1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/leafops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 #include <linux/pgalloc.h> 25 #include <linux/backing-dev.h> 26 27 #include <asm/tlb.h> 28 #include "internal.h" 29 #include "mm_slot.h" 30 31 enum scan_result { 32 SCAN_FAIL, 33 SCAN_SUCCEED, 34 SCAN_NO_PTE_TABLE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 SCAN_PAGE_DIRTY_OR_WRITEBACK, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_scan - cursor for scanning 109 * @mm_head: the head of the mm list to scan 110 * @mm_slot: the current mm_slot we are scanning 111 * @address: the next address inside that to be scanned 112 * 113 * There is only the one khugepaged_scan instance of this cursor structure. 114 */ 115 struct khugepaged_scan { 116 struct list_head mm_head; 117 struct mm_slot *mm_slot; 118 unsigned long address; 119 }; 120 121 static struct khugepaged_scan khugepaged_scan = { 122 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 123 }; 124 125 #ifdef CONFIG_SYSFS 126 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 127 struct kobj_attribute *attr, 128 char *buf) 129 { 130 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 131 } 132 133 static ssize_t __sleep_millisecs_store(const char *buf, size_t count, 134 unsigned int *millisecs) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 *millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 150 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 151 struct kobj_attribute *attr, 152 const char *buf, size_t count) 153 { 154 return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs); 155 } 156 static struct kobj_attribute scan_sleep_millisecs_attr = 157 __ATTR_RW(scan_sleep_millisecs); 158 159 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 160 struct kobj_attribute *attr, 161 char *buf) 162 { 163 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 164 } 165 166 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 167 struct kobj_attribute *attr, 168 const char *buf, size_t count) 169 { 170 return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs); 171 } 172 static struct kobj_attribute alloc_sleep_millisecs_attr = 173 __ATTR_RW(alloc_sleep_millisecs); 174 175 static ssize_t pages_to_scan_show(struct kobject *kobj, 176 struct kobj_attribute *attr, 177 char *buf) 178 { 179 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 180 } 181 static ssize_t pages_to_scan_store(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 const char *buf, size_t count) 184 { 185 unsigned int pages; 186 int err; 187 188 err = kstrtouint(buf, 10, &pages); 189 if (err || !pages) 190 return -EINVAL; 191 192 khugepaged_pages_to_scan = pages; 193 194 return count; 195 } 196 static struct kobj_attribute pages_to_scan_attr = 197 __ATTR_RW(pages_to_scan); 198 199 static ssize_t pages_collapsed_show(struct kobject *kobj, 200 struct kobj_attribute *attr, 201 char *buf) 202 { 203 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 204 } 205 static struct kobj_attribute pages_collapsed_attr = 206 __ATTR_RO(pages_collapsed); 207 208 static ssize_t full_scans_show(struct kobject *kobj, 209 struct kobj_attribute *attr, 210 char *buf) 211 { 212 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 213 } 214 static struct kobj_attribute full_scans_attr = 215 __ATTR_RO(full_scans); 216 217 static ssize_t defrag_show(struct kobject *kobj, 218 struct kobj_attribute *attr, char *buf) 219 { 220 return single_hugepage_flag_show(kobj, attr, buf, 221 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 222 } 223 static ssize_t defrag_store(struct kobject *kobj, 224 struct kobj_attribute *attr, 225 const char *buf, size_t count) 226 { 227 return single_hugepage_flag_store(kobj, attr, buf, count, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static struct kobj_attribute khugepaged_defrag_attr = 231 __ATTR_RW(defrag); 232 233 /* 234 * max_ptes_none controls if khugepaged should collapse hugepages over 235 * any unmapped ptes in turn potentially increasing the memory 236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 237 * reduce the available free memory in the system as it 238 * runs. Increasing max_ptes_none will instead potentially reduce the 239 * free memory in the system during the khugepaged scan. 240 */ 241 static ssize_t max_ptes_none_show(struct kobject *kobj, 242 struct kobj_attribute *attr, 243 char *buf) 244 { 245 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 246 } 247 static ssize_t max_ptes_none_store(struct kobject *kobj, 248 struct kobj_attribute *attr, 249 const char *buf, size_t count) 250 { 251 int err; 252 unsigned long max_ptes_none; 253 254 err = kstrtoul(buf, 10, &max_ptes_none); 255 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 256 return -EINVAL; 257 258 khugepaged_max_ptes_none = max_ptes_none; 259 260 return count; 261 } 262 static struct kobj_attribute khugepaged_max_ptes_none_attr = 263 __ATTR_RW(max_ptes_none); 264 265 static ssize_t max_ptes_swap_show(struct kobject *kobj, 266 struct kobj_attribute *attr, 267 char *buf) 268 { 269 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 270 } 271 272 static ssize_t max_ptes_swap_store(struct kobject *kobj, 273 struct kobj_attribute *attr, 274 const char *buf, size_t count) 275 { 276 int err; 277 unsigned long max_ptes_swap; 278 279 err = kstrtoul(buf, 10, &max_ptes_swap); 280 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 281 return -EINVAL; 282 283 khugepaged_max_ptes_swap = max_ptes_swap; 284 285 return count; 286 } 287 288 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 289 __ATTR_RW(max_ptes_swap); 290 291 static ssize_t max_ptes_shared_show(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 char *buf) 294 { 295 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 296 } 297 298 static ssize_t max_ptes_shared_store(struct kobject *kobj, 299 struct kobj_attribute *attr, 300 const char *buf, size_t count) 301 { 302 int err; 303 unsigned long max_ptes_shared; 304 305 err = kstrtoul(buf, 10, &max_ptes_shared); 306 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 307 return -EINVAL; 308 309 khugepaged_max_ptes_shared = max_ptes_shared; 310 311 return count; 312 } 313 314 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 315 __ATTR_RW(max_ptes_shared); 316 317 static struct attribute *khugepaged_attr[] = { 318 &khugepaged_defrag_attr.attr, 319 &khugepaged_max_ptes_none_attr.attr, 320 &khugepaged_max_ptes_swap_attr.attr, 321 &khugepaged_max_ptes_shared_attr.attr, 322 &pages_to_scan_attr.attr, 323 &pages_collapsed_attr.attr, 324 &full_scans_attr.attr, 325 &scan_sleep_millisecs_attr.attr, 326 &alloc_sleep_millisecs_attr.attr, 327 NULL, 328 }; 329 330 struct attribute_group khugepaged_attr_group = { 331 .attrs = khugepaged_attr, 332 .name = "khugepaged", 333 }; 334 #endif /* CONFIG_SYSFS */ 335 336 static bool pte_none_or_zero(pte_t pte) 337 { 338 if (pte_none(pte)) 339 return true; 340 return pte_present(pte) && is_zero_pfn(pte_pfn(pte)); 341 } 342 343 int hugepage_madvise(struct vm_area_struct *vma, 344 vm_flags_t *vm_flags, int advice) 345 { 346 switch (advice) { 347 case MADV_HUGEPAGE: 348 #ifdef CONFIG_S390 349 /* 350 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 351 * can't handle this properly after s390_enable_sie, so we simply 352 * ignore the madvise to prevent qemu from causing a SIGSEGV. 353 */ 354 if (mm_has_pgste(vma->vm_mm)) 355 return 0; 356 #endif 357 *vm_flags &= ~VM_NOHUGEPAGE; 358 *vm_flags |= VM_HUGEPAGE; 359 /* 360 * If the vma become good for khugepaged to scan, 361 * register it here without waiting a page fault that 362 * may not happen any time soon. 363 */ 364 khugepaged_enter_vma(vma, *vm_flags); 365 break; 366 case MADV_NOHUGEPAGE: 367 *vm_flags &= ~VM_HUGEPAGE; 368 *vm_flags |= VM_NOHUGEPAGE; 369 /* 370 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 371 * this vma even if we leave the mm registered in khugepaged if 372 * it got registered before VM_NOHUGEPAGE was set. 373 */ 374 break; 375 } 376 377 return 0; 378 } 379 380 int __init khugepaged_init(void) 381 { 382 mm_slot_cache = KMEM_CACHE(mm_slot, 0); 383 if (!mm_slot_cache) 384 return -ENOMEM; 385 386 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 387 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 388 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 389 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 390 391 return 0; 392 } 393 394 void __init khugepaged_destroy(void) 395 { 396 kmem_cache_destroy(mm_slot_cache); 397 } 398 399 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 400 { 401 return atomic_read(&mm->mm_users) == 0; 402 } 403 404 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 405 { 406 return hpage_collapse_test_exit(mm) || 407 mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm); 408 } 409 410 static bool hugepage_pmd_enabled(void) 411 { 412 /* 413 * We cover the anon, shmem and the file-backed case here; file-backed 414 * hugepages, when configured in, are determined by the global control. 415 * Anon pmd-sized hugepages are determined by the pmd-size control. 416 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 417 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 418 */ 419 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 420 hugepage_global_enabled()) 421 return true; 422 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 423 return true; 424 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 425 return true; 426 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 427 hugepage_global_enabled()) 428 return true; 429 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 430 return true; 431 return false; 432 } 433 434 void __khugepaged_enter(struct mm_struct *mm) 435 { 436 struct mm_slot *slot; 437 int wakeup; 438 439 /* __khugepaged_exit() must not run from under us */ 440 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 441 if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm))) 442 return; 443 444 slot = mm_slot_alloc(mm_slot_cache); 445 if (!slot) 446 return; 447 448 spin_lock(&khugepaged_mm_lock); 449 mm_slot_insert(mm_slots_hash, mm, slot); 450 /* 451 * Insert just behind the scanning cursor, to let the area settle 452 * down a little. 453 */ 454 wakeup = list_empty(&khugepaged_scan.mm_head); 455 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 456 spin_unlock(&khugepaged_mm_lock); 457 458 mmgrab(mm); 459 if (wakeup) 460 wake_up_interruptible(&khugepaged_wait); 461 } 462 463 void khugepaged_enter_vma(struct vm_area_struct *vma, 464 vm_flags_t vm_flags) 465 { 466 if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) && 467 hugepage_pmd_enabled()) { 468 if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) 469 __khugepaged_enter(vma->vm_mm); 470 } 471 } 472 473 void __khugepaged_exit(struct mm_struct *mm) 474 { 475 struct mm_slot *slot; 476 int free = 0; 477 478 spin_lock(&khugepaged_mm_lock); 479 slot = mm_slot_lookup(mm_slots_hash, mm); 480 if (slot && khugepaged_scan.mm_slot != slot) { 481 hash_del(&slot->hash); 482 list_del(&slot->mm_node); 483 free = 1; 484 } 485 spin_unlock(&khugepaged_mm_lock); 486 487 if (free) { 488 mm_flags_clear(MMF_VM_HUGEPAGE, mm); 489 mm_slot_free(mm_slot_cache, slot); 490 mmdrop(mm); 491 } else if (slot) { 492 /* 493 * This is required to serialize against 494 * hpage_collapse_test_exit() (which is guaranteed to run 495 * under mmap sem read mode). Stop here (after we return all 496 * pagetables will be destroyed) until khugepaged has finished 497 * working on the pagetables under the mmap_lock. 498 */ 499 mmap_write_lock(mm); 500 mmap_write_unlock(mm); 501 } 502 } 503 504 static void release_pte_folio(struct folio *folio) 505 { 506 node_stat_mod_folio(folio, 507 NR_ISOLATED_ANON + folio_is_file_lru(folio), 508 -folio_nr_pages(folio)); 509 folio_unlock(folio); 510 folio_putback_lru(folio); 511 } 512 513 static void release_pte_pages(pte_t *pte, pte_t *_pte, 514 struct list_head *compound_pagelist) 515 { 516 struct folio *folio, *tmp; 517 518 while (--_pte >= pte) { 519 pte_t pteval = ptep_get(_pte); 520 unsigned long pfn; 521 522 if (pte_none(pteval)) 523 continue; 524 VM_WARN_ON_ONCE(!pte_present(pteval)); 525 pfn = pte_pfn(pteval); 526 if (is_zero_pfn(pfn)) 527 continue; 528 folio = pfn_folio(pfn); 529 if (folio_test_large(folio)) 530 continue; 531 release_pte_folio(folio); 532 } 533 534 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 535 list_del(&folio->lru); 536 release_pte_folio(folio); 537 } 538 } 539 540 static enum scan_result __collapse_huge_page_isolate(struct vm_area_struct *vma, 541 unsigned long start_addr, pte_t *pte, struct collapse_control *cc, 542 struct list_head *compound_pagelist) 543 { 544 struct page *page = NULL; 545 struct folio *folio = NULL; 546 unsigned long addr = start_addr; 547 pte_t *_pte; 548 int none_or_zero = 0, shared = 0, referenced = 0; 549 enum scan_result result = SCAN_FAIL; 550 551 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 552 _pte++, addr += PAGE_SIZE) { 553 pte_t pteval = ptep_get(_pte); 554 if (pte_none_or_zero(pteval)) { 555 ++none_or_zero; 556 if (!userfaultfd_armed(vma) && 557 (!cc->is_khugepaged || 558 none_or_zero <= khugepaged_max_ptes_none)) { 559 continue; 560 } else { 561 result = SCAN_EXCEED_NONE_PTE; 562 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 563 goto out; 564 } 565 } 566 if (!pte_present(pteval)) { 567 result = SCAN_PTE_NON_PRESENT; 568 goto out; 569 } 570 if (pte_uffd_wp(pteval)) { 571 result = SCAN_PTE_UFFD_WP; 572 goto out; 573 } 574 page = vm_normal_page(vma, addr, pteval); 575 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 576 result = SCAN_PAGE_NULL; 577 goto out; 578 } 579 580 folio = page_folio(page); 581 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 582 583 /* See hpage_collapse_scan_pmd(). */ 584 if (folio_maybe_mapped_shared(folio)) { 585 ++shared; 586 if (cc->is_khugepaged && 587 shared > khugepaged_max_ptes_shared) { 588 result = SCAN_EXCEED_SHARED_PTE; 589 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 590 goto out; 591 } 592 } 593 594 if (folio_test_large(folio)) { 595 struct folio *f; 596 597 /* 598 * Check if we have dealt with the compound page 599 * already 600 */ 601 list_for_each_entry(f, compound_pagelist, lru) { 602 if (folio == f) 603 goto next; 604 } 605 } 606 607 /* 608 * We can do it before folio_isolate_lru because the 609 * folio can't be freed from under us. NOTE: PG_lock 610 * is needed to serialize against split_huge_page 611 * when invoked from the VM. 612 */ 613 if (!folio_trylock(folio)) { 614 result = SCAN_PAGE_LOCK; 615 goto out; 616 } 617 618 /* 619 * Check if the page has any GUP (or other external) pins. 620 * 621 * The page table that maps the page has been already unlinked 622 * from the page table tree and this process cannot get 623 * an additional pin on the page. 624 * 625 * New pins can come later if the page is shared across fork, 626 * but not from this process. The other process cannot write to 627 * the page, only trigger CoW. 628 */ 629 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 630 folio_unlock(folio); 631 result = SCAN_PAGE_COUNT; 632 goto out; 633 } 634 635 /* 636 * Isolate the page to avoid collapsing an hugepage 637 * currently in use by the VM. 638 */ 639 if (!folio_isolate_lru(folio)) { 640 folio_unlock(folio); 641 result = SCAN_DEL_PAGE_LRU; 642 goto out; 643 } 644 node_stat_mod_folio(folio, 645 NR_ISOLATED_ANON + folio_is_file_lru(folio), 646 folio_nr_pages(folio)); 647 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 648 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 649 650 if (folio_test_large(folio)) 651 list_add_tail(&folio->lru, compound_pagelist); 652 next: 653 /* 654 * If collapse was initiated by khugepaged, check that there is 655 * enough young pte to justify collapsing the page 656 */ 657 if (cc->is_khugepaged && 658 (pte_young(pteval) || folio_test_young(folio) || 659 folio_test_referenced(folio) || 660 mmu_notifier_test_young(vma->vm_mm, addr))) 661 referenced++; 662 } 663 664 if (unlikely(cc->is_khugepaged && !referenced)) { 665 result = SCAN_LACK_REFERENCED_PAGE; 666 } else { 667 result = SCAN_SUCCEED; 668 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 669 referenced, result); 670 return result; 671 } 672 out: 673 release_pte_pages(pte, _pte, compound_pagelist); 674 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 675 referenced, result); 676 return result; 677 } 678 679 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 680 struct vm_area_struct *vma, 681 unsigned long address, 682 spinlock_t *ptl, 683 struct list_head *compound_pagelist) 684 { 685 unsigned long end = address + HPAGE_PMD_SIZE; 686 struct folio *src, *tmp; 687 pte_t pteval; 688 pte_t *_pte; 689 unsigned int nr_ptes; 690 691 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, 692 address += nr_ptes * PAGE_SIZE) { 693 nr_ptes = 1; 694 pteval = ptep_get(_pte); 695 if (pte_none_or_zero(pteval)) { 696 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 697 if (pte_none(pteval)) 698 continue; 699 /* 700 * ptl mostly unnecessary. 701 */ 702 spin_lock(ptl); 703 ptep_clear(vma->vm_mm, address, _pte); 704 spin_unlock(ptl); 705 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 706 } else { 707 struct page *src_page = pte_page(pteval); 708 709 src = page_folio(src_page); 710 711 if (folio_test_large(src)) { 712 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; 713 714 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); 715 } else { 716 release_pte_folio(src); 717 } 718 719 /* 720 * ptl mostly unnecessary, but preempt has to 721 * be disabled to update the per-cpu stats 722 * inside folio_remove_rmap_pte(). 723 */ 724 spin_lock(ptl); 725 clear_ptes(vma->vm_mm, address, _pte, nr_ptes); 726 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); 727 spin_unlock(ptl); 728 free_swap_cache(src); 729 folio_put_refs(src, nr_ptes); 730 } 731 } 732 733 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 734 list_del(&src->lru); 735 node_stat_sub_folio(src, NR_ISOLATED_ANON + 736 folio_is_file_lru(src)); 737 folio_unlock(src); 738 free_swap_cache(src); 739 folio_putback_lru(src); 740 } 741 } 742 743 static void __collapse_huge_page_copy_failed(pte_t *pte, 744 pmd_t *pmd, 745 pmd_t orig_pmd, 746 struct vm_area_struct *vma, 747 struct list_head *compound_pagelist) 748 { 749 spinlock_t *pmd_ptl; 750 751 /* 752 * Re-establish the PMD to point to the original page table 753 * entry. Restoring PMD needs to be done prior to releasing 754 * pages. Since pages are still isolated and locked here, 755 * acquiring anon_vma_lock_write is unnecessary. 756 */ 757 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 758 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 759 spin_unlock(pmd_ptl); 760 /* 761 * Release both raw and compound pages isolated 762 * in __collapse_huge_page_isolate. 763 */ 764 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 765 } 766 767 /* 768 * __collapse_huge_page_copy - attempts to copy memory contents from raw 769 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 770 * otherwise restores the original page table and releases isolated raw pages. 771 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 772 * 773 * @pte: starting of the PTEs to copy from 774 * @folio: the new hugepage to copy contents to 775 * @pmd: pointer to the new hugepage's PMD 776 * @orig_pmd: the original raw pages' PMD 777 * @vma: the original raw pages' virtual memory area 778 * @address: starting address to copy 779 * @ptl: lock on raw pages' PTEs 780 * @compound_pagelist: list that stores compound pages 781 */ 782 static enum scan_result __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 783 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 784 unsigned long address, spinlock_t *ptl, 785 struct list_head *compound_pagelist) 786 { 787 unsigned int i; 788 enum scan_result result = SCAN_SUCCEED; 789 790 /* 791 * Copying pages' contents is subject to memory poison at any iteration. 792 */ 793 for (i = 0; i < HPAGE_PMD_NR; i++) { 794 pte_t pteval = ptep_get(pte + i); 795 struct page *page = folio_page(folio, i); 796 unsigned long src_addr = address + i * PAGE_SIZE; 797 struct page *src_page; 798 799 if (pte_none_or_zero(pteval)) { 800 clear_user_highpage(page, src_addr); 801 continue; 802 } 803 src_page = pte_page(pteval); 804 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 805 result = SCAN_COPY_MC; 806 break; 807 } 808 } 809 810 if (likely(result == SCAN_SUCCEED)) 811 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 812 compound_pagelist); 813 else 814 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 815 compound_pagelist); 816 817 return result; 818 } 819 820 static void khugepaged_alloc_sleep(void) 821 { 822 DEFINE_WAIT(wait); 823 824 add_wait_queue(&khugepaged_wait, &wait); 825 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 826 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 827 remove_wait_queue(&khugepaged_wait, &wait); 828 } 829 830 static struct collapse_control khugepaged_collapse_control = { 831 .is_khugepaged = true, 832 }; 833 834 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 835 { 836 int i; 837 838 /* 839 * If node_reclaim_mode is disabled, then no extra effort is made to 840 * allocate memory locally. 841 */ 842 if (!node_reclaim_enabled()) 843 return false; 844 845 /* If there is a count for this node already, it must be acceptable */ 846 if (cc->node_load[nid]) 847 return false; 848 849 for (i = 0; i < MAX_NUMNODES; i++) { 850 if (!cc->node_load[i]) 851 continue; 852 if (node_distance(nid, i) > node_reclaim_distance) 853 return true; 854 } 855 return false; 856 } 857 858 #define khugepaged_defrag() \ 859 (transparent_hugepage_flags & \ 860 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 861 862 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 863 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 864 { 865 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 866 } 867 868 #ifdef CONFIG_NUMA 869 static int hpage_collapse_find_target_node(struct collapse_control *cc) 870 { 871 int nid, target_node = 0, max_value = 0; 872 873 /* find first node with max normal pages hit */ 874 for (nid = 0; nid < MAX_NUMNODES; nid++) 875 if (cc->node_load[nid] > max_value) { 876 max_value = cc->node_load[nid]; 877 target_node = nid; 878 } 879 880 for_each_online_node(nid) { 881 if (max_value == cc->node_load[nid]) 882 node_set(nid, cc->alloc_nmask); 883 } 884 885 return target_node; 886 } 887 #else 888 static int hpage_collapse_find_target_node(struct collapse_control *cc) 889 { 890 return 0; 891 } 892 #endif 893 894 /* 895 * If mmap_lock temporarily dropped, revalidate vma 896 * before taking mmap_lock. 897 * Returns enum scan_result value. 898 */ 899 900 static enum scan_result hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 901 bool expect_anon, struct vm_area_struct **vmap, struct collapse_control *cc) 902 { 903 struct vm_area_struct *vma; 904 enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED : 905 TVA_FORCED_COLLAPSE; 906 907 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 908 return SCAN_ANY_PROCESS; 909 910 *vmap = vma = find_vma(mm, address); 911 if (!vma) 912 return SCAN_VMA_NULL; 913 914 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 915 return SCAN_ADDRESS_RANGE; 916 if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER)) 917 return SCAN_VMA_CHECK; 918 /* 919 * Anon VMA expected, the address may be unmapped then 920 * remapped to file after khugepaged reaquired the mmap_lock. 921 * 922 * thp_vma_allowable_order may return true for qualified file 923 * vmas. 924 */ 925 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 926 return SCAN_PAGE_ANON; 927 return SCAN_SUCCEED; 928 } 929 930 static inline enum scan_result check_pmd_state(pmd_t *pmd) 931 { 932 pmd_t pmde = pmdp_get_lockless(pmd); 933 934 if (pmd_none(pmde)) 935 return SCAN_NO_PTE_TABLE; 936 937 /* 938 * The folio may be under migration when khugepaged is trying to 939 * collapse it. Migration success or failure will eventually end 940 * up with a present PMD mapping a folio again. 941 */ 942 if (pmd_is_migration_entry(pmde)) 943 return SCAN_PMD_MAPPED; 944 if (!pmd_present(pmde)) 945 return SCAN_NO_PTE_TABLE; 946 if (pmd_trans_huge(pmde)) 947 return SCAN_PMD_MAPPED; 948 if (pmd_bad(pmde)) 949 return SCAN_NO_PTE_TABLE; 950 return SCAN_SUCCEED; 951 } 952 953 static enum scan_result find_pmd_or_thp_or_none(struct mm_struct *mm, 954 unsigned long address, pmd_t **pmd) 955 { 956 *pmd = mm_find_pmd(mm, address); 957 if (!*pmd) 958 return SCAN_NO_PTE_TABLE; 959 960 return check_pmd_state(*pmd); 961 } 962 963 static enum scan_result check_pmd_still_valid(struct mm_struct *mm, 964 unsigned long address, pmd_t *pmd) 965 { 966 pmd_t *new_pmd; 967 enum scan_result result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 968 969 if (result != SCAN_SUCCEED) 970 return result; 971 if (new_pmd != pmd) 972 return SCAN_FAIL; 973 return SCAN_SUCCEED; 974 } 975 976 /* 977 * Bring missing pages in from swap, to complete THP collapse. 978 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 979 * 980 * Called and returns without pte mapped or spinlocks held. 981 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 982 */ 983 static enum scan_result __collapse_huge_page_swapin(struct mm_struct *mm, 984 struct vm_area_struct *vma, unsigned long start_addr, pmd_t *pmd, 985 int referenced) 986 { 987 int swapped_in = 0; 988 vm_fault_t ret = 0; 989 unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE); 990 enum scan_result result; 991 pte_t *pte = NULL; 992 spinlock_t *ptl; 993 994 for (addr = start_addr; addr < end; addr += PAGE_SIZE) { 995 struct vm_fault vmf = { 996 .vma = vma, 997 .address = addr, 998 .pgoff = linear_page_index(vma, addr), 999 .flags = FAULT_FLAG_ALLOW_RETRY, 1000 .pmd = pmd, 1001 }; 1002 1003 if (!pte++) { 1004 /* 1005 * Here the ptl is only used to check pte_same() in 1006 * do_swap_page(), so readonly version is enough. 1007 */ 1008 pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); 1009 if (!pte) { 1010 mmap_read_unlock(mm); 1011 result = SCAN_NO_PTE_TABLE; 1012 goto out; 1013 } 1014 } 1015 1016 vmf.orig_pte = ptep_get_lockless(pte); 1017 if (pte_none(vmf.orig_pte) || 1018 pte_present(vmf.orig_pte)) 1019 continue; 1020 1021 vmf.pte = pte; 1022 vmf.ptl = ptl; 1023 ret = do_swap_page(&vmf); 1024 /* Which unmaps pte (after perhaps re-checking the entry) */ 1025 pte = NULL; 1026 1027 /* 1028 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1029 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1030 * we do not retry here and swap entry will remain in pagetable 1031 * resulting in later failure. 1032 */ 1033 if (ret & VM_FAULT_RETRY) { 1034 /* Likely, but not guaranteed, that page lock failed */ 1035 result = SCAN_PAGE_LOCK; 1036 goto out; 1037 } 1038 if (ret & VM_FAULT_ERROR) { 1039 mmap_read_unlock(mm); 1040 result = SCAN_FAIL; 1041 goto out; 1042 } 1043 swapped_in++; 1044 } 1045 1046 if (pte) 1047 pte_unmap(pte); 1048 1049 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1050 if (swapped_in) 1051 lru_add_drain(); 1052 1053 result = SCAN_SUCCEED; 1054 out: 1055 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1056 return result; 1057 } 1058 1059 static enum scan_result alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1060 struct collapse_control *cc) 1061 { 1062 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1063 GFP_TRANSHUGE); 1064 int node = hpage_collapse_find_target_node(cc); 1065 struct folio *folio; 1066 1067 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1068 if (!folio) { 1069 *foliop = NULL; 1070 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1071 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1072 } 1073 1074 count_vm_event(THP_COLLAPSE_ALLOC); 1075 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1076 folio_put(folio); 1077 *foliop = NULL; 1078 return SCAN_CGROUP_CHARGE_FAIL; 1079 } 1080 1081 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1082 1083 *foliop = folio; 1084 return SCAN_SUCCEED; 1085 } 1086 1087 static enum scan_result collapse_huge_page(struct mm_struct *mm, unsigned long address, 1088 int referenced, int unmapped, struct collapse_control *cc) 1089 { 1090 LIST_HEAD(compound_pagelist); 1091 pmd_t *pmd, _pmd; 1092 pte_t *pte; 1093 pgtable_t pgtable; 1094 struct folio *folio; 1095 spinlock_t *pmd_ptl, *pte_ptl; 1096 enum scan_result result = SCAN_FAIL; 1097 struct vm_area_struct *vma; 1098 struct mmu_notifier_range range; 1099 1100 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1101 1102 /* 1103 * Before allocating the hugepage, release the mmap_lock read lock. 1104 * The allocation can take potentially a long time if it involves 1105 * sync compaction, and we do not need to hold the mmap_lock during 1106 * that. We will recheck the vma after taking it again in write mode. 1107 */ 1108 mmap_read_unlock(mm); 1109 1110 result = alloc_charge_folio(&folio, mm, cc); 1111 if (result != SCAN_SUCCEED) 1112 goto out_nolock; 1113 1114 mmap_read_lock(mm); 1115 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1116 if (result != SCAN_SUCCEED) { 1117 mmap_read_unlock(mm); 1118 goto out_nolock; 1119 } 1120 1121 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1122 if (result != SCAN_SUCCEED) { 1123 mmap_read_unlock(mm); 1124 goto out_nolock; 1125 } 1126 1127 if (unmapped) { 1128 /* 1129 * __collapse_huge_page_swapin will return with mmap_lock 1130 * released when it fails. So we jump out_nolock directly in 1131 * that case. Continuing to collapse causes inconsistency. 1132 */ 1133 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1134 referenced); 1135 if (result != SCAN_SUCCEED) 1136 goto out_nolock; 1137 } 1138 1139 mmap_read_unlock(mm); 1140 /* 1141 * Prevent all access to pagetables with the exception of 1142 * gup_fast later handled by the ptep_clear_flush and the VM 1143 * handled by the anon_vma lock + PG_lock. 1144 * 1145 * UFFDIO_MOVE is prevented to race as well thanks to the 1146 * mmap_lock. 1147 */ 1148 mmap_write_lock(mm); 1149 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1150 if (result != SCAN_SUCCEED) 1151 goto out_up_write; 1152 /* check if the pmd is still valid */ 1153 vma_start_write(vma); 1154 result = check_pmd_still_valid(mm, address, pmd); 1155 if (result != SCAN_SUCCEED) 1156 goto out_up_write; 1157 1158 anon_vma_lock_write(vma->anon_vma); 1159 1160 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1161 address + HPAGE_PMD_SIZE); 1162 mmu_notifier_invalidate_range_start(&range); 1163 1164 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1165 /* 1166 * This removes any huge TLB entry from the CPU so we won't allow 1167 * huge and small TLB entries for the same virtual address to 1168 * avoid the risk of CPU bugs in that area. 1169 * 1170 * Parallel GUP-fast is fine since GUP-fast will back off when 1171 * it detects PMD is changed. 1172 */ 1173 _pmd = pmdp_collapse_flush(vma, address, pmd); 1174 spin_unlock(pmd_ptl); 1175 mmu_notifier_invalidate_range_end(&range); 1176 tlb_remove_table_sync_one(); 1177 1178 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1179 if (pte) { 1180 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1181 &compound_pagelist); 1182 spin_unlock(pte_ptl); 1183 } else { 1184 result = SCAN_NO_PTE_TABLE; 1185 } 1186 1187 if (unlikely(result != SCAN_SUCCEED)) { 1188 if (pte) 1189 pte_unmap(pte); 1190 spin_lock(pmd_ptl); 1191 BUG_ON(!pmd_none(*pmd)); 1192 /* 1193 * We can only use set_pmd_at when establishing 1194 * hugepmds and never for establishing regular pmds that 1195 * points to regular pagetables. Use pmd_populate for that 1196 */ 1197 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1198 spin_unlock(pmd_ptl); 1199 anon_vma_unlock_write(vma->anon_vma); 1200 goto out_up_write; 1201 } 1202 1203 /* 1204 * All pages are isolated and locked so anon_vma rmap 1205 * can't run anymore. 1206 */ 1207 anon_vma_unlock_write(vma->anon_vma); 1208 1209 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1210 vma, address, pte_ptl, 1211 &compound_pagelist); 1212 pte_unmap(pte); 1213 if (unlikely(result != SCAN_SUCCEED)) 1214 goto out_up_write; 1215 1216 /* 1217 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1218 * copy_huge_page writes become visible before the set_pmd_at() 1219 * write. 1220 */ 1221 __folio_mark_uptodate(folio); 1222 pgtable = pmd_pgtable(_pmd); 1223 1224 spin_lock(pmd_ptl); 1225 BUG_ON(!pmd_none(*pmd)); 1226 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1227 map_anon_folio_pmd_nopf(folio, pmd, vma, address); 1228 spin_unlock(pmd_ptl); 1229 1230 folio = NULL; 1231 1232 result = SCAN_SUCCEED; 1233 out_up_write: 1234 mmap_write_unlock(mm); 1235 out_nolock: 1236 if (folio) 1237 folio_put(folio); 1238 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1239 return result; 1240 } 1241 1242 static enum scan_result hpage_collapse_scan_pmd(struct mm_struct *mm, 1243 struct vm_area_struct *vma, unsigned long start_addr, bool *mmap_locked, 1244 struct collapse_control *cc) 1245 { 1246 pmd_t *pmd; 1247 pte_t *pte, *_pte; 1248 int none_or_zero = 0, shared = 0, referenced = 0; 1249 enum scan_result result = SCAN_FAIL; 1250 struct page *page = NULL; 1251 struct folio *folio = NULL; 1252 unsigned long addr; 1253 spinlock_t *ptl; 1254 int node = NUMA_NO_NODE, unmapped = 0; 1255 1256 VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK); 1257 1258 result = find_pmd_or_thp_or_none(mm, start_addr, &pmd); 1259 if (result != SCAN_SUCCEED) 1260 goto out; 1261 1262 memset(cc->node_load, 0, sizeof(cc->node_load)); 1263 nodes_clear(cc->alloc_nmask); 1264 pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl); 1265 if (!pte) { 1266 result = SCAN_NO_PTE_TABLE; 1267 goto out; 1268 } 1269 1270 for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1271 _pte++, addr += PAGE_SIZE) { 1272 pte_t pteval = ptep_get(_pte); 1273 if (pte_none_or_zero(pteval)) { 1274 ++none_or_zero; 1275 if (!userfaultfd_armed(vma) && 1276 (!cc->is_khugepaged || 1277 none_or_zero <= khugepaged_max_ptes_none)) { 1278 continue; 1279 } else { 1280 result = SCAN_EXCEED_NONE_PTE; 1281 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1282 goto out_unmap; 1283 } 1284 } 1285 if (!pte_present(pteval)) { 1286 ++unmapped; 1287 if (!cc->is_khugepaged || 1288 unmapped <= khugepaged_max_ptes_swap) { 1289 /* 1290 * Always be strict with uffd-wp 1291 * enabled swap entries. Please see 1292 * comment below for pte_uffd_wp(). 1293 */ 1294 if (pte_swp_uffd_wp_any(pteval)) { 1295 result = SCAN_PTE_UFFD_WP; 1296 goto out_unmap; 1297 } 1298 continue; 1299 } else { 1300 result = SCAN_EXCEED_SWAP_PTE; 1301 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1302 goto out_unmap; 1303 } 1304 } 1305 if (pte_uffd_wp(pteval)) { 1306 /* 1307 * Don't collapse the page if any of the small 1308 * PTEs are armed with uffd write protection. 1309 * Here we can also mark the new huge pmd as 1310 * write protected if any of the small ones is 1311 * marked but that could bring unknown 1312 * userfault messages that falls outside of 1313 * the registered range. So, just be simple. 1314 */ 1315 result = SCAN_PTE_UFFD_WP; 1316 goto out_unmap; 1317 } 1318 1319 page = vm_normal_page(vma, addr, pteval); 1320 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1321 result = SCAN_PAGE_NULL; 1322 goto out_unmap; 1323 } 1324 folio = page_folio(page); 1325 1326 if (!folio_test_anon(folio)) { 1327 result = SCAN_PAGE_ANON; 1328 goto out_unmap; 1329 } 1330 1331 /* 1332 * We treat a single page as shared if any part of the THP 1333 * is shared. 1334 */ 1335 if (folio_maybe_mapped_shared(folio)) { 1336 ++shared; 1337 if (cc->is_khugepaged && 1338 shared > khugepaged_max_ptes_shared) { 1339 result = SCAN_EXCEED_SHARED_PTE; 1340 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1341 goto out_unmap; 1342 } 1343 } 1344 1345 /* 1346 * Record which node the original page is from and save this 1347 * information to cc->node_load[]. 1348 * Khugepaged will allocate hugepage from the node has the max 1349 * hit record. 1350 */ 1351 node = folio_nid(folio); 1352 if (hpage_collapse_scan_abort(node, cc)) { 1353 result = SCAN_SCAN_ABORT; 1354 goto out_unmap; 1355 } 1356 cc->node_load[node]++; 1357 if (!folio_test_lru(folio)) { 1358 result = SCAN_PAGE_LRU; 1359 goto out_unmap; 1360 } 1361 if (folio_test_locked(folio)) { 1362 result = SCAN_PAGE_LOCK; 1363 goto out_unmap; 1364 } 1365 1366 /* 1367 * Check if the page has any GUP (or other external) pins. 1368 * 1369 * Here the check may be racy: 1370 * it may see folio_mapcount() > folio_ref_count(). 1371 * But such case is ephemeral we could always retry collapse 1372 * later. However it may report false positive if the page 1373 * has excessive GUP pins (i.e. 512). Anyway the same check 1374 * will be done again later the risk seems low. 1375 */ 1376 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1377 result = SCAN_PAGE_COUNT; 1378 goto out_unmap; 1379 } 1380 1381 /* 1382 * If collapse was initiated by khugepaged, check that there is 1383 * enough young pte to justify collapsing the page 1384 */ 1385 if (cc->is_khugepaged && 1386 (pte_young(pteval) || folio_test_young(folio) || 1387 folio_test_referenced(folio) || 1388 mmu_notifier_test_young(vma->vm_mm, addr))) 1389 referenced++; 1390 } 1391 if (cc->is_khugepaged && 1392 (!referenced || 1393 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1394 result = SCAN_LACK_REFERENCED_PAGE; 1395 } else { 1396 result = SCAN_SUCCEED; 1397 } 1398 out_unmap: 1399 pte_unmap_unlock(pte, ptl); 1400 if (result == SCAN_SUCCEED) { 1401 result = collapse_huge_page(mm, start_addr, referenced, 1402 unmapped, cc); 1403 /* collapse_huge_page will return with the mmap_lock released */ 1404 *mmap_locked = false; 1405 } 1406 out: 1407 trace_mm_khugepaged_scan_pmd(mm, folio, referenced, 1408 none_or_zero, result, unmapped); 1409 return result; 1410 } 1411 1412 static void collect_mm_slot(struct mm_slot *slot) 1413 { 1414 struct mm_struct *mm = slot->mm; 1415 1416 lockdep_assert_held(&khugepaged_mm_lock); 1417 1418 if (hpage_collapse_test_exit(mm)) { 1419 /* free mm_slot */ 1420 hash_del(&slot->hash); 1421 list_del(&slot->mm_node); 1422 1423 /* 1424 * Not strictly needed because the mm exited already. 1425 * 1426 * mm_flags_clear(MMF_VM_HUGEPAGE, mm); 1427 */ 1428 1429 /* khugepaged_mm_lock actually not necessary for the below */ 1430 mm_slot_free(mm_slot_cache, slot); 1431 mmdrop(mm); 1432 } 1433 } 1434 1435 /* folio must be locked, and mmap_lock must be held */ 1436 static enum scan_result set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1437 pmd_t *pmdp, struct folio *folio, struct page *page) 1438 { 1439 struct mm_struct *mm = vma->vm_mm; 1440 struct vm_fault vmf = { 1441 .vma = vma, 1442 .address = addr, 1443 .flags = 0, 1444 }; 1445 pgd_t *pgdp; 1446 p4d_t *p4dp; 1447 pud_t *pudp; 1448 1449 mmap_assert_locked(vma->vm_mm); 1450 1451 if (!pmdp) { 1452 pgdp = pgd_offset(mm, addr); 1453 p4dp = p4d_alloc(mm, pgdp, addr); 1454 if (!p4dp) 1455 return SCAN_FAIL; 1456 pudp = pud_alloc(mm, p4dp, addr); 1457 if (!pudp) 1458 return SCAN_FAIL; 1459 pmdp = pmd_alloc(mm, pudp, addr); 1460 if (!pmdp) 1461 return SCAN_FAIL; 1462 } 1463 1464 vmf.pmd = pmdp; 1465 if (do_set_pmd(&vmf, folio, page)) 1466 return SCAN_FAIL; 1467 1468 folio_get(folio); 1469 return SCAN_SUCCEED; 1470 } 1471 1472 static enum scan_result try_collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1473 bool install_pmd) 1474 { 1475 enum scan_result result = SCAN_FAIL; 1476 int nr_mapped_ptes = 0; 1477 unsigned int nr_batch_ptes; 1478 struct mmu_notifier_range range; 1479 bool notified = false; 1480 unsigned long haddr = addr & HPAGE_PMD_MASK; 1481 unsigned long end = haddr + HPAGE_PMD_SIZE; 1482 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1483 struct folio *folio; 1484 pte_t *start_pte, *pte; 1485 pmd_t *pmd, pgt_pmd; 1486 spinlock_t *pml = NULL, *ptl; 1487 int i; 1488 1489 mmap_assert_locked(mm); 1490 1491 /* First check VMA found, in case page tables are being torn down */ 1492 if (!vma || !vma->vm_file || 1493 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1494 return SCAN_VMA_CHECK; 1495 1496 /* Fast check before locking page if already PMD-mapped */ 1497 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1498 if (result == SCAN_PMD_MAPPED) 1499 return result; 1500 1501 /* 1502 * If we are here, we've succeeded in replacing all the native pages 1503 * in the page cache with a single hugepage. If a mm were to fault-in 1504 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1505 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1506 * analogously elide sysfs THP settings here and force collapse. 1507 */ 1508 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 1509 return SCAN_VMA_CHECK; 1510 1511 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1512 if (userfaultfd_wp(vma)) 1513 return SCAN_PTE_UFFD_WP; 1514 1515 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1516 linear_page_index(vma, haddr)); 1517 if (IS_ERR(folio)) 1518 return SCAN_PAGE_NULL; 1519 1520 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1521 result = SCAN_PAGE_COMPOUND; 1522 goto drop_folio; 1523 } 1524 1525 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1526 switch (result) { 1527 case SCAN_SUCCEED: 1528 break; 1529 case SCAN_NO_PTE_TABLE: 1530 /* 1531 * All pte entries have been removed and pmd cleared. 1532 * Skip all the pte checks and just update the pmd mapping. 1533 */ 1534 goto maybe_install_pmd; 1535 default: 1536 goto drop_folio; 1537 } 1538 1539 result = SCAN_FAIL; 1540 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1541 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1542 goto drop_folio; 1543 1544 /* step 1: check all mapped PTEs are to the right huge page */ 1545 for (i = 0, addr = haddr, pte = start_pte; 1546 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1547 struct page *page; 1548 pte_t ptent = ptep_get(pte); 1549 1550 /* empty pte, skip */ 1551 if (pte_none(ptent)) 1552 continue; 1553 1554 /* page swapped out, abort */ 1555 if (!pte_present(ptent)) { 1556 result = SCAN_PTE_NON_PRESENT; 1557 goto abort; 1558 } 1559 1560 page = vm_normal_page(vma, addr, ptent); 1561 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1562 page = NULL; 1563 /* 1564 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1565 * page table, but the new page will not be a subpage of hpage. 1566 */ 1567 if (folio_page(folio, i) != page) 1568 goto abort; 1569 } 1570 1571 pte_unmap_unlock(start_pte, ptl); 1572 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1573 haddr, haddr + HPAGE_PMD_SIZE); 1574 mmu_notifier_invalidate_range_start(&range); 1575 notified = true; 1576 1577 /* 1578 * pmd_lock covers a wider range than ptl, and (if split from mm's 1579 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1580 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1581 * inserts a valid as-if-COWed PTE without even looking up page cache. 1582 * So page lock of folio does not protect from it, so we must not drop 1583 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1584 */ 1585 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1586 pml = pmd_lock(mm, pmd); 1587 1588 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1589 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1590 goto abort; 1591 if (!pml) 1592 spin_lock(ptl); 1593 else if (ptl != pml) 1594 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1595 1596 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1597 goto abort; 1598 1599 /* step 2: clear page table and adjust rmap */ 1600 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; 1601 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, 1602 pte += nr_batch_ptes) { 1603 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; 1604 struct page *page; 1605 pte_t ptent = ptep_get(pte); 1606 1607 nr_batch_ptes = 1; 1608 1609 if (pte_none(ptent)) 1610 continue; 1611 /* 1612 * We dropped ptl after the first scan, to do the mmu_notifier: 1613 * page lock stops more PTEs of the folio being faulted in, but 1614 * does not stop write faults COWing anon copies from existing 1615 * PTEs; and does not stop those being swapped out or migrated. 1616 */ 1617 if (!pte_present(ptent)) { 1618 result = SCAN_PTE_NON_PRESENT; 1619 goto abort; 1620 } 1621 page = vm_normal_page(vma, addr, ptent); 1622 1623 if (folio_page(folio, i) != page) 1624 goto abort; 1625 1626 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); 1627 1628 /* 1629 * Must clear entry, or a racing truncate may re-remove it. 1630 * TLB flush can be left until pmdp_collapse_flush() does it. 1631 * PTE dirty? Shmem page is already dirty; file is read-only. 1632 */ 1633 clear_ptes(mm, addr, pte, nr_batch_ptes); 1634 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); 1635 nr_mapped_ptes += nr_batch_ptes; 1636 } 1637 1638 if (!pml) 1639 spin_unlock(ptl); 1640 1641 /* step 3: set proper refcount and mm_counters. */ 1642 if (nr_mapped_ptes) { 1643 folio_ref_sub(folio, nr_mapped_ptes); 1644 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1645 } 1646 1647 /* step 4: remove empty page table */ 1648 if (!pml) { 1649 pml = pmd_lock(mm, pmd); 1650 if (ptl != pml) { 1651 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1652 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1653 flush_tlb_mm(mm); 1654 goto unlock; 1655 } 1656 } 1657 } 1658 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1659 pmdp_get_lockless_sync(); 1660 pte_unmap_unlock(start_pte, ptl); 1661 if (ptl != pml) 1662 spin_unlock(pml); 1663 1664 mmu_notifier_invalidate_range_end(&range); 1665 1666 mm_dec_nr_ptes(mm); 1667 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1668 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1669 1670 maybe_install_pmd: 1671 /* step 5: install pmd entry */ 1672 result = install_pmd 1673 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1674 : SCAN_SUCCEED; 1675 goto drop_folio; 1676 abort: 1677 if (nr_mapped_ptes) { 1678 flush_tlb_mm(mm); 1679 folio_ref_sub(folio, nr_mapped_ptes); 1680 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1681 } 1682 unlock: 1683 if (start_pte) 1684 pte_unmap_unlock(start_pte, ptl); 1685 if (pml && pml != ptl) 1686 spin_unlock(pml); 1687 if (notified) 1688 mmu_notifier_invalidate_range_end(&range); 1689 drop_folio: 1690 folio_unlock(folio); 1691 folio_put(folio); 1692 return result; 1693 } 1694 1695 /** 1696 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1697 * address haddr. 1698 * 1699 * @mm: process address space where collapse happens 1700 * @addr: THP collapse address 1701 * @install_pmd: If a huge PMD should be installed 1702 * 1703 * This function checks whether all the PTEs in the PMD are pointing to the 1704 * right THP. If so, retract the page table so the THP can refault in with 1705 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1706 */ 1707 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1708 bool install_pmd) 1709 { 1710 try_collapse_pte_mapped_thp(mm, addr, install_pmd); 1711 } 1712 1713 /* Can we retract page tables for this file-backed VMA? */ 1714 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma) 1715 { 1716 /* 1717 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1718 * got written to. These VMAs are likely not worth removing 1719 * page tables from, as PMD-mapping is likely to be split later. 1720 */ 1721 if (READ_ONCE(vma->anon_vma)) 1722 return false; 1723 1724 /* 1725 * When a vma is registered with uffd-wp, we cannot recycle 1726 * the page table because there may be pte markers installed. 1727 * Other vmas can still have the same file mapped hugely, but 1728 * skip this one: it will always be mapped in small page size 1729 * for uffd-wp registered ranges. 1730 */ 1731 if (userfaultfd_wp(vma)) 1732 return false; 1733 1734 /* 1735 * If the VMA contains guard regions then we can't collapse it. 1736 * 1737 * This is set atomically on guard marker installation under mmap/VMA 1738 * read lock, and here we may not hold any VMA or mmap lock at all. 1739 * 1740 * This is therefore serialised on the PTE page table lock, which is 1741 * obtained on guard region installation after the flag is set, so this 1742 * check being performed under this lock excludes races. 1743 */ 1744 if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT)) 1745 return false; 1746 1747 return true; 1748 } 1749 1750 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1751 { 1752 struct vm_area_struct *vma; 1753 1754 i_mmap_lock_read(mapping); 1755 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1756 struct mmu_notifier_range range; 1757 struct mm_struct *mm; 1758 unsigned long addr; 1759 pmd_t *pmd, pgt_pmd; 1760 spinlock_t *pml; 1761 spinlock_t *ptl; 1762 bool success = false; 1763 1764 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1765 if (addr & ~HPAGE_PMD_MASK || 1766 vma->vm_end < addr + HPAGE_PMD_SIZE) 1767 continue; 1768 1769 mm = vma->vm_mm; 1770 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1771 continue; 1772 1773 if (hpage_collapse_test_exit(mm)) 1774 continue; 1775 1776 if (!file_backed_vma_is_retractable(vma)) 1777 continue; 1778 1779 /* PTEs were notified when unmapped; but now for the PMD? */ 1780 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1781 addr, addr + HPAGE_PMD_SIZE); 1782 mmu_notifier_invalidate_range_start(&range); 1783 1784 pml = pmd_lock(mm, pmd); 1785 /* 1786 * The lock of new_folio is still held, we will be blocked in 1787 * the page fault path, which prevents the pte entries from 1788 * being set again. So even though the old empty PTE page may be 1789 * concurrently freed and a new PTE page is filled into the pmd 1790 * entry, it is still empty and can be removed. 1791 * 1792 * So here we only need to recheck if the state of pmd entry 1793 * still meets our requirements, rather than checking pmd_same() 1794 * like elsewhere. 1795 */ 1796 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1797 goto drop_pml; 1798 ptl = pte_lockptr(mm, pmd); 1799 if (ptl != pml) 1800 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1801 1802 /* 1803 * Huge page lock is still held, so normally the page table must 1804 * remain empty; and we have already skipped anon_vma and 1805 * userfaultfd_wp() vmas. But since the mmap_lock is not held, 1806 * it is still possible for a racing userfaultfd_ioctl() or 1807 * madvise() to have inserted ptes or markers. Now that we hold 1808 * ptlock, repeating the retractable checks protects us from 1809 * races against the prior checks. 1810 */ 1811 if (likely(file_backed_vma_is_retractable(vma))) { 1812 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1813 pmdp_get_lockless_sync(); 1814 success = true; 1815 } 1816 1817 if (ptl != pml) 1818 spin_unlock(ptl); 1819 drop_pml: 1820 spin_unlock(pml); 1821 1822 mmu_notifier_invalidate_range_end(&range); 1823 1824 if (success) { 1825 mm_dec_nr_ptes(mm); 1826 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1827 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1828 } 1829 } 1830 i_mmap_unlock_read(mapping); 1831 } 1832 1833 /** 1834 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1835 * 1836 * @mm: process address space where collapse happens 1837 * @addr: virtual collapse start address 1838 * @file: file that collapse on 1839 * @start: collapse start address 1840 * @cc: collapse context and scratchpad 1841 * 1842 * Basic scheme is simple, details are more complex: 1843 * - allocate and lock a new huge page; 1844 * - scan page cache, locking old pages 1845 * + swap/gup in pages if necessary; 1846 * - copy data to new page 1847 * - handle shmem holes 1848 * + re-validate that holes weren't filled by someone else 1849 * + check for userfaultfd 1850 * - finalize updates to the page cache; 1851 * - if replacing succeeds: 1852 * + unlock huge page; 1853 * + free old pages; 1854 * - if replacing failed; 1855 * + unlock old pages 1856 * + unlock and free huge page; 1857 */ 1858 static enum scan_result collapse_file(struct mm_struct *mm, unsigned long addr, 1859 struct file *file, pgoff_t start, struct collapse_control *cc) 1860 { 1861 struct address_space *mapping = file->f_mapping; 1862 struct page *dst; 1863 struct folio *folio, *tmp, *new_folio; 1864 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1865 LIST_HEAD(pagelist); 1866 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1867 enum scan_result result = SCAN_SUCCEED; 1868 int nr_none = 0; 1869 bool is_shmem = shmem_file(file); 1870 1871 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1872 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1873 1874 result = alloc_charge_folio(&new_folio, mm, cc); 1875 if (result != SCAN_SUCCEED) 1876 goto out; 1877 1878 mapping_set_update(&xas, mapping); 1879 1880 __folio_set_locked(new_folio); 1881 if (is_shmem) 1882 __folio_set_swapbacked(new_folio); 1883 new_folio->index = start; 1884 new_folio->mapping = mapping; 1885 1886 /* 1887 * Ensure we have slots for all the pages in the range. This is 1888 * almost certainly a no-op because most of the pages must be present 1889 */ 1890 do { 1891 xas_lock_irq(&xas); 1892 xas_create_range(&xas); 1893 if (!xas_error(&xas)) 1894 break; 1895 xas_unlock_irq(&xas); 1896 if (!xas_nomem(&xas, GFP_KERNEL)) { 1897 result = SCAN_FAIL; 1898 goto rollback; 1899 } 1900 } while (1); 1901 1902 for (index = start; index < end;) { 1903 xas_set(&xas, index); 1904 folio = xas_load(&xas); 1905 1906 VM_BUG_ON(index != xas.xa_index); 1907 if (is_shmem) { 1908 if (!folio) { 1909 /* 1910 * Stop if extent has been truncated or 1911 * hole-punched, and is now completely 1912 * empty. 1913 */ 1914 if (index == start) { 1915 if (!xas_next_entry(&xas, end - 1)) { 1916 result = SCAN_TRUNCATED; 1917 goto xa_locked; 1918 } 1919 } 1920 nr_none++; 1921 index++; 1922 continue; 1923 } 1924 1925 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1926 xas_unlock_irq(&xas); 1927 /* swap in or instantiate fallocated page */ 1928 if (shmem_get_folio(mapping->host, index, 0, 1929 &folio, SGP_NOALLOC)) { 1930 result = SCAN_FAIL; 1931 goto xa_unlocked; 1932 } 1933 /* drain lru cache to help folio_isolate_lru() */ 1934 lru_add_drain(); 1935 } else if (folio_trylock(folio)) { 1936 folio_get(folio); 1937 xas_unlock_irq(&xas); 1938 } else { 1939 result = SCAN_PAGE_LOCK; 1940 goto xa_locked; 1941 } 1942 } else { /* !is_shmem */ 1943 if (!folio || xa_is_value(folio)) { 1944 xas_unlock_irq(&xas); 1945 page_cache_sync_readahead(mapping, &file->f_ra, 1946 file, index, 1947 end - index); 1948 /* drain lru cache to help folio_isolate_lru() */ 1949 lru_add_drain(); 1950 folio = filemap_lock_folio(mapping, index); 1951 if (IS_ERR(folio)) { 1952 result = SCAN_FAIL; 1953 goto xa_unlocked; 1954 } 1955 } else if (folio_test_dirty(folio)) { 1956 /* 1957 * khugepaged only works on read-only fd, 1958 * so this page is dirty because it hasn't 1959 * been flushed since first write. There 1960 * won't be new dirty pages. 1961 * 1962 * Trigger async flush here and hope the 1963 * writeback is done when khugepaged 1964 * revisits this page. 1965 * 1966 * This is a one-off situation. We are not 1967 * forcing writeback in loop. 1968 */ 1969 xas_unlock_irq(&xas); 1970 filemap_flush(mapping); 1971 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 1972 goto xa_unlocked; 1973 } else if (folio_test_writeback(folio)) { 1974 xas_unlock_irq(&xas); 1975 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 1976 goto xa_unlocked; 1977 } else if (folio_trylock(folio)) { 1978 folio_get(folio); 1979 xas_unlock_irq(&xas); 1980 } else { 1981 result = SCAN_PAGE_LOCK; 1982 goto xa_locked; 1983 } 1984 } 1985 1986 /* 1987 * The folio must be locked, so we can drop the i_pages lock 1988 * without racing with truncate. 1989 */ 1990 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1991 1992 /* make sure the folio is up to date */ 1993 if (unlikely(!folio_test_uptodate(folio))) { 1994 result = SCAN_FAIL; 1995 goto out_unlock; 1996 } 1997 1998 /* 1999 * If file was truncated then extended, or hole-punched, before 2000 * we locked the first folio, then a THP might be there already. 2001 * This will be discovered on the first iteration. 2002 */ 2003 if (folio_order(folio) == HPAGE_PMD_ORDER && 2004 folio->index == start) { 2005 /* Maybe PMD-mapped */ 2006 result = SCAN_PTE_MAPPED_HUGEPAGE; 2007 goto out_unlock; 2008 } 2009 2010 if (folio_mapping(folio) != mapping) { 2011 result = SCAN_TRUNCATED; 2012 goto out_unlock; 2013 } 2014 2015 if (!is_shmem && (folio_test_dirty(folio) || 2016 folio_test_writeback(folio))) { 2017 /* 2018 * khugepaged only works on read-only fd, so this 2019 * folio is dirty because it hasn't been flushed 2020 * since first write. 2021 */ 2022 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 2023 goto out_unlock; 2024 } 2025 2026 if (!folio_isolate_lru(folio)) { 2027 result = SCAN_DEL_PAGE_LRU; 2028 goto out_unlock; 2029 } 2030 2031 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2032 result = SCAN_PAGE_HAS_PRIVATE; 2033 folio_putback_lru(folio); 2034 goto out_unlock; 2035 } 2036 2037 if (folio_mapped(folio)) 2038 try_to_unmap(folio, 2039 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2040 2041 xas_lock_irq(&xas); 2042 2043 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2044 2045 /* 2046 * We control 2 + nr_pages references to the folio: 2047 * - we hold a pin on it; 2048 * - nr_pages reference from page cache; 2049 * - one from lru_isolate_folio; 2050 * If those are the only references, then any new usage 2051 * of the folio will have to fetch it from the page 2052 * cache. That requires locking the folio to handle 2053 * truncate, so any new usage will be blocked until we 2054 * unlock folio after collapse/during rollback. 2055 */ 2056 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2057 result = SCAN_PAGE_COUNT; 2058 xas_unlock_irq(&xas); 2059 folio_putback_lru(folio); 2060 goto out_unlock; 2061 } 2062 2063 /* 2064 * Accumulate the folios that are being collapsed. 2065 */ 2066 list_add_tail(&folio->lru, &pagelist); 2067 index += folio_nr_pages(folio); 2068 continue; 2069 out_unlock: 2070 folio_unlock(folio); 2071 folio_put(folio); 2072 goto xa_unlocked; 2073 } 2074 2075 if (!is_shmem) { 2076 filemap_nr_thps_inc(mapping); 2077 /* 2078 * Paired with the fence in do_dentry_open() -> get_write_access() 2079 * to ensure i_writecount is up to date and the update to nr_thps 2080 * is visible. Ensures the page cache will be truncated if the 2081 * file is opened writable. 2082 */ 2083 smp_mb(); 2084 if (inode_is_open_for_write(mapping->host)) { 2085 result = SCAN_FAIL; 2086 filemap_nr_thps_dec(mapping); 2087 } 2088 } 2089 2090 xa_locked: 2091 xas_unlock_irq(&xas); 2092 xa_unlocked: 2093 2094 /* 2095 * If collapse is successful, flush must be done now before copying. 2096 * If collapse is unsuccessful, does flush actually need to be done? 2097 * Do it anyway, to clear the state. 2098 */ 2099 try_to_unmap_flush(); 2100 2101 if (result == SCAN_SUCCEED && nr_none && 2102 !shmem_charge(mapping->host, nr_none)) 2103 result = SCAN_FAIL; 2104 if (result != SCAN_SUCCEED) { 2105 nr_none = 0; 2106 goto rollback; 2107 } 2108 2109 /* 2110 * The old folios are locked, so they won't change anymore. 2111 */ 2112 index = start; 2113 dst = folio_page(new_folio, 0); 2114 list_for_each_entry(folio, &pagelist, lru) { 2115 int i, nr_pages = folio_nr_pages(folio); 2116 2117 while (index < folio->index) { 2118 clear_highpage(dst); 2119 index++; 2120 dst++; 2121 } 2122 2123 for (i = 0; i < nr_pages; i++) { 2124 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2125 result = SCAN_COPY_MC; 2126 goto rollback; 2127 } 2128 index++; 2129 dst++; 2130 } 2131 } 2132 while (index < end) { 2133 clear_highpage(dst); 2134 index++; 2135 dst++; 2136 } 2137 2138 if (nr_none) { 2139 struct vm_area_struct *vma; 2140 int nr_none_check = 0; 2141 2142 i_mmap_lock_read(mapping); 2143 xas_lock_irq(&xas); 2144 2145 xas_set(&xas, start); 2146 for (index = start; index < end; index++) { 2147 if (!xas_next(&xas)) { 2148 xas_store(&xas, XA_RETRY_ENTRY); 2149 if (xas_error(&xas)) { 2150 result = SCAN_STORE_FAILED; 2151 goto immap_locked; 2152 } 2153 nr_none_check++; 2154 } 2155 } 2156 2157 if (nr_none != nr_none_check) { 2158 result = SCAN_PAGE_FILLED; 2159 goto immap_locked; 2160 } 2161 2162 /* 2163 * If userspace observed a missing page in a VMA with 2164 * a MODE_MISSING userfaultfd, then it might expect a 2165 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2166 * roll back to avoid suppressing such an event. Since 2167 * wp/minor userfaultfds don't give userspace any 2168 * guarantees that the kernel doesn't fill a missing 2169 * page with a zero page, so they don't matter here. 2170 * 2171 * Any userfaultfds registered after this point will 2172 * not be able to observe any missing pages due to the 2173 * previously inserted retry entries. 2174 */ 2175 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2176 if (userfaultfd_missing(vma)) { 2177 result = SCAN_EXCEED_NONE_PTE; 2178 goto immap_locked; 2179 } 2180 } 2181 2182 immap_locked: 2183 i_mmap_unlock_read(mapping); 2184 if (result != SCAN_SUCCEED) { 2185 xas_set(&xas, start); 2186 for (index = start; index < end; index++) { 2187 if (xas_next(&xas) == XA_RETRY_ENTRY) 2188 xas_store(&xas, NULL); 2189 } 2190 2191 xas_unlock_irq(&xas); 2192 goto rollback; 2193 } 2194 } else { 2195 xas_lock_irq(&xas); 2196 } 2197 2198 if (is_shmem) { 2199 lruvec_stat_mod_folio(new_folio, NR_SHMEM, HPAGE_PMD_NR); 2200 lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2201 } else { 2202 lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2203 } 2204 lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, HPAGE_PMD_NR); 2205 2206 /* 2207 * Mark new_folio as uptodate before inserting it into the 2208 * page cache so that it isn't mistaken for an fallocated but 2209 * unwritten page. 2210 */ 2211 folio_mark_uptodate(new_folio); 2212 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2213 2214 if (is_shmem) 2215 folio_mark_dirty(new_folio); 2216 folio_add_lru(new_folio); 2217 2218 /* Join all the small entries into a single multi-index entry. */ 2219 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2220 xas_store(&xas, new_folio); 2221 WARN_ON_ONCE(xas_error(&xas)); 2222 xas_unlock_irq(&xas); 2223 2224 /* 2225 * Remove pte page tables, so we can re-fault the page as huge. 2226 * If MADV_COLLAPSE, adjust result to call try_collapse_pte_mapped_thp(). 2227 */ 2228 retract_page_tables(mapping, start); 2229 if (cc && !cc->is_khugepaged) 2230 result = SCAN_PTE_MAPPED_HUGEPAGE; 2231 folio_unlock(new_folio); 2232 2233 /* 2234 * The collapse has succeeded, so free the old folios. 2235 */ 2236 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2237 list_del(&folio->lru); 2238 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, 2239 -folio_nr_pages(folio)); 2240 if (is_shmem) 2241 lruvec_stat_mod_folio(folio, NR_SHMEM, 2242 -folio_nr_pages(folio)); 2243 folio->mapping = NULL; 2244 folio_clear_active(folio); 2245 folio_clear_unevictable(folio); 2246 folio_unlock(folio); 2247 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2248 } 2249 2250 goto out; 2251 2252 rollback: 2253 /* Something went wrong: roll back page cache changes */ 2254 if (nr_none) { 2255 xas_lock_irq(&xas); 2256 mapping->nrpages -= nr_none; 2257 xas_unlock_irq(&xas); 2258 shmem_uncharge(mapping->host, nr_none); 2259 } 2260 2261 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2262 list_del(&folio->lru); 2263 folio_unlock(folio); 2264 folio_putback_lru(folio); 2265 folio_put(folio); 2266 } 2267 /* 2268 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2269 * file only. This undo is not needed unless failure is 2270 * due to SCAN_COPY_MC. 2271 */ 2272 if (!is_shmem && result == SCAN_COPY_MC) { 2273 filemap_nr_thps_dec(mapping); 2274 /* 2275 * Paired with the fence in do_dentry_open() -> get_write_access() 2276 * to ensure the update to nr_thps is visible. 2277 */ 2278 smp_mb(); 2279 } 2280 2281 new_folio->mapping = NULL; 2282 2283 folio_unlock(new_folio); 2284 folio_put(new_folio); 2285 out: 2286 VM_BUG_ON(!list_empty(&pagelist)); 2287 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2288 return result; 2289 } 2290 2291 static enum scan_result hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2292 struct file *file, pgoff_t start, struct collapse_control *cc) 2293 { 2294 struct folio *folio = NULL; 2295 struct address_space *mapping = file->f_mapping; 2296 XA_STATE(xas, &mapping->i_pages, start); 2297 int present, swap; 2298 int node = NUMA_NO_NODE; 2299 enum scan_result result = SCAN_SUCCEED; 2300 2301 present = 0; 2302 swap = 0; 2303 memset(cc->node_load, 0, sizeof(cc->node_load)); 2304 nodes_clear(cc->alloc_nmask); 2305 rcu_read_lock(); 2306 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2307 if (xas_retry(&xas, folio)) 2308 continue; 2309 2310 if (xa_is_value(folio)) { 2311 swap += 1 << xas_get_order(&xas); 2312 if (cc->is_khugepaged && 2313 swap > khugepaged_max_ptes_swap) { 2314 result = SCAN_EXCEED_SWAP_PTE; 2315 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2316 break; 2317 } 2318 continue; 2319 } 2320 2321 if (!folio_try_get(folio)) { 2322 xas_reset(&xas); 2323 continue; 2324 } 2325 2326 if (unlikely(folio != xas_reload(&xas))) { 2327 folio_put(folio); 2328 xas_reset(&xas); 2329 continue; 2330 } 2331 2332 if (folio_order(folio) == HPAGE_PMD_ORDER && 2333 folio->index == start) { 2334 /* Maybe PMD-mapped */ 2335 result = SCAN_PTE_MAPPED_HUGEPAGE; 2336 /* 2337 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2338 * by the caller won't touch the page cache, and so 2339 * it's safe to skip LRU and refcount checks before 2340 * returning. 2341 */ 2342 folio_put(folio); 2343 break; 2344 } 2345 2346 node = folio_nid(folio); 2347 if (hpage_collapse_scan_abort(node, cc)) { 2348 result = SCAN_SCAN_ABORT; 2349 folio_put(folio); 2350 break; 2351 } 2352 cc->node_load[node]++; 2353 2354 if (!folio_test_lru(folio)) { 2355 result = SCAN_PAGE_LRU; 2356 folio_put(folio); 2357 break; 2358 } 2359 2360 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2361 result = SCAN_PAGE_COUNT; 2362 folio_put(folio); 2363 break; 2364 } 2365 2366 /* 2367 * We probably should check if the folio is referenced 2368 * here, but nobody would transfer pte_young() to 2369 * folio_test_referenced() for us. And rmap walk here 2370 * is just too costly... 2371 */ 2372 2373 present += folio_nr_pages(folio); 2374 folio_put(folio); 2375 2376 if (need_resched()) { 2377 xas_pause(&xas); 2378 cond_resched_rcu(); 2379 } 2380 } 2381 rcu_read_unlock(); 2382 2383 if (result == SCAN_SUCCEED) { 2384 if (cc->is_khugepaged && 2385 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2386 result = SCAN_EXCEED_NONE_PTE; 2387 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2388 } else { 2389 result = collapse_file(mm, addr, file, start, cc); 2390 } 2391 } 2392 2393 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2394 return result; 2395 } 2396 2397 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, enum scan_result *result, 2398 struct collapse_control *cc) 2399 __releases(&khugepaged_mm_lock) 2400 __acquires(&khugepaged_mm_lock) 2401 { 2402 struct vma_iterator vmi; 2403 struct mm_slot *slot; 2404 struct mm_struct *mm; 2405 struct vm_area_struct *vma; 2406 int progress = 0; 2407 2408 VM_BUG_ON(!pages); 2409 lockdep_assert_held(&khugepaged_mm_lock); 2410 *result = SCAN_FAIL; 2411 2412 if (khugepaged_scan.mm_slot) { 2413 slot = khugepaged_scan.mm_slot; 2414 } else { 2415 slot = list_first_entry(&khugepaged_scan.mm_head, 2416 struct mm_slot, mm_node); 2417 khugepaged_scan.address = 0; 2418 khugepaged_scan.mm_slot = slot; 2419 } 2420 spin_unlock(&khugepaged_mm_lock); 2421 2422 mm = slot->mm; 2423 /* 2424 * Don't wait for semaphore (to avoid long wait times). Just move to 2425 * the next mm on the list. 2426 */ 2427 vma = NULL; 2428 if (unlikely(!mmap_read_trylock(mm))) 2429 goto breakouterloop_mmap_lock; 2430 2431 progress++; 2432 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2433 goto breakouterloop; 2434 2435 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2436 for_each_vma(vmi, vma) { 2437 unsigned long hstart, hend; 2438 2439 cond_resched(); 2440 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2441 progress++; 2442 break; 2443 } 2444 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) { 2445 progress++; 2446 continue; 2447 } 2448 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2449 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2450 if (khugepaged_scan.address > hend) { 2451 progress++; 2452 continue; 2453 } 2454 if (khugepaged_scan.address < hstart) 2455 khugepaged_scan.address = hstart; 2456 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2457 2458 while (khugepaged_scan.address < hend) { 2459 bool mmap_locked = true; 2460 2461 cond_resched(); 2462 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2463 goto breakouterloop; 2464 2465 VM_BUG_ON(khugepaged_scan.address < hstart || 2466 khugepaged_scan.address + HPAGE_PMD_SIZE > 2467 hend); 2468 if (!vma_is_anonymous(vma)) { 2469 struct file *file = get_file(vma->vm_file); 2470 pgoff_t pgoff = linear_page_index(vma, 2471 khugepaged_scan.address); 2472 2473 mmap_read_unlock(mm); 2474 mmap_locked = false; 2475 *result = hpage_collapse_scan_file(mm, 2476 khugepaged_scan.address, file, pgoff, cc); 2477 fput(file); 2478 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2479 mmap_read_lock(mm); 2480 if (hpage_collapse_test_exit_or_disable(mm)) 2481 goto breakouterloop; 2482 *result = try_collapse_pte_mapped_thp(mm, 2483 khugepaged_scan.address, false); 2484 if (*result == SCAN_PMD_MAPPED) 2485 *result = SCAN_SUCCEED; 2486 mmap_read_unlock(mm); 2487 } 2488 } else { 2489 *result = hpage_collapse_scan_pmd(mm, vma, 2490 khugepaged_scan.address, &mmap_locked, cc); 2491 } 2492 2493 if (*result == SCAN_SUCCEED) 2494 ++khugepaged_pages_collapsed; 2495 2496 /* move to next address */ 2497 khugepaged_scan.address += HPAGE_PMD_SIZE; 2498 progress += HPAGE_PMD_NR; 2499 if (!mmap_locked) 2500 /* 2501 * We released mmap_lock so break loop. Note 2502 * that we drop mmap_lock before all hugepage 2503 * allocations, so if allocation fails, we are 2504 * guaranteed to break here and report the 2505 * correct result back to caller. 2506 */ 2507 goto breakouterloop_mmap_lock; 2508 if (progress >= pages) 2509 goto breakouterloop; 2510 } 2511 } 2512 breakouterloop: 2513 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2514 breakouterloop_mmap_lock: 2515 2516 spin_lock(&khugepaged_mm_lock); 2517 VM_BUG_ON(khugepaged_scan.mm_slot != slot); 2518 /* 2519 * Release the current mm_slot if this mm is about to die, or 2520 * if we scanned all vmas of this mm. 2521 */ 2522 if (hpage_collapse_test_exit(mm) || !vma) { 2523 /* 2524 * Make sure that if mm_users is reaching zero while 2525 * khugepaged runs here, khugepaged_exit will find 2526 * mm_slot not pointing to the exiting mm. 2527 */ 2528 if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) { 2529 khugepaged_scan.mm_slot = list_next_entry(slot, mm_node); 2530 khugepaged_scan.address = 0; 2531 } else { 2532 khugepaged_scan.mm_slot = NULL; 2533 khugepaged_full_scans++; 2534 } 2535 2536 collect_mm_slot(slot); 2537 } 2538 2539 return progress; 2540 } 2541 2542 static int khugepaged_has_work(void) 2543 { 2544 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2545 } 2546 2547 static int khugepaged_wait_event(void) 2548 { 2549 return !list_empty(&khugepaged_scan.mm_head) || 2550 kthread_should_stop(); 2551 } 2552 2553 static void khugepaged_do_scan(struct collapse_control *cc) 2554 { 2555 unsigned int progress = 0, pass_through_head = 0; 2556 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2557 bool wait = true; 2558 enum scan_result result = SCAN_SUCCEED; 2559 2560 lru_add_drain_all(); 2561 2562 while (true) { 2563 cond_resched(); 2564 2565 if (unlikely(kthread_should_stop())) 2566 break; 2567 2568 spin_lock(&khugepaged_mm_lock); 2569 if (!khugepaged_scan.mm_slot) 2570 pass_through_head++; 2571 if (khugepaged_has_work() && 2572 pass_through_head < 2) 2573 progress += khugepaged_scan_mm_slot(pages - progress, 2574 &result, cc); 2575 else 2576 progress = pages; 2577 spin_unlock(&khugepaged_mm_lock); 2578 2579 if (progress >= pages) 2580 break; 2581 2582 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2583 /* 2584 * If fail to allocate the first time, try to sleep for 2585 * a while. When hit again, cancel the scan. 2586 */ 2587 if (!wait) 2588 break; 2589 wait = false; 2590 khugepaged_alloc_sleep(); 2591 } 2592 } 2593 } 2594 2595 static bool khugepaged_should_wakeup(void) 2596 { 2597 return kthread_should_stop() || 2598 time_after_eq(jiffies, khugepaged_sleep_expire); 2599 } 2600 2601 static void khugepaged_wait_work(void) 2602 { 2603 if (khugepaged_has_work()) { 2604 const unsigned long scan_sleep_jiffies = 2605 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2606 2607 if (!scan_sleep_jiffies) 2608 return; 2609 2610 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2611 wait_event_freezable_timeout(khugepaged_wait, 2612 khugepaged_should_wakeup(), 2613 scan_sleep_jiffies); 2614 return; 2615 } 2616 2617 if (hugepage_pmd_enabled()) 2618 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2619 } 2620 2621 static int khugepaged(void *none) 2622 { 2623 struct mm_slot *slot; 2624 2625 set_freezable(); 2626 set_user_nice(current, MAX_NICE); 2627 2628 while (!kthread_should_stop()) { 2629 khugepaged_do_scan(&khugepaged_collapse_control); 2630 khugepaged_wait_work(); 2631 } 2632 2633 spin_lock(&khugepaged_mm_lock); 2634 slot = khugepaged_scan.mm_slot; 2635 khugepaged_scan.mm_slot = NULL; 2636 if (slot) 2637 collect_mm_slot(slot); 2638 spin_unlock(&khugepaged_mm_lock); 2639 return 0; 2640 } 2641 2642 static void set_recommended_min_free_kbytes(void) 2643 { 2644 struct zone *zone; 2645 int nr_zones = 0; 2646 unsigned long recommended_min; 2647 2648 if (!hugepage_pmd_enabled()) { 2649 calculate_min_free_kbytes(); 2650 goto update_wmarks; 2651 } 2652 2653 for_each_populated_zone(zone) { 2654 /* 2655 * We don't need to worry about fragmentation of 2656 * ZONE_MOVABLE since it only has movable pages. 2657 */ 2658 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2659 continue; 2660 2661 nr_zones++; 2662 } 2663 2664 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2665 recommended_min = pageblock_nr_pages * nr_zones * 2; 2666 2667 /* 2668 * Make sure that on average at least two pageblocks are almost free 2669 * of another type, one for a migratetype to fall back to and a 2670 * second to avoid subsequent fallbacks of other types There are 3 2671 * MIGRATE_TYPES we care about. 2672 */ 2673 recommended_min += pageblock_nr_pages * nr_zones * 2674 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2675 2676 /* don't ever allow to reserve more than 5% of the lowmem */ 2677 recommended_min = min(recommended_min, 2678 (unsigned long) nr_free_buffer_pages() / 20); 2679 recommended_min <<= (PAGE_SHIFT-10); 2680 2681 if (recommended_min > min_free_kbytes) { 2682 if (user_min_free_kbytes >= 0) 2683 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2684 min_free_kbytes, recommended_min); 2685 2686 min_free_kbytes = recommended_min; 2687 } 2688 2689 update_wmarks: 2690 setup_per_zone_wmarks(); 2691 } 2692 2693 int start_stop_khugepaged(void) 2694 { 2695 int err = 0; 2696 2697 mutex_lock(&khugepaged_mutex); 2698 if (hugepage_pmd_enabled()) { 2699 if (!khugepaged_thread) 2700 khugepaged_thread = kthread_run(khugepaged, NULL, 2701 "khugepaged"); 2702 if (IS_ERR(khugepaged_thread)) { 2703 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2704 err = PTR_ERR(khugepaged_thread); 2705 khugepaged_thread = NULL; 2706 goto fail; 2707 } 2708 2709 if (!list_empty(&khugepaged_scan.mm_head)) 2710 wake_up_interruptible(&khugepaged_wait); 2711 } else if (khugepaged_thread) { 2712 kthread_stop(khugepaged_thread); 2713 khugepaged_thread = NULL; 2714 } 2715 set_recommended_min_free_kbytes(); 2716 fail: 2717 mutex_unlock(&khugepaged_mutex); 2718 return err; 2719 } 2720 2721 void khugepaged_min_free_kbytes_update(void) 2722 { 2723 mutex_lock(&khugepaged_mutex); 2724 if (hugepage_pmd_enabled() && khugepaged_thread) 2725 set_recommended_min_free_kbytes(); 2726 mutex_unlock(&khugepaged_mutex); 2727 } 2728 2729 bool current_is_khugepaged(void) 2730 { 2731 return kthread_func(current) == khugepaged; 2732 } 2733 2734 static int madvise_collapse_errno(enum scan_result r) 2735 { 2736 /* 2737 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2738 * actionable feedback to caller, so they may take an appropriate 2739 * fallback measure depending on the nature of the failure. 2740 */ 2741 switch (r) { 2742 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2743 return -ENOMEM; 2744 case SCAN_CGROUP_CHARGE_FAIL: 2745 case SCAN_EXCEED_NONE_PTE: 2746 return -EBUSY; 2747 /* Resource temporary unavailable - trying again might succeed */ 2748 case SCAN_PAGE_COUNT: 2749 case SCAN_PAGE_LOCK: 2750 case SCAN_PAGE_LRU: 2751 case SCAN_DEL_PAGE_LRU: 2752 case SCAN_PAGE_FILLED: 2753 case SCAN_PAGE_DIRTY_OR_WRITEBACK: 2754 return -EAGAIN; 2755 /* 2756 * Other: Trying again likely not to succeed / error intrinsic to 2757 * specified memory range. khugepaged likely won't be able to collapse 2758 * either. 2759 */ 2760 default: 2761 return -EINVAL; 2762 } 2763 } 2764 2765 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2766 unsigned long end, bool *lock_dropped) 2767 { 2768 struct collapse_control *cc; 2769 struct mm_struct *mm = vma->vm_mm; 2770 unsigned long hstart, hend, addr; 2771 enum scan_result last_fail = SCAN_FAIL; 2772 int thps = 0; 2773 bool mmap_locked = true; 2774 2775 BUG_ON(vma->vm_start > start); 2776 BUG_ON(vma->vm_end < end); 2777 2778 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 2779 return -EINVAL; 2780 2781 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2782 if (!cc) 2783 return -ENOMEM; 2784 cc->is_khugepaged = false; 2785 2786 mmgrab(mm); 2787 lru_add_drain_all(); 2788 2789 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2790 hend = end & HPAGE_PMD_MASK; 2791 2792 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2793 enum scan_result result = SCAN_FAIL; 2794 bool triggered_wb = false; 2795 2796 retry: 2797 if (!mmap_locked) { 2798 cond_resched(); 2799 mmap_read_lock(mm); 2800 mmap_locked = true; 2801 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2802 cc); 2803 if (result != SCAN_SUCCEED) { 2804 last_fail = result; 2805 goto out_nolock; 2806 } 2807 2808 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2809 } 2810 mmap_assert_locked(mm); 2811 if (!vma_is_anonymous(vma)) { 2812 struct file *file = get_file(vma->vm_file); 2813 pgoff_t pgoff = linear_page_index(vma, addr); 2814 2815 mmap_read_unlock(mm); 2816 mmap_locked = false; 2817 *lock_dropped = true; 2818 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2819 cc); 2820 2821 if (result == SCAN_PAGE_DIRTY_OR_WRITEBACK && !triggered_wb && 2822 mapping_can_writeback(file->f_mapping)) { 2823 loff_t lstart = (loff_t)pgoff << PAGE_SHIFT; 2824 loff_t lend = lstart + HPAGE_PMD_SIZE - 1; 2825 2826 filemap_write_and_wait_range(file->f_mapping, lstart, lend); 2827 triggered_wb = true; 2828 fput(file); 2829 goto retry; 2830 } 2831 fput(file); 2832 } else { 2833 result = hpage_collapse_scan_pmd(mm, vma, addr, 2834 &mmap_locked, cc); 2835 } 2836 if (!mmap_locked) 2837 *lock_dropped = true; 2838 2839 handle_result: 2840 switch (result) { 2841 case SCAN_SUCCEED: 2842 case SCAN_PMD_MAPPED: 2843 ++thps; 2844 break; 2845 case SCAN_PTE_MAPPED_HUGEPAGE: 2846 BUG_ON(mmap_locked); 2847 mmap_read_lock(mm); 2848 result = try_collapse_pte_mapped_thp(mm, addr, true); 2849 mmap_read_unlock(mm); 2850 goto handle_result; 2851 /* Whitelisted set of results where continuing OK */ 2852 case SCAN_NO_PTE_TABLE: 2853 case SCAN_PTE_NON_PRESENT: 2854 case SCAN_PTE_UFFD_WP: 2855 case SCAN_LACK_REFERENCED_PAGE: 2856 case SCAN_PAGE_NULL: 2857 case SCAN_PAGE_COUNT: 2858 case SCAN_PAGE_LOCK: 2859 case SCAN_PAGE_COMPOUND: 2860 case SCAN_PAGE_LRU: 2861 case SCAN_DEL_PAGE_LRU: 2862 last_fail = result; 2863 break; 2864 default: 2865 last_fail = result; 2866 /* Other error, exit */ 2867 goto out_maybelock; 2868 } 2869 } 2870 2871 out_maybelock: 2872 /* Caller expects us to hold mmap_lock on return */ 2873 if (!mmap_locked) 2874 mmap_read_lock(mm); 2875 out_nolock: 2876 mmap_assert_locked(mm); 2877 mmdrop(mm); 2878 kfree(cc); 2879 2880 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2881 : madvise_collapse_errno(last_fail); 2882 } 2883