1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #include "drm/drm_file.h"
8 #include "drm/msm_drm.h"
9 #include "linux/file.h"
10 #include "linux/sync_file.h"
11
12 #include "msm_drv.h"
13 #include "msm_gem.h"
14 #include "msm_gpu.h"
15 #include "msm_mmu.h"
16 #include "msm_syncobj.h"
17
18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__)
19
20 static uint vm_log_shift = 0;
21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log");
22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600);
23
24 /**
25 * struct msm_vm_map_op - create new pgtable mapping
26 */
27 struct msm_vm_map_op {
28 /** @iova: start address for mapping */
29 uint64_t iova;
30 /** @range: size of the region to map */
31 uint64_t range;
32 /** @offset: offset into @sgt to map */
33 uint64_t offset;
34 /** @sgt: pages to map, or NULL for a PRR mapping */
35 struct sg_table *sgt;
36 /** @prot: the mapping protection flags */
37 int prot;
38
39 /**
40 * @queue_id: The id of the submitqueue the operation is performed
41 * on, or zero for (in particular) UNMAP ops triggered outside of
42 * a submitqueue (ie. process cleanup)
43 */
44 int queue_id;
45 };
46
47 /**
48 * struct msm_vm_unmap_op - unmap a range of pages from pgtable
49 */
50 struct msm_vm_unmap_op {
51 /** @iova: start address for unmap */
52 uint64_t iova;
53 /** @range: size of region to unmap */
54 uint64_t range;
55
56 /** @reason: The reason for the unmap */
57 const char *reason;
58
59 /**
60 * @queue_id: The id of the submitqueue the operation is performed
61 * on, or zero for (in particular) UNMAP ops triggered outside of
62 * a submitqueue (ie. process cleanup)
63 */
64 int queue_id;
65 };
66
67 /**
68 * struct msm_vma_op - A MAP or UNMAP operation
69 */
70 struct msm_vm_op {
71 /** @op: The operation type */
72 enum {
73 MSM_VM_OP_MAP = 1,
74 MSM_VM_OP_UNMAP,
75 } op;
76 union {
77 /** @map: Parameters used if op == MSM_VMA_OP_MAP */
78 struct msm_vm_map_op map;
79 /** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */
80 struct msm_vm_unmap_op unmap;
81 };
82 /** @node: list head in msm_vm_bind_job::vm_ops */
83 struct list_head node;
84
85 /**
86 * @obj: backing object for pages to be mapped/unmapped
87 *
88 * Async unmap ops, in particular, must hold a reference to the
89 * original GEM object backing the mapping that will be unmapped.
90 * But the same can be required in the map path, for example if
91 * there is not a corresponding unmap op, such as process exit.
92 *
93 * This ensures that the pages backing the mapping are not freed
94 * before the mapping is torn down.
95 */
96 struct drm_gem_object *obj;
97 };
98
99 /**
100 * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl
101 *
102 * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL)
103 * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP)
104 * which are applied to the pgtables asynchronously. For example a userspace
105 * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP
106 * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping.
107 */
108 struct msm_vm_bind_job {
109 /** @base: base class for drm_sched jobs */
110 struct drm_sched_job base;
111 /** @vm: The VM being operated on */
112 struct drm_gpuvm *vm;
113 /** @fence: The fence that is signaled when job completes */
114 struct dma_fence *fence;
115 /** @queue: The queue that the job runs on */
116 struct msm_gpu_submitqueue *queue;
117 /** @prealloc: Tracking for pre-allocated MMU pgtable pages */
118 struct msm_mmu_prealloc prealloc;
119 /** @vm_ops: a list of struct msm_vm_op */
120 struct list_head vm_ops;
121 /** @bos_pinned: are the GEM objects being bound pinned? */
122 bool bos_pinned;
123 /** @nr_ops: the number of userspace requested ops */
124 unsigned int nr_ops;
125 /**
126 * @ops: the userspace requested ops
127 *
128 * The userspace requested ops are copied/parsed and validated
129 * before we start applying the updates to try to do as much up-
130 * front error checking as possible, to avoid the VM being in an
131 * undefined state due to partially executed VM_BIND.
132 *
133 * This table also serves to hold a reference to the backing GEM
134 * objects.
135 */
136 struct msm_vm_bind_op {
137 uint32_t op;
138 uint32_t flags;
139 union {
140 struct drm_gem_object *obj;
141 uint32_t handle;
142 };
143 uint64_t obj_offset;
144 uint64_t iova;
145 uint64_t range;
146 } ops[];
147 };
148
149 #define job_foreach_bo(obj, _job) \
150 for (unsigned i = 0; i < (_job)->nr_ops; i++) \
151 if ((obj = (_job)->ops[i].obj))
152
to_msm_vm_bind_job(struct drm_sched_job * job)153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job)
154 {
155 return container_of(job, struct msm_vm_bind_job, base);
156 }
157
158 static void
msm_gem_vm_free(struct drm_gpuvm * gpuvm)159 msm_gem_vm_free(struct drm_gpuvm *gpuvm)
160 {
161 struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base);
162
163 drm_mm_takedown(&vm->mm);
164 if (vm->mmu)
165 vm->mmu->funcs->destroy(vm->mmu);
166 dma_fence_put(vm->last_fence);
167 put_pid(vm->pid);
168 kfree(vm->log);
169 kfree(vm);
170 }
171
172 /**
173 * msm_gem_vm_unusable() - Mark a VM as unusable
174 * @gpuvm: the VM to mark unusable
175 */
176 void
msm_gem_vm_unusable(struct drm_gpuvm * gpuvm)177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm)
178 {
179 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
180 uint32_t vm_log_len = (1 << vm->log_shift);
181 uint32_t vm_log_mask = vm_log_len - 1;
182 uint32_t nr_vm_logs;
183 int first;
184
185 vm->unusable = true;
186
187 /* Bail if no log, or empty log: */
188 if (!vm->log || !vm->log[0].op)
189 return;
190
191 mutex_lock(&vm->mmu_lock);
192
193 /*
194 * log_idx is the next entry to overwrite, meaning it is the oldest, or
195 * first, entry (other than the special case handled below where the
196 * log hasn't wrapped around yet)
197 */
198 first = vm->log_idx;
199
200 if (!vm->log[first].op) {
201 /*
202 * If the next log entry has not been written yet, then only
203 * entries 0 to idx-1 are valid (ie. we haven't wrapped around
204 * yet)
205 */
206 nr_vm_logs = MAX(0, first - 1);
207 first = 0;
208 } else {
209 nr_vm_logs = vm_log_len;
210 }
211
212 pr_err("vm-log:\n");
213 for (int i = 0; i < nr_vm_logs; i++) {
214 int idx = (i + first) & vm_log_mask;
215 struct msm_gem_vm_log_entry *e = &vm->log[idx];
216 pr_err(" - %s:%d: 0x%016llx-0x%016llx\n",
217 e->op, e->queue_id, e->iova,
218 e->iova + e->range);
219 }
220
221 mutex_unlock(&vm->mmu_lock);
222 }
223
224 static void
vm_log(struct msm_gem_vm * vm,const char * op,uint64_t iova,uint64_t range,int queue_id)225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id)
226 {
227 int idx;
228
229 if (!vm->managed)
230 lockdep_assert_held(&vm->mmu_lock);
231
232 vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range);
233
234 if (!vm->log)
235 return;
236
237 idx = vm->log_idx;
238 vm->log[idx].op = op;
239 vm->log[idx].iova = iova;
240 vm->log[idx].range = range;
241 vm->log[idx].queue_id = queue_id;
242 vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1);
243 }
244
245 static void
vm_unmap_op(struct msm_gem_vm * vm,const struct msm_vm_unmap_op * op)246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op)
247 {
248 const char *reason = op->reason;
249
250 if (!reason)
251 reason = "unmap";
252
253 vm_log(vm, reason, op->iova, op->range, op->queue_id);
254
255 vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range);
256 }
257
258 static int
vm_map_op(struct msm_gem_vm * vm,const struct msm_vm_map_op * op)259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op)
260 {
261 vm_log(vm, "map", op->iova, op->range, op->queue_id);
262
263 return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset,
264 op->range, op->prot);
265 }
266
267 /* Actually unmap memory for the vma */
msm_gem_vma_unmap(struct drm_gpuva * vma,const char * reason)268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason)
269 {
270 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
271 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
272
273 /* Don't do anything if the memory isn't mapped */
274 if (!msm_vma->mapped)
275 return;
276
277 /*
278 * The mmu_lock is only needed when preallocation is used. But
279 * in that case we don't need to worry about recursion into
280 * shrinker
281 */
282 if (!vm->managed)
283 mutex_lock(&vm->mmu_lock);
284
285 vm_unmap_op(vm, &(struct msm_vm_unmap_op){
286 .iova = vma->va.addr,
287 .range = vma->va.range,
288 .reason = reason,
289 });
290
291 if (!vm->managed)
292 mutex_unlock(&vm->mmu_lock);
293
294 msm_vma->mapped = false;
295 }
296
297 /* Map and pin vma: */
298 int
msm_gem_vma_map(struct drm_gpuva * vma,int prot,struct sg_table * sgt)299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt)
300 {
301 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
302 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
303 int ret;
304
305 if (GEM_WARN_ON(!vma->va.addr))
306 return -EINVAL;
307
308 if (msm_vma->mapped)
309 return 0;
310
311 msm_vma->mapped = true;
312
313 /*
314 * The mmu_lock is only needed when preallocation is used. But
315 * in that case we don't need to worry about recursion into
316 * shrinker
317 */
318 if (!vm->managed)
319 mutex_lock(&vm->mmu_lock);
320
321 /*
322 * NOTE: if not using pgtable preallocation, we cannot hold
323 * a lock across map/unmap which is also used in the job_run()
324 * path, as this can cause deadlock in job_run() vs shrinker/
325 * reclaim.
326 */
327 ret = vm_map_op(vm, &(struct msm_vm_map_op){
328 .iova = vma->va.addr,
329 .range = vma->va.range,
330 .offset = vma->gem.offset,
331 .sgt = sgt,
332 .prot = prot,
333 });
334
335 if (!vm->managed)
336 mutex_unlock(&vm->mmu_lock);
337
338 if (ret)
339 msm_vma->mapped = false;
340
341 return ret;
342 }
343
344 /* Close an iova. Warn if it is still in use */
msm_gem_vma_close(struct drm_gpuva * vma)345 void msm_gem_vma_close(struct drm_gpuva *vma)
346 {
347 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
348 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
349
350 GEM_WARN_ON(msm_vma->mapped);
351
352 drm_gpuvm_resv_assert_held(&vm->base);
353
354 if (vma->gem.obj)
355 msm_gem_assert_locked(vma->gem.obj);
356
357 if (vma->va.addr && vm->managed)
358 drm_mm_remove_node(&msm_vma->node);
359
360 drm_gpuva_remove(vma);
361 drm_gpuva_unlink(vma);
362
363 kfree(vma);
364 }
365
366 /* Create a new vma and allocate an iova for it */
367 struct drm_gpuva *
msm_gem_vma_new(struct drm_gpuvm * gpuvm,struct drm_gem_object * obj,u64 offset,u64 range_start,u64 range_end)368 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj,
369 u64 offset, u64 range_start, u64 range_end)
370 {
371 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
372 struct drm_gpuvm_bo *vm_bo;
373 struct msm_gem_vma *vma;
374 int ret;
375
376 drm_gpuvm_resv_assert_held(&vm->base);
377
378 vma = kzalloc(sizeof(*vma), GFP_KERNEL);
379 if (!vma)
380 return ERR_PTR(-ENOMEM);
381
382 if (vm->managed) {
383 BUG_ON(offset != 0);
384 BUG_ON(!obj); /* NULL mappings not valid for kernel managed VM */
385 ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node,
386 obj->size, PAGE_SIZE, 0,
387 range_start, range_end, 0);
388
389 if (ret)
390 goto err_free_vma;
391
392 range_start = vma->node.start;
393 range_end = range_start + obj->size;
394 }
395
396 if (obj)
397 GEM_WARN_ON((range_end - range_start) > obj->size);
398
399 struct drm_gpuva_op_map op_map = {
400 .va.addr = range_start,
401 .va.range = range_end - range_start,
402 .gem.obj = obj,
403 .gem.offset = offset,
404 };
405
406 drm_gpuva_init_from_op(&vma->base, &op_map);
407 vma->mapped = false;
408
409 ret = drm_gpuva_insert(&vm->base, &vma->base);
410 if (ret)
411 goto err_free_range;
412
413 if (!obj)
414 return &vma->base;
415
416 vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj);
417 if (IS_ERR(vm_bo)) {
418 ret = PTR_ERR(vm_bo);
419 goto err_va_remove;
420 }
421
422 drm_gpuvm_bo_extobj_add(vm_bo);
423 drm_gpuva_link(&vma->base, vm_bo);
424 GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo));
425
426 return &vma->base;
427
428 err_va_remove:
429 drm_gpuva_remove(&vma->base);
430 err_free_range:
431 if (vm->managed)
432 drm_mm_remove_node(&vma->node);
433 err_free_vma:
434 kfree(vma);
435 return ERR_PTR(ret);
436 }
437
438 static int
msm_gem_vm_bo_validate(struct drm_gpuvm_bo * vm_bo,struct drm_exec * exec)439 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
440 {
441 struct drm_gem_object *obj = vm_bo->obj;
442 struct drm_gpuva *vma;
443 int ret;
444
445 vm_dbg("validate: %p", obj);
446
447 msm_gem_assert_locked(obj);
448
449 drm_gpuvm_bo_for_each_va (vma, vm_bo) {
450 ret = msm_gem_pin_vma_locked(obj, vma);
451 if (ret)
452 return ret;
453 }
454
455 return 0;
456 }
457
458 struct op_arg {
459 unsigned flags;
460 struct msm_vm_bind_job *job;
461 const struct msm_vm_bind_op *op;
462 bool kept;
463 };
464
465 static void
vm_op_enqueue(struct op_arg * arg,struct msm_vm_op _op)466 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op)
467 {
468 struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL);
469 *op = _op;
470 list_add_tail(&op->node, &arg->job->vm_ops);
471
472 if (op->obj)
473 drm_gem_object_get(op->obj);
474 }
475
476 static struct drm_gpuva *
vma_from_op(struct op_arg * arg,struct drm_gpuva_op_map * op)477 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op)
478 {
479 return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset,
480 op->va.addr, op->va.addr + op->va.range);
481 }
482
483 static int
msm_gem_vm_sm_step_map(struct drm_gpuva_op * op,void * _arg)484 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *_arg)
485 {
486 struct op_arg *arg = _arg;
487 struct msm_vm_bind_job *job = arg->job;
488 struct drm_gem_object *obj = op->map.gem.obj;
489 struct drm_gpuva *vma;
490 struct sg_table *sgt;
491 unsigned prot;
492
493 if (arg->kept)
494 return 0;
495
496 vma = vma_from_op(arg, &op->map);
497 if (WARN_ON(IS_ERR(vma)))
498 return PTR_ERR(vma);
499
500 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
501 vma->va.addr, vma->va.range);
502
503 vma->flags = ((struct op_arg *)arg)->flags;
504
505 if (obj) {
506 sgt = to_msm_bo(obj)->sgt;
507 prot = msm_gem_prot(obj);
508 } else {
509 sgt = NULL;
510 prot = IOMMU_READ | IOMMU_WRITE;
511 }
512
513 vm_op_enqueue(arg, (struct msm_vm_op){
514 .op = MSM_VM_OP_MAP,
515 .map = {
516 .sgt = sgt,
517 .iova = vma->va.addr,
518 .range = vma->va.range,
519 .offset = vma->gem.offset,
520 .prot = prot,
521 .queue_id = job->queue->id,
522 },
523 .obj = vma->gem.obj,
524 });
525
526 to_msm_vma(vma)->mapped = true;
527
528 return 0;
529 }
530
531 static int
msm_gem_vm_sm_step_remap(struct drm_gpuva_op * op,void * arg)532 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg)
533 {
534 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
535 struct drm_gpuvm *vm = job->vm;
536 struct drm_gpuva *orig_vma = op->remap.unmap->va;
537 struct drm_gpuva *prev_vma = NULL, *next_vma = NULL;
538 struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo;
539 bool mapped = to_msm_vma(orig_vma)->mapped;
540 unsigned flags;
541
542 vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma,
543 orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range);
544
545 if (mapped) {
546 uint64_t unmap_start, unmap_range;
547
548 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
549
550 vm_op_enqueue(arg, (struct msm_vm_op){
551 .op = MSM_VM_OP_UNMAP,
552 .unmap = {
553 .iova = unmap_start,
554 .range = unmap_range,
555 .queue_id = job->queue->id,
556 },
557 .obj = orig_vma->gem.obj,
558 });
559
560 /*
561 * Part of this GEM obj is still mapped, but we're going to kill the
562 * existing VMA and replace it with one or two new ones (ie. two if
563 * the unmapped range is in the middle of the existing (unmap) VMA).
564 * So just set the state to unmapped:
565 */
566 to_msm_vma(orig_vma)->mapped = false;
567 }
568
569 /*
570 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the
571 * creation of the new prev/next vma's, in case the vm_bo is tracked
572 * in the VM's evict list:
573 */
574 if (vm_bo)
575 drm_gpuvm_bo_get(vm_bo);
576
577 /*
578 * The prev_vma and/or next_vma are replacing the unmapped vma, and
579 * therefore should preserve it's flags:
580 */
581 flags = orig_vma->flags;
582
583 msm_gem_vma_close(orig_vma);
584
585 if (op->remap.prev) {
586 prev_vma = vma_from_op(arg, op->remap.prev);
587 if (WARN_ON(IS_ERR(prev_vma)))
588 return PTR_ERR(prev_vma);
589
590 vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range);
591 to_msm_vma(prev_vma)->mapped = mapped;
592 prev_vma->flags = flags;
593 }
594
595 if (op->remap.next) {
596 next_vma = vma_from_op(arg, op->remap.next);
597 if (WARN_ON(IS_ERR(next_vma)))
598 return PTR_ERR(next_vma);
599
600 vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range);
601 to_msm_vma(next_vma)->mapped = mapped;
602 next_vma->flags = flags;
603 }
604
605 if (!mapped)
606 drm_gpuvm_bo_evict(vm_bo, true);
607
608 /* Drop the previous ref: */
609 drm_gpuvm_bo_put(vm_bo);
610
611 return 0;
612 }
613
614 static int
msm_gem_vm_sm_step_unmap(struct drm_gpuva_op * op,void * _arg)615 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *_arg)
616 {
617 struct op_arg *arg = _arg;
618 struct msm_vm_bind_job *job = arg->job;
619 struct drm_gpuva *vma = op->unmap.va;
620 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
621
622 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
623 vma->va.addr, vma->va.range);
624
625 /*
626 * Detect in-place remap. Turnip does this to change the vma flags,
627 * in particular MSM_VMA_DUMP. In this case we want to avoid actually
628 * touching the page tables, as that would require synchronization
629 * against SUBMIT jobs running on the GPU.
630 */
631 if (op->unmap.keep &&
632 (arg->op->op == MSM_VM_BIND_OP_MAP) &&
633 (vma->gem.obj == arg->op->obj) &&
634 (vma->gem.offset == arg->op->obj_offset) &&
635 (vma->va.addr == arg->op->iova) &&
636 (vma->va.range == arg->op->range)) {
637 /* We are only expecting a single in-place unmap+map cb pair: */
638 WARN_ON(arg->kept);
639
640 /* Leave the existing VMA in place, but signal that to the map cb: */
641 arg->kept = true;
642
643 /* Only flags are changing, so update that in-place: */
644 unsigned orig_flags = vma->flags & (DRM_GPUVA_USERBITS - 1);
645 vma->flags = orig_flags | arg->flags;
646
647 return 0;
648 }
649
650 if (!msm_vma->mapped)
651 goto out_close;
652
653 vm_op_enqueue(arg, (struct msm_vm_op){
654 .op = MSM_VM_OP_UNMAP,
655 .unmap = {
656 .iova = vma->va.addr,
657 .range = vma->va.range,
658 .queue_id = job->queue->id,
659 },
660 .obj = vma->gem.obj,
661 });
662
663 msm_vma->mapped = false;
664
665 out_close:
666 msm_gem_vma_close(vma);
667
668 return 0;
669 }
670
671 static const struct drm_gpuvm_ops msm_gpuvm_ops = {
672 .vm_free = msm_gem_vm_free,
673 .vm_bo_validate = msm_gem_vm_bo_validate,
674 .sm_step_map = msm_gem_vm_sm_step_map,
675 .sm_step_remap = msm_gem_vm_sm_step_remap,
676 .sm_step_unmap = msm_gem_vm_sm_step_unmap,
677 };
678
679 static struct dma_fence *
msm_vma_job_run(struct drm_sched_job * _job)680 msm_vma_job_run(struct drm_sched_job *_job)
681 {
682 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
683 struct msm_gem_vm *vm = to_msm_vm(job->vm);
684 struct drm_gem_object *obj;
685 int ret = vm->unusable ? -EINVAL : 0;
686
687 vm_dbg("");
688
689 mutex_lock(&vm->mmu_lock);
690 vm->mmu->prealloc = &job->prealloc;
691
692 while (!list_empty(&job->vm_ops)) {
693 struct msm_vm_op *op =
694 list_first_entry(&job->vm_ops, struct msm_vm_op, node);
695
696 switch (op->op) {
697 case MSM_VM_OP_MAP:
698 /*
699 * On error, stop trying to map new things.. but we
700 * still want to process the unmaps (or in particular,
701 * the drm_gem_object_put()s)
702 */
703 if (!ret)
704 ret = vm_map_op(vm, &op->map);
705 break;
706 case MSM_VM_OP_UNMAP:
707 vm_unmap_op(vm, &op->unmap);
708 break;
709 }
710 drm_gem_object_put(op->obj);
711 list_del(&op->node);
712 kfree(op);
713 }
714
715 vm->mmu->prealloc = NULL;
716 mutex_unlock(&vm->mmu_lock);
717
718 /*
719 * We failed to perform at least _some_ of the pgtable updates, so
720 * now the VM is in an undefined state. Game over!
721 */
722 if (ret)
723 msm_gem_vm_unusable(job->vm);
724
725 job_foreach_bo (obj, job) {
726 msm_gem_lock(obj);
727 msm_gem_unpin_locked(obj);
728 msm_gem_unlock(obj);
729 }
730
731 /* VM_BIND ops are synchronous, so no fence to wait on: */
732 return NULL;
733 }
734
735 static void
msm_vma_job_free(struct drm_sched_job * _job)736 msm_vma_job_free(struct drm_sched_job *_job)
737 {
738 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
739 struct msm_gem_vm *vm = to_msm_vm(job->vm);
740 struct drm_gem_object *obj;
741
742 vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc);
743
744 atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight);
745
746 drm_sched_job_cleanup(_job);
747
748 job_foreach_bo (obj, job)
749 drm_gem_object_put(obj);
750
751 msm_submitqueue_put(job->queue);
752 dma_fence_put(job->fence);
753
754 /* In error paths, we could have unexecuted ops: */
755 while (!list_empty(&job->vm_ops)) {
756 struct msm_vm_op *op =
757 list_first_entry(&job->vm_ops, struct msm_vm_op, node);
758 list_del(&op->node);
759 kfree(op);
760 }
761
762 wake_up(&vm->prealloc_throttle.wait);
763
764 kfree(job);
765 }
766
767 static const struct drm_sched_backend_ops msm_vm_bind_ops = {
768 .run_job = msm_vma_job_run,
769 .free_job = msm_vma_job_free
770 };
771
772 /**
773 * msm_gem_vm_create() - Create and initialize a &msm_gem_vm
774 * @drm: the drm device
775 * @mmu: the backing MMU objects handling mapping/unmapping
776 * @name: the name of the VM
777 * @va_start: the start offset of the VA space
778 * @va_size: the size of the VA space
779 * @managed: is it a kernel managed VM?
780 *
781 * In a kernel managed VM, the kernel handles address allocation, and only
782 * synchronous operations are supported. In a user managed VM, userspace
783 * handles virtual address allocation, and both async and sync operations
784 * are supported.
785 */
786 struct drm_gpuvm *
msm_gem_vm_create(struct drm_device * drm,struct msm_mmu * mmu,const char * name,u64 va_start,u64 va_size,bool managed)787 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
788 u64 va_start, u64 va_size, bool managed)
789 {
790 /*
791 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that
792 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose
793 * tracking that an extobj is evicted) :facepalm:
794 */
795 enum drm_gpuvm_flags flags = 0;
796 struct msm_gem_vm *vm;
797 struct drm_gem_object *dummy_gem;
798 int ret = 0;
799
800 if (IS_ERR(mmu))
801 return ERR_CAST(mmu);
802
803 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
804 if (!vm)
805 return ERR_PTR(-ENOMEM);
806
807 dummy_gem = drm_gpuvm_resv_object_alloc(drm);
808 if (!dummy_gem) {
809 ret = -ENOMEM;
810 goto err_free_vm;
811 }
812
813 if (!managed) {
814 struct drm_sched_init_args args = {
815 .ops = &msm_vm_bind_ops,
816 .num_rqs = 1,
817 .credit_limit = 1,
818 .timeout = MAX_SCHEDULE_TIMEOUT,
819 .name = "msm-vm-bind",
820 .dev = drm->dev,
821 };
822
823 ret = drm_sched_init(&vm->sched, &args);
824 if (ret)
825 goto err_free_dummy;
826
827 init_waitqueue_head(&vm->prealloc_throttle.wait);
828 }
829
830 drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem,
831 va_start, va_size, 0, 0, &msm_gpuvm_ops);
832 drm_gem_object_put(dummy_gem);
833
834 vm->mmu = mmu;
835 mutex_init(&vm->mmu_lock);
836 vm->managed = managed;
837
838 drm_mm_init(&vm->mm, va_start, va_size);
839
840 /*
841 * We don't really need vm log for kernel managed VMs, as the kernel
842 * is responsible for ensuring that GEM objs are mapped if they are
843 * used by a submit. Furthermore we piggyback on mmu_lock to serialize
844 * access to the log.
845 *
846 * Limit the max log_shift to 8 to prevent userspace from asking us
847 * for an unreasonable log size.
848 */
849 if (!managed)
850 vm->log_shift = MIN(vm_log_shift, 8);
851
852 if (vm->log_shift) {
853 vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]),
854 GFP_KERNEL | __GFP_ZERO);
855 }
856
857 return &vm->base;
858
859 err_free_dummy:
860 drm_gem_object_put(dummy_gem);
861
862 err_free_vm:
863 kfree(vm);
864 return ERR_PTR(ret);
865 }
866
867 /**
868 * msm_gem_vm_close() - Close a VM
869 * @gpuvm: The VM to close
870 *
871 * Called when the drm device file is closed, to tear down VM related resources
872 * (which will drop refcounts to GEM objects that were still mapped into the
873 * VM at the time).
874 */
875 void
msm_gem_vm_close(struct drm_gpuvm * gpuvm)876 msm_gem_vm_close(struct drm_gpuvm *gpuvm)
877 {
878 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
879 struct drm_gpuva *vma, *tmp;
880 struct drm_exec exec;
881
882 /*
883 * For kernel managed VMs, the VMAs are torn down when the handle is
884 * closed, so nothing more to do.
885 */
886 if (vm->managed)
887 return;
888
889 if (vm->last_fence)
890 dma_fence_wait(vm->last_fence, false);
891
892 /* Kill the scheduler now, so we aren't racing with it for cleanup: */
893 drm_sched_stop(&vm->sched, NULL);
894 drm_sched_fini(&vm->sched);
895
896 /* Tear down any remaining mappings: */
897 drm_exec_init(&exec, 0, 2);
898 drm_exec_until_all_locked (&exec) {
899 drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm));
900 drm_exec_retry_on_contention(&exec);
901
902 drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) {
903 struct drm_gem_object *obj = vma->gem.obj;
904
905 /*
906 * MSM_BO_NO_SHARE objects share the same resv as the
907 * VM, in which case the obj is already locked:
908 */
909 if (obj && (obj->resv == drm_gpuvm_resv(gpuvm)))
910 obj = NULL;
911
912 if (obj) {
913 drm_exec_lock_obj(&exec, obj);
914 drm_exec_retry_on_contention(&exec);
915 }
916
917 msm_gem_vma_unmap(vma, "close");
918 msm_gem_vma_close(vma);
919
920 if (obj) {
921 drm_exec_unlock_obj(&exec, obj);
922 }
923 }
924 }
925 drm_exec_fini(&exec);
926 }
927
928
929 static struct msm_vm_bind_job *
vm_bind_job_create(struct drm_device * dev,struct drm_file * file,struct msm_gpu_submitqueue * queue,uint32_t nr_ops)930 vm_bind_job_create(struct drm_device *dev, struct drm_file *file,
931 struct msm_gpu_submitqueue *queue, uint32_t nr_ops)
932 {
933 struct msm_vm_bind_job *job;
934 uint64_t sz;
935 int ret;
936
937 sz = struct_size(job, ops, nr_ops);
938
939 if (sz > SIZE_MAX)
940 return ERR_PTR(-ENOMEM);
941
942 job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
943 if (!job)
944 return ERR_PTR(-ENOMEM);
945
946 ret = drm_sched_job_init(&job->base, queue->entity, 1, queue,
947 file->client_id);
948 if (ret) {
949 kfree(job);
950 return ERR_PTR(ret);
951 }
952
953 job->vm = msm_context_vm(dev, queue->ctx);
954 job->queue = queue;
955 INIT_LIST_HEAD(&job->vm_ops);
956
957 return job;
958 }
959
invalid_alignment(uint64_t addr)960 static bool invalid_alignment(uint64_t addr)
961 {
962 /*
963 * Technically this is about GPU alignment, not CPU alignment. But
964 * I've not seen any qcom SoC where the SMMU does not support the
965 * CPU's smallest page size.
966 */
967 return !PAGE_ALIGNED(addr);
968 }
969
970 static int
lookup_op(struct msm_vm_bind_job * job,const struct drm_msm_vm_bind_op * op)971 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op)
972 {
973 struct drm_device *dev = job->vm->drm;
974 int i = job->nr_ops++;
975 int ret = 0;
976
977 job->ops[i].op = op->op;
978 job->ops[i].handle = op->handle;
979 job->ops[i].obj_offset = op->obj_offset;
980 job->ops[i].iova = op->iova;
981 job->ops[i].range = op->range;
982 job->ops[i].flags = op->flags;
983
984 if (op->flags & ~MSM_VM_BIND_OP_FLAGS)
985 ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags);
986
987 if (invalid_alignment(op->iova))
988 ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova);
989
990 if (invalid_alignment(op->obj_offset))
991 ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset);
992
993 if (invalid_alignment(op->range))
994 ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range);
995
996 if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range))
997 ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range);
998
999 /*
1000 * MAP must specify a valid handle. But the handle MBZ for
1001 * UNMAP or MAP_NULL.
1002 */
1003 if (op->op == MSM_VM_BIND_OP_MAP) {
1004 if (!op->handle)
1005 ret = UERR(EINVAL, dev, "invalid handle\n");
1006 } else if (op->handle) {
1007 ret = UERR(EINVAL, dev, "handle must be zero\n");
1008 }
1009
1010 switch (op->op) {
1011 case MSM_VM_BIND_OP_MAP:
1012 case MSM_VM_BIND_OP_MAP_NULL:
1013 case MSM_VM_BIND_OP_UNMAP:
1014 break;
1015 default:
1016 ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op);
1017 break;
1018 }
1019
1020 return ret;
1021 }
1022
1023 /*
1024 * ioctl parsing, parameter validation, and GEM handle lookup
1025 */
1026 static int
vm_bind_job_lookup_ops(struct msm_vm_bind_job * job,struct drm_msm_vm_bind * args,struct drm_file * file,int * nr_bos)1027 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args,
1028 struct drm_file *file, int *nr_bos)
1029 {
1030 struct drm_device *dev = job->vm->drm;
1031 int ret = 0;
1032 int cnt = 0;
1033 int i = -1;
1034
1035 if (args->nr_ops == 1) {
1036 /* Single op case, the op is inlined: */
1037 ret = lookup_op(job, &args->op);
1038 } else {
1039 for (unsigned i = 0; i < args->nr_ops; i++) {
1040 struct drm_msm_vm_bind_op op;
1041 void __user *userptr =
1042 u64_to_user_ptr(args->ops + (i * sizeof(op)));
1043
1044 /* make sure we don't have garbage flags, in case we hit
1045 * error path before flags is initialized:
1046 */
1047 job->ops[i].flags = 0;
1048
1049 if (copy_from_user(&op, userptr, sizeof(op))) {
1050 ret = -EFAULT;
1051 break;
1052 }
1053
1054 ret = lookup_op(job, &op);
1055 if (ret)
1056 break;
1057 }
1058 }
1059
1060 if (ret) {
1061 job->nr_ops = 0;
1062 goto out;
1063 }
1064
1065 spin_lock(&file->table_lock);
1066
1067 for (i = 0; i < args->nr_ops; i++) {
1068 struct msm_vm_bind_op *op = &job->ops[i];
1069 struct drm_gem_object *obj;
1070
1071 if (!op->handle) {
1072 op->obj = NULL;
1073 continue;
1074 }
1075
1076 /*
1077 * normally use drm_gem_object_lookup(), but for bulk lookup
1078 * all under single table_lock just hit object_idr directly:
1079 */
1080 obj = idr_find(&file->object_idr, op->handle);
1081 if (!obj) {
1082 ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", op->handle, i);
1083 goto out_unlock;
1084 }
1085
1086 drm_gem_object_get(obj);
1087
1088 op->obj = obj;
1089 cnt++;
1090
1091 if ((op->range + op->obj_offset) > obj->size) {
1092 ret = UERR(EINVAL, dev, "invalid range: %016llx + %016llx > %016zx\n",
1093 op->range, op->obj_offset, obj->size);
1094 goto out_unlock;
1095 }
1096 }
1097
1098 *nr_bos = cnt;
1099
1100 out_unlock:
1101 spin_unlock(&file->table_lock);
1102
1103 if (ret) {
1104 for (; i >= 0; i--) {
1105 struct msm_vm_bind_op *op = &job->ops[i];
1106
1107 if (!op->obj)
1108 continue;
1109
1110 drm_gem_object_put(op->obj);
1111 op->obj = NULL;
1112 }
1113 }
1114 out:
1115 return ret;
1116 }
1117
1118 static void
prealloc_count(struct msm_vm_bind_job * job,struct msm_vm_bind_op * first,struct msm_vm_bind_op * last)1119 prealloc_count(struct msm_vm_bind_job *job,
1120 struct msm_vm_bind_op *first,
1121 struct msm_vm_bind_op *last)
1122 {
1123 struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu;
1124
1125 if (!first)
1126 return;
1127
1128 uint64_t start_iova = first->iova;
1129 uint64_t end_iova = last->iova + last->range;
1130
1131 mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova);
1132 }
1133
1134 static bool
ops_are_same_pte(struct msm_vm_bind_op * first,struct msm_vm_bind_op * next)1135 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next)
1136 {
1137 /*
1138 * Last level pte covers 2MB.. so we should merge two ops, from
1139 * the PoV of figuring out how much pgtable pages to pre-allocate
1140 * if they land in the same 2MB range:
1141 */
1142 uint64_t pte_mask = ~(SZ_2M - 1);
1143 return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask);
1144 }
1145
1146 /*
1147 * Determine the amount of memory to prealloc for pgtables. For sparse images,
1148 * in particular, userspace plays some tricks with the order of page mappings
1149 * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops.
1150 * So detect when multiple MAP operations are physically contiguous, and count
1151 * them as a single mapping. Otherwise the prealloc_count() will not realize
1152 * they can share pagetable pages and vastly overcount.
1153 */
1154 static int
vm_bind_prealloc_count(struct msm_vm_bind_job * job)1155 vm_bind_prealloc_count(struct msm_vm_bind_job *job)
1156 {
1157 struct msm_vm_bind_op *first = NULL, *last = NULL;
1158 struct msm_gem_vm *vm = to_msm_vm(job->vm);
1159 int ret;
1160
1161 for (int i = 0; i < job->nr_ops; i++) {
1162 struct msm_vm_bind_op *op = &job->ops[i];
1163
1164 /* We only care about MAP/MAP_NULL: */
1165 if (op->op == MSM_VM_BIND_OP_UNMAP)
1166 continue;
1167
1168 /*
1169 * If op is contiguous with last in the current range, then
1170 * it becomes the new last in the range and we continue
1171 * looping:
1172 */
1173 if (last && ops_are_same_pte(last, op)) {
1174 last = op;
1175 continue;
1176 }
1177
1178 /*
1179 * If op is not contiguous with the current range, flush
1180 * the current range and start anew:
1181 */
1182 prealloc_count(job, first, last);
1183 first = last = op;
1184 }
1185
1186 /* Flush the remaining range: */
1187 prealloc_count(job, first, last);
1188
1189 /*
1190 * Now that we know the needed amount to pre-alloc, throttle on pending
1191 * VM_BIND jobs if we already have too much pre-alloc memory in flight
1192 */
1193 ret = wait_event_interruptible(
1194 vm->prealloc_throttle.wait,
1195 atomic_read(&vm->prealloc_throttle.in_flight) <= 1024);
1196 if (ret)
1197 return ret;
1198
1199 atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight);
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * Lock VM and GEM objects
1206 */
1207 static int
vm_bind_job_lock_objects(struct msm_vm_bind_job * job,struct drm_exec * exec)1208 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec)
1209 {
1210 int ret;
1211
1212 /* Lock VM and objects: */
1213 drm_exec_until_all_locked (exec) {
1214 ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm));
1215 drm_exec_retry_on_contention(exec);
1216 if (ret)
1217 return ret;
1218
1219 for (unsigned i = 0; i < job->nr_ops; i++) {
1220 const struct msm_vm_bind_op *op = &job->ops[i];
1221
1222 switch (op->op) {
1223 case MSM_VM_BIND_OP_UNMAP:
1224 ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec,
1225 op->iova,
1226 op->obj_offset);
1227 break;
1228 case MSM_VM_BIND_OP_MAP:
1229 case MSM_VM_BIND_OP_MAP_NULL: {
1230 struct drm_gpuvm_map_req map_req = {
1231 .map.va.addr = op->iova,
1232 .map.va.range = op->range,
1233 .map.gem.obj = op->obj,
1234 .map.gem.offset = op->obj_offset,
1235 };
1236
1237 ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1, &map_req);
1238 break;
1239 }
1240 default:
1241 /*
1242 * lookup_op() should have already thrown an error for
1243 * invalid ops
1244 */
1245 WARN_ON("unreachable");
1246 }
1247
1248 drm_exec_retry_on_contention(exec);
1249 if (ret)
1250 return ret;
1251 }
1252 }
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * Pin GEM objects, ensuring that we have backing pages. Pinning will move
1259 * the object to the pinned LRU so that the shrinker knows to first consider
1260 * other objects for evicting.
1261 */
1262 static int
vm_bind_job_pin_objects(struct msm_vm_bind_job * job)1263 vm_bind_job_pin_objects(struct msm_vm_bind_job *job)
1264 {
1265 struct drm_gem_object *obj;
1266
1267 /*
1268 * First loop, before holding the LRU lock, avoids holding the
1269 * LRU lock while calling msm_gem_pin_vma_locked (which could
1270 * trigger get_pages())
1271 */
1272 job_foreach_bo (obj, job) {
1273 struct page **pages;
1274
1275 pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED);
1276 if (IS_ERR(pages))
1277 return PTR_ERR(pages);
1278 }
1279
1280 struct msm_drm_private *priv = job->vm->drm->dev_private;
1281
1282 /*
1283 * A second loop while holding the LRU lock (a) avoids acquiring/dropping
1284 * the LRU lock for each individual bo, while (b) avoiding holding the
1285 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger
1286 * get_pages() which could trigger reclaim.. and if we held the LRU lock
1287 * could trigger deadlock with the shrinker).
1288 */
1289 mutex_lock(&priv->lru.lock);
1290 job_foreach_bo (obj, job)
1291 msm_gem_pin_obj_locked(obj);
1292 mutex_unlock(&priv->lru.lock);
1293
1294 job->bos_pinned = true;
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * Unpin GEM objects. Normally this is done after the bind job is run.
1301 */
1302 static void
vm_bind_job_unpin_objects(struct msm_vm_bind_job * job)1303 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job)
1304 {
1305 struct drm_gem_object *obj;
1306
1307 if (!job->bos_pinned)
1308 return;
1309
1310 job_foreach_bo (obj, job)
1311 msm_gem_unpin_locked(obj);
1312
1313 job->bos_pinned = false;
1314 }
1315
1316 /*
1317 * Pre-allocate pgtable memory, and translate the VM bind requests into a
1318 * sequence of pgtable updates to be applied asynchronously.
1319 */
1320 static int
vm_bind_job_prepare(struct msm_vm_bind_job * job)1321 vm_bind_job_prepare(struct msm_vm_bind_job *job)
1322 {
1323 struct msm_gem_vm *vm = to_msm_vm(job->vm);
1324 struct msm_mmu *mmu = vm->mmu;
1325 int ret;
1326
1327 ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc);
1328 if (ret)
1329 return ret;
1330
1331 for (unsigned i = 0; i < job->nr_ops; i++) {
1332 const struct msm_vm_bind_op *op = &job->ops[i];
1333 struct op_arg arg = {
1334 .job = job,
1335 .op = op,
1336 };
1337
1338 switch (op->op) {
1339 case MSM_VM_BIND_OP_UNMAP:
1340 ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova,
1341 op->range);
1342 break;
1343 case MSM_VM_BIND_OP_MAP:
1344 if (op->flags & MSM_VM_BIND_OP_DUMP)
1345 arg.flags |= MSM_VMA_DUMP;
1346 fallthrough;
1347 case MSM_VM_BIND_OP_MAP_NULL: {
1348 struct drm_gpuvm_map_req map_req = {
1349 .map.va.addr = op->iova,
1350 .map.va.range = op->range,
1351 .map.gem.obj = op->obj,
1352 .map.gem.offset = op->obj_offset,
1353 };
1354
1355 ret = drm_gpuvm_sm_map(job->vm, &arg, &map_req);
1356 break;
1357 }
1358 default:
1359 /*
1360 * lookup_op() should have already thrown an error for
1361 * invalid ops
1362 */
1363 BUG_ON("unreachable");
1364 }
1365
1366 if (ret) {
1367 /*
1368 * If we've already started modifying the vm, we can't
1369 * adequetly describe to userspace the intermediate
1370 * state the vm is in. So throw up our hands!
1371 */
1372 if (i > 0)
1373 msm_gem_vm_unusable(job->vm);
1374 return ret;
1375 }
1376 }
1377
1378 return 0;
1379 }
1380
1381 /*
1382 * Attach fences to the GEM objects being bound. This will signify to
1383 * the shrinker that they are busy even after dropping the locks (ie.
1384 * drm_exec_fini())
1385 */
1386 static void
vm_bind_job_attach_fences(struct msm_vm_bind_job * job)1387 vm_bind_job_attach_fences(struct msm_vm_bind_job *job)
1388 {
1389 for (unsigned i = 0; i < job->nr_ops; i++) {
1390 struct drm_gem_object *obj = job->ops[i].obj;
1391
1392 if (!obj)
1393 continue;
1394
1395 dma_resv_add_fence(obj->resv, job->fence,
1396 DMA_RESV_USAGE_KERNEL);
1397 }
1398 }
1399
1400 int
msm_ioctl_vm_bind(struct drm_device * dev,void * data,struct drm_file * file)1401 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file)
1402 {
1403 struct msm_drm_private *priv = dev->dev_private;
1404 struct drm_msm_vm_bind *args = data;
1405 struct msm_context *ctx = file->driver_priv;
1406 struct msm_vm_bind_job *job = NULL;
1407 struct msm_gpu *gpu = priv->gpu;
1408 struct msm_gpu_submitqueue *queue;
1409 struct msm_syncobj_post_dep *post_deps = NULL;
1410 struct drm_syncobj **syncobjs_to_reset = NULL;
1411 struct sync_file *sync_file = NULL;
1412 struct dma_fence *fence;
1413 int out_fence_fd = -1;
1414 int ret, nr_bos = 0;
1415 unsigned i;
1416
1417 if (!gpu)
1418 return -ENXIO;
1419
1420 /*
1421 * Maybe we could allow just UNMAP ops? OTOH userspace should just
1422 * immediately close the device file and all will be torn down.
1423 */
1424 if (to_msm_vm(ctx->vm)->unusable)
1425 return UERR(EPIPE, dev, "context is unusable");
1426
1427 /*
1428 * Technically, you cannot create a VM_BIND submitqueue in the first
1429 * place, if you haven't opted in to VM_BIND context. But it is
1430 * cleaner / less confusing, to check this case directly.
1431 */
1432 if (!msm_context_is_vmbind(ctx))
1433 return UERR(EINVAL, dev, "context does not support vmbind");
1434
1435 if (args->flags & ~MSM_VM_BIND_FLAGS)
1436 return UERR(EINVAL, dev, "invalid flags");
1437
1438 queue = msm_submitqueue_get(ctx, args->queue_id);
1439 if (!queue)
1440 return -ENOENT;
1441
1442 if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) {
1443 ret = UERR(EINVAL, dev, "Invalid queue type");
1444 goto out_post_unlock;
1445 }
1446
1447 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1448 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1449 if (out_fence_fd < 0) {
1450 ret = out_fence_fd;
1451 goto out_post_unlock;
1452 }
1453 }
1454
1455 job = vm_bind_job_create(dev, file, queue, args->nr_ops);
1456 if (IS_ERR(job)) {
1457 ret = PTR_ERR(job);
1458 goto out_post_unlock;
1459 }
1460
1461 ret = mutex_lock_interruptible(&queue->lock);
1462 if (ret)
1463 goto out_post_unlock;
1464
1465 if (args->flags & MSM_VM_BIND_FENCE_FD_IN) {
1466 struct dma_fence *in_fence;
1467
1468 in_fence = sync_file_get_fence(args->fence_fd);
1469
1470 if (!in_fence) {
1471 ret = UERR(EINVAL, dev, "invalid in-fence");
1472 goto out_unlock;
1473 }
1474
1475 ret = drm_sched_job_add_dependency(&job->base, in_fence);
1476 if (ret)
1477 goto out_unlock;
1478 }
1479
1480 if (args->in_syncobjs > 0) {
1481 syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base,
1482 file, args->in_syncobjs,
1483 args->nr_in_syncobjs,
1484 args->syncobj_stride);
1485 if (IS_ERR(syncobjs_to_reset)) {
1486 ret = PTR_ERR(syncobjs_to_reset);
1487 goto out_unlock;
1488 }
1489 }
1490
1491 if (args->out_syncobjs > 0) {
1492 post_deps = msm_syncobj_parse_post_deps(dev, file,
1493 args->out_syncobjs,
1494 args->nr_out_syncobjs,
1495 args->syncobj_stride);
1496 if (IS_ERR(post_deps)) {
1497 ret = PTR_ERR(post_deps);
1498 goto out_unlock;
1499 }
1500 }
1501
1502 ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos);
1503 if (ret)
1504 goto out_unlock;
1505
1506 ret = vm_bind_prealloc_count(job);
1507 if (ret)
1508 goto out_unlock;
1509
1510 struct drm_exec exec;
1511 unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT;
1512 drm_exec_init(&exec, flags, nr_bos + 1);
1513
1514 ret = vm_bind_job_lock_objects(job, &exec);
1515 if (ret)
1516 goto out;
1517
1518 ret = vm_bind_job_pin_objects(job);
1519 if (ret)
1520 goto out;
1521
1522 ret = vm_bind_job_prepare(job);
1523 if (ret)
1524 goto out;
1525
1526 drm_sched_job_arm(&job->base);
1527
1528 job->fence = dma_fence_get(&job->base.s_fence->finished);
1529
1530 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1531 sync_file = sync_file_create(job->fence);
1532 if (!sync_file)
1533 ret = -ENOMEM;
1534 }
1535
1536 if (ret)
1537 goto out;
1538
1539 vm_bind_job_attach_fences(job);
1540
1541 /*
1542 * The job can be free'd (and fence unref'd) at any point after
1543 * drm_sched_entity_push_job(), so we need to hold our own ref
1544 */
1545 fence = dma_fence_get(job->fence);
1546
1547 drm_sched_entity_push_job(&job->base);
1548
1549 msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs);
1550 msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence);
1551
1552 dma_fence_put(fence);
1553
1554 out:
1555 if (ret)
1556 vm_bind_job_unpin_objects(job);
1557
1558 drm_exec_fini(&exec);
1559 out_unlock:
1560 mutex_unlock(&queue->lock);
1561 out_post_unlock:
1562 if (ret) {
1563 if (out_fence_fd >= 0)
1564 put_unused_fd(out_fence_fd);
1565 if (sync_file)
1566 fput(sync_file->file);
1567 } else if (sync_file) {
1568 fd_install(out_fence_fd, sync_file->file);
1569 args->fence_fd = out_fence_fd;
1570 }
1571
1572 if (!IS_ERR_OR_NULL(job)) {
1573 if (ret)
1574 msm_vma_job_free(&job->base);
1575 } else {
1576 /*
1577 * If the submit hasn't yet taken ownership of the queue
1578 * then we need to drop the reference ourself:
1579 */
1580 msm_submitqueue_put(queue);
1581 }
1582
1583 if (!IS_ERR_OR_NULL(post_deps)) {
1584 for (i = 0; i < args->nr_out_syncobjs; ++i) {
1585 kfree(post_deps[i].chain);
1586 drm_syncobj_put(post_deps[i].syncobj);
1587 }
1588 kfree(post_deps);
1589 }
1590
1591 if (!IS_ERR_OR_NULL(syncobjs_to_reset)) {
1592 for (i = 0; i < args->nr_in_syncobjs; ++i) {
1593 if (syncobjs_to_reset[i])
1594 drm_syncobj_put(syncobjs_to_reset[i]);
1595 }
1596 kfree(syncobjs_to_reset);
1597 }
1598
1599 return ret;
1600 }
1601