)
7013 		return;
7014 
7015 	for (i = 0; i < msr_filter->count; i++)
7016 		kfree(msr_filter->ranges[i].bitmap);
7017 
7018 	kfree(msr_filter);
7019 }
7020 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)7021 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
7022 			      struct kvm_msr_filter_range *user_range)
7023 {
7024 	unsigned long *bitmap;
7025 	size_t bitmap_size;
7026 
7027 	if (!user_range->nmsrs)
7028 		return 0;
7029 
7030 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
7031 		return -EINVAL;
7032 
7033 	if (!user_range->flags)
7034 		return -EINVAL;
7035 
7036 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7037 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7038 		return -EINVAL;
7039 
7040 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7041 	if (IS_ERR(bitmap))
7042 		return PTR_ERR(bitmap);
7043 
7044 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7045 		.flags = user_range->flags,
7046 		.base = user_range->base,
7047 		.nmsrs = user_range->nmsrs,
7048 		.bitmap = bitmap,
7049 	};
7050 
7051 	msr_filter->count++;
7052 	return 0;
7053 }
7054 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)7055 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7056 				       struct kvm_msr_filter *filter)
7057 {
7058 	struct kvm_x86_msr_filter *new_filter, *old_filter;
7059 	bool default_allow;
7060 	bool empty = true;
7061 	int r;
7062 	u32 i;
7063 
7064 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7065 		return -EINVAL;
7066 
7067 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7068 		empty &= !filter->ranges[i].nmsrs;
7069 
7070 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7071 	if (empty && !default_allow)
7072 		return -EINVAL;
7073 
7074 	new_filter = kvm_alloc_msr_filter(default_allow);
7075 	if (!new_filter)
7076 		return -ENOMEM;
7077 
7078 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7079 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7080 		if (r) {
7081 			kvm_free_msr_filter(new_filter);
7082 			return r;
7083 		}
7084 	}
7085 
7086 	mutex_lock(&kvm->lock);
7087 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7088 					 mutex_is_locked(&kvm->lock));
7089 	mutex_unlock(&kvm->lock);
7090 	synchronize_srcu(&kvm->srcu);
7091 
7092 	kvm_free_msr_filter(old_filter);
7093 
7094 	/*
7095 	 * Recalc MSR intercepts as userspace may want to intercept accesses to
7096 	 * MSRs that KVM would otherwise pass through to the guest.
7097 	 */
7098 	kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7099 
7100 	return 0;
7101 }
7102 
7103 #ifdef CONFIG_KVM_COMPAT
7104 /* for KVM_X86_SET_MSR_FILTER */
7105 struct kvm_msr_filter_range_compat {
7106 	__u32 flags;
7107 	__u32 nmsrs;
7108 	__u32 base;
7109 	__u32 bitmap;
7110 };
7111 
7112 struct kvm_msr_filter_compat {
7113 	__u32 flags;
7114 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7115 };
7116 
7117 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7118 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7119 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7120 			      unsigned long arg)
7121 {
7122 	void __user *argp = (void __user *)arg;
7123 	struct kvm *kvm = filp->private_data;
7124 	long r = -ENOTTY;
7125 
7126 	switch (ioctl) {
7127 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
7128 		struct kvm_msr_filter __user *user_msr_filter = argp;
7129 		struct kvm_msr_filter_compat filter_compat;
7130 		struct kvm_msr_filter filter;
7131 		int i;
7132 
7133 		if (copy_from_user(&filter_compat, user_msr_filter,
7134 				   sizeof(filter_compat)))
7135 			return -EFAULT;
7136 
7137 		filter.flags = filter_compat.flags;
7138 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7139 			struct kvm_msr_filter_range_compat *cr;
7140 
7141 			cr = &filter_compat.ranges[i];
7142 			filter.ranges[i] = (struct kvm_msr_filter_range) {
7143 				.flags = cr->flags,
7144 				.nmsrs = cr->nmsrs,
7145 				.base = cr->base,
7146 				.bitmap = (__u8 *)(ulong)cr->bitmap,
7147 			};
7148 		}
7149 
7150 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7151 		break;
7152 	}
7153 	}
7154 
7155 	return r;
7156 }
7157 #endif
7158 
7159 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)7160 static int kvm_arch_suspend_notifier(struct kvm *kvm)
7161 {
7162 	struct kvm_vcpu *vcpu;
7163 	unsigned long i;
7164 
7165 	/*
7166 	 * Ignore the return, marking the guest paused only "fails" if the vCPU
7167 	 * isn't using kvmclock; continuing on is correct and desirable.
7168 	 */
7169 	kvm_for_each_vcpu(i, vcpu, kvm)
7170 		(void)kvm_set_guest_paused(vcpu);
7171 
7172 	return NOTIFY_DONE;
7173 }
7174 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)7175 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7176 {
7177 	switch (state) {
7178 	case PM_HIBERNATION_PREPARE:
7179 	case PM_SUSPEND_PREPARE:
7180 		return kvm_arch_suspend_notifier(kvm);
7181 	}
7182 
7183 	return NOTIFY_DONE;
7184 }
7185 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7186 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7187 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7188 {
7189 	struct kvm_clock_data data = { 0 };
7190 
7191 	get_kvmclock(kvm, &data);
7192 	if (copy_to_user(argp, &data, sizeof(data)))
7193 		return -EFAULT;
7194 
7195 	return 0;
7196 }
7197 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7198 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7199 {
7200 	struct kvm_arch *ka = &kvm->arch;
7201 	struct kvm_clock_data data;
7202 	u64 now_raw_ns;
7203 
7204 	if (copy_from_user(&data, argp, sizeof(data)))
7205 		return -EFAULT;
7206 
7207 	/*
7208 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7209 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7210 	 */
7211 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7212 		return -EINVAL;
7213 
7214 	kvm_hv_request_tsc_page_update(kvm);
7215 	kvm_start_pvclock_update(kvm);
7216 	pvclock_update_vm_gtod_copy(kvm);
7217 
7218 	/*
7219 	 * This pairs with kvm_guest_time_update(): when masterclock is
7220 	 * in use, we use master_kernel_ns + kvmclock_offset to set
7221 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7222 	 * is slightly ahead) here we risk going negative on unsigned
7223 	 * 'system_time' when 'data.clock' is very small.
7224 	 */
7225 	if (data.flags & KVM_CLOCK_REALTIME) {
7226 		u64 now_real_ns = ktime_get_real_ns();
7227 
7228 		/*
7229 		 * Avoid stepping the kvmclock backwards.
7230 		 */
7231 		if (now_real_ns > data.realtime)
7232 			data.clock += now_real_ns - data.realtime;
7233 	}
7234 
7235 	if (ka->use_master_clock)
7236 		now_raw_ns = ka->master_kernel_ns;
7237 	else
7238 		now_raw_ns = get_kvmclock_base_ns();
7239 	ka->kvmclock_offset = data.clock - now_raw_ns;
7240 	kvm_end_pvclock_update(kvm);
7241 	return 0;
7242 }
7243 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7244 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7245 {
7246 	struct kvm *kvm = filp->private_data;
7247 	void __user *argp = (void __user *)arg;
7248 	int r = -ENOTTY;
7249 
7250 #ifdef CONFIG_KVM_IOAPIC
7251 	/*
7252 	 * This union makes it completely explicit to gcc-3.x
7253 	 * that these three variables' stack usage should be
7254 	 * combined, not added together.
7255 	 */
7256 	union {
7257 		struct kvm_pit_state ps;
7258 		struct kvm_pit_state2 ps2;
7259 		struct kvm_pit_config pit_config;
7260 	} u;
7261 #endif
7262 
7263 	switch (ioctl) {
7264 	case KVM_SET_TSS_ADDR:
7265 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7266 		break;
7267 	case KVM_SET_IDENTITY_MAP_ADDR: {
7268 		u64 ident_addr;
7269 
7270 		mutex_lock(&kvm->lock);
7271 		r = -EINVAL;
7272 		if (kvm->created_vcpus)
7273 			goto set_identity_unlock;
7274 		r = -EFAULT;
7275 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7276 			goto set_identity_unlock;
7277 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7278 set_identity_unlock:
7279 		mutex_unlock(&kvm->lock);
7280 		break;
7281 	}
7282 	case KVM_SET_NR_MMU_PAGES:
7283 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7284 		break;
7285 #ifdef CONFIG_KVM_IOAPIC
7286 	case KVM_CREATE_IRQCHIP: {
7287 		mutex_lock(&kvm->lock);
7288 
7289 		r = -EEXIST;
7290 		if (irqchip_in_kernel(kvm))
7291 			goto create_irqchip_unlock;
7292 
7293 		/*
7294 		 * Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7295 		 * i.e. if KVM can't intercept EOIs and thus can't properly
7296 		 * emulate level-triggered interrupts.
7297 		 */
7298 		r = -ENOTTY;
7299 		if (kvm->arch.has_protected_eoi)
7300 			goto create_irqchip_unlock;
7301 
7302 		r = -EINVAL;
7303 		if (kvm->created_vcpus)
7304 			goto create_irqchip_unlock;
7305 
7306 		r = kvm_pic_init(kvm);
7307 		if (r)
7308 			goto create_irqchip_unlock;
7309 
7310 		r = kvm_ioapic_init(kvm);
7311 		if (r) {
7312 			kvm_pic_destroy(kvm);
7313 			goto create_irqchip_unlock;
7314 		}
7315 
7316 		r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7317 		if (r) {
7318 			kvm_ioapic_destroy(kvm);
7319 			kvm_pic_destroy(kvm);
7320 			goto create_irqchip_unlock;
7321 		}
7322 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7323 		smp_wmb();
7324 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7325 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7326 	create_irqchip_unlock:
7327 		mutex_unlock(&kvm->lock);
7328 		break;
7329 	}
7330 	case KVM_CREATE_PIT:
7331 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7332 		goto create_pit;
7333 	case KVM_CREATE_PIT2:
7334 		r = -EFAULT;
7335 		if (copy_from_user(&u.pit_config, argp,
7336 				   sizeof(struct kvm_pit_config)))
7337 			goto out;
7338 	create_pit:
7339 		mutex_lock(&kvm->lock);
7340 		r = -EEXIST;
7341 		if (kvm->arch.vpit)
7342 			goto create_pit_unlock;
7343 		r = -ENOENT;
7344 		if (!pic_in_kernel(kvm))
7345 			goto create_pit_unlock;
7346 		r = -ENOMEM;
7347 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7348 		if (kvm->arch.vpit)
7349 			r = 0;
7350 	create_pit_unlock:
7351 		mutex_unlock(&kvm->lock);
7352 		break;
7353 	case KVM_GET_IRQCHIP: {
7354 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7355 		struct kvm_irqchip *chip;
7356 
7357 		chip = memdup_user(argp, sizeof(*chip));
7358 		if (IS_ERR(chip)) {
7359 			r = PTR_ERR(chip);
7360 			goto out;
7361 		}
7362 
7363 		r = -ENXIO;
7364 		if (!irqchip_full(kvm))
7365 			goto get_irqchip_out;
7366 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7367 		if (r)
7368 			goto get_irqchip_out;
7369 		r = -EFAULT;
7370 		if (copy_to_user(argp, chip, sizeof(*chip)))
7371 			goto get_irqchip_out;
7372 		r = 0;
7373 	get_irqchip_out:
7374 		kfree(chip);
7375 		break;
7376 	}
7377 	case KVM_SET_IRQCHIP: {
7378 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7379 		struct kvm_irqchip *chip;
7380 
7381 		chip = memdup_user(argp, sizeof(*chip));
7382 		if (IS_ERR(chip)) {
7383 			r = PTR_ERR(chip);
7384 			goto out;
7385 		}
7386 
7387 		r = -ENXIO;
7388 		if (!irqchip_full(kvm))
7389 			goto set_irqchip_out;
7390 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7391 	set_irqchip_out:
7392 		kfree(chip);
7393 		break;
7394 	}
7395 	case KVM_GET_PIT: {
7396 		r = -EFAULT;
7397 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7398 			goto out;
7399 		r = -ENXIO;
7400 		if (!kvm->arch.vpit)
7401 			goto out;
7402 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7403 		if (r)
7404 			goto out;
7405 		r = -EFAULT;
7406 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7407 			goto out;
7408 		r = 0;
7409 		break;
7410 	}
7411 	case KVM_SET_PIT: {
7412 		r = -EFAULT;
7413 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7414 			goto out;
7415 		mutex_lock(&kvm->lock);
7416 		r = -ENXIO;
7417 		if (!kvm->arch.vpit)
7418 			goto set_pit_out;
7419 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7420 set_pit_out:
7421 		mutex_unlock(&kvm->lock);
7422 		break;
7423 	}
7424 	case KVM_GET_PIT2: {
7425 		r = -ENXIO;
7426 		if (!kvm->arch.vpit)
7427 			goto out;
7428 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7429 		if (r)
7430 			goto out;
7431 		r = -EFAULT;
7432 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7433 			goto out;
7434 		r = 0;
7435 		break;
7436 	}
7437 	case KVM_SET_PIT2: {
7438 		r = -EFAULT;
7439 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7440 			goto out;
7441 		mutex_lock(&kvm->lock);
7442 		r = -ENXIO;
7443 		if (!kvm->arch.vpit)
7444 			goto set_pit2_out;
7445 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7446 set_pit2_out:
7447 		mutex_unlock(&kvm->lock);
7448 		break;
7449 	}
7450 	case KVM_REINJECT_CONTROL: {
7451 		struct kvm_reinject_control control;
7452 		r =  -EFAULT;
7453 		if (copy_from_user(&control, argp, sizeof(control)))
7454 			goto out;
7455 		r = -ENXIO;
7456 		if (!kvm->arch.vpit)
7457 			goto out;
7458 		r = kvm_vm_ioctl_reinject(kvm, &control);
7459 		break;
7460 	}
7461 #endif
7462 	case KVM_SET_BOOT_CPU_ID:
7463 		r = 0;
7464 		mutex_lock(&kvm->lock);
7465 		if (kvm->created_vcpus)
7466 			r = -EBUSY;
7467 		else if (arg > KVM_MAX_VCPU_IDS ||
7468 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7469 			r = -EINVAL;
7470 		else
7471 			kvm->arch.bsp_vcpu_id = arg;
7472 		mutex_unlock(&kvm->lock);
7473 		break;
7474 #ifdef CONFIG_KVM_XEN
7475 	case KVM_XEN_HVM_CONFIG: {
7476 		struct kvm_xen_hvm_config xhc;
7477 		r = -EFAULT;
7478 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7479 			goto out;
7480 		r = kvm_xen_hvm_config(kvm, &xhc);
7481 		break;
7482 	}
7483 	case KVM_XEN_HVM_GET_ATTR: {
7484 		struct kvm_xen_hvm_attr xha;
7485 
7486 		r = -EFAULT;
7487 		if (copy_from_user(&xha, argp, sizeof(xha)))
7488 			goto out;
7489 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7490 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7491 			r = -EFAULT;
7492 		break;
7493 	}
7494 	case KVM_XEN_HVM_SET_ATTR: {
7495 		struct kvm_xen_hvm_attr xha;
7496 
7497 		r = -EFAULT;
7498 		if (copy_from_user(&xha, argp, sizeof(xha)))
7499 			goto out;
7500 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7501 		break;
7502 	}
7503 	case KVM_XEN_HVM_EVTCHN_SEND: {
7504 		struct kvm_irq_routing_xen_evtchn uxe;
7505 
7506 		r = -EFAULT;
7507 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7508 			goto out;
7509 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7510 		break;
7511 	}
7512 #endif
7513 	case KVM_SET_CLOCK:
7514 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7515 		break;
7516 	case KVM_GET_CLOCK:
7517 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7518 		break;
7519 	case KVM_SET_TSC_KHZ: {
7520 		u32 user_tsc_khz;
7521 
7522 		r = -EINVAL;
7523 		user_tsc_khz = (u32)arg;
7524 
7525 		if (kvm_caps.has_tsc_control &&
7526 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7527 			goto out;
7528 
7529 		if (user_tsc_khz == 0)
7530 			user_tsc_khz = tsc_khz;
7531 
7532 		mutex_lock(&kvm->lock);
7533 		if (!kvm->created_vcpus) {
7534 			WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7535 			r = 0;
7536 		}
7537 		mutex_unlock(&kvm->lock);
7538 		goto out;
7539 	}
7540 	case KVM_GET_TSC_KHZ: {
7541 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7542 		goto out;
7543 	}
7544 	case KVM_MEMORY_ENCRYPT_OP:
7545 		r = -ENOTTY;
7546 		if (!kvm_x86_ops.mem_enc_ioctl)
7547 			goto out;
7548 
7549 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7550 		break;
7551 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7552 		struct kvm_enc_region region;
7553 
7554 		r = -EFAULT;
7555 		if (copy_from_user(&region, argp, sizeof(region)))
7556 			goto out;
7557 
7558 		r = -ENOTTY;
7559 		if (!kvm_x86_ops.mem_enc_register_region)
7560 			goto out;
7561 
7562 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7563 		break;
7564 	}
7565 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7566 		struct kvm_enc_region region;
7567 
7568 		r = -EFAULT;
7569 		if (copy_from_user(&region, argp, sizeof(region)))
7570 			goto out;
7571 
7572 		r = -ENOTTY;
7573 		if (!kvm_x86_ops.mem_enc_unregister_region)
7574 			goto out;
7575 
7576 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7577 		break;
7578 	}
7579 #ifdef CONFIG_KVM_HYPERV
7580 	case KVM_HYPERV_EVENTFD: {
7581 		struct kvm_hyperv_eventfd hvevfd;
7582 
7583 		r = -EFAULT;
7584 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7585 			goto out;
7586 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7587 		break;
7588 	}
7589 #endif
7590 	case KVM_SET_PMU_EVENT_FILTER:
7591 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7592 		break;
7593 	case KVM_X86_SET_MSR_FILTER: {
7594 		struct kvm_msr_filter __user *user_msr_filter = argp;
7595 		struct kvm_msr_filter filter;
7596 
7597 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7598 			return -EFAULT;
7599 
7600 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7601 		break;
7602 	}
7603 	default:
7604 		r = -ENOTTY;
7605 	}
7606 out:
7607 	return r;
7608 }
7609 
kvm_probe_feature_msr(u32 msr_index)7610 static void kvm_probe_feature_msr(u32 msr_index)
7611 {
7612 	u64 data;
7613 
7614 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7615 		return;
7616 
7617 	msr_based_features[num_msr_based_features++] = msr_index;
7618 }
7619 
kvm_probe_msr_to_save(u32 msr_index)7620 static void kvm_probe_msr_to_save(u32 msr_index)
7621 {
7622 	u32 dummy[2];
7623 
7624 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7625 		return;
7626 
7627 	/*
7628 	 * Even MSRs that are valid in the host may not be exposed to guests in
7629 	 * some cases.
7630 	 */
7631 	switch (msr_index) {
7632 	case MSR_IA32_BNDCFGS:
7633 		if (!kvm_mpx_supported())
7634 			return;
7635 		break;
7636 	case MSR_TSC_AUX:
7637 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7638 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7639 			return;
7640 		break;
7641 	case MSR_IA32_UMWAIT_CONTROL:
7642 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7643 			return;
7644 		break;
7645 	case MSR_IA32_RTIT_CTL:
7646 	case MSR_IA32_RTIT_STATUS:
7647 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7648 			return;
7649 		break;
7650 	case MSR_IA32_RTIT_CR3_MATCH:
7651 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7652 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7653 			return;
7654 		break;
7655 	case MSR_IA32_RTIT_OUTPUT_BASE:
7656 	case MSR_IA32_RTIT_OUTPUT_MASK:
7657 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7658 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7659 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7660 			return;
7661 		break;
7662 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7663 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7664 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7665 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7666 			return;
7667 		break;
7668 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7669 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7670 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7671 		    kvm_pmu_cap.num_counters_gp)
7672 			return;
7673 		break;
7674 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7675 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7676 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7677 		    kvm_pmu_cap.num_counters_gp)
7678 			return;
7679 		break;
7680 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7681 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7682 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7683 		    kvm_pmu_cap.num_counters_fixed)
7684 			return;
7685 		break;
7686 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7687 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7688 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7689 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7690 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7691 			return;
7692 		break;
7693 	case MSR_IA32_XFD:
7694 	case MSR_IA32_XFD_ERR:
7695 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7696 			return;
7697 		break;
7698 	case MSR_IA32_TSX_CTRL:
7699 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7700 			return;
7701 		break;
7702 	case MSR_IA32_XSS:
7703 		if (!kvm_caps.supported_xss)
7704 			return;
7705 		break;
7706 	case MSR_IA32_U_CET:
7707 	case MSR_IA32_S_CET:
7708 		if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7709 		    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7710 			return;
7711 		break;
7712 	case MSR_IA32_INT_SSP_TAB:
7713 		if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7714 			return;
7715 		fallthrough;
7716 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7717 		if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7718 			return;
7719 		break;
7720 	default:
7721 		break;
7722 	}
7723 
7724 	msrs_to_save[num_msrs_to_save++] = msr_index;
7725 }
7726 
kvm_init_msr_lists(void)7727 static void kvm_init_msr_lists(void)
7728 {
7729 	unsigned i;
7730 
7731 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7732 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7733 
7734 	num_msrs_to_save = 0;
7735 	num_emulated_msrs = 0;
7736 	num_msr_based_features = 0;
7737 
7738 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7739 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7740 
7741 	if (enable_pmu) {
7742 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7743 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7744 	}
7745 
7746 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7747 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7748 						    emulated_msrs_all[i]))
7749 			continue;
7750 
7751 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7752 	}
7753 
7754 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7755 		kvm_probe_feature_msr(i);
7756 
7757 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7758 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7759 }
7760 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7761 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7762 			   const void *v)
7763 {
7764 	int handled = 0;
7765 	int n;
7766 
7767 	do {
7768 		n = min(len, 8);
7769 		if (!(lapic_in_kernel(vcpu) &&
7770 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7771 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7772 			break;
7773 		handled += n;
7774 		addr += n;
7775 		len -= n;
7776 		v += n;
7777 	} while (len);
7778 
7779 	return handled;
7780 }
7781 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7782 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7783 {
7784 	int handled = 0;
7785 	int n;
7786 
7787 	do {
7788 		n = min(len, 8);
7789 		if (!(lapic_in_kernel(vcpu) &&
7790 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7791 					 addr, n, v))
7792 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7793 			break;
7794 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7795 		handled += n;
7796 		addr += n;
7797 		len -= n;
7798 		v += n;
7799 	} while (len);
7800 
7801 	return handled;
7802 }
7803 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7804 void kvm_set_segment(struct kvm_vcpu *vcpu,
7805 		     struct kvm_segment *var, int seg)
7806 {
7807 	kvm_x86_call(set_segment)(vcpu, var, seg);
7808 }
7809 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7810 void kvm_get_segment(struct kvm_vcpu *vcpu,
7811 		     struct kvm_segment *var, int seg)
7812 {
7813 	kvm_x86_call(get_segment)(vcpu, var, seg);
7814 }
7815 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7816 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7817 			   struct x86_exception *exception)
7818 {
7819 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7820 	gpa_t t_gpa;
7821 
7822 	BUG_ON(!mmu_is_nested(vcpu));
7823 
7824 	/* NPT walks are always user-walks */
7825 	access |= PFERR_USER_MASK;
7826 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7827 
7828 	return t_gpa;
7829 }
7830 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7831 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7832 			      struct x86_exception *exception)
7833 {
7834 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7835 
7836 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7837 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7838 }
7839 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7840 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7841 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7842 			       struct x86_exception *exception)
7843 {
7844 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7845 
7846 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7847 	access |= PFERR_WRITE_MASK;
7848 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7849 }
7850 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7851 
7852 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7853 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7854 				struct x86_exception *exception)
7855 {
7856 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7857 
7858 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7859 }
7860 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7861 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7862 				      struct kvm_vcpu *vcpu, u64 access,
7863 				      struct x86_exception *exception)
7864 {
7865 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7866 	void *data = val;
7867 	int r = X86EMUL_CONTINUE;
7868 
7869 	while (bytes) {
7870 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7871 		unsigned offset = addr & (PAGE_SIZE-1);
7872 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7873 		int ret;
7874 
7875 		if (gpa == INVALID_GPA)
7876 			return X86EMUL_PROPAGATE_FAULT;
7877 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7878 					       offset, toread);
7879 		if (ret < 0) {
7880 			r = X86EMUL_IO_NEEDED;
7881 			goto out;
7882 		}
7883 
7884 		bytes -= toread;
7885 		data += toread;
7886 		addr += toread;
7887 	}
7888 out:
7889 	return r;
7890 }
7891 
7892 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7893 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7894 				gva_t addr, void *val, unsigned int bytes,
7895 				struct x86_exception *exception)
7896 {
7897 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7898 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7899 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7900 	unsigned offset;
7901 	int ret;
7902 
7903 	/* Inline kvm_read_guest_virt_helper for speed.  */
7904 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7905 				    exception);
7906 	if (unlikely(gpa == INVALID_GPA))
7907 		return X86EMUL_PROPAGATE_FAULT;
7908 
7909 	offset = addr & (PAGE_SIZE-1);
7910 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7911 		bytes = (unsigned)PAGE_SIZE - offset;
7912 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7913 				       offset, bytes);
7914 	if (unlikely(ret < 0))
7915 		return X86EMUL_IO_NEEDED;
7916 
7917 	return X86EMUL_CONTINUE;
7918 }
7919 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7920 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7921 			       gva_t addr, void *val, unsigned int bytes,
7922 			       struct x86_exception *exception)
7923 {
7924 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7925 
7926 	/*
7927 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7928 	 * is returned, but our callers are not ready for that and they blindly
7929 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7930 	 * uninitialized kernel stack memory into cr2 and error code.
7931 	 */
7932 	memset(exception, 0, sizeof(*exception));
7933 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7934 					  exception);
7935 }
7936 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7937 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7938 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7939 			     gva_t addr, void *val, unsigned int bytes,
7940 			     struct x86_exception *exception, bool system)
7941 {
7942 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7943 	u64 access = 0;
7944 
7945 	if (system)
7946 		access |= PFERR_IMPLICIT_ACCESS;
7947 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7948 		access |= PFERR_USER_MASK;
7949 
7950 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7951 }
7952 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7953 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7954 				      struct kvm_vcpu *vcpu, u64 access,
7955 				      struct x86_exception *exception)
7956 {
7957 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7958 	void *data = val;
7959 	int r = X86EMUL_CONTINUE;
7960 
7961 	while (bytes) {
7962 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7963 		unsigned offset = addr & (PAGE_SIZE-1);
7964 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7965 		int ret;
7966 
7967 		if (gpa == INVALID_GPA)
7968 			return X86EMUL_PROPAGATE_FAULT;
7969 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7970 		if (ret < 0) {
7971 			r = X86EMUL_IO_NEEDED;
7972 			goto out;
7973 		}
7974 
7975 		bytes -= towrite;
7976 		data += towrite;
7977 		addr += towrite;
7978 	}
7979 out:
7980 	return r;
7981 }
7982 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7983 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7984 			      unsigned int bytes, struct x86_exception *exception,
7985 			      bool system)
7986 {
7987 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7988 	u64 access = PFERR_WRITE_MASK;
7989 
7990 	if (system)
7991 		access |= PFERR_IMPLICIT_ACCESS;
7992 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7993 		access |= PFERR_USER_MASK;
7994 
7995 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7996 					   access, exception);
7997 }
7998 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7999 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
8000 				unsigned int bytes, struct x86_exception *exception)
8001 {
8002 	/* kvm_write_guest_virt_system can pull in tons of pages. */
8003 	vcpu->arch.l1tf_flush_l1d = true;
8004 
8005 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
8006 					   PFERR_WRITE_MASK, exception);
8007 }
8008 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
8009 
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)8010 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
8011 				  void *insn, int insn_len)
8012 {
8013 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
8014 						       insn, insn_len);
8015 }
8016 
handle_ud(struct kvm_vcpu * vcpu)8017 int handle_ud(struct kvm_vcpu *vcpu)
8018 {
8019 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8020 	int fep_flags = READ_ONCE(force_emulation_prefix);
8021 	int emul_type = EMULTYPE_TRAP_UD;
8022 	char sig[5]; /* ud2; .ascii "kvm" */
8023 	struct x86_exception e;
8024 	int r;
8025 
8026 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8027 	if (r != X86EMUL_CONTINUE)
8028 		return 1;
8029 
8030 	if (fep_flags &&
8031 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8032 				sig, sizeof(sig), &e) == 0 &&
8033 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8034 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8035 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8036 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8037 		emul_type = EMULTYPE_TRAP_UD_FORCED;
8038 	}
8039 
8040 	return kvm_emulate_instruction(vcpu, emul_type);
8041 }
8042 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8043 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)8044 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8045 			    gpa_t gpa, bool write)
8046 {
8047 	/* For APIC access vmexit */
8048 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8049 		return 1;
8050 
8051 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8052 		trace_vcpu_match_mmio(gva, gpa, write, true);
8053 		return 1;
8054 	}
8055 
8056 	return 0;
8057 }
8058 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)8059 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8060 				gpa_t *gpa, struct x86_exception *exception,
8061 				bool write)
8062 {
8063 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8064 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8065 		     | (write ? PFERR_WRITE_MASK : 0);
8066 
8067 	/*
8068 	 * currently PKRU is only applied to ept enabled guest so
8069 	 * there is no pkey in EPT page table for L1 guest or EPT
8070 	 * shadow page table for L2 guest.
8071 	 */
8072 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8073 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
8074 			      vcpu->arch.mmio_access, 0, access))) {
8075 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8076 					(gva & (PAGE_SIZE - 1));
8077 		trace_vcpu_match_mmio(gva, *gpa, write, false);
8078 		return 1;
8079 	}
8080 
8081 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8082 
8083 	if (*gpa == INVALID_GPA)
8084 		return -1;
8085 
8086 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8087 }
8088 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)8089 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8090 			const void *val, int bytes)
8091 {
8092 	int ret;
8093 
8094 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8095 	if (ret < 0)
8096 		return 0;
8097 	kvm_page_track_write(vcpu, gpa, val, bytes);
8098 	return 1;
8099 }
8100 
8101 struct read_write_emulator_ops {
8102 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8103 				  int bytes);
8104 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8105 				  void *val, int bytes);
8106 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8107 			       int bytes, void *val);
8108 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8109 				    void *val, int bytes);
8110 	bool write;
8111 };
8112 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)8113 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8114 {
8115 	if (vcpu->mmio_read_completed) {
8116 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8117 			       vcpu->mmio_fragments[0].gpa, val);
8118 		vcpu->mmio_read_completed = 0;
8119 		return 1;
8120 	}
8121 
8122 	return 0;
8123 }
8124 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8125 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8126 			void *val, int bytes)
8127 {
8128 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8129 }
8130 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8131 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8132 			 void *val, int bytes)
8133 {
8134 	return emulator_write_phys(vcpu, gpa, val, bytes);
8135 }
8136 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)8137 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8138 {
8139 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8140 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
8141 }
8142 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8143 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8144 			  void *val, int bytes)
8145 {
8146 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8147 	return X86EMUL_IO_NEEDED;
8148 }
8149 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8150 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8151 			   void *val, int bytes)
8152 {
8153 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8154 
8155 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8156 	return X86EMUL_CONTINUE;
8157 }
8158 
8159 static const struct read_write_emulator_ops read_emultor = {
8160 	.read_write_prepare = read_prepare,
8161 	.read_write_emulate = read_emulate,
8162 	.read_write_mmio = vcpu_mmio_read,
8163 	.read_write_exit_mmio = read_exit_mmio,
8164 };
8165 
8166 static const struct read_write_emulator_ops write_emultor = {
8167 	.read_write_emulate = write_emulate,
8168 	.read_write_mmio = write_mmio,
8169 	.read_write_exit_mmio = write_exit_mmio,
8170 	.write = true,
8171 };
8172 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)8173 static int emulator_read_write_onepage(unsigned long addr, void *val,
8174 				       unsigned int bytes,
8175 				       struct x86_exception *exception,
8176 				       struct kvm_vcpu *vcpu,
8177 				       const struct read_write_emulator_ops *ops)
8178 {
8179 	gpa_t gpa;
8180 	int handled, ret;
8181 	bool write = ops->write;
8182 	struct kvm_mmio_fragment *frag;
8183 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8184 
8185 	/*
8186 	 * If the exit was due to a NPF we may already have a GPA.
8187 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
8188 	 * Note, this cannot be used on string operations since string
8189 	 * operation using rep will only have the initial GPA from the NPF
8190 	 * occurred.
8191 	 */
8192 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8193 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8194 		gpa = ctxt->gpa_val;
8195 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8196 	} else {
8197 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8198 		if (ret < 0)
8199 			return X86EMUL_PROPAGATE_FAULT;
8200 	}
8201 
8202 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8203 		return X86EMUL_CONTINUE;
8204 
8205 	/*
8206 	 * Is this MMIO handled locally?
8207 	 */
8208 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8209 	if (handled == bytes)
8210 		return X86EMUL_CONTINUE;
8211 
8212 	gpa += handled;
8213 	bytes -= handled;
8214 	val += handled;
8215 
8216 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8217 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8218 	frag->gpa = gpa;
8219 	frag->data = val;
8220 	frag->len = bytes;
8221 	return X86EMUL_CONTINUE;
8222 }
8223 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8224 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8225 			unsigned long addr,
8226 			void *val, unsigned int bytes,
8227 			struct x86_exception *exception,
8228 			const struct read_write_emulator_ops *ops)
8229 {
8230 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8231 	gpa_t gpa;
8232 	int rc;
8233 
8234 	if (ops->read_write_prepare &&
8235 		  ops->read_write_prepare(vcpu, val, bytes))
8236 		return X86EMUL_CONTINUE;
8237 
8238 	vcpu->mmio_nr_fragments = 0;
8239 
8240 	/* Crossing a page boundary? */
8241 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8242 		int now;
8243 
8244 		now = -addr & ~PAGE_MASK;
8245 		rc = emulator_read_write_onepage(addr, val, now, exception,
8246 						 vcpu, ops);
8247 
8248 		if (rc != X86EMUL_CONTINUE)
8249 			return rc;
8250 		addr += now;
8251 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8252 			addr = (u32)addr;
8253 		val += now;
8254 		bytes -= now;
8255 	}
8256 
8257 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
8258 					 vcpu, ops);
8259 	if (rc != X86EMUL_CONTINUE)
8260 		return rc;
8261 
8262 	if (!vcpu->mmio_nr_fragments)
8263 		return X86EMUL_CONTINUE;
8264 
8265 	gpa = vcpu->mmio_fragments[0].gpa;
8266 
8267 	vcpu->mmio_needed = 1;
8268 	vcpu->mmio_cur_fragment = 0;
8269 
8270 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8271 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8272 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
8273 	vcpu->run->mmio.phys_addr = gpa;
8274 
8275 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8276 }
8277 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8278 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8279 				  unsigned long addr,
8280 				  void *val,
8281 				  unsigned int bytes,
8282 				  struct x86_exception *exception)
8283 {
8284 	return emulator_read_write(ctxt, addr, val, bytes,
8285 				   exception, &read_emultor);
8286 }
8287 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8288 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8289 			    unsigned long addr,
8290 			    const void *val,
8291 			    unsigned int bytes,
8292 			    struct x86_exception *exception)
8293 {
8294 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8295 				   exception, &write_emultor);
8296 }
8297 
8298 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8299 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8300 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8301 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8302 				     unsigned long addr,
8303 				     const void *old,
8304 				     const void *new,
8305 				     unsigned int bytes,
8306 				     struct x86_exception *exception)
8307 {
8308 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8309 	u64 page_line_mask;
8310 	unsigned long hva;
8311 	gpa_t gpa;
8312 	int r;
8313 
8314 	/* guests cmpxchg8b have to be emulated atomically */
8315 	if (bytes > 8 || (bytes & (bytes - 1)))
8316 		goto emul_write;
8317 
8318 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8319 
8320 	if (gpa == INVALID_GPA ||
8321 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8322 		goto emul_write;
8323 
8324 	/*
8325 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8326 	 * enabled in the host and the access splits a cache line.
8327 	 */
8328 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8329 		page_line_mask = ~(cache_line_size() - 1);
8330 	else
8331 		page_line_mask = PAGE_MASK;
8332 
8333 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8334 		goto emul_write;
8335 
8336 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8337 	if (kvm_is_error_hva(hva))
8338 		goto emul_write;
8339 
8340 	hva += offset_in_page(gpa);
8341 
8342 	switch (bytes) {
8343 	case 1:
8344 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8345 		break;
8346 	case 2:
8347 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8348 		break;
8349 	case 4:
8350 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8351 		break;
8352 	case 8:
8353 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8354 		break;
8355 	default:
8356 		BUG();
8357 	}
8358 
8359 	if (r < 0)
8360 		return X86EMUL_UNHANDLEABLE;
8361 
8362 	/*
8363 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8364 	 * successful, as the old value is written back on failure.  Note, for
8365 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8366 	 * back the original value and the access is atomic, but KVM's ABI is
8367 	 * that all writes are dirty logged, regardless of the value written.
8368 	 */
8369 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8370 
8371 	if (r)
8372 		return X86EMUL_CMPXCHG_FAILED;
8373 
8374 	kvm_page_track_write(vcpu, gpa, new, bytes);
8375 
8376 	return X86EMUL_CONTINUE;
8377 
8378 emul_write:
8379 	pr_warn_once("emulating exchange as write\n");
8380 
8381 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8382 }
8383 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8384 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8385 			       unsigned short port, void *data,
8386 			       unsigned int count, bool in)
8387 {
8388 	unsigned i;
8389 	int r;
8390 
8391 	WARN_ON_ONCE(vcpu->arch.pio.count);
8392 	for (i = 0; i < count; i++) {
8393 		if (in)
8394 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8395 		else
8396 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8397 
8398 		if (r) {
8399 			if (i == 0)
8400 				goto userspace_io;
8401 
8402 			/*
8403 			 * Userspace must have unregistered the device while PIO
8404 			 * was running.  Drop writes / read as 0.
8405 			 */
8406 			if (in)
8407 				memset(data, 0, size * (count - i));
8408 			break;
8409 		}
8410 
8411 		data += size;
8412 	}
8413 	return 1;
8414 
8415 userspace_io:
8416 	vcpu->arch.pio.port = port;
8417 	vcpu->arch.pio.in = in;
8418 	vcpu->arch.pio.count = count;
8419 	vcpu->arch.pio.size = size;
8420 
8421 	if (in)
8422 		memset(vcpu->arch.pio_data, 0, size * count);
8423 	else
8424 		memcpy(vcpu->arch.pio_data, data, size * count);
8425 
8426 	vcpu->run->exit_reason = KVM_EXIT_IO;
8427 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8428 	vcpu->run->io.size = size;
8429 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8430 	vcpu->run->io.count = count;
8431 	vcpu->run->io.port = port;
8432 	return 0;
8433 }
8434 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8435 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8436       			   unsigned short port, void *val, unsigned int count)
8437 {
8438 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8439 	if (r)
8440 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8441 
8442 	return r;
8443 }
8444 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8445 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8446 {
8447 	int size = vcpu->arch.pio.size;
8448 	unsigned int count = vcpu->arch.pio.count;
8449 	memcpy(val, vcpu->arch.pio_data, size * count);
8450 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8451 	vcpu->arch.pio.count = 0;
8452 }
8453 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8454 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8455 				    int size, unsigned short port, void *val,
8456 				    unsigned int count)
8457 {
8458 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8459 	if (vcpu->arch.pio.count) {
8460 		/*
8461 		 * Complete a previous iteration that required userspace I/O.
8462 		 * Note, @count isn't guaranteed to match pio.count as userspace
8463 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8464 		 * shenanigans as KVM doesn't support modifying the rep count,
8465 		 * and the emulator ensures @count doesn't overflow the buffer.
8466 		 */
8467 		complete_emulator_pio_in(vcpu, val);
8468 		return 1;
8469 	}
8470 
8471 	return emulator_pio_in(vcpu, size, port, val, count);
8472 }
8473 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8474 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8475 			    unsigned short port, const void *val,
8476 			    unsigned int count)
8477 {
8478 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8479 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8480 }
8481 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8482 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8483 				     int size, unsigned short port,
8484 				     const void *val, unsigned int count)
8485 {
8486 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8487 }
8488 
get_segment_base(struct kvm_vcpu * vcpu,int seg)8489 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8490 {
8491 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8492 }
8493 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8494 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8495 {
8496 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8497 }
8498 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8499 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8500 {
8501 	if (!need_emulate_wbinvd(vcpu))
8502 		return X86EMUL_CONTINUE;
8503 
8504 	if (kvm_x86_call(has_wbinvd_exit)()) {
8505 		int cpu = get_cpu();
8506 
8507 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8508 		wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8509 		put_cpu();
8510 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8511 	} else
8512 		wbinvd();
8513 	return X86EMUL_CONTINUE;
8514 }
8515 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8516 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8517 {
8518 	kvm_emulate_wbinvd_noskip(vcpu);
8519 	return kvm_skip_emulated_instruction(vcpu);
8520 }
8521 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8522 
8523 
8524 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8525 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8526 {
8527 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8528 }
8529 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8530 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8531 {
8532 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8533 }
8534 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8535 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8536 			   unsigned long value)
8537 {
8538 
8539 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8540 }
8541 
mk_cr_64(u64 curr_cr,u32 new_val)8542 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8543 {
8544 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8545 }
8546 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8547 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8548 {
8549 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8550 	unsigned long value;
8551 
8552 	switch (cr) {
8553 	case 0:
8554 		value = kvm_read_cr0(vcpu);
8555 		break;
8556 	case 2:
8557 		value = vcpu->arch.cr2;
8558 		break;
8559 	case 3:
8560 		value = kvm_read_cr3(vcpu);
8561 		break;
8562 	case 4:
8563 		value = kvm_read_cr4(vcpu);
8564 		break;
8565 	case 8:
8566 		value = kvm_get_cr8(vcpu);
8567 		break;
8568 	default:
8569 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8570 		return 0;
8571 	}
8572 
8573 	return value;
8574 }
8575 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8576 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8577 {
8578 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8579 	int res = 0;
8580 
8581 	switch (cr) {
8582 	case 0:
8583 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8584 		break;
8585 	case 2:
8586 		vcpu->arch.cr2 = val;
8587 		break;
8588 	case 3:
8589 		res = kvm_set_cr3(vcpu, val);
8590 		break;
8591 	case 4:
8592 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8593 		break;
8594 	case 8:
8595 		res = kvm_set_cr8(vcpu, val);
8596 		break;
8597 	default:
8598 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8599 		res = -1;
8600 	}
8601 
8602 	return res;
8603 }
8604 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8605 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8606 {
8607 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8608 }
8609 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8610 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8611 {
8612 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8613 }
8614 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8615 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8616 {
8617 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8618 }
8619 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8620 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8621 {
8622 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8623 }
8624 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8625 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8626 {
8627 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8628 }
8629 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8630 static unsigned long emulator_get_cached_segment_base(
8631 	struct x86_emulate_ctxt *ctxt, int seg)
8632 {
8633 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8634 }
8635 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8636 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8637 				 struct desc_struct *desc, u32 *base3,
8638 				 int seg)
8639 {
8640 	struct kvm_segment var;
8641 
8642 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8643 	*selector = var.selector;
8644 
8645 	if (var.unusable) {
8646 		memset(desc, 0, sizeof(*desc));
8647 		if (base3)
8648 			*base3 = 0;
8649 		return false;
8650 	}
8651 
8652 	if (var.g)
8653 		var.limit >>= 12;
8654 	set_desc_limit(desc, var.limit);
8655 	set_desc_base(desc, (unsigned long)var.base);
8656 #ifdef CONFIG_X86_64
8657 	if (base3)
8658 		*base3 = var.base >> 32;
8659 #endif
8660 	desc->type = var.type;
8661 	desc->s = var.s;
8662 	desc->dpl = var.dpl;
8663 	desc->p = var.present;
8664 	desc->avl = var.avl;
8665 	desc->l = var.l;
8666 	desc->d = var.db;
8667 	desc->g = var.g;
8668 
8669 	return true;
8670 }
8671 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8672 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8673 				 struct desc_struct *desc, u32 base3,
8674 				 int seg)
8675 {
8676 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8677 	struct kvm_segment var;
8678 
8679 	var.selector = selector;
8680 	var.base = get_desc_base(desc);
8681 #ifdef CONFIG_X86_64
8682 	var.base |= ((u64)base3) << 32;
8683 #endif
8684 	var.limit = get_desc_limit(desc);
8685 	if (desc->g)
8686 		var.limit = (var.limit << 12) | 0xfff;
8687 	var.type = desc->type;
8688 	var.dpl = desc->dpl;
8689 	var.db = desc->d;
8690 	var.s = desc->s;
8691 	var.l = desc->l;
8692 	var.g = desc->g;
8693 	var.avl = desc->avl;
8694 	var.present = desc->p;
8695 	var.unusable = !var.present;
8696 	var.padding = 0;
8697 
8698 	kvm_set_segment(vcpu, &var, seg);
8699 	return;
8700 }
8701 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8702 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8703 					u32 msr_index, u64 *pdata)
8704 {
8705 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8706 	int r;
8707 
8708 	r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8709 	if (r < 0)
8710 		return X86EMUL_UNHANDLEABLE;
8711 
8712 	if (r) {
8713 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8714 				       complete_emulated_rdmsr, r))
8715 			return X86EMUL_IO_NEEDED;
8716 
8717 		trace_kvm_msr_read_ex(msr_index);
8718 		return X86EMUL_PROPAGATE_FAULT;
8719 	}
8720 
8721 	trace_kvm_msr_read(msr_index, *pdata);
8722 	return X86EMUL_CONTINUE;
8723 }
8724 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8725 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8726 					u32 msr_index, u64 data)
8727 {
8728 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8729 	int r;
8730 
8731 	r = kvm_emulate_msr_write(vcpu, msr_index, data);
8732 	if (r < 0)
8733 		return X86EMUL_UNHANDLEABLE;
8734 
8735 	if (r) {
8736 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8737 				       complete_emulated_msr_access, r))
8738 			return X86EMUL_IO_NEEDED;
8739 
8740 		trace_kvm_msr_write_ex(msr_index, data);
8741 		return X86EMUL_PROPAGATE_FAULT;
8742 	}
8743 
8744 	trace_kvm_msr_write(msr_index, data);
8745 	return X86EMUL_CONTINUE;
8746 }
8747 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8748 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8749 			    u32 msr_index, u64 *pdata)
8750 {
8751 	/*
8752 	 * Treat emulator accesses to the current shadow stack pointer as host-
8753 	 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8754 	 * and this API is used only for implicit accesses, i.e. not RDMSR, and
8755 	 * so the index is fully KVM-controlled.
8756 	 */
8757 	if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8758 		return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8759 
8760 	return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8761 }
8762 
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8763 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8764 {
8765 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8766 }
8767 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8768 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8769 			     u32 pmc, u64 *pdata)
8770 {
8771 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8772 }
8773 
emulator_halt(struct x86_emulate_ctxt * ctxt)8774 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8775 {
8776 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8777 }
8778 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8779 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8780 			      struct x86_instruction_info *info,
8781 			      enum x86_intercept_stage stage)
8782 {
8783 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8784 					     &ctxt->exception);
8785 }
8786 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8787 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8788 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8789 			      bool exact_only)
8790 {
8791 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8792 }
8793 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8794 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8795 {
8796 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8797 }
8798 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8799 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8800 {
8801 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8802 }
8803 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8804 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8805 {
8806 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8807 }
8808 
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8809 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8810 {
8811 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8812 }
8813 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8814 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8815 {
8816 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8817 }
8818 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8819 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8820 {
8821 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8822 }
8823 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8824 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8825 {
8826 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8827 }
8828 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8829 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8830 {
8831 	return is_smm(emul_to_vcpu(ctxt));
8832 }
8833 
8834 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8835 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8836 {
8837 	WARN_ON_ONCE(1);
8838 	return X86EMUL_UNHANDLEABLE;
8839 }
8840 #endif
8841 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8842 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8843 {
8844 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8845 }
8846 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8847 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8848 {
8849 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8850 }
8851 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8852 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8853 {
8854 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8855 
8856 	if (!kvm->vm_bugged)
8857 		kvm_vm_bugged(kvm);
8858 }
8859 
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8860 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8861 					gva_t addr, unsigned int flags)
8862 {
8863 	if (!kvm_x86_ops.get_untagged_addr)
8864 		return addr;
8865 
8866 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8867 					       addr, flags);
8868 }
8869 
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8870 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8871 				       gva_t addr, unsigned int flags)
8872 {
8873 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8874 }
8875 
8876 static const struct x86_emulate_ops emulate_ops = {
8877 	.vm_bugged           = emulator_vm_bugged,
8878 	.read_gpr            = emulator_read_gpr,
8879 	.write_gpr           = emulator_write_gpr,
8880 	.read_std            = emulator_read_std,
8881 	.write_std           = emulator_write_std,
8882 	.fetch               = kvm_fetch_guest_virt,
8883 	.read_emulated       = emulator_read_emulated,
8884 	.write_emulated      = emulator_write_emulated,
8885 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8886 	.invlpg              = emulator_invlpg,
8887 	.pio_in_emulated     = emulator_pio_in_emulated,
8888 	.pio_out_emulated    = emulator_pio_out_emulated,
8889 	.get_segment         = emulator_get_segment,
8890 	.set_segment         = emulator_set_segment,
8891 	.get_cached_segment_base = emulator_get_cached_segment_base,
8892 	.get_gdt             = emulator_get_gdt,
8893 	.get_idt	     = emulator_get_idt,
8894 	.set_gdt             = emulator_set_gdt,
8895 	.set_idt	     = emulator_set_idt,
8896 	.get_cr              = emulator_get_cr,
8897 	.set_cr              = emulator_set_cr,
8898 	.cpl                 = emulator_get_cpl,
8899 	.get_dr              = emulator_get_dr,
8900 	.set_dr              = emulator_set_dr,
8901 	.set_msr_with_filter = emulator_set_msr_with_filter,
8902 	.get_msr_with_filter = emulator_get_msr_with_filter,
8903 	.get_msr             = emulator_get_msr,
8904 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8905 	.read_pmc            = emulator_read_pmc,
8906 	.halt                = emulator_halt,
8907 	.wbinvd              = emulator_wbinvd,
8908 	.fix_hypercall       = emulator_fix_hypercall,
8909 	.intercept           = emulator_intercept,
8910 	.get_cpuid           = emulator_get_cpuid,
8911 	.guest_has_movbe     = emulator_guest_has_movbe,
8912 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8913 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8914 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8915 	.set_nmi_mask        = emulator_set_nmi_mask,
8916 	.is_smm              = emulator_is_smm,
8917 	.leave_smm           = emulator_leave_smm,
8918 	.triple_fault        = emulator_triple_fault,
8919 	.set_xcr             = emulator_set_xcr,
8920 	.get_untagged_addr   = emulator_get_untagged_addr,
8921 	.is_canonical_addr   = emulator_is_canonical_addr,
8922 };
8923 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8924 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8925 {
8926 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8927 	/*
8928 	 * an sti; sti; sequence only disable interrupts for the first
8929 	 * instruction. So, if the last instruction, be it emulated or
8930 	 * not, left the system with the INT_STI flag enabled, it
8931 	 * means that the last instruction is an sti. We should not
8932 	 * leave the flag on in this case. The same goes for mov ss
8933 	 */
8934 	if (int_shadow & mask)
8935 		mask = 0;
8936 	if (unlikely(int_shadow || mask)) {
8937 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8938 		if (!mask)
8939 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8940 	}
8941 }
8942 
inject_emulated_exception(struct kvm_vcpu * vcpu)8943 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8944 {
8945 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8946 
8947 	if (ctxt->exception.vector == PF_VECTOR)
8948 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8949 	else if (ctxt->exception.error_code_valid)
8950 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8951 				      ctxt->exception.error_code);
8952 	else
8953 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8954 }
8955 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8956 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8957 {
8958 	struct x86_emulate_ctxt *ctxt;
8959 
8960 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8961 	if (!ctxt) {
8962 		pr_err("failed to allocate vcpu's emulator\n");
8963 		return NULL;
8964 	}
8965 
8966 	ctxt->vcpu = vcpu;
8967 	ctxt->ops = &emulate_ops;
8968 	vcpu->arch.emulate_ctxt = ctxt;
8969 
8970 	return ctxt;
8971 }
8972 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8973 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8974 {
8975 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8976 	int cs_db, cs_l;
8977 
8978 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8979 
8980 	ctxt->gpa_available = false;
8981 	ctxt->eflags = kvm_get_rflags(vcpu);
8982 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8983 
8984 	ctxt->eip = kvm_rip_read(vcpu);
8985 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8986 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8987 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8988 		     cs_db				? X86EMUL_MODE_PROT32 :
8989 							  X86EMUL_MODE_PROT16;
8990 	ctxt->interruptibility = 0;
8991 	ctxt->have_exception = false;
8992 	ctxt->exception.vector = -1;
8993 	ctxt->perm_ok = false;
8994 
8995 	init_decode_cache(ctxt);
8996 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8997 }
8998 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8999 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
9000 {
9001 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9002 	int ret;
9003 
9004 	init_emulate_ctxt(vcpu);
9005 
9006 	ctxt->op_bytes = 2;
9007 	ctxt->ad_bytes = 2;
9008 	ctxt->_eip = ctxt->eip + inc_eip;
9009 	ret = emulate_int_real(ctxt, irq);
9010 
9011 	if (ret != X86EMUL_CONTINUE) {
9012 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9013 	} else {
9014 		ctxt->eip = ctxt->_eip;
9015 		kvm_rip_write(vcpu, ctxt->eip);
9016 		kvm_set_rflags(vcpu, ctxt->eflags);
9017 	}
9018 }
9019 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9020 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)9021 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9022 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
9023 {
9024 	struct kvm_run *run = vcpu->run;
9025 	u64 info[5];
9026 	u8 info_start;
9027 
9028 	/*
9029 	 * Zero the whole array used to retrieve the exit info, as casting to
9030 	 * u32 for select entries will leave some chunks uninitialized.
9031 	 */
9032 	memset(&info, 0, sizeof(info));
9033 
9034 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9035 				    (u32 *)&info[3], (u32 *)&info[4]);
9036 
9037 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9038 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9039 
9040 	/*
9041 	 * There's currently space for 13 entries, but 5 are used for the exit
9042 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
9043 	 * when expanding kvm_run.emulation_failure in the future.
9044 	 */
9045 	if (WARN_ON_ONCE(ndata > 4))
9046 		ndata = 4;
9047 
9048 	/* Always include the flags as a 'data' entry. */
9049 	info_start = 1;
9050 	run->emulation_failure.flags = 0;
9051 
9052 	if (insn_size) {
9053 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9054 			      sizeof(run->emulation_failure.insn_bytes) != 16));
9055 		info_start += 2;
9056 		run->emulation_failure.flags |=
9057 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9058 		run->emulation_failure.insn_size = insn_size;
9059 		memset(run->emulation_failure.insn_bytes, 0x90,
9060 		       sizeof(run->emulation_failure.insn_bytes));
9061 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9062 	}
9063 
9064 	memcpy(&run->internal.data[info_start], info, sizeof(info));
9065 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9066 	       ndata * sizeof(data[0]));
9067 
9068 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9069 }
9070 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)9071 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9072 {
9073 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9074 
9075 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9076 				       ctxt->fetch.end - ctxt->fetch.data);
9077 }
9078 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)9079 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9080 					  u8 ndata)
9081 {
9082 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9083 }
9084 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9085 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)9086 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9087 {
9088 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9089 }
9090 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9091 
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)9092 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9093 {
9094 	u32 reason, intr_info, error_code;
9095 	struct kvm_run *run = vcpu->run;
9096 	u64 info1, info2;
9097 	int ndata = 0;
9098 
9099 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9100 				    &intr_info, &error_code);
9101 
9102 	run->internal.data[ndata++] = info2;
9103 	run->internal.data[ndata++] = reason;
9104 	run->internal.data[ndata++] = info1;
9105 	run->internal.data[ndata++] = gpa;
9106 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9107 
9108 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9109 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9110 	run->internal.ndata = ndata;
9111 }
9112 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9113 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)9114 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9115 {
9116 	struct kvm *kvm = vcpu->kvm;
9117 
9118 	++vcpu->stat.insn_emulation_fail;
9119 	trace_kvm_emulate_insn_failed(vcpu);
9120 
9121 	if (emulation_type & EMULTYPE_VMWARE_GP) {
9122 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9123 		return 1;
9124 	}
9125 
9126 	if (kvm->arch.exit_on_emulation_error ||
9127 	    (emulation_type & EMULTYPE_SKIP)) {
9128 		prepare_emulation_ctxt_failure_exit(vcpu);
9129 		return 0;
9130 	}
9131 
9132 	kvm_queue_exception(vcpu, UD_VECTOR);
9133 
9134 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9135 		prepare_emulation_ctxt_failure_exit(vcpu);
9136 		return 0;
9137 	}
9138 
9139 	return 1;
9140 }
9141 
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)9142 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9143 					       gpa_t cr2_or_gpa,
9144 					       int emulation_type)
9145 {
9146 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9147 		return false;
9148 
9149 	/*
9150 	 * If the failed instruction faulted on an access to page tables that
9151 	 * are used to translate any part of the instruction, KVM can't resolve
9152 	 * the issue by unprotecting the gfn, as zapping the shadow page will
9153 	 * result in the instruction taking a !PRESENT page fault and thus put
9154 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
9155 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9156 	 * then zap the SPTE to unprotect the gfn, and then do it all over
9157 	 * again.  Report the error to userspace.
9158 	 */
9159 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9160 		return false;
9161 
9162 	/*
9163 	 * If emulation may have been triggered by a write to a shadowed page
9164 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9165 	 * guest to let the CPU re-execute the instruction in the hope that the
9166 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
9167 	 */
9168 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9169 
9170 	/*
9171 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9172 	 * all SPTEs were already zapped by a different task.  The alternative
9173 	 * is to report the error to userspace and likely terminate the guest,
9174 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
9175 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
9176 	 */
9177 	return true;
9178 }
9179 
9180 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9181 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9182 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)9183 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9184 				unsigned long *db)
9185 {
9186 	u32 dr6 = 0;
9187 	int i;
9188 	u32 enable, rwlen;
9189 
9190 	enable = dr7;
9191 	rwlen = dr7 >> 16;
9192 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9193 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9194 			dr6 |= (1 << i);
9195 	return dr6;
9196 }
9197 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)9198 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9199 {
9200 	struct kvm_run *kvm_run = vcpu->run;
9201 
9202 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9203 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9204 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9205 		kvm_run->debug.arch.exception = DB_VECTOR;
9206 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
9207 		return 0;
9208 	}
9209 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9210 	return 1;
9211 }
9212 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)9213 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9214 {
9215 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9216 	int r;
9217 
9218 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9219 	if (unlikely(!r))
9220 		return 0;
9221 
9222 	kvm_pmu_instruction_retired(vcpu);
9223 
9224 	/*
9225 	 * rflags is the old, "raw" value of the flags.  The new value has
9226 	 * not been saved yet.
9227 	 *
9228 	 * This is correct even for TF set by the guest, because "the
9229 	 * processor will not generate this exception after the instruction
9230 	 * that sets the TF flag".
9231 	 */
9232 	if (unlikely(rflags & X86_EFLAGS_TF))
9233 		r = kvm_vcpu_do_singlestep(vcpu);
9234 	return r;
9235 }
9236 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9237 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9238 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9239 {
9240 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9241 		return true;
9242 
9243 	/*
9244 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9245 	 * active, but AMD compatible CPUs do not.
9246 	 */
9247 	if (!guest_cpuid_is_intel_compatible(vcpu))
9248 		return false;
9249 
9250 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9251 }
9252 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9253 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9254 					   int emulation_type, int *r)
9255 {
9256 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9257 
9258 	/*
9259 	 * Do not check for code breakpoints if hardware has already done the
9260 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9261 	 * the instruction has passed all exception checks, and all intercepted
9262 	 * exceptions that trigger emulation have lower priority than code
9263 	 * breakpoints, i.e. the fact that the intercepted exception occurred
9264 	 * means any code breakpoints have already been serviced.
9265 	 *
9266 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9267 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9268 	 * the instruction being emulated.  The intent of forced emulation is
9269 	 * to behave as if KVM intercepted the instruction without an exception
9270 	 * and without a prefix.
9271 	 */
9272 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9273 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9274 		return false;
9275 
9276 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9277 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9278 		struct kvm_run *kvm_run = vcpu->run;
9279 		unsigned long eip = kvm_get_linear_rip(vcpu);
9280 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9281 					   vcpu->arch.guest_debug_dr7,
9282 					   vcpu->arch.eff_db);
9283 
9284 		if (dr6 != 0) {
9285 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9286 			kvm_run->debug.arch.pc = eip;
9287 			kvm_run->debug.arch.exception = DB_VECTOR;
9288 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9289 			*r = 0;
9290 			return true;
9291 		}
9292 	}
9293 
9294 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9295 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9296 		unsigned long eip = kvm_get_linear_rip(vcpu);
9297 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9298 					   vcpu->arch.dr7,
9299 					   vcpu->arch.db);
9300 
9301 		if (dr6 != 0) {
9302 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9303 			*r = 1;
9304 			return true;
9305 		}
9306 	}
9307 
9308 	return false;
9309 }
9310 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9311 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9312 {
9313 	switch (ctxt->opcode_len) {
9314 	case 1:
9315 		switch (ctxt->b) {
9316 		case 0xe4:	/* IN */
9317 		case 0xe5:
9318 		case 0xec:
9319 		case 0xed:
9320 		case 0xe6:	/* OUT */
9321 		case 0xe7:
9322 		case 0xee:
9323 		case 0xef:
9324 		case 0x6c:	/* INS */
9325 		case 0x6d:
9326 		case 0x6e:	/* OUTS */
9327 		case 0x6f:
9328 			return true;
9329 		}
9330 		break;
9331 	case 2:
9332 		switch (ctxt->b) {
9333 		case 0x33:	/* RDPMC */
9334 			return true;
9335 		}
9336 		break;
9337 	}
9338 
9339 	return false;
9340 }
9341 
9342 /*
9343  * Decode an instruction for emulation.  The caller is responsible for handling
9344  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9345  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9346  * code breakpoints have higher priority and thus have already been done by
9347  * hardware.
9348  *
9349  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9350  *     response to a machine check.
9351  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9352 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9353 				    void *insn, int insn_len)
9354 {
9355 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9356 	int r;
9357 
9358 	init_emulate_ctxt(vcpu);
9359 
9360 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9361 
9362 	trace_kvm_emulate_insn_start(vcpu);
9363 	++vcpu->stat.insn_emulation;
9364 
9365 	return r;
9366 }
9367 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9368 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9369 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9370 			    int emulation_type, void *insn, int insn_len)
9371 {
9372 	int r;
9373 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9374 	bool writeback = true;
9375 
9376 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9377 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9378 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9379 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9380 
9381 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9382 	if (r != X86EMUL_CONTINUE) {
9383 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9384 			return 1;
9385 
9386 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9387 						       emulation_type))
9388 			return 1;
9389 
9390 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9391 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9392 			return 0;
9393 		}
9394 
9395 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9396 		return handle_emulation_failure(vcpu, emulation_type);
9397 	}
9398 
9399 	vcpu->arch.l1tf_flush_l1d = true;
9400 
9401 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9402 		kvm_clear_exception_queue(vcpu);
9403 
9404 		/*
9405 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9406 		 * are fault-like and are higher priority than any faults on
9407 		 * the code fetch itself.
9408 		 */
9409 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9410 			return r;
9411 
9412 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9413 						    insn, insn_len);
9414 		if (r != EMULATION_OK)  {
9415 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9416 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9417 				kvm_queue_exception(vcpu, UD_VECTOR);
9418 				return 1;
9419 			}
9420 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9421 							       emulation_type))
9422 				return 1;
9423 
9424 			if (ctxt->have_exception &&
9425 			    !(emulation_type & EMULTYPE_SKIP)) {
9426 				/*
9427 				 * #UD should result in just EMULATION_FAILED, and trap-like
9428 				 * exception should not be encountered during decode.
9429 				 */
9430 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9431 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9432 				inject_emulated_exception(vcpu);
9433 				return 1;
9434 			}
9435 			return handle_emulation_failure(vcpu, emulation_type);
9436 		}
9437 	}
9438 
9439 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9440 	    !is_vmware_backdoor_opcode(ctxt)) {
9441 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9442 		return 1;
9443 	}
9444 
9445 	/*
9446 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9447 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9448 	 * The caller is responsible for updating interruptibility state and
9449 	 * injecting single-step #DBs.
9450 	 */
9451 	if (emulation_type & EMULTYPE_SKIP) {
9452 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9453 			ctxt->eip = (u32)ctxt->_eip;
9454 		else
9455 			ctxt->eip = ctxt->_eip;
9456 
9457 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9458 			r = 1;
9459 			goto writeback;
9460 		}
9461 
9462 		kvm_rip_write(vcpu, ctxt->eip);
9463 		if (ctxt->eflags & X86_EFLAGS_RF)
9464 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9465 		return 1;
9466 	}
9467 
9468 	/*
9469 	 * If emulation was caused by a write-protection #PF on a non-page_table
9470 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9471 	 * and retry the instruction, as the vCPU is likely no longer using the
9472 	 * gfn as a page table.
9473 	 */
9474 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9475 	    !x86_page_table_writing_insn(ctxt) &&
9476 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9477 		return 1;
9478 
9479 	/* this is needed for vmware backdoor interface to work since it
9480 	   changes registers values  during IO operation */
9481 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9482 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9483 		emulator_invalidate_register_cache(ctxt);
9484 	}
9485 
9486 restart:
9487 	if (emulation_type & EMULTYPE_PF) {
9488 		/* Save the faulting GPA (cr2) in the address field */
9489 		ctxt->exception.address = cr2_or_gpa;
9490 
9491 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9492 		if (vcpu->arch.mmu->root_role.direct) {
9493 			ctxt->gpa_available = true;
9494 			ctxt->gpa_val = cr2_or_gpa;
9495 		}
9496 	} else {
9497 		/* Sanitize the address out of an abundance of paranoia. */
9498 		ctxt->exception.address = 0;
9499 	}
9500 
9501 	/*
9502 	 * Check L1's instruction intercepts when emulating instructions for
9503 	 * L2, unless KVM is re-emulating a previously decoded instruction,
9504 	 * e.g. to complete userspace I/O, in which case KVM has already
9505 	 * checked the intercepts.
9506 	 */
9507 	r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9508 				   !(emulation_type & EMULTYPE_NO_DECODE));
9509 
9510 	if (r == EMULATION_INTERCEPTED)
9511 		return 1;
9512 
9513 	if (r == EMULATION_FAILED) {
9514 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9515 						       emulation_type))
9516 			return 1;
9517 
9518 		return handle_emulation_failure(vcpu, emulation_type);
9519 	}
9520 
9521 	if (ctxt->have_exception) {
9522 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9523 		vcpu->mmio_needed = false;
9524 		r = 1;
9525 		inject_emulated_exception(vcpu);
9526 	} else if (vcpu->arch.pio.count) {
9527 		if (!vcpu->arch.pio.in) {
9528 			/* FIXME: return into emulator if single-stepping.  */
9529 			vcpu->arch.pio.count = 0;
9530 		} else {
9531 			writeback = false;
9532 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9533 		}
9534 		r = 0;
9535 	} else if (vcpu->mmio_needed) {
9536 		++vcpu->stat.mmio_exits;
9537 
9538 		if (!vcpu->mmio_is_write)
9539 			writeback = false;
9540 		r = 0;
9541 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9542 	} else if (vcpu->arch.complete_userspace_io) {
9543 		writeback = false;
9544 		r = 0;
9545 	} else if (r == EMULATION_RESTART)
9546 		goto restart;
9547 	else
9548 		r = 1;
9549 
9550 writeback:
9551 	if (writeback) {
9552 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9553 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9554 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9555 
9556 		/*
9557 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9558 		 * only supports code breakpoints and general detect #DB, both
9559 		 * of which are fault-like.
9560 		 */
9561 		if (!ctxt->have_exception ||
9562 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9563 			kvm_pmu_instruction_retired(vcpu);
9564 			if (ctxt->is_branch)
9565 				kvm_pmu_branch_retired(vcpu);
9566 			kvm_rip_write(vcpu, ctxt->eip);
9567 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9568 				r = kvm_vcpu_do_singlestep(vcpu);
9569 			kvm_x86_call(update_emulated_instruction)(vcpu);
9570 			__kvm_set_rflags(vcpu, ctxt->eflags);
9571 		}
9572 
9573 		/*
9574 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9575 		 * do nothing, and it will be requested again as soon as
9576 		 * the shadow expires.  But we still need to check here,
9577 		 * because POPF has no interrupt shadow.
9578 		 */
9579 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9580 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9581 	} else
9582 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9583 
9584 	return r;
9585 }
9586 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9587 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9588 {
9589 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9590 }
9591 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9592 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9593 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9594 					void *insn, int insn_len)
9595 {
9596 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9597 }
9598 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9599 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9600 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9601 {
9602 	vcpu->arch.pio.count = 0;
9603 	return 1;
9604 }
9605 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9606 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9607 {
9608 	vcpu->arch.pio.count = 0;
9609 
9610 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9611 		return 1;
9612 
9613 	return kvm_skip_emulated_instruction(vcpu);
9614 }
9615 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9616 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9617 			    unsigned short port)
9618 {
9619 	unsigned long val = kvm_rax_read(vcpu);
9620 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9621 
9622 	if (ret)
9623 		return ret;
9624 
9625 	/*
9626 	 * Workaround userspace that relies on old KVM behavior of %rip being
9627 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9628 	 */
9629 	if (port == 0x7e &&
9630 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9631 		vcpu->arch.complete_userspace_io =
9632 			complete_fast_pio_out_port_0x7e;
9633 		kvm_skip_emulated_instruction(vcpu);
9634 	} else {
9635 		vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9636 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9637 	}
9638 	return 0;
9639 }
9640 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9641 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9642 {
9643 	unsigned long val;
9644 
9645 	/* We should only ever be called with arch.pio.count equal to 1 */
9646 	BUG_ON(vcpu->arch.pio.count != 1);
9647 
9648 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9649 		vcpu->arch.pio.count = 0;
9650 		return 1;
9651 	}
9652 
9653 	/* For size less than 4 we merge, else we zero extend */
9654 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9655 
9656 	complete_emulator_pio_in(vcpu, &val);
9657 	kvm_rax_write(vcpu, val);
9658 
9659 	return kvm_skip_emulated_instruction(vcpu);
9660 }
9661 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9662 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9663 			   unsigned short port)
9664 {
9665 	unsigned long val;
9666 	int ret;
9667 
9668 	/* For size less than 4 we merge, else we zero extend */
9669 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9670 
9671 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9672 	if (ret) {
9673 		kvm_rax_write(vcpu, val);
9674 		return ret;
9675 	}
9676 
9677 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9678 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9679 
9680 	return 0;
9681 }
9682 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9683 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9684 {
9685 	int ret;
9686 
9687 	if (in)
9688 		ret = kvm_fast_pio_in(vcpu, size, port);
9689 	else
9690 		ret = kvm_fast_pio_out(vcpu, size, port);
9691 	return ret && kvm_skip_emulated_instruction(vcpu);
9692 }
9693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9694 
kvmclock_cpu_down_prep(unsigned int cpu)9695 static int kvmclock_cpu_down_prep(unsigned int cpu)
9696 {
9697 	__this_cpu_write(cpu_tsc_khz, 0);
9698 	return 0;
9699 }
9700 
tsc_khz_changed(void * data)9701 static void tsc_khz_changed(void *data)
9702 {
9703 	struct cpufreq_freqs *freq = data;
9704 	unsigned long khz;
9705 
9706 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9707 
9708 	if (data)
9709 		khz = freq->new;
9710 	else
9711 		khz = cpufreq_quick_get(raw_smp_processor_id());
9712 	if (!khz)
9713 		khz = tsc_khz;
9714 	__this_cpu_write(cpu_tsc_khz, khz);
9715 }
9716 
9717 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9718 static void kvm_hyperv_tsc_notifier(void)
9719 {
9720 	struct kvm *kvm;
9721 	int cpu;
9722 
9723 	mutex_lock(&kvm_lock);
9724 	list_for_each_entry(kvm, &vm_list, vm_list)
9725 		kvm_make_mclock_inprogress_request(kvm);
9726 
9727 	/* no guest entries from this point */
9728 	hyperv_stop_tsc_emulation();
9729 
9730 	/* TSC frequency always matches when on Hyper-V */
9731 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9732 		for_each_present_cpu(cpu)
9733 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9734 	}
9735 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9736 
9737 	list_for_each_entry(kvm, &vm_list, vm_list) {
9738 		__kvm_start_pvclock_update(kvm);
9739 		pvclock_update_vm_gtod_copy(kvm);
9740 		kvm_end_pvclock_update(kvm);
9741 	}
9742 
9743 	mutex_unlock(&kvm_lock);
9744 }
9745 #endif
9746 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9747 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9748 {
9749 	struct kvm *kvm;
9750 	struct kvm_vcpu *vcpu;
9751 	int send_ipi = 0;
9752 	unsigned long i;
9753 
9754 	/*
9755 	 * We allow guests to temporarily run on slowing clocks,
9756 	 * provided we notify them after, or to run on accelerating
9757 	 * clocks, provided we notify them before.  Thus time never
9758 	 * goes backwards.
9759 	 *
9760 	 * However, we have a problem.  We can't atomically update
9761 	 * the frequency of a given CPU from this function; it is
9762 	 * merely a notifier, which can be called from any CPU.
9763 	 * Changing the TSC frequency at arbitrary points in time
9764 	 * requires a recomputation of local variables related to
9765 	 * the TSC for each VCPU.  We must flag these local variables
9766 	 * to be updated and be sure the update takes place with the
9767 	 * new frequency before any guests proceed.
9768 	 *
9769 	 * Unfortunately, the combination of hotplug CPU and frequency
9770 	 * change creates an intractable locking scenario; the order
9771 	 * of when these callouts happen is undefined with respect to
9772 	 * CPU hotplug, and they can race with each other.  As such,
9773 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9774 	 * undefined; you can actually have a CPU frequency change take
9775 	 * place in between the computation of X and the setting of the
9776 	 * variable.  To protect against this problem, all updates of
9777 	 * the per_cpu tsc_khz variable are done in an interrupt
9778 	 * protected IPI, and all callers wishing to update the value
9779 	 * must wait for a synchronous IPI to complete (which is trivial
9780 	 * if the caller is on the CPU already).  This establishes the
9781 	 * necessary total order on variable updates.
9782 	 *
9783 	 * Note that because a guest time update may take place
9784 	 * anytime after the setting of the VCPU's request bit, the
9785 	 * correct TSC value must be set before the request.  However,
9786 	 * to ensure the update actually makes it to any guest which
9787 	 * starts running in hardware virtualization between the set
9788 	 * and the acquisition of the spinlock, we must also ping the
9789 	 * CPU after setting the request bit.
9790 	 *
9791 	 */
9792 
9793 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9794 
9795 	mutex_lock(&kvm_lock);
9796 	list_for_each_entry(kvm, &vm_list, vm_list) {
9797 		kvm_for_each_vcpu(i, vcpu, kvm) {
9798 			if (vcpu->cpu != cpu)
9799 				continue;
9800 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9801 			if (vcpu->cpu != raw_smp_processor_id())
9802 				send_ipi = 1;
9803 		}
9804 	}
9805 	mutex_unlock(&kvm_lock);
9806 
9807 	if (freq->old < freq->new && send_ipi) {
9808 		/*
9809 		 * We upscale the frequency.  Must make the guest
9810 		 * doesn't see old kvmclock values while running with
9811 		 * the new frequency, otherwise we risk the guest sees
9812 		 * time go backwards.
9813 		 *
9814 		 * In case we update the frequency for another cpu
9815 		 * (which might be in guest context) send an interrupt
9816 		 * to kick the cpu out of guest context.  Next time
9817 		 * guest context is entered kvmclock will be updated,
9818 		 * so the guest will not see stale values.
9819 		 */
9820 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9821 	}
9822 }
9823 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9824 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9825 				     void *data)
9826 {
9827 	struct cpufreq_freqs *freq = data;
9828 	int cpu;
9829 
9830 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9831 		return 0;
9832 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9833 		return 0;
9834 
9835 	for_each_cpu(cpu, freq->policy->cpus)
9836 		__kvmclock_cpufreq_notifier(freq, cpu);
9837 
9838 	return 0;
9839 }
9840 
9841 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9842 	.notifier_call  = kvmclock_cpufreq_notifier
9843 };
9844 
kvmclock_cpu_online(unsigned int cpu)9845 static int kvmclock_cpu_online(unsigned int cpu)
9846 {
9847 	tsc_khz_changed(NULL);
9848 	return 0;
9849 }
9850 
kvm_timer_init(void)9851 static void kvm_timer_init(void)
9852 {
9853 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9854 		max_tsc_khz = tsc_khz;
9855 
9856 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9857 			struct cpufreq_policy *policy;
9858 			int cpu;
9859 
9860 			cpu = get_cpu();
9861 			policy = cpufreq_cpu_get(cpu);
9862 			if (policy) {
9863 				if (policy->cpuinfo.max_freq)
9864 					max_tsc_khz = policy->cpuinfo.max_freq;
9865 				cpufreq_cpu_put(policy);
9866 			}
9867 			put_cpu();
9868 		}
9869 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9870 					  CPUFREQ_TRANSITION_NOTIFIER);
9871 
9872 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9873 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9874 	}
9875 }
9876 
9877 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9878 static void pvclock_gtod_update_fn(struct work_struct *work)
9879 {
9880 	struct kvm *kvm;
9881 	struct kvm_vcpu *vcpu;
9882 	unsigned long i;
9883 
9884 	mutex_lock(&kvm_lock);
9885 	list_for_each_entry(kvm, &vm_list, vm_list)
9886 		kvm_for_each_vcpu(i, vcpu, kvm)
9887 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9888 	atomic_set(&kvm_guest_has_master_clock, 0);
9889 	mutex_unlock(&kvm_lock);
9890 }
9891 
9892 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9893 
9894 /*
9895  * Indirection to move queue_work() out of the tk_core.seq write held
9896  * region to prevent possible deadlocks against time accessors which
9897  * are invoked with work related locks held.
9898  */
pvclock_irq_work_fn(struct irq_work * w)9899 static void pvclock_irq_work_fn(struct irq_work *w)
9900 {
9901 	queue_work(system_long_wq, &pvclock_gtod_work);
9902 }
9903 
9904 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9905 
9906 /*
9907  * Notification about pvclock gtod data update.
9908  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9909 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9910 			       void *priv)
9911 {
9912 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9913 	struct timekeeper *tk = priv;
9914 
9915 	update_pvclock_gtod(tk);
9916 
9917 	/*
9918 	 * Disable master clock if host does not trust, or does not use,
9919 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9920 	 * this is invoked with tk_core.seq write held.
9921 	 */
9922 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9923 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9924 		irq_work_queue(&pvclock_irq_work);
9925 	return 0;
9926 }
9927 
9928 static struct notifier_block pvclock_gtod_notifier = {
9929 	.notifier_call = pvclock_gtod_notify,
9930 };
9931 #endif
9932 
kvm_ops_update(struct kvm_x86_init_ops * ops)9933 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9934 {
9935 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9936 
9937 #define __KVM_X86_OP(func) \
9938 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9939 #define KVM_X86_OP(func) \
9940 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9941 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9942 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9943 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9944 					   (void *)__static_call_return0);
9945 #include <asm/kvm-x86-ops.h>
9946 #undef __KVM_X86_OP
9947 
9948 	kvm_pmu_ops_update(ops->pmu_ops);
9949 }
9950 
kvm_x86_check_processor_compatibility(void)9951 static int kvm_x86_check_processor_compatibility(void)
9952 {
9953 	int cpu = smp_processor_id();
9954 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9955 
9956 	/*
9957 	 * Compatibility checks are done when loading KVM and when enabling
9958 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9959 	 * compatible, i.e. KVM should never perform a compatibility check on
9960 	 * an offline CPU.
9961 	 */
9962 	WARN_ON(!cpu_online(cpu));
9963 
9964 	if (__cr4_reserved_bits(cpu_has, c) !=
9965 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9966 		return -EIO;
9967 
9968 	return kvm_x86_call(check_processor_compatibility)();
9969 }
9970 
kvm_x86_check_cpu_compat(void * ret)9971 static void kvm_x86_check_cpu_compat(void *ret)
9972 {
9973 	*(int *)ret = kvm_x86_check_processor_compatibility();
9974 }
9975 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9976 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9977 {
9978 	u64 host_pat;
9979 	int r, cpu;
9980 
9981 	guard(mutex)(&vendor_module_lock);
9982 
9983 	if (kvm_x86_ops.enable_virtualization_cpu) {
9984 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9985 		return -EEXIST;
9986 	}
9987 
9988 	/*
9989 	 * KVM explicitly assumes that the guest has an FPU and
9990 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9991 	 * vCPU's FPU state as a fxregs_state struct.
9992 	 */
9993 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9994 		pr_err("inadequate fpu\n");
9995 		return -EOPNOTSUPP;
9996 	}
9997 
9998 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9999 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
10000 		return -EOPNOTSUPP;
10001 	}
10002 
10003 	/*
10004 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10005 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
10006 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
10007 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
10008 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
10009 	 */
10010 	if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10011 	    (host_pat & GENMASK(2, 0)) != 6) {
10012 		pr_err("host PAT[0] is not WB\n");
10013 		return -EIO;
10014 	}
10015 
10016 	if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10017 		rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10018 		/*
10019 		 * Linux doesn't yet support supervisor shadow stacks (SSS), so
10020 		 * KVM doesn't save/restore the associated MSRs, i.e. KVM may
10021 		 * clobber the host values.  Yell and refuse to load if SSS is
10022 		 * unexpectedly enabled, e.g. to avoid crashing the host.
10023 		 */
10024 		if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10025 			return -EIO;
10026 	}
10027 
10028 	memset(&kvm_caps, 0, sizeof(kvm_caps));
10029 
10030 	x86_emulator_cache = kvm_alloc_emulator_cache();
10031 	if (!x86_emulator_cache) {
10032 		pr_err("failed to allocate cache for x86 emulator\n");
10033 		return -ENOMEM;
10034 	}
10035 
10036 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
10037 	if (!user_return_msrs) {
10038 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
10039 		r = -ENOMEM;
10040 		goto out_free_x86_emulator_cache;
10041 	}
10042 	kvm_nr_uret_msrs = 0;
10043 
10044 	r = kvm_mmu_vendor_module_init();
10045 	if (r)
10046 		goto out_free_percpu;
10047 
10048 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10049 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10050 
10051 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10052 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10053 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10054 	}
10055 
10056 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10057 		rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10058 		kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10059 	}
10060 
10061 	kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10062 	kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10063 
10064 	rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10065 
10066 	kvm_init_pmu_capability(ops->pmu_ops);
10067 
10068 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10069 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10070 
10071 	r = ops->hardware_setup();
10072 	if (r != 0)
10073 		goto out_mmu_exit;
10074 
10075 	enable_device_posted_irqs &= enable_apicv &&
10076 				     irq_remapping_cap(IRQ_POSTING_CAP);
10077 
10078 	kvm_ops_update(ops);
10079 
10080 	for_each_online_cpu(cpu) {
10081 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10082 		if (r < 0)
10083 			goto out_unwind_ops;
10084 	}
10085 
10086 	/*
10087 	 * Point of no return!  DO NOT add error paths below this point unless
10088 	 * absolutely necessary, as most operations from this point forward
10089 	 * require unwinding.
10090 	 */
10091 	kvm_timer_init();
10092 
10093 	if (pi_inject_timer == -1)
10094 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10095 #ifdef CONFIG_X86_64
10096 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10097 
10098 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10099 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10100 #endif
10101 
10102 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10103 
10104 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10105 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10106 
10107 	/* KVM always ignores guest PAT for shadow paging.  */
10108 	if (!tdp_enabled)
10109 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10110 
10111 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10112 		kvm_caps.supported_xss = 0;
10113 
10114 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10115 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
10116 		kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10117 
10118 	if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10119 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10120 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
10121 		kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10122 	}
10123 
10124 	if (kvm_caps.has_tsc_control) {
10125 		/*
10126 		 * Make sure the user can only configure tsc_khz values that
10127 		 * fit into a signed integer.
10128 		 * A min value is not calculated because it will always
10129 		 * be 1 on all machines.
10130 		 */
10131 		u64 max = min(0x7fffffffULL,
10132 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10133 		kvm_caps.max_guest_tsc_khz = max;
10134 	}
10135 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10136 	kvm_init_msr_lists();
10137 	return 0;
10138 
10139 out_unwind_ops:
10140 	kvm_x86_ops.enable_virtualization_cpu = NULL;
10141 	kvm_x86_call(hardware_unsetup)();
10142 out_mmu_exit:
10143 	kvm_mmu_vendor_module_exit();
10144 out_free_percpu:
10145 	free_percpu(user_return_msrs);
10146 out_free_x86_emulator_cache:
10147 	kmem_cache_destroy(x86_emulator_cache);
10148 	return r;
10149 }
10150 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10151 
kvm_x86_vendor_exit(void)10152 void kvm_x86_vendor_exit(void)
10153 {
10154 	kvm_unregister_perf_callbacks();
10155 
10156 #ifdef CONFIG_X86_64
10157 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10158 		clear_hv_tscchange_cb();
10159 #endif
10160 	kvm_lapic_exit();
10161 
10162 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10163 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10164 					    CPUFREQ_TRANSITION_NOTIFIER);
10165 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10166 	}
10167 #ifdef CONFIG_X86_64
10168 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10169 	irq_work_sync(&pvclock_irq_work);
10170 	cancel_work_sync(&pvclock_gtod_work);
10171 #endif
10172 	kvm_x86_call(hardware_unsetup)();
10173 	kvm_mmu_vendor_module_exit();
10174 	free_percpu(user_return_msrs);
10175 	kmem_cache_destroy(x86_emulator_cache);
10176 #ifdef CONFIG_KVM_XEN
10177 	static_key_deferred_flush(&kvm_xen_enabled);
10178 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10179 #endif
10180 	mutex_lock(&vendor_module_lock);
10181 	kvm_x86_ops.enable_virtualization_cpu = NULL;
10182 	mutex_unlock(&vendor_module_lock);
10183 }
10184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10185 
10186 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)10187 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10188 			        unsigned long clock_type)
10189 {
10190 	struct kvm_clock_pairing clock_pairing;
10191 	struct timespec64 ts;
10192 	u64 cycle;
10193 	int ret;
10194 
10195 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10196 		return -KVM_EOPNOTSUPP;
10197 
10198 	/*
10199 	 * When tsc is in permanent catchup mode guests won't be able to use
10200 	 * pvclock_read_retry loop to get consistent view of pvclock
10201 	 */
10202 	if (vcpu->arch.tsc_always_catchup)
10203 		return -KVM_EOPNOTSUPP;
10204 
10205 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10206 		return -KVM_EOPNOTSUPP;
10207 
10208 	clock_pairing.sec = ts.tv_sec;
10209 	clock_pairing.nsec = ts.tv_nsec;
10210 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10211 	clock_pairing.flags = 0;
10212 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10213 
10214 	ret = 0;
10215 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10216 			    sizeof(struct kvm_clock_pairing)))
10217 		ret = -KVM_EFAULT;
10218 
10219 	return ret;
10220 }
10221 #endif
10222 
10223 /*
10224  * kvm_pv_kick_cpu_op:  Kick a vcpu.
10225  *
10226  * @apicid - apicid of vcpu to be kicked.
10227  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)10228 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10229 {
10230 	/*
10231 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10232 	 * common code, e.g. for tracing. Defer initialization to the compiler.
10233 	 */
10234 	struct kvm_lapic_irq lapic_irq = {
10235 		.delivery_mode = APIC_DM_REMRD,
10236 		.dest_mode = APIC_DEST_PHYSICAL,
10237 		.shorthand = APIC_DEST_NOSHORT,
10238 		.dest_id = apicid,
10239 	};
10240 
10241 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10242 }
10243 
kvm_apicv_activated(struct kvm * kvm)10244 bool kvm_apicv_activated(struct kvm *kvm)
10245 {
10246 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10247 }
10248 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10249 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10250 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10251 {
10252 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10253 	ulong vcpu_reasons =
10254 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10255 
10256 	return (vm_reasons | vcpu_reasons) == 0;
10257 }
10258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10259 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10260 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10261 				       enum kvm_apicv_inhibit reason, bool set)
10262 {
10263 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10264 
10265 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10266 
10267 	if (set)
10268 		__set_bit(reason, inhibits);
10269 	else
10270 		__clear_bit(reason, inhibits);
10271 
10272 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10273 }
10274 
kvm_apicv_init(struct kvm * kvm)10275 static void kvm_apicv_init(struct kvm *kvm)
10276 {
10277 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10278 						       APICV_INHIBIT_REASON_DISABLED;
10279 
10280 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10281 
10282 	init_rwsem(&kvm->arch.apicv_update_lock);
10283 }
10284 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10285 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10286 {
10287 	struct kvm_vcpu *target = NULL;
10288 	struct kvm_apic_map *map;
10289 
10290 	vcpu->stat.directed_yield_attempted++;
10291 
10292 	if (single_task_running())
10293 		goto no_yield;
10294 
10295 	rcu_read_lock();
10296 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
10297 
10298 	if (likely(map) && dest_id <= map->max_apic_id) {
10299 		dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10300 		if (map->phys_map[dest_id])
10301 			target = map->phys_map[dest_id]->vcpu;
10302 	}
10303 
10304 	rcu_read_unlock();
10305 
10306 	if (!target || !READ_ONCE(target->ready))
10307 		goto no_yield;
10308 
10309 	/* Ignore requests to yield to self */
10310 	if (vcpu == target)
10311 		goto no_yield;
10312 
10313 	if (kvm_vcpu_yield_to(target) <= 0)
10314 		goto no_yield;
10315 
10316 	vcpu->stat.directed_yield_successful++;
10317 
10318 no_yield:
10319 	return;
10320 }
10321 
complete_hypercall_exit(struct kvm_vcpu * vcpu)10322 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10323 {
10324 	u64 ret = vcpu->run->hypercall.ret;
10325 
10326 	if (!is_64_bit_hypercall(vcpu))
10327 		ret = (u32)ret;
10328 	kvm_rax_write(vcpu, ret);
10329 	return kvm_skip_emulated_instruction(vcpu);
10330 }
10331 
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10332 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10333 			      int (*complete_hypercall)(struct kvm_vcpu *))
10334 {
10335 	unsigned long ret;
10336 	unsigned long nr = kvm_rax_read(vcpu);
10337 	unsigned long a0 = kvm_rbx_read(vcpu);
10338 	unsigned long a1 = kvm_rcx_read(vcpu);
10339 	unsigned long a2 = kvm_rdx_read(vcpu);
10340 	unsigned long a3 = kvm_rsi_read(vcpu);
10341 	int op_64_bit = is_64_bit_hypercall(vcpu);
10342 
10343 	++vcpu->stat.hypercalls;
10344 
10345 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10346 
10347 	if (!op_64_bit) {
10348 		nr &= 0xFFFFFFFF;
10349 		a0 &= 0xFFFFFFFF;
10350 		a1 &= 0xFFFFFFFF;
10351 		a2 &= 0xFFFFFFFF;
10352 		a3 &= 0xFFFFFFFF;
10353 	}
10354 
10355 	if (cpl) {
10356 		ret = -KVM_EPERM;
10357 		goto out;
10358 	}
10359 
10360 	ret = -KVM_ENOSYS;
10361 
10362 	switch (nr) {
10363 	case KVM_HC_VAPIC_POLL_IRQ:
10364 		ret = 0;
10365 		break;
10366 	case KVM_HC_KICK_CPU:
10367 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10368 			break;
10369 
10370 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10371 		kvm_sched_yield(vcpu, a1);
10372 		ret = 0;
10373 		break;
10374 #ifdef CONFIG_X86_64
10375 	case KVM_HC_CLOCK_PAIRING:
10376 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10377 		break;
10378 #endif
10379 	case KVM_HC_SEND_IPI:
10380 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10381 			break;
10382 
10383 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10384 		break;
10385 	case KVM_HC_SCHED_YIELD:
10386 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10387 			break;
10388 
10389 		kvm_sched_yield(vcpu, a0);
10390 		ret = 0;
10391 		break;
10392 	case KVM_HC_MAP_GPA_RANGE: {
10393 		u64 gpa = a0, npages = a1, attrs = a2;
10394 
10395 		ret = -KVM_ENOSYS;
10396 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10397 			break;
10398 
10399 		if (!PAGE_ALIGNED(gpa) || !npages ||
10400 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10401 			ret = -KVM_EINVAL;
10402 			break;
10403 		}
10404 
10405 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10406 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10407 		/*
10408 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10409 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10410 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10411 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10412 		 */
10413 		vcpu->run->hypercall.ret = 0;
10414 		vcpu->run->hypercall.args[0]  = gpa;
10415 		vcpu->run->hypercall.args[1]  = npages;
10416 		vcpu->run->hypercall.args[2]  = attrs;
10417 		vcpu->run->hypercall.flags    = 0;
10418 		if (op_64_bit)
10419 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10420 
10421 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10422 		vcpu->arch.complete_userspace_io = complete_hypercall;
10423 		return 0;
10424 	}
10425 	default:
10426 		ret = -KVM_ENOSYS;
10427 		break;
10428 	}
10429 
10430 out:
10431 	vcpu->run->hypercall.ret = ret;
10432 	return 1;
10433 }
10434 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10435 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10436 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10437 {
10438 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10439 		return kvm_xen_hypercall(vcpu);
10440 
10441 	if (kvm_hv_hypercall_enabled(vcpu))
10442 		return kvm_hv_hypercall(vcpu);
10443 
10444 	return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10445 				       complete_hypercall_exit);
10446 }
10447 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10448 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10449 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10450 {
10451 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10452 	char instruction[3];
10453 	unsigned long rip = kvm_rip_read(vcpu);
10454 
10455 	/*
10456 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10457 	 * the pieces.
10458 	 */
10459 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10460 		ctxt->exception.error_code_valid = false;
10461 		ctxt->exception.vector = UD_VECTOR;
10462 		ctxt->have_exception = true;
10463 		return X86EMUL_PROPAGATE_FAULT;
10464 	}
10465 
10466 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10467 
10468 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10469 		&ctxt->exception);
10470 }
10471 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10472 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10473 {
10474 	return vcpu->run->request_interrupt_window &&
10475 		likely(!pic_in_kernel(vcpu->kvm));
10476 }
10477 
10478 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10479 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10480 {
10481 	struct kvm_run *kvm_run = vcpu->run;
10482 
10483 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10484 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10485 	kvm_run->apic_base = vcpu->arch.apic_base;
10486 
10487 	kvm_run->ready_for_interrupt_injection =
10488 		pic_in_kernel(vcpu->kvm) ||
10489 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10490 
10491 	if (is_smm(vcpu))
10492 		kvm_run->flags |= KVM_RUN_X86_SMM;
10493 	if (is_guest_mode(vcpu))
10494 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10495 }
10496 
update_cr8_intercept(struct kvm_vcpu * vcpu)10497 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10498 {
10499 	int max_irr, tpr;
10500 
10501 	if (!kvm_x86_ops.update_cr8_intercept)
10502 		return;
10503 
10504 	if (!lapic_in_kernel(vcpu))
10505 		return;
10506 
10507 	if (vcpu->arch.apic->apicv_active)
10508 		return;
10509 
10510 	if (!vcpu->arch.apic->vapic_addr)
10511 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10512 	else
10513 		max_irr = -1;
10514 
10515 	if (max_irr != -1)
10516 		max_irr >>= 4;
10517 
10518 	tpr = kvm_lapic_get_cr8(vcpu);
10519 
10520 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10521 }
10522 
10523 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10524 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10525 {
10526 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10527 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10528 		return 1;
10529 	}
10530 
10531 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10532 }
10533 
kvm_inject_exception(struct kvm_vcpu * vcpu)10534 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10535 {
10536 	/*
10537 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10538 	 * exceptions don't report error codes.  The presence of an error code
10539 	 * is carried with the exception and only stripped when the exception
10540 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10541 	 * report an error code despite the CPU being in Real Mode.
10542 	 */
10543 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10544 
10545 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10546 				vcpu->arch.exception.has_error_code,
10547 				vcpu->arch.exception.error_code,
10548 				vcpu->arch.exception.injected);
10549 
10550 	kvm_x86_call(inject_exception)(vcpu);
10551 }
10552 
10553 /*
10554  * Check for any event (interrupt or exception) that is ready to be injected,
10555  * and if there is at least one event, inject the event with the highest
10556  * priority.  This handles both "pending" events, i.e. events that have never
10557  * been injected into the guest, and "injected" events, i.e. events that were
10558  * injected as part of a previous VM-Enter, but weren't successfully delivered
10559  * and need to be re-injected.
10560  *
10561  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10562  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10563  * be able to inject exceptions in the "middle" of an instruction, and so must
10564  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10565  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10566  * boundaries is necessary and correct.
10567  *
10568  * For simplicity, KVM uses a single path to inject all events (except events
10569  * that are injected directly from L1 to L2) and doesn't explicitly track
10570  * instruction boundaries for asynchronous events.  However, because VM-Exits
10571  * that can occur during instruction execution typically result in KVM skipping
10572  * the instruction or injecting an exception, e.g. instruction and exception
10573  * intercepts, and because pending exceptions have higher priority than pending
10574  * interrupts, KVM still honors instruction boundaries in most scenarios.
10575  *
10576  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10577  * the instruction or inject an exception, then KVM can incorrecty inject a new
10578  * asynchronous event if the event became pending after the CPU fetched the
10579  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10580  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10581  * injected on the restarted instruction instead of being deferred until the
10582  * instruction completes.
10583  *
10584  * In practice, this virtualization hole is unlikely to be observed by the
10585  * guest, and even less likely to cause functional problems.  To detect the
10586  * hole, the guest would have to trigger an event on a side effect of an early
10587  * phase of instruction execution, e.g. on the instruction fetch from memory.
10588  * And for it to be a functional problem, the guest would need to depend on the
10589  * ordering between that side effect, the instruction completing, _and_ the
10590  * delivery of the asynchronous event.
10591  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10592 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10593 				       bool *req_immediate_exit)
10594 {
10595 	bool can_inject;
10596 	int r;
10597 
10598 	/*
10599 	 * Process nested events first, as nested VM-Exit supersedes event
10600 	 * re-injection.  If there's an event queued for re-injection, it will
10601 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10602 	 */
10603 	if (is_guest_mode(vcpu))
10604 		r = kvm_check_nested_events(vcpu);
10605 	else
10606 		r = 0;
10607 
10608 	/*
10609 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10610 	 * to/from L2 is needed, as any event that has already been injected
10611 	 * into L2 needs to complete its lifecycle before injecting a new event.
10612 	 *
10613 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10614 	 * This collision arises if an exception occurred while vectoring the
10615 	 * injected event, KVM intercepted said exception, and KVM ultimately
10616 	 * determined the fault belongs to the guest and queues the exception
10617 	 * for injection back into the guest.
10618 	 *
10619 	 * "Injected" interrupts can also collide with pending exceptions if
10620 	 * userspace ignores the "ready for injection" flag and blindly queues
10621 	 * an interrupt.  In that case, prioritizing the exception is correct,
10622 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10623 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10624 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10625 	 * priority, they're only generated (pended) during instruction
10626 	 * execution, and interrupts are recognized at instruction boundaries.
10627 	 * Thus a pending fault-like exception means the fault occurred on the
10628 	 * *previous* instruction and must be serviced prior to recognizing any
10629 	 * new events in order to fully complete the previous instruction.
10630 	 */
10631 	if (vcpu->arch.exception.injected)
10632 		kvm_inject_exception(vcpu);
10633 	else if (kvm_is_exception_pending(vcpu))
10634 		; /* see above */
10635 	else if (vcpu->arch.nmi_injected)
10636 		kvm_x86_call(inject_nmi)(vcpu);
10637 	else if (vcpu->arch.interrupt.injected)
10638 		kvm_x86_call(inject_irq)(vcpu, true);
10639 
10640 	/*
10641 	 * Exceptions that morph to VM-Exits are handled above, and pending
10642 	 * exceptions on top of injected exceptions that do not VM-Exit should
10643 	 * either morph to #DF or, sadly, override the injected exception.
10644 	 */
10645 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10646 		     vcpu->arch.exception.pending);
10647 
10648 	/*
10649 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10650 	 * nested VM-Enter or event re-injection so that a different pending
10651 	 * event can be serviced (or if KVM needs to exit to userspace).
10652 	 *
10653 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10654 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10655 	 * there may now be events that can be injected into L1.
10656 	 */
10657 	if (r < 0)
10658 		goto out;
10659 
10660 	/*
10661 	 * A pending exception VM-Exit should either result in nested VM-Exit
10662 	 * or force an immediate re-entry and exit to/from L2, and exception
10663 	 * VM-Exits cannot be injected (flag should _never_ be set).
10664 	 */
10665 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10666 		     vcpu->arch.exception_vmexit.pending);
10667 
10668 	/*
10669 	 * New events, other than exceptions, cannot be injected if KVM needs
10670 	 * to re-inject a previous event.  See above comments on re-injecting
10671 	 * for why pending exceptions get priority.
10672 	 */
10673 	can_inject = !kvm_event_needs_reinjection(vcpu);
10674 
10675 	if (vcpu->arch.exception.pending) {
10676 		/*
10677 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10678 		 * value pushed on the stack.  Trap-like exception and all #DBs
10679 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10680 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10681 		 *
10682 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10683 		 * describe the behavior of General Detect #DBs, which are
10684 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10685 		 */
10686 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10687 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10688 					     X86_EFLAGS_RF);
10689 
10690 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10691 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10692 			if (vcpu->arch.dr7 & DR7_GD) {
10693 				vcpu->arch.dr7 &= ~DR7_GD;
10694 				kvm_update_dr7(vcpu);
10695 			}
10696 		}
10697 
10698 		kvm_inject_exception(vcpu);
10699 
10700 		vcpu->arch.exception.pending = false;
10701 		vcpu->arch.exception.injected = true;
10702 
10703 		can_inject = false;
10704 	}
10705 
10706 	/* Don't inject interrupts if the user asked to avoid doing so */
10707 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10708 		return 0;
10709 
10710 	/*
10711 	 * Finally, inject interrupt events.  If an event cannot be injected
10712 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10713 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10714 	 * and can architecturally be injected, but we cannot do it right now:
10715 	 * an interrupt could have arrived just now and we have to inject it
10716 	 * as a vmexit, or there could already an event in the queue, which is
10717 	 * indicated by can_inject.  In that case we request an immediate exit
10718 	 * in order to make progress and get back here for another iteration.
10719 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10720 	 */
10721 #ifdef CONFIG_KVM_SMM
10722 	if (vcpu->arch.smi_pending) {
10723 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10724 				 -EBUSY;
10725 		if (r < 0)
10726 			goto out;
10727 		if (r) {
10728 			vcpu->arch.smi_pending = false;
10729 			++vcpu->arch.smi_count;
10730 			enter_smm(vcpu);
10731 			can_inject = false;
10732 		} else
10733 			kvm_x86_call(enable_smi_window)(vcpu);
10734 	}
10735 #endif
10736 
10737 	if (vcpu->arch.nmi_pending) {
10738 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10739 				 -EBUSY;
10740 		if (r < 0)
10741 			goto out;
10742 		if (r) {
10743 			--vcpu->arch.nmi_pending;
10744 			vcpu->arch.nmi_injected = true;
10745 			kvm_x86_call(inject_nmi)(vcpu);
10746 			can_inject = false;
10747 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10748 		}
10749 		if (vcpu->arch.nmi_pending)
10750 			kvm_x86_call(enable_nmi_window)(vcpu);
10751 	}
10752 
10753 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10754 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10755 				 -EBUSY;
10756 		if (r < 0)
10757 			goto out;
10758 		if (r) {
10759 			int irq = kvm_cpu_get_interrupt(vcpu);
10760 
10761 			if (!WARN_ON_ONCE(irq == -1)) {
10762 				kvm_queue_interrupt(vcpu, irq, false);
10763 				kvm_x86_call(inject_irq)(vcpu, false);
10764 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10765 			}
10766 		}
10767 		if (kvm_cpu_has_injectable_intr(vcpu))
10768 			kvm_x86_call(enable_irq_window)(vcpu);
10769 	}
10770 
10771 	if (is_guest_mode(vcpu) &&
10772 	    kvm_x86_ops.nested_ops->has_events &&
10773 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10774 		*req_immediate_exit = true;
10775 
10776 	/*
10777 	 * KVM must never queue a new exception while injecting an event; KVM
10778 	 * is done emulating and should only propagate the to-be-injected event
10779 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10780 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10781 	 * exception and start the cycle all over.
10782 	 *
10783 	 * Exempt triple faults as they have special handling and won't put the
10784 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10785 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10786 	 * Mode events (see kvm_inject_realmode_interrupt()).
10787 	 */
10788 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10789 		     vcpu->arch.exception_vmexit.pending);
10790 	return 0;
10791 
10792 out:
10793 	if (r == -EBUSY) {
10794 		*req_immediate_exit = true;
10795 		r = 0;
10796 	}
10797 	return r;
10798 }
10799 
process_nmi(struct kvm_vcpu * vcpu)10800 static void process_nmi(struct kvm_vcpu *vcpu)
10801 {
10802 	unsigned int limit;
10803 
10804 	/*
10805 	 * x86 is limited to one NMI pending, but because KVM can't react to
10806 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10807 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10808 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10809 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10810 	 * waiting for a previous NMI injection to complete (which effectively
10811 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10812 	 * will request an NMI window to handle the second NMI.
10813 	 */
10814 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10815 		limit = 1;
10816 	else
10817 		limit = 2;
10818 
10819 	/*
10820 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10821 	 * tracked in vcpu->arch.nmi_pending.
10822 	 */
10823 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10824 		limit--;
10825 
10826 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10827 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10828 
10829 	if (vcpu->arch.nmi_pending &&
10830 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10831 		vcpu->arch.nmi_pending--;
10832 
10833 	if (vcpu->arch.nmi_pending)
10834 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10835 }
10836 
10837 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10838 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10839 {
10840 	return vcpu->arch.nmi_pending +
10841 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10842 }
10843 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10844 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10845 				       unsigned long *vcpu_bitmap)
10846 {
10847 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10848 }
10849 
kvm_make_scan_ioapic_request(struct kvm * kvm)10850 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10851 {
10852 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10853 }
10854 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10855 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10856 {
10857 	struct kvm_lapic *apic = vcpu->arch.apic;
10858 	bool activate;
10859 
10860 	if (!lapic_in_kernel(vcpu))
10861 		return;
10862 
10863 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10864 	preempt_disable();
10865 
10866 	/* Do not activate APICV when APIC is disabled */
10867 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10868 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10869 
10870 	if (apic->apicv_active == activate)
10871 		goto out;
10872 
10873 	apic->apicv_active = activate;
10874 	kvm_apic_update_apicv(vcpu);
10875 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10876 
10877 	/*
10878 	 * When APICv gets disabled, we may still have injected interrupts
10879 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10880 	 * still active when the interrupt got accepted. Make sure
10881 	 * kvm_check_and_inject_events() is called to check for that.
10882 	 */
10883 	if (!apic->apicv_active)
10884 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10885 
10886 out:
10887 	preempt_enable();
10888 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10889 }
10890 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10891 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10892 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10893 {
10894 	if (!lapic_in_kernel(vcpu))
10895 		return;
10896 
10897 	/*
10898 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10899 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10900 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10901 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10902 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10903 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10904 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10905 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10906 	 * access page is sticky.
10907 	 */
10908 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10909 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10910 		kvm_inhibit_apic_access_page(vcpu);
10911 
10912 	__kvm_vcpu_update_apicv(vcpu);
10913 }
10914 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10915 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10916 				      enum kvm_apicv_inhibit reason, bool set)
10917 {
10918 	unsigned long old, new;
10919 
10920 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10921 
10922 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10923 		return;
10924 
10925 	old = new = kvm->arch.apicv_inhibit_reasons;
10926 
10927 	set_or_clear_apicv_inhibit(&new, reason, set);
10928 
10929 	if (!!old != !!new) {
10930 		/*
10931 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10932 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10933 		 * This task will wait for all vCPUs to ack the kick IRQ before
10934 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10935 		 * block on acquiring apicv_update_lock so that vCPUs can't
10936 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10937 		 *
10938 		 * Note, holding apicv_update_lock and taking it in the read
10939 		 * side (handling the request) also prevents other vCPUs from
10940 		 * servicing the request with a stale apicv_inhibit_reasons.
10941 		 */
10942 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10943 		kvm->arch.apicv_inhibit_reasons = new;
10944 		if (new) {
10945 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10946 			int idx = srcu_read_lock(&kvm->srcu);
10947 
10948 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10949 			srcu_read_unlock(&kvm->srcu, idx);
10950 		}
10951 	} else {
10952 		kvm->arch.apicv_inhibit_reasons = new;
10953 	}
10954 }
10955 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10956 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10957 				    enum kvm_apicv_inhibit reason, bool set)
10958 {
10959 	if (!enable_apicv)
10960 		return;
10961 
10962 	down_write(&kvm->arch.apicv_update_lock);
10963 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10964 	up_write(&kvm->arch.apicv_update_lock);
10965 }
10966 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10967 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10968 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10969 {
10970 	if (!kvm_apic_present(vcpu))
10971 		return;
10972 
10973 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10974 	vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10975 
10976 	kvm_x86_call(sync_pir_to_irr)(vcpu);
10977 
10978 	if (irqchip_split(vcpu->kvm))
10979 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10980 #ifdef CONFIG_KVM_IOAPIC
10981 	else if (ioapic_in_kernel(vcpu->kvm))
10982 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10983 #endif
10984 
10985 	if (is_guest_mode(vcpu))
10986 		vcpu->arch.load_eoi_exitmap_pending = true;
10987 	else
10988 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10989 }
10990 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10991 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10992 {
10993 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10994 		return;
10995 
10996 #ifdef CONFIG_KVM_HYPERV
10997 	if (to_hv_vcpu(vcpu)) {
10998 		u64 eoi_exit_bitmap[4];
10999 
11000 		bitmap_or((ulong *)eoi_exit_bitmap,
11001 			  vcpu->arch.ioapic_handled_vectors,
11002 			  to_hv_synic(vcpu)->vec_bitmap, 256);
11003 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11004 		return;
11005 	}
11006 #endif
11007 	kvm_x86_call(load_eoi_exitmap)(
11008 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11009 }
11010 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)11011 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11012 {
11013 	kvm_x86_call(guest_memory_reclaimed)(kvm);
11014 }
11015 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)11016 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11017 {
11018 	if (!lapic_in_kernel(vcpu))
11019 		return;
11020 
11021 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
11022 }
11023 
11024 /*
11025  * Called within kvm->srcu read side.
11026  * Returns 1 to let vcpu_run() continue the guest execution loop without
11027  * exiting to the userspace.  Otherwise, the value will be returned to the
11028  * userspace.
11029  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)11030 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11031 {
11032 	int r;
11033 	bool req_int_win =
11034 		dm_request_for_irq_injection(vcpu) &&
11035 		kvm_cpu_accept_dm_intr(vcpu);
11036 	fastpath_t exit_fastpath;
11037 	u64 run_flags, debug_ctl;
11038 
11039 	bool req_immediate_exit = false;
11040 
11041 	if (kvm_request_pending(vcpu)) {
11042 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11043 			r = -EIO;
11044 			goto out;
11045 		}
11046 
11047 		if (kvm_dirty_ring_check_request(vcpu)) {
11048 			r = 0;
11049 			goto out;
11050 		}
11051 
11052 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11053 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11054 				r = 0;
11055 				goto out;
11056 			}
11057 		}
11058 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11059 			kvm_mmu_free_obsolete_roots(vcpu);
11060 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11061 			__kvm_migrate_timers(vcpu);
11062 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11063 			kvm_update_masterclock(vcpu->kvm);
11064 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11065 			kvm_gen_kvmclock_update(vcpu);
11066 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11067 			r = kvm_guest_time_update(vcpu);
11068 			if (unlikely(r))
11069 				goto out;
11070 		}
11071 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11072 			kvm_mmu_sync_roots(vcpu);
11073 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11074 			kvm_mmu_load_pgd(vcpu);
11075 
11076 		/*
11077 		 * Note, the order matters here, as flushing "all" TLB entries
11078 		 * also flushes the "current" TLB entries, i.e. servicing the
11079 		 * flush "all" will clear any request to flush "current".
11080 		 */
11081 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11082 			kvm_vcpu_flush_tlb_all(vcpu);
11083 
11084 		kvm_service_local_tlb_flush_requests(vcpu);
11085 
11086 		/*
11087 		 * Fall back to a "full" guest flush if Hyper-V's precise
11088 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
11089 		 * the flushes are considered "remote" and not "local" because
11090 		 * the requests can be initiated from other vCPUs.
11091 		 */
11092 #ifdef CONFIG_KVM_HYPERV
11093 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11094 		    kvm_hv_vcpu_flush_tlb(vcpu))
11095 			kvm_vcpu_flush_tlb_guest(vcpu);
11096 #endif
11097 
11098 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11099 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11100 			r = 0;
11101 			goto out;
11102 		}
11103 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11104 			if (is_guest_mode(vcpu))
11105 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
11106 
11107 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11108 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11109 				vcpu->mmio_needed = 0;
11110 				r = 0;
11111 				goto out;
11112 			}
11113 		}
11114 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11115 			/* Page is swapped out. Do synthetic halt */
11116 			vcpu->arch.apf.halted = true;
11117 			r = 1;
11118 			goto out;
11119 		}
11120 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11121 			record_steal_time(vcpu);
11122 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
11123 			kvm_pmu_handle_event(vcpu);
11124 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
11125 			kvm_pmu_deliver_pmi(vcpu);
11126 #ifdef CONFIG_KVM_SMM
11127 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
11128 			process_smi(vcpu);
11129 #endif
11130 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
11131 			process_nmi(vcpu);
11132 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11133 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11134 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
11135 				     vcpu->arch.ioapic_handled_vectors)) {
11136 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11137 				vcpu->run->eoi.vector =
11138 						vcpu->arch.pending_ioapic_eoi;
11139 				r = 0;
11140 				goto out;
11141 			}
11142 		}
11143 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11144 			vcpu_scan_ioapic(vcpu);
11145 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11146 			vcpu_load_eoi_exitmap(vcpu);
11147 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11148 			kvm_vcpu_reload_apic_access_page(vcpu);
11149 #ifdef CONFIG_KVM_HYPERV
11150 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11151 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11152 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11153 			vcpu->run->system_event.ndata = 0;
11154 			r = 0;
11155 			goto out;
11156 		}
11157 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11158 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11159 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11160 			vcpu->run->system_event.ndata = 0;
11161 			r = 0;
11162 			goto out;
11163 		}
11164 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11165 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11166 
11167 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11168 			vcpu->run->hyperv = hv_vcpu->exit;
11169 			r = 0;
11170 			goto out;
11171 		}
11172 
11173 		/*
11174 		 * KVM_REQ_HV_STIMER has to be processed after
11175 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11176 		 * depend on the guest clock being up-to-date
11177 		 */
11178 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11179 			kvm_hv_process_stimers(vcpu);
11180 #endif
11181 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11182 			kvm_vcpu_update_apicv(vcpu);
11183 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11184 			kvm_check_async_pf_completion(vcpu);
11185 
11186 		if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11187 			kvm_x86_call(recalc_intercepts)(vcpu);
11188 
11189 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11190 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11191 
11192 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11193 			kvm_vcpu_reset(vcpu, true);
11194 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11195 				r = 1;
11196 				goto out;
11197 			}
11198 		}
11199 	}
11200 
11201 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11202 	    kvm_xen_has_interrupt(vcpu)) {
11203 		++vcpu->stat.req_event;
11204 		r = kvm_apic_accept_events(vcpu);
11205 		if (r < 0) {
11206 			r = 0;
11207 			goto out;
11208 		}
11209 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11210 			r = 1;
11211 			goto out;
11212 		}
11213 
11214 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11215 		if (r < 0) {
11216 			r = 0;
11217 			goto out;
11218 		}
11219 		if (req_int_win)
11220 			kvm_x86_call(enable_irq_window)(vcpu);
11221 
11222 		if (kvm_lapic_enabled(vcpu)) {
11223 			update_cr8_intercept(vcpu);
11224 			kvm_lapic_sync_to_vapic(vcpu);
11225 		}
11226 	}
11227 
11228 	r = kvm_mmu_reload(vcpu);
11229 	if (unlikely(r)) {
11230 		goto cancel_injection;
11231 	}
11232 
11233 	preempt_disable();
11234 
11235 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
11236 
11237 	/*
11238 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
11239 	 * IPI are then delayed after guest entry, which ensures that they
11240 	 * result in virtual interrupt delivery.
11241 	 */
11242 	local_irq_disable();
11243 
11244 	/* Store vcpu->apicv_active before vcpu->mode.  */
11245 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11246 
11247 	kvm_vcpu_srcu_read_unlock(vcpu);
11248 
11249 	/*
11250 	 * 1) We should set ->mode before checking ->requests.  Please see
11251 	 * the comment in kvm_vcpu_exiting_guest_mode().
11252 	 *
11253 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
11254 	 * pairs with the memory barrier implicit in pi_test_and_set_on
11255 	 * (see vmx_deliver_posted_interrupt).
11256 	 *
11257 	 * 3) This also orders the write to mode from any reads to the page
11258 	 * tables done while the VCPU is running.  Please see the comment
11259 	 * in kvm_flush_remote_tlbs.
11260 	 */
11261 	smp_mb__after_srcu_read_unlock();
11262 
11263 	/*
11264 	 * Process pending posted interrupts to handle the case where the
11265 	 * notification IRQ arrived in the host, or was never sent (because the
11266 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11267 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
11268 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
11269 	 */
11270 	if (kvm_lapic_enabled(vcpu))
11271 		kvm_x86_call(sync_pir_to_irr)(vcpu);
11272 
11273 	if (kvm_vcpu_exit_request(vcpu)) {
11274 		vcpu->mode = OUTSIDE_GUEST_MODE;
11275 		smp_wmb();
11276 		local_irq_enable();
11277 		preempt_enable();
11278 		kvm_vcpu_srcu_read_lock(vcpu);
11279 		r = 1;
11280 		goto cancel_injection;
11281 	}
11282 
11283 	run_flags = 0;
11284 	if (req_immediate_exit) {
11285 		run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11286 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11287 	}
11288 
11289 	fpregs_assert_state_consistent();
11290 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
11291 		switch_fpu_return();
11292 
11293 	if (vcpu->arch.guest_fpu.xfd_err)
11294 		wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11295 
11296 	if (unlikely(vcpu->arch.switch_db_regs &&
11297 		     !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11298 		set_debugreg(DR7_FIXED_1, 7);
11299 		set_debugreg(vcpu->arch.eff_db[0], 0);
11300 		set_debugreg(vcpu->arch.eff_db[1], 1);
11301 		set_debugreg(vcpu->arch.eff_db[2], 2);
11302 		set_debugreg(vcpu->arch.eff_db[3], 3);
11303 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11304 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11305 			run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11306 	} else if (unlikely(hw_breakpoint_active())) {
11307 		set_debugreg(DR7_FIXED_1, 7);
11308 	}
11309 
11310 	/*
11311 	 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11312 	 * can be modified in IRQ context, e.g. via SMP function calls.  Inform
11313 	 * vendor code if any host-owned bits were changed, e.g. so that the
11314 	 * value loaded into hardware while running the guest can be updated.
11315 	 */
11316 	debug_ctl = get_debugctlmsr();
11317 	if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11318 	    !vcpu->arch.guest_state_protected)
11319 		run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11320 	vcpu->arch.host_debugctl = debug_ctl;
11321 
11322 	guest_timing_enter_irqoff();
11323 
11324 	for (;;) {
11325 		/*
11326 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11327 		 * update must kick and wait for all vCPUs before toggling the
11328 		 * per-VM state, and responding vCPUs must wait for the update
11329 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11330 		 */
11331 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11332 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11333 
11334 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11335 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11336 			break;
11337 
11338 		if (kvm_lapic_enabled(vcpu))
11339 			kvm_x86_call(sync_pir_to_irr)(vcpu);
11340 
11341 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11342 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11343 			break;
11344 		}
11345 
11346 		run_flags = 0;
11347 
11348 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11349 		++vcpu->stat.exits;
11350 	}
11351 
11352 	/*
11353 	 * Do this here before restoring debug registers on the host.  And
11354 	 * since we do this before handling the vmexit, a DR access vmexit
11355 	 * can (a) read the correct value of the debug registers, (b) set
11356 	 * KVM_DEBUGREG_WONT_EXIT again.
11357 	 */
11358 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11359 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11360 		WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11361 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11362 		kvm_update_dr0123(vcpu);
11363 		kvm_update_dr7(vcpu);
11364 	}
11365 
11366 	/*
11367 	 * If the guest has used debug registers, at least dr7
11368 	 * will be disabled while returning to the host.
11369 	 * If we don't have active breakpoints in the host, we don't
11370 	 * care about the messed up debug address registers. But if
11371 	 * we have some of them active, restore the old state.
11372 	 */
11373 	if (hw_breakpoint_active())
11374 		hw_breakpoint_restore();
11375 
11376 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11377 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11378 
11379 	vcpu->mode = OUTSIDE_GUEST_MODE;
11380 	smp_wmb();
11381 
11382 	/*
11383 	 * Sync xfd before calling handle_exit_irqoff() which may
11384 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11385 	 * in #NM irqoff handler).
11386 	 */
11387 	if (vcpu->arch.xfd_no_write_intercept)
11388 		fpu_sync_guest_vmexit_xfd_state();
11389 
11390 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11391 
11392 	if (vcpu->arch.guest_fpu.xfd_err)
11393 		wrmsrq(MSR_IA32_XFD_ERR, 0);
11394 
11395 	/*
11396 	 * Mark this CPU as needing a branch predictor flush before running
11397 	 * userspace. Must be done before enabling preemption to ensure it gets
11398 	 * set for the CPU that actually ran the guest, and not the CPU that it
11399 	 * may migrate to.
11400 	 */
11401 	if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11402 		this_cpu_write(x86_ibpb_exit_to_user, true);
11403 
11404 	/*
11405 	 * Consume any pending interrupts, including the possible source of
11406 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11407 	 * An instruction is required after local_irq_enable() to fully unblock
11408 	 * interrupts on processors that implement an interrupt shadow, the
11409 	 * stat.exits increment will do nicely.
11410 	 */
11411 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11412 	local_irq_enable();
11413 	++vcpu->stat.exits;
11414 	local_irq_disable();
11415 	kvm_after_interrupt(vcpu);
11416 
11417 	/*
11418 	 * Wait until after servicing IRQs to account guest time so that any
11419 	 * ticks that occurred while running the guest are properly accounted
11420 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11421 	 * of accounting via context tracking, but the loss of accuracy is
11422 	 * acceptable for all known use cases.
11423 	 */
11424 	guest_timing_exit_irqoff();
11425 
11426 	local_irq_enable();
11427 	preempt_enable();
11428 
11429 	kvm_vcpu_srcu_read_lock(vcpu);
11430 
11431 	/*
11432 	 * Call this to ensure WC buffers in guest are evicted after each VM
11433 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11434 	 */
11435 	smp_mb__after_srcu_read_lock();
11436 
11437 	/*
11438 	 * Profile KVM exit RIPs:
11439 	 */
11440 	if (unlikely(prof_on == KVM_PROFILING &&
11441 		     !vcpu->arch.guest_state_protected)) {
11442 		unsigned long rip = kvm_rip_read(vcpu);
11443 		profile_hit(KVM_PROFILING, (void *)rip);
11444 	}
11445 
11446 	if (unlikely(vcpu->arch.tsc_always_catchup))
11447 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11448 
11449 	if (vcpu->arch.apic_attention)
11450 		kvm_lapic_sync_from_vapic(vcpu);
11451 
11452 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11453 		return 0;
11454 
11455 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11456 	return r;
11457 
11458 cancel_injection:
11459 	if (req_immediate_exit)
11460 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11461 	kvm_x86_call(cancel_injection)(vcpu);
11462 	if (unlikely(vcpu->arch.apic_attention))
11463 		kvm_lapic_sync_from_vapic(vcpu);
11464 out:
11465 	return r;
11466 }
11467 
kvm_vcpu_running(struct kvm_vcpu * vcpu)11468 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11469 {
11470 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11471 		!vcpu->arch.apf.halted);
11472 }
11473 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11474 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11475 {
11476 	if (!list_empty_careful(&vcpu->async_pf.done))
11477 		return true;
11478 
11479 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11480 	    kvm_apic_init_sipi_allowed(vcpu))
11481 		return true;
11482 
11483 	if (kvm_is_exception_pending(vcpu))
11484 		return true;
11485 
11486 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11487 	    (vcpu->arch.nmi_pending &&
11488 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11489 		return true;
11490 
11491 #ifdef CONFIG_KVM_SMM
11492 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11493 	    (vcpu->arch.smi_pending &&
11494 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11495 		return true;
11496 #endif
11497 
11498 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11499 		return true;
11500 
11501 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11502 		return true;
11503 
11504 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11505 		return true;
11506 
11507 	if (kvm_hv_has_stimer_pending(vcpu))
11508 		return true;
11509 
11510 	if (is_guest_mode(vcpu) &&
11511 	    kvm_x86_ops.nested_ops->has_events &&
11512 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11513 		return true;
11514 
11515 	if (kvm_xen_has_pending_events(vcpu))
11516 		return true;
11517 
11518 	return false;
11519 }
11520 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11521 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11522 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11523 {
11524 	return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11525 	       kvm_vcpu_has_events(vcpu);
11526 }
11527 
11528 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11529 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11530 {
11531 	bool hv_timer;
11532 
11533 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11534 		/*
11535 		 * Switch to the software timer before halt-polling/blocking as
11536 		 * the guest's timer may be a break event for the vCPU, and the
11537 		 * hypervisor timer runs only when the CPU is in guest mode.
11538 		 * Switch before halt-polling so that KVM recognizes an expired
11539 		 * timer before blocking.
11540 		 */
11541 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11542 		if (hv_timer)
11543 			kvm_lapic_switch_to_sw_timer(vcpu);
11544 
11545 		kvm_vcpu_srcu_read_unlock(vcpu);
11546 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11547 			kvm_vcpu_halt(vcpu);
11548 		else
11549 			kvm_vcpu_block(vcpu);
11550 		kvm_vcpu_srcu_read_lock(vcpu);
11551 
11552 		if (hv_timer)
11553 			kvm_lapic_switch_to_hv_timer(vcpu);
11554 
11555 		/*
11556 		 * If the vCPU is not runnable, a signal or another host event
11557 		 * of some kind is pending; service it without changing the
11558 		 * vCPU's activity state.
11559 		 */
11560 		if (!kvm_arch_vcpu_runnable(vcpu))
11561 			return 1;
11562 	}
11563 
11564 	/*
11565 	 * Evaluate nested events before exiting the halted state.  This allows
11566 	 * the halt state to be recorded properly in the VMCS12's activity
11567 	 * state field (AMD does not have a similar field and a VM-Exit always
11568 	 * causes a spurious wakeup from HLT).
11569 	 */
11570 	if (is_guest_mode(vcpu)) {
11571 		int r = kvm_check_nested_events(vcpu);
11572 
11573 		WARN_ON_ONCE(r == -EBUSY);
11574 		if (r < 0)
11575 			return 0;
11576 	}
11577 
11578 	if (kvm_apic_accept_events(vcpu) < 0)
11579 		return 0;
11580 	switch(vcpu->arch.mp_state) {
11581 	case KVM_MP_STATE_HALTED:
11582 	case KVM_MP_STATE_AP_RESET_HOLD:
11583 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11584 		fallthrough;
11585 	case KVM_MP_STATE_RUNNABLE:
11586 		vcpu->arch.apf.halted = false;
11587 		break;
11588 	case KVM_MP_STATE_INIT_RECEIVED:
11589 		break;
11590 	default:
11591 		WARN_ON_ONCE(1);
11592 		break;
11593 	}
11594 	return 1;
11595 }
11596 
11597 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11598 static int vcpu_run(struct kvm_vcpu *vcpu)
11599 {
11600 	int r;
11601 
11602 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11603 
11604 	for (;;) {
11605 		/*
11606 		 * If another guest vCPU requests a PV TLB flush in the middle
11607 		 * of instruction emulation, the rest of the emulation could
11608 		 * use a stale page translation. Assume that any code after
11609 		 * this point can start executing an instruction.
11610 		 */
11611 		vcpu->arch.at_instruction_boundary = false;
11612 		if (kvm_vcpu_running(vcpu)) {
11613 			r = vcpu_enter_guest(vcpu);
11614 		} else {
11615 			r = vcpu_block(vcpu);
11616 		}
11617 
11618 		if (r <= 0)
11619 			break;
11620 
11621 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11622 		if (kvm_xen_has_pending_events(vcpu))
11623 			kvm_xen_inject_pending_events(vcpu);
11624 
11625 		if (kvm_cpu_has_pending_timer(vcpu))
11626 			kvm_inject_pending_timer_irqs(vcpu);
11627 
11628 		if (dm_request_for_irq_injection(vcpu) &&
11629 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11630 			r = 0;
11631 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11632 			++vcpu->stat.request_irq_exits;
11633 			break;
11634 		}
11635 
11636 		if (__xfer_to_guest_mode_work_pending()) {
11637 			kvm_vcpu_srcu_read_unlock(vcpu);
11638 			r = xfer_to_guest_mode_handle_work(vcpu);
11639 			kvm_vcpu_srcu_read_lock(vcpu);
11640 			if (r)
11641 				return r;
11642 		}
11643 	}
11644 
11645 	return r;
11646 }
11647 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11648 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11649 {
11650 	/*
11651 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11652 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11653 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11654 	 * managed by userspace, in which case userspace is responsible for
11655 	 * handling wake events.
11656 	 */
11657 	++vcpu->stat.halt_exits;
11658 	if (lapic_in_kernel(vcpu)) {
11659 		if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11660 			state = KVM_MP_STATE_RUNNABLE;
11661 		kvm_set_mp_state(vcpu, state);
11662 		return 1;
11663 	} else {
11664 		vcpu->run->exit_reason = reason;
11665 		return 0;
11666 	}
11667 }
11668 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11669 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11670 {
11671 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11672 }
11673 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11674 
kvm_emulate_halt(struct kvm_vcpu * vcpu)11675 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11676 {
11677 	int ret = kvm_skip_emulated_instruction(vcpu);
11678 	/*
11679 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11680 	 * KVM_EXIT_DEBUG here.
11681 	 */
11682 	return kvm_emulate_halt_noskip(vcpu) && ret;
11683 }
11684 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11685 
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11686 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11687 {
11688 	if (!kvm_emulate_halt(vcpu))
11689 		return EXIT_FASTPATH_EXIT_USERSPACE;
11690 
11691 	if (kvm_vcpu_running(vcpu))
11692 		return EXIT_FASTPATH_REENTER_GUEST;
11693 
11694 	return EXIT_FASTPATH_EXIT_HANDLED;
11695 }
11696 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11697 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11698 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11699 {
11700 	int ret = kvm_skip_emulated_instruction(vcpu);
11701 
11702 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11703 					KVM_EXIT_AP_RESET_HOLD) && ret;
11704 }
11705 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11706 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11707 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11708 {
11709 	return kvm_vcpu_apicv_active(vcpu) &&
11710 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11711 }
11712 
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11713 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11714 {
11715 	return vcpu->arch.preempted_in_kernel;
11716 }
11717 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11718 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11719 {
11720 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11721 		return true;
11722 
11723 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11724 #ifdef CONFIG_KVM_SMM
11725 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11726 #endif
11727 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11728 		return true;
11729 
11730 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11731 }
11732 
complete_emulated_io(struct kvm_vcpu * vcpu)11733 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11734 {
11735 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11736 }
11737 
complete_emulated_pio(struct kvm_vcpu * vcpu)11738 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11739 {
11740 	BUG_ON(!vcpu->arch.pio.count);
11741 
11742 	return complete_emulated_io(vcpu);
11743 }
11744 
11745 /*
11746  * Implements the following, as a state machine:
11747  *
11748  * read:
11749  *   for each fragment
11750  *     for each mmio piece in the fragment
11751  *       write gpa, len
11752  *       exit
11753  *       copy data
11754  *   execute insn
11755  *
11756  * write:
11757  *   for each fragment
11758  *     for each mmio piece in the fragment
11759  *       write gpa, len
11760  *       copy data
11761  *       exit
11762  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11763 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11764 {
11765 	struct kvm_run *run = vcpu->run;
11766 	struct kvm_mmio_fragment *frag;
11767 	unsigned len;
11768 
11769 	BUG_ON(!vcpu->mmio_needed);
11770 
11771 	/* Complete previous fragment */
11772 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11773 	len = min(8u, frag->len);
11774 	if (!vcpu->mmio_is_write)
11775 		memcpy(frag->data, run->mmio.data, len);
11776 
11777 	if (frag->len <= 8) {
11778 		/* Switch to the next fragment. */
11779 		frag++;
11780 		vcpu->mmio_cur_fragment++;
11781 	} else {
11782 		/* Go forward to the next mmio piece. */
11783 		frag->data += len;
11784 		frag->gpa += len;
11785 		frag->len -= len;
11786 	}
11787 
11788 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11789 		vcpu->mmio_needed = 0;
11790 
11791 		/* FIXME: return into emulator if single-stepping.  */
11792 		if (vcpu->mmio_is_write)
11793 			return 1;
11794 		vcpu->mmio_read_completed = 1;
11795 		return complete_emulated_io(vcpu);
11796 	}
11797 
11798 	run->exit_reason = KVM_EXIT_MMIO;
11799 	run->mmio.phys_addr = frag->gpa;
11800 	if (vcpu->mmio_is_write)
11801 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11802 	run->mmio.len = min(8u, frag->len);
11803 	run->mmio.is_write = vcpu->mmio_is_write;
11804 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11805 	return 0;
11806 }
11807 
11808 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11809 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11810 {
11811 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11812 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11813 	trace_kvm_fpu(1);
11814 }
11815 
11816 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11817 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11818 {
11819 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11820 	++vcpu->stat.fpu_reload;
11821 	trace_kvm_fpu(0);
11822 }
11823 
kvm_x86_vcpu_pre_run(struct kvm_vcpu * vcpu)11824 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11825 {
11826 	/*
11827 	 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11828 	 * tracks the pending SIPI separately.  SIPI_RECEIVED is still accepted
11829 	 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11830 	 * converted to INIT_RECEIVED.
11831 	 */
11832 	if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11833 		return -EINVAL;
11834 
11835 	/*
11836 	 * Disallow running the vCPU if userspace forced it into an impossible
11837 	 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11838 	 */
11839 	if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11840 	    !kvm_apic_init_sipi_allowed(vcpu))
11841 		return -EINVAL;
11842 
11843 	return kvm_x86_call(vcpu_pre_run)(vcpu);
11844 }
11845 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11846 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11847 {
11848 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11849 	struct kvm_run *kvm_run = vcpu->run;
11850 	u64 sync_valid_fields;
11851 	int r;
11852 
11853 	r = kvm_mmu_post_init_vm(vcpu->kvm);
11854 	if (r)
11855 		return r;
11856 
11857 	vcpu_load(vcpu);
11858 	kvm_sigset_activate(vcpu);
11859 	kvm_run->flags = 0;
11860 	kvm_load_guest_fpu(vcpu);
11861 
11862 	kvm_vcpu_srcu_read_lock(vcpu);
11863 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11864 		if (!vcpu->wants_to_run) {
11865 			r = -EINTR;
11866 			goto out;
11867 		}
11868 
11869 		/*
11870 		 * Don't bother switching APIC timer emulation from the
11871 		 * hypervisor timer to the software timer, the only way for the
11872 		 * APIC timer to be active is if userspace stuffed vCPU state,
11873 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11874 		 * will transition the vCPU out of UNINITIALIZED (without more
11875 		 * state stuffing from userspace), which will reset the local
11876 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11877 		 * already expired).
11878 		 */
11879 		kvm_vcpu_srcu_read_unlock(vcpu);
11880 		kvm_vcpu_block(vcpu);
11881 		kvm_vcpu_srcu_read_lock(vcpu);
11882 
11883 		if (kvm_apic_accept_events(vcpu) < 0) {
11884 			r = 0;
11885 			goto out;
11886 		}
11887 		r = -EAGAIN;
11888 		if (signal_pending(current)) {
11889 			r = -EINTR;
11890 			kvm_run->exit_reason = KVM_EXIT_INTR;
11891 			++vcpu->stat.signal_exits;
11892 		}
11893 		goto out;
11894 	}
11895 
11896 	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11897 	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11898 	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11899 		r = -EINVAL;
11900 		goto out;
11901 	}
11902 
11903 	if (kvm_run->kvm_dirty_regs) {
11904 		r = sync_regs(vcpu);
11905 		if (r != 0)
11906 			goto out;
11907 	}
11908 
11909 	/* re-sync apic's tpr */
11910 	if (!lapic_in_kernel(vcpu)) {
11911 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11912 			r = -EINVAL;
11913 			goto out;
11914 		}
11915 	}
11916 
11917 	/*
11918 	 * If userspace set a pending exception and L2 is active, convert it to
11919 	 * a pending VM-Exit if L1 wants to intercept the exception.
11920 	 */
11921 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11922 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11923 							ex->error_code)) {
11924 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11925 					   ex->has_error_code, ex->error_code,
11926 					   ex->has_payload, ex->payload);
11927 		ex->injected = false;
11928 		ex->pending = false;
11929 	}
11930 	vcpu->arch.exception_from_userspace = false;
11931 
11932 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11933 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11934 		vcpu->arch.complete_userspace_io = NULL;
11935 		r = cui(vcpu);
11936 		if (r <= 0)
11937 			goto out;
11938 	} else {
11939 		WARN_ON_ONCE(vcpu->arch.pio.count);
11940 		WARN_ON_ONCE(vcpu->mmio_needed);
11941 	}
11942 
11943 	if (!vcpu->wants_to_run) {
11944 		r = -EINTR;
11945 		goto out;
11946 	}
11947 
11948 	r = kvm_x86_vcpu_pre_run(vcpu);
11949 	if (r <= 0)
11950 		goto out;
11951 
11952 	r = vcpu_run(vcpu);
11953 
11954 out:
11955 	kvm_put_guest_fpu(vcpu);
11956 	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11957 		store_regs(vcpu);
11958 	post_kvm_run_save(vcpu);
11959 	kvm_vcpu_srcu_read_unlock(vcpu);
11960 
11961 	kvm_sigset_deactivate(vcpu);
11962 	vcpu_put(vcpu);
11963 	return r;
11964 }
11965 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11966 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11967 {
11968 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11969 		/*
11970 		 * We are here if userspace calls get_regs() in the middle of
11971 		 * instruction emulation. Registers state needs to be copied
11972 		 * back from emulation context to vcpu. Userspace shouldn't do
11973 		 * that usually, but some bad designed PV devices (vmware
11974 		 * backdoor interface) need this to work
11975 		 */
11976 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11977 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11978 	}
11979 	regs->rax = kvm_rax_read(vcpu);
11980 	regs->rbx = kvm_rbx_read(vcpu);
11981 	regs->rcx = kvm_rcx_read(vcpu);
11982 	regs->rdx = kvm_rdx_read(vcpu);
11983 	regs->rsi = kvm_rsi_read(vcpu);
11984 	regs->rdi = kvm_rdi_read(vcpu);
11985 	regs->rsp = kvm_rsp_read(vcpu);
11986 	regs->rbp = kvm_rbp_read(vcpu);
11987 #ifdef CONFIG_X86_64
11988 	regs->r8 = kvm_r8_read(vcpu);
11989 	regs->r9 = kvm_r9_read(vcpu);
11990 	regs->r10 = kvm_r10_read(vcpu);
11991 	regs->r11 = kvm_r11_read(vcpu);
11992 	regs->r12 = kvm_r12_read(vcpu);
11993 	regs->r13 = kvm_r13_read(vcpu);
11994 	regs->r14 = kvm_r14_read(vcpu);
11995 	regs->r15 = kvm_r15_read(vcpu);
11996 #endif
11997 
11998 	regs->rip = kvm_rip_read(vcpu);
11999 	regs->rflags = kvm_get_rflags(vcpu);
12000 }
12001 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12002 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12003 {
12004 	if (vcpu->kvm->arch.has_protected_state &&
12005 	    vcpu->arch.guest_state_protected)
12006 		return -EINVAL;
12007 
12008 	vcpu_load(vcpu);
12009 	__get_regs(vcpu, regs);
12010 	vcpu_put(vcpu);
12011 	return 0;
12012 }
12013 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12014 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12015 {
12016 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12017 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12018 
12019 	kvm_rax_write(vcpu, regs->rax);
12020 	kvm_rbx_write(vcpu, regs->rbx);
12021 	kvm_rcx_write(vcpu, regs->rcx);
12022 	kvm_rdx_write(vcpu, regs->rdx);
12023 	kvm_rsi_write(vcpu, regs->rsi);
12024 	kvm_rdi_write(vcpu, regs->rdi);
12025 	kvm_rsp_write(vcpu, regs->rsp);
12026 	kvm_rbp_write(vcpu, regs->rbp);
12027 #ifdef CONFIG_X86_64
12028 	kvm_r8_write(vcpu, regs->r8);
12029 	kvm_r9_write(vcpu, regs->r9);
12030 	kvm_r10_write(vcpu, regs->r10);
12031 	kvm_r11_write(vcpu, regs->r11);
12032 	kvm_r12_write(vcpu, regs->r12);
12033 	kvm_r13_write(vcpu, regs->r13);
12034 	kvm_r14_write(vcpu, regs->r14);
12035 	kvm_r15_write(vcpu, regs->r15);
12036 #endif
12037 
12038 	kvm_rip_write(vcpu, regs->rip);
12039 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12040 
12041 	vcpu->arch.exception.pending = false;
12042 	vcpu->arch.exception_vmexit.pending = false;
12043 
12044 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12045 }
12046 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12047 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12048 {
12049 	if (vcpu->kvm->arch.has_protected_state &&
12050 	    vcpu->arch.guest_state_protected)
12051 		return -EINVAL;
12052 
12053 	vcpu_load(vcpu);
12054 	__set_regs(vcpu, regs);
12055 	vcpu_put(vcpu);
12056 	return 0;
12057 }
12058 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12059 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12060 {
12061 	struct desc_ptr dt;
12062 
12063 	if (vcpu->arch.guest_state_protected)
12064 		goto skip_protected_regs;
12065 
12066 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12067 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12068 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12069 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12070 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12071 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12072 
12073 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12074 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12075 
12076 	kvm_x86_call(get_idt)(vcpu, &dt);
12077 	sregs->idt.limit = dt.size;
12078 	sregs->idt.base = dt.address;
12079 	kvm_x86_call(get_gdt)(vcpu, &dt);
12080 	sregs->gdt.limit = dt.size;
12081 	sregs->gdt.base = dt.address;
12082 
12083 	sregs->cr2 = vcpu->arch.cr2;
12084 	sregs->cr3 = kvm_read_cr3(vcpu);
12085 
12086 skip_protected_regs:
12087 	sregs->cr0 = kvm_read_cr0(vcpu);
12088 	sregs->cr4 = kvm_read_cr4(vcpu);
12089 	sregs->cr8 = kvm_get_cr8(vcpu);
12090 	sregs->efer = vcpu->arch.efer;
12091 	sregs->apic_base = vcpu->arch.apic_base;
12092 }
12093 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12094 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12095 {
12096 	__get_sregs_common(vcpu, sregs);
12097 
12098 	if (vcpu->arch.guest_state_protected)
12099 		return;
12100 
12101 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12102 		set_bit(vcpu->arch.interrupt.nr,
12103 			(unsigned long *)sregs->interrupt_bitmap);
12104 }
12105 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12106 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12107 {
12108 	int i;
12109 
12110 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12111 
12112 	if (vcpu->arch.guest_state_protected)
12113 		return;
12114 
12115 	if (is_pae_paging(vcpu)) {
12116 		for (i = 0 ; i < 4 ; i++)
12117 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12118 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12119 	}
12120 }
12121 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12122 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12123 				  struct kvm_sregs *sregs)
12124 {
12125 	if (vcpu->kvm->arch.has_protected_state &&
12126 	    vcpu->arch.guest_state_protected)
12127 		return -EINVAL;
12128 
12129 	vcpu_load(vcpu);
12130 	__get_sregs(vcpu, sregs);
12131 	vcpu_put(vcpu);
12132 	return 0;
12133 }
12134 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12135 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12136 				    struct kvm_mp_state *mp_state)
12137 {
12138 	int r;
12139 
12140 	vcpu_load(vcpu);
12141 	if (kvm_mpx_supported())
12142 		kvm_load_guest_fpu(vcpu);
12143 
12144 	kvm_vcpu_srcu_read_lock(vcpu);
12145 
12146 	r = kvm_apic_accept_events(vcpu);
12147 	if (r < 0)
12148 		goto out;
12149 	r = 0;
12150 
12151 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12152 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12153 	    vcpu->arch.pv.pv_unhalted)
12154 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12155 	else
12156 		mp_state->mp_state = vcpu->arch.mp_state;
12157 
12158 out:
12159 	kvm_vcpu_srcu_read_unlock(vcpu);
12160 
12161 	if (kvm_mpx_supported())
12162 		kvm_put_guest_fpu(vcpu);
12163 	vcpu_put(vcpu);
12164 	return r;
12165 }
12166 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12167 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12168 				    struct kvm_mp_state *mp_state)
12169 {
12170 	int ret = -EINVAL;
12171 
12172 	vcpu_load(vcpu);
12173 
12174 	switch (mp_state->mp_state) {
12175 	case KVM_MP_STATE_UNINITIALIZED:
12176 	case KVM_MP_STATE_HALTED:
12177 	case KVM_MP_STATE_AP_RESET_HOLD:
12178 	case KVM_MP_STATE_INIT_RECEIVED:
12179 	case KVM_MP_STATE_SIPI_RECEIVED:
12180 		if (!lapic_in_kernel(vcpu))
12181 			goto out;
12182 		break;
12183 
12184 	case KVM_MP_STATE_RUNNABLE:
12185 		break;
12186 
12187 	default:
12188 		goto out;
12189 	}
12190 
12191 	/*
12192 	 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12193 	 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12194 	 * Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12195 	 */
12196 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12197 		mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12198 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12199 	}
12200 
12201 	kvm_set_mp_state(vcpu, mp_state->mp_state);
12202 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12203 
12204 	ret = 0;
12205 out:
12206 	vcpu_put(vcpu);
12207 	return ret;
12208 }
12209 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)12210 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12211 		    int reason, bool has_error_code, u32 error_code)
12212 {
12213 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12214 	int ret;
12215 
12216 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12217 		u64 u_cet, s_cet;
12218 
12219 		/*
12220 		 * Check both User and Supervisor on task switches as inter-
12221 		 * privilege level task switches are impacted by CET at both
12222 		 * the current privilege level and the new privilege level, and
12223 		 * that information is not known at this time.  The expectation
12224 		 * is that the guest won't require emulation of task switches
12225 		 * while using IBT or Shadow Stacks.
12226 		 */
12227 		if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12228 		    __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12229 			goto unhandled_task_switch;
12230 
12231 		if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12232 			goto unhandled_task_switch;
12233 	}
12234 
12235 	init_emulate_ctxt(vcpu);
12236 
12237 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12238 				   has_error_code, error_code);
12239 
12240 	/*
12241 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
12242 	 * MMIO during a task switch (or any other complex operation).
12243 	 */
12244 	if (ret || vcpu->mmio_needed)
12245 		goto unhandled_task_switch;
12246 
12247 	kvm_rip_write(vcpu, ctxt->eip);
12248 	kvm_set_rflags(vcpu, ctxt->eflags);
12249 	return 1;
12250 
12251 unhandled_task_switch:
12252 	vcpu->mmio_needed = false;
12253 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12254 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12255 	vcpu->run->internal.ndata = 0;
12256 	return 0;
12257 }
12258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12259 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12260 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12261 {
12262 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12263 		/*
12264 		 * When EFER.LME and CR0.PG are set, the processor is in
12265 		 * 64-bit mode (though maybe in a 32-bit code segment).
12266 		 * CR4.PAE and EFER.LMA must be set.
12267 		 */
12268 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12269 			return false;
12270 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12271 			return false;
12272 	} else {
12273 		/*
12274 		 * Not in 64-bit mode: EFER.LMA is clear and the code
12275 		 * segment cannot be 64-bit.
12276 		 */
12277 		if (sregs->efer & EFER_LMA || sregs->cs.l)
12278 			return false;
12279 	}
12280 
12281 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12282 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
12283 }
12284 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)12285 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12286 		int *mmu_reset_needed, bool update_pdptrs)
12287 {
12288 	int idx;
12289 	struct desc_ptr dt;
12290 
12291 	if (!kvm_is_valid_sregs(vcpu, sregs))
12292 		return -EINVAL;
12293 
12294 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12295 		return -EINVAL;
12296 
12297 	if (vcpu->arch.guest_state_protected)
12298 		return 0;
12299 
12300 	dt.size = sregs->idt.limit;
12301 	dt.address = sregs->idt.base;
12302 	kvm_x86_call(set_idt)(vcpu, &dt);
12303 	dt.size = sregs->gdt.limit;
12304 	dt.address = sregs->gdt.base;
12305 	kvm_x86_call(set_gdt)(vcpu, &dt);
12306 
12307 	vcpu->arch.cr2 = sregs->cr2;
12308 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12309 	vcpu->arch.cr3 = sregs->cr3;
12310 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12311 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12312 
12313 	kvm_set_cr8(vcpu, sregs->cr8);
12314 
12315 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12316 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
12317 
12318 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12319 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12320 
12321 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12322 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12323 
12324 	if (update_pdptrs) {
12325 		idx = srcu_read_lock(&vcpu->kvm->srcu);
12326 		if (is_pae_paging(vcpu)) {
12327 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12328 			*mmu_reset_needed = 1;
12329 		}
12330 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
12331 	}
12332 
12333 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12334 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12335 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12336 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12337 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12338 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12339 
12340 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12341 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12342 
12343 	update_cr8_intercept(vcpu);
12344 
12345 	/* Older userspace won't unhalt the vcpu on reset. */
12346 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12347 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12348 	    !is_protmode(vcpu))
12349 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12350 
12351 	return 0;
12352 }
12353 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12354 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12355 {
12356 	int pending_vec, max_bits;
12357 	int mmu_reset_needed = 0;
12358 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12359 
12360 	if (ret)
12361 		return ret;
12362 
12363 	if (mmu_reset_needed) {
12364 		kvm_mmu_reset_context(vcpu);
12365 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12366 	}
12367 
12368 	max_bits = KVM_NR_INTERRUPTS;
12369 	pending_vec = find_first_bit(
12370 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
12371 
12372 	if (pending_vec < max_bits) {
12373 		kvm_queue_interrupt(vcpu, pending_vec, false);
12374 		pr_debug("Set back pending irq %d\n", pending_vec);
12375 		kvm_make_request(KVM_REQ_EVENT, vcpu);
12376 	}
12377 	return 0;
12378 }
12379 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12380 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12381 {
12382 	int mmu_reset_needed = 0;
12383 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12384 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12385 		!(sregs2->efer & EFER_LMA);
12386 	int i, ret;
12387 
12388 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12389 		return -EINVAL;
12390 
12391 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12392 		return -EINVAL;
12393 
12394 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12395 				 &mmu_reset_needed, !valid_pdptrs);
12396 	if (ret)
12397 		return ret;
12398 
12399 	if (valid_pdptrs) {
12400 		for (i = 0; i < 4 ; i++)
12401 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12402 
12403 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12404 		mmu_reset_needed = 1;
12405 		vcpu->arch.pdptrs_from_userspace = true;
12406 	}
12407 	if (mmu_reset_needed) {
12408 		kvm_mmu_reset_context(vcpu);
12409 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12410 	}
12411 	return 0;
12412 }
12413 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12414 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12415 				  struct kvm_sregs *sregs)
12416 {
12417 	int ret;
12418 
12419 	if (vcpu->kvm->arch.has_protected_state &&
12420 	    vcpu->arch.guest_state_protected)
12421 		return -EINVAL;
12422 
12423 	vcpu_load(vcpu);
12424 	ret = __set_sregs(vcpu, sregs);
12425 	vcpu_put(vcpu);
12426 	return ret;
12427 }
12428 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12429 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12430 {
12431 	bool set = false;
12432 	struct kvm_vcpu *vcpu;
12433 	unsigned long i;
12434 
12435 	if (!enable_apicv)
12436 		return;
12437 
12438 	down_write(&kvm->arch.apicv_update_lock);
12439 
12440 	kvm_for_each_vcpu(i, vcpu, kvm) {
12441 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12442 			set = true;
12443 			break;
12444 		}
12445 	}
12446 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12447 	up_write(&kvm->arch.apicv_update_lock);
12448 }
12449 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12450 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12451 					struct kvm_guest_debug *dbg)
12452 {
12453 	unsigned long rflags;
12454 	int i, r;
12455 
12456 	if (vcpu->arch.guest_state_protected)
12457 		return -EINVAL;
12458 
12459 	vcpu_load(vcpu);
12460 
12461 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12462 		r = -EBUSY;
12463 		if (kvm_is_exception_pending(vcpu))
12464 			goto out;
12465 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12466 			kvm_queue_exception(vcpu, DB_VECTOR);
12467 		else
12468 			kvm_queue_exception(vcpu, BP_VECTOR);
12469 	}
12470 
12471 	/*
12472 	 * Read rflags as long as potentially injected trace flags are still
12473 	 * filtered out.
12474 	 */
12475 	rflags = kvm_get_rflags(vcpu);
12476 
12477 	vcpu->guest_debug = dbg->control;
12478 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12479 		vcpu->guest_debug = 0;
12480 
12481 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12482 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12483 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12484 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12485 	} else {
12486 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12487 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12488 	}
12489 	kvm_update_dr7(vcpu);
12490 
12491 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12492 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12493 
12494 	/*
12495 	 * Trigger an rflags update that will inject or remove the trace
12496 	 * flags.
12497 	 */
12498 	kvm_set_rflags(vcpu, rflags);
12499 
12500 	kvm_x86_call(update_exception_bitmap)(vcpu);
12501 
12502 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12503 
12504 	r = 0;
12505 
12506 out:
12507 	vcpu_put(vcpu);
12508 	return r;
12509 }
12510 
12511 /*
12512  * Translate a guest virtual address to a guest physical address.
12513  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12514 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12515 				    struct kvm_translation *tr)
12516 {
12517 	unsigned long vaddr = tr->linear_address;
12518 	gpa_t gpa;
12519 	int idx;
12520 
12521 	vcpu_load(vcpu);
12522 
12523 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12524 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12525 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12526 	tr->physical_address = gpa;
12527 	tr->valid = gpa != INVALID_GPA;
12528 	tr->writeable = 1;
12529 	tr->usermode = 0;
12530 
12531 	vcpu_put(vcpu);
12532 	return 0;
12533 }
12534 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12536 {
12537 	struct fxregs_state *fxsave;
12538 
12539 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12540 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12541 
12542 	vcpu_load(vcpu);
12543 
12544 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12545 	memcpy(fpu->fpr, fxsave->st_space, 128);
12546 	fpu->fcw = fxsave->cwd;
12547 	fpu->fsw = fxsave->swd;
12548 	fpu->ftwx = fxsave->twd;
12549 	fpu->last_opcode = fxsave->fop;
12550 	fpu->last_ip = fxsave->rip;
12551 	fpu->last_dp = fxsave->rdp;
12552 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12553 
12554 	vcpu_put(vcpu);
12555 	return 0;
12556 }
12557 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12558 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12559 {
12560 	struct fxregs_state *fxsave;
12561 
12562 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12563 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12564 
12565 	vcpu_load(vcpu);
12566 
12567 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12568 
12569 	memcpy(fxsave->st_space, fpu->fpr, 128);
12570 	fxsave->cwd = fpu->fcw;
12571 	fxsave->swd = fpu->fsw;
12572 	fxsave->twd = fpu->ftwx;
12573 	fxsave->fop = fpu->last_opcode;
12574 	fxsave->rip = fpu->last_ip;
12575 	fxsave->rdp = fpu->last_dp;
12576 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12577 
12578 	vcpu_put(vcpu);
12579 	return 0;
12580 }
12581 
store_regs(struct kvm_vcpu * vcpu)12582 static void store_regs(struct kvm_vcpu *vcpu)
12583 {
12584 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12585 
12586 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12587 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12588 
12589 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12590 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12591 
12592 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12593 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12594 				vcpu, &vcpu->run->s.regs.events);
12595 }
12596 
sync_regs(struct kvm_vcpu * vcpu)12597 static int sync_regs(struct kvm_vcpu *vcpu)
12598 {
12599 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12600 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12601 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12602 	}
12603 
12604 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12605 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12606 
12607 		if (__set_sregs(vcpu, &sregs))
12608 			return -EINVAL;
12609 
12610 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12611 	}
12612 
12613 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12614 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12615 
12616 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12617 			return -EINVAL;
12618 
12619 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12620 	}
12621 
12622 	return 0;
12623 }
12624 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12625 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12626 {
12627 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12628 		pr_warn_once("SMP vm created on host with unstable TSC; "
12629 			     "guest TSC will not be reliable\n");
12630 
12631 	if (!kvm->arch.max_vcpu_ids)
12632 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12633 
12634 	if (id >= kvm->arch.max_vcpu_ids)
12635 		return -EINVAL;
12636 
12637 	return kvm_x86_call(vcpu_precreate)(kvm);
12638 }
12639 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12640 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12641 {
12642 	struct page *page;
12643 	int r;
12644 
12645 	vcpu->arch.last_vmentry_cpu = -1;
12646 	vcpu->arch.regs_avail = ~0;
12647 	vcpu->arch.regs_dirty = ~0;
12648 
12649 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12650 
12651 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12652 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12653 	else
12654 		kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12655 
12656 	r = kvm_mmu_create(vcpu);
12657 	if (r < 0)
12658 		return r;
12659 
12660 	r = kvm_create_lapic(vcpu);
12661 	if (r < 0)
12662 		goto fail_mmu_destroy;
12663 
12664 	r = -ENOMEM;
12665 
12666 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12667 	if (!page)
12668 		goto fail_free_lapic;
12669 	vcpu->arch.pio_data = page_address(page);
12670 
12671 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12672 				       GFP_KERNEL_ACCOUNT);
12673 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12674 					    GFP_KERNEL_ACCOUNT);
12675 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12676 		goto fail_free_mce_banks;
12677 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12678 
12679 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12680 				GFP_KERNEL_ACCOUNT))
12681 		goto fail_free_mce_banks;
12682 
12683 	if (!alloc_emulate_ctxt(vcpu))
12684 		goto free_wbinvd_dirty_mask;
12685 
12686 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12687 		pr_err("failed to allocate vcpu's fpu\n");
12688 		goto free_emulate_ctxt;
12689 	}
12690 
12691 	kvm_async_pf_hash_reset(vcpu);
12692 
12693 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12694 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12695 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12696 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12697 	}
12698 	kvm_pmu_init(vcpu);
12699 
12700 	vcpu->arch.pending_external_vector = -1;
12701 	vcpu->arch.preempted_in_kernel = false;
12702 
12703 #if IS_ENABLED(CONFIG_HYPERV)
12704 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12705 #endif
12706 
12707 	r = kvm_x86_call(vcpu_create)(vcpu);
12708 	if (r)
12709 		goto free_guest_fpu;
12710 
12711 	kvm_xen_init_vcpu(vcpu);
12712 	vcpu_load(vcpu);
12713 	kvm_vcpu_after_set_cpuid(vcpu);
12714 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12715 	kvm_vcpu_reset(vcpu, false);
12716 	kvm_init_mmu(vcpu);
12717 	vcpu_put(vcpu);
12718 	return 0;
12719 
12720 free_guest_fpu:
12721 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12722 free_emulate_ctxt:
12723 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12724 free_wbinvd_dirty_mask:
12725 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12726 fail_free_mce_banks:
12727 	kfree(vcpu->arch.mce_banks);
12728 	kfree(vcpu->arch.mci_ctl2_banks);
12729 	free_page((unsigned long)vcpu->arch.pio_data);
12730 fail_free_lapic:
12731 	kvm_free_lapic(vcpu);
12732 fail_mmu_destroy:
12733 	kvm_mmu_destroy(vcpu);
12734 	return r;
12735 }
12736 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12738 {
12739 	struct kvm *kvm = vcpu->kvm;
12740 
12741 	if (mutex_lock_killable(&vcpu->mutex))
12742 		return;
12743 	vcpu_load(vcpu);
12744 	kvm_synchronize_tsc(vcpu, NULL);
12745 	vcpu_put(vcpu);
12746 
12747 	/* poll control enabled by default */
12748 	vcpu->arch.msr_kvm_poll_control = 1;
12749 
12750 	mutex_unlock(&vcpu->mutex);
12751 
12752 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12753 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12754 						KVMCLOCK_SYNC_PERIOD);
12755 }
12756 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12757 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12758 {
12759 	int idx, cpu;
12760 
12761 	kvm_clear_async_pf_completion_queue(vcpu);
12762 	kvm_mmu_unload(vcpu);
12763 
12764 	kvmclock_reset(vcpu);
12765 
12766 	for_each_possible_cpu(cpu)
12767 		cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12768 
12769 	kvm_x86_call(vcpu_free)(vcpu);
12770 
12771 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12772 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12773 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12774 
12775 	kvm_xen_destroy_vcpu(vcpu);
12776 	kvm_hv_vcpu_uninit(vcpu);
12777 	kvm_pmu_destroy(vcpu);
12778 	kfree(vcpu->arch.mce_banks);
12779 	kfree(vcpu->arch.mci_ctl2_banks);
12780 	kvm_free_lapic(vcpu);
12781 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12782 	kvm_mmu_destroy(vcpu);
12783 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12784 	free_page((unsigned long)vcpu->arch.pio_data);
12785 	kvfree(vcpu->arch.cpuid_entries);
12786 }
12787 
kvm_xstate_reset(struct kvm_vcpu * vcpu,bool init_event)12788 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12789 {
12790 	struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12791 	u64 xfeatures_mask;
12792 	int i;
12793 
12794 	/*
12795 	 * Guest FPU state is zero allocated and so doesn't need to be manually
12796 	 * cleared on RESET, i.e. during vCPU creation.
12797 	 */
12798 	if (!init_event || !fpstate)
12799 		return;
12800 
12801 	/*
12802 	 * On INIT, only select XSTATE components are zeroed, most components
12803 	 * are unchanged.  Currently, the only components that are zeroed and
12804 	 * supported by KVM are MPX and CET related.
12805 	 */
12806 	xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12807 			 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12808 			  XFEATURE_MASK_CET_ALL);
12809 	if (!xfeatures_mask)
12810 		return;
12811 
12812 	BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12813 
12814 	/*
12815 	 * All paths that lead to INIT are required to load the guest's FPU
12816 	 * state (because most paths are buried in KVM_RUN).
12817 	 */
12818 	kvm_put_guest_fpu(vcpu);
12819 	for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12820 		fpstate_clear_xstate_component(fpstate, i);
12821 	kvm_load_guest_fpu(vcpu);
12822 }
12823 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12824 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12825 {
12826 	struct kvm_cpuid_entry2 *cpuid_0x1;
12827 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12828 	unsigned long new_cr0;
12829 
12830 	/*
12831 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12832 	 * to handle side effects.  RESET emulation hits those flows and relies
12833 	 * on emulated/virtualized registers, including those that are loaded
12834 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12835 	 * to detect improper or missing initialization.
12836 	 */
12837 	WARN_ON_ONCE(!init_event &&
12838 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12839 
12840 	/*
12841 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12842 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12843 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12844 	 * bits), i.e. virtualization is disabled.
12845 	 */
12846 	if (is_guest_mode(vcpu))
12847 		kvm_leave_nested(vcpu);
12848 
12849 	kvm_lapic_reset(vcpu, init_event);
12850 
12851 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12852 	vcpu->arch.hflags = 0;
12853 
12854 	vcpu->arch.smi_pending = 0;
12855 	vcpu->arch.smi_count = 0;
12856 	atomic_set(&vcpu->arch.nmi_queued, 0);
12857 	vcpu->arch.nmi_pending = 0;
12858 	vcpu->arch.nmi_injected = false;
12859 	kvm_clear_interrupt_queue(vcpu);
12860 	kvm_clear_exception_queue(vcpu);
12861 
12862 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12863 	kvm_update_dr0123(vcpu);
12864 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12865 	vcpu->arch.dr7 = DR7_FIXED_1;
12866 	kvm_update_dr7(vcpu);
12867 
12868 	vcpu->arch.cr2 = 0;
12869 
12870 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12871 	vcpu->arch.apf.msr_en_val = 0;
12872 	vcpu->arch.apf.msr_int_val = 0;
12873 	vcpu->arch.st.msr_val = 0;
12874 
12875 	kvmclock_reset(vcpu);
12876 
12877 	kvm_clear_async_pf_completion_queue(vcpu);
12878 	kvm_async_pf_hash_reset(vcpu);
12879 	vcpu->arch.apf.halted = false;
12880 
12881 	kvm_xstate_reset(vcpu, init_event);
12882 
12883 	if (!init_event) {
12884 		vcpu->arch.smbase = 0x30000;
12885 
12886 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12887 
12888 		vcpu->arch.msr_misc_features_enables = 0;
12889 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12890 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12891 
12892 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12893 		kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12894 	}
12895 
12896 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12897 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12898 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12899 
12900 	/*
12901 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12902 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12903 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12904 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12905 	 * on RESET.  But, go through the motions in case that's ever remedied.
12906 	 */
12907 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12908 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12909 
12910 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12911 
12912 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12913 	kvm_rip_write(vcpu, 0xfff0);
12914 
12915 	vcpu->arch.cr3 = 0;
12916 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12917 
12918 	/*
12919 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12920 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12921 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12922 	 */
12923 	new_cr0 = X86_CR0_ET;
12924 	if (init_event)
12925 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12926 	else
12927 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12928 
12929 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12930 	kvm_x86_call(set_cr4)(vcpu, 0);
12931 	kvm_x86_call(set_efer)(vcpu, 0);
12932 	kvm_x86_call(update_exception_bitmap)(vcpu);
12933 
12934 	/*
12935 	 * On the standard CR0/CR4/EFER modification paths, there are several
12936 	 * complex conditions determining whether the MMU has to be reset and/or
12937 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12938 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12939 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12940 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12941 	 */
12942 	if (old_cr0 & X86_CR0_PG) {
12943 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12944 		kvm_mmu_reset_context(vcpu);
12945 	}
12946 
12947 	/*
12948 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12949 	 * APM states the TLBs are untouched by INIT, but it also states that
12950 	 * the TLBs are flushed on "External initialization of the processor."
12951 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12952 	 * benefit in relying on the guest to flush the TLB immediately after
12953 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12954 	 * performance perspective.
12955 	 */
12956 	if (init_event)
12957 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12958 }
12959 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
12960 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12961 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12962 {
12963 	struct kvm_segment cs;
12964 
12965 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12966 	cs.selector = vector << 8;
12967 	cs.base = vector << 12;
12968 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12969 	kvm_rip_write(vcpu, 0);
12970 }
12971 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
12972 
kvm_arch_enable_virtualization(void)12973 void kvm_arch_enable_virtualization(void)
12974 {
12975 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12976 }
12977 
kvm_arch_disable_virtualization(void)12978 void kvm_arch_disable_virtualization(void)
12979 {
12980 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12981 }
12982 
kvm_arch_enable_virtualization_cpu(void)12983 int kvm_arch_enable_virtualization_cpu(void)
12984 {
12985 	struct kvm *kvm;
12986 	struct kvm_vcpu *vcpu;
12987 	unsigned long i;
12988 	int ret;
12989 	u64 local_tsc;
12990 	u64 max_tsc = 0;
12991 	bool stable, backwards_tsc = false;
12992 
12993 	kvm_user_return_msr_cpu_online();
12994 
12995 	ret = kvm_x86_check_processor_compatibility();
12996 	if (ret)
12997 		return ret;
12998 
12999 	ret = kvm_x86_call(enable_virtualization_cpu)();
13000 	if (ret != 0)
13001 		return ret;
13002 
13003 	local_tsc = rdtsc();
13004 	stable = !kvm_check_tsc_unstable();
13005 	list_for_each_entry(kvm, &vm_list, vm_list) {
13006 		kvm_for_each_vcpu(i, vcpu, kvm) {
13007 			if (!stable && vcpu->cpu == smp_processor_id())
13008 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13009 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13010 				backwards_tsc = true;
13011 				if (vcpu->arch.last_host_tsc > max_tsc)
13012 					max_tsc = vcpu->arch.last_host_tsc;
13013 			}
13014 		}
13015 	}
13016 
13017 	/*
13018 	 * Sometimes, even reliable TSCs go backwards.  This happens on
13019 	 * platforms that reset TSC during suspend or hibernate actions, but
13020 	 * maintain synchronization.  We must compensate.  Fortunately, we can
13021 	 * detect that condition here, which happens early in CPU bringup,
13022 	 * before any KVM threads can be running.  Unfortunately, we can't
13023 	 * bring the TSCs fully up to date with real time, as we aren't yet far
13024 	 * enough into CPU bringup that we know how much real time has actually
13025 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13026 	 * variables that haven't been updated yet.
13027 	 *
13028 	 * So we simply find the maximum observed TSC above, then record the
13029 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
13030 	 * the adjustment will be applied.  Note that we accumulate
13031 	 * adjustments, in case multiple suspend cycles happen before some VCPU
13032 	 * gets a chance to run again.  In the event that no KVM threads get a
13033 	 * chance to run, we will miss the entire elapsed period, as we'll have
13034 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13035 	 * loose cycle time.  This isn't too big a deal, since the loss will be
13036 	 * uniform across all VCPUs (not to mention the scenario is extremely
13037 	 * unlikely). It is possible that a second hibernate recovery happens
13038 	 * much faster than a first, causing the observed TSC here to be
13039 	 * smaller; this would require additional padding adjustment, which is
13040 	 * why we set last_host_tsc to the local tsc observed here.
13041 	 *
13042 	 * N.B. - this code below runs only on platforms with reliable TSC,
13043 	 * as that is the only way backwards_tsc is set above.  Also note
13044 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
13045 	 * have the same delta_cyc adjustment applied if backwards_tsc
13046 	 * is detected.  Note further, this adjustment is only done once,
13047 	 * as we reset last_host_tsc on all VCPUs to stop this from being
13048 	 * called multiple times (one for each physical CPU bringup).
13049 	 *
13050 	 * Platforms with unreliable TSCs don't have to deal with this, they
13051 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
13052 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
13053 	 * guarantee that they stay in perfect synchronization.
13054 	 */
13055 	if (backwards_tsc) {
13056 		u64 delta_cyc = max_tsc - local_tsc;
13057 		list_for_each_entry(kvm, &vm_list, vm_list) {
13058 			kvm->arch.backwards_tsc_observed = true;
13059 			kvm_for_each_vcpu(i, vcpu, kvm) {
13060 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
13061 				vcpu->arch.last_host_tsc = local_tsc;
13062 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13063 			}
13064 
13065 			/*
13066 			 * We have to disable TSC offset matching.. if you were
13067 			 * booting a VM while issuing an S4 host suspend....
13068 			 * you may have some problem.  Solving this issue is
13069 			 * left as an exercise to the reader.
13070 			 */
13071 			kvm->arch.last_tsc_nsec = 0;
13072 			kvm->arch.last_tsc_write = 0;
13073 		}
13074 
13075 	}
13076 	return 0;
13077 }
13078 
kvm_arch_disable_virtualization_cpu(void)13079 void kvm_arch_disable_virtualization_cpu(void)
13080 {
13081 	kvm_x86_call(disable_virtualization_cpu)();
13082 	drop_user_return_notifiers();
13083 }
13084 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)13085 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13086 {
13087 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13088 }
13089 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13090 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)13091 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13092 {
13093 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13094 }
13095 
kvm_arch_free_vm(struct kvm * kvm)13096 void kvm_arch_free_vm(struct kvm *kvm)
13097 {
13098 #if IS_ENABLED(CONFIG_HYPERV)
13099 	kfree(kvm->arch.hv_pa_pg);
13100 #endif
13101 	__kvm_arch_free_vm(kvm);
13102 }
13103 
13104 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)13105 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13106 {
13107 	int ret;
13108 	unsigned long flags;
13109 
13110 	if (!kvm_is_vm_type_supported(type))
13111 		return -EINVAL;
13112 
13113 	kvm->arch.vm_type = type;
13114 	kvm->arch.has_private_mem =
13115 		(type == KVM_X86_SW_PROTECTED_VM);
13116 	/* Decided by the vendor code for other VM types.  */
13117 	kvm->arch.pre_fault_allowed =
13118 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13119 	kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13120 
13121 	ret = kvm_page_track_init(kvm);
13122 	if (ret)
13123 		goto out;
13124 
13125 	ret = kvm_mmu_init_vm(kvm);
13126 	if (ret)
13127 		goto out_cleanup_page_track;
13128 
13129 	ret = kvm_x86_call(vm_init)(kvm);
13130 	if (ret)
13131 		goto out_uninit_mmu;
13132 
13133 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13134 
13135 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13136 	mutex_init(&kvm->arch.apic_map_lock);
13137 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13138 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13139 
13140 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13141 	pvclock_update_vm_gtod_copy(kvm);
13142 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13143 
13144 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13145 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13146 	kvm->arch.guest_can_read_msr_platform_info = true;
13147 	kvm->arch.enable_pmu = enable_pmu;
13148 
13149 #if IS_ENABLED(CONFIG_HYPERV)
13150 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13151 	kvm->arch.hv_root_tdp = INVALID_PAGE;
13152 #endif
13153 
13154 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
13155 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
13156 
13157 	kvm_apicv_init(kvm);
13158 	kvm_hv_init_vm(kvm);
13159 	kvm_xen_init_vm(kvm);
13160 
13161 	if (ignore_msrs && !report_ignored_msrs) {
13162 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13163 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
13164 			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
13165 			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
13166 	}
13167 
13168 	once_init(&kvm->arch.nx_once);
13169 	return 0;
13170 
13171 out_uninit_mmu:
13172 	kvm_mmu_uninit_vm(kvm);
13173 out_cleanup_page_track:
13174 	kvm_page_track_cleanup(kvm);
13175 out:
13176 	return ret;
13177 }
13178 
13179 /**
13180  * __x86_set_memory_region: Setup KVM internal memory slot
13181  *
13182  * @kvm: the kvm pointer to the VM.
13183  * @id: the slot ID to setup.
13184  * @gpa: the GPA to install the slot (unused when @size == 0).
13185  * @size: the size of the slot. Set to zero to uninstall a slot.
13186  *
13187  * This function helps to setup a KVM internal memory slot.  Specify
13188  * @size > 0 to install a new slot, while @size == 0 to uninstall a
13189  * slot.  The return code can be one of the following:
13190  *
13191  *   HVA:           on success (uninstall will return a bogus HVA)
13192  *   -errno:        on error
13193  *
13194  * The caller should always use IS_ERR() to check the return value
13195  * before use.  Note, the KVM internal memory slots are guaranteed to
13196  * remain valid and unchanged until the VM is destroyed, i.e., the
13197  * GPA->HVA translation will not change.  However, the HVA is a user
13198  * address, i.e. its accessibility is not guaranteed, and must be
13199  * accessed via __copy_{to,from}_user().
13200  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)13201 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13202 				      u32 size)
13203 {
13204 	int i, r;
13205 	unsigned long hva, old_npages;
13206 	struct kvm_memslots *slots = kvm_memslots(kvm);
13207 	struct kvm_memory_slot *slot;
13208 
13209 	lockdep_assert_held(&kvm->slots_lock);
13210 
13211 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13212 		return ERR_PTR_USR(-EINVAL);
13213 
13214 	slot = id_to_memslot(slots, id);
13215 	if (size) {
13216 		if (slot && slot->npages)
13217 			return ERR_PTR_USR(-EEXIST);
13218 
13219 		/*
13220 		 * MAP_SHARED to prevent internal slot pages from being moved
13221 		 * by fork()/COW.
13222 		 */
13223 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13224 			      MAP_SHARED | MAP_ANONYMOUS, 0);
13225 		if (IS_ERR_VALUE(hva))
13226 			return (void __user *)hva;
13227 	} else {
13228 		if (!slot || !slot->npages)
13229 			return NULL;
13230 
13231 		old_npages = slot->npages;
13232 		hva = slot->userspace_addr;
13233 	}
13234 
13235 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13236 		struct kvm_userspace_memory_region2 m;
13237 
13238 		m.slot = id | (i << 16);
13239 		m.flags = 0;
13240 		m.guest_phys_addr = gpa;
13241 		m.userspace_addr = hva;
13242 		m.memory_size = size;
13243 		r = kvm_set_internal_memslot(kvm, &m);
13244 		if (r < 0)
13245 			return ERR_PTR_USR(r);
13246 	}
13247 
13248 	if (!size)
13249 		vm_munmap(hva, old_npages * PAGE_SIZE);
13250 
13251 	return (void __user *)hva;
13252 }
13253 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13254 
kvm_arch_pre_destroy_vm(struct kvm * kvm)13255 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13256 {
13257 	/*
13258 	 * Stop all background workers and kthreads before destroying vCPUs, as
13259 	 * iterating over vCPUs in a different task while vCPUs are being freed
13260 	 * is unsafe, i.e. will lead to use-after-free.  The PIT also needs to
13261 	 * be stopped before IRQ routing is freed.
13262 	 */
13263 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
13264 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
13265 
13266 #ifdef CONFIG_KVM_IOAPIC
13267 	kvm_free_pit(kvm);
13268 #endif
13269 
13270 	kvm_mmu_pre_destroy_vm(kvm);
13271 	static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13272 }
13273 
kvm_arch_destroy_vm(struct kvm * kvm)13274 void kvm_arch_destroy_vm(struct kvm *kvm)
13275 {
13276 	if (current->mm == kvm->mm) {
13277 		/*
13278 		 * Free memory regions allocated on behalf of userspace,
13279 		 * unless the memory map has changed due to process exit
13280 		 * or fd copying.
13281 		 */
13282 		mutex_lock(&kvm->slots_lock);
13283 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13284 					0, 0);
13285 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13286 					0, 0);
13287 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13288 		mutex_unlock(&kvm->slots_lock);
13289 	}
13290 	kvm_destroy_vcpus(kvm);
13291 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13292 #ifdef CONFIG_KVM_IOAPIC
13293 	kvm_pic_destroy(kvm);
13294 	kvm_ioapic_destroy(kvm);
13295 #endif
13296 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13297 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13298 	kvm_mmu_uninit_vm(kvm);
13299 	kvm_page_track_cleanup(kvm);
13300 	kvm_xen_destroy_vm(kvm);
13301 	kvm_hv_destroy_vm(kvm);
13302 	kvm_x86_call(vm_destroy)(kvm);
13303 }
13304 
memslot_rmap_free(struct kvm_memory_slot * slot)13305 static void memslot_rmap_free(struct kvm_memory_slot *slot)
13306 {
13307 	int i;
13308 
13309 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13310 		vfree(slot->arch.rmap[i]);
13311 		slot->arch.rmap[i] = NULL;
13312 	}
13313 }
13314 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)13315 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13316 {
13317 	int i;
13318 
13319 	memslot_rmap_free(slot);
13320 
13321 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13322 		vfree(slot->arch.lpage_info[i - 1]);
13323 		slot->arch.lpage_info[i - 1] = NULL;
13324 	}
13325 
13326 	kvm_page_track_free_memslot(slot);
13327 }
13328 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)13329 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13330 {
13331 	const int sz = sizeof(*slot->arch.rmap[0]);
13332 	int i;
13333 
13334 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13335 		int level = i + 1;
13336 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13337 
13338 		if (slot->arch.rmap[i])
13339 			continue;
13340 
13341 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13342 		if (!slot->arch.rmap[i]) {
13343 			memslot_rmap_free(slot);
13344 			return -ENOMEM;
13345 		}
13346 	}
13347 
13348 	return 0;
13349 }
13350 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13351 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13352 				      struct kvm_memory_slot *slot)
13353 {
13354 	unsigned long npages = slot->npages;
13355 	int i, r;
13356 
13357 	/*
13358 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
13359 	 * old arrays will be freed by kvm_set_memory_region() if installing
13360 	 * the new memslot is successful.
13361 	 */
13362 	memset(&slot->arch, 0, sizeof(slot->arch));
13363 
13364 	if (kvm_memslots_have_rmaps(kvm)) {
13365 		r = memslot_rmap_alloc(slot, npages);
13366 		if (r)
13367 			return r;
13368 	}
13369 
13370 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13371 		struct kvm_lpage_info *linfo;
13372 		unsigned long ugfn;
13373 		int lpages;
13374 		int level = i + 1;
13375 
13376 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13377 
13378 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13379 		if (!linfo)
13380 			goto out_free;
13381 
13382 		slot->arch.lpage_info[i - 1] = linfo;
13383 
13384 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13385 			linfo[0].disallow_lpage = 1;
13386 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13387 			linfo[lpages - 1].disallow_lpage = 1;
13388 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
13389 		/*
13390 		 * If the gfn and userspace address are not aligned wrt each
13391 		 * other, disable large page support for this slot.
13392 		 */
13393 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13394 			unsigned long j;
13395 
13396 			for (j = 0; j < lpages; ++j)
13397 				linfo[j].disallow_lpage = 1;
13398 		}
13399 	}
13400 
13401 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13402 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13403 #endif
13404 
13405 	if (kvm_page_track_create_memslot(kvm, slot, npages))
13406 		goto out_free;
13407 
13408 	return 0;
13409 
13410 out_free:
13411 	memslot_rmap_free(slot);
13412 
13413 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13414 		vfree(slot->arch.lpage_info[i - 1]);
13415 		slot->arch.lpage_info[i - 1] = NULL;
13416 	}
13417 	return -ENOMEM;
13418 }
13419 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13420 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13421 {
13422 	struct kvm_vcpu *vcpu;
13423 	unsigned long i;
13424 
13425 	/*
13426 	 * memslots->generation has been incremented.
13427 	 * mmio generation may have reached its maximum value.
13428 	 */
13429 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13430 
13431 	/* Force re-initialization of steal_time cache */
13432 	kvm_for_each_vcpu(i, vcpu, kvm)
13433 		kvm_vcpu_kick(vcpu);
13434 }
13435 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13436 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13437 				   const struct kvm_memory_slot *old,
13438 				   struct kvm_memory_slot *new,
13439 				   enum kvm_mr_change change)
13440 {
13441 	/*
13442 	 * KVM doesn't support moving memslots when there are external page
13443 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13444 	 */
13445 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13446 		return -EINVAL;
13447 
13448 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13449 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13450 			return -EINVAL;
13451 
13452 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13453 			return -EINVAL;
13454 
13455 		return kvm_alloc_memslot_metadata(kvm, new);
13456 	}
13457 
13458 	if (change == KVM_MR_FLAGS_ONLY)
13459 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13460 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13461 		return -EIO;
13462 
13463 	return 0;
13464 }
13465 
13466 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13467 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13468 {
13469 	int nr_slots;
13470 
13471 	if (!kvm->arch.cpu_dirty_log_size)
13472 		return;
13473 
13474 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13475 	if ((enable && nr_slots == 1) || !nr_slots)
13476 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13477 }
13478 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13479 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13480 				     struct kvm_memory_slot *old,
13481 				     const struct kvm_memory_slot *new,
13482 				     enum kvm_mr_change change)
13483 {
13484 	u32 old_flags = old ? old->flags : 0;
13485 	u32 new_flags = new ? new->flags : 0;
13486 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13487 
13488 	/*
13489 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13490 	 * applies to all operations.
13491 	 */
13492 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13493 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13494 
13495 	/*
13496 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13497 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13498 	 *
13499 	 * For a memslot with dirty logging disabled:
13500 	 * CREATE:      No dirty mappings will already exist.
13501 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13502 	 *		kvm_arch_flush_shadow_memslot()
13503 	 *
13504 	 * For a memslot with dirty logging enabled:
13505 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13506 	 *		and no dirty bits to clear.
13507 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13508 	 *		kvm_arch_flush_shadow_memslot().
13509 	 */
13510 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13511 		return;
13512 
13513 	/*
13514 	 * READONLY and non-flags changes were filtered out above, and the only
13515 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13516 	 * logging isn't being toggled on or off.
13517 	 */
13518 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13519 		return;
13520 
13521 	if (!log_dirty_pages) {
13522 		/*
13523 		 * Recover huge page mappings in the slot now that dirty logging
13524 		 * is disabled, i.e. now that KVM does not have to track guest
13525 		 * writes at 4KiB granularity.
13526 		 *
13527 		 * Dirty logging might be disabled by userspace if an ongoing VM
13528 		 * live migration is cancelled and the VM must continue running
13529 		 * on the source.
13530 		 */
13531 		kvm_mmu_recover_huge_pages(kvm, new);
13532 	} else {
13533 		/*
13534 		 * Initially-all-set does not require write protecting any page,
13535 		 * because they're all assumed to be dirty.
13536 		 */
13537 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13538 			return;
13539 
13540 		if (READ_ONCE(eager_page_split))
13541 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13542 
13543 		if (kvm->arch.cpu_dirty_log_size) {
13544 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13545 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13546 		} else {
13547 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13548 		}
13549 
13550 		/*
13551 		 * Unconditionally flush the TLBs after enabling dirty logging.
13552 		 * A flush is almost always going to be necessary (see below),
13553 		 * and unconditionally flushing allows the helpers to omit
13554 		 * the subtly complex checks when removing write access.
13555 		 *
13556 		 * Do the flush outside of mmu_lock to reduce the amount of
13557 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13558 		 * safe as KVM only needs to guarantee the slot is fully
13559 		 * write-protected before returning to userspace, i.e. before
13560 		 * userspace can consume the dirty status.
13561 		 *
13562 		 * Flushing outside of mmu_lock requires KVM to be careful when
13563 		 * making decisions based on writable status of an SPTE, e.g. a
13564 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13565 		 *
13566 		 * Specifically, KVM also write-protects guest page tables to
13567 		 * monitor changes when using shadow paging, and must guarantee
13568 		 * no CPUs can write to those page before mmu_lock is dropped.
13569 		 * Because CPUs may have stale TLB entries at this point, a
13570 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13571 		 *
13572 		 * KVM also allows making SPTES writable outside of mmu_lock,
13573 		 * e.g. to allow dirty logging without taking mmu_lock.
13574 		 *
13575 		 * To handle these scenarios, KVM uses a separate software-only
13576 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13577 		 * a guest page table being write-protected (KVM clears the
13578 		 * MMU-writable flag when write-protecting for shadow paging).
13579 		 *
13580 		 * The use of MMU-writable is also the primary motivation for
13581 		 * the unconditional flush.  Because KVM must guarantee that a
13582 		 * CPU doesn't contain stale, writable TLB entries for a
13583 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13584 		 * MMU-writable SPTE regardless of whether the actual hardware
13585 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13586 		 * to flush, while unconditionally flushing allows the "remove
13587 		 * write access" helpers to ignore MMU-writable entirely.
13588 		 *
13589 		 * See is_writable_pte() for more details (the case involving
13590 		 * access-tracked SPTEs is particularly relevant).
13591 		 */
13592 		kvm_flush_remote_tlbs_memslot(kvm, new);
13593 	}
13594 }
13595 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13596 void kvm_arch_commit_memory_region(struct kvm *kvm,
13597 				struct kvm_memory_slot *old,
13598 				const struct kvm_memory_slot *new,
13599 				enum kvm_mr_change change)
13600 {
13601 	if (change == KVM_MR_DELETE)
13602 		kvm_page_track_delete_slot(kvm, old);
13603 
13604 	if (!kvm->arch.n_requested_mmu_pages &&
13605 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13606 		unsigned long nr_mmu_pages;
13607 
13608 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13609 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13610 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13611 	}
13612 
13613 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13614 
13615 	/* Free the arrays associated with the old memslot. */
13616 	if (change == KVM_MR_MOVE)
13617 		kvm_arch_free_memslot(kvm, old);
13618 }
13619 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13620 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13621 {
13622 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13623 
13624 	if (vcpu->arch.guest_state_protected)
13625 		return true;
13626 
13627 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13628 }
13629 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13630 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13631 {
13632 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13633 
13634 	if (vcpu->arch.guest_state_protected)
13635 		return 0;
13636 
13637 	return kvm_rip_read(vcpu);
13638 }
13639 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13640 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13641 {
13642 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13643 }
13644 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13645 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13646 {
13647 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13648 }
13649 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13650 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13651 {
13652 	/* Can't read the RIP when guest state is protected, just return 0 */
13653 	if (vcpu->arch.guest_state_protected)
13654 		return 0;
13655 
13656 	if (is_64_bit_mode(vcpu))
13657 		return kvm_rip_read(vcpu);
13658 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13659 		     kvm_rip_read(vcpu));
13660 }
13661 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13662 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13663 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13664 {
13665 	return kvm_get_linear_rip(vcpu) == linear_rip;
13666 }
13667 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13668 
kvm_get_rflags(struct kvm_vcpu * vcpu)13669 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13670 {
13671 	unsigned long rflags;
13672 
13673 	rflags = kvm_x86_call(get_rflags)(vcpu);
13674 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13675 		rflags &= ~X86_EFLAGS_TF;
13676 	return rflags;
13677 }
13678 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13679 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13680 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13681 {
13682 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13683 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13684 		rflags |= X86_EFLAGS_TF;
13685 	kvm_x86_call(set_rflags)(vcpu, rflags);
13686 }
13687 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13688 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13689 {
13690 	__kvm_set_rflags(vcpu, rflags);
13691 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13692 }
13693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13694 
kvm_async_pf_hash_fn(gfn_t gfn)13695 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13696 {
13697 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13698 
13699 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13700 }
13701 
kvm_async_pf_next_probe(u32 key)13702 static inline u32 kvm_async_pf_next_probe(u32 key)
13703 {
13704 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13705 }
13706 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13707 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13708 {
13709 	u32 key = kvm_async_pf_hash_fn(gfn);
13710 
13711 	while (vcpu->arch.apf.gfns[key] != ~0)
13712 		key = kvm_async_pf_next_probe(key);
13713 
13714 	vcpu->arch.apf.gfns[key] = gfn;
13715 }
13716 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13717 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13718 {
13719 	int i;
13720 	u32 key = kvm_async_pf_hash_fn(gfn);
13721 
13722 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13723 		     (vcpu->arch.apf.gfns[key] != gfn &&
13724 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13725 		key = kvm_async_pf_next_probe(key);
13726 
13727 	return key;
13728 }
13729 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13730 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13731 {
13732 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13733 }
13734 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13735 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13736 {
13737 	u32 i, j, k;
13738 
13739 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13740 
13741 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13742 		return;
13743 
13744 	while (true) {
13745 		vcpu->arch.apf.gfns[i] = ~0;
13746 		do {
13747 			j = kvm_async_pf_next_probe(j);
13748 			if (vcpu->arch.apf.gfns[j] == ~0)
13749 				return;
13750 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13751 			/*
13752 			 * k lies cyclically in ]i,j]
13753 			 * |    i.k.j |
13754 			 * |....j i.k.| or  |.k..j i...|
13755 			 */
13756 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13757 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13758 		i = j;
13759 	}
13760 }
13761 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13762 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13763 {
13764 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13765 
13766 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13767 				      sizeof(reason));
13768 }
13769 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13770 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13771 {
13772 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13773 
13774 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13775 					     &token, offset, sizeof(token));
13776 }
13777 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13778 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13779 {
13780 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13781 	u32 val;
13782 
13783 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13784 					 &val, offset, sizeof(val)))
13785 		return false;
13786 
13787 	return !val;
13788 }
13789 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13790 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13791 {
13792 
13793 	if (!kvm_pv_async_pf_enabled(vcpu))
13794 		return false;
13795 
13796 	if (!vcpu->arch.apf.send_always &&
13797 	    (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13798 		return false;
13799 
13800 	if (is_guest_mode(vcpu)) {
13801 		/*
13802 		 * L1 needs to opt into the special #PF vmexits that are
13803 		 * used to deliver async page faults.
13804 		 */
13805 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13806 	} else {
13807 		/*
13808 		 * Play it safe in case the guest temporarily disables paging.
13809 		 * The real mode IDT in particular is unlikely to have a #PF
13810 		 * exception setup.
13811 		 */
13812 		return is_paging(vcpu);
13813 	}
13814 }
13815 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13816 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13817 {
13818 	if (unlikely(!lapic_in_kernel(vcpu) ||
13819 		     kvm_event_needs_reinjection(vcpu) ||
13820 		     kvm_is_exception_pending(vcpu)))
13821 		return false;
13822 
13823 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13824 		return false;
13825 
13826 	/*
13827 	 * If interrupts are off we cannot even use an artificial
13828 	 * halt state.
13829 	 */
13830 	return kvm_arch_interrupt_allowed(vcpu);
13831 }
13832 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13833 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13834 				     struct kvm_async_pf *work)
13835 {
13836 	struct x86_exception fault;
13837 
13838 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13839 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13840 
13841 	if (kvm_can_deliver_async_pf(vcpu) &&
13842 	    !apf_put_user_notpresent(vcpu)) {
13843 		fault.vector = PF_VECTOR;
13844 		fault.error_code_valid = true;
13845 		fault.error_code = 0;
13846 		fault.nested_page_fault = false;
13847 		fault.address = work->arch.token;
13848 		fault.async_page_fault = true;
13849 		kvm_inject_page_fault(vcpu, &fault);
13850 		return true;
13851 	} else {
13852 		/*
13853 		 * It is not possible to deliver a paravirtualized asynchronous
13854 		 * page fault, but putting the guest in an artificial halt state
13855 		 * can be beneficial nevertheless: if an interrupt arrives, we
13856 		 * can deliver it timely and perhaps the guest will schedule
13857 		 * another process.  When the instruction that triggered a page
13858 		 * fault is retried, hopefully the page will be ready in the host.
13859 		 */
13860 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13861 		return false;
13862 	}
13863 }
13864 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13865 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13866 				 struct kvm_async_pf *work)
13867 {
13868 	struct kvm_lapic_irq irq = {
13869 		.delivery_mode = APIC_DM_FIXED,
13870 		.vector = vcpu->arch.apf.vec
13871 	};
13872 
13873 	if (work->wakeup_all)
13874 		work->arch.token = ~0; /* broadcast wakeup */
13875 	else
13876 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13877 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13878 
13879 	if ((work->wakeup_all || work->notpresent_injected) &&
13880 	    kvm_pv_async_pf_enabled(vcpu) &&
13881 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13882 		vcpu->arch.apf.pageready_pending = true;
13883 		kvm_apic_set_irq(vcpu, &irq, NULL);
13884 	}
13885 
13886 	vcpu->arch.apf.halted = false;
13887 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13888 }
13889 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13890 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13891 {
13892 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13893 	if (!vcpu->arch.apf.pageready_pending)
13894 		kvm_vcpu_kick(vcpu);
13895 }
13896 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13897 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13898 {
13899 	if (!kvm_pv_async_pf_enabled(vcpu))
13900 		return true;
13901 	else
13902 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13903 }
13904 
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13905 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13906 {
13907 	/*
13908 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13909 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13910 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13911 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13912 	 * with the correct "ignore guest PAT" setting are created.
13913 	 *
13914 	 * If KVM always honors guest PAT, however, there is nothing to do.
13915 	 */
13916 	if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13917 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13918 }
13919 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13920 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13921 {
13922 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13923 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13924 }
13925 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13926 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13927 {
13928 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13929 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13930 }
13931 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13932 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13933 {
13934 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13935 }
13936 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13937 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13938 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13939 {
13940 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13941 }
13942 
13943 #ifdef CONFIG_KVM_GUEST_MEMFD
13944 /*
13945  * KVM doesn't yet support mmap() on guest_memfd for VMs with private memory
13946  * (the private vs. shared tracking needs to be moved into guest_memfd).
13947  */
kvm_arch_supports_gmem_mmap(struct kvm * kvm)13948 bool kvm_arch_supports_gmem_mmap(struct kvm *kvm)
13949 {
13950 	return !kvm_arch_has_private_mem(kvm);
13951 }
13952 
13953 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13954 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13955 {
13956 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13957 }
13958 #endif
13959 
13960 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13961 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13962 {
13963 	kvm_x86_call(gmem_invalidate)(start, end);
13964 }
13965 #endif
13966 #endif
13967 
kvm_spec_ctrl_test_value(u64 value)13968 int kvm_spec_ctrl_test_value(u64 value)
13969 {
13970 	/*
13971 	 * test that setting IA32_SPEC_CTRL to given value
13972 	 * is allowed by the host processor
13973 	 */
13974 
13975 	u64 saved_value;
13976 	unsigned long flags;
13977 	int ret = 0;
13978 
13979 	local_irq_save(flags);
13980 
13981 	if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13982 		ret = 1;
13983 	else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13984 		ret = 1;
13985 	else
13986 		wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13987 
13988 	local_irq_restore(flags);
13989 
13990 	return ret;
13991 }
13992 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
13993 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13994 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13995 {
13996 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13997 	struct x86_exception fault;
13998 	u64 access = error_code &
13999 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14000 
14001 	if (!(error_code & PFERR_PRESENT_MASK) ||
14002 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14003 		/*
14004 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14005 		 * tables probably do not match the TLB.  Just proceed
14006 		 * with the error code that the processor gave.
14007 		 */
14008 		fault.vector = PF_VECTOR;
14009 		fault.error_code_valid = true;
14010 		fault.error_code = error_code;
14011 		fault.nested_page_fault = false;
14012 		fault.address = gva;
14013 		fault.async_page_fault = false;
14014 	}
14015 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14016 }
14017 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14018 
14019 /*
14020  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14021  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14022  * indicates whether exit to userspace is needed.
14023  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)14024 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14025 			      struct x86_exception *e)
14026 {
14027 	if (r == X86EMUL_PROPAGATE_FAULT) {
14028 		if (KVM_BUG_ON(!e, vcpu->kvm))
14029 			return -EIO;
14030 
14031 		kvm_inject_emulated_page_fault(vcpu, e);
14032 		return 1;
14033 	}
14034 
14035 	/*
14036 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14037 	 * while handling a VMX instruction KVM could've handled the request
14038 	 * correctly by exiting to userspace and performing I/O but there
14039 	 * doesn't seem to be a real use-case behind such requests, just return
14040 	 * KVM_EXIT_INTERNAL_ERROR for now.
14041 	 */
14042 	kvm_prepare_emulation_failure_exit(vcpu);
14043 
14044 	return 0;
14045 }
14046 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14047 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)14048 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14049 {
14050 	bool pcid_enabled;
14051 	struct x86_exception e;
14052 	struct {
14053 		u64 pcid;
14054 		u64 gla;
14055 	} operand;
14056 	int r;
14057 
14058 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14059 	if (r != X86EMUL_CONTINUE)
14060 		return kvm_handle_memory_failure(vcpu, r, &e);
14061 
14062 	if (operand.pcid >> 12 != 0) {
14063 		kvm_inject_gp(vcpu, 0);
14064 		return 1;
14065 	}
14066 
14067 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14068 
14069 	switch (type) {
14070 	case INVPCID_TYPE_INDIV_ADDR:
14071 		/*
14072 		 * LAM doesn't apply to addresses that are inputs to TLB
14073 		 * invalidation.
14074 		 */
14075 		if ((!pcid_enabled && (operand.pcid != 0)) ||
14076 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14077 			kvm_inject_gp(vcpu, 0);
14078 			return 1;
14079 		}
14080 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14081 		return kvm_skip_emulated_instruction(vcpu);
14082 
14083 	case INVPCID_TYPE_SINGLE_CTXT:
14084 		if (!pcid_enabled && (operand.pcid != 0)) {
14085 			kvm_inject_gp(vcpu, 0);
14086 			return 1;
14087 		}
14088 
14089 		kvm_invalidate_pcid(vcpu, operand.pcid);
14090 		return kvm_skip_emulated_instruction(vcpu);
14091 
14092 	case INVPCID_TYPE_ALL_NON_GLOBAL:
14093 		/*
14094 		 * Currently, KVM doesn't mark global entries in the shadow
14095 		 * page tables, so a non-global flush just degenerates to a
14096 		 * global flush. If needed, we could optimize this later by
14097 		 * keeping track of global entries in shadow page tables.
14098 		 */
14099 
14100 		fallthrough;
14101 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
14102 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14103 		return kvm_skip_emulated_instruction(vcpu);
14104 
14105 	default:
14106 		kvm_inject_gp(vcpu, 0);
14107 		return 1;
14108 	}
14109 }
14110 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14111 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)14112 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14113 {
14114 	struct kvm_run *run = vcpu->run;
14115 	struct kvm_mmio_fragment *frag;
14116 	unsigned int len;
14117 
14118 	BUG_ON(!vcpu->mmio_needed);
14119 
14120 	/* Complete previous fragment */
14121 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14122 	len = min(8u, frag->len);
14123 	if (!vcpu->mmio_is_write)
14124 		memcpy(frag->data, run->mmio.data, len);
14125 
14126 	if (frag->len <= 8) {
14127 		/* Switch to the next fragment. */
14128 		frag++;
14129 		vcpu->mmio_cur_fragment++;
14130 	} else {
14131 		/* Go forward to the next mmio piece. */
14132 		frag->data += len;
14133 		frag->gpa += len;
14134 		frag->len -= len;
14135 	}
14136 
14137 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14138 		vcpu->mmio_needed = 0;
14139 
14140 		// VMG change, at this point, we're always done
14141 		// RIP has already been advanced
14142 		return 1;
14143 	}
14144 
14145 	// More MMIO is needed
14146 	run->mmio.phys_addr = frag->gpa;
14147 	run->mmio.len = min(8u, frag->len);
14148 	run->mmio.is_write = vcpu->mmio_is_write;
14149 	if (run->mmio.is_write)
14150 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14151 	run->exit_reason = KVM_EXIT_MMIO;
14152 
14153 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14154 
14155 	return 0;
14156 }
14157 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14158 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14159 			  void *data)
14160 {
14161 	int handled;
14162 	struct kvm_mmio_fragment *frag;
14163 
14164 	if (!data)
14165 		return -EINVAL;
14166 
14167 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14168 	if (handled == bytes)
14169 		return 1;
14170 
14171 	bytes -= handled;
14172 	gpa += handled;
14173 	data += handled;
14174 
14175 	/*TODO: Check if need to increment number of frags */
14176 	frag = vcpu->mmio_fragments;
14177 	vcpu->mmio_nr_fragments = 1;
14178 	frag->len = bytes;
14179 	frag->gpa = gpa;
14180 	frag->data = data;
14181 
14182 	vcpu->mmio_needed = 1;
14183 	vcpu->mmio_cur_fragment = 0;
14184 
14185 	vcpu->run->mmio.phys_addr = gpa;
14186 	vcpu->run->mmio.len = min(8u, frag->len);
14187 	vcpu->run->mmio.is_write = 1;
14188 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14189 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
14190 
14191 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14192 
14193 	return 0;
14194 }
14195 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14196 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14197 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14198 			 void *data)
14199 {
14200 	int handled;
14201 	struct kvm_mmio_fragment *frag;
14202 
14203 	if (!data)
14204 		return -EINVAL;
14205 
14206 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14207 	if (handled == bytes)
14208 		return 1;
14209 
14210 	bytes -= handled;
14211 	gpa += handled;
14212 	data += handled;
14213 
14214 	/*TODO: Check if need to increment number of frags */
14215 	frag = vcpu->mmio_fragments;
14216 	vcpu->mmio_nr_fragments = 1;
14217 	frag->len = bytes;
14218 	frag->gpa = gpa;
14219 	frag->data = data;
14220 
14221 	vcpu->mmio_needed = 1;
14222 	vcpu->mmio_cur_fragment = 0;
14223 
14224 	vcpu->run->mmio.phys_addr = gpa;
14225 	vcpu->run->mmio.len = min(8u, frag->len);
14226 	vcpu->run->mmio.is_write = 0;
14227 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
14228 
14229 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14230 
14231 	return 0;
14232 }
14233 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14234 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)14235 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14236 {
14237 	vcpu->arch.sev_pio_count -= count;
14238 	vcpu->arch.sev_pio_data += count * size;
14239 }
14240 
14241 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14242 			   unsigned int port);
14243 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14244 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14245 {
14246 	int size = vcpu->arch.pio.size;
14247 	int port = vcpu->arch.pio.port;
14248 
14249 	vcpu->arch.pio.count = 0;
14250 	if (vcpu->arch.sev_pio_count)
14251 		return kvm_sev_es_outs(vcpu, size, port);
14252 	return 1;
14253 }
14254 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14255 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14256 			   unsigned int port)
14257 {
14258 	for (;;) {
14259 		unsigned int count =
14260 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14261 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14262 
14263 		/* memcpy done already by emulator_pio_out.  */
14264 		advance_sev_es_emulated_pio(vcpu, count, size);
14265 		if (!ret)
14266 			break;
14267 
14268 		/* Emulation done by the kernel.  */
14269 		if (!vcpu->arch.sev_pio_count)
14270 			return 1;
14271 	}
14272 
14273 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14274 	return 0;
14275 }
14276 
14277 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14278 			  unsigned int port);
14279 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14280 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14281 {
14282 	unsigned count = vcpu->arch.pio.count;
14283 	int size = vcpu->arch.pio.size;
14284 	int port = vcpu->arch.pio.port;
14285 
14286 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14287 	advance_sev_es_emulated_pio(vcpu, count, size);
14288 	if (vcpu->arch.sev_pio_count)
14289 		return kvm_sev_es_ins(vcpu, size, port);
14290 	return 1;
14291 }
14292 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14293 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14294 			  unsigned int port)
14295 {
14296 	for (;;) {
14297 		unsigned int count =
14298 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14299 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14300 			break;
14301 
14302 		/* Emulation done by the kernel.  */
14303 		advance_sev_es_emulated_pio(vcpu, count, size);
14304 		if (!vcpu->arch.sev_pio_count)
14305 			return 1;
14306 	}
14307 
14308 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14309 	return 0;
14310 }
14311 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14312 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14313 			 unsigned int port, void *data,  unsigned int count,
14314 			 int in)
14315 {
14316 	vcpu->arch.sev_pio_data = data;
14317 	vcpu->arch.sev_pio_count = count;
14318 	return in ? kvm_sev_es_ins(vcpu, size, port)
14319 		  : kvm_sev_es_outs(vcpu, size, port);
14320 }
14321 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14322 
14323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14353 
kvm_x86_init(void)14354 static int __init kvm_x86_init(void)
14355 {
14356 	kvm_init_xstate_sizes();
14357 
14358 	kvm_mmu_x86_module_init();
14359 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14360 	return 0;
14361 }
14362 module_init(kvm_x86_init);
14363 
kvm_x86_exit(void)14364 static void __exit kvm_x86_exit(void)
14365 {
14366 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14367 }
14368 module_exit(kvm_x86_exit);
14369