1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/irqchip/irq-msi-lib.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/posted_intr.h>
24
25 #include "iommu.h"
26 #include "../irq_remapping.h"
27 #include "../iommu-pages.h"
28
29 struct ioapic_scope {
30 struct intel_iommu *iommu;
31 unsigned int id;
32 unsigned int bus; /* PCI bus number */
33 unsigned int devfn; /* PCI devfn number */
34 };
35
36 struct hpet_scope {
37 struct intel_iommu *iommu;
38 u8 id;
39 unsigned int bus;
40 unsigned int devfn;
41 };
42
43 struct irq_2_iommu {
44 struct intel_iommu *iommu;
45 u16 irte_index;
46 u16 sub_handle;
47 u8 irte_mask;
48 bool posted_msi;
49 bool posted_vcpu;
50 };
51
52 struct intel_ir_data {
53 struct irq_2_iommu irq_2_iommu;
54 struct irte irte_entry;
55 union {
56 struct msi_msg msi_entry;
57 };
58 };
59
60 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
61 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
62
63 static int __read_mostly eim_mode;
64 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
65 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
66
67 /*
68 * Lock ordering:
69 * ->dmar_global_lock
70 * ->irq_2_ir_lock
71 * ->qi->q_lock
72 * ->iommu->register_lock
73 * Note:
74 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
75 * in single-threaded environment with interrupt disabled, so no need to tabke
76 * the dmar_global_lock.
77 */
78 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
79 static const struct irq_domain_ops intel_ir_domain_ops;
80
81 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
82 static int __init parse_ioapics_under_ir(void);
83 static const struct msi_parent_ops dmar_msi_parent_ops;
84
ir_pre_enabled(struct intel_iommu * iommu)85 static bool ir_pre_enabled(struct intel_iommu *iommu)
86 {
87 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
88 }
89
clear_ir_pre_enabled(struct intel_iommu * iommu)90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
93 }
94
init_ir_status(struct intel_iommu * iommu)95 static void init_ir_status(struct intel_iommu *iommu)
96 {
97 u32 gsts;
98
99 gsts = readl(iommu->reg + DMAR_GSTS_REG);
100 if (gsts & DMA_GSTS_IRES)
101 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
102 }
103
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)104 static int alloc_irte(struct intel_iommu *iommu,
105 struct irq_2_iommu *irq_iommu, u16 count)
106 {
107 struct ir_table *table = iommu->ir_table;
108 unsigned int mask = 0;
109 unsigned long flags;
110 int index;
111
112 if (!count || !irq_iommu)
113 return -1;
114
115 if (count > 1) {
116 count = __roundup_pow_of_two(count);
117 mask = ilog2(count);
118 }
119
120 if (mask > ecap_max_handle_mask(iommu->ecap)) {
121 pr_err("Requested mask %x exceeds the max invalidation handle"
122 " mask value %Lx\n", mask,
123 ecap_max_handle_mask(iommu->ecap));
124 return -1;
125 }
126
127 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 index = bitmap_find_free_region(table->bitmap,
129 INTR_REMAP_TABLE_ENTRIES, mask);
130 if (index < 0) {
131 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
132 } else {
133 irq_iommu->iommu = iommu;
134 irq_iommu->irte_index = index;
135 irq_iommu->sub_handle = 0;
136 irq_iommu->irte_mask = mask;
137 }
138 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
139
140 return index;
141 }
142
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)143 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
144 {
145 struct qi_desc desc;
146
147 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
148 | QI_IEC_SELECTIVE;
149 desc.qw1 = 0;
150 desc.qw2 = 0;
151 desc.qw3 = 0;
152
153 return qi_submit_sync(iommu, &desc, 1, 0);
154 }
155
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)156 static int modify_irte(struct irq_2_iommu *irq_iommu,
157 struct irte *irte_modified)
158 {
159 struct intel_iommu *iommu;
160 unsigned long flags;
161 struct irte *irte;
162 int rc, index;
163
164 if (!irq_iommu)
165 return -1;
166
167 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
168
169 iommu = irq_iommu->iommu;
170
171 index = irq_iommu->irte_index + irq_iommu->sub_handle;
172 irte = &iommu->ir_table->base[index];
173
174 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
175 /*
176 * We use cmpxchg16 to atomically update the 128-bit IRTE,
177 * and it cannot be updated by the hardware or other processors
178 * behind us, so the return value of cmpxchg16 should be the
179 * same as the old value.
180 */
181 u128 old = irte->irte;
182 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
183 } else {
184 WRITE_ONCE(irte->low, irte_modified->low);
185 WRITE_ONCE(irte->high, irte_modified->high);
186 }
187 __iommu_flush_cache(iommu, irte, sizeof(*irte));
188
189 rc = qi_flush_iec(iommu, index, 0);
190
191 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
192
193 return rc;
194 }
195
map_hpet_to_iommu(u8 hpet_id)196 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
197 {
198 int i;
199
200 for (i = 0; i < MAX_HPET_TBS; i++) {
201 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
202 return ir_hpet[i].iommu;
203 }
204 return NULL;
205 }
206
map_ioapic_to_iommu(int apic)207 static struct intel_iommu *map_ioapic_to_iommu(int apic)
208 {
209 int i;
210
211 for (i = 0; i < MAX_IO_APICS; i++) {
212 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
213 return ir_ioapic[i].iommu;
214 }
215 return NULL;
216 }
217
map_dev_to_ir(struct pci_dev * dev)218 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
219 {
220 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
221
222 return drhd ? drhd->iommu->ir_domain : NULL;
223 }
224
clear_entries(struct irq_2_iommu * irq_iommu)225 static int clear_entries(struct irq_2_iommu *irq_iommu)
226 {
227 struct irte *start, *entry, *end;
228 struct intel_iommu *iommu;
229 int index;
230
231 if (irq_iommu->sub_handle)
232 return 0;
233
234 iommu = irq_iommu->iommu;
235 index = irq_iommu->irte_index;
236
237 start = iommu->ir_table->base + index;
238 end = start + (1 << irq_iommu->irte_mask);
239
240 for (entry = start; entry < end; entry++) {
241 WRITE_ONCE(entry->low, 0);
242 WRITE_ONCE(entry->high, 0);
243 }
244 bitmap_release_region(iommu->ir_table->bitmap, index,
245 irq_iommu->irte_mask);
246
247 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
248 }
249
250 /*
251 * source validation type
252 */
253 #define SVT_NO_VERIFY 0x0 /* no verification is required */
254 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
255 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
256
257 /*
258 * source-id qualifier
259 */
260 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
261 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
262 * the third least significant bit
263 */
264 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
265 * the second and third least significant bits
266 */
267 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
268 * the least three significant bits
269 */
270
271 /*
272 * set SVT, SQ and SID fields of irte to verify
273 * source ids of interrupt requests
274 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)275 static void set_irte_sid(struct irte *irte, unsigned int svt,
276 unsigned int sq, unsigned int sid)
277 {
278 if (disable_sourceid_checking)
279 svt = SVT_NO_VERIFY;
280 irte->svt = svt;
281 irte->sq = sq;
282 irte->sid = sid;
283 }
284
285 /*
286 * Set an IRTE to match only the bus number. Interrupt requests that reference
287 * this IRTE must have a requester-id whose bus number is between or equal
288 * to the start_bus and end_bus arguments.
289 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)290 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
291 unsigned int end_bus)
292 {
293 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
294 (start_bus << 8) | end_bus);
295 }
296
set_ioapic_sid(struct irte * irte,int apic)297 static int set_ioapic_sid(struct irte *irte, int apic)
298 {
299 int i;
300 u16 sid = 0;
301
302 if (!irte)
303 return -1;
304
305 for (i = 0; i < MAX_IO_APICS; i++) {
306 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
307 sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
308 break;
309 }
310 }
311
312 if (sid == 0) {
313 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
314 return -1;
315 }
316
317 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
318
319 return 0;
320 }
321
set_hpet_sid(struct irte * irte,u8 id)322 static int set_hpet_sid(struct irte *irte, u8 id)
323 {
324 int i;
325 u16 sid = 0;
326
327 if (!irte)
328 return -1;
329
330 for (i = 0; i < MAX_HPET_TBS; i++) {
331 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
332 sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
333 break;
334 }
335 }
336
337 if (sid == 0) {
338 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
339 return -1;
340 }
341
342 /*
343 * Should really use SQ_ALL_16. Some platforms are broken.
344 * While we figure out the right quirks for these broken platforms, use
345 * SQ_13_IGNORE_3 for now.
346 */
347 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
348
349 return 0;
350 }
351
352 struct set_msi_sid_data {
353 struct pci_dev *pdev;
354 u16 alias;
355 int count;
356 int busmatch_count;
357 };
358
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)359 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
360 {
361 struct set_msi_sid_data *data = opaque;
362
363 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
364 data->busmatch_count++;
365
366 data->pdev = pdev;
367 data->alias = alias;
368 data->count++;
369
370 return 0;
371 }
372
set_msi_sid(struct irte * irte,struct pci_dev * dev)373 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
374 {
375 struct set_msi_sid_data data;
376
377 if (!irte || !dev)
378 return -1;
379
380 data.count = 0;
381 data.busmatch_count = 0;
382 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
383
384 /*
385 * DMA alias provides us with a PCI device and alias. The only case
386 * where the it will return an alias on a different bus than the
387 * device is the case of a PCIe-to-PCI bridge, where the alias is for
388 * the subordinate bus. In this case we can only verify the bus.
389 *
390 * If there are multiple aliases, all with the same bus number,
391 * then all we can do is verify the bus. This is typical in NTB
392 * hardware which use proxy IDs where the device will generate traffic
393 * from multiple devfn numbers on the same bus.
394 *
395 * If the alias device is on a different bus than our source device
396 * then we have a topology based alias, use it.
397 *
398 * Otherwise, the alias is for a device DMA quirk and we cannot
399 * assume that MSI uses the same requester ID. Therefore use the
400 * original device.
401 */
402 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
403 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
404 dev->bus->number);
405 else if (data.count >= 2 && data.busmatch_count == data.count)
406 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
407 else if (data.pdev->bus->number != dev->bus->number)
408 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
409 else
410 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
411 pci_dev_id(dev));
412
413 return 0;
414 }
415
iommu_load_old_irte(struct intel_iommu * iommu)416 static int iommu_load_old_irte(struct intel_iommu *iommu)
417 {
418 struct irte *old_ir_table;
419 phys_addr_t irt_phys;
420 unsigned int i;
421 size_t size;
422 u64 irta;
423
424 /* Check whether the old ir-table has the same size as ours */
425 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
426 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
427 != INTR_REMAP_TABLE_REG_SIZE)
428 return -EINVAL;
429
430 irt_phys = irta & VTD_PAGE_MASK;
431 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
432
433 /* Map the old IR table */
434 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
435 if (!old_ir_table)
436 return -ENOMEM;
437
438 /* Copy data over */
439 memcpy(iommu->ir_table->base, old_ir_table, size);
440
441 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
442
443 /*
444 * Now check the table for used entries and mark those as
445 * allocated in the bitmap
446 */
447 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
448 if (iommu->ir_table->base[i].present)
449 bitmap_set(iommu->ir_table->bitmap, i, 1);
450 }
451
452 memunmap(old_ir_table);
453
454 return 0;
455 }
456
457
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)458 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
459 {
460 unsigned long flags;
461 u64 addr;
462 u32 sts;
463
464 addr = virt_to_phys((void *)iommu->ir_table->base);
465
466 raw_spin_lock_irqsave(&iommu->register_lock, flags);
467
468 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
469 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
470
471 /* Set interrupt-remapping table pointer */
472 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
473
474 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
475 readl, (sts & DMA_GSTS_IRTPS), sts);
476 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
477
478 /*
479 * Global invalidation of interrupt entry cache to make sure the
480 * hardware uses the new irq remapping table.
481 */
482 if (!cap_esirtps(iommu->cap))
483 qi_global_iec(iommu);
484 }
485
iommu_enable_irq_remapping(struct intel_iommu * iommu)486 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
487 {
488 unsigned long flags;
489 u32 sts;
490
491 raw_spin_lock_irqsave(&iommu->register_lock, flags);
492
493 /* Enable interrupt-remapping */
494 iommu->gcmd |= DMA_GCMD_IRE;
495 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
496 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
497 readl, (sts & DMA_GSTS_IRES), sts);
498
499 /* Block compatibility-format MSIs */
500 if (sts & DMA_GSTS_CFIS) {
501 iommu->gcmd &= ~DMA_GCMD_CFI;
502 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
503 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
504 readl, !(sts & DMA_GSTS_CFIS), sts);
505 }
506
507 /*
508 * With CFI clear in the Global Command register, we should be
509 * protected from dangerous (i.e. compatibility) interrupts
510 * regardless of x2apic status. Check just to be sure.
511 */
512 if (sts & DMA_GSTS_CFIS)
513 WARN(1, KERN_WARNING
514 "Compatibility-format IRQs enabled despite intr remapping;\n"
515 "you are vulnerable to IRQ injection.\n");
516
517 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
518 }
519
intel_setup_irq_remapping(struct intel_iommu * iommu)520 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
521 {
522 struct irq_domain_info info = {
523 .ops = &intel_ir_domain_ops,
524 .parent = arch_get_ir_parent_domain(),
525 .domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI,
526 .size = INTR_REMAP_TABLE_ENTRIES,
527 .host_data = iommu,
528 };
529 struct ir_table *ir_table;
530 unsigned long *bitmap;
531 void *ir_table_base;
532
533 if (iommu->ir_table)
534 return 0;
535
536 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
537 if (!ir_table)
538 return -ENOMEM;
539
540 /* 1MB - maximum possible interrupt remapping table size */
541 ir_table_base =
542 iommu_alloc_pages_node_sz(iommu->node, GFP_KERNEL, SZ_1M);
543 if (!ir_table_base) {
544 pr_err("IR%d: failed to allocate 1M of pages\n", iommu->seq_id);
545 goto out_free_table;
546 }
547
548 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
549 if (bitmap == NULL) {
550 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
551 goto out_free_pages;
552 }
553
554 info.fwnode = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
555 if (!info.fwnode)
556 goto out_free_bitmap;
557
558 iommu->ir_domain = msi_create_parent_irq_domain(&info, &dmar_msi_parent_ops);
559 if (!iommu->ir_domain) {
560 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
561 goto out_free_fwnode;
562 }
563
564 ir_table->base = ir_table_base;
565 ir_table->bitmap = bitmap;
566 iommu->ir_table = ir_table;
567
568 /*
569 * If the queued invalidation is already initialized,
570 * shouldn't disable it.
571 */
572 if (!iommu->qi) {
573 /*
574 * Clear previous faults.
575 */
576 dmar_fault(-1, iommu);
577 dmar_disable_qi(iommu);
578
579 if (dmar_enable_qi(iommu)) {
580 pr_err("Failed to enable queued invalidation\n");
581 goto out_free_ir_domain;
582 }
583 }
584
585 init_ir_status(iommu);
586
587 if (ir_pre_enabled(iommu)) {
588 if (!is_kdump_kernel()) {
589 pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
590 iommu->name);
591 clear_ir_pre_enabled(iommu);
592 iommu_disable_irq_remapping(iommu);
593 } else if (iommu_load_old_irte(iommu))
594 pr_err("Failed to copy IR table for %s from previous kernel\n",
595 iommu->name);
596 else
597 pr_info("Copied IR table for %s from previous kernel\n",
598 iommu->name);
599 }
600
601 iommu_set_irq_remapping(iommu, eim_mode);
602
603 return 0;
604
605 out_free_ir_domain:
606 irq_domain_remove(iommu->ir_domain);
607 iommu->ir_domain = NULL;
608 out_free_fwnode:
609 irq_domain_free_fwnode(info.fwnode);
610 out_free_bitmap:
611 bitmap_free(bitmap);
612 out_free_pages:
613 iommu_free_pages(ir_table_base);
614 out_free_table:
615 kfree(ir_table);
616
617 iommu->ir_table = NULL;
618
619 return -ENOMEM;
620 }
621
intel_teardown_irq_remapping(struct intel_iommu * iommu)622 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
623 {
624 struct fwnode_handle *fn;
625
626 if (iommu && iommu->ir_table) {
627 if (iommu->ir_domain) {
628 fn = iommu->ir_domain->fwnode;
629
630 irq_domain_remove(iommu->ir_domain);
631 irq_domain_free_fwnode(fn);
632 iommu->ir_domain = NULL;
633 }
634 iommu_free_pages(iommu->ir_table->base);
635 bitmap_free(iommu->ir_table->bitmap);
636 kfree(iommu->ir_table);
637 iommu->ir_table = NULL;
638 }
639 }
640
641 /*
642 * Disable Interrupt Remapping.
643 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)644 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
645 {
646 unsigned long flags;
647 u32 sts;
648
649 if (!ecap_ir_support(iommu->ecap))
650 return;
651
652 /*
653 * global invalidation of interrupt entry cache before disabling
654 * interrupt-remapping.
655 */
656 if (!cap_esirtps(iommu->cap))
657 qi_global_iec(iommu);
658
659 raw_spin_lock_irqsave(&iommu->register_lock, flags);
660
661 sts = readl(iommu->reg + DMAR_GSTS_REG);
662 if (!(sts & DMA_GSTS_IRES))
663 goto end;
664
665 iommu->gcmd &= ~DMA_GCMD_IRE;
666 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
667
668 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
669 readl, !(sts & DMA_GSTS_IRES), sts);
670
671 end:
672 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
673 }
674
dmar_x2apic_optout(void)675 static int __init dmar_x2apic_optout(void)
676 {
677 struct acpi_table_dmar *dmar;
678 dmar = (struct acpi_table_dmar *)dmar_tbl;
679 if (!dmar || no_x2apic_optout)
680 return 0;
681 return dmar->flags & DMAR_X2APIC_OPT_OUT;
682 }
683
intel_cleanup_irq_remapping(void)684 static void __init intel_cleanup_irq_remapping(void)
685 {
686 struct dmar_drhd_unit *drhd;
687 struct intel_iommu *iommu;
688
689 for_each_iommu(iommu, drhd) {
690 if (ecap_ir_support(iommu->ecap)) {
691 iommu_disable_irq_remapping(iommu);
692 intel_teardown_irq_remapping(iommu);
693 }
694 }
695
696 if (x2apic_supported())
697 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
698 }
699
intel_prepare_irq_remapping(void)700 static int __init intel_prepare_irq_remapping(void)
701 {
702 struct dmar_drhd_unit *drhd;
703 struct intel_iommu *iommu;
704 int eim = 0;
705
706 if (irq_remap_broken) {
707 pr_warn("This system BIOS has enabled interrupt remapping\n"
708 "on a chipset that contains an erratum making that\n"
709 "feature unstable. To maintain system stability\n"
710 "interrupt remapping is being disabled. Please\n"
711 "contact your BIOS vendor for an update\n");
712 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
713 return -ENODEV;
714 }
715
716 if (dmar_table_init() < 0)
717 return -ENODEV;
718
719 if (!dmar_ir_support())
720 return -ENODEV;
721
722 if (parse_ioapics_under_ir()) {
723 pr_info("Not enabling interrupt remapping\n");
724 goto error;
725 }
726
727 /* First make sure all IOMMUs support IRQ remapping */
728 for_each_iommu(iommu, drhd)
729 if (!ecap_ir_support(iommu->ecap))
730 goto error;
731
732 /* Detect remapping mode: lapic or x2apic */
733 if (x2apic_supported()) {
734 eim = !dmar_x2apic_optout();
735 if (!eim) {
736 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
737 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
738 }
739 }
740
741 for_each_iommu(iommu, drhd) {
742 if (eim && !ecap_eim_support(iommu->ecap)) {
743 pr_info("%s does not support EIM\n", iommu->name);
744 eim = 0;
745 }
746 }
747
748 eim_mode = eim;
749 if (eim)
750 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
751
752 /* Do the initializations early */
753 for_each_iommu(iommu, drhd) {
754 if (intel_setup_irq_remapping(iommu)) {
755 pr_err("Failed to setup irq remapping for %s\n",
756 iommu->name);
757 goto error;
758 }
759 }
760
761 return 0;
762
763 error:
764 intel_cleanup_irq_remapping();
765 return -ENODEV;
766 }
767
768 /*
769 * Set Posted-Interrupts capability.
770 */
set_irq_posting_cap(void)771 static inline void set_irq_posting_cap(void)
772 {
773 struct dmar_drhd_unit *drhd;
774 struct intel_iommu *iommu;
775
776 if (!disable_irq_post) {
777 /*
778 * If IRTE is in posted format, the 'pda' field goes across the
779 * 64-bit boundary, we need use cmpxchg16b to atomically update
780 * it. We only expose posted-interrupt when X86_FEATURE_CX16
781 * is supported. Actually, hardware platforms supporting PI
782 * should have X86_FEATURE_CX16 support, this has been confirmed
783 * with Intel hardware guys.
784 */
785 if (boot_cpu_has(X86_FEATURE_CX16))
786 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
787
788 for_each_iommu(iommu, drhd)
789 if (!cap_pi_support(iommu->cap)) {
790 intel_irq_remap_ops.capability &=
791 ~(1 << IRQ_POSTING_CAP);
792 break;
793 }
794 }
795 }
796
intel_enable_irq_remapping(void)797 static int __init intel_enable_irq_remapping(void)
798 {
799 struct dmar_drhd_unit *drhd;
800 struct intel_iommu *iommu;
801 bool setup = false;
802
803 /*
804 * Setup Interrupt-remapping for all the DRHD's now.
805 */
806 for_each_iommu(iommu, drhd) {
807 if (!ir_pre_enabled(iommu))
808 iommu_enable_irq_remapping(iommu);
809 setup = true;
810 }
811
812 if (!setup)
813 goto error;
814
815 irq_remapping_enabled = 1;
816
817 set_irq_posting_cap();
818
819 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
820
821 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
822
823 error:
824 intel_cleanup_irq_remapping();
825 return -1;
826 }
827
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)828 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
829 struct intel_iommu *iommu,
830 struct acpi_dmar_hardware_unit *drhd)
831 {
832 struct acpi_dmar_pci_path *path;
833 u8 bus;
834 int count, free = -1;
835
836 bus = scope->bus;
837 path = (struct acpi_dmar_pci_path *)(scope + 1);
838 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
839 / sizeof(struct acpi_dmar_pci_path);
840
841 while (--count > 0) {
842 /*
843 * Access PCI directly due to the PCI
844 * subsystem isn't initialized yet.
845 */
846 bus = read_pci_config_byte(bus, path->device, path->function,
847 PCI_SECONDARY_BUS);
848 path++;
849 }
850
851 for (count = 0; count < MAX_HPET_TBS; count++) {
852 if (ir_hpet[count].iommu == iommu &&
853 ir_hpet[count].id == scope->enumeration_id)
854 return 0;
855 else if (ir_hpet[count].iommu == NULL && free == -1)
856 free = count;
857 }
858 if (free == -1) {
859 pr_warn("Exceeded Max HPET blocks\n");
860 return -ENOSPC;
861 }
862
863 ir_hpet[free].iommu = iommu;
864 ir_hpet[free].id = scope->enumeration_id;
865 ir_hpet[free].bus = bus;
866 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
867 pr_info("HPET id %d under DRHD base 0x%Lx\n",
868 scope->enumeration_id, drhd->address);
869
870 return 0;
871 }
872
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)873 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
874 struct intel_iommu *iommu,
875 struct acpi_dmar_hardware_unit *drhd)
876 {
877 struct acpi_dmar_pci_path *path;
878 u8 bus;
879 int count, free = -1;
880
881 bus = scope->bus;
882 path = (struct acpi_dmar_pci_path *)(scope + 1);
883 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
884 / sizeof(struct acpi_dmar_pci_path);
885
886 while (--count > 0) {
887 /*
888 * Access PCI directly due to the PCI
889 * subsystem isn't initialized yet.
890 */
891 bus = read_pci_config_byte(bus, path->device, path->function,
892 PCI_SECONDARY_BUS);
893 path++;
894 }
895
896 for (count = 0; count < MAX_IO_APICS; count++) {
897 if (ir_ioapic[count].iommu == iommu &&
898 ir_ioapic[count].id == scope->enumeration_id)
899 return 0;
900 else if (ir_ioapic[count].iommu == NULL && free == -1)
901 free = count;
902 }
903 if (free == -1) {
904 pr_warn("Exceeded Max IO APICS\n");
905 return -ENOSPC;
906 }
907
908 ir_ioapic[free].bus = bus;
909 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
910 ir_ioapic[free].iommu = iommu;
911 ir_ioapic[free].id = scope->enumeration_id;
912 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
913 scope->enumeration_id, drhd->address, iommu->seq_id);
914
915 return 0;
916 }
917
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)918 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
919 struct intel_iommu *iommu)
920 {
921 int ret = 0;
922 struct acpi_dmar_hardware_unit *drhd;
923 struct acpi_dmar_device_scope *scope;
924 void *start, *end;
925
926 drhd = (struct acpi_dmar_hardware_unit *)header;
927 start = (void *)(drhd + 1);
928 end = ((void *)drhd) + header->length;
929
930 while (start < end && ret == 0) {
931 scope = start;
932 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
933 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
934 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
935 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
936 start += scope->length;
937 }
938
939 return ret;
940 }
941
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)942 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
943 {
944 int i;
945
946 for (i = 0; i < MAX_HPET_TBS; i++)
947 if (ir_hpet[i].iommu == iommu)
948 ir_hpet[i].iommu = NULL;
949
950 for (i = 0; i < MAX_IO_APICS; i++)
951 if (ir_ioapic[i].iommu == iommu)
952 ir_ioapic[i].iommu = NULL;
953 }
954
955 /*
956 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
957 * hardware unit.
958 */
parse_ioapics_under_ir(void)959 static int __init parse_ioapics_under_ir(void)
960 {
961 struct dmar_drhd_unit *drhd;
962 struct intel_iommu *iommu;
963 bool ir_supported = false;
964 int ioapic_idx;
965
966 for_each_iommu(iommu, drhd) {
967 int ret;
968
969 if (!ecap_ir_support(iommu->ecap))
970 continue;
971
972 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
973 if (ret)
974 return ret;
975
976 ir_supported = true;
977 }
978
979 if (!ir_supported)
980 return -ENODEV;
981
982 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
983 int ioapic_id = mpc_ioapic_id(ioapic_idx);
984 if (!map_ioapic_to_iommu(ioapic_id)) {
985 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
986 "interrupt remapping will be disabled\n",
987 ioapic_id);
988 return -1;
989 }
990 }
991
992 return 0;
993 }
994
ir_dev_scope_init(void)995 static int __init ir_dev_scope_init(void)
996 {
997 int ret;
998
999 if (!irq_remapping_enabled)
1000 return 0;
1001
1002 down_write(&dmar_global_lock);
1003 ret = dmar_dev_scope_init();
1004 up_write(&dmar_global_lock);
1005
1006 return ret;
1007 }
1008 rootfs_initcall(ir_dev_scope_init);
1009
disable_irq_remapping(void)1010 static void disable_irq_remapping(void)
1011 {
1012 struct dmar_drhd_unit *drhd;
1013 struct intel_iommu *iommu = NULL;
1014
1015 /*
1016 * Disable Interrupt-remapping for all the DRHD's now.
1017 */
1018 for_each_iommu(iommu, drhd) {
1019 if (!ecap_ir_support(iommu->ecap))
1020 continue;
1021
1022 iommu_disable_irq_remapping(iommu);
1023 }
1024
1025 /*
1026 * Clear Posted-Interrupts capability.
1027 */
1028 if (!disable_irq_post)
1029 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1030 }
1031
reenable_irq_remapping(int eim)1032 static int reenable_irq_remapping(int eim)
1033 {
1034 struct dmar_drhd_unit *drhd;
1035 bool setup = false;
1036 struct intel_iommu *iommu = NULL;
1037
1038 for_each_iommu(iommu, drhd)
1039 if (iommu->qi)
1040 dmar_reenable_qi(iommu);
1041
1042 /*
1043 * Setup Interrupt-remapping for all the DRHD's now.
1044 */
1045 for_each_iommu(iommu, drhd) {
1046 if (!ecap_ir_support(iommu->ecap))
1047 continue;
1048
1049 /* Set up interrupt remapping for iommu.*/
1050 iommu_set_irq_remapping(iommu, eim);
1051 iommu_enable_irq_remapping(iommu);
1052 setup = true;
1053 }
1054
1055 if (!setup)
1056 goto error;
1057
1058 set_irq_posting_cap();
1059
1060 return 0;
1061
1062 error:
1063 /*
1064 * handle error condition gracefully here!
1065 */
1066 return -1;
1067 }
1068
1069 /*
1070 * Store the MSI remapping domain pointer in the device if enabled.
1071 *
1072 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1073 * remapping is disabled. Only update the pointer if the device is not
1074 * already handled by a non default PCI/MSI interrupt domain. This protects
1075 * e.g. VMD devices.
1076 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1077 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1078 {
1079 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1080 return;
1081
1082 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1083 }
1084
prepare_irte(struct irte * irte,int vector,unsigned int dest)1085 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1086 {
1087 memset(irte, 0, sizeof(*irte));
1088
1089 irte->present = 1;
1090 irte->dst_mode = apic->dest_mode_logical;
1091 /*
1092 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1093 * actual level or edge trigger will be setup in the IO-APIC
1094 * RTE. This will help simplify level triggered irq migration.
1095 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1096 * irq migration in the presence of interrupt-remapping.
1097 */
1098 irte->trigger_mode = 0;
1099 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1100 irte->vector = vector;
1101 irte->dest_id = IRTE_DEST(dest);
1102 irte->redir_hint = 1;
1103 }
1104
prepare_irte_posted(struct irte * irte)1105 static void prepare_irte_posted(struct irte *irte)
1106 {
1107 memset(irte, 0, sizeof(*irte));
1108
1109 irte->present = 1;
1110 irte->p_pst = 1;
1111 }
1112
1113 struct irq_remap_ops intel_irq_remap_ops = {
1114 .prepare = intel_prepare_irq_remapping,
1115 .enable = intel_enable_irq_remapping,
1116 .disable = disable_irq_remapping,
1117 .reenable = reenable_irq_remapping,
1118 .enable_faulting = enable_drhd_fault_handling,
1119 };
1120
1121 #ifdef CONFIG_X86_POSTED_MSI
1122
get_pi_desc_addr(struct irq_data * irqd)1123 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1124 {
1125 int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1126
1127 if (WARN_ON(cpu >= nr_cpu_ids))
1128 return 0;
1129
1130 return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1131 }
1132
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1133 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1134 {
1135 struct intel_ir_data *ir_data = irqd->chip_data;
1136 struct irte *irte = &ir_data->irte_entry;
1137 struct irte irte_pi;
1138 u64 pid_addr;
1139
1140 pid_addr = get_pi_desc_addr(irqd);
1141
1142 if (!pid_addr) {
1143 pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1144 return;
1145 }
1146
1147 memset(&irte_pi, 0, sizeof(irte_pi));
1148
1149 /* The shared IRTE already be set up as posted during alloc_irte */
1150 dmar_copy_shared_irte(&irte_pi, irte);
1151
1152 irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1153 irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1154
1155 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1156 }
1157
1158 #else
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1159 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1160 #endif
1161
__intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1162 static void __intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1163 {
1164 struct intel_ir_data *ir_data = irqd->chip_data;
1165
1166 /*
1167 * Don't modify IRTEs for IRQs that are being posted to vCPUs if the
1168 * host CPU affinity changes.
1169 */
1170 if (ir_data->irq_2_iommu.posted_vcpu && !force_host)
1171 return;
1172
1173 ir_data->irq_2_iommu.posted_vcpu = false;
1174
1175 if (ir_data->irq_2_iommu.posted_msi)
1176 intel_ir_reconfigure_irte_posted(irqd);
1177 else
1178 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1179 }
1180
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1181 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1182 {
1183 struct intel_ir_data *ir_data = irqd->chip_data;
1184 struct irte *irte = &ir_data->irte_entry;
1185 struct irq_cfg *cfg = irqd_cfg(irqd);
1186
1187 /*
1188 * Atomically updates the IRTE with the new destination, vector
1189 * and flushes the interrupt entry cache.
1190 */
1191 irte->vector = cfg->vector;
1192 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1193
1194 __intel_ir_reconfigure_irte(irqd, force_host);
1195 }
1196
1197 /*
1198 * Migrate the IO-APIC irq in the presence of intr-remapping.
1199 *
1200 * For both level and edge triggered, irq migration is a simple atomic
1201 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1202 *
1203 * For level triggered, we eliminate the io-apic RTE modification (with the
1204 * updated vector information), by using a virtual vector (io-apic pin number).
1205 * Real vector that is used for interrupting cpu will be coming from
1206 * the interrupt-remapping table entry.
1207 *
1208 * As the migration is a simple atomic update of IRTE, the same mechanism
1209 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1210 */
1211 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1212 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1213 bool force)
1214 {
1215 struct irq_data *parent = data->parent_data;
1216 struct irq_cfg *cfg = irqd_cfg(data);
1217 int ret;
1218
1219 ret = parent->chip->irq_set_affinity(parent, mask, force);
1220 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1221 return ret;
1222
1223 intel_ir_reconfigure_irte(data, false);
1224 /*
1225 * After this point, all the interrupts will start arriving
1226 * at the new destination. So, time to cleanup the previous
1227 * vector allocation.
1228 */
1229 vector_schedule_cleanup(cfg);
1230
1231 return IRQ_SET_MASK_OK_DONE;
1232 }
1233
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1234 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1235 struct msi_msg *msg)
1236 {
1237 struct intel_ir_data *ir_data = irq_data->chip_data;
1238
1239 *msg = ir_data->msi_entry;
1240 }
1241
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1242 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1243 {
1244 struct intel_ir_data *ir_data = data->chip_data;
1245 struct intel_iommu_pi_data *pi_data = info;
1246
1247 /* stop posting interrupts, back to the default mode */
1248 if (!pi_data) {
1249 __intel_ir_reconfigure_irte(data, true);
1250 } else {
1251 struct irte irte_pi;
1252
1253 /*
1254 * We are not caching the posted interrupt entry. We
1255 * copy the data from the remapped entry and modify
1256 * the fields which are relevant for posted mode. The
1257 * cached remapped entry is used for switching back to
1258 * remapped mode.
1259 */
1260 memset(&irte_pi, 0, sizeof(irte_pi));
1261 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1262
1263 /* Update the posted mode fields */
1264 irte_pi.p_pst = 1;
1265 irte_pi.p_urgent = 0;
1266 irte_pi.p_vector = pi_data->vector;
1267 irte_pi.pda_l = (pi_data->pi_desc_addr >>
1268 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1269 irte_pi.pda_h = (pi_data->pi_desc_addr >> 32) &
1270 ~(-1UL << PDA_HIGH_BIT);
1271
1272 ir_data->irq_2_iommu.posted_vcpu = true;
1273 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1274 }
1275
1276 return 0;
1277 }
1278
1279 static struct irq_chip intel_ir_chip = {
1280 .name = "INTEL-IR",
1281 .irq_ack = apic_ack_irq,
1282 .irq_set_affinity = intel_ir_set_affinity,
1283 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1284 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1285 };
1286
1287 /*
1288 * With posted MSIs, the MSI vectors are multiplexed into a single notification
1289 * vector, and only the notification vector is sent to the APIC IRR. Device
1290 * MSIs are then dispatched in a demux loop that harvests the MSIs from the
1291 * CPU's Posted Interrupt Request bitmap. I.e. Posted MSIs never get sent to
1292 * the APIC IRR, and thus do not need an EOI. The notification handler instead
1293 * performs a single EOI after processing the PIR.
1294 *
1295 * Note! Pending SMP/CPU affinity changes, which are per MSI, must still be
1296 * honored, only the APIC EOI is omitted.
1297 *
1298 * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1299 * one apic_eoi() is needed, but each MSI needs to process pending changes to
1300 * its CPU affinity.
1301 *
1302 * __sysvec_posted_msi_notification()
1303 * irq_enter();
1304 * handle_edge_irq()
1305 * irq_chip_ack_parent()
1306 * irq_move_irq(); // No EOI
1307 * handle_irq_event()
1308 * driver_handler()
1309 * handle_edge_irq()
1310 * irq_chip_ack_parent()
1311 * irq_move_irq(); // No EOI
1312 * handle_irq_event()
1313 * driver_handler()
1314 * handle_edge_irq()
1315 * irq_chip_ack_parent()
1316 * irq_move_irq(); // No EOI
1317 * handle_irq_event()
1318 * driver_handler()
1319 * apic_eoi()
1320 * irq_exit()
1321 *
1322 */
1323 static struct irq_chip intel_ir_chip_post_msi = {
1324 .name = "INTEL-IR-POST",
1325 .irq_ack = irq_move_irq,
1326 .irq_set_affinity = intel_ir_set_affinity,
1327 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1328 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1329 };
1330
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1331 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1332 {
1333 memset(msg, 0, sizeof(*msg));
1334
1335 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1336 msg->arch_addr_lo.dmar_subhandle_valid = true;
1337 msg->arch_addr_lo.dmar_format = true;
1338 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1339 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1340
1341 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1342
1343 msg->arch_data.dmar_subhandle = subhandle;
1344 }
1345
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1346 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1347 struct irq_cfg *irq_cfg,
1348 struct irq_alloc_info *info,
1349 int index, int sub_handle)
1350 {
1351 struct irte *irte = &data->irte_entry;
1352
1353 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1354
1355 switch (info->type) {
1356 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1357 /* Set source-id of interrupt request */
1358 set_ioapic_sid(irte, info->devid);
1359 apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1360 info->devid, irte->present, irte->fpd, irte->dst_mode,
1361 irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1362 irte->avail, irte->vector, irte->dest_id, irte->sid,
1363 irte->sq, irte->svt);
1364 sub_handle = info->ioapic.pin;
1365 break;
1366 case X86_IRQ_ALLOC_TYPE_HPET:
1367 set_hpet_sid(irte, info->devid);
1368 break;
1369 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1370 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1371 if (posted_msi_supported()) {
1372 prepare_irte_posted(irte);
1373 data->irq_2_iommu.posted_msi = 1;
1374 }
1375
1376 set_msi_sid(irte,
1377 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1378 break;
1379 default:
1380 BUG_ON(1);
1381 break;
1382 }
1383 fill_msi_msg(&data->msi_entry, index, sub_handle);
1384 }
1385
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1386 static void intel_free_irq_resources(struct irq_domain *domain,
1387 unsigned int virq, unsigned int nr_irqs)
1388 {
1389 struct irq_data *irq_data;
1390 struct intel_ir_data *data;
1391 struct irq_2_iommu *irq_iommu;
1392 unsigned long flags;
1393 int i;
1394 for (i = 0; i < nr_irqs; i++) {
1395 irq_data = irq_domain_get_irq_data(domain, virq + i);
1396 if (irq_data && irq_data->chip_data) {
1397 data = irq_data->chip_data;
1398 irq_iommu = &data->irq_2_iommu;
1399 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1400 clear_entries(irq_iommu);
1401 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1402 irq_domain_reset_irq_data(irq_data);
1403 kfree(data);
1404 }
1405 }
1406 }
1407
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1408 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1409 unsigned int virq, unsigned int nr_irqs,
1410 void *arg)
1411 {
1412 struct intel_iommu *iommu = domain->host_data;
1413 struct irq_alloc_info *info = arg;
1414 struct intel_ir_data *data, *ird;
1415 struct irq_data *irq_data;
1416 struct irq_cfg *irq_cfg;
1417 int i, ret, index;
1418
1419 if (!info || !iommu)
1420 return -EINVAL;
1421 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1422 return -EINVAL;
1423
1424 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1425 if (ret < 0)
1426 return ret;
1427
1428 ret = -ENOMEM;
1429 data = kzalloc(sizeof(*data), GFP_KERNEL);
1430 if (!data)
1431 goto out_free_parent;
1432
1433 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1434 if (index < 0) {
1435 pr_warn("Failed to allocate IRTE\n");
1436 kfree(data);
1437 goto out_free_parent;
1438 }
1439
1440 for (i = 0; i < nr_irqs; i++) {
1441 irq_data = irq_domain_get_irq_data(domain, virq + i);
1442 irq_cfg = irqd_cfg(irq_data);
1443 if (!irq_data || !irq_cfg) {
1444 if (!i)
1445 kfree(data);
1446 ret = -EINVAL;
1447 goto out_free_data;
1448 }
1449
1450 if (i > 0) {
1451 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1452 if (!ird)
1453 goto out_free_data;
1454 /* Initialize the common data */
1455 ird->irq_2_iommu = data->irq_2_iommu;
1456 ird->irq_2_iommu.sub_handle = i;
1457 } else {
1458 ird = data;
1459 }
1460
1461 irq_data->hwirq = (index << 16) + i;
1462 irq_data->chip_data = ird;
1463 if (posted_msi_supported() &&
1464 ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1465 (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1466 irq_data->chip = &intel_ir_chip_post_msi;
1467 else
1468 irq_data->chip = &intel_ir_chip;
1469 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1470 }
1471 return 0;
1472
1473 out_free_data:
1474 intel_free_irq_resources(domain, virq, i);
1475 out_free_parent:
1476 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1477 return ret;
1478 }
1479
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1480 static void intel_irq_remapping_free(struct irq_domain *domain,
1481 unsigned int virq, unsigned int nr_irqs)
1482 {
1483 intel_free_irq_resources(domain, virq, nr_irqs);
1484 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1485 }
1486
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1487 static int intel_irq_remapping_activate(struct irq_domain *domain,
1488 struct irq_data *irq_data, bool reserve)
1489 {
1490 intel_ir_reconfigure_irte(irq_data, true);
1491 return 0;
1492 }
1493
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1494 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1495 struct irq_data *irq_data)
1496 {
1497 struct intel_ir_data *data = irq_data->chip_data;
1498 struct irte entry;
1499
1500 WARN_ON_ONCE(data->irq_2_iommu.posted_vcpu);
1501 data->irq_2_iommu.posted_vcpu = false;
1502
1503 memset(&entry, 0, sizeof(entry));
1504 modify_irte(&data->irq_2_iommu, &entry);
1505 }
1506
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1507 static int intel_irq_remapping_select(struct irq_domain *d,
1508 struct irq_fwspec *fwspec,
1509 enum irq_domain_bus_token bus_token)
1510 {
1511 struct intel_iommu *iommu = NULL;
1512
1513 if (x86_fwspec_is_ioapic(fwspec))
1514 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1515 else if (x86_fwspec_is_hpet(fwspec))
1516 iommu = map_hpet_to_iommu(fwspec->param[0]);
1517
1518 return iommu && d == iommu->ir_domain;
1519 }
1520
1521 static const struct irq_domain_ops intel_ir_domain_ops = {
1522 .select = intel_irq_remapping_select,
1523 .alloc = intel_irq_remapping_alloc,
1524 .free = intel_irq_remapping_free,
1525 .activate = intel_irq_remapping_activate,
1526 .deactivate = intel_irq_remapping_deactivate,
1527 };
1528
1529 static const struct msi_parent_ops dmar_msi_parent_ops = {
1530 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1531 .bus_select_token = DOMAIN_BUS_DMAR,
1532 .bus_select_mask = MATCH_PCI_MSI,
1533 .prefix = "IR-",
1534 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1535 };
1536
1537 /*
1538 * Support of Interrupt Remapping Unit Hotplug
1539 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1540 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1541 {
1542 int ret;
1543 int eim = x2apic_enabled();
1544
1545 if (eim && !ecap_eim_support(iommu->ecap)) {
1546 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1547 iommu->reg_phys, iommu->ecap);
1548 return -ENODEV;
1549 }
1550
1551 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1552 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1553 iommu->reg_phys);
1554 return -ENODEV;
1555 }
1556
1557 /* TODO: check all IOAPICs are covered by IOMMU */
1558
1559 /* Setup Interrupt-remapping now. */
1560 ret = intel_setup_irq_remapping(iommu);
1561 if (ret) {
1562 pr_err("Failed to setup irq remapping for %s\n",
1563 iommu->name);
1564 intel_teardown_irq_remapping(iommu);
1565 ir_remove_ioapic_hpet_scope(iommu);
1566 } else {
1567 iommu_enable_irq_remapping(iommu);
1568 }
1569
1570 return ret;
1571 }
1572
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1573 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1574 {
1575 int ret = 0;
1576 struct intel_iommu *iommu = dmaru->iommu;
1577
1578 if (!irq_remapping_enabled)
1579 return 0;
1580 if (iommu == NULL)
1581 return -EINVAL;
1582 if (!ecap_ir_support(iommu->ecap))
1583 return 0;
1584 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1585 !cap_pi_support(iommu->cap))
1586 return -EBUSY;
1587
1588 if (insert) {
1589 if (!iommu->ir_table)
1590 ret = dmar_ir_add(dmaru, iommu);
1591 } else {
1592 if (iommu->ir_table) {
1593 if (!bitmap_empty(iommu->ir_table->bitmap,
1594 INTR_REMAP_TABLE_ENTRIES)) {
1595 ret = -EBUSY;
1596 } else {
1597 iommu_disable_irq_remapping(iommu);
1598 intel_teardown_irq_remapping(iommu);
1599 ir_remove_ioapic_hpet_scope(iommu);
1600 }
1601 }
1602 }
1603
1604 return ret;
1605 }
1606