xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_e610.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2024 Intel Corporation. */
3 
4 #include "ixgbe_common.h"
5 #include "ixgbe_e610.h"
6 #include "ixgbe_x550.h"
7 #include "ixgbe_type.h"
8 #include "ixgbe_x540.h"
9 #include "ixgbe_mbx.h"
10 #include "ixgbe_phy.h"
11 
12 /**
13  * ixgbe_should_retry_aci_send_cmd_execute - decide if ACI command should
14  * be resent
15  * @opcode: ACI opcode
16  *
17  * Check if ACI command should be sent again depending on the provided opcode.
18  * It may happen when CSR is busy during link state changes.
19  *
20  * Return: true if the sending command routine should be repeated,
21  * otherwise false.
22  */
ixgbe_should_retry_aci_send_cmd_execute(u16 opcode)23 static bool ixgbe_should_retry_aci_send_cmd_execute(u16 opcode)
24 {
25 	switch (opcode) {
26 	case ixgbe_aci_opc_disable_rxen:
27 	case ixgbe_aci_opc_get_phy_caps:
28 	case ixgbe_aci_opc_get_link_status:
29 	case ixgbe_aci_opc_get_link_topo:
30 		return true;
31 	}
32 
33 	return false;
34 }
35 
36 /**
37  * ixgbe_aci_send_cmd_execute - execute sending FW Admin Command to FW Admin
38  * Command Interface
39  * @hw: pointer to the HW struct
40  * @desc: descriptor describing the command
41  * @buf: buffer to use for indirect commands (NULL for direct commands)
42  * @buf_size: size of buffer for indirect commands (0 for direct commands)
43  *
44  * Admin Command is sent using CSR by setting descriptor and buffer in specific
45  * registers.
46  *
47  * Return: the exit code of the operation.
48  * * - 0 - success.
49  * * - -EIO - CSR mechanism is not enabled.
50  * * - -EBUSY - CSR mechanism is busy.
51  * * - -EINVAL - buf_size is too big or
52  * invalid argument buf or buf_size.
53  * * - -ETIME - Admin Command X command timeout.
54  * * - -EIO - Admin Command X invalid state of HICR register or
55  * Admin Command failed because of bad opcode was returned or
56  * Admin Command failed with error Y.
57  */
ixgbe_aci_send_cmd_execute(struct ixgbe_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size)58 static int ixgbe_aci_send_cmd_execute(struct ixgbe_hw *hw,
59 				      struct libie_aq_desc *desc,
60 				      void *buf, u16 buf_size)
61 {
62 	u16 opcode, buf_tail_size = buf_size % 4;
63 	u32 *raw_desc = (u32 *)desc;
64 	u32 hicr, i, buf_tail = 0;
65 	bool valid_buf = false;
66 
67 	hw->aci.last_status = LIBIE_AQ_RC_OK;
68 
69 	/* It's necessary to check if mechanism is enabled */
70 	hicr = IXGBE_READ_REG(hw, IXGBE_PF_HICR);
71 
72 	if (!(hicr & IXGBE_PF_HICR_EN))
73 		return -EIO;
74 
75 	if (hicr & IXGBE_PF_HICR_C) {
76 		hw->aci.last_status = LIBIE_AQ_RC_EBUSY;
77 		return -EBUSY;
78 	}
79 
80 	opcode = le16_to_cpu(desc->opcode);
81 
82 	if (buf_size > IXGBE_ACI_MAX_BUFFER_SIZE)
83 		return -EINVAL;
84 
85 	if (buf)
86 		desc->flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF);
87 
88 	if (desc->flags & cpu_to_le16(LIBIE_AQ_FLAG_BUF)) {
89 		if ((buf && !buf_size) ||
90 		    (!buf && buf_size))
91 			return -EINVAL;
92 		if (buf && buf_size)
93 			valid_buf = true;
94 	}
95 
96 	if (valid_buf) {
97 		if (buf_tail_size)
98 			memcpy(&buf_tail, buf + buf_size - buf_tail_size,
99 			       buf_tail_size);
100 
101 		if (((buf_size + 3) & ~0x3) > LIBIE_AQ_LG_BUF)
102 			desc->flags |= cpu_to_le16(LIBIE_AQ_FLAG_LB);
103 
104 		desc->datalen = cpu_to_le16(buf_size);
105 
106 		if (desc->flags & cpu_to_le16(LIBIE_AQ_FLAG_RD)) {
107 			for (i = 0; i < buf_size / 4; i++)
108 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), ((u32 *)buf)[i]);
109 			if (buf_tail_size)
110 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), buf_tail);
111 		}
112 	}
113 
114 	/* Descriptor is written to specific registers */
115 	for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++)
116 		IXGBE_WRITE_REG(hw, IXGBE_PF_HIDA(i), raw_desc[i]);
117 
118 	/* SW has to set PF_HICR.C bit and clear PF_HICR.SV and
119 	 * PF_HICR_EV
120 	 */
121 	hicr = (IXGBE_READ_REG(hw, IXGBE_PF_HICR) | IXGBE_PF_HICR_C) &
122 	       ~(IXGBE_PF_HICR_SV | IXGBE_PF_HICR_EV);
123 	IXGBE_WRITE_REG(hw, IXGBE_PF_HICR, hicr);
124 
125 #define MAX_SLEEP_RESP_US 1000
126 #define MAX_TMOUT_RESP_SYNC_US 100000000
127 
128 	/* Wait for sync Admin Command response */
129 	read_poll_timeout(IXGBE_READ_REG, hicr,
130 			  (hicr & IXGBE_PF_HICR_SV) ||
131 			  !(hicr & IXGBE_PF_HICR_C),
132 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_SYNC_US, true, hw,
133 			  IXGBE_PF_HICR);
134 
135 #define MAX_TMOUT_RESP_ASYNC_US 150000000
136 
137 	/* Wait for async Admin Command response */
138 	read_poll_timeout(IXGBE_READ_REG, hicr,
139 			  (hicr & IXGBE_PF_HICR_EV) ||
140 			  !(hicr & IXGBE_PF_HICR_C),
141 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_ASYNC_US, true, hw,
142 			  IXGBE_PF_HICR);
143 
144 	/* Read sync Admin Command response */
145 	if ((hicr & IXGBE_PF_HICR_SV)) {
146 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
147 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA(i));
148 			raw_desc[i] = raw_desc[i];
149 		}
150 	}
151 
152 	/* Read async Admin Command response */
153 	if ((hicr & IXGBE_PF_HICR_EV) && !(hicr & IXGBE_PF_HICR_C)) {
154 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
155 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA_2(i));
156 			raw_desc[i] = raw_desc[i];
157 		}
158 	}
159 
160 	/* Handle timeout and invalid state of HICR register */
161 	if (hicr & IXGBE_PF_HICR_C)
162 		return -ETIME;
163 
164 	if (!(hicr & IXGBE_PF_HICR_SV) && !(hicr & IXGBE_PF_HICR_EV))
165 		return -EIO;
166 
167 	/* For every command other than 0x0014 treat opcode mismatch
168 	 * as an error. Response to 0x0014 command read from HIDA_2
169 	 * is a descriptor of an event which is expected to contain
170 	 * different opcode than the command.
171 	 */
172 	if (desc->opcode != cpu_to_le16(opcode) &&
173 	    opcode != ixgbe_aci_opc_get_fw_event)
174 		return -EIO;
175 
176 	if (desc->retval) {
177 		hw->aci.last_status = (enum libie_aq_err)
178 			le16_to_cpu(desc->retval);
179 		return -EIO;
180 	}
181 
182 	/* Write a response values to a buf */
183 	if (valid_buf) {
184 		for (i = 0; i < buf_size / 4; i++)
185 			((u32 *)buf)[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
186 		if (buf_tail_size) {
187 			buf_tail = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
188 			memcpy(buf + buf_size - buf_tail_size, &buf_tail,
189 			       buf_tail_size);
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /**
197  * ixgbe_aci_send_cmd - send FW Admin Command to FW Admin Command Interface
198  * @hw: pointer to the HW struct
199  * @desc: descriptor describing the command
200  * @buf: buffer to use for indirect commands (NULL for direct commands)
201  * @buf_size: size of buffer for indirect commands (0 for direct commands)
202  *
203  * Helper function to send FW Admin Commands to the FW Admin Command Interface.
204  *
205  * Retry sending the FW Admin Command multiple times to the FW ACI
206  * if the EBUSY Admin Command error is returned.
207  *
208  * Return: the exit code of the operation.
209  */
ixgbe_aci_send_cmd(struct ixgbe_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size)210 int ixgbe_aci_send_cmd(struct ixgbe_hw *hw, struct libie_aq_desc *desc,
211 		       void *buf, u16 buf_size)
212 {
213 	u16 opcode = le16_to_cpu(desc->opcode);
214 	struct libie_aq_desc desc_cpy;
215 	enum libie_aq_err last_status;
216 	u8 idx = 0, *buf_cpy = NULL;
217 	bool is_cmd_for_retry;
218 	unsigned long timeout;
219 	int err;
220 
221 	is_cmd_for_retry = ixgbe_should_retry_aci_send_cmd_execute(opcode);
222 	if (is_cmd_for_retry) {
223 		if (buf) {
224 			buf_cpy = kmalloc(buf_size, GFP_KERNEL);
225 			if (!buf_cpy)
226 				return -ENOMEM;
227 			*buf_cpy = *(u8 *)buf;
228 		}
229 		desc_cpy = *desc;
230 	}
231 
232 	timeout = jiffies + msecs_to_jiffies(IXGBE_ACI_SEND_TIMEOUT_MS);
233 	do {
234 		mutex_lock(&hw->aci.lock);
235 		err = ixgbe_aci_send_cmd_execute(hw, desc, buf, buf_size);
236 		last_status = hw->aci.last_status;
237 		mutex_unlock(&hw->aci.lock);
238 
239 		if (!is_cmd_for_retry || !err ||
240 		    last_status != LIBIE_AQ_RC_EBUSY)
241 			break;
242 
243 		if (buf)
244 			memcpy(buf, buf_cpy, buf_size);
245 		*desc = desc_cpy;
246 
247 		msleep(IXGBE_ACI_SEND_DELAY_TIME_MS);
248 	} while (++idx < IXGBE_ACI_SEND_MAX_EXECUTE &&
249 		 time_before(jiffies, timeout));
250 
251 	kfree(buf_cpy);
252 
253 	return err;
254 }
255 
256 /**
257  * ixgbe_aci_check_event_pending - check if there are any pending events
258  * @hw: pointer to the HW struct
259  *
260  * Determine if there are any pending events.
261  *
262  * Return: true if there are any currently pending events
263  * otherwise false.
264  */
ixgbe_aci_check_event_pending(struct ixgbe_hw * hw)265 bool ixgbe_aci_check_event_pending(struct ixgbe_hw *hw)
266 {
267 	u32 ep_bit_mask = hw->bus.func ? GL_FWSTS_EP_PF1 : GL_FWSTS_EP_PF0;
268 	u32 fwsts = IXGBE_READ_REG(hw, GL_FWSTS);
269 
270 	return (fwsts & ep_bit_mask) ? true : false;
271 }
272 
273 /**
274  * ixgbe_aci_get_event - get an event from ACI
275  * @hw: pointer to the HW struct
276  * @e: event information structure
277  * @pending: optional flag signaling that there are more pending events
278  *
279  * Obtain an event from ACI and return its content
280  * through 'e' using ACI command (0x0014).
281  * Provide information if there are more events
282  * to retrieve through 'pending'.
283  *
284  * Return: the exit code of the operation.
285  */
ixgbe_aci_get_event(struct ixgbe_hw * hw,struct ixgbe_aci_event * e,bool * pending)286 int ixgbe_aci_get_event(struct ixgbe_hw *hw, struct ixgbe_aci_event *e,
287 			bool *pending)
288 {
289 	struct libie_aq_desc desc;
290 	int err;
291 
292 	if (!e || (!e->msg_buf && e->buf_len))
293 		return -EINVAL;
294 
295 	mutex_lock(&hw->aci.lock);
296 
297 	/* Check if there are any events pending */
298 	if (!ixgbe_aci_check_event_pending(hw)) {
299 		err = -ENOENT;
300 		goto aci_get_event_exit;
301 	}
302 
303 	/* Obtain pending event */
304 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_fw_event);
305 	err = ixgbe_aci_send_cmd_execute(hw, &desc, e->msg_buf, e->buf_len);
306 	if (err)
307 		goto aci_get_event_exit;
308 
309 	/* Returned 0x0014 opcode indicates that no event was obtained */
310 	if (desc.opcode == cpu_to_le16(ixgbe_aci_opc_get_fw_event)) {
311 		err = -ENOENT;
312 		goto aci_get_event_exit;
313 	}
314 
315 	/* Determine size of event data */
316 	e->msg_len = min_t(u16, le16_to_cpu(desc.datalen), e->buf_len);
317 	/* Write event descriptor to event info structure */
318 	memcpy(&e->desc, &desc, sizeof(e->desc));
319 
320 	/* Check if there are any further events pending */
321 	if (pending)
322 		*pending = ixgbe_aci_check_event_pending(hw);
323 
324 aci_get_event_exit:
325 	mutex_unlock(&hw->aci.lock);
326 
327 	return err;
328 }
329 
330 /**
331  * ixgbe_fill_dflt_direct_cmd_desc - fill ACI descriptor with default values.
332  * @desc: pointer to the temp descriptor (non DMA mem)
333  * @opcode: the opcode can be used to decide which flags to turn off or on
334  *
335  * Helper function to fill the descriptor desc with default values
336  * and the provided opcode.
337  */
ixgbe_fill_dflt_direct_cmd_desc(struct libie_aq_desc * desc,u16 opcode)338 void ixgbe_fill_dflt_direct_cmd_desc(struct libie_aq_desc *desc, u16 opcode)
339 {
340 	/* Zero out the desc. */
341 	memset(desc, 0, sizeof(*desc));
342 	desc->opcode = cpu_to_le16(opcode);
343 	desc->flags = cpu_to_le16(LIBIE_AQ_FLAG_SI);
344 }
345 
346 /**
347  * ixgbe_aci_get_fw_ver - Get the firmware version
348  * @hw: pointer to the HW struct
349  *
350  * Get the firmware version using ACI command (0x0001).
351  *
352  * Return: the exit code of the operation.
353  */
ixgbe_aci_get_fw_ver(struct ixgbe_hw * hw)354 static int ixgbe_aci_get_fw_ver(struct ixgbe_hw *hw)
355 {
356 	struct libie_aqc_get_ver *resp;
357 	struct libie_aq_desc desc;
358 	int err;
359 
360 	resp = &desc.params.get_ver;
361 
362 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_ver);
363 
364 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
365 	if (!err) {
366 		hw->fw_branch = resp->fw_branch;
367 		hw->fw_maj_ver = resp->fw_major;
368 		hw->fw_min_ver = resp->fw_minor;
369 		hw->fw_patch = resp->fw_patch;
370 		hw->fw_build = le32_to_cpu(resp->fw_build);
371 		hw->api_branch = resp->api_branch;
372 		hw->api_maj_ver = resp->api_major;
373 		hw->api_min_ver = resp->api_minor;
374 		hw->api_patch = resp->api_patch;
375 	}
376 
377 	return err;
378 }
379 
380 /**
381  * ixgbe_aci_req_res - request a common resource
382  * @hw: pointer to the HW struct
383  * @res: resource ID
384  * @access: access type
385  * @sdp_number: resource number
386  * @timeout: the maximum time in ms that the driver may hold the resource
387  *
388  * Requests a common resource using the ACI command (0x0008).
389  * Specifies the maximum time the driver may hold the resource.
390  * If the requested resource is currently occupied by some other driver,
391  * a busy return value is returned and the timeout field value indicates the
392  * maximum time the current owner has to free it.
393  *
394  * Return: the exit code of the operation.
395  */
ixgbe_aci_req_res(struct ixgbe_hw * hw,enum libie_aq_res_id res,enum libie_aq_res_access_type access,u8 sdp_number,u32 * timeout)396 static int ixgbe_aci_req_res(struct ixgbe_hw *hw, enum libie_aq_res_id res,
397 			     enum libie_aq_res_access_type access,
398 			     u8 sdp_number, u32 *timeout)
399 {
400 	struct libie_aqc_req_res *cmd_resp;
401 	struct libie_aq_desc desc;
402 	int err;
403 
404 	cmd_resp = &desc.params.res_owner;
405 
406 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_req_res);
407 
408 	cmd_resp->res_id = cpu_to_le16(res);
409 	cmd_resp->access_type = cpu_to_le16(access);
410 	cmd_resp->res_number = cpu_to_le32(sdp_number);
411 	cmd_resp->timeout = cpu_to_le32(*timeout);
412 	*timeout = 0;
413 
414 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
415 
416 	/* If the resource is held by some other driver, the command completes
417 	 * with a busy return value and the timeout field indicates the maximum
418 	 * time the current owner of the resource has to free it.
419 	 */
420 	if (!err || hw->aci.last_status == LIBIE_AQ_RC_EBUSY)
421 		*timeout = le32_to_cpu(cmd_resp->timeout);
422 
423 	return err;
424 }
425 
426 /**
427  * ixgbe_aci_release_res - release a common resource using ACI
428  * @hw: pointer to the HW struct
429  * @res: resource ID
430  * @sdp_number: resource number
431  *
432  * Release a common resource using ACI command (0x0009).
433  *
434  * Return: the exit code of the operation.
435  */
ixgbe_aci_release_res(struct ixgbe_hw * hw,enum libie_aq_res_id res,u8 sdp_number)436 static int ixgbe_aci_release_res(struct ixgbe_hw *hw, enum libie_aq_res_id res,
437 				 u8 sdp_number)
438 {
439 	struct libie_aqc_req_res *cmd;
440 	struct libie_aq_desc desc;
441 
442 	cmd = &desc.params.res_owner;
443 
444 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_release_res);
445 
446 	cmd->res_id = cpu_to_le16(res);
447 	cmd->res_number = cpu_to_le32(sdp_number);
448 
449 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
450 }
451 
452 /**
453  * ixgbe_acquire_res - acquire the ownership of a resource
454  * @hw: pointer to the HW structure
455  * @res: resource ID
456  * @access: access type (read or write)
457  * @timeout: timeout in milliseconds
458  *
459  * Make an attempt to acquire the ownership of a resource using
460  * the ixgbe_aci_req_res to utilize ACI.
461  * In case if some other driver has previously acquired the resource and
462  * performed any necessary updates, the -EALREADY is returned,
463  * and the caller does not obtain the resource and has no further work to do.
464  * If needed, the function will poll until the current lock owner timeouts.
465  *
466  * Return: the exit code of the operation.
467  */
ixgbe_acquire_res(struct ixgbe_hw * hw,enum libie_aq_res_id res,enum libie_aq_res_access_type access,u32 timeout)468 int ixgbe_acquire_res(struct ixgbe_hw *hw, enum libie_aq_res_id res,
469 		      enum libie_aq_res_access_type access, u32 timeout)
470 {
471 #define IXGBE_RES_POLLING_DELAY_MS	10
472 	u32 delay = IXGBE_RES_POLLING_DELAY_MS;
473 	u32 res_timeout = timeout;
474 	u32 retry_timeout;
475 	int err;
476 
477 	err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
478 
479 	/* A return code of -EALREADY means that another driver has
480 	 * previously acquired the resource and performed any necessary updates;
481 	 * in this case the caller does not obtain the resource and has no
482 	 * further work to do.
483 	 */
484 	if (err == -EALREADY)
485 		return err;
486 
487 	/* If necessary, poll until the current lock owner timeouts.
488 	 * Set retry_timeout to the timeout value reported by the FW in the
489 	 * response to the "Request Resource Ownership" (0x0008) Admin Command
490 	 * as it indicates the maximum time the current owner of the resource
491 	 * is allowed to hold it.
492 	 */
493 	retry_timeout = res_timeout;
494 	while (err && retry_timeout && res_timeout) {
495 		msleep(delay);
496 		retry_timeout = (retry_timeout > delay) ?
497 			retry_timeout - delay : 0;
498 		err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
499 
500 		/* Success - lock acquired.
501 		 * -EALREADY - lock free, no work to do.
502 		 */
503 		if (!err || err == -EALREADY)
504 			break;
505 	}
506 
507 	return err;
508 }
509 
510 /**
511  * ixgbe_release_res - release a common resource
512  * @hw: pointer to the HW structure
513  * @res: resource ID
514  *
515  * Release a common resource using ixgbe_aci_release_res.
516  */
ixgbe_release_res(struct ixgbe_hw * hw,enum libie_aq_res_id res)517 void ixgbe_release_res(struct ixgbe_hw *hw, enum libie_aq_res_id res)
518 {
519 	u32 total_delay = 0;
520 	int err;
521 
522 	err = ixgbe_aci_release_res(hw, res, 0);
523 
524 	/* There are some rare cases when trying to release the resource
525 	 * results in an admin command timeout, so handle them correctly.
526 	 */
527 	while (err == -ETIME &&
528 	       total_delay < IXGBE_ACI_RELEASE_RES_TIMEOUT) {
529 		usleep_range(1000, 1500);
530 		err = ixgbe_aci_release_res(hw, res, 0);
531 		total_delay++;
532 	}
533 }
534 
535 /**
536  * ixgbe_parse_e610_caps - Parse common device/function capabilities
537  * @hw: pointer to the HW struct
538  * @caps: pointer to common capabilities structure
539  * @elem: the capability element to parse
540  * @prefix: message prefix for tracing capabilities
541  *
542  * Given a capability element, extract relevant details into the common
543  * capability structure.
544  *
545  * Return: true if the capability matches one of the common capability ids,
546  * false otherwise.
547  */
ixgbe_parse_e610_caps(struct ixgbe_hw * hw,struct ixgbe_hw_caps * caps,struct libie_aqc_list_caps_elem * elem,const char * prefix)548 static bool ixgbe_parse_e610_caps(struct ixgbe_hw *hw,
549 				  struct ixgbe_hw_caps *caps,
550 				  struct libie_aqc_list_caps_elem *elem,
551 				  const char *prefix)
552 {
553 	u32 logical_id = le32_to_cpu(elem->logical_id);
554 	u32 phys_id = le32_to_cpu(elem->phys_id);
555 	u32 number = le32_to_cpu(elem->number);
556 	u16 cap = le16_to_cpu(elem->cap);
557 
558 	switch (cap) {
559 	case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
560 		caps->valid_functions = number;
561 		break;
562 	case LIBIE_AQC_CAPS_SRIOV:
563 		caps->sr_iov_1_1 = (number == 1);
564 		break;
565 	case LIBIE_AQC_CAPS_VMDQ:
566 		caps->vmdq = (number == 1);
567 		break;
568 	case LIBIE_AQC_CAPS_DCB:
569 		caps->dcb = (number == 1);
570 		caps->active_tc_bitmap = logical_id;
571 		caps->maxtc = phys_id;
572 		break;
573 	case LIBIE_AQC_CAPS_RSS:
574 		caps->rss_table_size = number;
575 		caps->rss_table_entry_width = logical_id;
576 		break;
577 	case LIBIE_AQC_CAPS_RXQS:
578 		caps->num_rxq = number;
579 		caps->rxq_first_id = phys_id;
580 		break;
581 	case LIBIE_AQC_CAPS_TXQS:
582 		caps->num_txq = number;
583 		caps->txq_first_id = phys_id;
584 		break;
585 	case LIBIE_AQC_CAPS_MSIX:
586 		caps->num_msix_vectors = number;
587 		caps->msix_vector_first_id = phys_id;
588 		break;
589 	case LIBIE_AQC_CAPS_NVM_VER:
590 		break;
591 	case LIBIE_AQC_CAPS_PENDING_NVM_VER:
592 		caps->nvm_update_pending_nvm = true;
593 		break;
594 	case LIBIE_AQC_CAPS_PENDING_OROM_VER:
595 		caps->nvm_update_pending_orom = true;
596 		break;
597 	case LIBIE_AQC_CAPS_PENDING_NET_VER:
598 		caps->nvm_update_pending_netlist = true;
599 		break;
600 	case LIBIE_AQC_CAPS_NVM_MGMT:
601 		caps->nvm_unified_update =
602 			(number & IXGBE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
603 			true : false;
604 		break;
605 	case LIBIE_AQC_CAPS_MAX_MTU:
606 		caps->max_mtu = number;
607 		break;
608 	case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
609 		caps->pcie_reset_avoidance = (number > 0);
610 		break;
611 	case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
612 		caps->reset_restrict_support = (number == 1);
613 		break;
614 	case LIBIE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
615 	case LIBIE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
616 	case LIBIE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
617 	case LIBIE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
618 	{
619 		u8 index = cap - LIBIE_AQC_CAPS_EXT_TOPO_DEV_IMG0;
620 
621 		caps->ext_topo_dev_img_ver_high[index] = number;
622 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
623 		caps->ext_topo_dev_img_part_num[index] =
624 			FIELD_GET(IXGBE_EXT_TOPO_DEV_IMG_PART_NUM_M, phys_id);
625 		caps->ext_topo_dev_img_load_en[index] =
626 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
627 		caps->ext_topo_dev_img_prog_en[index] =
628 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
629 		break;
630 	}
631 	default:
632 		/* Not one of the recognized common capabilities */
633 		return false;
634 	}
635 
636 	return true;
637 }
638 
639 /**
640  * ixgbe_parse_valid_functions_cap - Parse LIBIE_AQC_CAPS_VALID_FUNCTIONS caps
641  * @hw: pointer to the HW struct
642  * @dev_p: pointer to device capabilities structure
643  * @cap: capability element to parse
644  *
645  * Parse LIBIE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
646  */
647 static void
ixgbe_parse_valid_functions_cap(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)648 ixgbe_parse_valid_functions_cap(struct ixgbe_hw *hw,
649 				struct ixgbe_hw_dev_caps *dev_p,
650 				struct libie_aqc_list_caps_elem *cap)
651 {
652 	dev_p->num_funcs = hweight32(le32_to_cpu(cap->number));
653 }
654 
655 /**
656  * ixgbe_parse_vf_dev_caps - Parse LIBIE_AQC_CAPS_VF device caps
657  * @hw: pointer to the HW struct
658  * @dev_p: pointer to device capabilities structure
659  * @cap: capability element to parse
660  *
661  * Parse LIBIE_AQC_CAPS_VF for device capabilities.
662  */
ixgbe_parse_vf_dev_caps(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)663 static void ixgbe_parse_vf_dev_caps(struct ixgbe_hw *hw,
664 				    struct ixgbe_hw_dev_caps *dev_p,
665 				    struct libie_aqc_list_caps_elem *cap)
666 {
667 	dev_p->num_vfs_exposed = le32_to_cpu(cap->number);
668 }
669 
670 /**
671  * ixgbe_parse_vsi_dev_caps - Parse LIBIE_AQC_CAPS_VSI device caps
672  * @hw: pointer to the HW struct
673  * @dev_p: pointer to device capabilities structure
674  * @cap: capability element to parse
675  *
676  * Parse LIBIE_AQC_CAPS_VSI for device capabilities.
677  */
ixgbe_parse_vsi_dev_caps(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)678 static void ixgbe_parse_vsi_dev_caps(struct ixgbe_hw *hw,
679 				     struct ixgbe_hw_dev_caps *dev_p,
680 				     struct libie_aqc_list_caps_elem *cap)
681 {
682 	dev_p->num_vsi_allocd_to_host = le32_to_cpu(cap->number);
683 }
684 
685 /**
686  * ixgbe_parse_fdir_dev_caps - Parse LIBIE_AQC_CAPS_FD device caps
687  * @hw: pointer to the HW struct
688  * @dev_p: pointer to device capabilities structure
689  * @cap: capability element to parse
690  *
691  * Parse LIBIE_AQC_CAPS_FD for device capabilities.
692  */
ixgbe_parse_fdir_dev_caps(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)693 static void ixgbe_parse_fdir_dev_caps(struct ixgbe_hw *hw,
694 				      struct ixgbe_hw_dev_caps *dev_p,
695 				      struct libie_aqc_list_caps_elem *cap)
696 {
697 	dev_p->num_flow_director_fltr = le32_to_cpu(cap->number);
698 }
699 
700 /**
701  * ixgbe_parse_dev_caps - Parse device capabilities
702  * @hw: pointer to the HW struct
703  * @dev_p: pointer to device capabilities structure
704  * @buf: buffer containing the device capability records
705  * @cap_count: the number of capabilities
706  *
707  * Helper device to parse device (0x000B) capabilities list. For
708  * capabilities shared between device and function, this relies on
709  * ixgbe_parse_e610_caps.
710  *
711  * Loop through the list of provided capabilities and extract the relevant
712  * data into the device capabilities structured.
713  */
ixgbe_parse_dev_caps(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_p,void * buf,u32 cap_count)714 static void ixgbe_parse_dev_caps(struct ixgbe_hw *hw,
715 				 struct ixgbe_hw_dev_caps *dev_p,
716 				 void *buf, u32 cap_count)
717 {
718 	struct libie_aqc_list_caps_elem *cap_resp;
719 	u32 i;
720 
721 	cap_resp = (struct libie_aqc_list_caps_elem *)buf;
722 
723 	memset(dev_p, 0, sizeof(*dev_p));
724 
725 	for (i = 0; i < cap_count; i++) {
726 		u16 cap = le16_to_cpu(cap_resp[i].cap);
727 
728 		ixgbe_parse_e610_caps(hw, &dev_p->common_cap, &cap_resp[i],
729 				      "dev caps");
730 
731 		switch (cap) {
732 		case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
733 			ixgbe_parse_valid_functions_cap(hw, dev_p,
734 							&cap_resp[i]);
735 			break;
736 		case LIBIE_AQC_CAPS_VF:
737 			ixgbe_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
738 			break;
739 		case LIBIE_AQC_CAPS_VSI:
740 			ixgbe_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
741 			break;
742 		case  LIBIE_AQC_CAPS_FD:
743 			ixgbe_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
744 			break;
745 		default:
746 			/* Don't list common capabilities as unknown */
747 			break;
748 		}
749 	}
750 }
751 
752 /**
753  * ixgbe_parse_vf_func_caps - Parse LIBIE_AQC_CAPS_VF function caps
754  * @hw: pointer to the HW struct
755  * @func_p: pointer to function capabilities structure
756  * @cap: pointer to the capability element to parse
757  *
758  * Extract function capabilities for LIBIE_AQC_CAPS_VF.
759  */
ixgbe_parse_vf_func_caps(struct ixgbe_hw * hw,struct ixgbe_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)760 static void ixgbe_parse_vf_func_caps(struct ixgbe_hw *hw,
761 				     struct ixgbe_hw_func_caps *func_p,
762 				     struct libie_aqc_list_caps_elem *cap)
763 {
764 	func_p->num_allocd_vfs = le32_to_cpu(cap->number);
765 	func_p->vf_base_id = le32_to_cpu(cap->logical_id);
766 }
767 
768 /**
769  * ixgbe_get_num_per_func - determine number of resources per PF
770  * @hw: pointer to the HW structure
771  * @max: value to be evenly split between each PF
772  *
773  * Determine the number of valid functions by going through the bitmap returned
774  * from parsing capabilities and use this to calculate the number of resources
775  * per PF based on the max value passed in.
776  *
777  * Return: the number of resources per PF or 0, if no PFs are available.
778  */
ixgbe_get_num_per_func(struct ixgbe_hw * hw,u32 max)779 static u32 ixgbe_get_num_per_func(struct ixgbe_hw *hw, u32 max)
780 {
781 #define IXGBE_CAPS_VALID_FUNCS_M	GENMASK(7, 0)
782 	u8 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
783 			    IXGBE_CAPS_VALID_FUNCS_M);
784 
785 	return funcs ? (max / funcs) : 0;
786 }
787 
788 /**
789  * ixgbe_parse_vsi_func_caps - Parse LIBIE_AQC_CAPS_VSI function caps
790  * @hw: pointer to the HW struct
791  * @func_p: pointer to function capabilities structure
792  * @cap: pointer to the capability element to parse
793  *
794  * Extract function capabilities for LIBIE_AQC_CAPS_VSI.
795  */
ixgbe_parse_vsi_func_caps(struct ixgbe_hw * hw,struct ixgbe_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)796 static void ixgbe_parse_vsi_func_caps(struct ixgbe_hw *hw,
797 				      struct ixgbe_hw_func_caps *func_p,
798 				      struct libie_aqc_list_caps_elem *cap)
799 {
800 	func_p->guar_num_vsi = ixgbe_get_num_per_func(hw, IXGBE_MAX_VSI);
801 }
802 
803 /**
804  * ixgbe_parse_func_caps - Parse function capabilities
805  * @hw: pointer to the HW struct
806  * @func_p: pointer to function capabilities structure
807  * @buf: buffer containing the function capability records
808  * @cap_count: the number of capabilities
809  *
810  * Helper function to parse function (0x000A) capabilities list. For
811  * capabilities shared between device and function, this relies on
812  * ixgbe_parse_e610_caps.
813  *
814  * Loop through the list of provided capabilities and extract the relevant
815  * data into the function capabilities structured.
816  */
ixgbe_parse_func_caps(struct ixgbe_hw * hw,struct ixgbe_hw_func_caps * func_p,void * buf,u32 cap_count)817 static void ixgbe_parse_func_caps(struct ixgbe_hw *hw,
818 				  struct ixgbe_hw_func_caps *func_p,
819 				  void *buf, u32 cap_count)
820 {
821 	struct libie_aqc_list_caps_elem *cap_resp;
822 	u32 i;
823 
824 	cap_resp = (struct libie_aqc_list_caps_elem *)buf;
825 
826 	memset(func_p, 0, sizeof(*func_p));
827 
828 	for (i = 0; i < cap_count; i++) {
829 		u16 cap = le16_to_cpu(cap_resp[i].cap);
830 
831 		ixgbe_parse_e610_caps(hw, &func_p->common_cap,
832 				      &cap_resp[i], "func caps");
833 
834 		switch (cap) {
835 		case LIBIE_AQC_CAPS_VF:
836 			ixgbe_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
837 			break;
838 		case LIBIE_AQC_CAPS_VSI:
839 			ixgbe_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
840 			break;
841 		default:
842 			/* Don't list common capabilities as unknown */
843 			break;
844 		}
845 	}
846 }
847 
848 /**
849  * ixgbe_aci_list_caps - query function/device capabilities
850  * @hw: pointer to the HW struct
851  * @buf: a buffer to hold the capabilities
852  * @buf_size: size of the buffer
853  * @cap_count: if not NULL, set to the number of capabilities reported
854  * @opc: capabilities type to discover, device or function
855  *
856  * Get the function (0x000A) or device (0x000B) capabilities description from
857  * firmware and store it in the buffer.
858  *
859  * If the cap_count pointer is not NULL, then it is set to the number of
860  * capabilities firmware will report. Note that if the buffer size is too
861  * small, it is possible the command will return -ENOMEM. The
862  * cap_count will still be updated in this case. It is recommended that the
863  * buffer size be set to IXGBE_ACI_MAX_BUFFER_SIZE (the largest possible
864  * buffer that firmware could return) to avoid this.
865  *
866  * Return: the exit code of the operation.
867  * Exit code of -ENOMEM means the buffer size is too small.
868  */
ixgbe_aci_list_caps(struct ixgbe_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ixgbe_aci_opc opc)869 int ixgbe_aci_list_caps(struct ixgbe_hw *hw, void *buf, u16 buf_size,
870 			u32 *cap_count, enum ixgbe_aci_opc opc)
871 {
872 	struct libie_aqc_list_caps *cmd;
873 	struct libie_aq_desc desc;
874 	int err;
875 
876 	cmd = &desc.params.get_cap;
877 
878 	if (opc != ixgbe_aci_opc_list_func_caps &&
879 	    opc != ixgbe_aci_opc_list_dev_caps)
880 		return -EINVAL;
881 
882 	ixgbe_fill_dflt_direct_cmd_desc(&desc, opc);
883 	err = ixgbe_aci_send_cmd(hw, &desc, buf, buf_size);
884 
885 	if (cap_count)
886 		*cap_count = le32_to_cpu(cmd->count);
887 
888 	return err;
889 }
890 
891 /**
892  * ixgbe_discover_dev_caps - Read and extract device capabilities
893  * @hw: pointer to the hardware structure
894  * @dev_caps: pointer to device capabilities structure
895  *
896  * Read the device capabilities and extract them into the dev_caps structure
897  * for later use.
898  *
899  * Return: the exit code of the operation.
900  */
ixgbe_discover_dev_caps(struct ixgbe_hw * hw,struct ixgbe_hw_dev_caps * dev_caps)901 int ixgbe_discover_dev_caps(struct ixgbe_hw *hw,
902 			    struct ixgbe_hw_dev_caps *dev_caps)
903 {
904 	u32 cap_count;
905 	u8 *cbuf;
906 	int err;
907 
908 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
909 	if (!cbuf)
910 		return -ENOMEM;
911 
912 	/* Although the driver doesn't know the number of capabilities the
913 	 * device will return, we can simply send a 4KB buffer, the maximum
914 	 * possible size that firmware can return.
915 	 */
916 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
917 		    sizeof(struct libie_aqc_list_caps_elem);
918 
919 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
920 				  &cap_count,
921 				  ixgbe_aci_opc_list_dev_caps);
922 	if (!err)
923 		ixgbe_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
924 
925 	kfree(cbuf);
926 
927 	return 0;
928 }
929 
930 /**
931  * ixgbe_discover_func_caps - Read and extract function capabilities
932  * @hw: pointer to the hardware structure
933  * @func_caps: pointer to function capabilities structure
934  *
935  * Read the function capabilities and extract them into the func_caps structure
936  * for later use.
937  *
938  * Return: the exit code of the operation.
939  */
ixgbe_discover_func_caps(struct ixgbe_hw * hw,struct ixgbe_hw_func_caps * func_caps)940 int ixgbe_discover_func_caps(struct ixgbe_hw *hw,
941 			     struct ixgbe_hw_func_caps *func_caps)
942 {
943 	u32 cap_count;
944 	u8 *cbuf;
945 	int err;
946 
947 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
948 	if (!cbuf)
949 		return -ENOMEM;
950 
951 	/* Although the driver doesn't know the number of capabilities the
952 	 * device will return, we can simply send a 4KB buffer, the maximum
953 	 * possible size that firmware can return.
954 	 */
955 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
956 		    sizeof(struct libie_aqc_list_caps_elem);
957 
958 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
959 				  &cap_count,
960 				  ixgbe_aci_opc_list_func_caps);
961 	if (!err)
962 		ixgbe_parse_func_caps(hw, func_caps, cbuf, cap_count);
963 
964 	kfree(cbuf);
965 
966 	return 0;
967 }
968 
969 /**
970  * ixgbe_get_caps - get info about the HW
971  * @hw: pointer to the hardware structure
972  *
973  * Retrieve both device and function capabilities.
974  *
975  * Return: the exit code of the operation.
976  */
ixgbe_get_caps(struct ixgbe_hw * hw)977 int ixgbe_get_caps(struct ixgbe_hw *hw)
978 {
979 	int err;
980 
981 	err = ixgbe_discover_dev_caps(hw, &hw->dev_caps);
982 	if (err)
983 		return err;
984 
985 	return ixgbe_discover_func_caps(hw, &hw->func_caps);
986 }
987 
988 /**
989  * ixgbe_aci_disable_rxen - disable RX
990  * @hw: pointer to the HW struct
991  *
992  * Request a safe disable of Receive Enable using ACI command (0x000C).
993  *
994  * Return: the exit code of the operation.
995  */
ixgbe_aci_disable_rxen(struct ixgbe_hw * hw)996 int ixgbe_aci_disable_rxen(struct ixgbe_hw *hw)
997 {
998 	struct ixgbe_aci_cmd_disable_rxen *cmd;
999 	struct libie_aq_desc desc;
1000 
1001 	cmd = libie_aq_raw(&desc);
1002 
1003 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_disable_rxen);
1004 
1005 	cmd->lport_num = hw->bus.func;
1006 
1007 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1008 }
1009 
1010 /**
1011  * ixgbe_aci_get_phy_caps - returns PHY capabilities
1012  * @hw: pointer to the HW struct
1013  * @qual_mods: report qualified modules
1014  * @report_mode: report mode capabilities
1015  * @pcaps: structure for PHY capabilities to be filled
1016  *
1017  * Returns the various PHY capabilities supported on the Port
1018  * using ACI command (0x0600).
1019  *
1020  * Return: the exit code of the operation.
1021  */
ixgbe_aci_get_phy_caps(struct ixgbe_hw * hw,bool qual_mods,u8 report_mode,struct ixgbe_aci_cmd_get_phy_caps_data * pcaps)1022 int ixgbe_aci_get_phy_caps(struct ixgbe_hw *hw, bool qual_mods, u8 report_mode,
1023 			   struct ixgbe_aci_cmd_get_phy_caps_data *pcaps)
1024 {
1025 	struct ixgbe_aci_cmd_get_phy_caps *cmd;
1026 	u16 pcaps_size = sizeof(*pcaps);
1027 	struct libie_aq_desc desc;
1028 	int err;
1029 
1030 	cmd = libie_aq_raw(&desc);
1031 
1032 	if (!pcaps || (report_mode & ~IXGBE_ACI_REPORT_MODE_M))
1033 		return -EINVAL;
1034 
1035 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_phy_caps);
1036 
1037 	if (qual_mods)
1038 		cmd->param0 |= cpu_to_le16(IXGBE_ACI_GET_PHY_RQM);
1039 
1040 	cmd->param0 |= cpu_to_le16(report_mode);
1041 	err = ixgbe_aci_send_cmd(hw, &desc, pcaps, pcaps_size);
1042 	if (!err && report_mode == IXGBE_ACI_REPORT_TOPO_CAP_MEDIA) {
1043 		hw->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
1044 		hw->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
1045 		memcpy(hw->link.link_info.module_type, &pcaps->module_type,
1046 		       sizeof(hw->link.link_info.module_type));
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /**
1053  * ixgbe_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
1054  * @caps: PHY ability structure to copy data from
1055  * @cfg: PHY configuration structure to copy data to
1056  *
1057  * Helper function to copy data from PHY capabilities data structure
1058  * to PHY configuration data structure
1059  */
ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data * caps,struct ixgbe_aci_cmd_set_phy_cfg_data * cfg)1060 void ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data *caps,
1061 				struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1062 {
1063 	if (!caps || !cfg)
1064 		return;
1065 
1066 	memset(cfg, 0, sizeof(*cfg));
1067 	cfg->phy_type_low = caps->phy_type_low;
1068 	cfg->phy_type_high = caps->phy_type_high;
1069 	cfg->caps = caps->caps;
1070 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
1071 	cfg->eee_cap = caps->eee_cap;
1072 	cfg->eeer_value = caps->eeer_value;
1073 	cfg->link_fec_opt = caps->link_fec_options;
1074 	cfg->module_compliance_enforcement =
1075 		caps->module_compliance_enforcement;
1076 }
1077 
1078 /**
1079  * ixgbe_aci_set_phy_cfg - set PHY configuration
1080  * @hw: pointer to the HW struct
1081  * @cfg: structure with PHY configuration data to be set
1082  *
1083  * Set the various PHY configuration parameters supported on the Port
1084  * using ACI command (0x0601).
1085  * One or more of the Set PHY config parameters may be ignored in an MFP
1086  * mode as the PF may not have the privilege to set some of the PHY Config
1087  * parameters.
1088  *
1089  * Return: the exit code of the operation.
1090  */
ixgbe_aci_set_phy_cfg(struct ixgbe_hw * hw,struct ixgbe_aci_cmd_set_phy_cfg_data * cfg)1091 int ixgbe_aci_set_phy_cfg(struct ixgbe_hw *hw,
1092 			  struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1093 {
1094 	struct ixgbe_aci_cmd_set_phy_cfg *cmd;
1095 	struct libie_aq_desc desc;
1096 	int err;
1097 
1098 	if (!cfg)
1099 		return -EINVAL;
1100 
1101 	cmd = libie_aq_raw(&desc);
1102 	/* Ensure that only valid bits of cfg->caps can be turned on. */
1103 	cfg->caps &= IXGBE_ACI_PHY_ENA_VALID_MASK;
1104 
1105 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_phy_cfg);
1106 	cmd->lport_num = hw->bus.func;
1107 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
1108 
1109 	err = ixgbe_aci_send_cmd(hw, &desc, cfg, sizeof(*cfg));
1110 	if (!err)
1111 		hw->phy.curr_user_phy_cfg = *cfg;
1112 
1113 	return err;
1114 }
1115 
1116 /**
1117  * ixgbe_aci_set_link_restart_an - set up link and restart AN
1118  * @hw: pointer to the HW struct
1119  * @ena_link: if true: enable link, if false: disable link
1120  *
1121  * Function sets up the link and restarts the Auto-Negotiation over the link.
1122  *
1123  * Return: the exit code of the operation.
1124  */
ixgbe_aci_set_link_restart_an(struct ixgbe_hw * hw,bool ena_link)1125 int ixgbe_aci_set_link_restart_an(struct ixgbe_hw *hw, bool ena_link)
1126 {
1127 	struct ixgbe_aci_cmd_restart_an *cmd;
1128 	struct libie_aq_desc desc;
1129 
1130 	cmd = libie_aq_raw(&desc);
1131 
1132 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_restart_an);
1133 
1134 	cmd->cmd_flags = IXGBE_ACI_RESTART_AN_LINK_RESTART;
1135 	cmd->lport_num = hw->bus.func;
1136 	if (ena_link)
1137 		cmd->cmd_flags |= IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1138 	else
1139 		cmd->cmd_flags &= ~IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1140 
1141 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1142 }
1143 
1144 /**
1145  * ixgbe_is_media_cage_present - check if media cage is present
1146  * @hw: pointer to the HW struct
1147  *
1148  * Identify presence of media cage using the ACI command (0x06E0).
1149  *
1150  * Return: true if media cage is present, else false. If no cage, then
1151  * media type is backplane or BASE-T.
1152  */
ixgbe_is_media_cage_present(struct ixgbe_hw * hw)1153 static bool ixgbe_is_media_cage_present(struct ixgbe_hw *hw)
1154 {
1155 	struct ixgbe_aci_cmd_get_link_topo *cmd;
1156 	struct libie_aq_desc desc;
1157 
1158 	cmd = libie_aq_raw(&desc);
1159 
1160 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
1161 
1162 	cmd->addr.topo_params.node_type_ctx =
1163 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_CTX_M,
1164 			   IXGBE_ACI_LINK_TOPO_NODE_CTX_PORT);
1165 
1166 	/* Set node type. */
1167 	cmd->addr.topo_params.node_type_ctx |=
1168 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_TYPE_M,
1169 			   IXGBE_ACI_LINK_TOPO_NODE_TYPE_CAGE);
1170 
1171 	/* Node type cage can be used to determine if cage is present. If AQC
1172 	 * returns error (ENOENT), then no cage present. If no cage present then
1173 	 * connection type is backplane or BASE-T.
1174 	 */
1175 	return !ixgbe_aci_get_netlist_node(hw, cmd, NULL, NULL);
1176 }
1177 
1178 /**
1179  * ixgbe_get_media_type_from_phy_type - Gets media type based on phy type
1180  * @hw: pointer to the HW struct
1181  *
1182  * Try to identify the media type based on the phy type.
1183  * If more than one media type, the ixgbe_media_type_unknown is returned.
1184  * First, phy_type_low is checked, then phy_type_high.
1185  * If none are identified, the ixgbe_media_type_unknown is returned
1186  *
1187  * Return: type of a media based on phy type in form of enum.
1188  */
1189 static enum ixgbe_media_type
ixgbe_get_media_type_from_phy_type(struct ixgbe_hw * hw)1190 ixgbe_get_media_type_from_phy_type(struct ixgbe_hw *hw)
1191 {
1192 	struct ixgbe_link_status *hw_link_info;
1193 
1194 	if (!hw)
1195 		return ixgbe_media_type_unknown;
1196 
1197 	hw_link_info = &hw->link.link_info;
1198 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
1199 		/* If more than one media type is selected, report unknown */
1200 		return ixgbe_media_type_unknown;
1201 
1202 	if (hw_link_info->phy_type_low) {
1203 		/* 1G SGMII is a special case where some DA cable PHYs
1204 		 * may show this as an option when it really shouldn't
1205 		 * be since SGMII is meant to be between a MAC and a PHY
1206 		 * in a backplane. Try to detect this case and handle it
1207 		 */
1208 		if (hw_link_info->phy_type_low == IXGBE_PHY_TYPE_LOW_1G_SGMII &&
1209 		    (hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1210 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
1211 		    hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1212 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
1213 			return ixgbe_media_type_da;
1214 
1215 		switch (hw_link_info->phy_type_low) {
1216 		case IXGBE_PHY_TYPE_LOW_1000BASE_SX:
1217 		case IXGBE_PHY_TYPE_LOW_1000BASE_LX:
1218 		case IXGBE_PHY_TYPE_LOW_10GBASE_SR:
1219 		case IXGBE_PHY_TYPE_LOW_10GBASE_LR:
1220 		case IXGBE_PHY_TYPE_LOW_25GBASE_SR:
1221 		case IXGBE_PHY_TYPE_LOW_25GBASE_LR:
1222 			return ixgbe_media_type_fiber;
1223 		case IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1224 		case IXGBE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1225 			return ixgbe_media_type_fiber;
1226 		case IXGBE_PHY_TYPE_LOW_100BASE_TX:
1227 		case IXGBE_PHY_TYPE_LOW_1000BASE_T:
1228 		case IXGBE_PHY_TYPE_LOW_2500BASE_T:
1229 		case IXGBE_PHY_TYPE_LOW_5GBASE_T:
1230 		case IXGBE_PHY_TYPE_LOW_10GBASE_T:
1231 		case IXGBE_PHY_TYPE_LOW_25GBASE_T:
1232 			return ixgbe_media_type_copper;
1233 		case IXGBE_PHY_TYPE_LOW_10G_SFI_DA:
1234 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR:
1235 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR_S:
1236 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR1:
1237 			return ixgbe_media_type_da;
1238 		case IXGBE_PHY_TYPE_LOW_25G_AUI_C2C:
1239 			if (ixgbe_is_media_cage_present(hw))
1240 				return ixgbe_media_type_aui;
1241 			fallthrough;
1242 		case IXGBE_PHY_TYPE_LOW_1000BASE_KX:
1243 		case IXGBE_PHY_TYPE_LOW_2500BASE_KX:
1244 		case IXGBE_PHY_TYPE_LOW_2500BASE_X:
1245 		case IXGBE_PHY_TYPE_LOW_5GBASE_KR:
1246 		case IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1247 		case IXGBE_PHY_TYPE_LOW_10G_SFI_C2C:
1248 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR:
1249 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR1:
1250 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR_S:
1251 			return ixgbe_media_type_backplane;
1252 		}
1253 	} else {
1254 		switch (hw_link_info->phy_type_high) {
1255 		case IXGBE_PHY_TYPE_HIGH_10BASE_T:
1256 			return ixgbe_media_type_copper;
1257 		}
1258 	}
1259 	return ixgbe_media_type_unknown;
1260 }
1261 
1262 /**
1263  * ixgbe_update_link_info - update status of the HW network link
1264  * @hw: pointer to the HW struct
1265  *
1266  * Update the status of the HW network link.
1267  *
1268  * Return: the exit code of the operation.
1269  */
ixgbe_update_link_info(struct ixgbe_hw * hw)1270 int ixgbe_update_link_info(struct ixgbe_hw *hw)
1271 {
1272 	struct ixgbe_aci_cmd_get_phy_caps_data *pcaps;
1273 	struct ixgbe_link_status *li;
1274 	int err;
1275 
1276 	if (!hw)
1277 		return -EINVAL;
1278 
1279 	li = &hw->link.link_info;
1280 
1281 	err = ixgbe_aci_get_link_info(hw, true, NULL);
1282 	if (err)
1283 		return err;
1284 
1285 	if (!(li->link_info & IXGBE_ACI_MEDIA_AVAILABLE))
1286 		return 0;
1287 
1288 	pcaps =	kzalloc(sizeof(*pcaps), GFP_KERNEL);
1289 	if (!pcaps)
1290 		return -ENOMEM;
1291 
1292 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1293 				     pcaps);
1294 
1295 	if (!err)
1296 		memcpy(li->module_type, &pcaps->module_type,
1297 		       sizeof(li->module_type));
1298 
1299 	kfree(pcaps);
1300 
1301 	return err;
1302 }
1303 
1304 /**
1305  * ixgbe_get_link_status - get status of the HW network link
1306  * @hw: pointer to the HW struct
1307  * @link_up: pointer to bool (true/false = linkup/linkdown)
1308  *
1309  * Variable link_up is true if link is up, false if link is down.
1310  * The variable link_up is invalid if status is non zero. As a
1311  * result of this call, link status reporting becomes enabled
1312  *
1313  * Return: the exit code of the operation.
1314  */
ixgbe_get_link_status(struct ixgbe_hw * hw,bool * link_up)1315 int ixgbe_get_link_status(struct ixgbe_hw *hw, bool *link_up)
1316 {
1317 	if (!hw || !link_up)
1318 		return -EINVAL;
1319 
1320 	if (hw->link.get_link_info) {
1321 		int err = ixgbe_update_link_info(hw);
1322 
1323 		if (err)
1324 			return err;
1325 	}
1326 
1327 	*link_up = hw->link.link_info.link_info & IXGBE_ACI_LINK_UP;
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * ixgbe_aci_get_link_info - get the link status
1334  * @hw: pointer to the HW struct
1335  * @ena_lse: enable/disable LinkStatusEvent reporting
1336  * @link: pointer to link status structure - optional
1337  *
1338  * Get the current Link Status using ACI command (0x607).
1339  * The current link can be optionally provided to update
1340  * the status.
1341  *
1342  * Return: the link status of the adapter.
1343  */
ixgbe_aci_get_link_info(struct ixgbe_hw * hw,bool ena_lse,struct ixgbe_link_status * link)1344 int ixgbe_aci_get_link_info(struct ixgbe_hw *hw, bool ena_lse,
1345 			    struct ixgbe_link_status *link)
1346 {
1347 	struct ixgbe_aci_cmd_get_link_status_data link_data = {};
1348 	struct ixgbe_aci_cmd_get_link_status *resp;
1349 	struct ixgbe_link_status *li_old, *li;
1350 	struct ixgbe_fc_info *hw_fc_info;
1351 	struct libie_aq_desc desc;
1352 	bool tx_pause, rx_pause;
1353 	u8 cmd_flags;
1354 	int err;
1355 
1356 	if (!hw)
1357 		return -EINVAL;
1358 
1359 	li_old = &hw->link.link_info_old;
1360 	li = &hw->link.link_info;
1361 	hw_fc_info = &hw->fc;
1362 
1363 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_status);
1364 	cmd_flags = (ena_lse) ? IXGBE_ACI_LSE_ENA : IXGBE_ACI_LSE_DIS;
1365 	resp = libie_aq_raw(&desc);
1366 	resp->cmd_flags = cpu_to_le16(cmd_flags);
1367 	resp->lport_num = hw->bus.func;
1368 
1369 	err = ixgbe_aci_send_cmd(hw, &desc, &link_data, sizeof(link_data));
1370 	if (err)
1371 		return err;
1372 
1373 	/* Save off old link status information. */
1374 	*li_old = *li;
1375 
1376 	/* Update current link status information. */
1377 	li->link_speed = le16_to_cpu(link_data.link_speed);
1378 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
1379 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
1380 	li->link_info = link_data.link_info;
1381 	li->link_cfg_err = link_data.link_cfg_err;
1382 	li->an_info = link_data.an_info;
1383 	li->ext_info = link_data.ext_info;
1384 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
1385 	li->fec_info = link_data.cfg & IXGBE_ACI_FEC_MASK;
1386 	li->topo_media_conflict = link_data.topo_media_conflict;
1387 	li->pacing = link_data.cfg & (IXGBE_ACI_CFG_PACING_M |
1388 				      IXGBE_ACI_CFG_PACING_TYPE_M);
1389 
1390 	/* Update fc info. */
1391 	tx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_TX);
1392 	rx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_RX);
1393 	if (tx_pause && rx_pause)
1394 		hw_fc_info->current_mode = ixgbe_fc_full;
1395 	else if (tx_pause)
1396 		hw_fc_info->current_mode = ixgbe_fc_tx_pause;
1397 	else if (rx_pause)
1398 		hw_fc_info->current_mode = ixgbe_fc_rx_pause;
1399 	else
1400 		hw_fc_info->current_mode = ixgbe_fc_none;
1401 
1402 	li->lse_ena = !!(le16_to_cpu(resp->cmd_flags) &
1403 			 IXGBE_ACI_LSE_IS_ENABLED);
1404 
1405 	/* Save link status information. */
1406 	if (link)
1407 		*link = *li;
1408 
1409 	/* Flag cleared so calling functions don't call AQ again. */
1410 	hw->link.get_link_info = false;
1411 
1412 	return 0;
1413 }
1414 
1415 /**
1416  * ixgbe_aci_set_event_mask - set event mask
1417  * @hw: pointer to the HW struct
1418  * @port_num: port number of the physical function
1419  * @mask: event mask to be set
1420  *
1421  * Set the event mask using ACI command (0x0613).
1422  *
1423  * Return: the exit code of the operation.
1424  */
ixgbe_aci_set_event_mask(struct ixgbe_hw * hw,u8 port_num,u16 mask)1425 int ixgbe_aci_set_event_mask(struct ixgbe_hw *hw, u8 port_num, u16 mask)
1426 {
1427 	struct ixgbe_aci_cmd_set_event_mask *cmd;
1428 	struct libie_aq_desc desc;
1429 
1430 	cmd = libie_aq_raw(&desc);
1431 
1432 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_event_mask);
1433 
1434 	cmd->lport_num = port_num;
1435 
1436 	cmd->event_mask = cpu_to_le16(mask);
1437 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1438 }
1439 
1440 /**
1441  * ixgbe_configure_lse - enable/disable link status events
1442  * @hw: pointer to the HW struct
1443  * @activate: true for enable lse, false otherwise
1444  * @mask: event mask to be set; a set bit means deactivation of the
1445  * corresponding event
1446  *
1447  * Set the event mask and then enable or disable link status events
1448  *
1449  * Return: the exit code of the operation.
1450  */
ixgbe_configure_lse(struct ixgbe_hw * hw,bool activate,u16 mask)1451 int ixgbe_configure_lse(struct ixgbe_hw *hw, bool activate, u16 mask)
1452 {
1453 	int err;
1454 
1455 	err = ixgbe_aci_set_event_mask(hw, (u8)hw->bus.func, mask);
1456 	if (err)
1457 		return err;
1458 
1459 	/* Enabling link status events generation by fw. */
1460 	return ixgbe_aci_get_link_info(hw, activate, NULL);
1461 }
1462 
1463 /**
1464  * ixgbe_start_hw_e610 - Prepare hardware for Tx/Rx
1465  * @hw: pointer to hardware structure
1466  *
1467  * Get firmware version and start the hardware using the generic
1468  * start_hw() and ixgbe_start_hw_gen2() functions.
1469  *
1470  * Return: the exit code of the operation.
1471  */
ixgbe_start_hw_e610(struct ixgbe_hw * hw)1472 static int ixgbe_start_hw_e610(struct ixgbe_hw *hw)
1473 {
1474 	int err;
1475 
1476 	err = ixgbe_aci_get_fw_ver(hw);
1477 	if (err)
1478 		return err;
1479 
1480 	err = ixgbe_start_hw_generic(hw);
1481 	if (err)
1482 		return err;
1483 
1484 	ixgbe_start_hw_gen2(hw);
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * ixgbe_aci_set_port_id_led - set LED value for the given port
1491  * @hw: pointer to the HW struct
1492  * @orig_mode: set LED original mode
1493  *
1494  * Set LED value for the given port (0x06E9)
1495  *
1496  * Return: the exit code of the operation.
1497  */
ixgbe_aci_set_port_id_led(struct ixgbe_hw * hw,bool orig_mode)1498 int ixgbe_aci_set_port_id_led(struct ixgbe_hw *hw, bool orig_mode)
1499 {
1500 	struct ixgbe_aci_cmd_set_port_id_led *cmd;
1501 	struct libie_aq_desc desc;
1502 
1503 	cmd = libie_aq_raw(&desc);
1504 
1505 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_port_id_led);
1506 
1507 	cmd->lport_num = (u8)hw->bus.func;
1508 	cmd->lport_num_valid = IXGBE_ACI_PORT_ID_PORT_NUM_VALID;
1509 
1510 	if (orig_mode)
1511 		cmd->ident_mode = IXGBE_ACI_PORT_IDENT_LED_ORIG;
1512 	else
1513 		cmd->ident_mode = IXGBE_ACI_PORT_IDENT_LED_BLINK;
1514 
1515 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1516 }
1517 
1518 /**
1519  * ixgbe_get_media_type_e610 - Gets media type
1520  * @hw: pointer to the HW struct
1521  *
1522  * In order to get the media type, the function gets PHY
1523  * capabilities and later on use them to identify the PHY type
1524  * checking phy_type_high and phy_type_low.
1525  *
1526  * Return: the type of media in form of ixgbe_media_type enum
1527  * or ixgbe_media_type_unknown in case of an error.
1528  */
ixgbe_get_media_type_e610(struct ixgbe_hw * hw)1529 enum ixgbe_media_type ixgbe_get_media_type_e610(struct ixgbe_hw *hw)
1530 {
1531 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1532 	int rc;
1533 
1534 	rc = ixgbe_update_link_info(hw);
1535 	if (rc)
1536 		return ixgbe_media_type_unknown;
1537 
1538 	/* If there is no link but PHY (dongle) is available SW should use
1539 	 * Get PHY Caps admin command instead of Get Link Status, find most
1540 	 * significant bit that is set in PHY types reported by the command
1541 	 * and use it to discover media type.
1542 	 */
1543 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP) &&
1544 	    (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) {
1545 		int highest_bit;
1546 
1547 		/* Get PHY Capabilities */
1548 		rc = ixgbe_aci_get_phy_caps(hw, false,
1549 					    IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1550 					    &pcaps);
1551 		if (rc)
1552 			return ixgbe_media_type_unknown;
1553 
1554 		highest_bit = fls64(le64_to_cpu(pcaps.phy_type_high));
1555 		if (highest_bit) {
1556 			hw->link.link_info.phy_type_high =
1557 				BIT_ULL(highest_bit - 1);
1558 			hw->link.link_info.phy_type_low = 0;
1559 		} else {
1560 			highest_bit = fls64(le64_to_cpu(pcaps.phy_type_low));
1561 			if (highest_bit) {
1562 				hw->link.link_info.phy_type_low =
1563 					BIT_ULL(highest_bit - 1);
1564 				hw->link.link_info.phy_type_high = 0;
1565 			}
1566 		}
1567 	}
1568 
1569 	/* Based on link status or search above try to discover media type. */
1570 	hw->phy.media_type = ixgbe_get_media_type_from_phy_type(hw);
1571 
1572 	return hw->phy.media_type;
1573 }
1574 
1575 /**
1576  * ixgbe_setup_link_e610 - Set up link
1577  * @hw: pointer to hardware structure
1578  * @speed: new link speed
1579  * @autoneg_wait: true when waiting for completion is needed
1580  *
1581  * Set up the link with the specified speed.
1582  *
1583  * Return: the exit code of the operation.
1584  */
ixgbe_setup_link_e610(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg_wait)1585 int ixgbe_setup_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed speed,
1586 			  bool autoneg_wait)
1587 {
1588 	/* Simply request FW to perform proper PHY setup */
1589 	return hw->phy.ops.setup_link_speed(hw, speed, autoneg_wait);
1590 }
1591 
1592 /**
1593  * ixgbe_check_link_e610 - Determine link and speed status
1594  * @hw: pointer to hardware structure
1595  * @speed: pointer to link speed
1596  * @link_up: true when link is up
1597  * @link_up_wait_to_complete: bool used to wait for link up or not
1598  *
1599  * Determine if the link is up and the current link speed
1600  * using ACI command (0x0607).
1601  *
1602  * Return: the exit code of the operation.
1603  */
ixgbe_check_link_e610(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)1604 int ixgbe_check_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1605 			  bool *link_up, bool link_up_wait_to_complete)
1606 {
1607 	int err;
1608 	u32 i;
1609 
1610 	if (!speed || !link_up)
1611 		return -EINVAL;
1612 
1613 	/* Set get_link_info flag to ensure that fresh
1614 	 * link information will be obtained from FW
1615 	 * by sending Get Link Status admin command.
1616 	 */
1617 	hw->link.get_link_info = true;
1618 
1619 	/* Update link information in adapter context. */
1620 	err = ixgbe_get_link_status(hw, link_up);
1621 	if (err)
1622 		return err;
1623 
1624 	/* Wait for link up if it was requested. */
1625 	if (link_up_wait_to_complete && !(*link_up)) {
1626 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
1627 			msleep(100);
1628 			hw->link.get_link_info = true;
1629 			err = ixgbe_get_link_status(hw, link_up);
1630 			if (err)
1631 				return err;
1632 			if (*link_up)
1633 				break;
1634 		}
1635 	}
1636 
1637 	/* Use link information in adapter context updated by the call
1638 	 * to ixgbe_get_link_status() to determine current link speed.
1639 	 * Link speed information is valid only when link up was
1640 	 * reported by FW.
1641 	 */
1642 	if (*link_up) {
1643 		switch (hw->link.link_info.link_speed) {
1644 		case IXGBE_ACI_LINK_SPEED_10MB:
1645 			*speed = IXGBE_LINK_SPEED_10_FULL;
1646 			break;
1647 		case IXGBE_ACI_LINK_SPEED_100MB:
1648 			*speed = IXGBE_LINK_SPEED_100_FULL;
1649 			break;
1650 		case IXGBE_ACI_LINK_SPEED_1000MB:
1651 			*speed = IXGBE_LINK_SPEED_1GB_FULL;
1652 			break;
1653 		case IXGBE_ACI_LINK_SPEED_2500MB:
1654 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
1655 			break;
1656 		case IXGBE_ACI_LINK_SPEED_5GB:
1657 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
1658 			break;
1659 		case IXGBE_ACI_LINK_SPEED_10GB:
1660 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
1661 			break;
1662 		default:
1663 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
1664 			break;
1665 		}
1666 	} else {
1667 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * ixgbe_get_link_capabilities_e610 - Determine link capabilities
1675  * @hw: pointer to hardware structure
1676  * @speed: pointer to link speed
1677  * @autoneg: true when autoneg or autotry is enabled
1678  *
1679  * Determine speed and AN parameters of a link.
1680  *
1681  * Return: the exit code of the operation.
1682  */
ixgbe_get_link_capabilities_e610(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * autoneg)1683 int ixgbe_get_link_capabilities_e610(struct ixgbe_hw *hw,
1684 				     ixgbe_link_speed *speed,
1685 				     bool *autoneg)
1686 {
1687 	if (!speed || !autoneg)
1688 		return -EINVAL;
1689 
1690 	*autoneg = true;
1691 	*speed = hw->phy.speeds_supported;
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * ixgbe_cfg_phy_fc - Configure PHY Flow Control (FC) data based on FC mode
1698  * @hw: pointer to hardware structure
1699  * @cfg: PHY configuration data to set FC mode
1700  * @req_mode: FC mode to configure
1701  *
1702  * Configures PHY Flow Control according to the provided configuration.
1703  *
1704  * Return: the exit code of the operation.
1705  */
ixgbe_cfg_phy_fc(struct ixgbe_hw * hw,struct ixgbe_aci_cmd_set_phy_cfg_data * cfg,enum ixgbe_fc_mode req_mode)1706 int ixgbe_cfg_phy_fc(struct ixgbe_hw *hw,
1707 		     struct ixgbe_aci_cmd_set_phy_cfg_data *cfg,
1708 		     enum ixgbe_fc_mode req_mode)
1709 {
1710 	u8 pause_mask = 0x0;
1711 
1712 	if (!cfg)
1713 		return -EINVAL;
1714 
1715 	switch (req_mode) {
1716 	case ixgbe_fc_full:
1717 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1718 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1719 		break;
1720 	case ixgbe_fc_rx_pause:
1721 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1722 		break;
1723 	case ixgbe_fc_tx_pause:
1724 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1725 		break;
1726 	default:
1727 		break;
1728 	}
1729 
1730 	/* Clear the old pause settings. */
1731 	cfg->caps &= ~(IXGBE_ACI_PHY_EN_TX_LINK_PAUSE |
1732 		IXGBE_ACI_PHY_EN_RX_LINK_PAUSE);
1733 
1734 	/* Set the new capabilities. */
1735 	cfg->caps |= pause_mask;
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * ixgbe_setup_fc_e610 - Set up flow control
1742  * @hw: pointer to hardware structure
1743  *
1744  * Set up flow control. This has to be done during init time.
1745  *
1746  * Return: the exit code of the operation.
1747  */
ixgbe_setup_fc_e610(struct ixgbe_hw * hw)1748 int ixgbe_setup_fc_e610(struct ixgbe_hw *hw)
1749 {
1750 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps = {};
1751 	struct ixgbe_aci_cmd_set_phy_cfg_data cfg = {};
1752 	int err;
1753 
1754 	/* Get the current PHY config */
1755 	err = ixgbe_aci_get_phy_caps(hw, false,
1756 				     IXGBE_ACI_REPORT_ACTIVE_CFG, &pcaps);
1757 	if (err)
1758 		return err;
1759 
1760 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &cfg);
1761 
1762 	/* Configure the set PHY data */
1763 	err = ixgbe_cfg_phy_fc(hw, &cfg, hw->fc.requested_mode);
1764 	if (err)
1765 		return err;
1766 
1767 	/* If the capabilities have changed, then set the new config */
1768 	if (cfg.caps != pcaps.caps) {
1769 		cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
1770 
1771 		err = ixgbe_aci_set_phy_cfg(hw, &cfg);
1772 		if (err)
1773 			return err;
1774 	}
1775 
1776 	return err;
1777 }
1778 
1779 /**
1780  * ixgbe_fc_autoneg_e610 - Configure flow control
1781  * @hw: pointer to hardware structure
1782  *
1783  * Configure Flow Control.
1784  */
ixgbe_fc_autoneg_e610(struct ixgbe_hw * hw)1785 void ixgbe_fc_autoneg_e610(struct ixgbe_hw *hw)
1786 {
1787 	int err;
1788 
1789 	/* Get current link err.
1790 	 * Current FC mode will be stored in the hw context.
1791 	 */
1792 	err = ixgbe_aci_get_link_info(hw, false, NULL);
1793 	if (err)
1794 		goto no_autoneg;
1795 
1796 	/* Check if the link is up */
1797 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP))
1798 		goto no_autoneg;
1799 
1800 	/* Check if auto-negotiation has completed */
1801 	if (!(hw->link.link_info.an_info & IXGBE_ACI_AN_COMPLETED))
1802 		goto no_autoneg;
1803 
1804 	hw->fc.fc_was_autonegged = true;
1805 	return;
1806 
1807 no_autoneg:
1808 	hw->fc.fc_was_autonegged = false;
1809 	hw->fc.current_mode = hw->fc.requested_mode;
1810 }
1811 
1812 /**
1813  * ixgbe_disable_rx_e610 - Disable RX unit
1814  * @hw: pointer to hardware structure
1815  *
1816  * Disable RX DMA unit on E610 with use of ACI command (0x000C).
1817  *
1818  * Return: the exit code of the operation.
1819  */
ixgbe_disable_rx_e610(struct ixgbe_hw * hw)1820 void ixgbe_disable_rx_e610(struct ixgbe_hw *hw)
1821 {
1822 	u32 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1823 	u32 pfdtxgswc;
1824 	int err;
1825 
1826 	if (!(rxctrl & IXGBE_RXCTRL_RXEN))
1827 		return;
1828 
1829 	pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
1830 	if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
1831 		pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
1832 		IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
1833 		hw->mac.set_lben = true;
1834 	} else {
1835 		hw->mac.set_lben = false;
1836 	}
1837 
1838 	err = ixgbe_aci_disable_rxen(hw);
1839 
1840 	/* If we fail - disable RX using register write */
1841 	if (err) {
1842 		rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1843 		if (rxctrl & IXGBE_RXCTRL_RXEN) {
1844 			rxctrl &= ~IXGBE_RXCTRL_RXEN;
1845 			IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
1846 		}
1847 	}
1848 }
1849 
1850 /**
1851  * ixgbe_fw_recovery_mode_e610 - Check FW NVM recovery mode
1852  * @hw: pointer to hardware structure
1853  *
1854  * Check FW NVM recovery mode by reading the value of
1855  * the dedicated register.
1856  *
1857  * Return: true if FW is in recovery mode, otherwise false.
1858  */
ixgbe_fw_recovery_mode_e610(struct ixgbe_hw * hw)1859 static bool ixgbe_fw_recovery_mode_e610(struct ixgbe_hw *hw)
1860 {
1861 	u32 fwsm = IXGBE_READ_REG(hw, IXGBE_GL_MNG_FWSM);
1862 
1863 	return !!(fwsm & IXGBE_GL_MNG_FWSM_RECOVERY_M);
1864 }
1865 
1866 /**
1867  * ixgbe_fw_rollback_mode_e610 - Check FW NVM rollback mode
1868  * @hw: pointer to hardware structure
1869  *
1870  * Check FW NVM rollback mode by reading the value of
1871  * the dedicated register.
1872  *
1873  * Return: true if FW is in rollback mode, otherwise false.
1874  */
ixgbe_fw_rollback_mode_e610(struct ixgbe_hw * hw)1875 static bool ixgbe_fw_rollback_mode_e610(struct ixgbe_hw *hw)
1876 {
1877 	u32 fwsm = IXGBE_READ_REG(hw, IXGBE_GL_MNG_FWSM);
1878 
1879 	return !!(fwsm & IXGBE_GL_MNG_FWSM_ROLLBACK_M);
1880 }
1881 
1882 /**
1883  * ixgbe_init_phy_ops_e610 - PHY specific init
1884  * @hw: pointer to hardware structure
1885  *
1886  * Initialize any function pointers that were not able to be
1887  * set during init_shared_code because the PHY type was not known.
1888  *
1889  * Return: the exit code of the operation.
1890  */
ixgbe_init_phy_ops_e610(struct ixgbe_hw * hw)1891 int ixgbe_init_phy_ops_e610(struct ixgbe_hw *hw)
1892 {
1893 	struct ixgbe_mac_info *mac = &hw->mac;
1894 	struct ixgbe_phy_info *phy = &hw->phy;
1895 
1896 	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper)
1897 		phy->ops.set_phy_power = ixgbe_set_phy_power_e610;
1898 	else
1899 		phy->ops.set_phy_power = NULL;
1900 
1901 	/* Identify the PHY */
1902 	return phy->ops.identify(hw);
1903 }
1904 
1905 /**
1906  * ixgbe_identify_phy_e610 - Identify PHY
1907  * @hw: pointer to hardware structure
1908  *
1909  * Determine PHY type, supported speeds and PHY ID.
1910  *
1911  * Return: the exit code of the operation.
1912  */
ixgbe_identify_phy_e610(struct ixgbe_hw * hw)1913 int ixgbe_identify_phy_e610(struct ixgbe_hw *hw)
1914 {
1915 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1916 	u64 phy_type_low, phy_type_high;
1917 	int err;
1918 
1919 	/* Set PHY type */
1920 	hw->phy.type = ixgbe_phy_fw;
1921 
1922 	err = ixgbe_aci_get_phy_caps(hw, false,
1923 				     IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, &pcaps);
1924 	if (err)
1925 		return err;
1926 
1927 	if (!(pcaps.module_compliance_enforcement &
1928 	      IXGBE_ACI_MOD_ENFORCE_STRICT_MODE)) {
1929 		/* Handle lenient mode */
1930 		err = ixgbe_aci_get_phy_caps(hw, false,
1931 					     IXGBE_ACI_REPORT_TOPO_CAP_NO_MEDIA,
1932 					     &pcaps);
1933 		if (err)
1934 			return err;
1935 	}
1936 
1937 	/* Determine supported speeds */
1938 	hw->phy.speeds_supported = IXGBE_LINK_SPEED_UNKNOWN;
1939 	phy_type_high = le64_to_cpu(pcaps.phy_type_high);
1940 	phy_type_low = le64_to_cpu(pcaps.phy_type_low);
1941 
1942 	if (phy_type_high & IXGBE_PHY_TYPE_HIGH_10BASE_T ||
1943 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10M_SGMII)
1944 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10_FULL;
1945 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_100BASE_TX ||
1946 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_100M_SGMII ||
1947 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_100M_USXGMII)
1948 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1949 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_T  ||
1950 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_SX ||
1951 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_LX ||
1952 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_KX ||
1953 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1G_SGMII    ||
1954 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_1G_USXGMII)
1955 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1956 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_T   ||
1957 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_X   ||
1958 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_KX  ||
1959 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_SGMII ||
1960 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_USXGMII)
1961 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1962 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_T  ||
1963 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_KR ||
1964 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_5G_USXGMII)
1965 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1966 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_T       ||
1967 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_DA      ||
1968 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_SR      ||
1969 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_LR      ||
1970 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1  ||
1971 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC ||
1972 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_C2C     ||
1973 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10G_USXGMII)
1974 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1975 
1976 	/* Initialize autoneg speeds */
1977 	if (!hw->phy.autoneg_advertised)
1978 		hw->phy.autoneg_advertised = hw->phy.speeds_supported;
1979 
1980 	/* Set PHY ID */
1981 	memcpy(&hw->phy.id, pcaps.phy_id_oui, sizeof(u32));
1982 
1983 	hw->phy.eee_speeds_supported = IXGBE_LINK_SPEED_10_FULL |
1984 				       IXGBE_LINK_SPEED_100_FULL |
1985 				       IXGBE_LINK_SPEED_1GB_FULL;
1986 	hw->phy.eee_speeds_advertised = hw->phy.eee_speeds_supported;
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  * ixgbe_identify_module_e610 - Identify SFP module type
1993  * @hw: pointer to hardware structure
1994  *
1995  * Identify the SFP module type.
1996  *
1997  * Return: the exit code of the operation.
1998  */
ixgbe_identify_module_e610(struct ixgbe_hw * hw)1999 int ixgbe_identify_module_e610(struct ixgbe_hw *hw)
2000 {
2001 	bool media_available;
2002 	u8 module_type;
2003 	int err;
2004 
2005 	err = ixgbe_update_link_info(hw);
2006 	if (err)
2007 		return err;
2008 
2009 	media_available =
2010 		(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE);
2011 
2012 	if (media_available) {
2013 		hw->phy.sfp_type = ixgbe_sfp_type_unknown;
2014 
2015 		/* Get module type from hw context updated by
2016 		 * ixgbe_update_link_info()
2017 		 */
2018 		module_type = hw->link.link_info.module_type[IXGBE_ACI_MOD_TYPE_IDENT];
2019 
2020 		if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE) ||
2021 		    (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE)) {
2022 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
2023 		} else if (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_SR) {
2024 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
2025 		} else if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LR) ||
2026 			   (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LRM)) {
2027 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
2028 		}
2029 	} else {
2030 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
2031 		return -ENOENT;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 /**
2038  * ixgbe_setup_phy_link_e610 - Sets up firmware-controlled PHYs
2039  * @hw: pointer to hardware structure
2040  *
2041  * Set the parameters for the firmware-controlled PHYs.
2042  *
2043  * Return: the exit code of the operation.
2044  */
ixgbe_setup_phy_link_e610(struct ixgbe_hw * hw)2045 int ixgbe_setup_phy_link_e610(struct ixgbe_hw *hw)
2046 {
2047 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
2048 	struct ixgbe_aci_cmd_set_phy_cfg_data pcfg;
2049 	u8 rmode = IXGBE_ACI_REPORT_TOPO_CAP_MEDIA;
2050 	u64 sup_phy_type_low, sup_phy_type_high;
2051 	u64 phy_type_low = 0, phy_type_high = 0;
2052 	int err;
2053 
2054 	err = ixgbe_aci_get_link_info(hw, false, NULL);
2055 	if (err)
2056 		return err;
2057 
2058 	/* If media is not available get default config. */
2059 	if (!(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE))
2060 		rmode = IXGBE_ACI_REPORT_DFLT_CFG;
2061 
2062 	err = ixgbe_aci_get_phy_caps(hw, false, rmode, &pcaps);
2063 	if (err)
2064 		return err;
2065 
2066 	sup_phy_type_low = le64_to_cpu(pcaps.phy_type_low);
2067 	sup_phy_type_high = le64_to_cpu(pcaps.phy_type_high);
2068 
2069 	/* Get Active configuration to avoid unintended changes. */
2070 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_ACTIVE_CFG,
2071 				     &pcaps);
2072 	if (err)
2073 		return err;
2074 
2075 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &pcfg);
2076 
2077 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10_FULL) {
2078 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10BASE_T;
2079 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10M_SGMII;
2080 	}
2081 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) {
2082 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100BASE_TX;
2083 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100M_SGMII;
2084 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_100M_USXGMII;
2085 	}
2086 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) {
2087 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_T;
2088 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_SX;
2089 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_LX;
2090 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_KX;
2091 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1G_SGMII;
2092 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_1G_USXGMII;
2093 	}
2094 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) {
2095 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_T;
2096 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_X;
2097 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_KX;
2098 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_SGMII;
2099 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_USXGMII;
2100 	}
2101 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) {
2102 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_T;
2103 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_KR;
2104 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_5G_USXGMII;
2105 	}
2106 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) {
2107 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_T;
2108 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_DA;
2109 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_SR;
2110 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_LR;
2111 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1;
2112 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC;
2113 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_C2C;
2114 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10G_USXGMII;
2115 	}
2116 
2117 	/* Mask the set values to avoid requesting unsupported link types. */
2118 	phy_type_low &= sup_phy_type_low;
2119 	pcfg.phy_type_low = cpu_to_le64(phy_type_low);
2120 	phy_type_high &= sup_phy_type_high;
2121 	pcfg.phy_type_high = cpu_to_le64(phy_type_high);
2122 
2123 	if (pcfg.phy_type_high != pcaps.phy_type_high ||
2124 	    pcfg.phy_type_low != pcaps.phy_type_low ||
2125 	    pcfg.caps != pcaps.caps) {
2126 		pcfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2127 		pcfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2128 
2129 		err = ixgbe_aci_set_phy_cfg(hw, &pcfg);
2130 		if (err)
2131 			return err;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /**
2138  * ixgbe_set_phy_power_e610 - Control power for copper PHY
2139  * @hw: pointer to hardware structure
2140  * @on: true for on, false for off
2141  *
2142  * Set the power on/off of the PHY
2143  * by getting its capabilities and setting the appropriate
2144  * configuration parameters.
2145  *
2146  * Return: the exit code of the operation.
2147  */
ixgbe_set_phy_power_e610(struct ixgbe_hw * hw,bool on)2148 int ixgbe_set_phy_power_e610(struct ixgbe_hw *hw, bool on)
2149 {
2150 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2151 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2152 	int err;
2153 
2154 	err = ixgbe_aci_get_phy_caps(hw, false,
2155 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2156 				     &phy_caps);
2157 	if (err)
2158 		return err;
2159 
2160 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2161 
2162 	if (on)
2163 		phy_cfg.caps &= ~IXGBE_ACI_PHY_ENA_LOW_POWER;
2164 	else
2165 		phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LOW_POWER;
2166 
2167 	/* PHY is already in requested power mode. */
2168 	if (phy_caps.caps == phy_cfg.caps)
2169 		return 0;
2170 
2171 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2172 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2173 
2174 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2175 }
2176 
2177 /**
2178  * ixgbe_enter_lplu_e610 - Transition to low power states
2179  * @hw: pointer to hardware structure
2180  *
2181  * Configures Low Power Link Up on transition to low power states
2182  * (from D0 to non-D0). Link is required to enter LPLU so avoid resetting the
2183  * X557 PHY immediately prior to entering LPLU.
2184  *
2185  * Return: the exit code of the operation.
2186  */
ixgbe_enter_lplu_e610(struct ixgbe_hw * hw)2187 int ixgbe_enter_lplu_e610(struct ixgbe_hw *hw)
2188 {
2189 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2190 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2191 	int err;
2192 
2193 	err = ixgbe_aci_get_phy_caps(hw, false,
2194 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2195 				     &phy_caps);
2196 	if (err)
2197 		return err;
2198 
2199 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2200 
2201 	phy_cfg.low_power_ctrl_an |= IXGBE_ACI_PHY_EN_D3COLD_LOW_POWER_AUTONEG;
2202 
2203 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2204 }
2205 
2206 /**
2207  * ixgbe_init_eeprom_params_e610 - Initialize EEPROM params
2208  * @hw: pointer to hardware structure
2209  *
2210  * Initialize the EEPROM parameters ixgbe_eeprom_info within the ixgbe_hw
2211  * struct in order to set up EEPROM access.
2212  *
2213  * Return: the operation exit code.
2214  */
ixgbe_init_eeprom_params_e610(struct ixgbe_hw * hw)2215 int ixgbe_init_eeprom_params_e610(struct ixgbe_hw *hw)
2216 {
2217 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
2218 	u32 gens_stat;
2219 	u8 sr_size;
2220 
2221 	if (eeprom->type != ixgbe_eeprom_uninitialized)
2222 		return 0;
2223 
2224 	eeprom->type = ixgbe_flash;
2225 
2226 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
2227 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
2228 
2229 	/* Switching to words (sr_size contains power of 2). */
2230 	eeprom->word_size = BIT(sr_size) * IXGBE_SR_WORDS_IN_1KB;
2231 
2232 	hw_dbg(hw, "Eeprom params: type = %d, size = %d\n", eeprom->type,
2233 	       eeprom->word_size);
2234 
2235 	return 0;
2236 }
2237 
2238 /**
2239  * ixgbe_aci_get_netlist_node - get a node handle
2240  * @hw: pointer to the hw struct
2241  * @cmd: get_link_topo AQ structure
2242  * @node_part_number: output node part number if node found
2243  * @node_handle: output node handle parameter if node found
2244  *
2245  * Get the netlist node and assigns it to
2246  * the provided handle using ACI command (0x06E0).
2247  *
2248  * Return: the exit code of the operation.
2249  */
ixgbe_aci_get_netlist_node(struct ixgbe_hw * hw,struct ixgbe_aci_cmd_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)2250 int ixgbe_aci_get_netlist_node(struct ixgbe_hw *hw,
2251 			       struct ixgbe_aci_cmd_get_link_topo *cmd,
2252 			       u8 *node_part_number, u16 *node_handle)
2253 {
2254 	struct ixgbe_aci_cmd_get_link_topo *resp;
2255 	struct libie_aq_desc desc;
2256 
2257 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
2258 	resp = libie_aq_raw(&desc);
2259 	*resp = *cmd;
2260 
2261 	if (ixgbe_aci_send_cmd(hw, &desc, NULL, 0))
2262 		return -EOPNOTSUPP;
2263 
2264 	if (node_handle)
2265 		*node_handle = le16_to_cpu(resp->addr.handle);
2266 	if (node_part_number)
2267 		*node_part_number = resp->node_part_num;
2268 
2269 	return 0;
2270 }
2271 
2272 /**
2273  * ixgbe_acquire_nvm - Generic request for acquiring the NVM ownership
2274  * @hw: pointer to the HW structure
2275  * @access: NVM access type (read or write)
2276  *
2277  * Request NVM ownership.
2278  *
2279  * Return: the exit code of the operation.
2280  */
ixgbe_acquire_nvm(struct ixgbe_hw * hw,enum libie_aq_res_access_type access)2281 int ixgbe_acquire_nvm(struct ixgbe_hw *hw, enum libie_aq_res_access_type access)
2282 {
2283 	u32 fla;
2284 
2285 	/* Skip if we are in blank NVM programming mode */
2286 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2287 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2288 		return 0;
2289 
2290 	return ixgbe_acquire_res(hw, LIBIE_AQC_RES_ID_NVM, access,
2291 				 IXGBE_NVM_TIMEOUT);
2292 }
2293 
2294 /**
2295  * ixgbe_release_nvm - Generic request for releasing the NVM ownership
2296  * @hw: pointer to the HW structure
2297  *
2298  * Release NVM ownership.
2299  */
ixgbe_release_nvm(struct ixgbe_hw * hw)2300 void ixgbe_release_nvm(struct ixgbe_hw *hw)
2301 {
2302 	u32 fla;
2303 
2304 	/* Skip if we are in blank NVM programming mode */
2305 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2306 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2307 		return;
2308 
2309 	ixgbe_release_res(hw, LIBIE_AQC_RES_ID_NVM);
2310 }
2311 
2312 /**
2313  * ixgbe_aci_read_nvm - read NVM
2314  * @hw: pointer to the HW struct
2315  * @module_typeid: module pointer location in words from the NVM beginning
2316  * @offset: byte offset from the module beginning
2317  * @length: length of the section to be read (in bytes from the offset)
2318  * @data: command buffer (size [bytes] = length)
2319  * @last_command: tells if this is the last command in a series
2320  * @read_shadow_ram: tell if this is a shadow RAM read
2321  *
2322  * Read the NVM using ACI command (0x0701).
2323  *
2324  * Return: the exit code of the operation.
2325  */
ixgbe_aci_read_nvm(struct ixgbe_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram)2326 int ixgbe_aci_read_nvm(struct ixgbe_hw *hw, u16 module_typeid, u32 offset,
2327 		       u16 length, void *data, bool last_command,
2328 		       bool read_shadow_ram)
2329 {
2330 	struct ixgbe_aci_cmd_nvm *cmd;
2331 	struct libie_aq_desc desc;
2332 
2333 	if (offset > IXGBE_ACI_NVM_MAX_OFFSET)
2334 		return -EINVAL;
2335 
2336 	cmd = libie_aq_raw(&desc);
2337 
2338 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_read);
2339 
2340 	if (!read_shadow_ram && module_typeid == IXGBE_ACI_NVM_START_POINT)
2341 		cmd->cmd_flags |= IXGBE_ACI_NVM_FLASH_ONLY;
2342 
2343 	/* If this is the last command in a series, set the proper flag. */
2344 	if (last_command)
2345 		cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD;
2346 	cmd->module_typeid = cpu_to_le16(module_typeid);
2347 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
2348 	cmd->offset_high = (offset >> 16) & 0xFF;
2349 	cmd->length = cpu_to_le16(length);
2350 
2351 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
2352 }
2353 
2354 /**
2355  * ixgbe_aci_erase_nvm - erase NVM sector
2356  * @hw: pointer to the HW struct
2357  * @module_typeid: module pointer location in words from the NVM beginning
2358  *
2359  * Erase the NVM sector using the ACI command (0x0702).
2360  *
2361  * Return: the exit code of the operation.
2362  */
ixgbe_aci_erase_nvm(struct ixgbe_hw * hw,u16 module_typeid)2363 int ixgbe_aci_erase_nvm(struct ixgbe_hw *hw, u16 module_typeid)
2364 {
2365 	struct ixgbe_aci_cmd_nvm *cmd;
2366 	struct libie_aq_desc desc;
2367 	__le16 len;
2368 	int err;
2369 
2370 	/* Read a length value from SR, so module_typeid is equal to 0,
2371 	 * calculate offset where module size is placed from bytes to words
2372 	 * set last command and read from SR values to true.
2373 	 */
2374 	err = ixgbe_aci_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true,
2375 				 true);
2376 	if (err)
2377 		return err;
2378 
2379 	cmd = libie_aq_raw(&desc);
2380 
2381 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_erase);
2382 
2383 	cmd->module_typeid = cpu_to_le16(module_typeid);
2384 	cmd->length = len;
2385 	cmd->offset_low = 0;
2386 	cmd->offset_high = 0;
2387 
2388 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2389 }
2390 
2391 /**
2392  * ixgbe_aci_update_nvm - update NVM
2393  * @hw: pointer to the HW struct
2394  * @module_typeid: module pointer location in words from the NVM beginning
2395  * @offset: byte offset from the module beginning
2396  * @length: length of the section to be written (in bytes from the offset)
2397  * @data: command buffer (size [bytes] = length)
2398  * @last_command: tells if this is the last command in a series
2399  * @command_flags: command parameters
2400  *
2401  * Update the NVM using the ACI command (0x0703).
2402  *
2403  * Return: the exit code of the operation.
2404  */
ixgbe_aci_update_nvm(struct ixgbe_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags)2405 int ixgbe_aci_update_nvm(struct ixgbe_hw *hw, u16 module_typeid,
2406 			 u32 offset, u16 length, void *data,
2407 			 bool last_command, u8 command_flags)
2408 {
2409 	struct ixgbe_aci_cmd_nvm *cmd;
2410 	struct libie_aq_desc desc;
2411 
2412 	cmd = libie_aq_raw(&desc);
2413 
2414 	/* In offset the highest byte must be zeroed. */
2415 	if (offset & 0xFF000000)
2416 		return -EINVAL;
2417 
2418 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_write);
2419 
2420 	cmd->cmd_flags |= command_flags;
2421 
2422 	/* If this is the last command in a series, set the proper flag. */
2423 	if (last_command)
2424 		cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD;
2425 	cmd->module_typeid = cpu_to_le16(module_typeid);
2426 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
2427 	cmd->offset_high = FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_U_MASK, offset);
2428 	cmd->length = cpu_to_le16(length);
2429 
2430 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2431 
2432 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
2433 }
2434 
2435 /**
2436  * ixgbe_nvm_write_activate - NVM activate write
2437  * @hw: pointer to the HW struct
2438  * @cmd_flags: flags for write activate command
2439  * @response_flags: response indicators from firmware
2440  *
2441  * Update the control word with the required banks' validity bits
2442  * and dumps the Shadow RAM to flash using ACI command (0x0707).
2443  *
2444  * cmd_flags controls which banks to activate, the preservation level to use
2445  * when activating the NVM bank, and whether an EMP reset is required for
2446  * activation.
2447  *
2448  * Note that the 16bit cmd_flags value is split between two separate 1 byte
2449  * flag values in the descriptor.
2450  *
2451  * On successful return of the firmware command, the response_flags variable
2452  * is updated with the flags reported by firmware indicating certain status,
2453  * such as whether EMP reset is enabled.
2454  *
2455  * Return: the exit code of the operation.
2456  */
ixgbe_nvm_write_activate(struct ixgbe_hw * hw,u16 cmd_flags,u8 * response_flags)2457 int ixgbe_nvm_write_activate(struct ixgbe_hw *hw, u16 cmd_flags,
2458 			     u8 *response_flags)
2459 {
2460 	struct ixgbe_aci_cmd_nvm *cmd;
2461 	struct libie_aq_desc desc;
2462 	s32 err;
2463 
2464 	cmd = libie_aq_raw(&desc);
2465 	ixgbe_fill_dflt_direct_cmd_desc(&desc,
2466 					ixgbe_aci_opc_nvm_write_activate);
2467 
2468 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
2469 	cmd->offset_high = (u8)FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_A_MASK,
2470 					 cmd_flags);
2471 
2472 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2473 	if (!err && response_flags)
2474 		*response_flags = cmd->cmd_flags;
2475 
2476 	return err;
2477 }
2478 
2479 /**
2480  * ixgbe_nvm_validate_checksum - validate checksum
2481  * @hw: pointer to the HW struct
2482  *
2483  * Verify NVM PFA checksum validity using ACI command (0x0706).
2484  * If the checksum verification failed, IXGBE_ERR_NVM_CHECKSUM is returned.
2485  * The function acquires and then releases the NVM ownership.
2486  *
2487  * Return: the exit code of the operation.
2488  */
ixgbe_nvm_validate_checksum(struct ixgbe_hw * hw)2489 int ixgbe_nvm_validate_checksum(struct ixgbe_hw *hw)
2490 {
2491 	struct ixgbe_aci_cmd_nvm_checksum *cmd;
2492 	struct libie_aq_desc desc;
2493 	int err;
2494 
2495 	err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
2496 	if (err)
2497 		return err;
2498 
2499 	cmd = libie_aq_raw(&desc);
2500 
2501 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_checksum);
2502 	cmd->flags = IXGBE_ACI_NVM_CHECKSUM_VERIFY;
2503 
2504 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2505 
2506 	ixgbe_release_nvm(hw);
2507 
2508 	if (!err && cmd->checksum !=
2509 		cpu_to_le16(IXGBE_ACI_NVM_CHECKSUM_CORRECT)) {
2510 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
2511 							     hw);
2512 
2513 		err = -EIO;
2514 		netdev_err(adapter->netdev, "Invalid Shadow Ram checksum");
2515 	}
2516 
2517 	return err;
2518 }
2519 
2520 /**
2521  * ixgbe_discover_flash_size - Discover the available flash size
2522  * @hw: pointer to the HW struct
2523  *
2524  * The device flash could be up to 16MB in size. However, it is possible that
2525  * the actual size is smaller. Use bisection to determine the accessible size
2526  * of flash memory.
2527  *
2528  * Return: the exit code of the operation.
2529  */
ixgbe_discover_flash_size(struct ixgbe_hw * hw)2530 static int ixgbe_discover_flash_size(struct ixgbe_hw *hw)
2531 {
2532 	u32 min_size = 0, max_size = IXGBE_ACI_NVM_MAX_OFFSET + 1;
2533 	int err;
2534 
2535 	err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
2536 	if (err)
2537 		return err;
2538 
2539 	while ((max_size - min_size) > 1) {
2540 		u32 offset = (max_size + min_size) / 2;
2541 		u32 len = 1;
2542 		u8 data;
2543 
2544 		err = ixgbe_read_flat_nvm(hw, offset, &len, &data, false);
2545 		if (err == -EIO &&
2546 		    hw->aci.last_status == LIBIE_AQ_RC_EINVAL) {
2547 			err = 0;
2548 			max_size = offset;
2549 		} else if (!err) {
2550 			min_size = offset;
2551 		} else {
2552 			/* an unexpected error occurred */
2553 			goto err_read_flat_nvm;
2554 		}
2555 	}
2556 
2557 	hw->flash.flash_size = max_size;
2558 
2559 err_read_flat_nvm:
2560 	ixgbe_release_nvm(hw);
2561 
2562 	return err;
2563 }
2564 
2565 /**
2566  * ixgbe_read_sr_base_address - Read the value of a Shadow RAM pointer word
2567  * @hw: pointer to the HW structure
2568  * @offset: the word offset of the Shadow RAM word to read
2569  * @pointer: pointer value read from Shadow RAM
2570  *
2571  * Read the given Shadow RAM word, and convert it to a pointer value specified
2572  * in bytes. This function assumes the specified offset is a valid pointer
2573  * word.
2574  *
2575  * Each pointer word specifies whether it is stored in word size or 4KB
2576  * sector size by using the highest bit. The reported pointer value will be in
2577  * bytes, intended for flat NVM reads.
2578  *
2579  * Return: the exit code of the operation.
2580  */
ixgbe_read_sr_base_address(struct ixgbe_hw * hw,u16 offset,u32 * pointer)2581 static int ixgbe_read_sr_base_address(struct ixgbe_hw *hw, u16 offset,
2582 				      u32 *pointer)
2583 {
2584 	u16 value;
2585 	int err;
2586 
2587 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2588 	if (err)
2589 		return err;
2590 
2591 	/* Determine if the pointer is in 4KB or word units */
2592 	if (value & IXGBE_SR_NVM_PTR_4KB_UNITS)
2593 		*pointer = (value & ~IXGBE_SR_NVM_PTR_4KB_UNITS) * SZ_4K;
2594 	else
2595 		*pointer = value * sizeof(u16);
2596 
2597 	return 0;
2598 }
2599 
2600 /**
2601  * ixgbe_read_sr_area_size - Read an area size from a Shadow RAM word
2602  * @hw: pointer to the HW structure
2603  * @offset: the word offset of the Shadow RAM to read
2604  * @size: size value read from the Shadow RAM
2605  *
2606  * Read the given Shadow RAM word, and convert it to an area size value
2607  * specified in bytes. This function assumes the specified offset is a valid
2608  * area size word.
2609  *
2610  * Each area size word is specified in 4KB sector units. This function reports
2611  * the size in bytes, intended for flat NVM reads.
2612  *
2613  * Return: the exit code of the operation.
2614  */
ixgbe_read_sr_area_size(struct ixgbe_hw * hw,u16 offset,u32 * size)2615 static int ixgbe_read_sr_area_size(struct ixgbe_hw *hw, u16 offset, u32 *size)
2616 {
2617 	u16 value;
2618 	int err;
2619 
2620 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2621 	if (err)
2622 		return err;
2623 
2624 	/* Area sizes are always specified in 4KB units */
2625 	*size = value * SZ_4K;
2626 
2627 	return 0;
2628 }
2629 
2630 /**
2631  * ixgbe_determine_active_flash_banks - Discover active bank for each module
2632  * @hw: pointer to the HW struct
2633  *
2634  * Read the Shadow RAM control word and determine which banks are active for
2635  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
2636  * pointer and size. These values are then cached into the ixgbe_flash_info
2637  * structure for later use in order to calculate the correct offset to read
2638  * from the active module.
2639  *
2640  * Return: the exit code of the operation.
2641  */
ixgbe_determine_active_flash_banks(struct ixgbe_hw * hw)2642 static int ixgbe_determine_active_flash_banks(struct ixgbe_hw *hw)
2643 {
2644 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2645 	u16 ctrl_word;
2646 	int err;
2647 
2648 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_NVM_CTRL_WORD,
2649 				     &ctrl_word);
2650 	if (err)
2651 		return err;
2652 
2653 	if (FIELD_GET(IXGBE_SR_CTRL_WORD_1_M, ctrl_word) !=
2654 	    IXGBE_SR_CTRL_WORD_VALID)
2655 		return -ENODATA;
2656 
2657 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NVM_BANK))
2658 		banks->nvm_bank = IXGBE_1ST_FLASH_BANK;
2659 	else
2660 		banks->nvm_bank = IXGBE_2ND_FLASH_BANK;
2661 
2662 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_OROM_BANK))
2663 		banks->orom_bank = IXGBE_1ST_FLASH_BANK;
2664 	else
2665 		banks->orom_bank = IXGBE_2ND_FLASH_BANK;
2666 
2667 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NETLIST_BANK))
2668 		banks->netlist_bank = IXGBE_1ST_FLASH_BANK;
2669 	else
2670 		banks->netlist_bank = IXGBE_2ND_FLASH_BANK;
2671 
2672 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2673 					 &banks->nvm_ptr);
2674 	if (err)
2675 		return err;
2676 
2677 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NVM_BANK_SIZE,
2678 				      &banks->nvm_size);
2679 	if (err)
2680 		return err;
2681 
2682 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2683 					 &banks->orom_ptr);
2684 	if (err)
2685 		return err;
2686 
2687 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_OROM_BANK_SIZE,
2688 				      &banks->orom_size);
2689 	if (err)
2690 		return err;
2691 
2692 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_NETLIST_BANK_PTR,
2693 					 &banks->netlist_ptr);
2694 	if (err)
2695 		return err;
2696 
2697 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NETLIST_BANK_SIZE,
2698 				      &banks->netlist_size);
2699 
2700 	return err;
2701 }
2702 
2703 /**
2704  * ixgbe_get_flash_bank_offset - Get offset into requested flash bank
2705  * @hw: pointer to the HW structure
2706  * @bank: whether to read from the active or inactive flash bank
2707  * @module: the module to read from
2708  *
2709  * Based on the module, lookup the module offset from the beginning of the
2710  * flash.
2711  *
2712  * Return: the flash offset. Note that a value of zero is invalid and must be
2713  * treated as an error.
2714  */
ixgbe_get_flash_bank_offset(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u16 module)2715 static int ixgbe_get_flash_bank_offset(struct ixgbe_hw *hw,
2716 				       enum ixgbe_bank_select bank,
2717 				       u16 module)
2718 {
2719 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2720 	enum ixgbe_flash_bank active_bank;
2721 	bool second_bank_active;
2722 	u32 offset, size;
2723 
2724 	switch (module) {
2725 	case IXGBE_E610_SR_1ST_NVM_BANK_PTR:
2726 		offset = banks->nvm_ptr;
2727 		size = banks->nvm_size;
2728 		active_bank = banks->nvm_bank;
2729 		break;
2730 	case IXGBE_E610_SR_1ST_OROM_BANK_PTR:
2731 		offset = banks->orom_ptr;
2732 		size = banks->orom_size;
2733 		active_bank = banks->orom_bank;
2734 		break;
2735 	case IXGBE_E610_SR_NETLIST_BANK_PTR:
2736 		offset = banks->netlist_ptr;
2737 		size = banks->netlist_size;
2738 		active_bank = banks->netlist_bank;
2739 		break;
2740 	default:
2741 		return 0;
2742 	}
2743 
2744 	switch (active_bank) {
2745 	case IXGBE_1ST_FLASH_BANK:
2746 		second_bank_active = false;
2747 		break;
2748 	case IXGBE_2ND_FLASH_BANK:
2749 		second_bank_active = true;
2750 		break;
2751 	default:
2752 		return 0;
2753 	}
2754 
2755 	/* The second flash bank is stored immediately following the first
2756 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
2757 	 * we want the active or inactive bank, calculate the desired offset.
2758 	 */
2759 	switch (bank) {
2760 	case IXGBE_ACTIVE_FLASH_BANK:
2761 		return offset + (second_bank_active ? size : 0);
2762 	case IXGBE_INACTIVE_FLASH_BANK:
2763 		return offset + (second_bank_active ? 0 : size);
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 /**
2770  * ixgbe_read_flash_module - Read a word from one of the main NVM modules
2771  * @hw: pointer to the HW structure
2772  * @bank: which bank of the module to read
2773  * @module: the module to read
2774  * @offset: the offset into the module in bytes
2775  * @data: storage for the word read from the flash
2776  * @length: bytes of data to read
2777  *
2778  * Read data from the specified flash module. The bank parameter indicates
2779  * whether or not to read from the active bank or the inactive bank of that
2780  * module.
2781  *
2782  * The word will be read using flat NVM access, and relies on the
2783  * hw->flash.banks data being setup by ixgbe_determine_active_flash_banks()
2784  * during initialization.
2785  *
2786  * Return: the exit code of the operation.
2787  */
ixgbe_read_flash_module(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u16 module,u32 offset,u8 * data,u32 length)2788 static int ixgbe_read_flash_module(struct ixgbe_hw *hw,
2789 				   enum ixgbe_bank_select bank,
2790 				   u16 module, u32 offset, u8 *data, u32 length)
2791 {
2792 	u32 start;
2793 	int err;
2794 
2795 	start = ixgbe_get_flash_bank_offset(hw, bank, module);
2796 	if (!start)
2797 		return -EINVAL;
2798 
2799 	err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
2800 	if (err)
2801 		return err;
2802 
2803 	err = ixgbe_read_flat_nvm(hw, start + offset, &length, data, false);
2804 
2805 	ixgbe_release_nvm(hw);
2806 
2807 	return err;
2808 }
2809 
2810 /**
2811  * ixgbe_read_nvm_module - Read from the active main NVM module
2812  * @hw: pointer to the HW structure
2813  * @bank: whether to read from active or inactive NVM module
2814  * @offset: offset into the NVM module to read, in words
2815  * @data: storage for returned word value
2816  *
2817  * Read the specified word from the active NVM module. This includes the CSS
2818  * header at the start of the NVM module.
2819  *
2820  * Return: the exit code of the operation.
2821  */
ixgbe_read_nvm_module(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 offset,u16 * data)2822 static int ixgbe_read_nvm_module(struct ixgbe_hw *hw,
2823 				 enum ixgbe_bank_select bank,
2824 				 u32 offset, u16 *data)
2825 {
2826 	__le16 data_local;
2827 	int err;
2828 
2829 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2830 				      offset * sizeof(data_local),
2831 				      (u8 *)&data_local,
2832 				      sizeof(data_local));
2833 	if (!err)
2834 		*data = le16_to_cpu(data_local);
2835 
2836 	return err;
2837 }
2838 
2839 /**
2840  * ixgbe_read_netlist_module - Read data from the netlist module area
2841  * @hw: pointer to the HW structure
2842  * @bank: whether to read from the active or inactive module
2843  * @offset: offset into the netlist to read from
2844  * @data: storage for returned word value
2845  *
2846  * Read a word from the specified netlist bank.
2847  *
2848  * Return: the exit code of the operation.
2849  */
ixgbe_read_netlist_module(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 offset,u16 * data)2850 static int ixgbe_read_netlist_module(struct ixgbe_hw *hw,
2851 				     enum ixgbe_bank_select bank,
2852 				     u32 offset, u16 *data)
2853 {
2854 	__le16 data_local;
2855 	int err;
2856 
2857 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
2858 				      offset * sizeof(data_local),
2859 				      (u8 *)&data_local, sizeof(data_local));
2860 	if (!err)
2861 		*data = le16_to_cpu(data_local);
2862 
2863 	return err;
2864 }
2865 
2866 /**
2867  * ixgbe_read_orom_module - Read from the active Option ROM module
2868  * @hw: pointer to the HW structure
2869  * @bank: whether to read from active or inactive OROM module
2870  * @offset: offset into the OROM module to read, in words
2871  * @data: storage for returned word value
2872  *
2873  * Read the specified word from the active Option ROM module of the flash.
2874  * Note that unlike the NVM module, the CSS data is stored at the end of the
2875  * module instead of at the beginning.
2876  *
2877  * Return: the exit code of the operation.
2878  */
ixgbe_read_orom_module(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 offset,u16 * data)2879 static int ixgbe_read_orom_module(struct ixgbe_hw *hw,
2880 				  enum ixgbe_bank_select bank,
2881 				  u32 offset, u16 *data)
2882 {
2883 	__le16 data_local;
2884 	int err;
2885 
2886 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2887 				      offset * sizeof(data_local),
2888 				      (u8 *)&data_local, sizeof(data_local));
2889 	if (!err)
2890 		*data = le16_to_cpu(data_local);
2891 
2892 	return err;
2893 }
2894 
2895 /**
2896  * ixgbe_get_nvm_css_hdr_len - Read the CSS header length
2897  * @hw: pointer to the HW struct
2898  * @bank: whether to read from the active or inactive flash bank
2899  * @hdr_len: storage for header length in words
2900  *
2901  * Read the CSS header length from the NVM CSS header and add the
2902  * Authentication header size, and then convert to words.
2903  *
2904  * Return: the exit code of the operation.
2905  */
ixgbe_get_nvm_css_hdr_len(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 * hdr_len)2906 static int ixgbe_get_nvm_css_hdr_len(struct ixgbe_hw *hw,
2907 				     enum ixgbe_bank_select bank,
2908 				     u32 *hdr_len)
2909 {
2910 	u16 hdr_len_l, hdr_len_h;
2911 	u32 hdr_len_dword;
2912 	int err;
2913 
2914 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_L,
2915 				    &hdr_len_l);
2916 	if (err)
2917 		return err;
2918 
2919 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_H,
2920 				    &hdr_len_h);
2921 	if (err)
2922 		return err;
2923 
2924 	/* CSS header length is in DWORD, so convert to words and add
2925 	 * authentication header size.
2926 	 */
2927 	hdr_len_dword = (hdr_len_h << 16) | hdr_len_l;
2928 	*hdr_len = hdr_len_dword * 2 + IXGBE_NVM_AUTH_HEADER_LEN;
2929 
2930 	return 0;
2931 }
2932 
2933 /**
2934  * ixgbe_read_nvm_sr_copy - Read a word from the Shadow RAM copy
2935  * @hw: pointer to the HW structure
2936  * @bank: whether to read from the active or inactive NVM module
2937  * @offset: offset into the Shadow RAM copy to read, in words
2938  * @data: storage for returned word value
2939  *
2940  * Read the specified word from the copy of the Shadow RAM found in the
2941  * specified NVM module.
2942  *
2943  * Return: the exit code of the operation.
2944  */
ixgbe_read_nvm_sr_copy(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 offset,u16 * data)2945 static int ixgbe_read_nvm_sr_copy(struct ixgbe_hw *hw,
2946 				  enum ixgbe_bank_select bank,
2947 				  u32 offset, u16 *data)
2948 {
2949 	u32 hdr_len;
2950 	int err;
2951 
2952 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
2953 	if (err)
2954 		return err;
2955 
2956 	hdr_len = round_up(hdr_len, IXGBE_HDR_LEN_ROUNDUP);
2957 
2958 	return ixgbe_read_nvm_module(hw, bank, hdr_len + offset, data);
2959 }
2960 
2961 /**
2962  * ixgbe_get_nvm_srev - Read the security revision from the NVM CSS header
2963  * @hw: pointer to the HW struct
2964  * @bank: whether to read from the active or inactive flash bank
2965  * @srev: storage for security revision
2966  *
2967  * Read the security revision out of the CSS header of the active NVM module
2968  * bank.
2969  *
2970  * Return: the exit code of the operation.
2971  */
ixgbe_get_nvm_srev(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 * srev)2972 static int ixgbe_get_nvm_srev(struct ixgbe_hw *hw,
2973 			      enum ixgbe_bank_select bank, u32 *srev)
2974 {
2975 	u16 srev_l, srev_h;
2976 	int err;
2977 
2978 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_L, &srev_l);
2979 	if (err)
2980 		return err;
2981 
2982 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_H, &srev_h);
2983 	if (err)
2984 		return err;
2985 
2986 	*srev = (srev_h << 16) | srev_l;
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * ixgbe_get_orom_civd_data - Get the combo version information from Option ROM
2993  * @hw: pointer to the HW struct
2994  * @bank: whether to read from the active or inactive flash module
2995  * @civd: storage for the Option ROM CIVD data.
2996  *
2997  * Searches through the Option ROM flash contents to locate the CIVD data for
2998  * the image.
2999  *
3000  * Return: -ENOMEM when cannot allocate memory, -EDOM for checksum violation,
3001  *	   -ENODATA when cannot find proper data, -EIO for faulty read or
3002  *	   0 on success.
3003  *
3004  *	   On success @civd stores collected data.
3005  */
3006 static int
ixgbe_get_orom_civd_data(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,struct ixgbe_orom_civd_info * civd)3007 ixgbe_get_orom_civd_data(struct ixgbe_hw *hw, enum ixgbe_bank_select bank,
3008 			 struct ixgbe_orom_civd_info *civd)
3009 {
3010 	u32 orom_size = hw->flash.banks.orom_size;
3011 	u8 *orom_data;
3012 	u32 offset;
3013 	int err;
3014 
3015 	orom_data = kzalloc(orom_size, GFP_KERNEL);
3016 	if (!orom_data)
3017 		return -ENOMEM;
3018 
3019 	err = ixgbe_read_flash_module(hw, bank,
3020 				      IXGBE_E610_SR_1ST_OROM_BANK_PTR, 0,
3021 				      orom_data, orom_size);
3022 	if (err) {
3023 		err = -EIO;
3024 		goto cleanup;
3025 	}
3026 
3027 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
3028 	 * The first 4 bytes must contain the ASCII characters "$CIV".
3029 	 * A simple modulo 256 sum of all of the bytes of the structure must
3030 	 * equal 0.
3031 	 */
3032 	for (offset = 0; offset + SZ_512 <= orom_size; offset += SZ_512) {
3033 		struct ixgbe_orom_civd_info *tmp;
3034 		u8 sum = 0;
3035 		u32 i;
3036 
3037 		BUILD_BUG_ON(sizeof(*tmp) > SZ_512);
3038 
3039 		tmp = (struct ixgbe_orom_civd_info *)&orom_data[offset];
3040 
3041 		/* Skip forward until we find a matching signature */
3042 		if (memcmp(IXGBE_OROM_CIV_SIGNATURE, tmp->signature,
3043 			   sizeof(tmp->signature)))
3044 			continue;
3045 
3046 		/* Verify that the simple checksum is zero */
3047 		for (i = 0; i < sizeof(*tmp); i++)
3048 			sum += ((u8 *)tmp)[i];
3049 
3050 		if (sum) {
3051 			err = -EDOM;
3052 			goto cleanup;
3053 		}
3054 
3055 		*civd = *tmp;
3056 		err = 0;
3057 
3058 		goto cleanup;
3059 	}
3060 
3061 	err = -ENODATA;
3062 cleanup:
3063 	kfree(orom_data);
3064 	return err;
3065 }
3066 
3067 /**
3068  * ixgbe_get_orom_srev - Read the security revision from the OROM CSS header
3069  * @hw: pointer to the HW struct
3070  * @bank: whether to read from active or inactive flash module
3071  * @srev: storage for security revision
3072  *
3073  * Read the security revision out of the CSS header of the active OROM module
3074  * bank.
3075  *
3076  * Return: the exit code of the operation.
3077  */
ixgbe_get_orom_srev(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,u32 * srev)3078 static int ixgbe_get_orom_srev(struct ixgbe_hw *hw,
3079 			       enum ixgbe_bank_select bank,
3080 			       u32 *srev)
3081 {
3082 	u32 orom_size_word = hw->flash.banks.orom_size / 2;
3083 	u32 css_start, hdr_len;
3084 	u16 srev_l, srev_h;
3085 	int err;
3086 
3087 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
3088 	if (err)
3089 		return err;
3090 
3091 	if (orom_size_word < hdr_len)
3092 		return -EINVAL;
3093 
3094 	/* Calculate how far into the Option ROM the CSS header starts. Note
3095 	 * that ixgbe_read_orom_module takes a word offset.
3096 	 */
3097 	css_start = orom_size_word - hdr_len;
3098 	err = ixgbe_read_orom_module(hw, bank,
3099 				     css_start + IXGBE_NVM_CSS_SREV_L,
3100 				     &srev_l);
3101 	if (err)
3102 		return err;
3103 
3104 	err = ixgbe_read_orom_module(hw, bank,
3105 				     css_start + IXGBE_NVM_CSS_SREV_H,
3106 				     &srev_h);
3107 	if (err)
3108 		return err;
3109 
3110 	*srev = srev_h << 16 | srev_l;
3111 
3112 	return 0;
3113 }
3114 
3115 /**
3116  * ixgbe_get_orom_ver_info - Read Option ROM version information
3117  * @hw: pointer to the HW struct
3118  * @bank: whether to read from the active or inactive flash module
3119  * @orom: pointer to Option ROM info structure
3120  *
3121  * Read Option ROM version and security revision from the Option ROM flash
3122  * section.
3123  *
3124  * Return: the exit code of the operation.
3125  */
ixgbe_get_orom_ver_info(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,struct ixgbe_orom_info * orom)3126 static int ixgbe_get_orom_ver_info(struct ixgbe_hw *hw,
3127 				   enum ixgbe_bank_select bank,
3128 				   struct ixgbe_orom_info *orom)
3129 {
3130 	struct ixgbe_orom_civd_info civd;
3131 	u32 combo_ver;
3132 	int err;
3133 
3134 	err = ixgbe_get_orom_civd_data(hw, bank, &civd);
3135 	if (err)
3136 		return err;
3137 
3138 	combo_ver = get_unaligned_le32(&civd.combo_ver);
3139 
3140 	orom->major = (u8)FIELD_GET(IXGBE_OROM_VER_MASK, combo_ver);
3141 	orom->patch = (u8)FIELD_GET(IXGBE_OROM_VER_PATCH_MASK, combo_ver);
3142 	orom->build = (u16)FIELD_GET(IXGBE_OROM_VER_BUILD_MASK, combo_ver);
3143 
3144 	return ixgbe_get_orom_srev(hw, bank, &orom->srev);
3145 }
3146 
3147 /**
3148  * ixgbe_get_inactive_orom_ver - Read Option ROM version from the inactive bank
3149  * @hw: pointer to the HW structure
3150  * @orom: storage for Option ROM version information
3151  *
3152  * Read the Option ROM version and security revision data for the inactive
3153  * section of flash. Used to access version data for a pending update that has
3154  * not yet been activated.
3155  *
3156  * Return: the exit code of the operation.
3157  */
ixgbe_get_inactive_orom_ver(struct ixgbe_hw * hw,struct ixgbe_orom_info * orom)3158 int ixgbe_get_inactive_orom_ver(struct ixgbe_hw *hw,
3159 				struct ixgbe_orom_info *orom)
3160 {
3161 	return ixgbe_get_orom_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, orom);
3162 }
3163 
3164 /**
3165  * ixgbe_get_nvm_ver_info - Read NVM version information
3166  * @hw: pointer to the HW struct
3167  * @bank: whether to read from the active or inactive flash bank
3168  * @nvm: pointer to NVM info structure
3169  *
3170  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
3171  * in the nvm info structure.
3172  *
3173  * Return: the exit code of the operation.
3174  */
ixgbe_get_nvm_ver_info(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,struct ixgbe_nvm_info * nvm)3175 static int ixgbe_get_nvm_ver_info(struct ixgbe_hw *hw,
3176 				  enum ixgbe_bank_select bank,
3177 				  struct ixgbe_nvm_info *nvm)
3178 {
3179 	u16 eetrack_lo, eetrack_hi, ver;
3180 	int err;
3181 
3182 	err = ixgbe_read_nvm_sr_copy(hw, bank,
3183 				     IXGBE_E610_SR_NVM_DEV_STARTER_VER, &ver);
3184 	if (err)
3185 		return err;
3186 
3187 	nvm->major = FIELD_GET(IXGBE_E610_NVM_VER_HI_MASK, ver);
3188 	nvm->minor = FIELD_GET(IXGBE_E610_NVM_VER_LO_MASK, ver);
3189 
3190 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_LO,
3191 				     &eetrack_lo);
3192 	if (err)
3193 		return err;
3194 
3195 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_HI,
3196 				     &eetrack_hi);
3197 	if (err)
3198 		return err;
3199 
3200 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
3201 
3202 	ixgbe_get_nvm_srev(hw, bank, &nvm->srev);
3203 
3204 	return 0;
3205 }
3206 
3207 /**
3208  * ixgbe_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
3209  * @hw: pointer to the HW structure
3210  * @nvm: storage for Option ROM version information
3211  *
3212  * Read the NVM EETRACK ID, Map version, and security revision of the
3213  * inactive NVM bank. Used to access version data for a pending update that
3214  * has not yet been activated.
3215  *
3216  * Return: the exit code of the operation.
3217  */
ixgbe_get_inactive_nvm_ver(struct ixgbe_hw * hw,struct ixgbe_nvm_info * nvm)3218 int ixgbe_get_inactive_nvm_ver(struct ixgbe_hw *hw, struct ixgbe_nvm_info *nvm)
3219 {
3220 	return ixgbe_get_nvm_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, nvm);
3221 }
3222 
3223 /**
3224  * ixgbe_get_active_nvm_ver - Read Option ROM version from the active bank
3225  * @hw: pointer to the HW structure
3226  * @nvm: storage for Option ROM version information
3227  *
3228  * Reads the NVM EETRACK ID, Map version, and security revision of the
3229  * active NVM bank.
3230  *
3231  * Return: the exit code of the operation.
3232  */
ixgbe_get_active_nvm_ver(struct ixgbe_hw * hw,struct ixgbe_nvm_info * nvm)3233 static int ixgbe_get_active_nvm_ver(struct ixgbe_hw *hw,
3234 				    struct ixgbe_nvm_info *nvm)
3235 {
3236 	return ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK, nvm);
3237 }
3238 
3239 /**
3240  * ixgbe_get_netlist_info - Read the netlist version information
3241  * @hw: pointer to the HW struct
3242  * @bank: whether to read from the active or inactive flash bank
3243  * @netlist: pointer to netlist version info structure
3244  *
3245  * Get the netlist version information from the requested bank. Reads the Link
3246  * Topology section to find the Netlist ID block and extract the relevant
3247  * information into the netlist version structure.
3248  *
3249  * Return: the exit code of the operation.
3250  */
ixgbe_get_netlist_info(struct ixgbe_hw * hw,enum ixgbe_bank_select bank,struct ixgbe_netlist_info * netlist)3251 static int ixgbe_get_netlist_info(struct ixgbe_hw *hw,
3252 				  enum ixgbe_bank_select bank,
3253 				  struct ixgbe_netlist_info *netlist)
3254 {
3255 	u16 module_id, length, node_count, i;
3256 	u16 *id_blk;
3257 	int err;
3258 
3259 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_NETLIST_TYPE_OFFSET,
3260 					&module_id);
3261 	if (err)
3262 		return err;
3263 
3264 	if (module_id != IXGBE_NETLIST_LINK_TOPO_MOD_ID)
3265 		return -EIO;
3266 
3267 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_MODULE_LEN,
3268 					&length);
3269 	if (err)
3270 		return err;
3271 
3272 	/* Sanity check that we have at least enough words to store the
3273 	 * netlist ID block.
3274 	 */
3275 	if (length < IXGBE_NETLIST_ID_BLK_SIZE)
3276 		return -EIO;
3277 
3278 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_NODE_COUNT,
3279 					&node_count);
3280 	if (err)
3281 		return err;
3282 
3283 	node_count &= IXGBE_LINK_TOPO_NODE_COUNT_M;
3284 
3285 	id_blk = kcalloc(IXGBE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
3286 	if (!id_blk)
3287 		return -ENOMEM;
3288 
3289 	/* Read out the entire Netlist ID Block at once. */
3290 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
3291 				      IXGBE_NETLIST_ID_BLK_OFFSET(node_count) *
3292 				      sizeof(*id_blk), (u8 *)id_blk,
3293 				      IXGBE_NETLIST_ID_BLK_SIZE *
3294 				      sizeof(*id_blk));
3295 	if (err)
3296 		goto free_id_blk;
3297 
3298 	for (i = 0; i < IXGBE_NETLIST_ID_BLK_SIZE; i++)
3299 		id_blk[i] = le16_to_cpu(((__le16 *)id_blk)[i]);
3300 
3301 	netlist->major = id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
3302 			 id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_LOW];
3303 	netlist->minor = id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
3304 			 id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_LOW];
3305 	netlist->type = id_blk[IXGBE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
3306 			id_blk[IXGBE_NETLIST_ID_BLK_TYPE_LOW];
3307 	netlist->rev = id_blk[IXGBE_NETLIST_ID_BLK_REV_HIGH] << 16 |
3308 		       id_blk[IXGBE_NETLIST_ID_BLK_REV_LOW];
3309 	netlist->cust_ver = id_blk[IXGBE_NETLIST_ID_BLK_CUST_VER];
3310 	/* Read the left most 4 bytes of SHA */
3311 	netlist->hash = id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
3312 			id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
3313 
3314 free_id_blk:
3315 	kfree(id_blk);
3316 	return err;
3317 }
3318 
3319 /**
3320  * ixgbe_get_inactive_netlist_ver - Read netlist version from the inactive bank
3321  * @hw: pointer to the HW struct
3322  * @netlist: pointer to netlist version info structure
3323  *
3324  * Read the netlist version data from the inactive netlist bank. Used to
3325  * extract version data of a pending flash update in order to display the
3326  * version data.
3327  *
3328  * Return: the exit code of the operation.
3329  */
ixgbe_get_inactive_netlist_ver(struct ixgbe_hw * hw,struct ixgbe_netlist_info * netlist)3330 int ixgbe_get_inactive_netlist_ver(struct ixgbe_hw *hw,
3331 				   struct ixgbe_netlist_info *netlist)
3332 {
3333 	return ixgbe_get_netlist_info(hw, IXGBE_INACTIVE_FLASH_BANK, netlist);
3334 }
3335 
3336 /**
3337  * ixgbe_get_flash_data - get flash data
3338  * @hw: pointer to the HW struct
3339  *
3340  * Read and populate flash data such as Shadow RAM size,
3341  * max_timeout and blank_nvm_mode
3342  *
3343  * Return: the exit code of the operation.
3344  */
ixgbe_get_flash_data(struct ixgbe_hw * hw)3345 int ixgbe_get_flash_data(struct ixgbe_hw *hw)
3346 {
3347 	struct ixgbe_flash_info *flash = &hw->flash;
3348 	u32 fla, gens_stat;
3349 	u8 sr_size;
3350 	int err;
3351 
3352 	/* The SR size is stored regardless of the NVM programming mode
3353 	 * as the blank mode may be used in the factory line.
3354 	 */
3355 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
3356 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
3357 
3358 	/* Switching to words (sr_size contains power of 2) */
3359 	flash->sr_words = BIT(sr_size) * (SZ_1K / sizeof(u16));
3360 
3361 	/* Check if we are in the normal or blank NVM programming mode */
3362 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
3363 	if (fla & IXGBE_GLNVM_FLA_LOCKED_M) {
3364 		flash->blank_nvm_mode = false;
3365 	} else {
3366 		flash->blank_nvm_mode = true;
3367 		return -EIO;
3368 	}
3369 
3370 	err = ixgbe_discover_flash_size(hw);
3371 	if (err)
3372 		return err;
3373 
3374 	err = ixgbe_determine_active_flash_banks(hw);
3375 	if (err)
3376 		return err;
3377 
3378 	err = ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3379 				     &flash->nvm);
3380 	if (err)
3381 		return err;
3382 
3383 	err = ixgbe_get_orom_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3384 				      &flash->orom);
3385 	if (err)
3386 		return err;
3387 
3388 	err = ixgbe_get_netlist_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3389 				     &flash->netlist);
3390 	return err;
3391 }
3392 
3393 /**
3394  * ixgbe_aci_nvm_update_empr - update NVM using EMPR
3395  * @hw: pointer to the HW struct
3396  *
3397  * Force EMP reset using ACI command (0x0709). This command allows SW to
3398  * request an EMPR to activate new FW.
3399  *
3400  * Return: the exit code of the operation.
3401  */
ixgbe_aci_nvm_update_empr(struct ixgbe_hw * hw)3402 int ixgbe_aci_nvm_update_empr(struct ixgbe_hw *hw)
3403 {
3404 	struct libie_aq_desc desc;
3405 
3406 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_update_empr);
3407 
3408 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
3409 }
3410 
3411 /* ixgbe_nvm_set_pkg_data - NVM set package data
3412  * @hw: pointer to the HW struct
3413  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
3414  *		       is deleted.
3415  *		       If bit is set to 1, then buffer should be size 0.
3416  * @data: pointer to buffer
3417  * @length: length of the buffer
3418  *
3419  * Set package data using ACI command (0x070A).
3420  * This command is equivalent to the reception of
3421  * a PLDM FW Update GetPackageData cmd. This command should be sent
3422  * as part of the NVM update as the first cmd in the flow.
3423  *
3424  * Return: the exit code of the operation.
3425  */
ixgbe_nvm_set_pkg_data(struct ixgbe_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length)3426 int ixgbe_nvm_set_pkg_data(struct ixgbe_hw *hw, bool del_pkg_data_flag,
3427 			   u8 *data, u16 length)
3428 {
3429 	struct ixgbe_aci_cmd_nvm_pkg_data *cmd;
3430 	struct libie_aq_desc desc;
3431 
3432 	if (length != 0 && !data)
3433 		return -EINVAL;
3434 
3435 	cmd = libie_aq_raw(&desc);
3436 
3437 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_pkg_data);
3438 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3439 
3440 	if (del_pkg_data_flag)
3441 		cmd->cmd_flags |= IXGBE_ACI_NVM_PKG_DELETE;
3442 
3443 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
3444 }
3445 
3446 /* ixgbe_nvm_pass_component_tbl - NVM pass component table
3447  * @hw: pointer to the HW struct
3448  * @data: pointer to buffer
3449  * @length: length of the buffer
3450  * @transfer_flag: parameter for determining stage of the update
3451  * @comp_response: a pointer to the response from the 0x070B ACI.
3452  * @comp_response_code: a pointer to the response code from the 0x070B ACI.
3453  *
3454  * Pass component table using ACI command (0x070B). This command is equivalent
3455  * to the reception of a PLDM FW Update PassComponentTable cmd.
3456  * This command should be sent once per component. It can be only sent after
3457  * Set Package Data cmd and before actual update. FW will assume these
3458  * commands are going to be sent until the TransferFlag is set to End or
3459  * StartAndEnd.
3460  *
3461  * Return: the exit code of the operation.
3462  */
ixgbe_nvm_pass_component_tbl(struct ixgbe_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code)3463 int ixgbe_nvm_pass_component_tbl(struct ixgbe_hw *hw, u8 *data, u16 length,
3464 				 u8 transfer_flag, u8 *comp_response,
3465 				 u8 *comp_response_code)
3466 {
3467 	struct ixgbe_aci_cmd_nvm_pass_comp_tbl *cmd;
3468 	struct libie_aq_desc desc;
3469 	int err;
3470 
3471 	if (!data || !comp_response || !comp_response_code)
3472 		return -EINVAL;
3473 
3474 	cmd = libie_aq_raw(&desc);
3475 
3476 	ixgbe_fill_dflt_direct_cmd_desc(&desc,
3477 					ixgbe_aci_opc_nvm_pass_component_tbl);
3478 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3479 
3480 	cmd->transfer_flag = transfer_flag;
3481 	err = ixgbe_aci_send_cmd(hw, &desc, data, length);
3482 	if (!err) {
3483 		*comp_response = cmd->component_response;
3484 		*comp_response_code = cmd->component_response_code;
3485 	}
3486 
3487 	return err;
3488 }
3489 
3490 /**
3491  * ixgbe_read_sr_word_aci - Reads Shadow RAM via ACI
3492  * @hw: pointer to the HW structure
3493  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
3494  * @data: word read from the Shadow RAM
3495  *
3496  * Reads one 16 bit word from the Shadow RAM using ixgbe_read_flat_nvm.
3497  *
3498  * Return: the exit code of the operation.
3499  */
ixgbe_read_sr_word_aci(struct ixgbe_hw * hw,u16 offset,u16 * data)3500 int ixgbe_read_sr_word_aci(struct ixgbe_hw  *hw, u16 offset, u16 *data)
3501 {
3502 	u32 bytes = sizeof(u16);
3503 	u16 data_local;
3504 	int err;
3505 
3506 	err = ixgbe_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
3507 				  (u8 *)&data_local, true);
3508 	if (err)
3509 		return err;
3510 
3511 	*data = data_local;
3512 	return 0;
3513 }
3514 
3515 /**
3516  * ixgbe_read_flat_nvm - Read portion of NVM by flat offset
3517  * @hw: pointer to the HW struct
3518  * @offset: offset from beginning of NVM
3519  * @length: (in) number of bytes to read; (out) number of bytes actually read
3520  * @data: buffer to return data in (sized to fit the specified length)
3521  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
3522  *
3523  * Reads a portion of the NVM, as a flat memory space. This function correctly
3524  * breaks read requests across Shadow RAM sectors, prevents Shadow RAM size
3525  * from being exceeded in case of Shadow RAM read requests and ensures that no
3526  * single read request exceeds the maximum 4KB read for a single admin command.
3527  *
3528  * Returns an error code on failure. Note that the data pointer may be
3529  * partially updated if some reads succeed before a failure.
3530  *
3531  * Return: the exit code of the operation.
3532  */
ixgbe_read_flat_nvm(struct ixgbe_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)3533 int ixgbe_read_flat_nvm(struct ixgbe_hw  *hw, u32 offset, u32 *length,
3534 			u8 *data, bool read_shadow_ram)
3535 {
3536 	u32 inlen = *length;
3537 	u32 bytes_read = 0;
3538 	bool last_cmd;
3539 	int err;
3540 
3541 	/* Verify the length of the read if this is for the Shadow RAM */
3542 	if (read_shadow_ram && ((offset + inlen) >
3543 				(hw->eeprom.word_size * 2u)))
3544 		return -EINVAL;
3545 
3546 	do {
3547 		u32 read_size, sector_offset;
3548 
3549 		/* ixgbe_aci_read_nvm cannot read more than 4KB at a time.
3550 		 * Additionally, a read from the Shadow RAM may not cross over
3551 		 * a sector boundary. Conveniently, the sector size is also 4KB.
3552 		 */
3553 		sector_offset = offset % IXGBE_ACI_MAX_BUFFER_SIZE;
3554 		read_size = min_t(u32,
3555 				  IXGBE_ACI_MAX_BUFFER_SIZE - sector_offset,
3556 				  inlen - bytes_read);
3557 
3558 		last_cmd = !(bytes_read + read_size < inlen);
3559 
3560 		/* ixgbe_aci_read_nvm takes the length as a u16. Our read_size
3561 		 * is calculated using a u32, but the IXGBE_ACI_MAX_BUFFER_SIZE
3562 		 * maximum size guarantees that it will fit within the 2 bytes.
3563 		 */
3564 		err = ixgbe_aci_read_nvm(hw, IXGBE_ACI_NVM_START_POINT,
3565 					 offset, (u16)read_size,
3566 					 data + bytes_read, last_cmd,
3567 					 read_shadow_ram);
3568 		if (err)
3569 			break;
3570 
3571 		bytes_read += read_size;
3572 		offset += read_size;
3573 	} while (!last_cmd);
3574 
3575 	*length = bytes_read;
3576 	return err;
3577 }
3578 
3579 /**
3580  * ixgbe_read_sr_buf_aci - Read Shadow RAM buffer via ACI
3581  * @hw: pointer to the HW structure
3582  * @offset: offset of the Shadow RAM words to read (0x000000 - 0x001FFF)
3583  * @words: (in) number of words to read; (out) number of words actually read
3584  * @data: words read from the Shadow RAM
3585  *
3586  * Read 16 bit words (data buf) from the Shadow RAM. Acquire/release the NVM
3587  * ownership.
3588  *
3589  * Return: the operation exit code.
3590  */
ixgbe_read_sr_buf_aci(struct ixgbe_hw * hw,u16 offset,u16 * words,u16 * data)3591 int ixgbe_read_sr_buf_aci(struct ixgbe_hw *hw, u16 offset, u16 *words,
3592 			  u16 *data)
3593 {
3594 	u32 bytes = *words * 2;
3595 	int err;
3596 
3597 	err = ixgbe_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
3598 	if (err)
3599 		return err;
3600 
3601 	*words = bytes / 2;
3602 
3603 	for (int i = 0; i < *words; i++)
3604 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
3605 
3606 	return 0;
3607 }
3608 
3609 /**
3610  * ixgbe_read_ee_aci_e610 - Read EEPROM word using the admin command.
3611  * @hw: pointer to hardware structure
3612  * @offset: offset of  word in the EEPROM to read
3613  * @data: word read from the EEPROM
3614  *
3615  * Reads a 16 bit word from the EEPROM using the ACI.
3616  * If the EEPROM params are not initialized, the function
3617  * initialize them before proceeding with reading.
3618  * The function acquires and then releases the NVM ownership.
3619  *
3620  * Return: the exit code of the operation.
3621  */
ixgbe_read_ee_aci_e610(struct ixgbe_hw * hw,u16 offset,u16 * data)3622 int ixgbe_read_ee_aci_e610(struct ixgbe_hw *hw, u16 offset, u16 *data)
3623 {
3624 	int err;
3625 
3626 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3627 		err = hw->eeprom.ops.init_params(hw);
3628 		if (err)
3629 			return err;
3630 	}
3631 
3632 	err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
3633 	if (err)
3634 		return err;
3635 
3636 	err = ixgbe_read_sr_word_aci(hw, offset, data);
3637 	ixgbe_release_nvm(hw);
3638 
3639 	return err;
3640 }
3641 
3642 /**
3643  * ixgbe_read_ee_aci_buffer_e610 - Read EEPROM words via ACI
3644  * @hw: pointer to hardware structure
3645  * @offset: offset of words in the EEPROM to read
3646  * @words: number of words to read
3647  * @data: words to read from the EEPROM
3648  *
3649  * Read 16 bit words from the EEPROM via the ACI. Initialize the EEPROM params
3650  * prior to the read. Acquire/release the NVM ownership.
3651  *
3652  * Return: the operation exit code.
3653  */
ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)3654 int ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw *hw, u16 offset,
3655 				  u16 words, u16 *data)
3656 {
3657 	int err;
3658 
3659 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3660 		err = hw->eeprom.ops.init_params(hw);
3661 		if (err)
3662 			return err;
3663 	}
3664 
3665 	err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
3666 	if (err)
3667 		return err;
3668 
3669 	err = ixgbe_read_sr_buf_aci(hw, offset, &words, data);
3670 	ixgbe_release_nvm(hw);
3671 
3672 	return err;
3673 }
3674 
3675 /**
3676  * ixgbe_validate_eeprom_checksum_e610 - Validate EEPROM checksum
3677  * @hw: pointer to hardware structure
3678  * @checksum_val: calculated checksum
3679  *
3680  * Performs checksum calculation and validates the EEPROM checksum. If the
3681  * caller does not need checksum_val, the value can be NULL.
3682  * If the EEPROM params are not initialized, the function
3683  * initialize them before proceeding.
3684  * The function acquires and then releases the NVM ownership.
3685  *
3686  * Return: the exit code of the operation.
3687  */
ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw * hw,u16 * checksum_val)3688 int ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw *hw, u16 *checksum_val)
3689 {
3690 	int err;
3691 
3692 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3693 		err = hw->eeprom.ops.init_params(hw);
3694 		if (err)
3695 			return err;
3696 	}
3697 
3698 	err = ixgbe_nvm_validate_checksum(hw);
3699 	if (err)
3700 		return err;
3701 
3702 	if (checksum_val) {
3703 		u16 tmp_checksum;
3704 
3705 		err = ixgbe_acquire_nvm(hw, LIBIE_AQC_RES_ACCESS_READ);
3706 		if (err)
3707 			return err;
3708 
3709 		err = ixgbe_read_sr_word_aci(hw, IXGBE_E610_SR_SW_CHECKSUM_WORD,
3710 					     &tmp_checksum);
3711 		ixgbe_release_nvm(hw);
3712 
3713 		if (!err)
3714 			*checksum_val = tmp_checksum;
3715 	}
3716 
3717 	return err;
3718 }
3719 
3720 /**
3721  * ixgbe_reset_hw_e610 - Perform hardware reset
3722  * @hw: pointer to hardware structure
3723  *
3724  * Resets the hardware by resetting the transmit and receive units, masks
3725  * and clears all interrupts, and performs a reset.
3726  *
3727  * Return: the exit code of the operation.
3728  */
ixgbe_reset_hw_e610(struct ixgbe_hw * hw)3729 int ixgbe_reset_hw_e610(struct ixgbe_hw *hw)
3730 {
3731 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
3732 	u32 ctrl, i;
3733 	int err;
3734 
3735 	/* Call adapter stop to disable tx/rx and clear interrupts */
3736 	err = hw->mac.ops.stop_adapter(hw);
3737 	if (err)
3738 		goto reset_hw_out;
3739 
3740 	/* Flush pending Tx transactions. */
3741 	ixgbe_clear_tx_pending(hw);
3742 
3743 	hw->phy.ops.init(hw);
3744 mac_reset_top:
3745 	err = hw->mac.ops.acquire_swfw_sync(hw, swfw_mask);
3746 	if (err)
3747 		return -EBUSY;
3748 	ctrl = IXGBE_CTRL_RST;
3749 	ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL);
3750 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
3751 	IXGBE_WRITE_FLUSH(hw);
3752 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3753 
3754 	/* Poll for reset bit to self-clear indicating reset is complete */
3755 	for (i = 0; i < 10; i++) {
3756 		udelay(1);
3757 		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
3758 		if (!(ctrl & IXGBE_CTRL_RST_MASK))
3759 			break;
3760 	}
3761 
3762 	if (ctrl & IXGBE_CTRL_RST_MASK) {
3763 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
3764 							     hw);
3765 
3766 		err = -EIO;
3767 		netdev_err(adapter->netdev, "Reset polling failed to complete.");
3768 	}
3769 
3770 	/* Double resets are required for recovery from certain error
3771 	 * conditions. Between resets, it is necessary to stall to allow time
3772 	 * for any pending HW events to complete.
3773 	 */
3774 	msleep(100);
3775 	if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
3776 		hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3777 		goto mac_reset_top;
3778 	}
3779 
3780 	/* Set the Rx packet buffer size. */
3781 	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), GENMASK(18, 17));
3782 
3783 	/* Store the permanent mac address */
3784 	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
3785 
3786 	/* Maximum number of Receive Address Registers. */
3787 #define IXGBE_MAX_NUM_RAR		128
3788 
3789 	/* Store MAC address from RAR0, clear receive address registers, and
3790 	 * clear the multicast table.  Also reset num_rar_entries to the
3791 	 * maximum number of Receive Address Registers, since we modify this
3792 	 * value when programming the SAN MAC address.
3793 	 */
3794 	hw->mac.num_rar_entries = IXGBE_MAX_NUM_RAR;
3795 	hw->mac.ops.init_rx_addrs(hw);
3796 
3797 	/* Initialize bus function number */
3798 	hw->mac.ops.set_lan_id(hw);
3799 
3800 reset_hw_out:
3801 	return err;
3802 }
3803 
3804 /**
3805  * ixgbe_get_pfa_module_tlv - Read sub module TLV from NVM PFA
3806  * @hw: pointer to hardware structure
3807  * @module_tlv: pointer to module TLV to return
3808  * @module_tlv_len: pointer to module TLV length to return
3809  * @module_type: module type requested
3810  *
3811  * Find the requested sub module TLV type from the Preserved Field
3812  * Area (PFA) and returns the TLV pointer and length. The caller can
3813  * use these to read the variable length TLV value.
3814  *
3815  * Return: the exit code of the operation.
3816  */
ixgbe_get_pfa_module_tlv(struct ixgbe_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)3817 static int ixgbe_get_pfa_module_tlv(struct ixgbe_hw *hw, u16 *module_tlv,
3818 				    u16 *module_tlv_len, u16 module_type)
3819 {
3820 	u16 pfa_len, pfa_ptr, pfa_end_ptr;
3821 	u16 next_tlv;
3822 	int err;
3823 
3824 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_PFA_PTR, &pfa_ptr);
3825 	if (err)
3826 		return err;
3827 
3828 	err = ixgbe_read_ee_aci_e610(hw, pfa_ptr, &pfa_len);
3829 	if (err)
3830 		return err;
3831 
3832 	/* Starting with first TLV after PFA length, iterate through the list
3833 	 * of TLVs to find the requested one.
3834 	 */
3835 	next_tlv = pfa_ptr + 1;
3836 	pfa_end_ptr = pfa_ptr + pfa_len;
3837 	while (next_tlv < pfa_end_ptr) {
3838 		u16 tlv_sub_module_type, tlv_len;
3839 
3840 		/* Read TLV type */
3841 		err = ixgbe_read_ee_aci_e610(hw, next_tlv,
3842 					     &tlv_sub_module_type);
3843 		if (err)
3844 			break;
3845 
3846 		/* Read TLV length */
3847 		err = ixgbe_read_ee_aci_e610(hw, next_tlv + 1, &tlv_len);
3848 		if (err)
3849 			break;
3850 
3851 		if (tlv_sub_module_type == module_type) {
3852 			if (tlv_len) {
3853 				*module_tlv = next_tlv;
3854 				*module_tlv_len = tlv_len;
3855 				return 0;
3856 			}
3857 			return -EIO;
3858 		}
3859 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
3860 		 * (for current TLV's type and length).
3861 		 */
3862 		next_tlv = next_tlv + tlv_len + 2;
3863 	}
3864 	/* Module does not exist */
3865 	return -ENODATA;
3866 }
3867 
3868 /**
3869  * ixgbe_read_pba_string_e610 - Read PBA string from NVM
3870  * @hw: pointer to hardware structure
3871  * @pba_num: stores the part number string from the NVM
3872  * @pba_num_size: part number string buffer length
3873  *
3874  * Read the part number string from the NVM.
3875  *
3876  * Return: the exit code of the operation.
3877  */
ixgbe_read_pba_string_e610(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)3878 static int ixgbe_read_pba_string_e610(struct ixgbe_hw *hw, u8 *pba_num,
3879 				      u32 pba_num_size)
3880 {
3881 	u16 pba_tlv, pba_tlv_len;
3882 	u16 pba_word, pba_size;
3883 	int err;
3884 
3885 	*pba_num = '\0';
3886 
3887 	err = ixgbe_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
3888 				       IXGBE_E610_SR_PBA_BLOCK_PTR);
3889 	if (err)
3890 		return err;
3891 
3892 	/* pba_size is the next word */
3893 	err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2), &pba_size);
3894 	if (err)
3895 		return err;
3896 
3897 	if (pba_tlv_len < pba_size)
3898 		return -EINVAL;
3899 
3900 	/* Subtract one to get PBA word count (PBA Size word is included in
3901 	 * total size).
3902 	 */
3903 	pba_size--;
3904 
3905 	if (pba_num_size < (((u32)pba_size * 2) + 1))
3906 		return -EINVAL;
3907 
3908 	for (u16 i = 0; i < pba_size; i++) {
3909 		err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2 + 1) + i,
3910 					     &pba_word);
3911 		if (err)
3912 			return err;
3913 
3914 		pba_num[(i * 2)] = FIELD_GET(IXGBE_E610_SR_PBA_BLOCK_MASK,
3915 					     pba_word);
3916 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
3917 	}
3918 
3919 	pba_num[(pba_size * 2)] = '\0';
3920 
3921 	return err;
3922 }
3923 
__fwlog_send_cmd(void * priv,struct libie_aq_desc * desc,void * buf,u16 size)3924 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
3925 			    u16 size)
3926 {
3927 	struct ixgbe_hw *hw = priv;
3928 
3929 	return ixgbe_aci_send_cmd(hw, desc, buf, size);
3930 }
3931 
ixgbe_fwlog_init(struct ixgbe_hw * hw)3932 int ixgbe_fwlog_init(struct ixgbe_hw *hw)
3933 {
3934 	struct ixgbe_adapter *adapter = hw->back;
3935 	struct libie_fwlog_api api = {
3936 		.pdev = adapter->pdev,
3937 		.send_cmd = __fwlog_send_cmd,
3938 		.debugfs_root = adapter->ixgbe_dbg_adapter,
3939 		.priv = hw,
3940 	};
3941 
3942 	if (hw->mac.type != ixgbe_mac_e610)
3943 		return -EOPNOTSUPP;
3944 
3945 	return libie_fwlog_init(&hw->fwlog, &api);
3946 }
3947 
ixgbe_fwlog_deinit(struct ixgbe_hw * hw)3948 void ixgbe_fwlog_deinit(struct ixgbe_hw *hw)
3949 {
3950 	if (hw->mac.type != ixgbe_mac_e610)
3951 		return;
3952 
3953 	libie_fwlog_deinit(&hw->fwlog);
3954 }
3955 
3956 static const struct ixgbe_mac_operations mac_ops_e610 = {
3957 	.init_hw			= ixgbe_init_hw_generic,
3958 	.start_hw			= ixgbe_start_hw_e610,
3959 	.clear_hw_cntrs			= ixgbe_clear_hw_cntrs_generic,
3960 	.enable_rx_dma			= ixgbe_enable_rx_dma_generic,
3961 	.get_mac_addr			= ixgbe_get_mac_addr_generic,
3962 	.get_device_caps		= ixgbe_get_device_caps_generic,
3963 	.stop_adapter			= ixgbe_stop_adapter_generic,
3964 	.set_lan_id			= ixgbe_set_lan_id_multi_port_pcie,
3965 	.set_rxpba			= ixgbe_set_rxpba_generic,
3966 	.check_link			= ixgbe_check_link_e610,
3967 	.blink_led_start		= ixgbe_blink_led_start_X540,
3968 	.blink_led_stop			= ixgbe_blink_led_stop_X540,
3969 	.set_rar			= ixgbe_set_rar_generic,
3970 	.clear_rar			= ixgbe_clear_rar_generic,
3971 	.set_vmdq			= ixgbe_set_vmdq_generic,
3972 	.set_vmdq_san_mac		= ixgbe_set_vmdq_san_mac_generic,
3973 	.clear_vmdq			= ixgbe_clear_vmdq_generic,
3974 	.init_rx_addrs			= ixgbe_init_rx_addrs_generic,
3975 	.update_mc_addr_list		= ixgbe_update_mc_addr_list_generic,
3976 	.enable_mc			= ixgbe_enable_mc_generic,
3977 	.disable_mc			= ixgbe_disable_mc_generic,
3978 	.clear_vfta			= ixgbe_clear_vfta_generic,
3979 	.set_vfta			= ixgbe_set_vfta_generic,
3980 	.fc_enable			= ixgbe_fc_enable_generic,
3981 	.set_fw_drv_ver			= ixgbe_set_fw_drv_ver_x550,
3982 	.init_uta_tables		= ixgbe_init_uta_tables_generic,
3983 	.set_mac_anti_spoofing		= ixgbe_set_mac_anti_spoofing,
3984 	.set_vlan_anti_spoofing		= ixgbe_set_vlan_anti_spoofing,
3985 	.set_source_address_pruning	=
3986 				ixgbe_set_source_address_pruning_x550,
3987 	.set_ethertype_anti_spoofing	=
3988 				ixgbe_set_ethertype_anti_spoofing_x550,
3989 	.disable_rx_buff		= ixgbe_disable_rx_buff_generic,
3990 	.enable_rx_buff			= ixgbe_enable_rx_buff_generic,
3991 	.enable_rx			= ixgbe_enable_rx_generic,
3992 	.disable_rx			= ixgbe_disable_rx_e610,
3993 	.led_on				= ixgbe_led_on_generic,
3994 	.led_off			= ixgbe_led_off_generic,
3995 	.init_led_link_act		= ixgbe_init_led_link_act_generic,
3996 	.reset_hw			= ixgbe_reset_hw_e610,
3997 	.get_fw_ver                     = ixgbe_aci_get_fw_ver,
3998 	.get_media_type			= ixgbe_get_media_type_e610,
3999 	.setup_link			= ixgbe_setup_link_e610,
4000 	.fw_recovery_mode		= ixgbe_fw_recovery_mode_e610,
4001 	.fw_rollback_mode		= ixgbe_fw_rollback_mode_e610,
4002 	.get_nvm_ver			= ixgbe_get_active_nvm_ver,
4003 	.get_link_capabilities		= ixgbe_get_link_capabilities_e610,
4004 	.get_bus_info			= ixgbe_get_bus_info_generic,
4005 	.acquire_swfw_sync		= ixgbe_acquire_swfw_sync_X540,
4006 	.release_swfw_sync		= ixgbe_release_swfw_sync_X540,
4007 	.init_swfw_sync			= ixgbe_init_swfw_sync_X540,
4008 	.prot_autoc_read		= prot_autoc_read_generic,
4009 	.prot_autoc_write		= prot_autoc_write_generic,
4010 	.setup_fc			= ixgbe_setup_fc_e610,
4011 	.fc_autoneg			= ixgbe_fc_autoneg_e610,
4012 	.enable_mdd			= ixgbe_enable_mdd_x550,
4013 	.disable_mdd			= ixgbe_disable_mdd_x550,
4014 	.restore_mdd_vf			= ixgbe_restore_mdd_vf_x550,
4015 	.handle_mdd			= ixgbe_handle_mdd_x550,
4016 };
4017 
4018 static const struct ixgbe_phy_operations phy_ops_e610 = {
4019 	.init				= ixgbe_init_phy_ops_e610,
4020 	.identify			= ixgbe_identify_phy_e610,
4021 	.identify_sfp			= ixgbe_identify_module_e610,
4022 	.setup_link_speed		= ixgbe_setup_phy_link_speed_generic,
4023 	.setup_link			= ixgbe_setup_phy_link_e610,
4024 	.enter_lplu			= ixgbe_enter_lplu_e610,
4025 };
4026 
4027 static const struct ixgbe_eeprom_operations eeprom_ops_e610 = {
4028 	.read				= ixgbe_read_ee_aci_e610,
4029 	.read_buffer			= ixgbe_read_ee_aci_buffer_e610,
4030 	.validate_checksum		= ixgbe_validate_eeprom_checksum_e610,
4031 	.read_pba_string		= ixgbe_read_pba_string_e610,
4032 	.init_params			= ixgbe_init_eeprom_params_e610,
4033 };
4034 
4035 const struct ixgbe_info ixgbe_e610_info = {
4036 	.mac			= ixgbe_mac_e610,
4037 	.get_invariants		= ixgbe_get_invariants_X540,
4038 	.mac_ops		= &mac_ops_e610,
4039 	.eeprom_ops		= &eeprom_ops_e610,
4040 	.phy_ops		= &phy_ops_e610,
4041 	.mbx_ops		= &mbx_ops_generic,
4042 	.mvals			= ixgbe_mvals_x550em_a,
4043 };
4044