xref: /linux/arch/arm64/kvm/arch_timer.c (revision adc4fb9c814b5d5cc6021022900fd5eb0b3c8165)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 DEFINE_STATIC_KEY_FALSE(broken_cntvoff_key);
34 
35 static const u8 default_ppi[] = {
36 	[TIMER_PTIMER]  = 30,
37 	[TIMER_VTIMER]  = 27,
38 	[TIMER_HPTIMER] = 26,
39 	[TIMER_HVTIMER] = 28,
40 };
41 
42 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
43 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
44 				 struct arch_timer_context *timer_ctx);
45 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
46 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
47 				struct arch_timer_context *timer,
48 				enum kvm_arch_timer_regs treg,
49 				u64 val);
50 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
51 			      struct arch_timer_context *timer,
52 			      enum kvm_arch_timer_regs treg);
53 static bool kvm_arch_timer_get_input_level(int vintid);
54 
55 static struct irq_ops arch_timer_irq_ops = {
56 	.get_input_level = kvm_arch_timer_get_input_level,
57 };
58 
nr_timers(struct kvm_vcpu * vcpu)59 static int nr_timers(struct kvm_vcpu *vcpu)
60 {
61 	if (!vcpu_has_nv(vcpu))
62 		return NR_KVM_EL0_TIMERS;
63 
64 	return NR_KVM_TIMERS;
65 }
66 
timer_get_ctl(struct arch_timer_context * ctxt)67 u32 timer_get_ctl(struct arch_timer_context *ctxt)
68 {
69 	struct kvm_vcpu *vcpu = ctxt->vcpu;
70 
71 	switch(arch_timer_ctx_index(ctxt)) {
72 	case TIMER_VTIMER:
73 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
74 	case TIMER_PTIMER:
75 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
76 	case TIMER_HVTIMER:
77 		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
78 	case TIMER_HPTIMER:
79 		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
80 	default:
81 		WARN_ON(1);
82 		return 0;
83 	}
84 }
85 
timer_get_cval(struct arch_timer_context * ctxt)86 u64 timer_get_cval(struct arch_timer_context *ctxt)
87 {
88 	struct kvm_vcpu *vcpu = ctxt->vcpu;
89 
90 	switch(arch_timer_ctx_index(ctxt)) {
91 	case TIMER_VTIMER:
92 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
93 	case TIMER_PTIMER:
94 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
95 	case TIMER_HVTIMER:
96 		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
97 	case TIMER_HPTIMER:
98 		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
99 	default:
100 		WARN_ON(1);
101 		return 0;
102 	}
103 }
104 
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)105 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
106 {
107 	struct kvm_vcpu *vcpu = ctxt->vcpu;
108 
109 	switch(arch_timer_ctx_index(ctxt)) {
110 	case TIMER_VTIMER:
111 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
112 		break;
113 	case TIMER_PTIMER:
114 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
115 		break;
116 	case TIMER_HVTIMER:
117 		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
118 		break;
119 	case TIMER_HPTIMER:
120 		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
121 		break;
122 	default:
123 		WARN_ON(1);
124 	}
125 }
126 
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)127 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
128 {
129 	struct kvm_vcpu *vcpu = ctxt->vcpu;
130 
131 	switch(arch_timer_ctx_index(ctxt)) {
132 	case TIMER_VTIMER:
133 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
134 		break;
135 	case TIMER_PTIMER:
136 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
137 		break;
138 	case TIMER_HVTIMER:
139 		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
140 		break;
141 	case TIMER_HPTIMER:
142 		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
143 		break;
144 	default:
145 		WARN_ON(1);
146 	}
147 }
148 
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)149 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
150 {
151 	if (!ctxt->offset.vm_offset) {
152 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
153 		return;
154 	}
155 
156 	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
157 }
158 
kvm_phys_timer_read(void)159 u64 kvm_phys_timer_read(void)
160 {
161 	return timecounter->cc->read(timecounter->cc);
162 }
163 
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)164 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
165 {
166 	if (vcpu_has_nv(vcpu)) {
167 		if (is_hyp_ctxt(vcpu)) {
168 			map->direct_vtimer = vcpu_hvtimer(vcpu);
169 			map->direct_ptimer = vcpu_hptimer(vcpu);
170 			map->emul_vtimer = vcpu_vtimer(vcpu);
171 			map->emul_ptimer = vcpu_ptimer(vcpu);
172 		} else {
173 			map->direct_vtimer = vcpu_vtimer(vcpu);
174 			map->direct_ptimer = vcpu_ptimer(vcpu);
175 			map->emul_vtimer = vcpu_hvtimer(vcpu);
176 			map->emul_ptimer = vcpu_hptimer(vcpu);
177 		}
178 	} else if (has_vhe()) {
179 		map->direct_vtimer = vcpu_vtimer(vcpu);
180 		map->direct_ptimer = vcpu_ptimer(vcpu);
181 		map->emul_vtimer = NULL;
182 		map->emul_ptimer = NULL;
183 	} else {
184 		map->direct_vtimer = vcpu_vtimer(vcpu);
185 		map->direct_ptimer = NULL;
186 		map->emul_vtimer = NULL;
187 		map->emul_ptimer = vcpu_ptimer(vcpu);
188 	}
189 
190 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
191 }
192 
userspace_irqchip(struct kvm * kvm)193 static inline bool userspace_irqchip(struct kvm *kvm)
194 {
195 	return unlikely(!irqchip_in_kernel(kvm));
196 }
197 
soft_timer_start(struct hrtimer * hrt,u64 ns)198 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
199 {
200 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
201 		      HRTIMER_MODE_ABS_HARD);
202 }
203 
soft_timer_cancel(struct hrtimer * hrt)204 static void soft_timer_cancel(struct hrtimer *hrt)
205 {
206 	hrtimer_cancel(hrt);
207 }
208 
kvm_arch_timer_handler(int irq,void * dev_id)209 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
210 {
211 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
212 	struct arch_timer_context *ctx;
213 	struct timer_map map;
214 
215 	/*
216 	 * We may see a timer interrupt after vcpu_put() has been called which
217 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
218 	 * has been disabled in timer_save_state(), the hardware interrupt
219 	 * signal may not have been retired from the interrupt controller yet.
220 	 */
221 	if (!vcpu)
222 		return IRQ_HANDLED;
223 
224 	get_timer_map(vcpu, &map);
225 
226 	if (irq == host_vtimer_irq)
227 		ctx = map.direct_vtimer;
228 	else
229 		ctx = map.direct_ptimer;
230 
231 	if (kvm_timer_should_fire(ctx))
232 		kvm_timer_update_irq(vcpu, true, ctx);
233 
234 	if (userspace_irqchip(vcpu->kvm) &&
235 	    !static_branch_unlikely(&has_gic_active_state))
236 		disable_percpu_irq(host_vtimer_irq);
237 
238 	return IRQ_HANDLED;
239 }
240 
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)241 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
242 				     u64 val)
243 {
244 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
245 
246 	if (now < val) {
247 		u64 ns;
248 
249 		ns = cyclecounter_cyc2ns(timecounter->cc,
250 					 val - now,
251 					 timecounter->mask,
252 					 &timer_ctx->ns_frac);
253 		return ns;
254 	}
255 
256 	return 0;
257 }
258 
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)259 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
260 {
261 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
262 }
263 
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)264 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
265 {
266 	WARN_ON(timer_ctx && timer_ctx->loaded);
267 	return timer_ctx &&
268 		((timer_get_ctl(timer_ctx) &
269 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
270 }
271 
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)272 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
273 {
274 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
275 		vcpu_get_flag(vcpu, IN_WFIT));
276 }
277 
wfit_delay_ns(struct kvm_vcpu * vcpu)278 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
279 {
280 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
281 	struct arch_timer_context *ctx;
282 
283 	ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
284 
285 	return kvm_counter_compute_delta(ctx, val);
286 }
287 
288 /*
289  * Returns the earliest expiration time in ns among guest timers.
290  * Note that it will return 0 if none of timers can fire.
291  */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)292 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
293 {
294 	u64 min_delta = ULLONG_MAX;
295 	int i;
296 
297 	for (i = 0; i < nr_timers(vcpu); i++) {
298 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
299 
300 		WARN(ctx->loaded, "timer %d loaded\n", i);
301 		if (kvm_timer_irq_can_fire(ctx))
302 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
303 	}
304 
305 	if (vcpu_has_wfit_active(vcpu))
306 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
307 
308 	/* If none of timers can fire, then return 0 */
309 	if (min_delta == ULLONG_MAX)
310 		return 0;
311 
312 	return min_delta;
313 }
314 
kvm_bg_timer_expire(struct hrtimer * hrt)315 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
316 {
317 	struct arch_timer_cpu *timer;
318 	struct kvm_vcpu *vcpu;
319 	u64 ns;
320 
321 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
322 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
323 
324 	/*
325 	 * Check that the timer has really expired from the guest's
326 	 * PoV (NTP on the host may have forced it to expire
327 	 * early). If we should have slept longer, restart it.
328 	 */
329 	ns = kvm_timer_earliest_exp(vcpu);
330 	if (unlikely(ns)) {
331 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
332 		return HRTIMER_RESTART;
333 	}
334 
335 	kvm_vcpu_wake_up(vcpu);
336 	return HRTIMER_NORESTART;
337 }
338 
kvm_hrtimer_expire(struct hrtimer * hrt)339 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
340 {
341 	struct arch_timer_context *ctx;
342 	struct kvm_vcpu *vcpu;
343 	u64 ns;
344 
345 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
346 	vcpu = ctx->vcpu;
347 
348 	trace_kvm_timer_hrtimer_expire(ctx);
349 
350 	/*
351 	 * Check that the timer has really expired from the guest's
352 	 * PoV (NTP on the host may have forced it to expire
353 	 * early). If not ready, schedule for a later time.
354 	 */
355 	ns = kvm_timer_compute_delta(ctx);
356 	if (unlikely(ns)) {
357 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
358 		return HRTIMER_RESTART;
359 	}
360 
361 	kvm_timer_update_irq(vcpu, true, ctx);
362 	return HRTIMER_NORESTART;
363 }
364 
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)365 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
366 {
367 	enum kvm_arch_timers index;
368 	u64 cval, now;
369 
370 	if (!timer_ctx)
371 		return false;
372 
373 	index = arch_timer_ctx_index(timer_ctx);
374 
375 	if (timer_ctx->loaded) {
376 		u32 cnt_ctl = 0;
377 
378 		switch (index) {
379 		case TIMER_VTIMER:
380 		case TIMER_HVTIMER:
381 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
382 			break;
383 		case TIMER_PTIMER:
384 		case TIMER_HPTIMER:
385 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
386 			break;
387 		case NR_KVM_TIMERS:
388 			/* GCC is braindead */
389 			cnt_ctl = 0;
390 			break;
391 		}
392 
393 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
394 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
395 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
396 	}
397 
398 	if (!kvm_timer_irq_can_fire(timer_ctx))
399 		return false;
400 
401 	cval = timer_get_cval(timer_ctx);
402 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
403 
404 	return cval <= now;
405 }
406 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)407 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
408 {
409 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
410 }
411 
412 /*
413  * Reflect the timer output level into the kvm_run structure
414  */
kvm_timer_update_run(struct kvm_vcpu * vcpu)415 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
416 {
417 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
418 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
419 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
420 
421 	/* Populate the device bitmap with the timer states */
422 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
423 				    KVM_ARM_DEV_EL1_PTIMER);
424 	if (kvm_timer_should_fire(vtimer))
425 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
426 	if (kvm_timer_should_fire(ptimer))
427 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
428 }
429 
kvm_timer_update_status(struct arch_timer_context * ctx,bool level)430 static void kvm_timer_update_status(struct arch_timer_context *ctx, bool level)
431 {
432 	/*
433 	 * Paper over NV2 brokenness by publishing the interrupt status
434 	 * bit. This still results in a poor quality of emulation (guest
435 	 * writes will have no effect until the next exit).
436 	 *
437 	 * But hey, it's fast, right?
438 	 */
439 	if (is_hyp_ctxt(ctx->vcpu) &&
440 	    (ctx == vcpu_vtimer(ctx->vcpu) || ctx == vcpu_ptimer(ctx->vcpu))) {
441 		unsigned long val = timer_get_ctl(ctx);
442 		__assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &val, level);
443 		timer_set_ctl(ctx, val);
444 	}
445 }
446 
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)447 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
448 				 struct arch_timer_context *timer_ctx)
449 {
450 	kvm_timer_update_status(timer_ctx, new_level);
451 
452 	timer_ctx->irq.level = new_level;
453 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
454 				   timer_ctx->irq.level);
455 
456 	if (userspace_irqchip(vcpu->kvm))
457 		return;
458 
459 	kvm_vgic_inject_irq(vcpu->kvm, vcpu,
460 			    timer_irq(timer_ctx),
461 			    timer_ctx->irq.level,
462 			    timer_ctx);
463 }
464 
465 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)466 static void timer_emulate(struct arch_timer_context *ctx)
467 {
468 	bool should_fire = kvm_timer_should_fire(ctx);
469 
470 	trace_kvm_timer_emulate(ctx, should_fire);
471 
472 	if (should_fire != ctx->irq.level)
473 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
474 
475 	kvm_timer_update_status(ctx, should_fire);
476 
477 	/*
478 	 * If the timer can fire now, we don't need to have a soft timer
479 	 * scheduled for the future.  If the timer cannot fire at all,
480 	 * then we also don't need a soft timer.
481 	 */
482 	if (should_fire || !kvm_timer_irq_can_fire(ctx))
483 		return;
484 
485 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
486 }
487 
set_cntvoff(u64 cntvoff)488 static void set_cntvoff(u64 cntvoff)
489 {
490 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
491 }
492 
set_cntpoff(u64 cntpoff)493 static void set_cntpoff(u64 cntpoff)
494 {
495 	if (has_cntpoff())
496 		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
497 }
498 
timer_save_state(struct arch_timer_context * ctx)499 static void timer_save_state(struct arch_timer_context *ctx)
500 {
501 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
502 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
503 	unsigned long flags;
504 
505 	if (!timer->enabled)
506 		return;
507 
508 	local_irq_save(flags);
509 
510 	if (!ctx->loaded)
511 		goto out;
512 
513 	switch (index) {
514 		u64 cval;
515 
516 	case TIMER_VTIMER:
517 	case TIMER_HVTIMER:
518 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
519 		cval = read_sysreg_el0(SYS_CNTV_CVAL);
520 
521 		if (has_broken_cntvoff())
522 			cval -= timer_get_offset(ctx);
523 
524 		timer_set_cval(ctx, cval);
525 
526 		/* Disable the timer */
527 		write_sysreg_el0(0, SYS_CNTV_CTL);
528 		isb();
529 
530 		/*
531 		 * The kernel may decide to run userspace after
532 		 * calling vcpu_put, so we reset cntvoff to 0 to
533 		 * ensure a consistent read between user accesses to
534 		 * the virtual counter and kernel access to the
535 		 * physical counter of non-VHE case.
536 		 *
537 		 * For VHE, the virtual counter uses a fixed virtual
538 		 * offset of zero, so no need to zero CNTVOFF_EL2
539 		 * register, but this is actually useful when switching
540 		 * between EL1/vEL2 with NV.
541 		 *
542 		 * Do it unconditionally, as this is either unavoidable
543 		 * or dirt cheap.
544 		 */
545 		set_cntvoff(0);
546 		break;
547 	case TIMER_PTIMER:
548 	case TIMER_HPTIMER:
549 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
550 		cval = read_sysreg_el0(SYS_CNTP_CVAL);
551 
552 		cval -= timer_get_offset(ctx);
553 
554 		timer_set_cval(ctx, cval);
555 
556 		/* Disable the timer */
557 		write_sysreg_el0(0, SYS_CNTP_CTL);
558 		isb();
559 
560 		set_cntpoff(0);
561 		break;
562 	case NR_KVM_TIMERS:
563 		BUG();
564 	}
565 
566 	trace_kvm_timer_save_state(ctx);
567 
568 	ctx->loaded = false;
569 out:
570 	local_irq_restore(flags);
571 }
572 
573 /*
574  * Schedule the background timer before calling kvm_vcpu_halt, so that this
575  * thread is removed from its waitqueue and made runnable when there's a timer
576  * interrupt to handle.
577  */
kvm_timer_blocking(struct kvm_vcpu * vcpu)578 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
579 {
580 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
581 	struct timer_map map;
582 
583 	get_timer_map(vcpu, &map);
584 
585 	/*
586 	 * If no timers are capable of raising interrupts (disabled or
587 	 * masked), then there's no more work for us to do.
588 	 */
589 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
590 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
591 	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
592 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
593 	    !vcpu_has_wfit_active(vcpu))
594 		return;
595 
596 	/*
597 	 * At least one guest time will expire. Schedule a background timer.
598 	 * Set the earliest expiration time among the guest timers.
599 	 */
600 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
601 }
602 
kvm_timer_unblocking(struct kvm_vcpu * vcpu)603 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
604 {
605 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
606 
607 	soft_timer_cancel(&timer->bg_timer);
608 }
609 
timer_restore_state(struct arch_timer_context * ctx)610 static void timer_restore_state(struct arch_timer_context *ctx)
611 {
612 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
613 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
614 	unsigned long flags;
615 
616 	if (!timer->enabled)
617 		return;
618 
619 	local_irq_save(flags);
620 
621 	if (ctx->loaded)
622 		goto out;
623 
624 	switch (index) {
625 		u64 cval, offset;
626 
627 	case TIMER_VTIMER:
628 	case TIMER_HVTIMER:
629 		cval = timer_get_cval(ctx);
630 		offset = timer_get_offset(ctx);
631 		if (has_broken_cntvoff()) {
632 			set_cntvoff(0);
633 			cval += offset;
634 		} else {
635 			set_cntvoff(offset);
636 		}
637 		write_sysreg_el0(cval, SYS_CNTV_CVAL);
638 		isb();
639 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
640 		break;
641 	case TIMER_PTIMER:
642 	case TIMER_HPTIMER:
643 		cval = timer_get_cval(ctx);
644 		offset = timer_get_offset(ctx);
645 		set_cntpoff(offset);
646 		cval += offset;
647 		write_sysreg_el0(cval, SYS_CNTP_CVAL);
648 		isb();
649 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
650 		break;
651 	case NR_KVM_TIMERS:
652 		BUG();
653 	}
654 
655 	trace_kvm_timer_restore_state(ctx);
656 
657 	ctx->loaded = true;
658 out:
659 	local_irq_restore(flags);
660 }
661 
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)662 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
663 {
664 	int r;
665 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
666 	WARN_ON(r);
667 }
668 
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)669 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
670 {
671 	struct kvm_vcpu *vcpu = ctx->vcpu;
672 	bool phys_active = false;
673 
674 	/*
675 	 * Update the timer output so that it is likely to match the
676 	 * state we're about to restore. If the timer expires between
677 	 * this point and the register restoration, we'll take the
678 	 * interrupt anyway.
679 	 */
680 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
681 
682 	if (irqchip_in_kernel(vcpu->kvm))
683 		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
684 
685 	phys_active |= ctx->irq.level;
686 
687 	set_timer_irq_phys_active(ctx, phys_active);
688 }
689 
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)690 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
691 {
692 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
693 
694 	/*
695 	 * Update the timer output so that it is likely to match the
696 	 * state we're about to restore. If the timer expires between
697 	 * this point and the register restoration, we'll take the
698 	 * interrupt anyway.
699 	 */
700 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
701 
702 	/*
703 	 * When using a userspace irqchip with the architected timers and a
704 	 * host interrupt controller that doesn't support an active state, we
705 	 * must still prevent continuously exiting from the guest, and
706 	 * therefore mask the physical interrupt by disabling it on the host
707 	 * interrupt controller when the virtual level is high, such that the
708 	 * guest can make forward progress.  Once we detect the output level
709 	 * being de-asserted, we unmask the interrupt again so that we exit
710 	 * from the guest when the timer fires.
711 	 */
712 	if (vtimer->irq.level)
713 		disable_percpu_irq(host_vtimer_irq);
714 	else
715 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
716 }
717 
718 /* If _pred is true, set bit in _set, otherwise set it in _clr */
719 #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
720 	do {								\
721 		if (_pred)						\
722 			(_set) |= (_bit);				\
723 		else							\
724 			(_clr) |= (_bit);				\
725 	} while (0)
726 
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)727 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
728 					      struct timer_map *map)
729 {
730 	int hw, ret;
731 
732 	if (!irqchip_in_kernel(vcpu->kvm))
733 		return;
734 
735 	/*
736 	 * We only ever unmap the vtimer irq on a VHE system that runs nested
737 	 * virtualization, in which case we have both a valid emul_vtimer,
738 	 * emul_ptimer, direct_vtimer, and direct_ptimer.
739 	 *
740 	 * Since this is called from kvm_timer_vcpu_load(), a change between
741 	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
742 	 * represent this, and therefore we switch the emul/direct mappings
743 	 * below.
744 	 */
745 	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
746 	if (hw < 0) {
747 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
748 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
749 
750 		ret = kvm_vgic_map_phys_irq(vcpu,
751 					    map->direct_vtimer->host_timer_irq,
752 					    timer_irq(map->direct_vtimer),
753 					    &arch_timer_irq_ops);
754 		WARN_ON_ONCE(ret);
755 		ret = kvm_vgic_map_phys_irq(vcpu,
756 					    map->direct_ptimer->host_timer_irq,
757 					    timer_irq(map->direct_ptimer),
758 					    &arch_timer_irq_ops);
759 		WARN_ON_ONCE(ret);
760 	}
761 }
762 
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)763 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
764 {
765 	bool tvt, tpt, tvc, tpc, tvt02, tpt02;
766 	u64 clr, set;
767 
768 	/*
769 	 * No trapping gets configured here with nVHE. See
770 	 * __timer_enable_traps(), which is where the stuff happens.
771 	 */
772 	if (!has_vhe())
773 		return;
774 
775 	/*
776 	 * Our default policy is not to trap anything. As we progress
777 	 * within this function, reality kicks in and we start adding
778 	 * traps based on emulation requirements.
779 	 */
780 	tvt = tpt = tvc = tpc = false;
781 	tvt02 = tpt02 = false;
782 
783 	/*
784 	 * NV2 badly breaks the timer semantics by redirecting accesses to
785 	 * the EL1 timer state to memory, so let's call ECV to the rescue if
786 	 * available: we trap all CNT{P,V}_{CTL,CVAL,TVAL}_EL0 accesses.
787 	 *
788 	 * The treatment slightly varies depending whether we run a nVHE or
789 	 * VHE guest: nVHE will use the _EL0 registers directly, while VHE
790 	 * will use the _EL02 accessors. This translates in different trap
791 	 * bits.
792 	 *
793 	 * None of the trapping is required when running in non-HYP context,
794 	 * unless required by the L1 hypervisor settings once we advertise
795 	 * ECV+NV in the guest, or that we need trapping for other reasons.
796 	 */
797 	if (cpus_have_final_cap(ARM64_HAS_ECV) && is_hyp_ctxt(vcpu)) {
798 		if (vcpu_el2_e2h_is_set(vcpu))
799 			tvt02 = tpt02 = true;
800 		else
801 			tvt = tpt = true;
802 	}
803 
804 	/*
805 	 * We have two possibility to deal with a physical offset:
806 	 *
807 	 * - Either we have CNTPOFF (yay!) or the offset is 0:
808 	 *   we let the guest freely access the HW
809 	 *
810 	 * - or neither of these condition apply:
811 	 *   we trap accesses to the HW, but still use it
812 	 *   after correcting the physical offset
813 	 */
814 	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
815 		tpt = tpc = true;
816 
817 	/*
818 	 * For the poor sods that could not correctly substract one value
819 	 * from another, trap the full virtual timer and counter.
820 	 */
821 	if (has_broken_cntvoff() && timer_get_offset(map->direct_vtimer))
822 		tvt = tvc = true;
823 
824 	/*
825 	 * Apply the enable bits that the guest hypervisor has requested for
826 	 * its own guest. We can only add traps that wouldn't have been set
827 	 * above.
828 	 * Implementation choices: we do not support NV when E2H=0 in the
829 	 * guest, and we don't support configuration where E2H is writable
830 	 * by the guest (either FEAT_VHE or FEAT_E2H0 is implemented, but
831 	 * not both). This simplifies the handling of the EL1NV* bits.
832 	 */
833 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
834 		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
835 
836 		/* Use the VHE format for mental sanity */
837 		if (!vcpu_el2_e2h_is_set(vcpu))
838 			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
839 
840 		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
841 		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
842 
843 		tpt02 |= (val & CNTHCTL_EL1NVPCT);
844 		tvt02 |= (val & CNTHCTL_EL1NVVCT);
845 	}
846 
847 	/*
848 	 * Now that we have collected our requirements, compute the
849 	 * trap and enable bits.
850 	 */
851 	set = 0;
852 	clr = 0;
853 
854 	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
855 	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
856 	assign_clear_set_bit(tvt, CNTHCTL_EL1TVT, clr, set);
857 	assign_clear_set_bit(tvc, CNTHCTL_EL1TVCT, clr, set);
858 	assign_clear_set_bit(tvt02, CNTHCTL_EL1NVVCT, clr, set);
859 	assign_clear_set_bit(tpt02, CNTHCTL_EL1NVPCT, clr, set);
860 
861 	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
862 	sysreg_clear_set(cnthctl_el2, clr, set);
863 }
864 
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)865 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
866 {
867 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
868 	struct timer_map map;
869 
870 	if (unlikely(!timer->enabled))
871 		return;
872 
873 	get_timer_map(vcpu, &map);
874 
875 	if (static_branch_likely(&has_gic_active_state)) {
876 		if (vcpu_has_nv(vcpu))
877 			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
878 
879 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
880 		if (map.direct_ptimer)
881 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
882 	} else {
883 		kvm_timer_vcpu_load_nogic(vcpu);
884 	}
885 
886 	kvm_timer_unblocking(vcpu);
887 
888 	timer_restore_state(map.direct_vtimer);
889 	if (map.direct_ptimer)
890 		timer_restore_state(map.direct_ptimer);
891 	if (map.emul_vtimer)
892 		timer_emulate(map.emul_vtimer);
893 	if (map.emul_ptimer)
894 		timer_emulate(map.emul_ptimer);
895 
896 	timer_set_traps(vcpu, &map);
897 }
898 
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)899 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
900 {
901 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
902 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
903 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
904 	bool vlevel, plevel;
905 
906 	if (likely(irqchip_in_kernel(vcpu->kvm)))
907 		return false;
908 
909 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
910 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
911 
912 	return kvm_timer_should_fire(vtimer) != vlevel ||
913 	       kvm_timer_should_fire(ptimer) != plevel;
914 }
915 
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)916 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
917 {
918 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
919 	struct timer_map map;
920 
921 	if (unlikely(!timer->enabled))
922 		return;
923 
924 	get_timer_map(vcpu, &map);
925 
926 	timer_save_state(map.direct_vtimer);
927 	if (map.direct_ptimer)
928 		timer_save_state(map.direct_ptimer);
929 
930 	/*
931 	 * Cancel soft timer emulation, because the only case where we
932 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
933 	 * in that case we already factor in the deadline for the physical
934 	 * timer when scheduling the bg_timer.
935 	 *
936 	 * In any case, we re-schedule the hrtimer for the physical timer when
937 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
938 	 */
939 	if (map.emul_vtimer)
940 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
941 	if (map.emul_ptimer)
942 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
943 
944 	if (kvm_vcpu_is_blocking(vcpu))
945 		kvm_timer_blocking(vcpu);
946 }
947 
kvm_timer_sync_nested(struct kvm_vcpu * vcpu)948 void kvm_timer_sync_nested(struct kvm_vcpu *vcpu)
949 {
950 	/*
951 	 * When NV2 is on, guest hypervisors have their EL1 timer register
952 	 * accesses redirected to the VNCR page. Any guest action taken on
953 	 * the timer is postponed until the next exit, leading to a very
954 	 * poor quality of emulation.
955 	 *
956 	 * This is an unmitigated disaster, only papered over by FEAT_ECV,
957 	 * which allows trapping of the timer registers even with NV2.
958 	 * Still, this is still worse than FEAT_NV on its own. Meh.
959 	 */
960 	if (!cpus_have_final_cap(ARM64_HAS_ECV)) {
961 		/*
962 		 * For a VHE guest hypervisor, the EL2 state is directly
963 		 * stored in the host EL1 timers, while the emulated EL1
964 		 * state is stored in the VNCR page. The latter could have
965 		 * been updated behind our back, and we must reset the
966 		 * emulation of the timers.
967 		 *
968 		 * A non-VHE guest hypervisor doesn't have any direct access
969 		 * to its timers: the EL2 registers trap despite being
970 		 * notionally direct (we use the EL1 HW, as for VHE), while
971 		 * the EL1 registers access memory.
972 		 *
973 		 * In both cases, process the emulated timers on each guest
974 		 * exit. Boo.
975 		 */
976 		struct timer_map map;
977 		get_timer_map(vcpu, &map);
978 
979 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
980 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
981 		timer_emulate(map.emul_vtimer);
982 		timer_emulate(map.emul_ptimer);
983 	}
984 }
985 
986 /*
987  * With a userspace irqchip we have to check if the guest de-asserted the
988  * timer and if so, unmask the timer irq signal on the host interrupt
989  * controller to ensure that we see future timer signals.
990  */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)991 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
992 {
993 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
994 
995 	if (!kvm_timer_should_fire(vtimer)) {
996 		kvm_timer_update_irq(vcpu, false, vtimer);
997 		if (static_branch_likely(&has_gic_active_state))
998 			set_timer_irq_phys_active(vtimer, false);
999 		else
1000 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1001 	}
1002 }
1003 
kvm_timer_sync_user(struct kvm_vcpu * vcpu)1004 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
1005 {
1006 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1007 
1008 	if (unlikely(!timer->enabled))
1009 		return;
1010 
1011 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1012 		unmask_vtimer_irq_user(vcpu);
1013 }
1014 
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)1015 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
1016 {
1017 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1018 	struct timer_map map;
1019 
1020 	get_timer_map(vcpu, &map);
1021 
1022 	/*
1023 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
1024 	 * and to 0 for ARMv7.  We provide an implementation that always
1025 	 * resets the timer to be disabled and unmasked and is compliant with
1026 	 * the ARMv7 architecture.
1027 	 */
1028 	for (int i = 0; i < nr_timers(vcpu); i++)
1029 		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
1030 
1031 	/*
1032 	 * A vcpu running at EL2 is in charge of the offset applied to
1033 	 * the virtual timer, so use the physical VM offset, and point
1034 	 * the vcpu offset to CNTVOFF_EL2.
1035 	 */
1036 	if (vcpu_has_nv(vcpu)) {
1037 		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
1038 
1039 		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
1040 		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
1041 	}
1042 
1043 	if (timer->enabled) {
1044 		for (int i = 0; i < nr_timers(vcpu); i++)
1045 			kvm_timer_update_irq(vcpu, false,
1046 					     vcpu_get_timer(vcpu, i));
1047 
1048 		if (irqchip_in_kernel(vcpu->kvm)) {
1049 			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
1050 			if (map.direct_ptimer)
1051 				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
1052 		}
1053 	}
1054 
1055 	if (map.emul_vtimer)
1056 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
1057 	if (map.emul_ptimer)
1058 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
1059 }
1060 
timer_context_init(struct kvm_vcpu * vcpu,int timerid)1061 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
1062 {
1063 	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
1064 	struct kvm *kvm = vcpu->kvm;
1065 
1066 	ctxt->vcpu = vcpu;
1067 
1068 	if (timerid == TIMER_VTIMER)
1069 		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
1070 	else
1071 		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
1072 
1073 	hrtimer_setup(&ctxt->hrtimer, kvm_hrtimer_expire, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1074 
1075 	switch (timerid) {
1076 	case TIMER_PTIMER:
1077 	case TIMER_HPTIMER:
1078 		ctxt->host_timer_irq = host_ptimer_irq;
1079 		break;
1080 	case TIMER_VTIMER:
1081 	case TIMER_HVTIMER:
1082 		ctxt->host_timer_irq = host_vtimer_irq;
1083 		break;
1084 	}
1085 }
1086 
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1087 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1088 {
1089 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1090 
1091 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1092 		timer_context_init(vcpu, i);
1093 
1094 	/* Synchronize offsets across timers of a VM if not already provided */
1095 	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1096 		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1097 		timer_set_offset(vcpu_ptimer(vcpu), 0);
1098 	}
1099 
1100 	hrtimer_setup(&timer->bg_timer, kvm_bg_timer_expire, CLOCK_MONOTONIC,
1101 		      HRTIMER_MODE_ABS_HARD);
1102 }
1103 
kvm_timer_init_vm(struct kvm * kvm)1104 void kvm_timer_init_vm(struct kvm *kvm)
1105 {
1106 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1107 		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1108 }
1109 
kvm_timer_cpu_up(void)1110 void kvm_timer_cpu_up(void)
1111 {
1112 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1113 	if (host_ptimer_irq)
1114 		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1115 }
1116 
kvm_timer_cpu_down(void)1117 void kvm_timer_cpu_down(void)
1118 {
1119 	disable_percpu_irq(host_vtimer_irq);
1120 	if (host_ptimer_irq)
1121 		disable_percpu_irq(host_ptimer_irq);
1122 }
1123 
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1124 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1125 {
1126 	struct arch_timer_context *timer;
1127 
1128 	switch (regid) {
1129 	case KVM_REG_ARM_TIMER_CTL:
1130 		timer = vcpu_vtimer(vcpu);
1131 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1132 		break;
1133 	case KVM_REG_ARM_TIMER_CNT:
1134 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1135 			      &vcpu->kvm->arch.flags)) {
1136 			timer = vcpu_vtimer(vcpu);
1137 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1138 		}
1139 		break;
1140 	case KVM_REG_ARM_TIMER_CVAL:
1141 		timer = vcpu_vtimer(vcpu);
1142 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1143 		break;
1144 	case KVM_REG_ARM_PTIMER_CTL:
1145 		timer = vcpu_ptimer(vcpu);
1146 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1147 		break;
1148 	case KVM_REG_ARM_PTIMER_CNT:
1149 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1150 			      &vcpu->kvm->arch.flags)) {
1151 			timer = vcpu_ptimer(vcpu);
1152 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1153 		}
1154 		break;
1155 	case KVM_REG_ARM_PTIMER_CVAL:
1156 		timer = vcpu_ptimer(vcpu);
1157 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1158 		break;
1159 
1160 	default:
1161 		return -1;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
read_timer_ctl(struct arch_timer_context * timer)1167 static u64 read_timer_ctl(struct arch_timer_context *timer)
1168 {
1169 	/*
1170 	 * Set ISTATUS bit if it's expired.
1171 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1172 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1173 	 * regardless of ENABLE bit for our implementation convenience.
1174 	 */
1175 	u32 ctl = timer_get_ctl(timer);
1176 
1177 	if (!kvm_timer_compute_delta(timer))
1178 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1179 
1180 	return ctl;
1181 }
1182 
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1183 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1184 {
1185 	switch (regid) {
1186 	case KVM_REG_ARM_TIMER_CTL:
1187 		return kvm_arm_timer_read(vcpu,
1188 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1189 	case KVM_REG_ARM_TIMER_CNT:
1190 		return kvm_arm_timer_read(vcpu,
1191 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1192 	case KVM_REG_ARM_TIMER_CVAL:
1193 		return kvm_arm_timer_read(vcpu,
1194 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1195 	case KVM_REG_ARM_PTIMER_CTL:
1196 		return kvm_arm_timer_read(vcpu,
1197 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1198 	case KVM_REG_ARM_PTIMER_CNT:
1199 		return kvm_arm_timer_read(vcpu,
1200 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1201 	case KVM_REG_ARM_PTIMER_CVAL:
1202 		return kvm_arm_timer_read(vcpu,
1203 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1204 	}
1205 	return (u64)-1;
1206 }
1207 
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1208 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1209 			      struct arch_timer_context *timer,
1210 			      enum kvm_arch_timer_regs treg)
1211 {
1212 	u64 val;
1213 
1214 	switch (treg) {
1215 	case TIMER_REG_TVAL:
1216 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1217 		val = lower_32_bits(val);
1218 		break;
1219 
1220 	case TIMER_REG_CTL:
1221 		val = read_timer_ctl(timer);
1222 		break;
1223 
1224 	case TIMER_REG_CVAL:
1225 		val = timer_get_cval(timer);
1226 		break;
1227 
1228 	case TIMER_REG_CNT:
1229 		val = kvm_phys_timer_read() - timer_get_offset(timer);
1230 		break;
1231 
1232 	case TIMER_REG_VOFF:
1233 		val = *timer->offset.vcpu_offset;
1234 		break;
1235 
1236 	default:
1237 		BUG();
1238 	}
1239 
1240 	return val;
1241 }
1242 
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1243 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1244 			      enum kvm_arch_timers tmr,
1245 			      enum kvm_arch_timer_regs treg)
1246 {
1247 	struct arch_timer_context *timer;
1248 	struct timer_map map;
1249 	u64 val;
1250 
1251 	get_timer_map(vcpu, &map);
1252 	timer = vcpu_get_timer(vcpu, tmr);
1253 
1254 	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1255 		return kvm_arm_timer_read(vcpu, timer, treg);
1256 
1257 	preempt_disable();
1258 	timer_save_state(timer);
1259 
1260 	val = kvm_arm_timer_read(vcpu, timer, treg);
1261 
1262 	timer_restore_state(timer);
1263 	preempt_enable();
1264 
1265 	return val;
1266 }
1267 
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1268 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1269 				struct arch_timer_context *timer,
1270 				enum kvm_arch_timer_regs treg,
1271 				u64 val)
1272 {
1273 	switch (treg) {
1274 	case TIMER_REG_TVAL:
1275 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1276 		break;
1277 
1278 	case TIMER_REG_CTL:
1279 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1280 		break;
1281 
1282 	case TIMER_REG_CVAL:
1283 		timer_set_cval(timer, val);
1284 		break;
1285 
1286 	case TIMER_REG_VOFF:
1287 		*timer->offset.vcpu_offset = val;
1288 		break;
1289 
1290 	default:
1291 		BUG();
1292 	}
1293 }
1294 
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1295 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1296 				enum kvm_arch_timers tmr,
1297 				enum kvm_arch_timer_regs treg,
1298 				u64 val)
1299 {
1300 	struct arch_timer_context *timer;
1301 	struct timer_map map;
1302 
1303 	get_timer_map(vcpu, &map);
1304 	timer = vcpu_get_timer(vcpu, tmr);
1305 	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1306 		soft_timer_cancel(&timer->hrtimer);
1307 		kvm_arm_timer_write(vcpu, timer, treg, val);
1308 		timer_emulate(timer);
1309 	} else {
1310 		preempt_disable();
1311 		timer_save_state(timer);
1312 		kvm_arm_timer_write(vcpu, timer, treg, val);
1313 		timer_restore_state(timer);
1314 		preempt_enable();
1315 	}
1316 }
1317 
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1318 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1319 {
1320 	if (vcpu)
1321 		irqd_set_forwarded_to_vcpu(d);
1322 	else
1323 		irqd_clr_forwarded_to_vcpu(d);
1324 
1325 	return 0;
1326 }
1327 
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1328 static int timer_irq_set_irqchip_state(struct irq_data *d,
1329 				       enum irqchip_irq_state which, bool val)
1330 {
1331 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1332 		return irq_chip_set_parent_state(d, which, val);
1333 
1334 	if (val)
1335 		irq_chip_mask_parent(d);
1336 	else
1337 		irq_chip_unmask_parent(d);
1338 
1339 	return 0;
1340 }
1341 
timer_irq_eoi(struct irq_data * d)1342 static void timer_irq_eoi(struct irq_data *d)
1343 {
1344 	if (!irqd_is_forwarded_to_vcpu(d))
1345 		irq_chip_eoi_parent(d);
1346 }
1347 
timer_irq_ack(struct irq_data * d)1348 static void timer_irq_ack(struct irq_data *d)
1349 {
1350 	d = d->parent_data;
1351 	if (d->chip->irq_ack)
1352 		d->chip->irq_ack(d);
1353 }
1354 
1355 static struct irq_chip timer_chip = {
1356 	.name			= "KVM",
1357 	.irq_ack		= timer_irq_ack,
1358 	.irq_mask		= irq_chip_mask_parent,
1359 	.irq_unmask		= irq_chip_unmask_parent,
1360 	.irq_eoi		= timer_irq_eoi,
1361 	.irq_set_type		= irq_chip_set_type_parent,
1362 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1363 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1364 };
1365 
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1366 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1367 				  unsigned int nr_irqs, void *arg)
1368 {
1369 	irq_hw_number_t hwirq = (uintptr_t)arg;
1370 
1371 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1372 					     &timer_chip, NULL);
1373 }
1374 
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1375 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1376 				  unsigned int nr_irqs)
1377 {
1378 }
1379 
1380 static const struct irq_domain_ops timer_domain_ops = {
1381 	.alloc	= timer_irq_domain_alloc,
1382 	.free	= timer_irq_domain_free,
1383 };
1384 
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1385 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1386 {
1387 	*flags = irq_get_trigger_type(virq);
1388 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1389 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1390 			virq);
1391 		*flags = IRQF_TRIGGER_LOW;
1392 	}
1393 }
1394 
kvm_irq_init(struct arch_timer_kvm_info * info)1395 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1396 {
1397 	struct irq_domain *domain = NULL;
1398 
1399 	if (info->virtual_irq <= 0) {
1400 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1401 			info->virtual_irq);
1402 		return -ENODEV;
1403 	}
1404 
1405 	host_vtimer_irq = info->virtual_irq;
1406 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1407 
1408 	if (kvm_vgic_global_state.no_hw_deactivation) {
1409 		struct fwnode_handle *fwnode;
1410 		struct irq_data *data;
1411 
1412 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1413 		if (!fwnode)
1414 			return -ENOMEM;
1415 
1416 		/* Assume both vtimer and ptimer in the same parent */
1417 		data = irq_get_irq_data(host_vtimer_irq);
1418 		domain = irq_domain_create_hierarchy(data->domain, 0,
1419 						     NR_KVM_TIMERS, fwnode,
1420 						     &timer_domain_ops, NULL);
1421 		if (!domain) {
1422 			irq_domain_free_fwnode(fwnode);
1423 			return -ENOMEM;
1424 		}
1425 
1426 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1427 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1428 					    (void *)TIMER_VTIMER));
1429 	}
1430 
1431 	if (info->physical_irq > 0) {
1432 		host_ptimer_irq = info->physical_irq;
1433 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1434 
1435 		if (domain)
1436 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1437 						    (void *)TIMER_PTIMER));
1438 	}
1439 
1440 	return 0;
1441 }
1442 
kvm_timer_handle_errata(void)1443 static void kvm_timer_handle_errata(void)
1444 {
1445 	u64 mmfr0, mmfr1, mmfr4;
1446 
1447 	/*
1448 	 * CNTVOFF_EL2 is broken on some implementations. For those, we trap
1449 	 * all virtual timer/counter accesses, requiring FEAT_ECV.
1450 	 *
1451 	 * However, a hypervisor supporting nesting is likely to mitigate the
1452 	 * erratum at L0, and not require other levels to mitigate it (which
1453 	 * would otherwise be a terrible performance sink due to trap
1454 	 * amplification).
1455 	 *
1456 	 * Given that the affected HW implements both FEAT_VHE and FEAT_E2H0,
1457 	 * and that NV is likely not to (because of limitations of the
1458 	 * architecture), only enable the workaround when FEAT_VHE and
1459 	 * FEAT_E2H0 are both detected. Time will tell if this actually holds.
1460 	 */
1461 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1462 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1463 	mmfr4 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR4_EL1);
1464 	if (SYS_FIELD_GET(ID_AA64MMFR1_EL1, VH, mmfr1)		&&
1465 	    !SYS_FIELD_GET(ID_AA64MMFR4_EL1, E2H0, mmfr4)	&&
1466 	    SYS_FIELD_GET(ID_AA64MMFR0_EL1, ECV, mmfr0)		&&
1467 	    (has_vhe() || has_hvhe())				&&
1468 	    cpus_have_final_cap(ARM64_WORKAROUND_QCOM_ORYON_CNTVOFF)) {
1469 		static_branch_enable(&broken_cntvoff_key);
1470 		kvm_info("Broken CNTVOFF_EL2, trapping virtual timer\n");
1471 	}
1472 }
1473 
kvm_timer_hyp_init(bool has_gic)1474 int __init kvm_timer_hyp_init(bool has_gic)
1475 {
1476 	struct arch_timer_kvm_info *info;
1477 	int err;
1478 
1479 	info = arch_timer_get_kvm_info();
1480 	timecounter = &info->timecounter;
1481 
1482 	if (!timecounter->cc) {
1483 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1484 		return -ENODEV;
1485 	}
1486 
1487 	err = kvm_irq_init(info);
1488 	if (err)
1489 		return err;
1490 
1491 	/* First, do the virtual EL1 timer irq */
1492 
1493 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1494 				 "kvm guest vtimer", kvm_get_running_vcpus());
1495 	if (err) {
1496 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1497 			host_vtimer_irq, err);
1498 		return err;
1499 	}
1500 
1501 	if (has_gic) {
1502 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1503 					    kvm_get_running_vcpus());
1504 		if (err) {
1505 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1506 			goto out_free_vtimer_irq;
1507 		}
1508 
1509 		static_branch_enable(&has_gic_active_state);
1510 	}
1511 
1512 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1513 
1514 	/* Now let's do the physical EL1 timer irq */
1515 
1516 	if (info->physical_irq > 0) {
1517 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1518 					 "kvm guest ptimer", kvm_get_running_vcpus());
1519 		if (err) {
1520 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1521 				host_ptimer_irq, err);
1522 			goto out_free_vtimer_irq;
1523 		}
1524 
1525 		if (has_gic) {
1526 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1527 						    kvm_get_running_vcpus());
1528 			if (err) {
1529 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1530 				goto out_free_ptimer_irq;
1531 			}
1532 		}
1533 
1534 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1535 	} else if (has_vhe()) {
1536 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1537 			info->physical_irq);
1538 		err = -ENODEV;
1539 		goto out_free_vtimer_irq;
1540 	}
1541 
1542 	kvm_timer_handle_errata();
1543 	return 0;
1544 
1545 out_free_ptimer_irq:
1546 	if (info->physical_irq > 0)
1547 		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1548 out_free_vtimer_irq:
1549 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1550 	return err;
1551 }
1552 
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1553 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1554 {
1555 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1556 
1557 	soft_timer_cancel(&timer->bg_timer);
1558 }
1559 
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1560 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1561 {
1562 	u32 ppis = 0;
1563 	bool valid;
1564 
1565 	mutex_lock(&vcpu->kvm->arch.config_lock);
1566 
1567 	for (int i = 0; i < nr_timers(vcpu); i++) {
1568 		struct arch_timer_context *ctx;
1569 		int irq;
1570 
1571 		ctx = vcpu_get_timer(vcpu, i);
1572 		irq = timer_irq(ctx);
1573 		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1574 			break;
1575 
1576 		/*
1577 		 * We know by construction that we only have PPIs, so
1578 		 * all values are less than 32.
1579 		 */
1580 		ppis |= BIT(irq);
1581 	}
1582 
1583 	valid = hweight32(ppis) == nr_timers(vcpu);
1584 
1585 	if (valid)
1586 		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1587 
1588 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1589 
1590 	return valid;
1591 }
1592 
kvm_arch_timer_get_input_level(int vintid)1593 static bool kvm_arch_timer_get_input_level(int vintid)
1594 {
1595 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1596 
1597 	if (WARN(!vcpu, "No vcpu context!\n"))
1598 		return false;
1599 
1600 	for (int i = 0; i < nr_timers(vcpu); i++) {
1601 		struct arch_timer_context *ctx;
1602 
1603 		ctx = vcpu_get_timer(vcpu, i);
1604 		if (timer_irq(ctx) == vintid)
1605 			return kvm_timer_should_fire(ctx);
1606 	}
1607 
1608 	/* A timer IRQ has fired, but no matching timer was found? */
1609 	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1610 
1611 	return false;
1612 }
1613 
kvm_timer_enable(struct kvm_vcpu * vcpu)1614 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1615 {
1616 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1617 	struct timer_map map;
1618 	int ret;
1619 
1620 	if (timer->enabled)
1621 		return 0;
1622 
1623 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1624 	if (!irqchip_in_kernel(vcpu->kvm))
1625 		goto no_vgic;
1626 
1627 	/*
1628 	 * At this stage, we have the guarantee that the vgic is both
1629 	 * available and initialized.
1630 	 */
1631 	if (!timer_irqs_are_valid(vcpu)) {
1632 		kvm_debug("incorrectly configured timer irqs\n");
1633 		return -EINVAL;
1634 	}
1635 
1636 	get_timer_map(vcpu, &map);
1637 
1638 	ret = kvm_vgic_map_phys_irq(vcpu,
1639 				    map.direct_vtimer->host_timer_irq,
1640 				    timer_irq(map.direct_vtimer),
1641 				    &arch_timer_irq_ops);
1642 	if (ret)
1643 		return ret;
1644 
1645 	if (map.direct_ptimer) {
1646 		ret = kvm_vgic_map_phys_irq(vcpu,
1647 					    map.direct_ptimer->host_timer_irq,
1648 					    timer_irq(map.direct_ptimer),
1649 					    &arch_timer_irq_ops);
1650 	}
1651 
1652 	if (ret)
1653 		return ret;
1654 
1655 no_vgic:
1656 	timer->enabled = 1;
1657 	return 0;
1658 }
1659 
1660 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1661 void kvm_timer_init_vhe(void)
1662 {
1663 	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1664 		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1665 }
1666 
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1667 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1668 {
1669 	int __user *uaddr = (int __user *)(long)attr->addr;
1670 	int irq, idx, ret = 0;
1671 
1672 	if (!irqchip_in_kernel(vcpu->kvm))
1673 		return -EINVAL;
1674 
1675 	if (get_user(irq, uaddr))
1676 		return -EFAULT;
1677 
1678 	if (!(irq_is_ppi(irq)))
1679 		return -EINVAL;
1680 
1681 	mutex_lock(&vcpu->kvm->arch.config_lock);
1682 
1683 	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1684 		     &vcpu->kvm->arch.flags)) {
1685 		ret = -EBUSY;
1686 		goto out;
1687 	}
1688 
1689 	switch (attr->attr) {
1690 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1691 		idx = TIMER_VTIMER;
1692 		break;
1693 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1694 		idx = TIMER_PTIMER;
1695 		break;
1696 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1697 		idx = TIMER_HVTIMER;
1698 		break;
1699 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1700 		idx = TIMER_HPTIMER;
1701 		break;
1702 	default:
1703 		ret = -ENXIO;
1704 		goto out;
1705 	}
1706 
1707 	/*
1708 	 * We cannot validate the IRQ unicity before we run, so take it at
1709 	 * face value. The verdict will be given on first vcpu run, for each
1710 	 * vcpu. Yes this is late. Blame it on the stupid API.
1711 	 */
1712 	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1713 
1714 out:
1715 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1716 	return ret;
1717 }
1718 
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1719 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1720 {
1721 	int __user *uaddr = (int __user *)(long)attr->addr;
1722 	struct arch_timer_context *timer;
1723 	int irq;
1724 
1725 	switch (attr->attr) {
1726 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1727 		timer = vcpu_vtimer(vcpu);
1728 		break;
1729 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1730 		timer = vcpu_ptimer(vcpu);
1731 		break;
1732 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1733 		timer = vcpu_hvtimer(vcpu);
1734 		break;
1735 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1736 		timer = vcpu_hptimer(vcpu);
1737 		break;
1738 	default:
1739 		return -ENXIO;
1740 	}
1741 
1742 	irq = timer_irq(timer);
1743 	return put_user(irq, uaddr);
1744 }
1745 
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1746 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1747 {
1748 	switch (attr->attr) {
1749 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1750 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1751 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1752 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1753 		return 0;
1754 	}
1755 
1756 	return -ENXIO;
1757 }
1758 
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1759 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1760 				    struct kvm_arm_counter_offset *offset)
1761 {
1762 	int ret = 0;
1763 
1764 	if (offset->reserved)
1765 		return -EINVAL;
1766 
1767 	mutex_lock(&kvm->lock);
1768 
1769 	if (lock_all_vcpus(kvm)) {
1770 		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1771 
1772 		/*
1773 		 * If userspace decides to set the offset using this
1774 		 * API rather than merely restoring the counter
1775 		 * values, the offset applies to both the virtual and
1776 		 * physical views.
1777 		 */
1778 		kvm->arch.timer_data.voffset = offset->counter_offset;
1779 		kvm->arch.timer_data.poffset = offset->counter_offset;
1780 
1781 		unlock_all_vcpus(kvm);
1782 	} else {
1783 		ret = -EBUSY;
1784 	}
1785 
1786 	mutex_unlock(&kvm->lock);
1787 
1788 	return ret;
1789 }
1790