xref: /linux/drivers/iommu/intel/irq_remapping.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/irqchip/irq-msi-lib.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/posted_intr.h>
24 
25 #include "iommu.h"
26 #include "../irq_remapping.h"
27 #include "../iommu-pages.h"
28 
29 struct ioapic_scope {
30 	struct intel_iommu *iommu;
31 	unsigned int id;
32 	unsigned int bus;	/* PCI bus number */
33 	unsigned int devfn;	/* PCI devfn number */
34 };
35 
36 struct hpet_scope {
37 	struct intel_iommu *iommu;
38 	u8 id;
39 	unsigned int bus;
40 	unsigned int devfn;
41 };
42 
43 struct irq_2_iommu {
44 	struct intel_iommu *iommu;
45 	u16 irte_index;
46 	u16 sub_handle;
47 	u8  irte_mask;
48 	bool posted_msi;
49 	bool posted_vcpu;
50 };
51 
52 struct intel_ir_data {
53 	struct irq_2_iommu			irq_2_iommu;
54 	struct irte				irte_entry;
55 	union {
56 		struct msi_msg			msi_entry;
57 	};
58 };
59 
60 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
61 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
62 
63 static int __read_mostly eim_mode;
64 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
65 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
66 
67 /*
68  * Lock ordering:
69  * ->dmar_global_lock
70  *	->irq_2_ir_lock
71  *		->qi->q_lock
72  *	->iommu->register_lock
73  * Note:
74  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
75  * in single-threaded environment with interrupt disabled, so no need to tabke
76  * the dmar_global_lock.
77  */
78 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
79 static const struct irq_domain_ops intel_ir_domain_ops;
80 
81 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
82 static int __init parse_ioapics_under_ir(void);
83 static const struct msi_parent_ops dmar_msi_parent_ops;
84 
ir_pre_enabled(struct intel_iommu * iommu)85 static bool ir_pre_enabled(struct intel_iommu *iommu)
86 {
87 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
88 }
89 
clear_ir_pre_enabled(struct intel_iommu * iommu)90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
93 }
94 
init_ir_status(struct intel_iommu * iommu)95 static void init_ir_status(struct intel_iommu *iommu)
96 {
97 	u32 gsts;
98 
99 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
100 	if (gsts & DMA_GSTS_IRES)
101 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
102 }
103 
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)104 static int alloc_irte(struct intel_iommu *iommu,
105 		      struct irq_2_iommu *irq_iommu, u16 count)
106 {
107 	struct ir_table *table = iommu->ir_table;
108 	unsigned int mask = 0;
109 	unsigned long flags;
110 	int index;
111 
112 	if (!count || !irq_iommu)
113 		return -1;
114 
115 	if (count > 1) {
116 		count = __roundup_pow_of_two(count);
117 		mask = ilog2(count);
118 	}
119 
120 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
121 		pr_err("Requested mask %x exceeds the max invalidation handle"
122 		       " mask value %Lx\n", mask,
123 		       ecap_max_handle_mask(iommu->ecap));
124 		return -1;
125 	}
126 
127 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 	index = bitmap_find_free_region(table->bitmap,
129 					INTR_REMAP_TABLE_ENTRIES, mask);
130 	if (index < 0) {
131 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
132 	} else {
133 		irq_iommu->iommu = iommu;
134 		irq_iommu->irte_index =  index;
135 		irq_iommu->sub_handle = 0;
136 		irq_iommu->irte_mask = mask;
137 	}
138 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
139 
140 	return index;
141 }
142 
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)143 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
144 {
145 	struct qi_desc desc;
146 
147 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
148 		   | QI_IEC_SELECTIVE;
149 	desc.qw1 = 0;
150 	desc.qw2 = 0;
151 	desc.qw3 = 0;
152 
153 	return qi_submit_sync(iommu, &desc, 1, 0);
154 }
155 
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)156 static int modify_irte(struct irq_2_iommu *irq_iommu,
157 		       struct irte *irte_modified)
158 {
159 	struct intel_iommu *iommu;
160 	unsigned long flags;
161 	struct irte *irte;
162 	int rc, index;
163 
164 	if (!irq_iommu)
165 		return -1;
166 
167 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
168 
169 	iommu = irq_iommu->iommu;
170 
171 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
172 	irte = &iommu->ir_table->base[index];
173 
174 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
175 		/*
176 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
177 		 * and it cannot be updated by the hardware or other processors
178 		 * behind us, so the return value of cmpxchg16 should be the
179 		 * same as the old value.
180 		 */
181 		u128 old = irte->irte;
182 		WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
183 	} else {
184 		WRITE_ONCE(irte->low, irte_modified->low);
185 		WRITE_ONCE(irte->high, irte_modified->high);
186 	}
187 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
188 
189 	rc = qi_flush_iec(iommu, index, 0);
190 
191 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
192 
193 	return rc;
194 }
195 
map_hpet_to_iommu(u8 hpet_id)196 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
197 {
198 	int i;
199 
200 	for (i = 0; i < MAX_HPET_TBS; i++) {
201 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
202 			return ir_hpet[i].iommu;
203 	}
204 	return NULL;
205 }
206 
map_ioapic_to_iommu(int apic)207 static struct intel_iommu *map_ioapic_to_iommu(int apic)
208 {
209 	int i;
210 
211 	for (i = 0; i < MAX_IO_APICS; i++) {
212 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
213 			return ir_ioapic[i].iommu;
214 	}
215 	return NULL;
216 }
217 
map_dev_to_ir(struct pci_dev * dev)218 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
219 {
220 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
221 
222 	return drhd ? drhd->iommu->ir_domain : NULL;
223 }
224 
clear_entries(struct irq_2_iommu * irq_iommu)225 static int clear_entries(struct irq_2_iommu *irq_iommu)
226 {
227 	struct irte *start, *entry, *end;
228 	struct intel_iommu *iommu;
229 	int index;
230 
231 	if (irq_iommu->sub_handle)
232 		return 0;
233 
234 	iommu = irq_iommu->iommu;
235 	index = irq_iommu->irte_index;
236 
237 	start = iommu->ir_table->base + index;
238 	end = start + (1 << irq_iommu->irte_mask);
239 
240 	for (entry = start; entry < end; entry++) {
241 		WRITE_ONCE(entry->low, 0);
242 		WRITE_ONCE(entry->high, 0);
243 	}
244 	bitmap_release_region(iommu->ir_table->bitmap, index,
245 			      irq_iommu->irte_mask);
246 
247 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
248 }
249 
250 /*
251  * source validation type
252  */
253 #define SVT_NO_VERIFY		0x0  /* no verification is required */
254 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
255 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
256 
257 /*
258  * source-id qualifier
259  */
260 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
261 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
262 			      * the third least significant bit
263 			      */
264 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
265 			      * the second and third least significant bits
266 			      */
267 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
268 			      * the least three significant bits
269 			      */
270 
271 /*
272  * set SVT, SQ and SID fields of irte to verify
273  * source ids of interrupt requests
274  */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)275 static void set_irte_sid(struct irte *irte, unsigned int svt,
276 			 unsigned int sq, unsigned int sid)
277 {
278 	if (disable_sourceid_checking)
279 		svt = SVT_NO_VERIFY;
280 	irte->svt = svt;
281 	irte->sq = sq;
282 	irte->sid = sid;
283 }
284 
285 /*
286  * Set an IRTE to match only the bus number. Interrupt requests that reference
287  * this IRTE must have a requester-id whose bus number is between or equal
288  * to the start_bus and end_bus arguments.
289  */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)290 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
291 				unsigned int end_bus)
292 {
293 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
294 		     (start_bus << 8) | end_bus);
295 }
296 
set_ioapic_sid(struct irte * irte,int apic)297 static int set_ioapic_sid(struct irte *irte, int apic)
298 {
299 	int i;
300 	u16 sid = 0;
301 
302 	if (!irte)
303 		return -1;
304 
305 	for (i = 0; i < MAX_IO_APICS; i++) {
306 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
307 			sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
308 			break;
309 		}
310 	}
311 
312 	if (sid == 0) {
313 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
314 		return -1;
315 	}
316 
317 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
318 
319 	return 0;
320 }
321 
set_hpet_sid(struct irte * irte,u8 id)322 static int set_hpet_sid(struct irte *irte, u8 id)
323 {
324 	int i;
325 	u16 sid = 0;
326 
327 	if (!irte)
328 		return -1;
329 
330 	for (i = 0; i < MAX_HPET_TBS; i++) {
331 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
332 			sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
333 			break;
334 		}
335 	}
336 
337 	if (sid == 0) {
338 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
339 		return -1;
340 	}
341 
342 	/*
343 	 * Should really use SQ_ALL_16. Some platforms are broken.
344 	 * While we figure out the right quirks for these broken platforms, use
345 	 * SQ_13_IGNORE_3 for now.
346 	 */
347 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
348 
349 	return 0;
350 }
351 
352 struct set_msi_sid_data {
353 	struct pci_dev *pdev;
354 	u16 alias;
355 	int count;
356 	int busmatch_count;
357 };
358 
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)359 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
360 {
361 	struct set_msi_sid_data *data = opaque;
362 
363 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
364 		data->busmatch_count++;
365 
366 	data->pdev = pdev;
367 	data->alias = alias;
368 	data->count++;
369 
370 	return 0;
371 }
372 
set_msi_sid(struct irte * irte,struct pci_dev * dev)373 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
374 {
375 	struct set_msi_sid_data data;
376 
377 	if (!irte || !dev)
378 		return -1;
379 
380 	data.count = 0;
381 	data.busmatch_count = 0;
382 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
383 
384 	/*
385 	 * DMA alias provides us with a PCI device and alias.  The only case
386 	 * where the it will return an alias on a different bus than the
387 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
388 	 * the subordinate bus.  In this case we can only verify the bus.
389 	 *
390 	 * If there are multiple aliases, all with the same bus number,
391 	 * then all we can do is verify the bus. This is typical in NTB
392 	 * hardware which use proxy IDs where the device will generate traffic
393 	 * from multiple devfn numbers on the same bus.
394 	 *
395 	 * If the alias device is on a different bus than our source device
396 	 * then we have a topology based alias, use it.
397 	 *
398 	 * Otherwise, the alias is for a device DMA quirk and we cannot
399 	 * assume that MSI uses the same requester ID.  Therefore use the
400 	 * original device.
401 	 */
402 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
403 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
404 				    dev->bus->number);
405 	else if (data.count >= 2 && data.busmatch_count == data.count)
406 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
407 	else if (data.pdev->bus->number != dev->bus->number)
408 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
409 	else
410 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
411 			     pci_dev_id(dev));
412 
413 	return 0;
414 }
415 
iommu_load_old_irte(struct intel_iommu * iommu)416 static int iommu_load_old_irte(struct intel_iommu *iommu)
417 {
418 	struct irte *old_ir_table;
419 	phys_addr_t irt_phys;
420 	unsigned int i;
421 	size_t size;
422 	u64 irta;
423 
424 	/* Check whether the old ir-table has the same size as ours */
425 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
426 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
427 	     != INTR_REMAP_TABLE_REG_SIZE)
428 		return -EINVAL;
429 
430 	irt_phys = irta & VTD_PAGE_MASK;
431 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
432 
433 	/* Map the old IR table */
434 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
435 	if (!old_ir_table)
436 		return -ENOMEM;
437 
438 	/* Copy data over */
439 	memcpy(iommu->ir_table->base, old_ir_table, size);
440 
441 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
442 
443 	/*
444 	 * Now check the table for used entries and mark those as
445 	 * allocated in the bitmap
446 	 */
447 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
448 		if (iommu->ir_table->base[i].present)
449 			bitmap_set(iommu->ir_table->bitmap, i, 1);
450 	}
451 
452 	memunmap(old_ir_table);
453 
454 	return 0;
455 }
456 
457 
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)458 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
459 {
460 	unsigned long flags;
461 	u64 addr;
462 	u32 sts;
463 
464 	addr = virt_to_phys((void *)iommu->ir_table->base);
465 
466 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
467 
468 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
469 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
470 
471 	/* Set interrupt-remapping table pointer */
472 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
473 
474 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
475 		      readl, (sts & DMA_GSTS_IRTPS), sts);
476 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
477 
478 	/*
479 	 * Global invalidation of interrupt entry cache to make sure the
480 	 * hardware uses the new irq remapping table.
481 	 */
482 	if (!cap_esirtps(iommu->cap))
483 		qi_global_iec(iommu);
484 }
485 
iommu_enable_irq_remapping(struct intel_iommu * iommu)486 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
487 {
488 	unsigned long flags;
489 	u32 sts;
490 
491 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
492 
493 	/* Enable interrupt-remapping */
494 	iommu->gcmd |= DMA_GCMD_IRE;
495 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
496 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
497 		      readl, (sts & DMA_GSTS_IRES), sts);
498 
499 	/* Block compatibility-format MSIs */
500 	if (sts & DMA_GSTS_CFIS) {
501 		iommu->gcmd &= ~DMA_GCMD_CFI;
502 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
503 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
504 			      readl, !(sts & DMA_GSTS_CFIS), sts);
505 	}
506 
507 	/*
508 	 * With CFI clear in the Global Command register, we should be
509 	 * protected from dangerous (i.e. compatibility) interrupts
510 	 * regardless of x2apic status.  Check just to be sure.
511 	 */
512 	if (sts & DMA_GSTS_CFIS)
513 		WARN(1, KERN_WARNING
514 			"Compatibility-format IRQs enabled despite intr remapping;\n"
515 			"you are vulnerable to IRQ injection.\n");
516 
517 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
518 }
519 
intel_setup_irq_remapping(struct intel_iommu * iommu)520 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
521 {
522 	struct irq_domain_info info = {
523 		.ops		= &intel_ir_domain_ops,
524 		.parent		= arch_get_ir_parent_domain(),
525 		.domain_flags	= IRQ_DOMAIN_FLAG_ISOLATED_MSI,
526 		.size		= INTR_REMAP_TABLE_ENTRIES,
527 		.host_data	= iommu,
528 	};
529 	struct ir_table *ir_table;
530 	unsigned long *bitmap;
531 	void *ir_table_base;
532 
533 	if (iommu->ir_table)
534 		return 0;
535 
536 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
537 	if (!ir_table)
538 		return -ENOMEM;
539 
540 	/* 1MB - maximum possible interrupt remapping table size */
541 	ir_table_base =
542 		iommu_alloc_pages_node_sz(iommu->node, GFP_KERNEL, SZ_1M);
543 	if (!ir_table_base) {
544 		pr_err("IR%d: failed to allocate 1M of pages\n", iommu->seq_id);
545 		goto out_free_table;
546 	}
547 
548 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
549 	if (bitmap == NULL) {
550 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
551 		goto out_free_pages;
552 	}
553 
554 	info.fwnode = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
555 	if (!info.fwnode)
556 		goto out_free_bitmap;
557 
558 	iommu->ir_domain = msi_create_parent_irq_domain(&info, &dmar_msi_parent_ops);
559 	if (!iommu->ir_domain) {
560 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
561 		goto out_free_fwnode;
562 	}
563 
564 	ir_table->base = ir_table_base;
565 	ir_table->bitmap = bitmap;
566 	iommu->ir_table = ir_table;
567 
568 	/*
569 	 * If the queued invalidation is already initialized,
570 	 * shouldn't disable it.
571 	 */
572 	if (!iommu->qi) {
573 		/*
574 		 * Clear previous faults.
575 		 */
576 		dmar_fault(-1, iommu);
577 		dmar_disable_qi(iommu);
578 
579 		if (dmar_enable_qi(iommu)) {
580 			pr_err("Failed to enable queued invalidation\n");
581 			goto out_free_ir_domain;
582 		}
583 	}
584 
585 	init_ir_status(iommu);
586 
587 	if (ir_pre_enabled(iommu)) {
588 		if (!is_kdump_kernel()) {
589 			pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
590 				     iommu->name);
591 			clear_ir_pre_enabled(iommu);
592 			iommu_disable_irq_remapping(iommu);
593 		} else if (iommu_load_old_irte(iommu))
594 			pr_err("Failed to copy IR table for %s from previous kernel\n",
595 			       iommu->name);
596 		else
597 			pr_info("Copied IR table for %s from previous kernel\n",
598 				iommu->name);
599 	}
600 
601 	iommu_set_irq_remapping(iommu, eim_mode);
602 
603 	return 0;
604 
605 out_free_ir_domain:
606 	irq_domain_remove(iommu->ir_domain);
607 	iommu->ir_domain = NULL;
608 out_free_fwnode:
609 	irq_domain_free_fwnode(info.fwnode);
610 out_free_bitmap:
611 	bitmap_free(bitmap);
612 out_free_pages:
613 	iommu_free_pages(ir_table_base);
614 out_free_table:
615 	kfree(ir_table);
616 
617 	iommu->ir_table  = NULL;
618 
619 	return -ENOMEM;
620 }
621 
intel_teardown_irq_remapping(struct intel_iommu * iommu)622 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
623 {
624 	struct fwnode_handle *fn;
625 
626 	if (iommu && iommu->ir_table) {
627 		if (iommu->ir_domain) {
628 			fn = iommu->ir_domain->fwnode;
629 
630 			irq_domain_remove(iommu->ir_domain);
631 			irq_domain_free_fwnode(fn);
632 			iommu->ir_domain = NULL;
633 		}
634 		iommu_free_pages(iommu->ir_table->base);
635 		bitmap_free(iommu->ir_table->bitmap);
636 		kfree(iommu->ir_table);
637 		iommu->ir_table = NULL;
638 	}
639 }
640 
641 /*
642  * Disable Interrupt Remapping.
643  */
iommu_disable_irq_remapping(struct intel_iommu * iommu)644 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
645 {
646 	unsigned long flags;
647 	u32 sts;
648 
649 	if (!ecap_ir_support(iommu->ecap))
650 		return;
651 
652 	/*
653 	 * global invalidation of interrupt entry cache before disabling
654 	 * interrupt-remapping.
655 	 */
656 	if (!cap_esirtps(iommu->cap))
657 		qi_global_iec(iommu);
658 
659 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
660 
661 	sts = readl(iommu->reg + DMAR_GSTS_REG);
662 	if (!(sts & DMA_GSTS_IRES))
663 		goto end;
664 
665 	iommu->gcmd &= ~DMA_GCMD_IRE;
666 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
667 
668 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
669 		      readl, !(sts & DMA_GSTS_IRES), sts);
670 
671 end:
672 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
673 }
674 
dmar_x2apic_optout(void)675 static int __init dmar_x2apic_optout(void)
676 {
677 	struct acpi_table_dmar *dmar;
678 	dmar = (struct acpi_table_dmar *)dmar_tbl;
679 	if (!dmar || no_x2apic_optout)
680 		return 0;
681 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
682 }
683 
intel_cleanup_irq_remapping(void)684 static void __init intel_cleanup_irq_remapping(void)
685 {
686 	struct dmar_drhd_unit *drhd;
687 	struct intel_iommu *iommu;
688 
689 	for_each_iommu(iommu, drhd) {
690 		if (ecap_ir_support(iommu->ecap)) {
691 			iommu_disable_irq_remapping(iommu);
692 			intel_teardown_irq_remapping(iommu);
693 		}
694 	}
695 
696 	if (x2apic_supported())
697 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
698 }
699 
intel_prepare_irq_remapping(void)700 static int __init intel_prepare_irq_remapping(void)
701 {
702 	struct dmar_drhd_unit *drhd;
703 	struct intel_iommu *iommu;
704 	int eim = 0;
705 
706 	if (irq_remap_broken) {
707 		pr_warn("This system BIOS has enabled interrupt remapping\n"
708 			"on a chipset that contains an erratum making that\n"
709 			"feature unstable.  To maintain system stability\n"
710 			"interrupt remapping is being disabled.  Please\n"
711 			"contact your BIOS vendor for an update\n");
712 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
713 		return -ENODEV;
714 	}
715 
716 	if (dmar_table_init() < 0)
717 		return -ENODEV;
718 
719 	if (!dmar_ir_support())
720 		return -ENODEV;
721 
722 	if (parse_ioapics_under_ir()) {
723 		pr_info("Not enabling interrupt remapping\n");
724 		goto error;
725 	}
726 
727 	/* First make sure all IOMMUs support IRQ remapping */
728 	for_each_iommu(iommu, drhd)
729 		if (!ecap_ir_support(iommu->ecap))
730 			goto error;
731 
732 	/* Detect remapping mode: lapic or x2apic */
733 	if (x2apic_supported()) {
734 		eim = !dmar_x2apic_optout();
735 		if (!eim) {
736 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
737 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
738 		}
739 	}
740 
741 	for_each_iommu(iommu, drhd) {
742 		if (eim && !ecap_eim_support(iommu->ecap)) {
743 			pr_info("%s does not support EIM\n", iommu->name);
744 			eim = 0;
745 		}
746 	}
747 
748 	eim_mode = eim;
749 	if (eim)
750 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
751 
752 	/* Do the initializations early */
753 	for_each_iommu(iommu, drhd) {
754 		if (intel_setup_irq_remapping(iommu)) {
755 			pr_err("Failed to setup irq remapping for %s\n",
756 			       iommu->name);
757 			goto error;
758 		}
759 	}
760 
761 	return 0;
762 
763 error:
764 	intel_cleanup_irq_remapping();
765 	return -ENODEV;
766 }
767 
768 /*
769  * Set Posted-Interrupts capability.
770  */
set_irq_posting_cap(void)771 static inline void set_irq_posting_cap(void)
772 {
773 	struct dmar_drhd_unit *drhd;
774 	struct intel_iommu *iommu;
775 
776 	if (!disable_irq_post) {
777 		/*
778 		 * If IRTE is in posted format, the 'pda' field goes across the
779 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
780 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
781 		 * is supported. Actually, hardware platforms supporting PI
782 		 * should have X86_FEATURE_CX16 support, this has been confirmed
783 		 * with Intel hardware guys.
784 		 */
785 		if (boot_cpu_has(X86_FEATURE_CX16))
786 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
787 
788 		for_each_iommu(iommu, drhd)
789 			if (!cap_pi_support(iommu->cap)) {
790 				intel_irq_remap_ops.capability &=
791 						~(1 << IRQ_POSTING_CAP);
792 				break;
793 			}
794 	}
795 }
796 
intel_enable_irq_remapping(void)797 static int __init intel_enable_irq_remapping(void)
798 {
799 	struct dmar_drhd_unit *drhd;
800 	struct intel_iommu *iommu;
801 	bool setup = false;
802 
803 	/*
804 	 * Setup Interrupt-remapping for all the DRHD's now.
805 	 */
806 	for_each_iommu(iommu, drhd) {
807 		if (!ir_pre_enabled(iommu))
808 			iommu_enable_irq_remapping(iommu);
809 		setup = true;
810 	}
811 
812 	if (!setup)
813 		goto error;
814 
815 	irq_remapping_enabled = 1;
816 
817 	set_irq_posting_cap();
818 
819 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
820 
821 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
822 
823 error:
824 	intel_cleanup_irq_remapping();
825 	return -1;
826 }
827 
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)828 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
829 				   struct intel_iommu *iommu,
830 				   struct acpi_dmar_hardware_unit *drhd)
831 {
832 	struct acpi_dmar_pci_path *path;
833 	u8 bus;
834 	int count, free = -1;
835 
836 	bus = scope->bus;
837 	path = (struct acpi_dmar_pci_path *)(scope + 1);
838 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
839 		/ sizeof(struct acpi_dmar_pci_path);
840 
841 	while (--count > 0) {
842 		/*
843 		 * Access PCI directly due to the PCI
844 		 * subsystem isn't initialized yet.
845 		 */
846 		bus = read_pci_config_byte(bus, path->device, path->function,
847 					   PCI_SECONDARY_BUS);
848 		path++;
849 	}
850 
851 	for (count = 0; count < MAX_HPET_TBS; count++) {
852 		if (ir_hpet[count].iommu == iommu &&
853 		    ir_hpet[count].id == scope->enumeration_id)
854 			return 0;
855 		else if (ir_hpet[count].iommu == NULL && free == -1)
856 			free = count;
857 	}
858 	if (free == -1) {
859 		pr_warn("Exceeded Max HPET blocks\n");
860 		return -ENOSPC;
861 	}
862 
863 	ir_hpet[free].iommu = iommu;
864 	ir_hpet[free].id    = scope->enumeration_id;
865 	ir_hpet[free].bus   = bus;
866 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
867 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
868 		scope->enumeration_id, drhd->address);
869 
870 	return 0;
871 }
872 
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)873 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
874 				     struct intel_iommu *iommu,
875 				     struct acpi_dmar_hardware_unit *drhd)
876 {
877 	struct acpi_dmar_pci_path *path;
878 	u8 bus;
879 	int count, free = -1;
880 
881 	bus = scope->bus;
882 	path = (struct acpi_dmar_pci_path *)(scope + 1);
883 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
884 		/ sizeof(struct acpi_dmar_pci_path);
885 
886 	while (--count > 0) {
887 		/*
888 		 * Access PCI directly due to the PCI
889 		 * subsystem isn't initialized yet.
890 		 */
891 		bus = read_pci_config_byte(bus, path->device, path->function,
892 					   PCI_SECONDARY_BUS);
893 		path++;
894 	}
895 
896 	for (count = 0; count < MAX_IO_APICS; count++) {
897 		if (ir_ioapic[count].iommu == iommu &&
898 		    ir_ioapic[count].id == scope->enumeration_id)
899 			return 0;
900 		else if (ir_ioapic[count].iommu == NULL && free == -1)
901 			free = count;
902 	}
903 	if (free == -1) {
904 		pr_warn("Exceeded Max IO APICS\n");
905 		return -ENOSPC;
906 	}
907 
908 	ir_ioapic[free].bus   = bus;
909 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
910 	ir_ioapic[free].iommu = iommu;
911 	ir_ioapic[free].id    = scope->enumeration_id;
912 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
913 		scope->enumeration_id, drhd->address, iommu->seq_id);
914 
915 	return 0;
916 }
917 
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)918 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
919 				      struct intel_iommu *iommu)
920 {
921 	int ret = 0;
922 	struct acpi_dmar_hardware_unit *drhd;
923 	struct acpi_dmar_device_scope *scope;
924 	void *start, *end;
925 
926 	drhd = (struct acpi_dmar_hardware_unit *)header;
927 	start = (void *)(drhd + 1);
928 	end = ((void *)drhd) + header->length;
929 
930 	while (start < end && ret == 0) {
931 		scope = start;
932 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
933 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
934 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
935 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
936 		start += scope->length;
937 	}
938 
939 	return ret;
940 }
941 
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)942 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
943 {
944 	int i;
945 
946 	for (i = 0; i < MAX_HPET_TBS; i++)
947 		if (ir_hpet[i].iommu == iommu)
948 			ir_hpet[i].iommu = NULL;
949 
950 	for (i = 0; i < MAX_IO_APICS; i++)
951 		if (ir_ioapic[i].iommu == iommu)
952 			ir_ioapic[i].iommu = NULL;
953 }
954 
955 /*
956  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
957  * hardware unit.
958  */
parse_ioapics_under_ir(void)959 static int __init parse_ioapics_under_ir(void)
960 {
961 	struct dmar_drhd_unit *drhd;
962 	struct intel_iommu *iommu;
963 	bool ir_supported = false;
964 	int ioapic_idx;
965 
966 	for_each_iommu(iommu, drhd) {
967 		int ret;
968 
969 		if (!ecap_ir_support(iommu->ecap))
970 			continue;
971 
972 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
973 		if (ret)
974 			return ret;
975 
976 		ir_supported = true;
977 	}
978 
979 	if (!ir_supported)
980 		return -ENODEV;
981 
982 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
983 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
984 		if (!map_ioapic_to_iommu(ioapic_id)) {
985 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
986 			       "interrupt remapping will be disabled\n",
987 			       ioapic_id);
988 			return -1;
989 		}
990 	}
991 
992 	return 0;
993 }
994 
ir_dev_scope_init(void)995 static int __init ir_dev_scope_init(void)
996 {
997 	int ret;
998 
999 	if (!irq_remapping_enabled)
1000 		return 0;
1001 
1002 	down_write(&dmar_global_lock);
1003 	ret = dmar_dev_scope_init();
1004 	up_write(&dmar_global_lock);
1005 
1006 	return ret;
1007 }
1008 rootfs_initcall(ir_dev_scope_init);
1009 
disable_irq_remapping(void)1010 static void disable_irq_remapping(void)
1011 {
1012 	struct dmar_drhd_unit *drhd;
1013 	struct intel_iommu *iommu = NULL;
1014 
1015 	/*
1016 	 * Disable Interrupt-remapping for all the DRHD's now.
1017 	 */
1018 	for_each_iommu(iommu, drhd) {
1019 		if (!ecap_ir_support(iommu->ecap))
1020 			continue;
1021 
1022 		iommu_disable_irq_remapping(iommu);
1023 	}
1024 
1025 	/*
1026 	 * Clear Posted-Interrupts capability.
1027 	 */
1028 	if (!disable_irq_post)
1029 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1030 }
1031 
reenable_irq_remapping(int eim)1032 static int reenable_irq_remapping(int eim)
1033 {
1034 	struct dmar_drhd_unit *drhd;
1035 	bool setup = false;
1036 	struct intel_iommu *iommu = NULL;
1037 
1038 	for_each_iommu(iommu, drhd)
1039 		if (iommu->qi)
1040 			dmar_reenable_qi(iommu);
1041 
1042 	/*
1043 	 * Setup Interrupt-remapping for all the DRHD's now.
1044 	 */
1045 	for_each_iommu(iommu, drhd) {
1046 		if (!ecap_ir_support(iommu->ecap))
1047 			continue;
1048 
1049 		/* Set up interrupt remapping for iommu.*/
1050 		iommu_set_irq_remapping(iommu, eim);
1051 		iommu_enable_irq_remapping(iommu);
1052 		setup = true;
1053 	}
1054 
1055 	if (!setup)
1056 		goto error;
1057 
1058 	set_irq_posting_cap();
1059 
1060 	return 0;
1061 
1062 error:
1063 	/*
1064 	 * handle error condition gracefully here!
1065 	 */
1066 	return -1;
1067 }
1068 
1069 /*
1070  * Store the MSI remapping domain pointer in the device if enabled.
1071  *
1072  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1073  * remapping is disabled. Only update the pointer if the device is not
1074  * already handled by a non default PCI/MSI interrupt domain. This protects
1075  * e.g. VMD devices.
1076  */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1077 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1078 {
1079 	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1080 		return;
1081 
1082 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1083 }
1084 
prepare_irte(struct irte * irte,int vector,unsigned int dest)1085 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1086 {
1087 	memset(irte, 0, sizeof(*irte));
1088 
1089 	irte->present = 1;
1090 	irte->dst_mode = apic->dest_mode_logical;
1091 	/*
1092 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1093 	 * actual level or edge trigger will be setup in the IO-APIC
1094 	 * RTE. This will help simplify level triggered irq migration.
1095 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1096 	 * irq migration in the presence of interrupt-remapping.
1097 	*/
1098 	irte->trigger_mode = 0;
1099 	irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1100 	irte->vector = vector;
1101 	irte->dest_id = IRTE_DEST(dest);
1102 	irte->redir_hint = 1;
1103 }
1104 
prepare_irte_posted(struct irte * irte)1105 static void prepare_irte_posted(struct irte *irte)
1106 {
1107 	memset(irte, 0, sizeof(*irte));
1108 
1109 	irte->present = 1;
1110 	irte->p_pst = 1;
1111 }
1112 
1113 struct irq_remap_ops intel_irq_remap_ops = {
1114 	.prepare		= intel_prepare_irq_remapping,
1115 	.enable			= intel_enable_irq_remapping,
1116 	.disable		= disable_irq_remapping,
1117 	.reenable		= reenable_irq_remapping,
1118 	.enable_faulting	= enable_drhd_fault_handling,
1119 };
1120 
1121 #ifdef CONFIG_X86_POSTED_MSI
1122 
get_pi_desc_addr(struct irq_data * irqd)1123 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1124 {
1125 	int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1126 
1127 	if (WARN_ON(cpu >= nr_cpu_ids))
1128 		return 0;
1129 
1130 	return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1131 }
1132 
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1133 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1134 {
1135 	struct intel_ir_data *ir_data = irqd->chip_data;
1136 	struct irte *irte = &ir_data->irte_entry;
1137 	struct irte irte_pi;
1138 	u64 pid_addr;
1139 
1140 	pid_addr = get_pi_desc_addr(irqd);
1141 
1142 	if (!pid_addr) {
1143 		pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1144 		return;
1145 	}
1146 
1147 	memset(&irte_pi, 0, sizeof(irte_pi));
1148 
1149 	/* The shared IRTE already be set up as posted during alloc_irte */
1150 	dmar_copy_shared_irte(&irte_pi, irte);
1151 
1152 	irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1153 	irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1154 
1155 	modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1156 }
1157 
1158 #else
intel_ir_reconfigure_irte_posted(struct irq_data * irqd)1159 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1160 #endif
1161 
__intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1162 static void __intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1163 {
1164 	struct intel_ir_data *ir_data = irqd->chip_data;
1165 
1166 	/*
1167 	 * Don't modify IRTEs for IRQs that are being posted to vCPUs if the
1168 	 * host CPU affinity changes.
1169 	 */
1170 	if (ir_data->irq_2_iommu.posted_vcpu && !force_host)
1171 		return;
1172 
1173 	ir_data->irq_2_iommu.posted_vcpu = false;
1174 
1175 	if (ir_data->irq_2_iommu.posted_msi)
1176 		intel_ir_reconfigure_irte_posted(irqd);
1177 	else
1178 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1179 }
1180 
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force_host)1181 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host)
1182 {
1183 	struct intel_ir_data *ir_data = irqd->chip_data;
1184 	struct irte *irte = &ir_data->irte_entry;
1185 	struct irq_cfg *cfg = irqd_cfg(irqd);
1186 
1187 	/*
1188 	 * Atomically updates the IRTE with the new destination, vector
1189 	 * and flushes the interrupt entry cache.
1190 	 */
1191 	irte->vector = cfg->vector;
1192 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1193 
1194 	__intel_ir_reconfigure_irte(irqd, force_host);
1195 }
1196 
1197 /*
1198  * Migrate the IO-APIC irq in the presence of intr-remapping.
1199  *
1200  * For both level and edge triggered, irq migration is a simple atomic
1201  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1202  *
1203  * For level triggered, we eliminate the io-apic RTE modification (with the
1204  * updated vector information), by using a virtual vector (io-apic pin number).
1205  * Real vector that is used for interrupting cpu will be coming from
1206  * the interrupt-remapping table entry.
1207  *
1208  * As the migration is a simple atomic update of IRTE, the same mechanism
1209  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1210  */
1211 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1212 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1213 		      bool force)
1214 {
1215 	struct irq_data *parent = data->parent_data;
1216 	struct irq_cfg *cfg = irqd_cfg(data);
1217 	int ret;
1218 
1219 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1220 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1221 		return ret;
1222 
1223 	intel_ir_reconfigure_irte(data, false);
1224 	/*
1225 	 * After this point, all the interrupts will start arriving
1226 	 * at the new destination. So, time to cleanup the previous
1227 	 * vector allocation.
1228 	 */
1229 	vector_schedule_cleanup(cfg);
1230 
1231 	return IRQ_SET_MASK_OK_DONE;
1232 }
1233 
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1234 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1235 				     struct msi_msg *msg)
1236 {
1237 	struct intel_ir_data *ir_data = irq_data->chip_data;
1238 
1239 	*msg = ir_data->msi_entry;
1240 }
1241 
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1242 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1243 {
1244 	struct intel_ir_data *ir_data = data->chip_data;
1245 	struct intel_iommu_pi_data *pi_data = info;
1246 
1247 	/* stop posting interrupts, back to the default mode */
1248 	if (!pi_data) {
1249 		__intel_ir_reconfigure_irte(data, true);
1250 	} else {
1251 		struct irte irte_pi;
1252 
1253 		/*
1254 		 * We are not caching the posted interrupt entry. We
1255 		 * copy the data from the remapped entry and modify
1256 		 * the fields which are relevant for posted mode. The
1257 		 * cached remapped entry is used for switching back to
1258 		 * remapped mode.
1259 		 */
1260 		memset(&irte_pi, 0, sizeof(irte_pi));
1261 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1262 
1263 		/* Update the posted mode fields */
1264 		irte_pi.p_pst = 1;
1265 		irte_pi.p_urgent = 0;
1266 		irte_pi.p_vector = pi_data->vector;
1267 		irte_pi.pda_l = (pi_data->pi_desc_addr >>
1268 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1269 		irte_pi.pda_h = (pi_data->pi_desc_addr >> 32) &
1270 				~(-1UL << PDA_HIGH_BIT);
1271 
1272 		ir_data->irq_2_iommu.posted_vcpu = true;
1273 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static struct irq_chip intel_ir_chip = {
1280 	.name			= "INTEL-IR",
1281 	.irq_ack		= apic_ack_irq,
1282 	.irq_set_affinity	= intel_ir_set_affinity,
1283 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1284 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1285 };
1286 
1287 /*
1288  * With posted MSIs, the MSI vectors are multiplexed into a single notification
1289  * vector, and only the notification vector is sent to the APIC IRR.  Device
1290  * MSIs are then dispatched in a demux loop that harvests the MSIs from the
1291  * CPU's Posted Interrupt Request bitmap.  I.e. Posted MSIs never get sent to
1292  * the APIC IRR, and thus do not need an EOI.  The notification handler instead
1293  * performs a single EOI after processing the PIR.
1294  *
1295  * Note!  Pending SMP/CPU affinity changes, which are per MSI, must still be
1296  * honored, only the APIC EOI is omitted.
1297  *
1298  * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1299  * one apic_eoi() is needed, but each MSI needs to process pending changes to
1300  * its CPU affinity.
1301  *
1302  * __sysvec_posted_msi_notification()
1303  *	irq_enter();
1304  *		handle_edge_irq()
1305  *			irq_chip_ack_parent()
1306  *				irq_move_irq(); // No EOI
1307  *			handle_irq_event()
1308  *				driver_handler()
1309  *		handle_edge_irq()
1310  *			irq_chip_ack_parent()
1311  *				irq_move_irq(); // No EOI
1312  *			handle_irq_event()
1313  *				driver_handler()
1314  *		handle_edge_irq()
1315  *			irq_chip_ack_parent()
1316  *				irq_move_irq(); // No EOI
1317  *			handle_irq_event()
1318  *				driver_handler()
1319  *	apic_eoi()
1320  *	irq_exit()
1321  *
1322  */
1323 static struct irq_chip intel_ir_chip_post_msi = {
1324 	.name			= "INTEL-IR-POST",
1325 	.irq_ack		= irq_move_irq,
1326 	.irq_set_affinity	= intel_ir_set_affinity,
1327 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1328 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1329 };
1330 
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1331 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1332 {
1333 	memset(msg, 0, sizeof(*msg));
1334 
1335 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1336 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1337 	msg->arch_addr_lo.dmar_format = true;
1338 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1339 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1340 
1341 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1342 
1343 	msg->arch_data.dmar_subhandle = subhandle;
1344 }
1345 
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1346 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1347 					     struct irq_cfg *irq_cfg,
1348 					     struct irq_alloc_info *info,
1349 					     int index, int sub_handle)
1350 {
1351 	struct irte *irte = &data->irte_entry;
1352 
1353 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1354 
1355 	switch (info->type) {
1356 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1357 		/* Set source-id of interrupt request */
1358 		set_ioapic_sid(irte, info->devid);
1359 		apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1360 				info->devid, irte->present, irte->fpd, irte->dst_mode,
1361 				irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1362 				irte->avail, irte->vector, irte->dest_id, irte->sid,
1363 				irte->sq, irte->svt);
1364 		sub_handle = info->ioapic.pin;
1365 		break;
1366 	case X86_IRQ_ALLOC_TYPE_HPET:
1367 		set_hpet_sid(irte, info->devid);
1368 		break;
1369 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1370 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1371 		if (posted_msi_supported()) {
1372 			prepare_irte_posted(irte);
1373 			data->irq_2_iommu.posted_msi = 1;
1374 		}
1375 
1376 		set_msi_sid(irte,
1377 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1378 		break;
1379 	default:
1380 		BUG_ON(1);
1381 		break;
1382 	}
1383 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1384 }
1385 
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1386 static void intel_free_irq_resources(struct irq_domain *domain,
1387 				     unsigned int virq, unsigned int nr_irqs)
1388 {
1389 	struct irq_data *irq_data;
1390 	struct intel_ir_data *data;
1391 	struct irq_2_iommu *irq_iommu;
1392 	unsigned long flags;
1393 	int i;
1394 	for (i = 0; i < nr_irqs; i++) {
1395 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1396 		if (irq_data && irq_data->chip_data) {
1397 			data = irq_data->chip_data;
1398 			irq_iommu = &data->irq_2_iommu;
1399 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1400 			clear_entries(irq_iommu);
1401 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1402 			irq_domain_reset_irq_data(irq_data);
1403 			kfree(data);
1404 		}
1405 	}
1406 }
1407 
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1408 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1409 				     unsigned int virq, unsigned int nr_irqs,
1410 				     void *arg)
1411 {
1412 	struct intel_iommu *iommu = domain->host_data;
1413 	struct irq_alloc_info *info = arg;
1414 	struct intel_ir_data *data, *ird;
1415 	struct irq_data *irq_data;
1416 	struct irq_cfg *irq_cfg;
1417 	int i, ret, index;
1418 
1419 	if (!info || !iommu)
1420 		return -EINVAL;
1421 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1422 		return -EINVAL;
1423 
1424 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1425 	if (ret < 0)
1426 		return ret;
1427 
1428 	ret = -ENOMEM;
1429 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1430 	if (!data)
1431 		goto out_free_parent;
1432 
1433 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1434 	if (index < 0) {
1435 		pr_warn("Failed to allocate IRTE\n");
1436 		kfree(data);
1437 		goto out_free_parent;
1438 	}
1439 
1440 	for (i = 0; i < nr_irqs; i++) {
1441 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1442 		irq_cfg = irqd_cfg(irq_data);
1443 		if (!irq_data || !irq_cfg) {
1444 			if (!i)
1445 				kfree(data);
1446 			ret = -EINVAL;
1447 			goto out_free_data;
1448 		}
1449 
1450 		if (i > 0) {
1451 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1452 			if (!ird)
1453 				goto out_free_data;
1454 			/* Initialize the common data */
1455 			ird->irq_2_iommu = data->irq_2_iommu;
1456 			ird->irq_2_iommu.sub_handle = i;
1457 		} else {
1458 			ird = data;
1459 		}
1460 
1461 		irq_data->hwirq = (index << 16) + i;
1462 		irq_data->chip_data = ird;
1463 		if (posted_msi_supported() &&
1464 		    ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1465 		     (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1466 			irq_data->chip = &intel_ir_chip_post_msi;
1467 		else
1468 			irq_data->chip = &intel_ir_chip;
1469 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1470 	}
1471 	return 0;
1472 
1473 out_free_data:
1474 	intel_free_irq_resources(domain, virq, i);
1475 out_free_parent:
1476 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1477 	return ret;
1478 }
1479 
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1480 static void intel_irq_remapping_free(struct irq_domain *domain,
1481 				     unsigned int virq, unsigned int nr_irqs)
1482 {
1483 	intel_free_irq_resources(domain, virq, nr_irqs);
1484 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1485 }
1486 
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1487 static int intel_irq_remapping_activate(struct irq_domain *domain,
1488 					struct irq_data *irq_data, bool reserve)
1489 {
1490 	intel_ir_reconfigure_irte(irq_data, true);
1491 	return 0;
1492 }
1493 
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1494 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1495 					   struct irq_data *irq_data)
1496 {
1497 	struct intel_ir_data *data = irq_data->chip_data;
1498 	struct irte entry;
1499 
1500 	WARN_ON_ONCE(data->irq_2_iommu.posted_vcpu);
1501 	data->irq_2_iommu.posted_vcpu = false;
1502 
1503 	memset(&entry, 0, sizeof(entry));
1504 	modify_irte(&data->irq_2_iommu, &entry);
1505 }
1506 
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1507 static int intel_irq_remapping_select(struct irq_domain *d,
1508 				      struct irq_fwspec *fwspec,
1509 				      enum irq_domain_bus_token bus_token)
1510 {
1511 	struct intel_iommu *iommu = NULL;
1512 
1513 	if (x86_fwspec_is_ioapic(fwspec))
1514 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1515 	else if (x86_fwspec_is_hpet(fwspec))
1516 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1517 
1518 	return iommu && d == iommu->ir_domain;
1519 }
1520 
1521 static const struct irq_domain_ops intel_ir_domain_ops = {
1522 	.select = intel_irq_remapping_select,
1523 	.alloc = intel_irq_remapping_alloc,
1524 	.free = intel_irq_remapping_free,
1525 	.activate = intel_irq_remapping_activate,
1526 	.deactivate = intel_irq_remapping_deactivate,
1527 };
1528 
1529 static const struct msi_parent_ops dmar_msi_parent_ops = {
1530 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1531 	.bus_select_token	= DOMAIN_BUS_DMAR,
1532 	.bus_select_mask	= MATCH_PCI_MSI,
1533 	.prefix			= "IR-",
1534 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1535 };
1536 
1537 /*
1538  * Support of Interrupt Remapping Unit Hotplug
1539  */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1540 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1541 {
1542 	int ret;
1543 	int eim = x2apic_enabled();
1544 
1545 	if (eim && !ecap_eim_support(iommu->ecap)) {
1546 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1547 			iommu->reg_phys, iommu->ecap);
1548 		return -ENODEV;
1549 	}
1550 
1551 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1552 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1553 			iommu->reg_phys);
1554 		return -ENODEV;
1555 	}
1556 
1557 	/* TODO: check all IOAPICs are covered by IOMMU */
1558 
1559 	/* Setup Interrupt-remapping now. */
1560 	ret = intel_setup_irq_remapping(iommu);
1561 	if (ret) {
1562 		pr_err("Failed to setup irq remapping for %s\n",
1563 		       iommu->name);
1564 		intel_teardown_irq_remapping(iommu);
1565 		ir_remove_ioapic_hpet_scope(iommu);
1566 	} else {
1567 		iommu_enable_irq_remapping(iommu);
1568 	}
1569 
1570 	return ret;
1571 }
1572 
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1573 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1574 {
1575 	int ret = 0;
1576 	struct intel_iommu *iommu = dmaru->iommu;
1577 
1578 	if (!irq_remapping_enabled)
1579 		return 0;
1580 	if (iommu == NULL)
1581 		return -EINVAL;
1582 	if (!ecap_ir_support(iommu->ecap))
1583 		return 0;
1584 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1585 	    !cap_pi_support(iommu->cap))
1586 		return -EBUSY;
1587 
1588 	if (insert) {
1589 		if (!iommu->ir_table)
1590 			ret = dmar_ir_add(dmaru, iommu);
1591 	} else {
1592 		if (iommu->ir_table) {
1593 			if (!bitmap_empty(iommu->ir_table->bitmap,
1594 					  INTR_REMAP_TABLE_ENTRIES)) {
1595 				ret = -EBUSY;
1596 			} else {
1597 				iommu_disable_irq_remapping(iommu);
1598 				intel_teardown_irq_remapping(iommu);
1599 				ir_remove_ioapic_hpet_scope(iommu);
1600 			}
1601 		}
1602 	}
1603 
1604 	return ret;
1605 }
1606