1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/posted_intr.h>
23
24 #include "iommu.h"
25 #include "../irq_remapping.h"
26 #include "../iommu-pages.h"
27
28 struct ioapic_scope {
29 struct intel_iommu *iommu;
30 unsigned int id;
31 unsigned int bus; /* PCI bus number */
32 unsigned int devfn; /* PCI devfn number */
33 };
34
35 struct hpet_scope {
36 struct intel_iommu *iommu;
37 u8 id;
38 unsigned int bus;
39 unsigned int devfn;
40 };
41
42 struct irq_2_iommu {
43 struct intel_iommu *iommu;
44 u16 irte_index;
45 u16 sub_handle;
46 u8 irte_mask;
47 bool posted_msi;
48 bool posted_vcpu;
49 };
50
51 struct intel_ir_data {
52 struct irq_2_iommu irq_2_iommu;
53 struct irte irte_entry;
54 union {
55 struct msi_msg msi_entry;
56 };
57 };
58
59 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
60 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
61
62 static int __read_mostly eim_mode;
63 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
64 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
65
66 /*
67 * Lock ordering:
68 * ->dmar_global_lock
69 * ->irq_2_ir_lock
70 * ->qi->q_lock
71 * ->iommu->register_lock
72 * Note:
73 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
74 * in single-threaded environment with interrupt disabled, so no need to tabke
75 * the dmar_global_lock.
76 */
77 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
78 static const struct irq_domain_ops intel_ir_domain_ops;
79
80 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
81 static int __init parse_ioapics_under_ir(void);
82 static const struct msi_parent_ops dmar_msi_parent_ops;
83
ir_pre_enabled(struct intel_iommu * iommu)84 static bool ir_pre_enabled(struct intel_iommu *iommu)
85 {
86 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
87 }
88
clear_ir_pre_enabled(struct intel_iommu * iommu)89 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
90 {
91 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
92 }
93
init_ir_status(struct intel_iommu * iommu)94 static void init_ir_status(struct intel_iommu *iommu)
95 {
96 u32 gsts;
97
98 gsts = readl(iommu->reg + DMAR_GSTS_REG);
99 if (gsts & DMA_GSTS_IRES)
100 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
101 }
102
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)103 static int alloc_irte(struct intel_iommu *iommu,
104 struct irq_2_iommu *irq_iommu, u16 count)
105 {
106 struct ir_table *table = iommu->ir_table;
107 unsigned int mask = 0;
108 unsigned long flags;
109 int index;
110
111 if (!count || !irq_iommu)
112 return -1;
113
114 if (count > 1) {
115 count = __roundup_pow_of_two(count);
116 mask = ilog2(count);
117 }
118
119 if (mask > ecap_max_handle_mask(iommu->ecap)) {
120 pr_err("Requested mask %x exceeds the max invalidation handle"
121 " mask value %Lx\n", mask,
122 ecap_max_handle_mask(iommu->ecap));
123 return -1;
124 }
125
126 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
127 index = bitmap_find_free_region(table->bitmap,
128 INTR_REMAP_TABLE_ENTRIES, mask);
129 if (index < 0) {
130 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
131 } else {
132 irq_iommu->iommu = iommu;
133 irq_iommu->irte_index = index;
134 irq_iommu->sub_handle = 0;
135 irq_iommu->irte_mask = mask;
136 }
137 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
138
139 return index;
140 }
141
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)142 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
143 {
144 struct qi_desc desc;
145
146 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
147 | QI_IEC_SELECTIVE;
148 desc.qw1 = 0;
149 desc.qw2 = 0;
150 desc.qw3 = 0;
151
152 return qi_submit_sync(iommu, &desc, 1, 0);
153 }
154
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)155 static int modify_irte(struct irq_2_iommu *irq_iommu,
156 struct irte *irte_modified)
157 {
158 struct intel_iommu *iommu;
159 unsigned long flags;
160 struct irte *irte;
161 int rc, index;
162
163 if (!irq_iommu)
164 return -1;
165
166 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
167
168 iommu = irq_iommu->iommu;
169
170 index = irq_iommu->irte_index + irq_iommu->sub_handle;
171 irte = &iommu->ir_table->base[index];
172
173 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
174 /*
175 * We use cmpxchg16 to atomically update the 128-bit IRTE,
176 * and it cannot be updated by the hardware or other processors
177 * behind us, so the return value of cmpxchg16 should be the
178 * same as the old value.
179 */
180 u128 old = irte->irte;
181 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
182 } else {
183 WRITE_ONCE(irte->low, irte_modified->low);
184 WRITE_ONCE(irte->high, irte_modified->high);
185 }
186 __iommu_flush_cache(iommu, irte, sizeof(*irte));
187
188 rc = qi_flush_iec(iommu, index, 0);
189
190 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
191
192 return rc;
193 }
194
map_hpet_to_iommu(u8 hpet_id)195 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
196 {
197 int i;
198
199 for (i = 0; i < MAX_HPET_TBS; i++) {
200 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
201 return ir_hpet[i].iommu;
202 }
203 return NULL;
204 }
205
map_ioapic_to_iommu(int apic)206 static struct intel_iommu *map_ioapic_to_iommu(int apic)
207 {
208 int i;
209
210 for (i = 0; i < MAX_IO_APICS; i++) {
211 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
212 return ir_ioapic[i].iommu;
213 }
214 return NULL;
215 }
216
map_dev_to_ir(struct pci_dev * dev)217 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
218 {
219 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
220
221 return drhd ? drhd->iommu->ir_domain : NULL;
222 }
223
clear_entries(struct irq_2_iommu * irq_iommu)224 static int clear_entries(struct irq_2_iommu *irq_iommu)
225 {
226 struct irte *start, *entry, *end;
227 struct intel_iommu *iommu;
228 int index;
229
230 if (irq_iommu->sub_handle)
231 return 0;
232
233 iommu = irq_iommu->iommu;
234 index = irq_iommu->irte_index;
235
236 start = iommu->ir_table->base + index;
237 end = start + (1 << irq_iommu->irte_mask);
238
239 for (entry = start; entry < end; entry++) {
240 WRITE_ONCE(entry->low, 0);
241 WRITE_ONCE(entry->high, 0);
242 }
243 bitmap_release_region(iommu->ir_table->bitmap, index,
244 irq_iommu->irte_mask);
245
246 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
247 }
248
249 /*
250 * source validation type
251 */
252 #define SVT_NO_VERIFY 0x0 /* no verification is required */
253 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
254 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
255
256 /*
257 * source-id qualifier
258 */
259 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
260 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
261 * the third least significant bit
262 */
263 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
264 * the second and third least significant bits
265 */
266 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
267 * the least three significant bits
268 */
269
270 /*
271 * set SVT, SQ and SID fields of irte to verify
272 * source ids of interrupt requests
273 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)274 static void set_irte_sid(struct irte *irte, unsigned int svt,
275 unsigned int sq, unsigned int sid)
276 {
277 if (disable_sourceid_checking)
278 svt = SVT_NO_VERIFY;
279 irte->svt = svt;
280 irte->sq = sq;
281 irte->sid = sid;
282 }
283
284 /*
285 * Set an IRTE to match only the bus number. Interrupt requests that reference
286 * this IRTE must have a requester-id whose bus number is between or equal
287 * to the start_bus and end_bus arguments.
288 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)289 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
290 unsigned int end_bus)
291 {
292 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
293 (start_bus << 8) | end_bus);
294 }
295
set_ioapic_sid(struct irte * irte,int apic)296 static int set_ioapic_sid(struct irte *irte, int apic)
297 {
298 int i;
299 u16 sid = 0;
300
301 if (!irte)
302 return -1;
303
304 for (i = 0; i < MAX_IO_APICS; i++) {
305 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
306 sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
307 break;
308 }
309 }
310
311 if (sid == 0) {
312 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
313 return -1;
314 }
315
316 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
317
318 return 0;
319 }
320
set_hpet_sid(struct irte * irte,u8 id)321 static int set_hpet_sid(struct irte *irte, u8 id)
322 {
323 int i;
324 u16 sid = 0;
325
326 if (!irte)
327 return -1;
328
329 for (i = 0; i < MAX_HPET_TBS; i++) {
330 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
331 sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
332 break;
333 }
334 }
335
336 if (sid == 0) {
337 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
338 return -1;
339 }
340
341 /*
342 * Should really use SQ_ALL_16. Some platforms are broken.
343 * While we figure out the right quirks for these broken platforms, use
344 * SQ_13_IGNORE_3 for now.
345 */
346 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
347
348 return 0;
349 }
350
351 struct set_msi_sid_data {
352 struct pci_dev *pdev;
353 u16 alias;
354 int count;
355 int busmatch_count;
356 };
357
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)358 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
359 {
360 struct set_msi_sid_data *data = opaque;
361
362 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
363 data->busmatch_count++;
364
365 data->pdev = pdev;
366 data->alias = alias;
367 data->count++;
368
369 return 0;
370 }
371
set_msi_sid(struct irte * irte,struct pci_dev * dev)372 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
373 {
374 struct set_msi_sid_data data;
375
376 if (!irte || !dev)
377 return -1;
378
379 data.count = 0;
380 data.busmatch_count = 0;
381 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
382
383 /*
384 * DMA alias provides us with a PCI device and alias. The only case
385 * where the it will return an alias on a different bus than the
386 * device is the case of a PCIe-to-PCI bridge, where the alias is for
387 * the subordinate bus. In this case we can only verify the bus.
388 *
389 * If there are multiple aliases, all with the same bus number,
390 * then all we can do is verify the bus. This is typical in NTB
391 * hardware which use proxy IDs where the device will generate traffic
392 * from multiple devfn numbers on the same bus.
393 *
394 * If the alias device is on a different bus than our source device
395 * then we have a topology based alias, use it.
396 *
397 * Otherwise, the alias is for a device DMA quirk and we cannot
398 * assume that MSI uses the same requester ID. Therefore use the
399 * original device.
400 */
401 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
402 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
403 dev->bus->number);
404 else if (data.count >= 2 && data.busmatch_count == data.count)
405 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
406 else if (data.pdev->bus->number != dev->bus->number)
407 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
408 else
409 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
410 pci_dev_id(dev));
411
412 return 0;
413 }
414
iommu_load_old_irte(struct intel_iommu * iommu)415 static int iommu_load_old_irte(struct intel_iommu *iommu)
416 {
417 struct irte *old_ir_table;
418 phys_addr_t irt_phys;
419 unsigned int i;
420 size_t size;
421 u64 irta;
422
423 /* Check whether the old ir-table has the same size as ours */
424 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
425 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
426 != INTR_REMAP_TABLE_REG_SIZE)
427 return -EINVAL;
428
429 irt_phys = irta & VTD_PAGE_MASK;
430 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
431
432 /* Map the old IR table */
433 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
434 if (!old_ir_table)
435 return -ENOMEM;
436
437 /* Copy data over */
438 memcpy(iommu->ir_table->base, old_ir_table, size);
439
440 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
441
442 /*
443 * Now check the table for used entries and mark those as
444 * allocated in the bitmap
445 */
446 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
447 if (iommu->ir_table->base[i].present)
448 bitmap_set(iommu->ir_table->bitmap, i, 1);
449 }
450
451 memunmap(old_ir_table);
452
453 return 0;
454 }
455
456
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)457 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
458 {
459 unsigned long flags;
460 u64 addr;
461 u32 sts;
462
463 addr = virt_to_phys((void *)iommu->ir_table->base);
464
465 raw_spin_lock_irqsave(&iommu->register_lock, flags);
466
467 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
468 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
469
470 /* Set interrupt-remapping table pointer */
471 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
472
473 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
474 readl, (sts & DMA_GSTS_IRTPS), sts);
475 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
476
477 /*
478 * Global invalidation of interrupt entry cache to make sure the
479 * hardware uses the new irq remapping table.
480 */
481 if (!cap_esirtps(iommu->cap))
482 qi_global_iec(iommu);
483 }
484
iommu_enable_irq_remapping(struct intel_iommu * iommu)485 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
486 {
487 unsigned long flags;
488 u32 sts;
489
490 raw_spin_lock_irqsave(&iommu->register_lock, flags);
491
492 /* Enable interrupt-remapping */
493 iommu->gcmd |= DMA_GCMD_IRE;
494 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
495 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
496 readl, (sts & DMA_GSTS_IRES), sts);
497
498 /* Block compatibility-format MSIs */
499 if (sts & DMA_GSTS_CFIS) {
500 iommu->gcmd &= ~DMA_GCMD_CFI;
501 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
502 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
503 readl, !(sts & DMA_GSTS_CFIS), sts);
504 }
505
506 /*
507 * With CFI clear in the Global Command register, we should be
508 * protected from dangerous (i.e. compatibility) interrupts
509 * regardless of x2apic status. Check just to be sure.
510 */
511 if (sts & DMA_GSTS_CFIS)
512 WARN(1, KERN_WARNING
513 "Compatibility-format IRQs enabled despite intr remapping;\n"
514 "you are vulnerable to IRQ injection.\n");
515
516 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
517 }
518
intel_setup_irq_remapping(struct intel_iommu * iommu)519 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
520 {
521 struct ir_table *ir_table;
522 struct fwnode_handle *fn;
523 unsigned long *bitmap;
524 void *ir_table_base;
525
526 if (iommu->ir_table)
527 return 0;
528
529 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
530 if (!ir_table)
531 return -ENOMEM;
532
533 ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL,
534 INTR_REMAP_PAGE_ORDER);
535 if (!ir_table_base) {
536 pr_err("IR%d: failed to allocate pages of order %d\n",
537 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
538 goto out_free_table;
539 }
540
541 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
542 if (bitmap == NULL) {
543 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
544 goto out_free_pages;
545 }
546
547 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
548 if (!fn)
549 goto out_free_bitmap;
550
551 iommu->ir_domain =
552 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
553 0, INTR_REMAP_TABLE_ENTRIES,
554 fn, &intel_ir_domain_ops,
555 iommu);
556 if (!iommu->ir_domain) {
557 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
558 goto out_free_fwnode;
559 }
560
561 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR);
562 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
563 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
564 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
565
566 ir_table->base = ir_table_base;
567 ir_table->bitmap = bitmap;
568 iommu->ir_table = ir_table;
569
570 /*
571 * If the queued invalidation is already initialized,
572 * shouldn't disable it.
573 */
574 if (!iommu->qi) {
575 /*
576 * Clear previous faults.
577 */
578 dmar_fault(-1, iommu);
579 dmar_disable_qi(iommu);
580
581 if (dmar_enable_qi(iommu)) {
582 pr_err("Failed to enable queued invalidation\n");
583 goto out_free_ir_domain;
584 }
585 }
586
587 init_ir_status(iommu);
588
589 if (ir_pre_enabled(iommu)) {
590 if (!is_kdump_kernel()) {
591 pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
592 iommu->name);
593 clear_ir_pre_enabled(iommu);
594 iommu_disable_irq_remapping(iommu);
595 } else if (iommu_load_old_irte(iommu))
596 pr_err("Failed to copy IR table for %s from previous kernel\n",
597 iommu->name);
598 else
599 pr_info("Copied IR table for %s from previous kernel\n",
600 iommu->name);
601 }
602
603 iommu_set_irq_remapping(iommu, eim_mode);
604
605 return 0;
606
607 out_free_ir_domain:
608 irq_domain_remove(iommu->ir_domain);
609 iommu->ir_domain = NULL;
610 out_free_fwnode:
611 irq_domain_free_fwnode(fn);
612 out_free_bitmap:
613 bitmap_free(bitmap);
614 out_free_pages:
615 iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER);
616 out_free_table:
617 kfree(ir_table);
618
619 iommu->ir_table = NULL;
620
621 return -ENOMEM;
622 }
623
intel_teardown_irq_remapping(struct intel_iommu * iommu)624 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
625 {
626 struct fwnode_handle *fn;
627
628 if (iommu && iommu->ir_table) {
629 if (iommu->ir_domain) {
630 fn = iommu->ir_domain->fwnode;
631
632 irq_domain_remove(iommu->ir_domain);
633 irq_domain_free_fwnode(fn);
634 iommu->ir_domain = NULL;
635 }
636 iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER);
637 bitmap_free(iommu->ir_table->bitmap);
638 kfree(iommu->ir_table);
639 iommu->ir_table = NULL;
640 }
641 }
642
643 /*
644 * Disable Interrupt Remapping.
645 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)646 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
647 {
648 unsigned long flags;
649 u32 sts;
650
651 if (!ecap_ir_support(iommu->ecap))
652 return;
653
654 /*
655 * global invalidation of interrupt entry cache before disabling
656 * interrupt-remapping.
657 */
658 if (!cap_esirtps(iommu->cap))
659 qi_global_iec(iommu);
660
661 raw_spin_lock_irqsave(&iommu->register_lock, flags);
662
663 sts = readl(iommu->reg + DMAR_GSTS_REG);
664 if (!(sts & DMA_GSTS_IRES))
665 goto end;
666
667 iommu->gcmd &= ~DMA_GCMD_IRE;
668 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
669
670 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
671 readl, !(sts & DMA_GSTS_IRES), sts);
672
673 end:
674 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
675 }
676
dmar_x2apic_optout(void)677 static int __init dmar_x2apic_optout(void)
678 {
679 struct acpi_table_dmar *dmar;
680 dmar = (struct acpi_table_dmar *)dmar_tbl;
681 if (!dmar || no_x2apic_optout)
682 return 0;
683 return dmar->flags & DMAR_X2APIC_OPT_OUT;
684 }
685
intel_cleanup_irq_remapping(void)686 static void __init intel_cleanup_irq_remapping(void)
687 {
688 struct dmar_drhd_unit *drhd;
689 struct intel_iommu *iommu;
690
691 for_each_iommu(iommu, drhd) {
692 if (ecap_ir_support(iommu->ecap)) {
693 iommu_disable_irq_remapping(iommu);
694 intel_teardown_irq_remapping(iommu);
695 }
696 }
697
698 if (x2apic_supported())
699 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
700 }
701
intel_prepare_irq_remapping(void)702 static int __init intel_prepare_irq_remapping(void)
703 {
704 struct dmar_drhd_unit *drhd;
705 struct intel_iommu *iommu;
706 int eim = 0;
707
708 if (irq_remap_broken) {
709 pr_warn("This system BIOS has enabled interrupt remapping\n"
710 "on a chipset that contains an erratum making that\n"
711 "feature unstable. To maintain system stability\n"
712 "interrupt remapping is being disabled. Please\n"
713 "contact your BIOS vendor for an update\n");
714 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
715 return -ENODEV;
716 }
717
718 if (dmar_table_init() < 0)
719 return -ENODEV;
720
721 if (!dmar_ir_support())
722 return -ENODEV;
723
724 if (parse_ioapics_under_ir()) {
725 pr_info("Not enabling interrupt remapping\n");
726 goto error;
727 }
728
729 /* First make sure all IOMMUs support IRQ remapping */
730 for_each_iommu(iommu, drhd)
731 if (!ecap_ir_support(iommu->ecap))
732 goto error;
733
734 /* Detect remapping mode: lapic or x2apic */
735 if (x2apic_supported()) {
736 eim = !dmar_x2apic_optout();
737 if (!eim) {
738 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
739 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
740 }
741 }
742
743 for_each_iommu(iommu, drhd) {
744 if (eim && !ecap_eim_support(iommu->ecap)) {
745 pr_info("%s does not support EIM\n", iommu->name);
746 eim = 0;
747 }
748 }
749
750 eim_mode = eim;
751 if (eim)
752 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
753
754 /* Do the initializations early */
755 for_each_iommu(iommu, drhd) {
756 if (intel_setup_irq_remapping(iommu)) {
757 pr_err("Failed to setup irq remapping for %s\n",
758 iommu->name);
759 goto error;
760 }
761 }
762
763 return 0;
764
765 error:
766 intel_cleanup_irq_remapping();
767 return -ENODEV;
768 }
769
770 /*
771 * Set Posted-Interrupts capability.
772 */
set_irq_posting_cap(void)773 static inline void set_irq_posting_cap(void)
774 {
775 struct dmar_drhd_unit *drhd;
776 struct intel_iommu *iommu;
777
778 if (!disable_irq_post) {
779 /*
780 * If IRTE is in posted format, the 'pda' field goes across the
781 * 64-bit boundary, we need use cmpxchg16b to atomically update
782 * it. We only expose posted-interrupt when X86_FEATURE_CX16
783 * is supported. Actually, hardware platforms supporting PI
784 * should have X86_FEATURE_CX16 support, this has been confirmed
785 * with Intel hardware guys.
786 */
787 if (boot_cpu_has(X86_FEATURE_CX16))
788 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
789
790 for_each_iommu(iommu, drhd)
791 if (!cap_pi_support(iommu->cap)) {
792 intel_irq_remap_ops.capability &=
793 ~(1 << IRQ_POSTING_CAP);
794 break;
795 }
796 }
797 }
798
intel_enable_irq_remapping(void)799 static int __init intel_enable_irq_remapping(void)
800 {
801 struct dmar_drhd_unit *drhd;
802 struct intel_iommu *iommu;
803 bool setup = false;
804
805 /*
806 * Setup Interrupt-remapping for all the DRHD's now.
807 */
808 for_each_iommu(iommu, drhd) {
809 if (!ir_pre_enabled(iommu))
810 iommu_enable_irq_remapping(iommu);
811 setup = true;
812 }
813
814 if (!setup)
815 goto error;
816
817 irq_remapping_enabled = 1;
818
819 set_irq_posting_cap();
820
821 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
822
823 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
824
825 error:
826 intel_cleanup_irq_remapping();
827 return -1;
828 }
829
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)830 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
831 struct intel_iommu *iommu,
832 struct acpi_dmar_hardware_unit *drhd)
833 {
834 struct acpi_dmar_pci_path *path;
835 u8 bus;
836 int count, free = -1;
837
838 bus = scope->bus;
839 path = (struct acpi_dmar_pci_path *)(scope + 1);
840 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
841 / sizeof(struct acpi_dmar_pci_path);
842
843 while (--count > 0) {
844 /*
845 * Access PCI directly due to the PCI
846 * subsystem isn't initialized yet.
847 */
848 bus = read_pci_config_byte(bus, path->device, path->function,
849 PCI_SECONDARY_BUS);
850 path++;
851 }
852
853 for (count = 0; count < MAX_HPET_TBS; count++) {
854 if (ir_hpet[count].iommu == iommu &&
855 ir_hpet[count].id == scope->enumeration_id)
856 return 0;
857 else if (ir_hpet[count].iommu == NULL && free == -1)
858 free = count;
859 }
860 if (free == -1) {
861 pr_warn("Exceeded Max HPET blocks\n");
862 return -ENOSPC;
863 }
864
865 ir_hpet[free].iommu = iommu;
866 ir_hpet[free].id = scope->enumeration_id;
867 ir_hpet[free].bus = bus;
868 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
869 pr_info("HPET id %d under DRHD base 0x%Lx\n",
870 scope->enumeration_id, drhd->address);
871
872 return 0;
873 }
874
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)875 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
876 struct intel_iommu *iommu,
877 struct acpi_dmar_hardware_unit *drhd)
878 {
879 struct acpi_dmar_pci_path *path;
880 u8 bus;
881 int count, free = -1;
882
883 bus = scope->bus;
884 path = (struct acpi_dmar_pci_path *)(scope + 1);
885 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
886 / sizeof(struct acpi_dmar_pci_path);
887
888 while (--count > 0) {
889 /*
890 * Access PCI directly due to the PCI
891 * subsystem isn't initialized yet.
892 */
893 bus = read_pci_config_byte(bus, path->device, path->function,
894 PCI_SECONDARY_BUS);
895 path++;
896 }
897
898 for (count = 0; count < MAX_IO_APICS; count++) {
899 if (ir_ioapic[count].iommu == iommu &&
900 ir_ioapic[count].id == scope->enumeration_id)
901 return 0;
902 else if (ir_ioapic[count].iommu == NULL && free == -1)
903 free = count;
904 }
905 if (free == -1) {
906 pr_warn("Exceeded Max IO APICS\n");
907 return -ENOSPC;
908 }
909
910 ir_ioapic[free].bus = bus;
911 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
912 ir_ioapic[free].iommu = iommu;
913 ir_ioapic[free].id = scope->enumeration_id;
914 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
915 scope->enumeration_id, drhd->address, iommu->seq_id);
916
917 return 0;
918 }
919
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)920 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
921 struct intel_iommu *iommu)
922 {
923 int ret = 0;
924 struct acpi_dmar_hardware_unit *drhd;
925 struct acpi_dmar_device_scope *scope;
926 void *start, *end;
927
928 drhd = (struct acpi_dmar_hardware_unit *)header;
929 start = (void *)(drhd + 1);
930 end = ((void *)drhd) + header->length;
931
932 while (start < end && ret == 0) {
933 scope = start;
934 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
935 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
936 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
937 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
938 start += scope->length;
939 }
940
941 return ret;
942 }
943
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)944 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
945 {
946 int i;
947
948 for (i = 0; i < MAX_HPET_TBS; i++)
949 if (ir_hpet[i].iommu == iommu)
950 ir_hpet[i].iommu = NULL;
951
952 for (i = 0; i < MAX_IO_APICS; i++)
953 if (ir_ioapic[i].iommu == iommu)
954 ir_ioapic[i].iommu = NULL;
955 }
956
957 /*
958 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
959 * hardware unit.
960 */
parse_ioapics_under_ir(void)961 static int __init parse_ioapics_under_ir(void)
962 {
963 struct dmar_drhd_unit *drhd;
964 struct intel_iommu *iommu;
965 bool ir_supported = false;
966 int ioapic_idx;
967
968 for_each_iommu(iommu, drhd) {
969 int ret;
970
971 if (!ecap_ir_support(iommu->ecap))
972 continue;
973
974 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
975 if (ret)
976 return ret;
977
978 ir_supported = true;
979 }
980
981 if (!ir_supported)
982 return -ENODEV;
983
984 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
985 int ioapic_id = mpc_ioapic_id(ioapic_idx);
986 if (!map_ioapic_to_iommu(ioapic_id)) {
987 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
988 "interrupt remapping will be disabled\n",
989 ioapic_id);
990 return -1;
991 }
992 }
993
994 return 0;
995 }
996
ir_dev_scope_init(void)997 static int __init ir_dev_scope_init(void)
998 {
999 int ret;
1000
1001 if (!irq_remapping_enabled)
1002 return 0;
1003
1004 down_write(&dmar_global_lock);
1005 ret = dmar_dev_scope_init();
1006 up_write(&dmar_global_lock);
1007
1008 return ret;
1009 }
1010 rootfs_initcall(ir_dev_scope_init);
1011
disable_irq_remapping(void)1012 static void disable_irq_remapping(void)
1013 {
1014 struct dmar_drhd_unit *drhd;
1015 struct intel_iommu *iommu = NULL;
1016
1017 /*
1018 * Disable Interrupt-remapping for all the DRHD's now.
1019 */
1020 for_each_iommu(iommu, drhd) {
1021 if (!ecap_ir_support(iommu->ecap))
1022 continue;
1023
1024 iommu_disable_irq_remapping(iommu);
1025 }
1026
1027 /*
1028 * Clear Posted-Interrupts capability.
1029 */
1030 if (!disable_irq_post)
1031 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1032 }
1033
reenable_irq_remapping(int eim)1034 static int reenable_irq_remapping(int eim)
1035 {
1036 struct dmar_drhd_unit *drhd;
1037 bool setup = false;
1038 struct intel_iommu *iommu = NULL;
1039
1040 for_each_iommu(iommu, drhd)
1041 if (iommu->qi)
1042 dmar_reenable_qi(iommu);
1043
1044 /*
1045 * Setup Interrupt-remapping for all the DRHD's now.
1046 */
1047 for_each_iommu(iommu, drhd) {
1048 if (!ecap_ir_support(iommu->ecap))
1049 continue;
1050
1051 /* Set up interrupt remapping for iommu.*/
1052 iommu_set_irq_remapping(iommu, eim);
1053 iommu_enable_irq_remapping(iommu);
1054 setup = true;
1055 }
1056
1057 if (!setup)
1058 goto error;
1059
1060 set_irq_posting_cap();
1061
1062 return 0;
1063
1064 error:
1065 /*
1066 * handle error condition gracefully here!
1067 */
1068 return -1;
1069 }
1070
1071 /*
1072 * Store the MSI remapping domain pointer in the device if enabled.
1073 *
1074 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1075 * remapping is disabled. Only update the pointer if the device is not
1076 * already handled by a non default PCI/MSI interrupt domain. This protects
1077 * e.g. VMD devices.
1078 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1079 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1080 {
1081 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1082 return;
1083
1084 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1085 }
1086
prepare_irte(struct irte * irte,int vector,unsigned int dest)1087 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1088 {
1089 memset(irte, 0, sizeof(*irte));
1090
1091 irte->present = 1;
1092 irte->dst_mode = apic->dest_mode_logical;
1093 /*
1094 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1095 * actual level or edge trigger will be setup in the IO-APIC
1096 * RTE. This will help simplify level triggered irq migration.
1097 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1098 * irq migration in the presence of interrupt-remapping.
1099 */
1100 irte->trigger_mode = 0;
1101 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1102 irte->vector = vector;
1103 irte->dest_id = IRTE_DEST(dest);
1104 irte->redir_hint = 1;
1105 }
1106
prepare_irte_posted(struct irte * irte)1107 static void prepare_irte_posted(struct irte *irte)
1108 {
1109 memset(irte, 0, sizeof(*irte));
1110
1111 irte->present = 1;
1112 irte->p_pst = 1;
1113 }
1114
1115 struct irq_remap_ops intel_irq_remap_ops = {
1116 .prepare = intel_prepare_irq_remapping,
1117 .enable = intel_enable_irq_remapping,
1118 .disable = disable_irq_remapping,
1119 .reenable = reenable_irq_remapping,
1120 .enable_faulting = enable_drhd_fault_handling,
1121 };
1122
1123 #ifdef CONFIG_X86_POSTED_MSI
1124
get_pi_desc_addr(struct irq_data * irqd)1125 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1126 {
1127 int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1128
1129 if (WARN_ON(cpu >= nr_cpu_ids))
1130 return 0;
1131
1132 return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1133 }
1134
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1135 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1136 {
1137 struct intel_ir_data *ir_data = irqd->chip_data;
1138 struct irte *irte = &ir_data->irte_entry;
1139 struct irte irte_pi;
1140 u64 pid_addr;
1141
1142 pid_addr = get_pi_desc_addr(irqd);
1143
1144 if (!pid_addr) {
1145 pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1146 return;
1147 }
1148
1149 memset(&irte_pi, 0, sizeof(irte_pi));
1150
1151 /* The shared IRTE already be set up as posted during alloc_irte */
1152 dmar_copy_shared_irte(&irte_pi, irte);
1153
1154 irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1155 irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1156
1157 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1158 }
1159
1160 #else
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1161 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1162 #endif
1163
__intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1164 static void __intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1165 {
1166 struct intel_ir_data *ir_data = irqd->chip_data;
1167
1168 /*
1169 * Don't modify IRTEs for IRQs that are being posted to vCPUs if the
1170 * host CPU affinity changes.
1171 */
1172 if (ir_data->irq_2_iommu.posted_vcpu && !force_host)
1173 return;
1174
1175 ir_data->irq_2_iommu.posted_vcpu = false;
1176
1177 if (ir_data->irq_2_iommu.posted_msi)
1178 intel_ir_reconfigure_irte_posted(irqd);
1179 else
1180 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1181 }
1182
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1183 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1184 {
1185 struct intel_ir_data *ir_data = irqd->chip_data;
1186 struct irte *irte = &ir_data->irte_entry;
1187 struct irq_cfg *cfg = irqd_cfg(irqd);
1188
1189 /*
1190 * Atomically updates the IRTE with the new destination, vector
1191 * and flushes the interrupt entry cache.
1192 */
1193 irte->vector = cfg->vector;
1194 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1195
1196 __intel_ir_reconfigure_irte(irqd, force_host);
1197 }
1198
1199 /*
1200 * Migrate the IO-APIC irq in the presence of intr-remapping.
1201 *
1202 * For both level and edge triggered, irq migration is a simple atomic
1203 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1204 *
1205 * For level triggered, we eliminate the io-apic RTE modification (with the
1206 * updated vector information), by using a virtual vector (io-apic pin number).
1207 * Real vector that is used for interrupting cpu will be coming from
1208 * the interrupt-remapping table entry.
1209 *
1210 * As the migration is a simple atomic update of IRTE, the same mechanism
1211 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1212 */
1213 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1214 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1215 bool force)
1216 {
1217 struct irq_data *parent = data->parent_data;
1218 struct irq_cfg *cfg = irqd_cfg(data);
1219 int ret;
1220
1221 ret = parent->chip->irq_set_affinity(parent, mask, force);
1222 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1223 return ret;
1224
1225 intel_ir_reconfigure_irte(data, false);
1226 /*
1227 * After this point, all the interrupts will start arriving
1228 * at the new destination. So, time to cleanup the previous
1229 * vector allocation.
1230 */
1231 vector_schedule_cleanup(cfg);
1232
1233 return IRQ_SET_MASK_OK_DONE;
1234 }
1235
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1236 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1237 struct msi_msg *msg)
1238 {
1239 struct intel_ir_data *ir_data = irq_data->chip_data;
1240
1241 *msg = ir_data->msi_entry;
1242 }
1243
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1244 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1245 {
1246 struct intel_ir_data *ir_data = data->chip_data;
1247 struct vcpu_data *vcpu_pi_info = info;
1248
1249 /* stop posting interrupts, back to the default mode */
1250 if (!vcpu_pi_info) {
1251 __intel_ir_reconfigure_irte(data, true);
1252 } else {
1253 struct irte irte_pi;
1254
1255 /*
1256 * We are not caching the posted interrupt entry. We
1257 * copy the data from the remapped entry and modify
1258 * the fields which are relevant for posted mode. The
1259 * cached remapped entry is used for switching back to
1260 * remapped mode.
1261 */
1262 memset(&irte_pi, 0, sizeof(irte_pi));
1263 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1264
1265 /* Update the posted mode fields */
1266 irte_pi.p_pst = 1;
1267 irte_pi.p_urgent = 0;
1268 irte_pi.p_vector = vcpu_pi_info->vector;
1269 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1270 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1271 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1272 ~(-1UL << PDA_HIGH_BIT);
1273
1274 ir_data->irq_2_iommu.posted_vcpu = true;
1275 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1276 }
1277
1278 return 0;
1279 }
1280
1281 static struct irq_chip intel_ir_chip = {
1282 .name = "INTEL-IR",
1283 .irq_ack = apic_ack_irq,
1284 .irq_set_affinity = intel_ir_set_affinity,
1285 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1286 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1287 };
1288
1289 /*
1290 * With posted MSIs, all vectors are multiplexed into a single notification
1291 * vector. Devices MSIs are then dispatched in a demux loop where
1292 * EOIs can be coalesced as well.
1293 *
1294 * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack()
1295 * function. Instead EOI is performed by the posted interrupt notification
1296 * handler.
1297 *
1298 * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1299 * one apic_eoi() is needed.
1300 *
1301 * __sysvec_posted_msi_notification()
1302 * irq_enter();
1303 * handle_edge_irq()
1304 * irq_chip_ack_parent()
1305 * dummy(); // No EOI
1306 * handle_irq_event()
1307 * driver_handler()
1308 * handle_edge_irq()
1309 * irq_chip_ack_parent()
1310 * dummy(); // No EOI
1311 * handle_irq_event()
1312 * driver_handler()
1313 * handle_edge_irq()
1314 * irq_chip_ack_parent()
1315 * dummy(); // No EOI
1316 * handle_irq_event()
1317 * driver_handler()
1318 * apic_eoi()
1319 * irq_exit()
1320 */
1321
dummy_ack(struct irq_data * d)1322 static void dummy_ack(struct irq_data *d) { }
1323
1324 static struct irq_chip intel_ir_chip_post_msi = {
1325 .name = "INTEL-IR-POST",
1326 .irq_ack = dummy_ack,
1327 .irq_set_affinity = intel_ir_set_affinity,
1328 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1329 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1330 };
1331
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1332 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1333 {
1334 memset(msg, 0, sizeof(*msg));
1335
1336 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1337 msg->arch_addr_lo.dmar_subhandle_valid = true;
1338 msg->arch_addr_lo.dmar_format = true;
1339 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1340 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1341
1342 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1343
1344 msg->arch_data.dmar_subhandle = subhandle;
1345 }
1346
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1347 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1348 struct irq_cfg *irq_cfg,
1349 struct irq_alloc_info *info,
1350 int index, int sub_handle)
1351 {
1352 struct irte *irte = &data->irte_entry;
1353
1354 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1355
1356 switch (info->type) {
1357 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1358 /* Set source-id of interrupt request */
1359 set_ioapic_sid(irte, info->devid);
1360 apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1361 info->devid, irte->present, irte->fpd, irte->dst_mode,
1362 irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1363 irte->avail, irte->vector, irte->dest_id, irte->sid,
1364 irte->sq, irte->svt);
1365 sub_handle = info->ioapic.pin;
1366 break;
1367 case X86_IRQ_ALLOC_TYPE_HPET:
1368 set_hpet_sid(irte, info->devid);
1369 break;
1370 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1371 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1372 if (posted_msi_supported()) {
1373 prepare_irte_posted(irte);
1374 data->irq_2_iommu.posted_msi = 1;
1375 }
1376
1377 set_msi_sid(irte,
1378 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1379 break;
1380 default:
1381 BUG_ON(1);
1382 break;
1383 }
1384 fill_msi_msg(&data->msi_entry, index, sub_handle);
1385 }
1386
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1387 static void intel_free_irq_resources(struct irq_domain *domain,
1388 unsigned int virq, unsigned int nr_irqs)
1389 {
1390 struct irq_data *irq_data;
1391 struct intel_ir_data *data;
1392 struct irq_2_iommu *irq_iommu;
1393 unsigned long flags;
1394 int i;
1395 for (i = 0; i < nr_irqs; i++) {
1396 irq_data = irq_domain_get_irq_data(domain, virq + i);
1397 if (irq_data && irq_data->chip_data) {
1398 data = irq_data->chip_data;
1399 irq_iommu = &data->irq_2_iommu;
1400 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1401 clear_entries(irq_iommu);
1402 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1403 irq_domain_reset_irq_data(irq_data);
1404 kfree(data);
1405 }
1406 }
1407 }
1408
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1409 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1410 unsigned int virq, unsigned int nr_irqs,
1411 void *arg)
1412 {
1413 struct intel_iommu *iommu = domain->host_data;
1414 struct irq_alloc_info *info = arg;
1415 struct intel_ir_data *data, *ird;
1416 struct irq_data *irq_data;
1417 struct irq_cfg *irq_cfg;
1418 int i, ret, index;
1419
1420 if (!info || !iommu)
1421 return -EINVAL;
1422 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1423 return -EINVAL;
1424
1425 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1426 if (ret < 0)
1427 return ret;
1428
1429 ret = -ENOMEM;
1430 data = kzalloc(sizeof(*data), GFP_KERNEL);
1431 if (!data)
1432 goto out_free_parent;
1433
1434 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1435 if (index < 0) {
1436 pr_warn("Failed to allocate IRTE\n");
1437 kfree(data);
1438 goto out_free_parent;
1439 }
1440
1441 for (i = 0; i < nr_irqs; i++) {
1442 irq_data = irq_domain_get_irq_data(domain, virq + i);
1443 irq_cfg = irqd_cfg(irq_data);
1444 if (!irq_data || !irq_cfg) {
1445 if (!i)
1446 kfree(data);
1447 ret = -EINVAL;
1448 goto out_free_data;
1449 }
1450
1451 if (i > 0) {
1452 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1453 if (!ird)
1454 goto out_free_data;
1455 /* Initialize the common data */
1456 ird->irq_2_iommu = data->irq_2_iommu;
1457 ird->irq_2_iommu.sub_handle = i;
1458 } else {
1459 ird = data;
1460 }
1461
1462 irq_data->hwirq = (index << 16) + i;
1463 irq_data->chip_data = ird;
1464 if (posted_msi_supported() &&
1465 ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1466 (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1467 irq_data->chip = &intel_ir_chip_post_msi;
1468 else
1469 irq_data->chip = &intel_ir_chip;
1470 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1471 }
1472 return 0;
1473
1474 out_free_data:
1475 intel_free_irq_resources(domain, virq, i);
1476 out_free_parent:
1477 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1478 return ret;
1479 }
1480
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1481 static void intel_irq_remapping_free(struct irq_domain *domain,
1482 unsigned int virq, unsigned int nr_irqs)
1483 {
1484 intel_free_irq_resources(domain, virq, nr_irqs);
1485 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1486 }
1487
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1488 static int intel_irq_remapping_activate(struct irq_domain *domain,
1489 struct irq_data *irq_data, bool reserve)
1490 {
1491 intel_ir_reconfigure_irte(irq_data, true);
1492 return 0;
1493 }
1494
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1495 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1496 struct irq_data *irq_data)
1497 {
1498 struct intel_ir_data *data = irq_data->chip_data;
1499 struct irte entry;
1500
1501 WARN_ON_ONCE(data->irq_2_iommu.posted_vcpu);
1502 data->irq_2_iommu.posted_vcpu = false;
1503
1504 memset(&entry, 0, sizeof(entry));
1505 modify_irte(&data->irq_2_iommu, &entry);
1506 }
1507
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1508 static int intel_irq_remapping_select(struct irq_domain *d,
1509 struct irq_fwspec *fwspec,
1510 enum irq_domain_bus_token bus_token)
1511 {
1512 struct intel_iommu *iommu = NULL;
1513
1514 if (x86_fwspec_is_ioapic(fwspec))
1515 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1516 else if (x86_fwspec_is_hpet(fwspec))
1517 iommu = map_hpet_to_iommu(fwspec->param[0]);
1518
1519 return iommu && d == iommu->ir_domain;
1520 }
1521
1522 static const struct irq_domain_ops intel_ir_domain_ops = {
1523 .select = intel_irq_remapping_select,
1524 .alloc = intel_irq_remapping_alloc,
1525 .free = intel_irq_remapping_free,
1526 .activate = intel_irq_remapping_activate,
1527 .deactivate = intel_irq_remapping_deactivate,
1528 };
1529
1530 static const struct msi_parent_ops dmar_msi_parent_ops = {
1531 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1532 .prefix = "IR-",
1533 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1534 };
1535
1536 /*
1537 * Support of Interrupt Remapping Unit Hotplug
1538 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1539 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1540 {
1541 int ret;
1542 int eim = x2apic_enabled();
1543
1544 if (eim && !ecap_eim_support(iommu->ecap)) {
1545 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1546 iommu->reg_phys, iommu->ecap);
1547 return -ENODEV;
1548 }
1549
1550 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1551 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1552 iommu->reg_phys);
1553 return -ENODEV;
1554 }
1555
1556 /* TODO: check all IOAPICs are covered by IOMMU */
1557
1558 /* Setup Interrupt-remapping now. */
1559 ret = intel_setup_irq_remapping(iommu);
1560 if (ret) {
1561 pr_err("Failed to setup irq remapping for %s\n",
1562 iommu->name);
1563 intel_teardown_irq_remapping(iommu);
1564 ir_remove_ioapic_hpet_scope(iommu);
1565 } else {
1566 iommu_enable_irq_remapping(iommu);
1567 }
1568
1569 return ret;
1570 }
1571
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1572 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1573 {
1574 int ret = 0;
1575 struct intel_iommu *iommu = dmaru->iommu;
1576
1577 if (!irq_remapping_enabled)
1578 return 0;
1579 if (iommu == NULL)
1580 return -EINVAL;
1581 if (!ecap_ir_support(iommu->ecap))
1582 return 0;
1583 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1584 !cap_pi_support(iommu->cap))
1585 return -EBUSY;
1586
1587 if (insert) {
1588 if (!iommu->ir_table)
1589 ret = dmar_ir_add(dmaru, iommu);
1590 } else {
1591 if (iommu->ir_table) {
1592 if (!bitmap_empty(iommu->ir_table->bitmap,
1593 INTR_REMAP_TABLE_ENTRIES)) {
1594 ret = -EBUSY;
1595 } else {
1596 iommu_disable_irq_remapping(iommu);
1597 intel_teardown_irq_remapping(iommu);
1598 ir_remove_ioapic_hpet_scope(iommu);
1599 }
1600 }
1601 }
1602
1603 return ret;
1604 }
1605