xref: /linux/kernel/pid.c (revision 4b290aae788e06561754b28c6842e4080957d3f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <linux/seqlock.h>
47 #include <net/sock.h>
48 #include <uapi/linux/pidfd.h>
49 
50 struct pid init_struct_pid = {
51 	.count		= REFCOUNT_INIT(1),
52 	.tasks		= {
53 		{ .first = NULL },
54 		{ .first = NULL },
55 		{ .first = NULL },
56 	},
57 	.level		= 0,
58 	.numbers	= { {
59 		.nr		= 0,
60 		.ns		= &init_pid_ns,
61 	}, }
62 };
63 
64 static int pid_max_min = RESERVED_PIDS + 1;
65 static int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.ns.count = REFCOUNT_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 	.pid_max = PID_MAX_DEFAULT,
85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
86 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
87 #endif
88 };
89 EXPORT_SYMBOL_GPL(init_pid_ns);
90 
91 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
92 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock);
93 
put_pid(struct pid * pid)94 void put_pid(struct pid *pid)
95 {
96 	struct pid_namespace *ns;
97 
98 	if (!pid)
99 		return;
100 
101 	ns = pid->numbers[pid->level].ns;
102 	if (refcount_dec_and_test(&pid->count)) {
103 		pidfs_free_pid(pid);
104 		kmem_cache_free(ns->pid_cachep, pid);
105 		put_pid_ns(ns);
106 	}
107 }
108 EXPORT_SYMBOL_GPL(put_pid);
109 
delayed_put_pid(struct rcu_head * rhp)110 static void delayed_put_pid(struct rcu_head *rhp)
111 {
112 	struct pid *pid = container_of(rhp, struct pid, rcu);
113 	put_pid(pid);
114 }
115 
free_pid(struct pid * pid)116 void free_pid(struct pid *pid)
117 {
118 	int i;
119 
120 	lockdep_assert_not_held(&tasklist_lock);
121 
122 	spin_lock(&pidmap_lock);
123 	for (i = 0; i <= pid->level; i++) {
124 		struct upid *upid = pid->numbers + i;
125 		struct pid_namespace *ns = upid->ns;
126 		switch (--ns->pid_allocated) {
127 		case 2:
128 		case 1:
129 			/* When all that is left in the pid namespace
130 			 * is the reaper wake up the reaper.  The reaper
131 			 * may be sleeping in zap_pid_ns_processes().
132 			 */
133 			wake_up_process(ns->child_reaper);
134 			break;
135 		case PIDNS_ADDING:
136 			/* Handle a fork failure of the first process */
137 			WARN_ON(ns->child_reaper);
138 			ns->pid_allocated = 0;
139 			break;
140 		}
141 
142 		idr_remove(&ns->idr, upid->nr);
143 	}
144 	pidfs_remove_pid(pid);
145 	spin_unlock(&pidmap_lock);
146 
147 	call_rcu(&pid->rcu, delayed_put_pid);
148 }
149 
free_pids(struct pid ** pids)150 void free_pids(struct pid **pids)
151 {
152 	int tmp;
153 
154 	/*
155 	 * This can batch pidmap_lock.
156 	 */
157 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
158 		if (pids[tmp])
159 			free_pid(pids[tmp]);
160 }
161 
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163 		      size_t set_tid_size)
164 {
165 	struct pid *pid;
166 	enum pid_type type;
167 	int i, nr;
168 	struct pid_namespace *tmp;
169 	struct upid *upid;
170 	int retval = -ENOMEM;
171 
172 	/*
173 	 * set_tid_size contains the size of the set_tid array. Starting at
174 	 * the most nested currently active PID namespace it tells alloc_pid()
175 	 * which PID to set for a process in that most nested PID namespace
176 	 * up to set_tid_size PID namespaces. It does not have to set the PID
177 	 * for a process in all nested PID namespaces but set_tid_size must
178 	 * never be greater than the current ns->level + 1.
179 	 */
180 	if (set_tid_size > ns->level + 1)
181 		return ERR_PTR(-EINVAL);
182 
183 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184 	if (!pid)
185 		return ERR_PTR(retval);
186 
187 	tmp = ns;
188 	pid->level = ns->level;
189 
190 	for (i = ns->level; i >= 0; i--) {
191 		int tid = 0;
192 		int pid_max = READ_ONCE(tmp->pid_max);
193 
194 		if (set_tid_size) {
195 			tid = set_tid[ns->level - i];
196 
197 			retval = -EINVAL;
198 			if (tid < 1 || tid >= pid_max)
199 				goto out_free;
200 			/*
201 			 * Also fail if a PID != 1 is requested and
202 			 * no PID 1 exists.
203 			 */
204 			if (tid != 1 && !tmp->child_reaper)
205 				goto out_free;
206 			retval = -EPERM;
207 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
208 				goto out_free;
209 			set_tid_size--;
210 		}
211 
212 		idr_preload(GFP_KERNEL);
213 		spin_lock(&pidmap_lock);
214 
215 		if (tid) {
216 			nr = idr_alloc(&tmp->idr, NULL, tid,
217 				       tid + 1, GFP_ATOMIC);
218 			/*
219 			 * If ENOSPC is returned it means that the PID is
220 			 * alreay in use. Return EEXIST in that case.
221 			 */
222 			if (nr == -ENOSPC)
223 				nr = -EEXIST;
224 		} else {
225 			int pid_min = 1;
226 			/*
227 			 * init really needs pid 1, but after reaching the
228 			 * maximum wrap back to RESERVED_PIDS
229 			 */
230 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
231 				pid_min = RESERVED_PIDS;
232 
233 			/*
234 			 * Store a null pointer so find_pid_ns does not find
235 			 * a partially initialized PID (see below).
236 			 */
237 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
238 					      pid_max, GFP_ATOMIC);
239 		}
240 		spin_unlock(&pidmap_lock);
241 		idr_preload_end();
242 
243 		if (nr < 0) {
244 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
245 			goto out_free;
246 		}
247 
248 		pid->numbers[i].nr = nr;
249 		pid->numbers[i].ns = tmp;
250 		tmp = tmp->parent;
251 	}
252 
253 	/*
254 	 * ENOMEM is not the most obvious choice especially for the case
255 	 * where the child subreaper has already exited and the pid
256 	 * namespace denies the creation of any new processes. But ENOMEM
257 	 * is what we have exposed to userspace for a long time and it is
258 	 * documented behavior for pid namespaces. So we can't easily
259 	 * change it even if there were an error code better suited.
260 	 */
261 	retval = -ENOMEM;
262 
263 	get_pid_ns(ns);
264 	refcount_set(&pid->count, 1);
265 	spin_lock_init(&pid->lock);
266 	for (type = 0; type < PIDTYPE_MAX; ++type)
267 		INIT_HLIST_HEAD(&pid->tasks[type]);
268 
269 	init_waitqueue_head(&pid->wait_pidfd);
270 	INIT_HLIST_HEAD(&pid->inodes);
271 
272 	upid = pid->numbers + ns->level;
273 	idr_preload(GFP_KERNEL);
274 	spin_lock(&pidmap_lock);
275 	if (!(ns->pid_allocated & PIDNS_ADDING))
276 		goto out_unlock;
277 	pidfs_add_pid(pid);
278 	for ( ; upid >= pid->numbers; --upid) {
279 		/* Make the PID visible to find_pid_ns. */
280 		idr_replace(&upid->ns->idr, pid, upid->nr);
281 		upid->ns->pid_allocated++;
282 	}
283 	spin_unlock(&pidmap_lock);
284 	idr_preload_end();
285 
286 	return pid;
287 
288 out_unlock:
289 	spin_unlock(&pidmap_lock);
290 	idr_preload_end();
291 	put_pid_ns(ns);
292 
293 out_free:
294 	spin_lock(&pidmap_lock);
295 	while (++i <= ns->level) {
296 		upid = pid->numbers + i;
297 		idr_remove(&upid->ns->idr, upid->nr);
298 	}
299 
300 	/* On failure to allocate the first pid, reset the state */
301 	if (ns->pid_allocated == PIDNS_ADDING)
302 		idr_set_cursor(&ns->idr, 0);
303 
304 	spin_unlock(&pidmap_lock);
305 
306 	kmem_cache_free(ns->pid_cachep, pid);
307 	return ERR_PTR(retval);
308 }
309 
disable_pid_allocation(struct pid_namespace * ns)310 void disable_pid_allocation(struct pid_namespace *ns)
311 {
312 	spin_lock(&pidmap_lock);
313 	ns->pid_allocated &= ~PIDNS_ADDING;
314 	spin_unlock(&pidmap_lock);
315 }
316 
find_pid_ns(int nr,struct pid_namespace * ns)317 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
318 {
319 	return idr_find(&ns->idr, nr);
320 }
321 EXPORT_SYMBOL_GPL(find_pid_ns);
322 
find_vpid(int nr)323 struct pid *find_vpid(int nr)
324 {
325 	return find_pid_ns(nr, task_active_pid_ns(current));
326 }
327 EXPORT_SYMBOL_GPL(find_vpid);
328 
task_pid_ptr(struct task_struct * task,enum pid_type type)329 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
330 {
331 	return (type == PIDTYPE_PID) ?
332 		&task->thread_pid :
333 		&task->signal->pids[type];
334 }
335 
336 /*
337  * attach_pid() must be called with the tasklist_lock write-held.
338  */
attach_pid(struct task_struct * task,enum pid_type type)339 void attach_pid(struct task_struct *task, enum pid_type type)
340 {
341 	struct pid *pid;
342 
343 	lockdep_assert_held_write(&tasklist_lock);
344 
345 	pid = *task_pid_ptr(task, type);
346 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
347 }
348 
__change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * new)349 static void __change_pid(struct pid **pids, struct task_struct *task,
350 			 enum pid_type type, struct pid *new)
351 {
352 	struct pid **pid_ptr, *pid;
353 	int tmp;
354 
355 	lockdep_assert_held_write(&tasklist_lock);
356 
357 	pid_ptr = task_pid_ptr(task, type);
358 	pid = *pid_ptr;
359 
360 	hlist_del_rcu(&task->pid_links[type]);
361 	*pid_ptr = new;
362 
363 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364 		if (pid_has_task(pid, tmp))
365 			return;
366 
367 	WARN_ON(pids[type]);
368 	pids[type] = pid;
369 }
370 
detach_pid(struct pid ** pids,struct task_struct * task,enum pid_type type)371 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type)
372 {
373 	__change_pid(pids, task, type, NULL);
374 }
375 
change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * pid)376 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type,
377 		struct pid *pid)
378 {
379 	__change_pid(pids, task, type, pid);
380 	attach_pid(task, type);
381 }
382 
exchange_tids(struct task_struct * left,struct task_struct * right)383 void exchange_tids(struct task_struct *left, struct task_struct *right)
384 {
385 	struct pid *pid1 = left->thread_pid;
386 	struct pid *pid2 = right->thread_pid;
387 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
388 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
389 
390 	lockdep_assert_held_write(&tasklist_lock);
391 
392 	/* Swap the single entry tid lists */
393 	hlists_swap_heads_rcu(head1, head2);
394 
395 	/* Swap the per task_struct pid */
396 	rcu_assign_pointer(left->thread_pid, pid2);
397 	rcu_assign_pointer(right->thread_pid, pid1);
398 
399 	/* Swap the cached value */
400 	WRITE_ONCE(left->pid, pid_nr(pid2));
401 	WRITE_ONCE(right->pid, pid_nr(pid1));
402 }
403 
404 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)405 void transfer_pid(struct task_struct *old, struct task_struct *new,
406 			   enum pid_type type)
407 {
408 	WARN_ON_ONCE(type == PIDTYPE_PID);
409 	lockdep_assert_held_write(&tasklist_lock);
410 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
411 }
412 
pid_task(struct pid * pid,enum pid_type type)413 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
414 {
415 	struct task_struct *result = NULL;
416 	if (pid) {
417 		struct hlist_node *first;
418 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
419 					      lockdep_tasklist_lock_is_held());
420 		if (first)
421 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
422 	}
423 	return result;
424 }
425 EXPORT_SYMBOL(pid_task);
426 
427 /*
428  * Must be called under rcu_read_lock().
429  */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)430 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
431 {
432 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
433 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
434 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
435 }
436 
find_task_by_vpid(pid_t vnr)437 struct task_struct *find_task_by_vpid(pid_t vnr)
438 {
439 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
440 }
441 
find_get_task_by_vpid(pid_t nr)442 struct task_struct *find_get_task_by_vpid(pid_t nr)
443 {
444 	struct task_struct *task;
445 
446 	rcu_read_lock();
447 	task = find_task_by_vpid(nr);
448 	if (task)
449 		get_task_struct(task);
450 	rcu_read_unlock();
451 
452 	return task;
453 }
454 
get_task_pid(struct task_struct * task,enum pid_type type)455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
456 {
457 	struct pid *pid;
458 	rcu_read_lock();
459 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
460 	rcu_read_unlock();
461 	return pid;
462 }
463 EXPORT_SYMBOL_GPL(get_task_pid);
464 
get_pid_task(struct pid * pid,enum pid_type type)465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
466 {
467 	struct task_struct *result;
468 	rcu_read_lock();
469 	result = pid_task(pid, type);
470 	if (result)
471 		get_task_struct(result);
472 	rcu_read_unlock();
473 	return result;
474 }
475 EXPORT_SYMBOL_GPL(get_pid_task);
476 
find_get_pid(pid_t nr)477 struct pid *find_get_pid(pid_t nr)
478 {
479 	struct pid *pid;
480 
481 	rcu_read_lock();
482 	pid = get_pid(find_vpid(nr));
483 	rcu_read_unlock();
484 
485 	return pid;
486 }
487 EXPORT_SYMBOL_GPL(find_get_pid);
488 
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
490 {
491 	struct upid *upid;
492 	pid_t nr = 0;
493 
494 	if (pid && ns->level <= pid->level) {
495 		upid = &pid->numbers[ns->level];
496 		if (upid->ns == ns)
497 			nr = upid->nr;
498 	}
499 	return nr;
500 }
501 EXPORT_SYMBOL_GPL(pid_nr_ns);
502 
pid_vnr(struct pid * pid)503 pid_t pid_vnr(struct pid *pid)
504 {
505 	return pid_nr_ns(pid, task_active_pid_ns(current));
506 }
507 EXPORT_SYMBOL_GPL(pid_vnr);
508 
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
510 			struct pid_namespace *ns)
511 {
512 	pid_t nr = 0;
513 
514 	rcu_read_lock();
515 	if (!ns)
516 		ns = task_active_pid_ns(current);
517 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
518 	rcu_read_unlock();
519 
520 	return nr;
521 }
522 EXPORT_SYMBOL(__task_pid_nr_ns);
523 
task_active_pid_ns(struct task_struct * tsk)524 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
525 {
526 	return ns_of_pid(task_pid(tsk));
527 }
528 EXPORT_SYMBOL_GPL(task_active_pid_ns);
529 
530 /*
531  * Used by proc to find the first pid that is greater than or equal to nr.
532  *
533  * If there is a pid at nr this function is exactly the same as find_pid_ns.
534  */
find_ge_pid(int nr,struct pid_namespace * ns)535 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
536 {
537 	return idr_get_next(&ns->idr, &nr);
538 }
539 EXPORT_SYMBOL_GPL(find_ge_pid);
540 
pidfd_get_pid(unsigned int fd,unsigned int * flags)541 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
542 {
543 	CLASS(fd, f)(fd);
544 	struct pid *pid;
545 
546 	if (fd_empty(f))
547 		return ERR_PTR(-EBADF);
548 
549 	pid = pidfd_pid(fd_file(f));
550 	if (!IS_ERR(pid)) {
551 		get_pid(pid);
552 		*flags = fd_file(f)->f_flags;
553 	}
554 	return pid;
555 }
556 
557 /**
558  * pidfd_get_task() - Get the task associated with a pidfd
559  *
560  * @pidfd: pidfd for which to get the task
561  * @flags: flags associated with this pidfd
562  *
563  * Return the task associated with @pidfd. The function takes a reference on
564  * the returned task. The caller is responsible for releasing that reference.
565  *
566  * Return: On success, the task_struct associated with the pidfd.
567  *	   On error, a negative errno number will be returned.
568  */
pidfd_get_task(int pidfd,unsigned int * flags)569 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
570 {
571 	unsigned int f_flags = 0;
572 	struct pid *pid;
573 	struct task_struct *task;
574 	enum pid_type type;
575 
576 	switch (pidfd) {
577 	case  PIDFD_SELF_THREAD:
578 		type = PIDTYPE_PID;
579 		pid = get_task_pid(current, type);
580 		break;
581 	case  PIDFD_SELF_THREAD_GROUP:
582 		type = PIDTYPE_TGID;
583 		pid = get_task_pid(current, type);
584 		break;
585 	default:
586 		pid = pidfd_get_pid(pidfd, &f_flags);
587 		if (IS_ERR(pid))
588 			return ERR_CAST(pid);
589 		type = PIDTYPE_TGID;
590 		break;
591 	}
592 
593 	task = get_pid_task(pid, type);
594 	put_pid(pid);
595 	if (!task)
596 		return ERR_PTR(-ESRCH);
597 
598 	*flags = f_flags;
599 	return task;
600 }
601 
602 /**
603  * pidfd_create() - Create a new pid file descriptor.
604  *
605  * @pid:   struct pid that the pidfd will reference
606  * @flags: flags to pass
607  *
608  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
609  *
610  * Note, that this function can only be called after the fd table has
611  * been unshared to avoid leaking the pidfd to the new process.
612  *
613  * This symbol should not be explicitly exported to loadable modules.
614  *
615  * Return: On success, a cloexec pidfd is returned.
616  *         On error, a negative errno number will be returned.
617  */
pidfd_create(struct pid * pid,unsigned int flags)618 static int pidfd_create(struct pid *pid, unsigned int flags)
619 {
620 	int pidfd;
621 	struct file *pidfd_file;
622 
623 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
624 	if (pidfd < 0)
625 		return pidfd;
626 
627 	fd_install(pidfd, pidfd_file);
628 	return pidfd;
629 }
630 
631 /**
632  * sys_pidfd_open() - Open new pid file descriptor.
633  *
634  * @pid:   pid for which to retrieve a pidfd
635  * @flags: flags to pass
636  *
637  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
638  * the task identified by @pid. Without PIDFD_THREAD flag the target task
639  * must be a thread-group leader.
640  *
641  * Return: On success, a cloexec pidfd is returned.
642  *         On error, a negative errno number will be returned.
643  */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)644 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
645 {
646 	int fd;
647 	struct pid *p;
648 
649 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
650 		return -EINVAL;
651 
652 	if (pid <= 0)
653 		return -EINVAL;
654 
655 	p = find_get_pid(pid);
656 	if (!p)
657 		return -ESRCH;
658 
659 	fd = pidfd_create(p, flags);
660 
661 	put_pid(p);
662 	return fd;
663 }
664 
665 #ifdef CONFIG_SYSCTL
pid_table_root_lookup(struct ctl_table_root * root)666 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root)
667 {
668 	return &task_active_pid_ns(current)->set;
669 }
670 
set_is_seen(struct ctl_table_set * set)671 static int set_is_seen(struct ctl_table_set *set)
672 {
673 	return &task_active_pid_ns(current)->set == set;
674 }
675 
pid_table_root_permissions(struct ctl_table_header * head,const struct ctl_table * table)676 static int pid_table_root_permissions(struct ctl_table_header *head,
677 				      const struct ctl_table *table)
678 {
679 	struct pid_namespace *pidns =
680 		container_of(head->set, struct pid_namespace, set);
681 	int mode = table->mode;
682 
683 	if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) ||
684 	    uid_eq(current_euid(), make_kuid(pidns->user_ns, 0)))
685 		mode = (mode & S_IRWXU) >> 6;
686 	else if (in_egroup_p(make_kgid(pidns->user_ns, 0)))
687 		mode = (mode & S_IRWXG) >> 3;
688 	else
689 		mode = mode & S_IROTH;
690 	return (mode << 6) | (mode << 3) | mode;
691 }
692 
pid_table_root_set_ownership(struct ctl_table_header * head,kuid_t * uid,kgid_t * gid)693 static void pid_table_root_set_ownership(struct ctl_table_header *head,
694 					 kuid_t *uid, kgid_t *gid)
695 {
696 	struct pid_namespace *pidns =
697 		container_of(head->set, struct pid_namespace, set);
698 	kuid_t ns_root_uid;
699 	kgid_t ns_root_gid;
700 
701 	ns_root_uid = make_kuid(pidns->user_ns, 0);
702 	if (uid_valid(ns_root_uid))
703 		*uid = ns_root_uid;
704 
705 	ns_root_gid = make_kgid(pidns->user_ns, 0);
706 	if (gid_valid(ns_root_gid))
707 		*gid = ns_root_gid;
708 }
709 
710 static struct ctl_table_root pid_table_root = {
711 	.lookup		= pid_table_root_lookup,
712 	.permissions	= pid_table_root_permissions,
713 	.set_ownership	= pid_table_root_set_ownership,
714 };
715 
proc_do_cad_pid(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)716 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer,
717 		size_t *lenp, loff_t *ppos)
718 {
719 	struct pid *new_pid;
720 	pid_t tmp_pid;
721 	int r;
722 	struct ctl_table tmp_table = *table;
723 
724 	tmp_pid = pid_vnr(cad_pid);
725 	tmp_table.data = &tmp_pid;
726 
727 	r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
728 	if (r || !write)
729 		return r;
730 
731 	new_pid = find_get_pid(tmp_pid);
732 	if (!new_pid)
733 		return -ESRCH;
734 
735 	put_pid(xchg(&cad_pid, new_pid));
736 	return 0;
737 }
738 
739 static const struct ctl_table pid_table[] = {
740 	{
741 		.procname	= "pid_max",
742 		.data		= &init_pid_ns.pid_max,
743 		.maxlen		= sizeof(int),
744 		.mode		= 0644,
745 		.proc_handler	= proc_dointvec_minmax,
746 		.extra1		= &pid_max_min,
747 		.extra2		= &pid_max_max,
748 	},
749 #ifdef CONFIG_PROC_SYSCTL
750 	{
751 		.procname	= "cad_pid",
752 		.maxlen		= sizeof(int),
753 		.mode		= 0600,
754 		.proc_handler	= proc_do_cad_pid,
755 	},
756 #endif
757 };
758 #endif
759 
register_pidns_sysctls(struct pid_namespace * pidns)760 int register_pidns_sysctls(struct pid_namespace *pidns)
761 {
762 #ifdef CONFIG_SYSCTL
763 	struct ctl_table *tbl;
764 
765 	setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen);
766 
767 	tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL);
768 	if (!tbl)
769 		return -ENOMEM;
770 	tbl->data = &pidns->pid_max;
771 	pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max,
772 			     PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
773 
774 	pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl,
775 						 ARRAY_SIZE(pid_table));
776 	if (!pidns->sysctls) {
777 		kfree(tbl);
778 		retire_sysctl_set(&pidns->set);
779 		return -ENOMEM;
780 	}
781 #endif
782 	return 0;
783 }
784 
unregister_pidns_sysctls(struct pid_namespace * pidns)785 void unregister_pidns_sysctls(struct pid_namespace *pidns)
786 {
787 #ifdef CONFIG_SYSCTL
788 	const struct ctl_table *tbl;
789 
790 	tbl = pidns->sysctls->ctl_table_arg;
791 	unregister_sysctl_table(pidns->sysctls);
792 	retire_sysctl_set(&pidns->set);
793 	kfree(tbl);
794 #endif
795 }
796 
pid_idr_init(void)797 void __init pid_idr_init(void)
798 {
799 	/* Verify no one has done anything silly: */
800 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
801 
802 	/* bump default and minimum pid_max based on number of cpus */
803 	init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max,
804 				  PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
805 	pid_max_min = max_t(int, pid_max_min,
806 				PIDS_PER_CPU_MIN * num_possible_cpus());
807 	pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min);
808 
809 	idr_init(&init_pid_ns.idr);
810 
811 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
812 			struct_size_t(struct pid, numbers, 1),
813 			__alignof__(struct pid),
814 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
815 			NULL);
816 }
817 
pid_namespace_sysctl_init(void)818 static __init int pid_namespace_sysctl_init(void)
819 {
820 #ifdef CONFIG_SYSCTL
821 	/* "kernel" directory will have already been initialized. */
822 	BUG_ON(register_pidns_sysctls(&init_pid_ns));
823 #endif
824 	return 0;
825 }
826 subsys_initcall(pid_namespace_sysctl_init);
827 
__pidfd_fget(struct task_struct * task,int fd)828 static struct file *__pidfd_fget(struct task_struct *task, int fd)
829 {
830 	struct file *file;
831 	int ret;
832 
833 	ret = down_read_killable(&task->signal->exec_update_lock);
834 	if (ret)
835 		return ERR_PTR(ret);
836 
837 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
838 		file = fget_task(task, fd);
839 	else
840 		file = ERR_PTR(-EPERM);
841 
842 	up_read(&task->signal->exec_update_lock);
843 
844 	if (!file) {
845 		/*
846 		 * It is possible that the target thread is exiting; it can be
847 		 * either:
848 		 * 1. before exit_signals(), which gives a real fd
849 		 * 2. before exit_files() takes the task_lock() gives a real fd
850 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
851 		 *    this has PF_EXITING, since it was set in exit_signals(),
852 		 *    __pidfd_fget() returns EBADF.
853 		 * In case 3 we get EBADF, but that really means ESRCH, since
854 		 * the task is currently exiting and has freed its files
855 		 * struct, so we fix it up.
856 		 */
857 		if (task->flags & PF_EXITING)
858 			file = ERR_PTR(-ESRCH);
859 		else
860 			file = ERR_PTR(-EBADF);
861 	}
862 
863 	return file;
864 }
865 
pidfd_getfd(struct pid * pid,int fd)866 static int pidfd_getfd(struct pid *pid, int fd)
867 {
868 	struct task_struct *task;
869 	struct file *file;
870 	int ret;
871 
872 	task = get_pid_task(pid, PIDTYPE_PID);
873 	if (!task)
874 		return -ESRCH;
875 
876 	file = __pidfd_fget(task, fd);
877 	put_task_struct(task);
878 	if (IS_ERR(file))
879 		return PTR_ERR(file);
880 
881 	ret = receive_fd(file, NULL, O_CLOEXEC);
882 	fput(file);
883 
884 	return ret;
885 }
886 
887 /**
888  * sys_pidfd_getfd() - Get a file descriptor from another process
889  *
890  * @pidfd:	the pidfd file descriptor of the process
891  * @fd:		the file descriptor number to get
892  * @flags:	flags on how to get the fd (reserved)
893  *
894  * This syscall gets a copy of a file descriptor from another process
895  * based on the pidfd, and file descriptor number. It requires that
896  * the calling process has the ability to ptrace the process represented
897  * by the pidfd. The process which is having its file descriptor copied
898  * is otherwise unaffected.
899  *
900  * Return: On success, a cloexec file descriptor is returned.
901  *         On error, a negative errno number will be returned.
902  */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)903 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
904 		unsigned int, flags)
905 {
906 	struct pid *pid;
907 
908 	/* flags is currently unused - make sure it's unset */
909 	if (flags)
910 		return -EINVAL;
911 
912 	CLASS(fd, f)(pidfd);
913 	if (fd_empty(f))
914 		return -EBADF;
915 
916 	pid = pidfd_pid(fd_file(f));
917 	if (IS_ERR(pid))
918 		return PTR_ERR(pid);
919 
920 	return pidfd_getfd(pid, fd);
921 }
922