1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/apic.h>
31 #include <asm/processor.h>
32 #include <asm/mce.h>
33 #include <asm/msr.h>
34 #include <asm/page.h>
35 #include <asm/current.h>
36 #include <asm/apicdef.h>
37 #include <asm/delay.h>
38 #include <linux/atomic.h>
39 #include <linux/jump_label.h>
40 #include "kvm_cache_regs.h"
41 #include "irq.h"
42 #include "ioapic.h"
43 #include "trace.h"
44 #include "x86.h"
45 #include "xen.h"
46 #include "cpuid.h"
47 #include "hyperv.h"
48 #include "smm.h"
49
50 #ifndef CONFIG_X86_64
51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
52 #else
53 #define mod_64(x, y) ((x) % (y))
54 #endif
55
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION 0x14UL
58 #define LAPIC_MMIO_LENGTH (1 << 12)
59
60 /*
61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
63 * before the deadline expires, to account for the delay between taking the
64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
65 * the guest, i.e. so that the interrupt arrives in the guest with minimal
66 * latency relative to the deadline programmed by the guest.
67 */
68 static bool lapic_timer_advance __read_mostly = true;
69 module_param(lapic_timer_advance, bool, 0444);
70
71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
75 /* step-by-step approximation to mitigate fluctuation */
76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
77 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
78 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
79
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)80 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
81 {
82 apic_set_reg(apic->regs, reg_off, val);
83 }
84
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)85 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
86 {
87 return apic_get_reg64(apic->regs, reg);
88 }
89
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)90 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
91 int reg, u64 val)
92 {
93 apic_set_reg64(apic->regs, reg, val);
94 }
95
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)96 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
97 {
98 struct kvm_lapic *apic = vcpu->arch.apic;
99
100 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
101 apic_test_vector(vector, apic->regs + APIC_IRR);
102 }
103
104 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
105 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
106
107 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
108 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
109
apic_enabled(struct kvm_lapic * apic)110 static inline int apic_enabled(struct kvm_lapic *apic)
111 {
112 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
113 }
114
115 #define LVT_MASK \
116 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
117
118 #define LINT_MASK \
119 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
120 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
121
kvm_x2apic_id(struct kvm_lapic * apic)122 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
123 {
124 return apic->vcpu->vcpu_id;
125 }
126
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)127 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
130 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
131 }
132
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)133 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
134 {
135 return kvm_x86_ops.set_hv_timer
136 && !(kvm_mwait_in_guest(vcpu->kvm) ||
137 kvm_can_post_timer_interrupt(vcpu));
138 }
139
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)140 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
141 {
142 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
143 }
144
kvm_apic_calc_x2apic_ldr(u32 id)145 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
146 {
147 return ((id >> 4) << 16) | (1 << (id & 0xf));
148 }
149
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)150 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
151 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
152 switch (map->logical_mode) {
153 case KVM_APIC_MODE_SW_DISABLED:
154 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
155 *cluster = map->xapic_flat_map;
156 *mask = 0;
157 return true;
158 case KVM_APIC_MODE_X2APIC: {
159 u32 offset = (dest_id >> 16) * 16;
160 u32 max_apic_id = map->max_apic_id;
161
162 if (offset <= max_apic_id) {
163 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
164
165 offset = array_index_nospec(offset, map->max_apic_id + 1);
166 *cluster = &map->phys_map[offset];
167 *mask = dest_id & (0xffff >> (16 - cluster_size));
168 } else {
169 *mask = 0;
170 }
171
172 return true;
173 }
174 case KVM_APIC_MODE_XAPIC_FLAT:
175 *cluster = map->xapic_flat_map;
176 *mask = dest_id & 0xff;
177 return true;
178 case KVM_APIC_MODE_XAPIC_CLUSTER:
179 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
180 *mask = dest_id & 0xf;
181 return true;
182 case KVM_APIC_MODE_MAP_DISABLED:
183 return false;
184 default:
185 WARN_ON_ONCE(1);
186 return false;
187 }
188 }
189
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)190 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
191 struct kvm_vcpu *vcpu,
192 bool *xapic_id_mismatch)
193 {
194 struct kvm_lapic *apic = vcpu->arch.apic;
195 u32 x2apic_id = kvm_x2apic_id(apic);
196 u32 xapic_id = kvm_xapic_id(apic);
197 u32 physical_id;
198
199 /*
200 * For simplicity, KVM always allocates enough space for all possible
201 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
202 * without the optimized map.
203 */
204 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
205 return -EINVAL;
206
207 /*
208 * Bail if a vCPU was added and/or enabled its APIC between allocating
209 * the map and doing the actual calculations for the map. Note, KVM
210 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
211 * the compiler decides to reload x2apic_id after this check.
212 */
213 if (x2apic_id > new->max_apic_id)
214 return -E2BIG;
215
216 /*
217 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
218 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
219 * 32-bit value. Any unwanted aliasing due to truncation results will
220 * be detected below.
221 */
222 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
223 *xapic_id_mismatch = true;
224
225 /*
226 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
227 * Allow sending events to vCPUs by their x2APIC ID even if the target
228 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
229 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
230 * and collide).
231 *
232 * Honor the architectural (and KVM's non-optimized) behavior if
233 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
234 * to process messages independently. If multiple vCPUs have the same
235 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
236 * manually modified its xAPIC IDs, events targeting that ID are
237 * supposed to be recognized by all vCPUs with said ID.
238 */
239 if (vcpu->kvm->arch.x2apic_format) {
240 /* See also kvm_apic_match_physical_addr(). */
241 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
242 new->phys_map[x2apic_id] = apic;
243
244 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
245 new->phys_map[xapic_id] = apic;
246 } else {
247 /*
248 * Disable the optimized map if the physical APIC ID is already
249 * mapped, i.e. is aliased to multiple vCPUs. The optimized
250 * map requires a strict 1:1 mapping between IDs and vCPUs.
251 */
252 if (apic_x2apic_mode(apic))
253 physical_id = x2apic_id;
254 else
255 physical_id = xapic_id;
256
257 if (new->phys_map[physical_id])
258 return -EINVAL;
259
260 new->phys_map[physical_id] = apic;
261 }
262
263 return 0;
264 }
265
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)266 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
267 struct kvm_vcpu *vcpu)
268 {
269 struct kvm_lapic *apic = vcpu->arch.apic;
270 enum kvm_apic_logical_mode logical_mode;
271 struct kvm_lapic **cluster;
272 u16 mask;
273 u32 ldr;
274
275 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
276 return;
277
278 if (!kvm_apic_sw_enabled(apic))
279 return;
280
281 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
282 if (!ldr)
283 return;
284
285 if (apic_x2apic_mode(apic)) {
286 logical_mode = KVM_APIC_MODE_X2APIC;
287 } else {
288 ldr = GET_APIC_LOGICAL_ID(ldr);
289 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
290 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
291 else
292 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
293 }
294
295 /*
296 * To optimize logical mode delivery, all software-enabled APICs must
297 * be configured for the same mode.
298 */
299 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
300 new->logical_mode = logical_mode;
301 } else if (new->logical_mode != logical_mode) {
302 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
303 return;
304 }
305
306 /*
307 * In x2APIC mode, the LDR is read-only and derived directly from the
308 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
309 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
310 * reversing the LDR calculation to get cluster of APICs, i.e. no
311 * additional work is required.
312 */
313 if (apic_x2apic_mode(apic))
314 return;
315
316 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
317 &cluster, &mask))) {
318 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
319 return;
320 }
321
322 if (!mask)
323 return;
324
325 ldr = ffs(mask) - 1;
326 if (!is_power_of_2(mask) || cluster[ldr])
327 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
328 else
329 cluster[ldr] = apic;
330 }
331
332 /*
333 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
334 *
335 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
336 * apic_map_lock_held.
337 */
338 enum {
339 CLEAN,
340 UPDATE_IN_PROGRESS,
341 DIRTY
342 };
343
kvm_recalculate_apic_map(struct kvm * kvm)344 static void kvm_recalculate_apic_map(struct kvm *kvm)
345 {
346 struct kvm_apic_map *new, *old = NULL;
347 struct kvm_vcpu *vcpu;
348 unsigned long i;
349 u32 max_id = 255; /* enough space for any xAPIC ID */
350 bool xapic_id_mismatch;
351 int r;
352
353 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
354 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
355 return;
356
357 WARN_ONCE(!irqchip_in_kernel(kvm),
358 "Dirty APIC map without an in-kernel local APIC");
359
360 mutex_lock(&kvm->arch.apic_map_lock);
361
362 retry:
363 /*
364 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
365 * or the APIC registers (if dirty). Note, on retry the map may have
366 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
367 * ID, i.e. the map may still show up as in-progress. In that case
368 * this task still needs to retry and complete its calculation.
369 */
370 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
371 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
372 /* Someone else has updated the map. */
373 mutex_unlock(&kvm->arch.apic_map_lock);
374 return;
375 }
376
377 /*
378 * Reset the mismatch flag between attempts so that KVM does the right
379 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
380 * keep max_id strictly increasing. Disallowing max_id from shrinking
381 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
382 * with the highest x2APIC ID is toggling its APIC on and off.
383 */
384 xapic_id_mismatch = false;
385
386 kvm_for_each_vcpu(i, vcpu, kvm)
387 if (kvm_apic_present(vcpu))
388 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
389
390 new = kvzalloc(sizeof(struct kvm_apic_map) +
391 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
392 GFP_KERNEL_ACCOUNT);
393
394 if (!new)
395 goto out;
396
397 new->max_apic_id = max_id;
398 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
399
400 kvm_for_each_vcpu(i, vcpu, kvm) {
401 if (!kvm_apic_present(vcpu))
402 continue;
403
404 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
405 if (r) {
406 kvfree(new);
407 new = NULL;
408 if (r == -E2BIG) {
409 cond_resched();
410 goto retry;
411 }
412
413 goto out;
414 }
415
416 kvm_recalculate_logical_map(new, vcpu);
417 }
418 out:
419 /*
420 * The optimized map is effectively KVM's internal version of APICv,
421 * and all unwanted aliasing that results in disabling the optimized
422 * map also applies to APICv.
423 */
424 if (!new)
425 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
426 else
427 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
428
429 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
430 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
431 else
432 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
433
434 if (xapic_id_mismatch)
435 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
436 else
437 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
438
439 old = rcu_dereference_protected(kvm->arch.apic_map,
440 lockdep_is_held(&kvm->arch.apic_map_lock));
441 rcu_assign_pointer(kvm->arch.apic_map, new);
442 /*
443 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
444 * If another update has come in, leave it DIRTY.
445 */
446 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
447 UPDATE_IN_PROGRESS, CLEAN);
448 mutex_unlock(&kvm->arch.apic_map_lock);
449
450 if (old)
451 kvfree_rcu(old, rcu);
452
453 kvm_make_scan_ioapic_request(kvm);
454 }
455
apic_set_spiv(struct kvm_lapic * apic,u32 val)456 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
457 {
458 bool enabled = val & APIC_SPIV_APIC_ENABLED;
459
460 kvm_lapic_set_reg(apic, APIC_SPIV, val);
461
462 if (enabled != apic->sw_enabled) {
463 apic->sw_enabled = enabled;
464 if (enabled)
465 static_branch_slow_dec_deferred(&apic_sw_disabled);
466 else
467 static_branch_inc(&apic_sw_disabled.key);
468
469 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
470 }
471
472 /* Check if there are APF page ready requests pending */
473 if (enabled) {
474 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
475 kvm_xen_sw_enable_lapic(apic->vcpu);
476 }
477 }
478
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)479 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
480 {
481 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
482 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
483 }
484
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)485 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
486 {
487 kvm_lapic_set_reg(apic, APIC_LDR, id);
488 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
489 }
490
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)491 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
492 {
493 kvm_lapic_set_reg(apic, APIC_DFR, val);
494 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
495 }
496
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)497 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
498 {
499 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
500
501 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
502
503 kvm_lapic_set_reg(apic, APIC_ID, id);
504 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
505 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
506 }
507
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)508 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
509 {
510 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
511 }
512
apic_lvtt_oneshot(struct kvm_lapic * apic)513 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
514 {
515 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
516 }
517
apic_lvtt_period(struct kvm_lapic * apic)518 static inline int apic_lvtt_period(struct kvm_lapic *apic)
519 {
520 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
521 }
522
apic_lvtt_tscdeadline(struct kvm_lapic * apic)523 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
524 {
525 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
526 }
527
apic_lvt_nmi_mode(u32 lvt_val)528 static inline int apic_lvt_nmi_mode(u32 lvt_val)
529 {
530 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
531 }
532
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)533 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
534 {
535 return apic->nr_lvt_entries > lvt_index;
536 }
537
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)538 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
539 {
540 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
541 }
542
kvm_apic_set_version(struct kvm_vcpu * vcpu)543 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
544 {
545 struct kvm_lapic *apic = vcpu->arch.apic;
546 u32 v = 0;
547
548 if (!lapic_in_kernel(vcpu))
549 return;
550
551 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
552
553 /*
554 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
555 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
556 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
557 * version first and level-triggered interrupts never get EOIed in
558 * IOAPIC.
559 */
560 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) &&
561 !ioapic_in_kernel(vcpu->kvm))
562 v |= APIC_LVR_DIRECTED_EOI;
563 kvm_lapic_set_reg(apic, APIC_LVR, v);
564 }
565
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)566 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
567 {
568 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
569 struct kvm_lapic *apic = vcpu->arch.apic;
570 int i;
571
572 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
573 return;
574
575 /* Initialize/mask any "new" LVT entries. */
576 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
577 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
578
579 apic->nr_lvt_entries = nr_lvt_entries;
580
581 /* The number of LVT entries is reflected in the version register. */
582 kvm_apic_set_version(vcpu);
583 }
584
585 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
586 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
587 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
588 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
589 [LVT_LINT0] = LINT_MASK,
590 [LVT_LINT1] = LINT_MASK,
591 [LVT_ERROR] = LVT_MASK,
592 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
593 };
594
count_vectors(void * bitmap)595 static u8 count_vectors(void *bitmap)
596 {
597 int vec;
598 u32 *reg;
599 u8 count = 0;
600
601 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
602 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec);
603 count += hweight32(*reg);
604 }
605
606 return count;
607 }
608
__kvm_apic_update_irr(unsigned long * pir,void * regs,int * max_irr)609 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr)
610 {
611 unsigned long pir_vals[NR_PIR_WORDS];
612 u32 *__pir = (void *)pir_vals;
613 u32 i, vec;
614 u32 irr_val, prev_irr_val;
615 int max_updated_irr;
616
617 max_updated_irr = -1;
618 *max_irr = -1;
619
620 if (!pi_harvest_pir(pir, pir_vals))
621 return false;
622
623 for (i = vec = 0; i <= 7; i++, vec += 32) {
624 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
625
626 irr_val = READ_ONCE(*p_irr);
627
628 if (__pir[i]) {
629 prev_irr_val = irr_val;
630 do {
631 irr_val = prev_irr_val | __pir[i];
632 } while (prev_irr_val != irr_val &&
633 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
634
635 if (prev_irr_val != irr_val)
636 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
637 }
638 if (irr_val)
639 *max_irr = __fls(irr_val) + vec;
640 }
641
642 return ((max_updated_irr != -1) &&
643 (max_updated_irr == *max_irr));
644 }
645 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
646
kvm_apic_update_irr(struct kvm_vcpu * vcpu,unsigned long * pir,int * max_irr)647 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr)
648 {
649 struct kvm_lapic *apic = vcpu->arch.apic;
650 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
651
652 if (unlikely(!apic->apicv_active && irr_updated))
653 apic->irr_pending = true;
654 return irr_updated;
655 }
656 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
657
apic_search_irr(struct kvm_lapic * apic)658 static inline int apic_search_irr(struct kvm_lapic *apic)
659 {
660 return apic_find_highest_vector(apic->regs + APIC_IRR);
661 }
662
apic_find_highest_irr(struct kvm_lapic * apic)663 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
664 {
665 int result;
666
667 /*
668 * Note that irr_pending is just a hint. It will be always
669 * true with virtual interrupt delivery enabled.
670 */
671 if (!apic->irr_pending)
672 return -1;
673
674 result = apic_search_irr(apic);
675 ASSERT(result == -1 || result >= 16);
676
677 return result;
678 }
679
apic_clear_irr(int vec,struct kvm_lapic * apic)680 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
681 {
682 if (unlikely(apic->apicv_active)) {
683 apic_clear_vector(vec, apic->regs + APIC_IRR);
684 } else {
685 apic->irr_pending = false;
686 apic_clear_vector(vec, apic->regs + APIC_IRR);
687 if (apic_search_irr(apic) != -1)
688 apic->irr_pending = true;
689 }
690 }
691
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)692 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
693 {
694 apic_clear_irr(vec, vcpu->arch.apic);
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
697
apic_vector_to_isr(int vec,struct kvm_lapic * apic)698 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic)
699 {
700 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec);
701 }
702
apic_set_isr(int vec,struct kvm_lapic * apic)703 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
704 {
705 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec),
706 apic_vector_to_isr(vec, apic)))
707 return;
708
709 /*
710 * With APIC virtualization enabled, all caching is disabled
711 * because the processor can modify ISR under the hood. Instead
712 * just set SVI.
713 */
714 if (unlikely(apic->apicv_active))
715 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
716 else {
717 ++apic->isr_count;
718 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
719 /*
720 * ISR (in service register) bit is set when injecting an interrupt.
721 * The highest vector is injected. Thus the latest bit set matches
722 * the highest bit in ISR.
723 */
724 apic->highest_isr_cache = vec;
725 }
726 }
727
apic_find_highest_isr(struct kvm_lapic * apic)728 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
729 {
730 int result;
731
732 /*
733 * Note that isr_count is always 1, and highest_isr_cache
734 * is always -1, with APIC virtualization enabled.
735 */
736 if (!apic->isr_count)
737 return -1;
738 if (likely(apic->highest_isr_cache != -1))
739 return apic->highest_isr_cache;
740
741 result = apic_find_highest_vector(apic->regs + APIC_ISR);
742 ASSERT(result == -1 || result >= 16);
743
744 return result;
745 }
746
apic_clear_isr(int vec,struct kvm_lapic * apic)747 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
748 {
749 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec),
750 apic_vector_to_isr(vec, apic)))
751 return;
752
753 /*
754 * We do get here for APIC virtualization enabled if the guest
755 * uses the Hyper-V APIC enlightenment. In this case we may need
756 * to trigger a new interrupt delivery by writing the SVI field;
757 * on the other hand isr_count and highest_isr_cache are unused
758 * and must be left alone.
759 */
760 if (unlikely(apic->apicv_active))
761 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
762 else {
763 --apic->isr_count;
764 BUG_ON(apic->isr_count < 0);
765 apic->highest_isr_cache = -1;
766 }
767 }
768
kvm_apic_update_hwapic_isr(struct kvm_vcpu * vcpu)769 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
770 {
771 struct kvm_lapic *apic = vcpu->arch.apic;
772
773 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
774 return;
775
776 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
777 }
778 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
779
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
781 {
782 /* This may race with setting of irr in __apic_accept_irq() and
783 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
784 * will cause vmexit immediately and the value will be recalculated
785 * on the next vmentry.
786 */
787 return apic_find_highest_irr(vcpu->arch.apic);
788 }
789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
790
791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
792 int vector, int level, int trig_mode,
793 struct dest_map *dest_map);
794
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
796 struct dest_map *dest_map)
797 {
798 struct kvm_lapic *apic = vcpu->arch.apic;
799
800 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
801 irq->level, irq->trig_mode, dest_map);
802 }
803
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
805 struct kvm_lapic_irq *irq, u32 min)
806 {
807 int i, count = 0;
808 struct kvm_vcpu *vcpu;
809
810 if (min > map->max_apic_id)
811 return 0;
812
813 for_each_set_bit(i, ipi_bitmap,
814 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
815 if (map->phys_map[min + i]) {
816 vcpu = map->phys_map[min + i]->vcpu;
817 count += kvm_apic_set_irq(vcpu, irq, NULL);
818 }
819 }
820
821 return count;
822 }
823
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)824 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
825 unsigned long ipi_bitmap_high, u32 min,
826 unsigned long icr, int op_64_bit)
827 {
828 struct kvm_apic_map *map;
829 struct kvm_lapic_irq irq = {0};
830 int cluster_size = op_64_bit ? 64 : 32;
831 int count;
832
833 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
834 return -KVM_EINVAL;
835
836 irq.vector = icr & APIC_VECTOR_MASK;
837 irq.delivery_mode = icr & APIC_MODE_MASK;
838 irq.level = (icr & APIC_INT_ASSERT) != 0;
839 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
840
841 rcu_read_lock();
842 map = rcu_dereference(kvm->arch.apic_map);
843
844 count = -EOPNOTSUPP;
845 if (likely(map)) {
846 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
847 min += cluster_size;
848 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
849 }
850
851 rcu_read_unlock();
852 return count;
853 }
854
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)855 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
856 {
857
858 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
859 sizeof(val));
860 }
861
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)862 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
863 {
864
865 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
866 sizeof(*val));
867 }
868
pv_eoi_enabled(struct kvm_vcpu * vcpu)869 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
870 {
871 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
872 }
873
pv_eoi_set_pending(struct kvm_vcpu * vcpu)874 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
875 {
876 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
877 return;
878
879 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
880 }
881
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)882 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
883 {
884 u8 val;
885
886 if (pv_eoi_get_user(vcpu, &val) < 0)
887 return false;
888
889 val &= KVM_PV_EOI_ENABLED;
890
891 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
892 return false;
893
894 /*
895 * Clear pending bit in any case: it will be set again on vmentry.
896 * While this might not be ideal from performance point of view,
897 * this makes sure pv eoi is only enabled when we know it's safe.
898 */
899 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
900
901 return val;
902 }
903
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)904 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
905 {
906 int highest_irr;
907 if (kvm_x86_ops.sync_pir_to_irr)
908 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
909 else
910 highest_irr = apic_find_highest_irr(apic);
911 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
912 return -1;
913 return highest_irr;
914 }
915
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)916 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
917 {
918 u32 tpr, isrv, ppr, old_ppr;
919 int isr;
920
921 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
922 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
923 isr = apic_find_highest_isr(apic);
924 isrv = (isr != -1) ? isr : 0;
925
926 if ((tpr & 0xf0) >= (isrv & 0xf0))
927 ppr = tpr & 0xff;
928 else
929 ppr = isrv & 0xf0;
930
931 *new_ppr = ppr;
932 if (old_ppr != ppr)
933 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
934
935 return ppr < old_ppr;
936 }
937
apic_update_ppr(struct kvm_lapic * apic)938 static void apic_update_ppr(struct kvm_lapic *apic)
939 {
940 u32 ppr;
941
942 if (__apic_update_ppr(apic, &ppr) &&
943 apic_has_interrupt_for_ppr(apic, ppr) != -1)
944 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
945 }
946
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)947 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
948 {
949 apic_update_ppr(vcpu->arch.apic);
950 }
951 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
952
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)953 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
954 {
955 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
956 apic_update_ppr(apic);
957 }
958
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)959 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
960 {
961 return mda == (apic_x2apic_mode(apic) ?
962 X2APIC_BROADCAST : APIC_BROADCAST);
963 }
964
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)965 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
966 {
967 if (kvm_apic_broadcast(apic, mda))
968 return true;
969
970 /*
971 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
972 * were in x2APIC mode if the target APIC ID can't be encoded as an
973 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
974 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
975 * mode. Match the x2APIC ID if and only if the target APIC ID can't
976 * be encoded in xAPIC to avoid spurious matches against a vCPU that
977 * changed its (addressable) xAPIC ID (which is writable).
978 */
979 if (apic_x2apic_mode(apic) || mda > 0xff)
980 return mda == kvm_x2apic_id(apic);
981
982 return mda == kvm_xapic_id(apic);
983 }
984
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)985 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
986 {
987 u32 logical_id;
988
989 if (kvm_apic_broadcast(apic, mda))
990 return true;
991
992 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
993
994 if (apic_x2apic_mode(apic))
995 return ((logical_id >> 16) == (mda >> 16))
996 && (logical_id & mda & 0xffff) != 0;
997
998 logical_id = GET_APIC_LOGICAL_ID(logical_id);
999
1000 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1001 case APIC_DFR_FLAT:
1002 return (logical_id & mda) != 0;
1003 case APIC_DFR_CLUSTER:
1004 return ((logical_id >> 4) == (mda >> 4))
1005 && (logical_id & mda & 0xf) != 0;
1006 default:
1007 return false;
1008 }
1009 }
1010
1011 /* The KVM local APIC implementation has two quirks:
1012 *
1013 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1014 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1015 * KVM doesn't do that aliasing.
1016 *
1017 * - in-kernel IOAPIC messages have to be delivered directly to
1018 * x2APIC, because the kernel does not support interrupt remapping.
1019 * In order to support broadcast without interrupt remapping, x2APIC
1020 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1021 * to X2APIC_BROADCAST.
1022 *
1023 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1024 * important when userspace wants to use x2APIC-format MSIs, because
1025 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1026 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1027 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1028 struct kvm_lapic *source, struct kvm_lapic *target)
1029 {
1030 bool ipi = source != NULL;
1031
1032 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1033 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1034 return X2APIC_BROADCAST;
1035
1036 return dest_id;
1037 }
1038
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1039 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1040 int shorthand, unsigned int dest, int dest_mode)
1041 {
1042 struct kvm_lapic *target = vcpu->arch.apic;
1043 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1044
1045 ASSERT(target);
1046 switch (shorthand) {
1047 case APIC_DEST_NOSHORT:
1048 if (dest_mode == APIC_DEST_PHYSICAL)
1049 return kvm_apic_match_physical_addr(target, mda);
1050 else
1051 return kvm_apic_match_logical_addr(target, mda);
1052 case APIC_DEST_SELF:
1053 return target == source;
1054 case APIC_DEST_ALLINC:
1055 return true;
1056 case APIC_DEST_ALLBUT:
1057 return target != source;
1058 default:
1059 return false;
1060 }
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1063
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1064 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1065 const unsigned long *bitmap, u32 bitmap_size)
1066 {
1067 u32 mod;
1068 int i, idx = -1;
1069
1070 mod = vector % dest_vcpus;
1071
1072 for (i = 0; i <= mod; i++) {
1073 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1074 BUG_ON(idx == bitmap_size);
1075 }
1076
1077 return idx;
1078 }
1079
kvm_apic_disabled_lapic_found(struct kvm * kvm)1080 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1081 {
1082 if (!kvm->arch.disabled_lapic_found) {
1083 kvm->arch.disabled_lapic_found = true;
1084 pr_info("Disabled LAPIC found during irq injection\n");
1085 }
1086 }
1087
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1088 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1089 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1090 {
1091 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1092 if ((irq->dest_id == APIC_BROADCAST &&
1093 map->logical_mode != KVM_APIC_MODE_X2APIC))
1094 return true;
1095 if (irq->dest_id == X2APIC_BROADCAST)
1096 return true;
1097 } else {
1098 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1099 if (irq->dest_id == (x2apic_ipi ?
1100 X2APIC_BROADCAST : APIC_BROADCAST))
1101 return true;
1102 }
1103
1104 return false;
1105 }
1106
1107 /* Return true if the interrupt can be handled by using *bitmap as index mask
1108 * for valid destinations in *dst array.
1109 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1110 * Note: we may have zero kvm_lapic destinations when we return true, which
1111 * means that the interrupt should be dropped. In this case, *bitmap would be
1112 * zero and *dst undefined.
1113 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1114 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1115 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1116 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1117 unsigned long *bitmap)
1118 {
1119 int i, lowest;
1120
1121 if (irq->shorthand == APIC_DEST_SELF && src) {
1122 *dst = src;
1123 *bitmap = 1;
1124 return true;
1125 } else if (irq->shorthand)
1126 return false;
1127
1128 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1129 return false;
1130
1131 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1132 if (irq->dest_id > map->max_apic_id) {
1133 *bitmap = 0;
1134 } else {
1135 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1136 *dst = &map->phys_map[dest_id];
1137 *bitmap = 1;
1138 }
1139 return true;
1140 }
1141
1142 *bitmap = 0;
1143 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1144 (u16 *)bitmap))
1145 return false;
1146
1147 if (!kvm_lowest_prio_delivery(irq))
1148 return true;
1149
1150 if (!kvm_vector_hashing_enabled()) {
1151 lowest = -1;
1152 for_each_set_bit(i, bitmap, 16) {
1153 if (!(*dst)[i])
1154 continue;
1155 if (lowest < 0)
1156 lowest = i;
1157 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1158 (*dst)[lowest]->vcpu) < 0)
1159 lowest = i;
1160 }
1161 } else {
1162 if (!*bitmap)
1163 return true;
1164
1165 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1166 bitmap, 16);
1167
1168 if (!(*dst)[lowest]) {
1169 kvm_apic_disabled_lapic_found(kvm);
1170 *bitmap = 0;
1171 return true;
1172 }
1173 }
1174
1175 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1176
1177 return true;
1178 }
1179
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1180 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1181 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1182 {
1183 struct kvm_apic_map *map;
1184 unsigned long bitmap;
1185 struct kvm_lapic **dst = NULL;
1186 int i;
1187 bool ret;
1188
1189 *r = -1;
1190
1191 if (irq->shorthand == APIC_DEST_SELF) {
1192 if (KVM_BUG_ON(!src, kvm)) {
1193 *r = 0;
1194 return true;
1195 }
1196 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1197 return true;
1198 }
1199
1200 rcu_read_lock();
1201 map = rcu_dereference(kvm->arch.apic_map);
1202
1203 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1204 if (ret) {
1205 *r = 0;
1206 for_each_set_bit(i, &bitmap, 16) {
1207 if (!dst[i])
1208 continue;
1209 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1210 }
1211 }
1212
1213 rcu_read_unlock();
1214 return ret;
1215 }
1216
1217 /*
1218 * This routine tries to handle interrupts in posted mode, here is how
1219 * it deals with different cases:
1220 * - For single-destination interrupts, handle it in posted mode
1221 * - Else if vector hashing is enabled and it is a lowest-priority
1222 * interrupt, handle it in posted mode and use the following mechanism
1223 * to find the destination vCPU.
1224 * 1. For lowest-priority interrupts, store all the possible
1225 * destination vCPUs in an array.
1226 * 2. Use "guest vector % max number of destination vCPUs" to find
1227 * the right destination vCPU in the array for the lowest-priority
1228 * interrupt.
1229 * - Otherwise, use remapped mode to inject the interrupt.
1230 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1231 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1232 struct kvm_vcpu **dest_vcpu)
1233 {
1234 struct kvm_apic_map *map;
1235 unsigned long bitmap;
1236 struct kvm_lapic **dst = NULL;
1237 bool ret = false;
1238
1239 if (irq->shorthand)
1240 return false;
1241
1242 rcu_read_lock();
1243 map = rcu_dereference(kvm->arch.apic_map);
1244
1245 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1246 hweight16(bitmap) == 1) {
1247 unsigned long i = find_first_bit(&bitmap, 16);
1248
1249 if (dst[i]) {
1250 *dest_vcpu = dst[i]->vcpu;
1251 ret = true;
1252 }
1253 }
1254
1255 rcu_read_unlock();
1256 return ret;
1257 }
1258
1259 /*
1260 * Add a pending IRQ into lapic.
1261 * Return 1 if successfully added and 0 if discarded.
1262 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1263 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1264 int vector, int level, int trig_mode,
1265 struct dest_map *dest_map)
1266 {
1267 int result = 0;
1268 struct kvm_vcpu *vcpu = apic->vcpu;
1269
1270 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1271 trig_mode, vector);
1272 switch (delivery_mode) {
1273 case APIC_DM_LOWEST:
1274 vcpu->arch.apic_arb_prio++;
1275 fallthrough;
1276 case APIC_DM_FIXED:
1277 if (unlikely(trig_mode && !level))
1278 break;
1279
1280 /* FIXME add logic for vcpu on reset */
1281 if (unlikely(!apic_enabled(apic)))
1282 break;
1283
1284 result = 1;
1285
1286 if (dest_map) {
1287 __set_bit(vcpu->vcpu_id, dest_map->map);
1288 dest_map->vectors[vcpu->vcpu_id] = vector;
1289 }
1290
1291 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1292 if (trig_mode)
1293 apic_set_vector(vector, apic->regs + APIC_TMR);
1294 else
1295 apic_clear_vector(vector, apic->regs + APIC_TMR);
1296 }
1297
1298 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1299 trig_mode, vector);
1300 break;
1301
1302 case APIC_DM_REMRD:
1303 result = 1;
1304 vcpu->arch.pv.pv_unhalted = 1;
1305 kvm_make_request(KVM_REQ_EVENT, vcpu);
1306 kvm_vcpu_kick(vcpu);
1307 break;
1308
1309 case APIC_DM_SMI:
1310 if (!kvm_inject_smi(vcpu)) {
1311 kvm_vcpu_kick(vcpu);
1312 result = 1;
1313 }
1314 break;
1315
1316 case APIC_DM_NMI:
1317 result = 1;
1318 kvm_inject_nmi(vcpu);
1319 kvm_vcpu_kick(vcpu);
1320 break;
1321
1322 case APIC_DM_INIT:
1323 if (!trig_mode || level) {
1324 result = 1;
1325 /* assumes that there are only KVM_APIC_INIT/SIPI */
1326 apic->pending_events = (1UL << KVM_APIC_INIT);
1327 kvm_make_request(KVM_REQ_EVENT, vcpu);
1328 kvm_vcpu_kick(vcpu);
1329 }
1330 break;
1331
1332 case APIC_DM_STARTUP:
1333 result = 1;
1334 apic->sipi_vector = vector;
1335 /* make sure sipi_vector is visible for the receiver */
1336 smp_wmb();
1337 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1338 kvm_make_request(KVM_REQ_EVENT, vcpu);
1339 kvm_vcpu_kick(vcpu);
1340 break;
1341
1342 case APIC_DM_EXTINT:
1343 /*
1344 * Should only be called by kvm_apic_local_deliver() with LVT0,
1345 * before NMI watchdog was enabled. Already handled by
1346 * kvm_apic_accept_pic_intr().
1347 */
1348 break;
1349
1350 default:
1351 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1352 delivery_mode);
1353 break;
1354 }
1355 return result;
1356 }
1357
1358 /*
1359 * This routine identifies the destination vcpus mask meant to receive the
1360 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1361 * out the destination vcpus array and set the bitmap or it traverses to
1362 * each available vcpu to identify the same.
1363 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1364 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1365 unsigned long *vcpu_bitmap)
1366 {
1367 struct kvm_lapic **dest_vcpu = NULL;
1368 struct kvm_lapic *src = NULL;
1369 struct kvm_apic_map *map;
1370 struct kvm_vcpu *vcpu;
1371 unsigned long bitmap, i;
1372 int vcpu_idx;
1373 bool ret;
1374
1375 rcu_read_lock();
1376 map = rcu_dereference(kvm->arch.apic_map);
1377
1378 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1379 &bitmap);
1380 if (ret) {
1381 for_each_set_bit(i, &bitmap, 16) {
1382 if (!dest_vcpu[i])
1383 continue;
1384 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1385 __set_bit(vcpu_idx, vcpu_bitmap);
1386 }
1387 } else {
1388 kvm_for_each_vcpu(i, vcpu, kvm) {
1389 if (!kvm_apic_present(vcpu))
1390 continue;
1391 if (!kvm_apic_match_dest(vcpu, NULL,
1392 irq->shorthand,
1393 irq->dest_id,
1394 irq->dest_mode))
1395 continue;
1396 __set_bit(i, vcpu_bitmap);
1397 }
1398 }
1399 rcu_read_unlock();
1400 }
1401
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1402 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1403 {
1404 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1405 }
1406
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1407 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1408 {
1409 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1410 }
1411
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1412 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1413 {
1414 int __maybe_unused trigger_mode;
1415
1416 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1417 if (!kvm_ioapic_handles_vector(apic, vector))
1418 return;
1419
1420 /*
1421 * If the intercepted EOI is for an IRQ that was pending from previous
1422 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely
1423 * no longer need to be intercepted.
1424 */
1425 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector)
1426 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu);
1427
1428 /* Request a KVM exit to inform the userspace IOAPIC. */
1429 if (irqchip_split(apic->vcpu->kvm)) {
1430 apic->vcpu->arch.pending_ioapic_eoi = vector;
1431 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1432 return;
1433 }
1434
1435 #ifdef CONFIG_KVM_IOAPIC
1436 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1437 trigger_mode = IOAPIC_LEVEL_TRIG;
1438 else
1439 trigger_mode = IOAPIC_EDGE_TRIG;
1440
1441 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1442 #endif
1443 }
1444
apic_set_eoi(struct kvm_lapic * apic)1445 static int apic_set_eoi(struct kvm_lapic *apic)
1446 {
1447 int vector = apic_find_highest_isr(apic);
1448
1449 trace_kvm_eoi(apic, vector);
1450
1451 /*
1452 * Not every write EOI will has corresponding ISR,
1453 * one example is when Kernel check timer on setup_IO_APIC
1454 */
1455 if (vector == -1)
1456 return vector;
1457
1458 apic_clear_isr(vector, apic);
1459 apic_update_ppr(apic);
1460
1461 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1462 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1463
1464 kvm_ioapic_send_eoi(apic, vector);
1465 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1466 return vector;
1467 }
1468
1469 /*
1470 * this interface assumes a trap-like exit, which has already finished
1471 * desired side effect including vISR and vPPR update.
1472 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1473 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1474 {
1475 struct kvm_lapic *apic = vcpu->arch.apic;
1476
1477 trace_kvm_eoi(apic, vector);
1478
1479 kvm_ioapic_send_eoi(apic, vector);
1480 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1481 }
1482 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1483
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1484 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1485 {
1486 struct kvm_lapic_irq irq;
1487
1488 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1489 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1490
1491 irq.vector = icr_low & APIC_VECTOR_MASK;
1492 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1493 irq.dest_mode = icr_low & APIC_DEST_MASK;
1494 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1495 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1496 irq.shorthand = icr_low & APIC_SHORT_MASK;
1497 irq.msi_redir_hint = false;
1498 if (apic_x2apic_mode(apic))
1499 irq.dest_id = icr_high;
1500 else
1501 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1502
1503 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1504
1505 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1508
apic_get_tmcct(struct kvm_lapic * apic)1509 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1510 {
1511 ktime_t remaining, now;
1512 s64 ns;
1513
1514 ASSERT(apic != NULL);
1515
1516 /* if initial count is 0, current count should also be 0 */
1517 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1518 apic->lapic_timer.period == 0)
1519 return 0;
1520
1521 now = ktime_get();
1522 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1523 if (ktime_to_ns(remaining) < 0)
1524 remaining = 0;
1525
1526 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1527 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1528 apic->divide_count));
1529 }
1530
__report_tpr_access(struct kvm_lapic * apic,bool write)1531 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1532 {
1533 struct kvm_vcpu *vcpu = apic->vcpu;
1534 struct kvm_run *run = vcpu->run;
1535
1536 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1537 run->tpr_access.rip = kvm_rip_read(vcpu);
1538 run->tpr_access.is_write = write;
1539 }
1540
report_tpr_access(struct kvm_lapic * apic,bool write)1541 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1542 {
1543 if (apic->vcpu->arch.tpr_access_reporting)
1544 __report_tpr_access(apic, write);
1545 }
1546
__apic_read(struct kvm_lapic * apic,unsigned int offset)1547 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1548 {
1549 u32 val = 0;
1550
1551 if (offset >= LAPIC_MMIO_LENGTH)
1552 return 0;
1553
1554 switch (offset) {
1555 case APIC_ARBPRI:
1556 break;
1557
1558 case APIC_TMCCT: /* Timer CCR */
1559 if (apic_lvtt_tscdeadline(apic))
1560 return 0;
1561
1562 val = apic_get_tmcct(apic);
1563 break;
1564 case APIC_PROCPRI:
1565 apic_update_ppr(apic);
1566 val = kvm_lapic_get_reg(apic, offset);
1567 break;
1568 case APIC_TASKPRI:
1569 report_tpr_access(apic, false);
1570 fallthrough;
1571 default:
1572 val = kvm_lapic_get_reg(apic, offset);
1573 break;
1574 }
1575
1576 return val;
1577 }
1578
to_lapic(struct kvm_io_device * dev)1579 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1580 {
1581 return container_of(dev, struct kvm_lapic, dev);
1582 }
1583
1584 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1585 #define APIC_REGS_MASK(first, count) \
1586 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1587
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1588 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1589 {
1590 /* Leave bits '0' for reserved and write-only registers. */
1591 u64 valid_reg_mask =
1592 APIC_REG_MASK(APIC_ID) |
1593 APIC_REG_MASK(APIC_LVR) |
1594 APIC_REG_MASK(APIC_TASKPRI) |
1595 APIC_REG_MASK(APIC_PROCPRI) |
1596 APIC_REG_MASK(APIC_LDR) |
1597 APIC_REG_MASK(APIC_SPIV) |
1598 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1599 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1600 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1601 APIC_REG_MASK(APIC_ESR) |
1602 APIC_REG_MASK(APIC_ICR) |
1603 APIC_REG_MASK(APIC_LVTT) |
1604 APIC_REG_MASK(APIC_LVTTHMR) |
1605 APIC_REG_MASK(APIC_LVTPC) |
1606 APIC_REG_MASK(APIC_LVT0) |
1607 APIC_REG_MASK(APIC_LVT1) |
1608 APIC_REG_MASK(APIC_LVTERR) |
1609 APIC_REG_MASK(APIC_TMICT) |
1610 APIC_REG_MASK(APIC_TMCCT) |
1611 APIC_REG_MASK(APIC_TDCR);
1612
1613 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1614 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1615
1616 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1617 if (!apic_x2apic_mode(apic))
1618 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1619 APIC_REG_MASK(APIC_DFR) |
1620 APIC_REG_MASK(APIC_ICR2);
1621
1622 return valid_reg_mask;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1625
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1626 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1627 void *data)
1628 {
1629 unsigned char alignment = offset & 0xf;
1630 u32 result;
1631
1632 /*
1633 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1634 * x2APIC and needs to be manually handled by the caller.
1635 */
1636 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1637
1638 if (alignment + len > 4)
1639 return 1;
1640
1641 if (offset > 0x3f0 ||
1642 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1643 return 1;
1644
1645 result = __apic_read(apic, offset & ~0xf);
1646
1647 trace_kvm_apic_read(offset, result);
1648
1649 switch (len) {
1650 case 1:
1651 case 2:
1652 case 4:
1653 memcpy(data, (char *)&result + alignment, len);
1654 break;
1655 default:
1656 printk(KERN_ERR "Local APIC read with len = %x, "
1657 "should be 1,2, or 4 instead\n", len);
1658 break;
1659 }
1660 return 0;
1661 }
1662
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1663 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1664 {
1665 return addr >= apic->base_address &&
1666 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1667 }
1668
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1669 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1670 gpa_t address, int len, void *data)
1671 {
1672 struct kvm_lapic *apic = to_lapic(this);
1673 u32 offset = address - apic->base_address;
1674
1675 if (!apic_mmio_in_range(apic, address))
1676 return -EOPNOTSUPP;
1677
1678 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1679 if (!kvm_check_has_quirk(vcpu->kvm,
1680 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1681 return -EOPNOTSUPP;
1682
1683 memset(data, 0xff, len);
1684 return 0;
1685 }
1686
1687 kvm_lapic_reg_read(apic, offset, len, data);
1688
1689 return 0;
1690 }
1691
update_divide_count(struct kvm_lapic * apic)1692 static void update_divide_count(struct kvm_lapic *apic)
1693 {
1694 u32 tmp1, tmp2, tdcr;
1695
1696 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1697 tmp1 = tdcr & 0xf;
1698 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1699 apic->divide_count = 0x1 << (tmp2 & 0x7);
1700 }
1701
limit_periodic_timer_frequency(struct kvm_lapic * apic)1702 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1703 {
1704 /*
1705 * Do not allow the guest to program periodic timers with small
1706 * interval, since the hrtimers are not throttled by the host
1707 * scheduler.
1708 */
1709 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1710 s64 min_period = min_timer_period_us * 1000LL;
1711
1712 if (apic->lapic_timer.period < min_period) {
1713 pr_info_once(
1714 "vcpu %i: requested %lld ns "
1715 "lapic timer period limited to %lld ns\n",
1716 apic->vcpu->vcpu_id,
1717 apic->lapic_timer.period, min_period);
1718 apic->lapic_timer.period = min_period;
1719 }
1720 }
1721 }
1722
1723 static void cancel_hv_timer(struct kvm_lapic *apic);
1724
cancel_apic_timer(struct kvm_lapic * apic)1725 static void cancel_apic_timer(struct kvm_lapic *apic)
1726 {
1727 hrtimer_cancel(&apic->lapic_timer.timer);
1728 preempt_disable();
1729 if (apic->lapic_timer.hv_timer_in_use)
1730 cancel_hv_timer(apic);
1731 preempt_enable();
1732 atomic_set(&apic->lapic_timer.pending, 0);
1733 }
1734
apic_update_lvtt(struct kvm_lapic * apic)1735 static void apic_update_lvtt(struct kvm_lapic *apic)
1736 {
1737 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1738 apic->lapic_timer.timer_mode_mask;
1739
1740 if (apic->lapic_timer.timer_mode != timer_mode) {
1741 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1742 APIC_LVT_TIMER_TSCDEADLINE)) {
1743 cancel_apic_timer(apic);
1744 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1745 apic->lapic_timer.period = 0;
1746 apic->lapic_timer.tscdeadline = 0;
1747 }
1748 apic->lapic_timer.timer_mode = timer_mode;
1749 limit_periodic_timer_frequency(apic);
1750 }
1751 }
1752
1753 /*
1754 * On APICv, this test will cause a busy wait
1755 * during a higher-priority task.
1756 */
1757
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1758 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1759 {
1760 struct kvm_lapic *apic = vcpu->arch.apic;
1761 u32 reg;
1762
1763 /*
1764 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's
1765 * copy of the vIRR is bogus, it's the responsibility of the caller to
1766 * precisely check whether or not a timer IRQ is pending.
1767 */
1768 if (apic->guest_apic_protected)
1769 return true;
1770
1771 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1772 if (kvm_apic_hw_enabled(apic)) {
1773 int vec = reg & APIC_VECTOR_MASK;
1774 void *bitmap = apic->regs + APIC_ISR;
1775
1776 if (apic->apicv_active)
1777 bitmap = apic->regs + APIC_IRR;
1778
1779 if (apic_test_vector(vec, bitmap))
1780 return true;
1781 }
1782 return false;
1783 }
1784
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1785 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1786 {
1787 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1788
1789 /*
1790 * If the guest TSC is running at a different ratio than the host, then
1791 * convert the delay to nanoseconds to achieve an accurate delay. Note
1792 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1793 * always for VMX enabled hardware.
1794 */
1795 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1796 __delay(min(guest_cycles,
1797 nsec_to_cycles(vcpu, timer_advance_ns)));
1798 } else {
1799 u64 delay_ns = guest_cycles * 1000000ULL;
1800 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1801 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1802 }
1803 }
1804
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1805 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1806 s64 advance_expire_delta)
1807 {
1808 struct kvm_lapic *apic = vcpu->arch.apic;
1809 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1810 u64 ns;
1811
1812 /* Do not adjust for tiny fluctuations or large random spikes. */
1813 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1814 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1815 return;
1816
1817 /* too early */
1818 if (advance_expire_delta < 0) {
1819 ns = -advance_expire_delta * 1000000ULL;
1820 do_div(ns, vcpu->arch.virtual_tsc_khz);
1821 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1822 } else {
1823 /* too late */
1824 ns = advance_expire_delta * 1000000ULL;
1825 do_div(ns, vcpu->arch.virtual_tsc_khz);
1826 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1827 }
1828
1829 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1830 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1831 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1832 }
1833
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1834 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1835 {
1836 struct kvm_lapic *apic = vcpu->arch.apic;
1837 u64 guest_tsc, tsc_deadline;
1838
1839 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1840 apic->lapic_timer.expired_tscdeadline = 0;
1841 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1842 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1843
1844 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1845
1846 /*
1847 * If the timer fired early, reread the TSC to account for the overhead
1848 * of the above adjustment to avoid waiting longer than is necessary.
1849 */
1850 if (guest_tsc < tsc_deadline)
1851 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1852
1853 if (guest_tsc < tsc_deadline)
1854 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1855 }
1856
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1857 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1858 {
1859 if (lapic_in_kernel(vcpu) &&
1860 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1861 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1862 lapic_timer_int_injected(vcpu))
1863 __kvm_wait_lapic_expire(vcpu);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1866
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1867 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1868 {
1869 struct kvm_timer *ktimer = &apic->lapic_timer;
1870
1871 kvm_apic_local_deliver(apic, APIC_LVTT);
1872 if (apic_lvtt_tscdeadline(apic)) {
1873 ktimer->tscdeadline = 0;
1874 } else if (apic_lvtt_oneshot(apic)) {
1875 ktimer->tscdeadline = 0;
1876 ktimer->target_expiration = 0;
1877 }
1878 }
1879
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1880 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1881 {
1882 struct kvm_vcpu *vcpu = apic->vcpu;
1883 struct kvm_timer *ktimer = &apic->lapic_timer;
1884
1885 if (atomic_read(&apic->lapic_timer.pending))
1886 return;
1887
1888 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1889 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1890
1891 if (!from_timer_fn && apic->apicv_active) {
1892 WARN_ON(kvm_get_running_vcpu() != vcpu);
1893 kvm_apic_inject_pending_timer_irqs(apic);
1894 return;
1895 }
1896
1897 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1898 /*
1899 * Ensure the guest's timer has truly expired before posting an
1900 * interrupt. Open code the relevant checks to avoid querying
1901 * lapic_timer_int_injected(), which will be false since the
1902 * interrupt isn't yet injected. Waiting until after injecting
1903 * is not an option since that won't help a posted interrupt.
1904 */
1905 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1906 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1907 __kvm_wait_lapic_expire(vcpu);
1908 kvm_apic_inject_pending_timer_irqs(apic);
1909 return;
1910 }
1911
1912 atomic_inc(&apic->lapic_timer.pending);
1913 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1914 if (from_timer_fn)
1915 kvm_vcpu_kick(vcpu);
1916 }
1917
start_sw_tscdeadline(struct kvm_lapic * apic)1918 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1919 {
1920 struct kvm_timer *ktimer = &apic->lapic_timer;
1921 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1922 u64 ns = 0;
1923 ktime_t expire;
1924 struct kvm_vcpu *vcpu = apic->vcpu;
1925 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1926 unsigned long flags;
1927 ktime_t now;
1928
1929 if (unlikely(!tscdeadline || !this_tsc_khz))
1930 return;
1931
1932 local_irq_save(flags);
1933
1934 now = ktime_get();
1935 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1936
1937 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1938 do_div(ns, this_tsc_khz);
1939
1940 if (likely(tscdeadline > guest_tsc) &&
1941 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1942 expire = ktime_add_ns(now, ns);
1943 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1944 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1945 } else
1946 apic_timer_expired(apic, false);
1947
1948 local_irq_restore(flags);
1949 }
1950
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1951 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1952 {
1953 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1954 (u64)apic->divide_count;
1955 }
1956
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1957 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1958 {
1959 ktime_t now, remaining;
1960 u64 ns_remaining_old, ns_remaining_new;
1961
1962 apic->lapic_timer.period =
1963 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1964 limit_periodic_timer_frequency(apic);
1965
1966 now = ktime_get();
1967 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1968 if (ktime_to_ns(remaining) < 0)
1969 remaining = 0;
1970
1971 ns_remaining_old = ktime_to_ns(remaining);
1972 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1973 apic->divide_count, old_divisor);
1974
1975 apic->lapic_timer.tscdeadline +=
1976 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1977 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1978 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1979 }
1980
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)1981 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1982 {
1983 ktime_t now;
1984 u64 tscl = rdtsc();
1985 s64 deadline;
1986
1987 now = ktime_get();
1988 apic->lapic_timer.period =
1989 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1990
1991 if (!apic->lapic_timer.period) {
1992 apic->lapic_timer.tscdeadline = 0;
1993 return false;
1994 }
1995
1996 limit_periodic_timer_frequency(apic);
1997 deadline = apic->lapic_timer.period;
1998
1999 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2000 if (unlikely(count_reg != APIC_TMICT)) {
2001 deadline = tmict_to_ns(apic,
2002 kvm_lapic_get_reg(apic, count_reg));
2003 if (unlikely(deadline <= 0)) {
2004 if (apic_lvtt_period(apic))
2005 deadline = apic->lapic_timer.period;
2006 else
2007 deadline = 0;
2008 }
2009 else if (unlikely(deadline > apic->lapic_timer.period)) {
2010 pr_info_ratelimited(
2011 "vcpu %i: requested lapic timer restore with "
2012 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2013 "Using initial count to start timer.\n",
2014 apic->vcpu->vcpu_id,
2015 count_reg,
2016 kvm_lapic_get_reg(apic, count_reg),
2017 deadline, apic->lapic_timer.period);
2018 kvm_lapic_set_reg(apic, count_reg, 0);
2019 deadline = apic->lapic_timer.period;
2020 }
2021 }
2022 }
2023
2024 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2025 nsec_to_cycles(apic->vcpu, deadline);
2026 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2027
2028 return true;
2029 }
2030
advance_periodic_target_expiration(struct kvm_lapic * apic)2031 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2032 {
2033 ktime_t now = ktime_get();
2034 u64 tscl = rdtsc();
2035 ktime_t delta;
2036
2037 /*
2038 * Synchronize both deadlines to the same time source or
2039 * differences in the periods (caused by differences in the
2040 * underlying clocks or numerical approximation errors) will
2041 * cause the two to drift apart over time as the errors
2042 * accumulate.
2043 */
2044 apic->lapic_timer.target_expiration =
2045 ktime_add_ns(apic->lapic_timer.target_expiration,
2046 apic->lapic_timer.period);
2047 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2048 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2049 nsec_to_cycles(apic->vcpu, delta);
2050 }
2051
start_sw_period(struct kvm_lapic * apic)2052 static void start_sw_period(struct kvm_lapic *apic)
2053 {
2054 if (!apic->lapic_timer.period)
2055 return;
2056
2057 if (ktime_after(ktime_get(),
2058 apic->lapic_timer.target_expiration)) {
2059 apic_timer_expired(apic, false);
2060
2061 if (apic_lvtt_oneshot(apic))
2062 return;
2063
2064 advance_periodic_target_expiration(apic);
2065 }
2066
2067 hrtimer_start(&apic->lapic_timer.timer,
2068 apic->lapic_timer.target_expiration,
2069 HRTIMER_MODE_ABS_HARD);
2070 }
2071
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2072 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2073 {
2074 if (!lapic_in_kernel(vcpu))
2075 return false;
2076
2077 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2078 }
2079
cancel_hv_timer(struct kvm_lapic * apic)2080 static void cancel_hv_timer(struct kvm_lapic *apic)
2081 {
2082 WARN_ON(preemptible());
2083 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2084 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2085 apic->lapic_timer.hv_timer_in_use = false;
2086 }
2087
start_hv_timer(struct kvm_lapic * apic)2088 static bool start_hv_timer(struct kvm_lapic *apic)
2089 {
2090 struct kvm_timer *ktimer = &apic->lapic_timer;
2091 struct kvm_vcpu *vcpu = apic->vcpu;
2092 bool expired;
2093
2094 WARN_ON(preemptible());
2095 if (!kvm_can_use_hv_timer(vcpu))
2096 return false;
2097
2098 if (!ktimer->tscdeadline)
2099 return false;
2100
2101 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2102 return false;
2103
2104 ktimer->hv_timer_in_use = true;
2105 hrtimer_cancel(&ktimer->timer);
2106
2107 /*
2108 * To simplify handling the periodic timer, leave the hv timer running
2109 * even if the deadline timer has expired, i.e. rely on the resulting
2110 * VM-Exit to recompute the periodic timer's target expiration.
2111 */
2112 if (!apic_lvtt_period(apic)) {
2113 /*
2114 * Cancel the hv timer if the sw timer fired while the hv timer
2115 * was being programmed, or if the hv timer itself expired.
2116 */
2117 if (atomic_read(&ktimer->pending)) {
2118 cancel_hv_timer(apic);
2119 } else if (expired) {
2120 apic_timer_expired(apic, false);
2121 cancel_hv_timer(apic);
2122 }
2123 }
2124
2125 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2126
2127 return true;
2128 }
2129
start_sw_timer(struct kvm_lapic * apic)2130 static void start_sw_timer(struct kvm_lapic *apic)
2131 {
2132 struct kvm_timer *ktimer = &apic->lapic_timer;
2133
2134 WARN_ON(preemptible());
2135 if (apic->lapic_timer.hv_timer_in_use)
2136 cancel_hv_timer(apic);
2137 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2138 return;
2139
2140 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2141 start_sw_period(apic);
2142 else if (apic_lvtt_tscdeadline(apic))
2143 start_sw_tscdeadline(apic);
2144 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2145 }
2146
restart_apic_timer(struct kvm_lapic * apic)2147 static void restart_apic_timer(struct kvm_lapic *apic)
2148 {
2149 preempt_disable();
2150
2151 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2152 goto out;
2153
2154 if (!start_hv_timer(apic))
2155 start_sw_timer(apic);
2156 out:
2157 preempt_enable();
2158 }
2159
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2160 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2161 {
2162 struct kvm_lapic *apic = vcpu->arch.apic;
2163
2164 preempt_disable();
2165 /* If the preempt notifier has already run, it also called apic_timer_expired */
2166 if (!apic->lapic_timer.hv_timer_in_use)
2167 goto out;
2168 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2169 apic_timer_expired(apic, false);
2170 cancel_hv_timer(apic);
2171
2172 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2173 advance_periodic_target_expiration(apic);
2174 restart_apic_timer(apic);
2175 }
2176 out:
2177 preempt_enable();
2178 }
2179 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2180
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2181 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2182 {
2183 restart_apic_timer(vcpu->arch.apic);
2184 }
2185
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2186 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2187 {
2188 struct kvm_lapic *apic = vcpu->arch.apic;
2189
2190 preempt_disable();
2191 /* Possibly the TSC deadline timer is not enabled yet */
2192 if (apic->lapic_timer.hv_timer_in_use)
2193 start_sw_timer(apic);
2194 preempt_enable();
2195 }
2196
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2197 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2198 {
2199 struct kvm_lapic *apic = vcpu->arch.apic;
2200
2201 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2202 restart_apic_timer(apic);
2203 }
2204
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2205 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2206 {
2207 atomic_set(&apic->lapic_timer.pending, 0);
2208
2209 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2210 && !set_target_expiration(apic, count_reg))
2211 return;
2212
2213 restart_apic_timer(apic);
2214 }
2215
start_apic_timer(struct kvm_lapic * apic)2216 static void start_apic_timer(struct kvm_lapic *apic)
2217 {
2218 __start_apic_timer(apic, APIC_TMICT);
2219 }
2220
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2221 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2222 {
2223 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2224
2225 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2226 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2227 if (lvt0_in_nmi_mode) {
2228 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2229 } else
2230 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2231 }
2232 }
2233
get_lvt_index(u32 reg)2234 static int get_lvt_index(u32 reg)
2235 {
2236 if (reg == APIC_LVTCMCI)
2237 return LVT_CMCI;
2238 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2239 return -1;
2240 return array_index_nospec(
2241 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2242 }
2243
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2244 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2245 {
2246 int ret = 0;
2247
2248 trace_kvm_apic_write(reg, val);
2249
2250 switch (reg) {
2251 case APIC_ID: /* Local APIC ID */
2252 if (!apic_x2apic_mode(apic)) {
2253 kvm_apic_set_xapic_id(apic, val >> 24);
2254 } else {
2255 ret = 1;
2256 }
2257 break;
2258
2259 case APIC_TASKPRI:
2260 report_tpr_access(apic, true);
2261 apic_set_tpr(apic, val & 0xff);
2262 break;
2263
2264 case APIC_EOI:
2265 apic_set_eoi(apic);
2266 break;
2267
2268 case APIC_LDR:
2269 if (!apic_x2apic_mode(apic))
2270 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2271 else
2272 ret = 1;
2273 break;
2274
2275 case APIC_DFR:
2276 if (!apic_x2apic_mode(apic))
2277 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2278 else
2279 ret = 1;
2280 break;
2281
2282 case APIC_SPIV: {
2283 u32 mask = 0x3ff;
2284 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2285 mask |= APIC_SPIV_DIRECTED_EOI;
2286 apic_set_spiv(apic, val & mask);
2287 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2288 int i;
2289
2290 for (i = 0; i < apic->nr_lvt_entries; i++) {
2291 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2292 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2293 }
2294 apic_update_lvtt(apic);
2295 atomic_set(&apic->lapic_timer.pending, 0);
2296
2297 }
2298 break;
2299 }
2300 case APIC_ICR:
2301 WARN_ON_ONCE(apic_x2apic_mode(apic));
2302
2303 /* No delay here, so we always clear the pending bit */
2304 val &= ~APIC_ICR_BUSY;
2305 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2306 kvm_lapic_set_reg(apic, APIC_ICR, val);
2307 break;
2308 case APIC_ICR2:
2309 if (apic_x2apic_mode(apic))
2310 ret = 1;
2311 else
2312 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2313 break;
2314
2315 case APIC_LVT0:
2316 apic_manage_nmi_watchdog(apic, val);
2317 fallthrough;
2318 case APIC_LVTTHMR:
2319 case APIC_LVTPC:
2320 case APIC_LVT1:
2321 case APIC_LVTERR:
2322 case APIC_LVTCMCI: {
2323 u32 index = get_lvt_index(reg);
2324 if (!kvm_lapic_lvt_supported(apic, index)) {
2325 ret = 1;
2326 break;
2327 }
2328 if (!kvm_apic_sw_enabled(apic))
2329 val |= APIC_LVT_MASKED;
2330 val &= apic_lvt_mask[index];
2331 kvm_lapic_set_reg(apic, reg, val);
2332 break;
2333 }
2334
2335 case APIC_LVTT:
2336 if (!kvm_apic_sw_enabled(apic))
2337 val |= APIC_LVT_MASKED;
2338 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask);
2339 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2340 apic_update_lvtt(apic);
2341 break;
2342
2343 case APIC_TMICT:
2344 if (apic_lvtt_tscdeadline(apic))
2345 break;
2346
2347 cancel_apic_timer(apic);
2348 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2349 start_apic_timer(apic);
2350 break;
2351
2352 case APIC_TDCR: {
2353 uint32_t old_divisor = apic->divide_count;
2354
2355 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2356 update_divide_count(apic);
2357 if (apic->divide_count != old_divisor &&
2358 apic->lapic_timer.period) {
2359 hrtimer_cancel(&apic->lapic_timer.timer);
2360 update_target_expiration(apic, old_divisor);
2361 restart_apic_timer(apic);
2362 }
2363 break;
2364 }
2365 case APIC_ESR:
2366 if (apic_x2apic_mode(apic) && val != 0)
2367 ret = 1;
2368 break;
2369
2370 case APIC_SELF_IPI:
2371 /*
2372 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2373 * the vector, everything else is reserved.
2374 */
2375 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2376 ret = 1;
2377 else
2378 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2379 break;
2380 default:
2381 ret = 1;
2382 break;
2383 }
2384
2385 /*
2386 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2387 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2388 * on relevant changes, i.e. this is a nop for most writes.
2389 */
2390 kvm_recalculate_apic_map(apic->vcpu->kvm);
2391
2392 return ret;
2393 }
2394
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2395 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2396 gpa_t address, int len, const void *data)
2397 {
2398 struct kvm_lapic *apic = to_lapic(this);
2399 unsigned int offset = address - apic->base_address;
2400 u32 val;
2401
2402 if (!apic_mmio_in_range(apic, address))
2403 return -EOPNOTSUPP;
2404
2405 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2406 if (!kvm_check_has_quirk(vcpu->kvm,
2407 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2408 return -EOPNOTSUPP;
2409
2410 return 0;
2411 }
2412
2413 /*
2414 * APIC register must be aligned on 128-bits boundary.
2415 * 32/64/128 bits registers must be accessed thru 32 bits.
2416 * Refer SDM 8.4.1
2417 */
2418 if (len != 4 || (offset & 0xf))
2419 return 0;
2420
2421 val = *(u32*)data;
2422
2423 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2424
2425 return 0;
2426 }
2427
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2428 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2429 {
2430 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2431 }
2432 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2433
2434 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2435
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2436 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2437 {
2438 if (data & X2APIC_ICR_RESERVED_BITS)
2439 return 1;
2440
2441 /*
2442 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2443 * only AMD requires it to be zero, Intel essentially just ignores the
2444 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2445 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2446 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2447 * sane way to provide consistent behavior with respect to hardware.
2448 */
2449 data &= ~APIC_ICR_BUSY;
2450
2451 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2452 if (kvm_x86_ops.x2apic_icr_is_split) {
2453 kvm_lapic_set_reg(apic, APIC_ICR, data);
2454 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2455 } else {
2456 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2457 }
2458 trace_kvm_apic_write(APIC_ICR, data);
2459 return 0;
2460 }
2461
kvm_x2apic_icr_read(struct kvm_lapic * apic)2462 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2463 {
2464 if (kvm_x86_ops.x2apic_icr_is_split)
2465 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2466 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2467
2468 return kvm_lapic_get_reg64(apic, APIC_ICR);
2469 }
2470
2471 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2472 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2473 {
2474 struct kvm_lapic *apic = vcpu->arch.apic;
2475
2476 /*
2477 * ICR is a single 64-bit register when x2APIC is enabled, all others
2478 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2479 * go down the common path to get the upper half from ICR2.
2480 *
2481 * Note, using the write helpers may incur an unnecessary write to the
2482 * virtual APIC state, but KVM needs to conditionally modify the value
2483 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2484 * conditional branches is likely a wash relative to the cost of the
2485 * maybe-unecessary write, and both are in the noise anyways.
2486 */
2487 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2488 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2489 else
2490 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2493
kvm_free_lapic(struct kvm_vcpu * vcpu)2494 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2495 {
2496 struct kvm_lapic *apic = vcpu->arch.apic;
2497
2498 if (!vcpu->arch.apic) {
2499 static_branch_dec(&kvm_has_noapic_vcpu);
2500 return;
2501 }
2502
2503 hrtimer_cancel(&apic->lapic_timer.timer);
2504
2505 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2506 static_branch_slow_dec_deferred(&apic_hw_disabled);
2507
2508 if (!apic->sw_enabled)
2509 static_branch_slow_dec_deferred(&apic_sw_disabled);
2510
2511 if (apic->regs)
2512 free_page((unsigned long)apic->regs);
2513
2514 kfree(apic);
2515 }
2516
2517 /*
2518 *----------------------------------------------------------------------
2519 * LAPIC interface
2520 *----------------------------------------------------------------------
2521 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2522 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2523 {
2524 struct kvm_lapic *apic = vcpu->arch.apic;
2525
2526 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2527 return 0;
2528
2529 return apic->lapic_timer.tscdeadline;
2530 }
2531
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2532 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2533 {
2534 struct kvm_lapic *apic = vcpu->arch.apic;
2535
2536 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2537 return;
2538
2539 hrtimer_cancel(&apic->lapic_timer.timer);
2540 apic->lapic_timer.tscdeadline = data;
2541 start_apic_timer(apic);
2542 }
2543
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2544 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2545 {
2546 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2547 }
2548
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2549 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2550 {
2551 u64 tpr;
2552
2553 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2554
2555 return (tpr & 0xf0) >> 4;
2556 }
2557
__kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value)2558 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value)
2559 {
2560 u64 old_value = vcpu->arch.apic_base;
2561 struct kvm_lapic *apic = vcpu->arch.apic;
2562
2563 vcpu->arch.apic_base = value;
2564
2565 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2566 vcpu->arch.cpuid_dynamic_bits_dirty = true;
2567
2568 if (!apic)
2569 return;
2570
2571 /* update jump label if enable bit changes */
2572 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2573 if (value & MSR_IA32_APICBASE_ENABLE) {
2574 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2575 static_branch_slow_dec_deferred(&apic_hw_disabled);
2576 /* Check if there are APF page ready requests pending */
2577 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2578 } else {
2579 static_branch_inc(&apic_hw_disabled.key);
2580 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2581 }
2582 }
2583
2584 if ((old_value ^ value) & X2APIC_ENABLE) {
2585 if (value & X2APIC_ENABLE)
2586 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2587 else if (value & MSR_IA32_APICBASE_ENABLE)
2588 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2589 }
2590
2591 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2592 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2593 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2594 }
2595
2596 apic->base_address = apic->vcpu->arch.apic_base &
2597 MSR_IA32_APICBASE_BASE;
2598
2599 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2600 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2601 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2602 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2603 }
2604 }
2605
kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value,bool host_initiated)2606 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated)
2607 {
2608 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
2609 enum lapic_mode new_mode = kvm_apic_mode(value);
2610
2611 if (vcpu->arch.apic_base == value)
2612 return 0;
2613
2614 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
2615 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
2616
2617 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
2618 return 1;
2619 if (!host_initiated) {
2620 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
2621 return 1;
2622 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
2623 return 1;
2624 }
2625
2626 __kvm_apic_set_base(vcpu, value);
2627 kvm_recalculate_apic_map(vcpu->kvm);
2628 return 0;
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_apic_set_base);
2631
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2632 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2633 {
2634 struct kvm_lapic *apic = vcpu->arch.apic;
2635
2636 /*
2637 * When APICv is enabled, KVM must always search the IRR for a pending
2638 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2639 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2640 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2641 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2642 * the IRR at this time could race with IRQ delivery from hardware that
2643 * still sees APICv as being enabled.
2644 *
2645 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2646 * state prior to updating KVM's metadata caches, so that KVM
2647 * can safely search the IRR and set irr_pending accordingly.
2648 */
2649 apic->irr_pending = true;
2650
2651 if (apic->apicv_active)
2652 apic->isr_count = 1;
2653 else
2654 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2655
2656 apic->highest_isr_cache = -1;
2657 }
2658
kvm_alloc_apic_access_page(struct kvm * kvm)2659 int kvm_alloc_apic_access_page(struct kvm *kvm)
2660 {
2661 void __user *hva;
2662 int ret = 0;
2663
2664 mutex_lock(&kvm->slots_lock);
2665 if (kvm->arch.apic_access_memslot_enabled ||
2666 kvm->arch.apic_access_memslot_inhibited)
2667 goto out;
2668
2669 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2670 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2671 if (IS_ERR(hva)) {
2672 ret = PTR_ERR(hva);
2673 goto out;
2674 }
2675
2676 kvm->arch.apic_access_memslot_enabled = true;
2677 out:
2678 mutex_unlock(&kvm->slots_lock);
2679 return ret;
2680 }
2681 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2682
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2683 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2684 {
2685 struct kvm *kvm = vcpu->kvm;
2686
2687 if (!kvm->arch.apic_access_memslot_enabled)
2688 return;
2689
2690 kvm_vcpu_srcu_read_unlock(vcpu);
2691
2692 mutex_lock(&kvm->slots_lock);
2693
2694 if (kvm->arch.apic_access_memslot_enabled) {
2695 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2696 /*
2697 * Clear "enabled" after the memslot is deleted so that a
2698 * different vCPU doesn't get a false negative when checking
2699 * the flag out of slots_lock. No additional memory barrier is
2700 * needed as modifying memslots requires waiting other vCPUs to
2701 * drop SRCU (see above), and false positives are ok as the
2702 * flag is rechecked after acquiring slots_lock.
2703 */
2704 kvm->arch.apic_access_memslot_enabled = false;
2705
2706 /*
2707 * Mark the memslot as inhibited to prevent reallocating the
2708 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2709 */
2710 kvm->arch.apic_access_memslot_inhibited = true;
2711 }
2712
2713 mutex_unlock(&kvm->slots_lock);
2714
2715 kvm_vcpu_srcu_read_lock(vcpu);
2716 }
2717
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2718 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2719 {
2720 struct kvm_lapic *apic = vcpu->arch.apic;
2721 u64 msr_val;
2722 int i;
2723
2724 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2725
2726 if (!init_event) {
2727 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2728 if (kvm_vcpu_is_reset_bsp(vcpu))
2729 msr_val |= MSR_IA32_APICBASE_BSP;
2730
2731 /*
2732 * Use the inner helper to avoid an extra recalcuation of the
2733 * optimized APIC map if some other task has dirtied the map.
2734 * The recalculation needed for this vCPU will be done after
2735 * all APIC state has been initialized (see below).
2736 */
2737 __kvm_apic_set_base(vcpu, msr_val);
2738 }
2739
2740 if (!apic)
2741 return;
2742
2743 /* Stop the timer in case it's a reset to an active apic */
2744 hrtimer_cancel(&apic->lapic_timer.timer);
2745
2746 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2747 if (!init_event)
2748 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2749 kvm_apic_set_version(apic->vcpu);
2750
2751 for (i = 0; i < apic->nr_lvt_entries; i++)
2752 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2753 apic_update_lvtt(apic);
2754 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2755 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2756 kvm_lapic_set_reg(apic, APIC_LVT0,
2757 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2758 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2759
2760 kvm_apic_set_dfr(apic, 0xffffffffU);
2761 apic_set_spiv(apic, 0xff);
2762 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2763 if (!apic_x2apic_mode(apic))
2764 kvm_apic_set_ldr(apic, 0);
2765 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2766 if (!apic_x2apic_mode(apic)) {
2767 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2768 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2769 } else {
2770 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2771 }
2772 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2773 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2774 for (i = 0; i < 8; i++) {
2775 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2776 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2777 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2778 }
2779 kvm_apic_update_apicv(vcpu);
2780 update_divide_count(apic);
2781 atomic_set(&apic->lapic_timer.pending, 0);
2782
2783 vcpu->arch.pv_eoi.msr_val = 0;
2784 apic_update_ppr(apic);
2785 if (apic->apicv_active) {
2786 kvm_x86_call(apicv_post_state_restore)(vcpu);
2787 kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2788 }
2789
2790 vcpu->arch.apic_arb_prio = 0;
2791 vcpu->arch.apic_attention = 0;
2792
2793 kvm_recalculate_apic_map(vcpu->kvm);
2794 }
2795
2796 /*
2797 *----------------------------------------------------------------------
2798 * timer interface
2799 *----------------------------------------------------------------------
2800 */
2801
lapic_is_periodic(struct kvm_lapic * apic)2802 static bool lapic_is_periodic(struct kvm_lapic *apic)
2803 {
2804 return apic_lvtt_period(apic);
2805 }
2806
apic_has_pending_timer(struct kvm_vcpu * vcpu)2807 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2808 {
2809 struct kvm_lapic *apic = vcpu->arch.apic;
2810
2811 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2812 return atomic_read(&apic->lapic_timer.pending);
2813
2814 return 0;
2815 }
2816
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2817 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2818 {
2819 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2820 int vector, mode, trig_mode;
2821 int r;
2822
2823 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2824 vector = reg & APIC_VECTOR_MASK;
2825 mode = reg & APIC_MODE_MASK;
2826 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2827
2828 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2829 if (r && lvt_type == APIC_LVTPC &&
2830 guest_cpuid_is_intel_compatible(apic->vcpu))
2831 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2832 return r;
2833 }
2834 return 0;
2835 }
2836
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2837 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2838 {
2839 struct kvm_lapic *apic = vcpu->arch.apic;
2840
2841 if (apic)
2842 kvm_apic_local_deliver(apic, APIC_LVT0);
2843 }
2844
2845 static const struct kvm_io_device_ops apic_mmio_ops = {
2846 .read = apic_mmio_read,
2847 .write = apic_mmio_write,
2848 };
2849
apic_timer_fn(struct hrtimer * data)2850 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2851 {
2852 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2853 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2854
2855 apic_timer_expired(apic, true);
2856
2857 if (lapic_is_periodic(apic)) {
2858 advance_periodic_target_expiration(apic);
2859 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2860 return HRTIMER_RESTART;
2861 } else
2862 return HRTIMER_NORESTART;
2863 }
2864
kvm_create_lapic(struct kvm_vcpu * vcpu)2865 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2866 {
2867 struct kvm_lapic *apic;
2868
2869 ASSERT(vcpu != NULL);
2870
2871 if (!irqchip_in_kernel(vcpu->kvm)) {
2872 static_branch_inc(&kvm_has_noapic_vcpu);
2873 return 0;
2874 }
2875
2876 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2877 if (!apic)
2878 goto nomem;
2879
2880 vcpu->arch.apic = apic;
2881
2882 if (kvm_x86_ops.alloc_apic_backing_page)
2883 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2884 else
2885 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2886 if (!apic->regs) {
2887 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2888 vcpu->vcpu_id);
2889 goto nomem_free_apic;
2890 }
2891 apic->vcpu = vcpu;
2892
2893 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2894
2895 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC,
2896 HRTIMER_MODE_ABS_HARD);
2897 if (lapic_timer_advance)
2898 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2899
2900 /*
2901 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2902 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2903 */
2904 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2905 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2906 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2907
2908 /*
2909 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2910 * will not get notified of any changes until this vCPU is visible to
2911 * other vCPUs (marked online and added to the set of vCPUs).
2912 *
2913 * Opportunistically mark APICv active as VMX in particularly is highly
2914 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2915 * that vCPU creation is guaranteed to run with a deterministic value,
2916 * the request will ensure the vCPU gets the correct state before VM-Entry.
2917 */
2918 if (enable_apicv) {
2919 apic->apicv_active = true;
2920 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2921 }
2922
2923 return 0;
2924 nomem_free_apic:
2925 kfree(apic);
2926 vcpu->arch.apic = NULL;
2927 nomem:
2928 return -ENOMEM;
2929 }
2930
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2931 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2932 {
2933 struct kvm_lapic *apic = vcpu->arch.apic;
2934 u32 ppr;
2935
2936 if (!kvm_apic_present(vcpu))
2937 return -1;
2938
2939 if (apic->guest_apic_protected)
2940 return -1;
2941
2942 __apic_update_ppr(apic, &ppr);
2943 return apic_has_interrupt_for_ppr(apic, ppr);
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2946
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2947 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2948 {
2949 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2950
2951 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2952 return 1;
2953 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2954 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2955 return 1;
2956 return 0;
2957 }
2958
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2959 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2960 {
2961 struct kvm_lapic *apic = vcpu->arch.apic;
2962
2963 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2964 kvm_apic_inject_pending_timer_irqs(apic);
2965 atomic_set(&apic->lapic_timer.pending, 0);
2966 }
2967 }
2968
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2969 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2970 {
2971 struct kvm_lapic *apic = vcpu->arch.apic;
2972 u32 ppr;
2973
2974 if (WARN_ON_ONCE(vector < 0 || !apic))
2975 return;
2976
2977 /*
2978 * We get here even with APIC virtualization enabled, if doing
2979 * nested virtualization and L1 runs with the "acknowledge interrupt
2980 * on exit" mode. Then we cannot inject the interrupt via RVI,
2981 * because the process would deliver it through the IDT.
2982 */
2983
2984 apic_clear_irr(vector, apic);
2985 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2986 /*
2987 * For auto-EOI interrupts, there might be another pending
2988 * interrupt above PPR, so check whether to raise another
2989 * KVM_REQ_EVENT.
2990 */
2991 apic_update_ppr(apic);
2992 } else {
2993 /*
2994 * For normal interrupts, PPR has been raised and there cannot
2995 * be a higher-priority pending interrupt---except if there was
2996 * a concurrent interrupt injection, but that would have
2997 * triggered KVM_REQ_EVENT already.
2998 */
2999 apic_set_isr(vector, apic);
3000 __apic_update_ppr(apic, &ppr);
3001 }
3002
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3005
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3006 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3007 struct kvm_lapic_state *s, bool set)
3008 {
3009 if (apic_x2apic_mode(vcpu->arch.apic)) {
3010 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3011 u32 *id = (u32 *)(s->regs + APIC_ID);
3012 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3013 u64 icr;
3014
3015 if (vcpu->kvm->arch.x2apic_format) {
3016 if (*id != x2apic_id)
3017 return -EINVAL;
3018 } else {
3019 /*
3020 * Ignore the userspace value when setting APIC state.
3021 * KVM's model is that the x2APIC ID is readonly, e.g.
3022 * KVM only supports delivering interrupts to KVM's
3023 * version of the x2APIC ID. However, for backwards
3024 * compatibility, don't reject attempts to set a
3025 * mismatched ID for userspace that hasn't opted into
3026 * x2apic_format.
3027 */
3028 if (set)
3029 *id = x2apic_id;
3030 else
3031 *id = x2apic_id << 24;
3032 }
3033
3034 /*
3035 * In x2APIC mode, the LDR is fixed and based on the id. And
3036 * if the ICR is _not_ split, ICR is internally a single 64-bit
3037 * register, but needs to be split to ICR+ICR2 in userspace for
3038 * backwards compatibility.
3039 */
3040 if (set)
3041 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3042
3043 if (!kvm_x86_ops.x2apic_icr_is_split) {
3044 if (set) {
3045 icr = apic_get_reg(s->regs, APIC_ICR) |
3046 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32;
3047 apic_set_reg64(s->regs, APIC_ICR, icr);
3048 } else {
3049 icr = apic_get_reg64(s->regs, APIC_ICR);
3050 apic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3051 }
3052 }
3053 }
3054
3055 return 0;
3056 }
3057
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3058 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3059 {
3060 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3061
3062 /*
3063 * Get calculated timer current count for remaining timer period (if
3064 * any) and store it in the returned register set.
3065 */
3066 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT));
3067
3068 return kvm_apic_state_fixup(vcpu, s, false);
3069 }
3070
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3071 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3072 {
3073 struct kvm_lapic *apic = vcpu->arch.apic;
3074 int r;
3075
3076 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3077
3078 /* set SPIV separately to get count of SW disabled APICs right */
3079 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3080
3081 r = kvm_apic_state_fixup(vcpu, s, true);
3082 if (r) {
3083 kvm_recalculate_apic_map(vcpu->kvm);
3084 return r;
3085 }
3086 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3087
3088 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3089 kvm_recalculate_apic_map(vcpu->kvm);
3090 kvm_apic_set_version(vcpu);
3091
3092 apic_update_ppr(apic);
3093 cancel_apic_timer(apic);
3094 apic->lapic_timer.expired_tscdeadline = 0;
3095 apic_update_lvtt(apic);
3096 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3097 update_divide_count(apic);
3098 __start_apic_timer(apic, APIC_TMCCT);
3099 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3100 kvm_apic_update_apicv(vcpu);
3101 if (apic->apicv_active) {
3102 kvm_x86_call(apicv_post_state_restore)(vcpu);
3103 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3104 }
3105 kvm_make_request(KVM_REQ_EVENT, vcpu);
3106
3107 #ifdef CONFIG_KVM_IOAPIC
3108 if (ioapic_in_kernel(vcpu->kvm))
3109 kvm_rtc_eoi_tracking_restore_one(vcpu);
3110 #endif
3111
3112 vcpu->arch.apic_arb_prio = 0;
3113
3114 return 0;
3115 }
3116
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3117 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3118 {
3119 struct hrtimer *timer;
3120
3121 if (!lapic_in_kernel(vcpu) ||
3122 kvm_can_post_timer_interrupt(vcpu))
3123 return;
3124
3125 timer = &vcpu->arch.apic->lapic_timer.timer;
3126 if (hrtimer_cancel(timer))
3127 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3128 }
3129
3130 /*
3131 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3132 *
3133 * Detect whether guest triggered PV EOI since the
3134 * last entry. If yes, set EOI on guests's behalf.
3135 * Clear PV EOI in guest memory in any case.
3136 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3137 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3138 struct kvm_lapic *apic)
3139 {
3140 int vector;
3141 /*
3142 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3143 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3144 *
3145 * KVM_APIC_PV_EOI_PENDING is unset:
3146 * -> host disabled PV EOI.
3147 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3148 * -> host enabled PV EOI, guest did not execute EOI yet.
3149 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3150 * -> host enabled PV EOI, guest executed EOI.
3151 */
3152 BUG_ON(!pv_eoi_enabled(vcpu));
3153
3154 if (pv_eoi_test_and_clr_pending(vcpu))
3155 return;
3156 vector = apic_set_eoi(apic);
3157 trace_kvm_pv_eoi(apic, vector);
3158 }
3159
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3160 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3161 {
3162 u32 data;
3163
3164 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3165 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3166
3167 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3168 return;
3169
3170 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3171 sizeof(u32)))
3172 return;
3173
3174 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3175 }
3176
3177 /*
3178 * apic_sync_pv_eoi_to_guest - called before vmentry
3179 *
3180 * Detect whether it's safe to enable PV EOI and
3181 * if yes do so.
3182 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3183 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3184 struct kvm_lapic *apic)
3185 {
3186 if (!pv_eoi_enabled(vcpu) ||
3187 /* IRR set or many bits in ISR: could be nested. */
3188 apic->irr_pending ||
3189 /* Cache not set: could be safe but we don't bother. */
3190 apic->highest_isr_cache == -1 ||
3191 /* Need EOI to update ioapic. */
3192 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3193 /*
3194 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3195 * so we need not do anything here.
3196 */
3197 return;
3198 }
3199
3200 pv_eoi_set_pending(apic->vcpu);
3201 }
3202
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3203 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3204 {
3205 u32 data, tpr;
3206 int max_irr, max_isr;
3207 struct kvm_lapic *apic = vcpu->arch.apic;
3208
3209 apic_sync_pv_eoi_to_guest(vcpu, apic);
3210
3211 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3212 return;
3213
3214 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3215 max_irr = apic_find_highest_irr(apic);
3216 if (max_irr < 0)
3217 max_irr = 0;
3218 max_isr = apic_find_highest_isr(apic);
3219 if (max_isr < 0)
3220 max_isr = 0;
3221 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3222
3223 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3224 sizeof(u32));
3225 }
3226
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3227 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3228 {
3229 if (vapic_addr) {
3230 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3231 &vcpu->arch.apic->vapic_cache,
3232 vapic_addr, sizeof(u32)))
3233 return -EINVAL;
3234 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3235 } else {
3236 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3237 }
3238
3239 vcpu->arch.apic->vapic_addr = vapic_addr;
3240 return 0;
3241 }
3242
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3243 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3244 {
3245 u32 low;
3246
3247 if (reg == APIC_ICR) {
3248 *data = kvm_x2apic_icr_read(apic);
3249 return 0;
3250 }
3251
3252 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3253 return 1;
3254
3255 *data = low;
3256
3257 return 0;
3258 }
3259
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3260 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3261 {
3262 /*
3263 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3264 * can be written as such, all other registers remain accessible only
3265 * through 32-bit reads/writes.
3266 */
3267 if (reg == APIC_ICR)
3268 return kvm_x2apic_icr_write(apic, data);
3269
3270 /* Bits 63:32 are reserved in all other registers. */
3271 if (data >> 32)
3272 return 1;
3273
3274 return kvm_lapic_reg_write(apic, reg, (u32)data);
3275 }
3276
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3277 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3278 {
3279 struct kvm_lapic *apic = vcpu->arch.apic;
3280 u32 reg = (msr - APIC_BASE_MSR) << 4;
3281
3282 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3283 return 1;
3284
3285 return kvm_lapic_msr_write(apic, reg, data);
3286 }
3287
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3288 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3289 {
3290 struct kvm_lapic *apic = vcpu->arch.apic;
3291 u32 reg = (msr - APIC_BASE_MSR) << 4;
3292
3293 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3294 return 1;
3295
3296 return kvm_lapic_msr_read(apic, reg, data);
3297 }
3298
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3299 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3300 {
3301 if (!lapic_in_kernel(vcpu))
3302 return 1;
3303
3304 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3305 }
3306
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3307 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3308 {
3309 if (!lapic_in_kernel(vcpu))
3310 return 1;
3311
3312 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3313 }
3314
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3315 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3316 {
3317 u64 addr = data & ~KVM_MSR_ENABLED;
3318 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3319 unsigned long new_len;
3320 int ret;
3321
3322 if (!IS_ALIGNED(addr, 4))
3323 return 1;
3324
3325 if (data & KVM_MSR_ENABLED) {
3326 if (addr == ghc->gpa && len <= ghc->len)
3327 new_len = ghc->len;
3328 else
3329 new_len = len;
3330
3331 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3332 if (ret)
3333 return ret;
3334 }
3335
3336 vcpu->arch.pv_eoi.msr_val = data;
3337
3338 return 0;
3339 }
3340
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3341 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3342 {
3343 struct kvm_lapic *apic = vcpu->arch.apic;
3344 u8 sipi_vector;
3345 int r;
3346
3347 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3348 return 0;
3349
3350 if (is_guest_mode(vcpu)) {
3351 r = kvm_check_nested_events(vcpu);
3352 if (r < 0)
3353 return r == -EBUSY ? 0 : r;
3354 /*
3355 * Continue processing INIT/SIPI even if a nested VM-Exit
3356 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3357 * are blocked as a result of transitioning to VMX root mode.
3358 */
3359 }
3360
3361 /*
3362 * INITs are blocked while CPU is in specific states (SMM, VMX root
3363 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3364 * wait-for-SIPI (WFS).
3365 */
3366 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3367 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3368 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3369 return 0;
3370 }
3371
3372 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3373 kvm_vcpu_reset(vcpu, true);
3374 if (kvm_vcpu_is_bsp(apic->vcpu))
3375 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3376 else
3377 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3378 }
3379 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3380 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3381 /* evaluate pending_events before reading the vector */
3382 smp_rmb();
3383 sipi_vector = apic->sipi_vector;
3384 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3385 sipi_vector);
3386 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3387 }
3388 }
3389 return 0;
3390 }
3391
kvm_lapic_exit(void)3392 void kvm_lapic_exit(void)
3393 {
3394 static_key_deferred_flush(&apic_hw_disabled);
3395 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3396 static_key_deferred_flush(&apic_sw_disabled);
3397 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3398 }
3399