1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <linux/seqlock.h>
47 #include <net/sock.h>
48 #include <uapi/linux/pidfd.h>
49
50 struct pid init_struct_pid = {
51 .count = REFCOUNT_INIT(1),
52 .tasks = {
53 { .first = NULL },
54 { .first = NULL },
55 { .first = NULL },
56 },
57 .level = 0,
58 .numbers = { {
59 .nr = 0,
60 .ns = &init_pid_ns,
61 }, }
62 };
63
64 static int pid_max_min = RESERVED_PIDS + 1;
65 static int pid_max_max = PID_MAX_LIMIT;
66
67 /*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73 struct pid_namespace init_pid_ns = {
74 .ns.count = REFCOUNT_INIT(2),
75 .idr = IDR_INIT(init_pid_ns.idr),
76 .pid_allocated = PIDNS_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83 #endif
84 .pid_max = PID_MAX_DEFAULT,
85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
86 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
87 #endif
88 };
89 EXPORT_SYMBOL_GPL(init_pid_ns);
90
91 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
92 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock);
93
put_pid(struct pid * pid)94 void put_pid(struct pid *pid)
95 {
96 struct pid_namespace *ns;
97
98 if (!pid)
99 return;
100
101 ns = pid->numbers[pid->level].ns;
102 if (refcount_dec_and_test(&pid->count)) {
103 pidfs_free_pid(pid);
104 kmem_cache_free(ns->pid_cachep, pid);
105 put_pid_ns(ns);
106 }
107 }
108 EXPORT_SYMBOL_GPL(put_pid);
109
delayed_put_pid(struct rcu_head * rhp)110 static void delayed_put_pid(struct rcu_head *rhp)
111 {
112 struct pid *pid = container_of(rhp, struct pid, rcu);
113 put_pid(pid);
114 }
115
free_pid(struct pid * pid)116 void free_pid(struct pid *pid)
117 {
118 int i;
119
120 lockdep_assert_not_held(&tasklist_lock);
121
122 spin_lock(&pidmap_lock);
123 for (i = 0; i <= pid->level; i++) {
124 struct upid *upid = pid->numbers + i;
125 struct pid_namespace *ns = upid->ns;
126 switch (--ns->pid_allocated) {
127 case 2:
128 case 1:
129 /* When all that is left in the pid namespace
130 * is the reaper wake up the reaper. The reaper
131 * may be sleeping in zap_pid_ns_processes().
132 */
133 wake_up_process(ns->child_reaper);
134 break;
135 case PIDNS_ADDING:
136 /* Handle a fork failure of the first process */
137 WARN_ON(ns->child_reaper);
138 ns->pid_allocated = 0;
139 break;
140 }
141
142 idr_remove(&ns->idr, upid->nr);
143 }
144 pidfs_remove_pid(pid);
145 spin_unlock(&pidmap_lock);
146
147 call_rcu(&pid->rcu, delayed_put_pid);
148 }
149
free_pids(struct pid ** pids)150 void free_pids(struct pid **pids)
151 {
152 int tmp;
153
154 /*
155 * This can batch pidmap_lock.
156 */
157 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
158 if (pids[tmp])
159 free_pid(pids[tmp]);
160 }
161
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163 size_t set_tid_size)
164 {
165 struct pid *pid;
166 enum pid_type type;
167 int i, nr;
168 struct pid_namespace *tmp;
169 struct upid *upid;
170 int retval = -ENOMEM;
171
172 /*
173 * set_tid_size contains the size of the set_tid array. Starting at
174 * the most nested currently active PID namespace it tells alloc_pid()
175 * which PID to set for a process in that most nested PID namespace
176 * up to set_tid_size PID namespaces. It does not have to set the PID
177 * for a process in all nested PID namespaces but set_tid_size must
178 * never be greater than the current ns->level + 1.
179 */
180 if (set_tid_size > ns->level + 1)
181 return ERR_PTR(-EINVAL);
182
183 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184 if (!pid)
185 return ERR_PTR(retval);
186
187 tmp = ns;
188 pid->level = ns->level;
189
190 for (i = ns->level; i >= 0; i--) {
191 int tid = 0;
192 int pid_max = READ_ONCE(tmp->pid_max);
193
194 if (set_tid_size) {
195 tid = set_tid[ns->level - i];
196
197 retval = -EINVAL;
198 if (tid < 1 || tid >= pid_max)
199 goto out_free;
200 /*
201 * Also fail if a PID != 1 is requested and
202 * no PID 1 exists.
203 */
204 if (tid != 1 && !tmp->child_reaper)
205 goto out_free;
206 retval = -EPERM;
207 if (!checkpoint_restore_ns_capable(tmp->user_ns))
208 goto out_free;
209 set_tid_size--;
210 }
211
212 idr_preload(GFP_KERNEL);
213 spin_lock(&pidmap_lock);
214
215 if (tid) {
216 nr = idr_alloc(&tmp->idr, NULL, tid,
217 tid + 1, GFP_ATOMIC);
218 /*
219 * If ENOSPC is returned it means that the PID is
220 * alreay in use. Return EEXIST in that case.
221 */
222 if (nr == -ENOSPC)
223 nr = -EEXIST;
224 } else {
225 int pid_min = 1;
226 /*
227 * init really needs pid 1, but after reaching the
228 * maximum wrap back to RESERVED_PIDS
229 */
230 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
231 pid_min = RESERVED_PIDS;
232
233 /*
234 * Store a null pointer so find_pid_ns does not find
235 * a partially initialized PID (see below).
236 */
237 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
238 pid_max, GFP_ATOMIC);
239 }
240 spin_unlock(&pidmap_lock);
241 idr_preload_end();
242
243 if (nr < 0) {
244 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
245 goto out_free;
246 }
247
248 pid->numbers[i].nr = nr;
249 pid->numbers[i].ns = tmp;
250 tmp = tmp->parent;
251 }
252
253 /*
254 * ENOMEM is not the most obvious choice especially for the case
255 * where the child subreaper has already exited and the pid
256 * namespace denies the creation of any new processes. But ENOMEM
257 * is what we have exposed to userspace for a long time and it is
258 * documented behavior for pid namespaces. So we can't easily
259 * change it even if there were an error code better suited.
260 */
261 retval = -ENOMEM;
262
263 get_pid_ns(ns);
264 refcount_set(&pid->count, 1);
265 spin_lock_init(&pid->lock);
266 for (type = 0; type < PIDTYPE_MAX; ++type)
267 INIT_HLIST_HEAD(&pid->tasks[type]);
268
269 init_waitqueue_head(&pid->wait_pidfd);
270 INIT_HLIST_HEAD(&pid->inodes);
271
272 upid = pid->numbers + ns->level;
273 idr_preload(GFP_KERNEL);
274 spin_lock(&pidmap_lock);
275 if (!(ns->pid_allocated & PIDNS_ADDING))
276 goto out_unlock;
277 pidfs_add_pid(pid);
278 for ( ; upid >= pid->numbers; --upid) {
279 /* Make the PID visible to find_pid_ns. */
280 idr_replace(&upid->ns->idr, pid, upid->nr);
281 upid->ns->pid_allocated++;
282 }
283 spin_unlock(&pidmap_lock);
284 idr_preload_end();
285
286 return pid;
287
288 out_unlock:
289 spin_unlock(&pidmap_lock);
290 idr_preload_end();
291 put_pid_ns(ns);
292
293 out_free:
294 spin_lock(&pidmap_lock);
295 while (++i <= ns->level) {
296 upid = pid->numbers + i;
297 idr_remove(&upid->ns->idr, upid->nr);
298 }
299
300 /* On failure to allocate the first pid, reset the state */
301 if (ns->pid_allocated == PIDNS_ADDING)
302 idr_set_cursor(&ns->idr, 0);
303
304 spin_unlock(&pidmap_lock);
305
306 kmem_cache_free(ns->pid_cachep, pid);
307 return ERR_PTR(retval);
308 }
309
disable_pid_allocation(struct pid_namespace * ns)310 void disable_pid_allocation(struct pid_namespace *ns)
311 {
312 spin_lock(&pidmap_lock);
313 ns->pid_allocated &= ~PIDNS_ADDING;
314 spin_unlock(&pidmap_lock);
315 }
316
find_pid_ns(int nr,struct pid_namespace * ns)317 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
318 {
319 return idr_find(&ns->idr, nr);
320 }
321 EXPORT_SYMBOL_GPL(find_pid_ns);
322
find_vpid(int nr)323 struct pid *find_vpid(int nr)
324 {
325 return find_pid_ns(nr, task_active_pid_ns(current));
326 }
327 EXPORT_SYMBOL_GPL(find_vpid);
328
task_pid_ptr(struct task_struct * task,enum pid_type type)329 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
330 {
331 return (type == PIDTYPE_PID) ?
332 &task->thread_pid :
333 &task->signal->pids[type];
334 }
335
336 /*
337 * attach_pid() must be called with the tasklist_lock write-held.
338 */
attach_pid(struct task_struct * task,enum pid_type type)339 void attach_pid(struct task_struct *task, enum pid_type type)
340 {
341 struct pid *pid;
342
343 lockdep_assert_held_write(&tasklist_lock);
344
345 pid = *task_pid_ptr(task, type);
346 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
347 }
348
__change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * new)349 static void __change_pid(struct pid **pids, struct task_struct *task,
350 enum pid_type type, struct pid *new)
351 {
352 struct pid **pid_ptr, *pid;
353 int tmp;
354
355 lockdep_assert_held_write(&tasklist_lock);
356
357 pid_ptr = task_pid_ptr(task, type);
358 pid = *pid_ptr;
359
360 hlist_del_rcu(&task->pid_links[type]);
361 *pid_ptr = new;
362
363 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364 if (pid_has_task(pid, tmp))
365 return;
366
367 WARN_ON(pids[type]);
368 pids[type] = pid;
369 }
370
detach_pid(struct pid ** pids,struct task_struct * task,enum pid_type type)371 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type)
372 {
373 __change_pid(pids, task, type, NULL);
374 }
375
change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * pid)376 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type,
377 struct pid *pid)
378 {
379 __change_pid(pids, task, type, pid);
380 attach_pid(task, type);
381 }
382
exchange_tids(struct task_struct * left,struct task_struct * right)383 void exchange_tids(struct task_struct *left, struct task_struct *right)
384 {
385 struct pid *pid1 = left->thread_pid;
386 struct pid *pid2 = right->thread_pid;
387 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
388 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
389
390 lockdep_assert_held_write(&tasklist_lock);
391
392 /* Swap the single entry tid lists */
393 hlists_swap_heads_rcu(head1, head2);
394
395 /* Swap the per task_struct pid */
396 rcu_assign_pointer(left->thread_pid, pid2);
397 rcu_assign_pointer(right->thread_pid, pid1);
398
399 /* Swap the cached value */
400 WRITE_ONCE(left->pid, pid_nr(pid2));
401 WRITE_ONCE(right->pid, pid_nr(pid1));
402 }
403
404 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)405 void transfer_pid(struct task_struct *old, struct task_struct *new,
406 enum pid_type type)
407 {
408 WARN_ON_ONCE(type == PIDTYPE_PID);
409 lockdep_assert_held_write(&tasklist_lock);
410 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
411 }
412
pid_task(struct pid * pid,enum pid_type type)413 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
414 {
415 struct task_struct *result = NULL;
416 if (pid) {
417 struct hlist_node *first;
418 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
419 lockdep_tasklist_lock_is_held());
420 if (first)
421 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
422 }
423 return result;
424 }
425 EXPORT_SYMBOL(pid_task);
426
427 /*
428 * Must be called under rcu_read_lock().
429 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)430 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
431 {
432 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
433 "find_task_by_pid_ns() needs rcu_read_lock() protection");
434 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
435 }
436
find_task_by_vpid(pid_t vnr)437 struct task_struct *find_task_by_vpid(pid_t vnr)
438 {
439 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
440 }
441
find_get_task_by_vpid(pid_t nr)442 struct task_struct *find_get_task_by_vpid(pid_t nr)
443 {
444 struct task_struct *task;
445
446 rcu_read_lock();
447 task = find_task_by_vpid(nr);
448 if (task)
449 get_task_struct(task);
450 rcu_read_unlock();
451
452 return task;
453 }
454
get_task_pid(struct task_struct * task,enum pid_type type)455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
456 {
457 struct pid *pid;
458 rcu_read_lock();
459 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
460 rcu_read_unlock();
461 return pid;
462 }
463 EXPORT_SYMBOL_GPL(get_task_pid);
464
get_pid_task(struct pid * pid,enum pid_type type)465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
466 {
467 struct task_struct *result;
468 rcu_read_lock();
469 result = pid_task(pid, type);
470 if (result)
471 get_task_struct(result);
472 rcu_read_unlock();
473 return result;
474 }
475 EXPORT_SYMBOL_GPL(get_pid_task);
476
find_get_pid(pid_t nr)477 struct pid *find_get_pid(pid_t nr)
478 {
479 struct pid *pid;
480
481 rcu_read_lock();
482 pid = get_pid(find_vpid(nr));
483 rcu_read_unlock();
484
485 return pid;
486 }
487 EXPORT_SYMBOL_GPL(find_get_pid);
488
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
490 {
491 struct upid *upid;
492 pid_t nr = 0;
493
494 if (pid && ns->level <= pid->level) {
495 upid = &pid->numbers[ns->level];
496 if (upid->ns == ns)
497 nr = upid->nr;
498 }
499 return nr;
500 }
501 EXPORT_SYMBOL_GPL(pid_nr_ns);
502
pid_vnr(struct pid * pid)503 pid_t pid_vnr(struct pid *pid)
504 {
505 return pid_nr_ns(pid, task_active_pid_ns(current));
506 }
507 EXPORT_SYMBOL_GPL(pid_vnr);
508
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
510 struct pid_namespace *ns)
511 {
512 pid_t nr = 0;
513
514 rcu_read_lock();
515 if (!ns)
516 ns = task_active_pid_ns(current);
517 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
518 rcu_read_unlock();
519
520 return nr;
521 }
522 EXPORT_SYMBOL(__task_pid_nr_ns);
523
task_active_pid_ns(struct task_struct * tsk)524 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
525 {
526 return ns_of_pid(task_pid(tsk));
527 }
528 EXPORT_SYMBOL_GPL(task_active_pid_ns);
529
530 /*
531 * Used by proc to find the first pid that is greater than or equal to nr.
532 *
533 * If there is a pid at nr this function is exactly the same as find_pid_ns.
534 */
find_ge_pid(int nr,struct pid_namespace * ns)535 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
536 {
537 return idr_get_next(&ns->idr, &nr);
538 }
539 EXPORT_SYMBOL_GPL(find_ge_pid);
540
pidfd_get_pid(unsigned int fd,unsigned int * flags)541 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
542 {
543 CLASS(fd, f)(fd);
544 struct pid *pid;
545
546 if (fd_empty(f))
547 return ERR_PTR(-EBADF);
548
549 pid = pidfd_pid(fd_file(f));
550 if (!IS_ERR(pid)) {
551 get_pid(pid);
552 *flags = fd_file(f)->f_flags;
553 }
554 return pid;
555 }
556
557 /**
558 * pidfd_get_task() - Get the task associated with a pidfd
559 *
560 * @pidfd: pidfd for which to get the task
561 * @flags: flags associated with this pidfd
562 *
563 * Return the task associated with @pidfd. The function takes a reference on
564 * the returned task. The caller is responsible for releasing that reference.
565 *
566 * Return: On success, the task_struct associated with the pidfd.
567 * On error, a negative errno number will be returned.
568 */
pidfd_get_task(int pidfd,unsigned int * flags)569 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
570 {
571 unsigned int f_flags = 0;
572 struct pid *pid;
573 struct task_struct *task;
574 enum pid_type type;
575
576 switch (pidfd) {
577 case PIDFD_SELF_THREAD:
578 type = PIDTYPE_PID;
579 pid = get_task_pid(current, type);
580 break;
581 case PIDFD_SELF_THREAD_GROUP:
582 type = PIDTYPE_TGID;
583 pid = get_task_pid(current, type);
584 break;
585 default:
586 pid = pidfd_get_pid(pidfd, &f_flags);
587 if (IS_ERR(pid))
588 return ERR_CAST(pid);
589 type = PIDTYPE_TGID;
590 break;
591 }
592
593 task = get_pid_task(pid, type);
594 put_pid(pid);
595 if (!task)
596 return ERR_PTR(-ESRCH);
597
598 *flags = f_flags;
599 return task;
600 }
601
602 /**
603 * pidfd_create() - Create a new pid file descriptor.
604 *
605 * @pid: struct pid that the pidfd will reference
606 * @flags: flags to pass
607 *
608 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
609 *
610 * Note, that this function can only be called after the fd table has
611 * been unshared to avoid leaking the pidfd to the new process.
612 *
613 * This symbol should not be explicitly exported to loadable modules.
614 *
615 * Return: On success, a cloexec pidfd is returned.
616 * On error, a negative errno number will be returned.
617 */
pidfd_create(struct pid * pid,unsigned int flags)618 static int pidfd_create(struct pid *pid, unsigned int flags)
619 {
620 int pidfd;
621 struct file *pidfd_file;
622
623 pidfd = pidfd_prepare(pid, flags, &pidfd_file);
624 if (pidfd < 0)
625 return pidfd;
626
627 fd_install(pidfd, pidfd_file);
628 return pidfd;
629 }
630
631 /**
632 * sys_pidfd_open() - Open new pid file descriptor.
633 *
634 * @pid: pid for which to retrieve a pidfd
635 * @flags: flags to pass
636 *
637 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
638 * the task identified by @pid. Without PIDFD_THREAD flag the target task
639 * must be a thread-group leader.
640 *
641 * Return: On success, a cloexec pidfd is returned.
642 * On error, a negative errno number will be returned.
643 */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)644 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
645 {
646 int fd;
647 struct pid *p;
648
649 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
650 return -EINVAL;
651
652 if (pid <= 0)
653 return -EINVAL;
654
655 p = find_get_pid(pid);
656 if (!p)
657 return -ESRCH;
658
659 fd = pidfd_create(p, flags);
660
661 put_pid(p);
662 return fd;
663 }
664
665 #ifdef CONFIG_SYSCTL
pid_table_root_lookup(struct ctl_table_root * root)666 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root)
667 {
668 return &task_active_pid_ns(current)->set;
669 }
670
set_is_seen(struct ctl_table_set * set)671 static int set_is_seen(struct ctl_table_set *set)
672 {
673 return &task_active_pid_ns(current)->set == set;
674 }
675
pid_table_root_permissions(struct ctl_table_header * head,const struct ctl_table * table)676 static int pid_table_root_permissions(struct ctl_table_header *head,
677 const struct ctl_table *table)
678 {
679 struct pid_namespace *pidns =
680 container_of(head->set, struct pid_namespace, set);
681 int mode = table->mode;
682
683 if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) ||
684 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0)))
685 mode = (mode & S_IRWXU) >> 6;
686 else if (in_egroup_p(make_kgid(pidns->user_ns, 0)))
687 mode = (mode & S_IRWXG) >> 3;
688 else
689 mode = mode & S_IROTH;
690 return (mode << 6) | (mode << 3) | mode;
691 }
692
pid_table_root_set_ownership(struct ctl_table_header * head,kuid_t * uid,kgid_t * gid)693 static void pid_table_root_set_ownership(struct ctl_table_header *head,
694 kuid_t *uid, kgid_t *gid)
695 {
696 struct pid_namespace *pidns =
697 container_of(head->set, struct pid_namespace, set);
698 kuid_t ns_root_uid;
699 kgid_t ns_root_gid;
700
701 ns_root_uid = make_kuid(pidns->user_ns, 0);
702 if (uid_valid(ns_root_uid))
703 *uid = ns_root_uid;
704
705 ns_root_gid = make_kgid(pidns->user_ns, 0);
706 if (gid_valid(ns_root_gid))
707 *gid = ns_root_gid;
708 }
709
710 static struct ctl_table_root pid_table_root = {
711 .lookup = pid_table_root_lookup,
712 .permissions = pid_table_root_permissions,
713 .set_ownership = pid_table_root_set_ownership,
714 };
715
proc_do_cad_pid(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)716 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer,
717 size_t *lenp, loff_t *ppos)
718 {
719 struct pid *new_pid;
720 pid_t tmp_pid;
721 int r;
722 struct ctl_table tmp_table = *table;
723
724 tmp_pid = pid_vnr(cad_pid);
725 tmp_table.data = &tmp_pid;
726
727 r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
728 if (r || !write)
729 return r;
730
731 new_pid = find_get_pid(tmp_pid);
732 if (!new_pid)
733 return -ESRCH;
734
735 put_pid(xchg(&cad_pid, new_pid));
736 return 0;
737 }
738
739 static const struct ctl_table pid_table[] = {
740 {
741 .procname = "pid_max",
742 .data = &init_pid_ns.pid_max,
743 .maxlen = sizeof(int),
744 .mode = 0644,
745 .proc_handler = proc_dointvec_minmax,
746 .extra1 = &pid_max_min,
747 .extra2 = &pid_max_max,
748 },
749 #ifdef CONFIG_PROC_SYSCTL
750 {
751 .procname = "cad_pid",
752 .maxlen = sizeof(int),
753 .mode = 0600,
754 .proc_handler = proc_do_cad_pid,
755 },
756 #endif
757 };
758 #endif
759
register_pidns_sysctls(struct pid_namespace * pidns)760 int register_pidns_sysctls(struct pid_namespace *pidns)
761 {
762 #ifdef CONFIG_SYSCTL
763 struct ctl_table *tbl;
764
765 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen);
766
767 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL);
768 if (!tbl)
769 return -ENOMEM;
770 tbl->data = &pidns->pid_max;
771 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max,
772 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
773
774 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl,
775 ARRAY_SIZE(pid_table));
776 if (!pidns->sysctls) {
777 kfree(tbl);
778 retire_sysctl_set(&pidns->set);
779 return -ENOMEM;
780 }
781 #endif
782 return 0;
783 }
784
unregister_pidns_sysctls(struct pid_namespace * pidns)785 void unregister_pidns_sysctls(struct pid_namespace *pidns)
786 {
787 #ifdef CONFIG_SYSCTL
788 const struct ctl_table *tbl;
789
790 tbl = pidns->sysctls->ctl_table_arg;
791 unregister_sysctl_table(pidns->sysctls);
792 retire_sysctl_set(&pidns->set);
793 kfree(tbl);
794 #endif
795 }
796
pid_idr_init(void)797 void __init pid_idr_init(void)
798 {
799 /* Verify no one has done anything silly: */
800 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
801
802 /* bump default and minimum pid_max based on number of cpus */
803 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max,
804 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
805 pid_max_min = max_t(int, pid_max_min,
806 PIDS_PER_CPU_MIN * num_possible_cpus());
807 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min);
808
809 idr_init(&init_pid_ns.idr);
810
811 init_pid_ns.pid_cachep = kmem_cache_create("pid",
812 struct_size_t(struct pid, numbers, 1),
813 __alignof__(struct pid),
814 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
815 NULL);
816 }
817
pid_namespace_sysctl_init(void)818 static __init int pid_namespace_sysctl_init(void)
819 {
820 #ifdef CONFIG_SYSCTL
821 /* "kernel" directory will have already been initialized. */
822 BUG_ON(register_pidns_sysctls(&init_pid_ns));
823 #endif
824 return 0;
825 }
826 subsys_initcall(pid_namespace_sysctl_init);
827
__pidfd_fget(struct task_struct * task,int fd)828 static struct file *__pidfd_fget(struct task_struct *task, int fd)
829 {
830 struct file *file;
831 int ret;
832
833 ret = down_read_killable(&task->signal->exec_update_lock);
834 if (ret)
835 return ERR_PTR(ret);
836
837 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
838 file = fget_task(task, fd);
839 else
840 file = ERR_PTR(-EPERM);
841
842 up_read(&task->signal->exec_update_lock);
843
844 if (!file) {
845 /*
846 * It is possible that the target thread is exiting; it can be
847 * either:
848 * 1. before exit_signals(), which gives a real fd
849 * 2. before exit_files() takes the task_lock() gives a real fd
850 * 3. after exit_files() releases task_lock(), ->files is NULL;
851 * this has PF_EXITING, since it was set in exit_signals(),
852 * __pidfd_fget() returns EBADF.
853 * In case 3 we get EBADF, but that really means ESRCH, since
854 * the task is currently exiting and has freed its files
855 * struct, so we fix it up.
856 */
857 if (task->flags & PF_EXITING)
858 file = ERR_PTR(-ESRCH);
859 else
860 file = ERR_PTR(-EBADF);
861 }
862
863 return file;
864 }
865
pidfd_getfd(struct pid * pid,int fd)866 static int pidfd_getfd(struct pid *pid, int fd)
867 {
868 struct task_struct *task;
869 struct file *file;
870 int ret;
871
872 task = get_pid_task(pid, PIDTYPE_PID);
873 if (!task)
874 return -ESRCH;
875
876 file = __pidfd_fget(task, fd);
877 put_task_struct(task);
878 if (IS_ERR(file))
879 return PTR_ERR(file);
880
881 ret = receive_fd(file, NULL, O_CLOEXEC);
882 fput(file);
883
884 return ret;
885 }
886
887 /**
888 * sys_pidfd_getfd() - Get a file descriptor from another process
889 *
890 * @pidfd: the pidfd file descriptor of the process
891 * @fd: the file descriptor number to get
892 * @flags: flags on how to get the fd (reserved)
893 *
894 * This syscall gets a copy of a file descriptor from another process
895 * based on the pidfd, and file descriptor number. It requires that
896 * the calling process has the ability to ptrace the process represented
897 * by the pidfd. The process which is having its file descriptor copied
898 * is otherwise unaffected.
899 *
900 * Return: On success, a cloexec file descriptor is returned.
901 * On error, a negative errno number will be returned.
902 */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)903 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
904 unsigned int, flags)
905 {
906 struct pid *pid;
907
908 /* flags is currently unused - make sure it's unset */
909 if (flags)
910 return -EINVAL;
911
912 CLASS(fd, f)(pidfd);
913 if (fd_empty(f))
914 return -EBADF;
915
916 pid = pidfd_pid(fd_file(f));
917 if (IS_ERR(pid))
918 return PTR_ERR(pid);
919
920 return pidfd_getfd(pid, fd);
921 }
922