1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/if_vlan.h>
10 #include <linux/init.h>
11 #include <linux/ipv6.h>
12 #include <linux/mii.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/prefetch.h>
18 #include <linux/sctp.h>
19 #include <linux/slab.h>
20 #include <linux/tcp.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include "igbvf.h"
26
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43 static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48 };
49
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55 };
56
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60 };
61
62 /**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
igbvf_desc_unused(struct igbvf_ring * ring)66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73
74 /**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,__le16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235 /**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246 {
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 E1000_RXDADV_HDRBUFLEN_MASK);
278 if (hlen > adapter->rx_ps_hdr_size)
279 hlen = adapter->rx_ps_hdr_size;
280
281 length = le16_to_cpu(rx_desc->wb.upper.length);
282 cleaned = true;
283 cleaned_count++;
284
285 skb = buffer_info->skb;
286 prefetch(skb->data - NET_IP_ALIGN);
287 buffer_info->skb = NULL;
288 if (!adapter->rx_ps_hdr_size) {
289 dma_unmap_single(&pdev->dev, buffer_info->dma,
290 adapter->rx_buffer_len,
291 DMA_FROM_DEVICE);
292 buffer_info->dma = 0;
293 skb_put(skb, length);
294 goto send_up;
295 }
296
297 if (!skb_shinfo(skb)->nr_frags) {
298 dma_unmap_single(&pdev->dev, buffer_info->dma,
299 adapter->rx_ps_hdr_size,
300 DMA_FROM_DEVICE);
301 buffer_info->dma = 0;
302 skb_put(skb, hlen);
303 }
304
305 if (length) {
306 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 PAGE_SIZE / 2,
308 DMA_FROM_DEVICE);
309 buffer_info->page_dma = 0;
310
311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 buffer_info->page,
313 buffer_info->page_offset,
314 length);
315
316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 (page_count(buffer_info->page) != 1))
318 buffer_info->page = NULL;
319 else
320 get_page(buffer_info->page);
321
322 skb->len += length;
323 skb->data_len += length;
324 skb->truesize += PAGE_SIZE / 2;
325 }
326 send_up:
327 i++;
328 if (i == rx_ring->count)
329 i = 0;
330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 prefetch(next_rxd);
332 next_buffer = &rx_ring->buffer_info[i];
333
334 if (!(staterr & E1000_RXD_STAT_EOP)) {
335 buffer_info->skb = next_buffer->skb;
336 buffer_info->dma = next_buffer->dma;
337 next_buffer->skb = skb;
338 next_buffer->dma = 0;
339 goto next_desc;
340 }
341
342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 dev_kfree_skb_irq(skb);
344 goto next_desc;
345 }
346
347 total_bytes += skb->len;
348 total_packets++;
349
350 igbvf_rx_checksum_adv(adapter, staterr, skb);
351
352 skb->protocol = eth_type_trans(skb, netdev);
353
354 igbvf_receive_skb(adapter, netdev, skb, staterr,
355 rx_desc->wb.upper.vlan);
356
357 next_desc:
358 rx_desc->wb.upper.status_error = 0;
359
360 /* return some buffers to hardware, one at a time is too slow */
361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 cleaned_count = 0;
364 }
365
366 /* use prefetched values */
367 rx_desc = next_rxd;
368 buffer_info = next_buffer;
369
370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
371 }
372
373 rx_ring->next_to_clean = i;
374 cleaned_count = igbvf_desc_unused(rx_ring);
375
376 if (cleaned_count)
377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
378
379 adapter->total_rx_packets += total_packets;
380 adapter->total_rx_bytes += total_bytes;
381 netdev->stats.rx_bytes += total_bytes;
382 netdev->stats.rx_packets += total_packets;
383 return cleaned;
384 }
385
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)386 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 struct igbvf_buffer *buffer_info)
388 {
389 if (buffer_info->dma) {
390 if (buffer_info->mapped_as_page)
391 dma_unmap_page(&adapter->pdev->dev,
392 buffer_info->dma,
393 buffer_info->length,
394 DMA_TO_DEVICE);
395 else
396 dma_unmap_single(&adapter->pdev->dev,
397 buffer_info->dma,
398 buffer_info->length,
399 DMA_TO_DEVICE);
400 buffer_info->dma = 0;
401 }
402 if (buffer_info->skb) {
403 dev_kfree_skb_any(buffer_info->skb);
404 buffer_info->skb = NULL;
405 }
406 buffer_info->time_stamp = 0;
407 }
408
409 /**
410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411 * @adapter: board private structure
412 * @tx_ring: ring being initialized
413 *
414 * Return 0 on success, negative on failure
415 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)416 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 struct igbvf_ring *tx_ring)
418 {
419 struct pci_dev *pdev = adapter->pdev;
420 int size;
421
422 size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 tx_ring->buffer_info = vzalloc(size);
424 if (!tx_ring->buffer_info)
425 goto err;
426
427 /* round up to nearest 4K */
428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 tx_ring->size = ALIGN(tx_ring->size, 4096);
430
431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 &tx_ring->dma, GFP_KERNEL);
433 if (!tx_ring->desc)
434 goto err;
435
436 tx_ring->adapter = adapter;
437 tx_ring->next_to_use = 0;
438 tx_ring->next_to_clean = 0;
439
440 return 0;
441 err:
442 vfree(tx_ring->buffer_info);
443 dev_err(&adapter->pdev->dev,
444 "Unable to allocate memory for the transmit descriptor ring\n");
445 return -ENOMEM;
446 }
447
448 /**
449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450 * @adapter: board private structure
451 * @rx_ring: ring being initialized
452 *
453 * Returns 0 on success, negative on failure
454 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)455 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 struct igbvf_ring *rx_ring)
457 {
458 struct pci_dev *pdev = adapter->pdev;
459 int size, desc_len;
460
461 size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 rx_ring->buffer_info = vzalloc(size);
463 if (!rx_ring->buffer_info)
464 goto err;
465
466 desc_len = sizeof(union e1000_adv_rx_desc);
467
468 /* Round up to nearest 4K */
469 rx_ring->size = rx_ring->count * desc_len;
470 rx_ring->size = ALIGN(rx_ring->size, 4096);
471
472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 &rx_ring->dma, GFP_KERNEL);
474 if (!rx_ring->desc)
475 goto err;
476
477 rx_ring->next_to_clean = 0;
478 rx_ring->next_to_use = 0;
479
480 rx_ring->adapter = adapter;
481
482 return 0;
483
484 err:
485 vfree(rx_ring->buffer_info);
486 rx_ring->buffer_info = NULL;
487 dev_err(&adapter->pdev->dev,
488 "Unable to allocate memory for the receive descriptor ring\n");
489 return -ENOMEM;
490 }
491
492 /**
493 * igbvf_clean_tx_ring - Free Tx Buffers
494 * @tx_ring: ring to be cleaned
495 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)496 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
497 {
498 struct igbvf_adapter *adapter = tx_ring->adapter;
499 struct igbvf_buffer *buffer_info;
500 unsigned long size;
501 unsigned int i;
502
503 if (!tx_ring->buffer_info)
504 return;
505
506 /* Free all the Tx ring sk_buffs */
507 for (i = 0; i < tx_ring->count; i++) {
508 buffer_info = &tx_ring->buffer_info[i];
509 igbvf_put_txbuf(adapter, buffer_info);
510 }
511
512 size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 memset(tx_ring->buffer_info, 0, size);
514
515 /* Zero out the descriptor ring */
516 memset(tx_ring->desc, 0, tx_ring->size);
517
518 tx_ring->next_to_use = 0;
519 tx_ring->next_to_clean = 0;
520
521 writel(0, adapter->hw.hw_addr + tx_ring->head);
522 writel(0, adapter->hw.hw_addr + tx_ring->tail);
523 }
524
525 /**
526 * igbvf_free_tx_resources - Free Tx Resources per Queue
527 * @tx_ring: ring to free resources from
528 *
529 * Free all transmit software resources
530 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)531 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
532 {
533 struct pci_dev *pdev = tx_ring->adapter->pdev;
534
535 igbvf_clean_tx_ring(tx_ring);
536
537 vfree(tx_ring->buffer_info);
538 tx_ring->buffer_info = NULL;
539
540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 tx_ring->dma);
542
543 tx_ring->desc = NULL;
544 }
545
546 /**
547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548 * @rx_ring: ring structure pointer to free buffers from
549 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)550 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
551 {
552 struct igbvf_adapter *adapter = rx_ring->adapter;
553 struct igbvf_buffer *buffer_info;
554 struct pci_dev *pdev = adapter->pdev;
555 unsigned long size;
556 unsigned int i;
557
558 if (!rx_ring->buffer_info)
559 return;
560
561 /* Free all the Rx ring sk_buffs */
562 for (i = 0; i < rx_ring->count; i++) {
563 buffer_info = &rx_ring->buffer_info[i];
564 if (buffer_info->dma) {
565 if (adapter->rx_ps_hdr_size) {
566 dma_unmap_single(&pdev->dev, buffer_info->dma,
567 adapter->rx_ps_hdr_size,
568 DMA_FROM_DEVICE);
569 } else {
570 dma_unmap_single(&pdev->dev, buffer_info->dma,
571 adapter->rx_buffer_len,
572 DMA_FROM_DEVICE);
573 }
574 buffer_info->dma = 0;
575 }
576
577 if (buffer_info->skb) {
578 dev_kfree_skb(buffer_info->skb);
579 buffer_info->skb = NULL;
580 }
581
582 if (buffer_info->page) {
583 if (buffer_info->page_dma)
584 dma_unmap_page(&pdev->dev,
585 buffer_info->page_dma,
586 PAGE_SIZE / 2,
587 DMA_FROM_DEVICE);
588 put_page(buffer_info->page);
589 buffer_info->page = NULL;
590 buffer_info->page_dma = 0;
591 buffer_info->page_offset = 0;
592 }
593 }
594
595 size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 memset(rx_ring->buffer_info, 0, size);
597
598 /* Zero out the descriptor ring */
599 memset(rx_ring->desc, 0, rx_ring->size);
600
601 rx_ring->next_to_clean = 0;
602 rx_ring->next_to_use = 0;
603
604 writel(0, adapter->hw.hw_addr + rx_ring->head);
605 writel(0, adapter->hw.hw_addr + rx_ring->tail);
606 }
607
608 /**
609 * igbvf_free_rx_resources - Free Rx Resources
610 * @rx_ring: ring to clean the resources from
611 *
612 * Free all receive software resources
613 **/
614
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)615 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
616 {
617 struct pci_dev *pdev = rx_ring->adapter->pdev;
618
619 igbvf_clean_rx_ring(rx_ring);
620
621 vfree(rx_ring->buffer_info);
622 rx_ring->buffer_info = NULL;
623
624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 rx_ring->dma);
626 rx_ring->desc = NULL;
627 }
628
629 /**
630 * igbvf_update_itr - update the dynamic ITR value based on statistics
631 * @adapter: pointer to adapter
632 * @itr_setting: current adapter->itr
633 * @packets: the number of packets during this measurement interval
634 * @bytes: the number of bytes during this measurement interval
635 *
636 * Stores a new ITR value based on packets and byte counts during the last
637 * interrupt. The advantage of per interrupt computation is faster updates
638 * and more accurate ITR for the current traffic pattern. Constants in this
639 * function were computed based on theoretical maximum wire speed and thresholds
640 * were set based on testing data as well as attempting to minimize response
641 * time while increasing bulk throughput.
642 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)643 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 enum latency_range itr_setting,
645 int packets, int bytes)
646 {
647 enum latency_range retval = itr_setting;
648
649 if (packets == 0)
650 goto update_itr_done;
651
652 switch (itr_setting) {
653 case lowest_latency:
654 /* handle TSO and jumbo frames */
655 if (bytes/packets > 8000)
656 retval = bulk_latency;
657 else if ((packets < 5) && (bytes > 512))
658 retval = low_latency;
659 break;
660 case low_latency: /* 50 usec aka 20000 ints/s */
661 if (bytes > 10000) {
662 /* this if handles the TSO accounting */
663 if (bytes/packets > 8000)
664 retval = bulk_latency;
665 else if ((packets < 10) || ((bytes/packets) > 1200))
666 retval = bulk_latency;
667 else if ((packets > 35))
668 retval = lowest_latency;
669 } else if (bytes/packets > 2000) {
670 retval = bulk_latency;
671 } else if (packets <= 2 && bytes < 512) {
672 retval = lowest_latency;
673 }
674 break;
675 case bulk_latency: /* 250 usec aka 4000 ints/s */
676 if (bytes > 25000) {
677 if (packets > 35)
678 retval = low_latency;
679 } else if (bytes < 6000) {
680 retval = low_latency;
681 }
682 break;
683 default:
684 break;
685 }
686
687 update_itr_done:
688 return retval;
689 }
690
igbvf_range_to_itr(enum latency_range current_range)691 static int igbvf_range_to_itr(enum latency_range current_range)
692 {
693 int new_itr;
694
695 switch (current_range) {
696 /* counts and packets in update_itr are dependent on these numbers */
697 case lowest_latency:
698 new_itr = IGBVF_70K_ITR;
699 break;
700 case low_latency:
701 new_itr = IGBVF_20K_ITR;
702 break;
703 case bulk_latency:
704 new_itr = IGBVF_4K_ITR;
705 break;
706 default:
707 new_itr = IGBVF_START_ITR;
708 break;
709 }
710 return new_itr;
711 }
712
igbvf_set_itr(struct igbvf_adapter * adapter)713 static void igbvf_set_itr(struct igbvf_adapter *adapter)
714 {
715 u32 new_itr;
716
717 adapter->tx_ring->itr_range =
718 igbvf_update_itr(adapter,
719 adapter->tx_ring->itr_val,
720 adapter->total_tx_packets,
721 adapter->total_tx_bytes);
722
723 /* conservative mode (itr 3) eliminates the lowest_latency setting */
724 if (adapter->requested_itr == 3 &&
725 adapter->tx_ring->itr_range == lowest_latency)
726 adapter->tx_ring->itr_range = low_latency;
727
728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
729
730 if (new_itr != adapter->tx_ring->itr_val) {
731 u32 current_itr = adapter->tx_ring->itr_val;
732 /* this attempts to bias the interrupt rate towards Bulk
733 * by adding intermediate steps when interrupt rate is
734 * increasing
735 */
736 new_itr = new_itr > current_itr ?
737 min(current_itr + (new_itr >> 2), new_itr) :
738 new_itr;
739 adapter->tx_ring->itr_val = new_itr;
740
741 adapter->tx_ring->set_itr = 1;
742 }
743
744 adapter->rx_ring->itr_range =
745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 adapter->total_rx_packets,
747 adapter->total_rx_bytes);
748 if (adapter->requested_itr == 3 &&
749 adapter->rx_ring->itr_range == lowest_latency)
750 adapter->rx_ring->itr_range = low_latency;
751
752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
753
754 if (new_itr != adapter->rx_ring->itr_val) {
755 u32 current_itr = adapter->rx_ring->itr_val;
756
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->rx_ring->itr_val = new_itr;
761
762 adapter->rx_ring->set_itr = 1;
763 }
764 }
765
766 /**
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @tx_ring: ring structure to clean descriptors from
769 *
770 * returns true if ring is completely cleaned
771 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773 {
774 struct igbvf_adapter *adapter = tx_ring->adapter;
775 struct net_device *netdev = adapter->netdev;
776 struct igbvf_buffer *buffer_info;
777 struct sk_buff *skb;
778 union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 unsigned int total_bytes = 0, total_packets = 0;
780 unsigned int i, count = 0;
781 bool cleaned = false;
782
783 i = tx_ring->next_to_clean;
784 buffer_info = &tx_ring->buffer_info[i];
785 eop_desc = buffer_info->next_to_watch;
786
787 do {
788 /* if next_to_watch is not set then there is no work pending */
789 if (!eop_desc)
790 break;
791
792 /* prevent any other reads prior to eop_desc */
793 smp_rmb();
794
795 /* if DD is not set pending work has not been completed */
796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 break;
798
799 /* clear next_to_watch to prevent false hangs */
800 buffer_info->next_to_watch = NULL;
801
802 for (cleaned = false; !cleaned; count++) {
803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 cleaned = (tx_desc == eop_desc);
805 skb = buffer_info->skb;
806
807 if (skb) {
808 unsigned int segs, bytecount;
809
810 /* gso_segs is currently only valid for tcp */
811 segs = skb_shinfo(skb)->gso_segs ?: 1;
812 /* multiply data chunks by size of headers */
813 bytecount = ((segs - 1) * skb_headlen(skb)) +
814 skb->len;
815 total_packets += segs;
816 total_bytes += bytecount;
817 }
818
819 igbvf_put_txbuf(adapter, buffer_info);
820 tx_desc->wb.status = 0;
821
822 i++;
823 if (i == tx_ring->count)
824 i = 0;
825
826 buffer_info = &tx_ring->buffer_info[i];
827 }
828
829 eop_desc = buffer_info->next_to_watch;
830 } while (count < tx_ring->count);
831
832 tx_ring->next_to_clean = i;
833
834 if (unlikely(count && netif_carrier_ok(netdev) &&
835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 /* Make sure that anybody stopping the queue after this
837 * sees the new next_to_clean.
838 */
839 smp_mb();
840 if (netif_queue_stopped(netdev) &&
841 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 netif_wake_queue(netdev);
843 ++adapter->restart_queue;
844 }
845 }
846
847 netdev->stats.tx_bytes += total_bytes;
848 netdev->stats.tx_packets += total_packets;
849 return count < tx_ring->count;
850 }
851
igbvf_msix_other(int irq,void * data)852 static irqreturn_t igbvf_msix_other(int irq, void *data)
853 {
854 struct net_device *netdev = data;
855 struct igbvf_adapter *adapter = netdev_priv(netdev);
856 struct e1000_hw *hw = &adapter->hw;
857
858 hw->mac.get_link_status = 1;
859 if (!test_bit(__IGBVF_DOWN, &adapter->state))
860 mod_timer(&adapter->watchdog_timer, jiffies + 1);
861
862 ew32(EIMS, adapter->eims_other);
863
864 return IRQ_HANDLED;
865 }
866
igbvf_intr_msix_tx(int irq,void * data)867 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
868 {
869 struct net_device *netdev = data;
870 struct igbvf_adapter *adapter = netdev_priv(netdev);
871 struct e1000_hw *hw = &adapter->hw;
872 struct igbvf_ring *tx_ring = adapter->tx_ring;
873
874 if (tx_ring->set_itr) {
875 writel(tx_ring->itr_val,
876 adapter->hw.hw_addr + tx_ring->itr_register);
877 adapter->tx_ring->set_itr = 0;
878 }
879
880 adapter->total_tx_bytes = 0;
881 adapter->total_tx_packets = 0;
882
883 /* auto mask will automatically re-enable the interrupt when we write
884 * EICS
885 */
886 if (!igbvf_clean_tx_irq(tx_ring))
887 /* Ring was not completely cleaned, so fire another interrupt */
888 ew32(EICS, tx_ring->eims_value);
889 else
890 ew32(EIMS, tx_ring->eims_value);
891
892 return IRQ_HANDLED;
893 }
894
igbvf_intr_msix_rx(int irq,void * data)895 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
896 {
897 struct net_device *netdev = data;
898 struct igbvf_adapter *adapter = netdev_priv(netdev);
899
900 /* Write the ITR value calculated at the end of the
901 * previous interrupt.
902 */
903 if (adapter->rx_ring->set_itr) {
904 writel(adapter->rx_ring->itr_val,
905 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
906 adapter->rx_ring->set_itr = 0;
907 }
908
909 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
910 adapter->total_rx_bytes = 0;
911 adapter->total_rx_packets = 0;
912 __napi_schedule(&adapter->rx_ring->napi);
913 }
914
915 return IRQ_HANDLED;
916 }
917
918 #define IGBVF_NO_QUEUE -1
919
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)920 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
921 int tx_queue, int msix_vector)
922 {
923 struct e1000_hw *hw = &adapter->hw;
924 u32 ivar, index;
925
926 /* 82576 uses a table-based method for assigning vectors.
927 * Each queue has a single entry in the table to which we write
928 * a vector number along with a "valid" bit. Sadly, the layout
929 * of the table is somewhat counterintuitive.
930 */
931 if (rx_queue > IGBVF_NO_QUEUE) {
932 index = (rx_queue >> 1);
933 ivar = array_er32(IVAR0, index);
934 if (rx_queue & 0x1) {
935 /* vector goes into third byte of register */
936 ivar = ivar & 0xFF00FFFF;
937 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
938 } else {
939 /* vector goes into low byte of register */
940 ivar = ivar & 0xFFFFFF00;
941 ivar |= msix_vector | E1000_IVAR_VALID;
942 }
943 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
944 array_ew32(IVAR0, index, ivar);
945 }
946 if (tx_queue > IGBVF_NO_QUEUE) {
947 index = (tx_queue >> 1);
948 ivar = array_er32(IVAR0, index);
949 if (tx_queue & 0x1) {
950 /* vector goes into high byte of register */
951 ivar = ivar & 0x00FFFFFF;
952 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
953 } else {
954 /* vector goes into second byte of register */
955 ivar = ivar & 0xFFFF00FF;
956 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
957 }
958 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
959 array_ew32(IVAR0, index, ivar);
960 }
961 }
962
963 /**
964 * igbvf_configure_msix - Configure MSI-X hardware
965 * @adapter: board private structure
966 *
967 * igbvf_configure_msix sets up the hardware to properly
968 * generate MSI-X interrupts.
969 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)970 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
971 {
972 u32 tmp;
973 struct e1000_hw *hw = &adapter->hw;
974 struct igbvf_ring *tx_ring = adapter->tx_ring;
975 struct igbvf_ring *rx_ring = adapter->rx_ring;
976 int vector = 0;
977
978 adapter->eims_enable_mask = 0;
979
980 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
981 adapter->eims_enable_mask |= tx_ring->eims_value;
982 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
983 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
984 adapter->eims_enable_mask |= rx_ring->eims_value;
985 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
986
987 /* set vector for other causes, i.e. link changes */
988
989 tmp = (vector++ | E1000_IVAR_VALID);
990
991 ew32(IVAR_MISC, tmp);
992
993 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
994 adapter->eims_other = BIT(vector - 1);
995 e1e_flush();
996 }
997
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)998 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
999 {
1000 if (adapter->msix_entries) {
1001 pci_disable_msix(adapter->pdev);
1002 kfree(adapter->msix_entries);
1003 adapter->msix_entries = NULL;
1004 }
1005 }
1006
1007 /**
1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1009 * @adapter: board private structure
1010 *
1011 * Attempt to configure interrupts using the best available
1012 * capabilities of the hardware and kernel.
1013 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1014 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1015 {
1016 int err = -ENOMEM;
1017 int i;
1018
1019 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1020 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1021 GFP_KERNEL);
1022 if (adapter->msix_entries) {
1023 for (i = 0; i < 3; i++)
1024 adapter->msix_entries[i].entry = i;
1025
1026 err = pci_enable_msix_range(adapter->pdev,
1027 adapter->msix_entries, 3, 3);
1028 }
1029
1030 if (err < 0) {
1031 /* MSI-X failed */
1032 dev_err(&adapter->pdev->dev,
1033 "Failed to initialize MSI-X interrupts.\n");
1034 igbvf_reset_interrupt_capability(adapter);
1035 }
1036 }
1037
1038 /**
1039 * igbvf_request_msix - Initialize MSI-X interrupts
1040 * @adapter: board private structure
1041 *
1042 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1043 * kernel.
1044 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1045 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1046 {
1047 struct net_device *netdev = adapter->netdev;
1048 int err = 0, vector = 0;
1049
1050 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1051 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1052 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1053 } else {
1054 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1055 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1056 }
1057
1058 err = request_irq(adapter->msix_entries[vector].vector,
1059 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1060 netdev);
1061 if (err)
1062 goto out;
1063
1064 adapter->tx_ring->itr_register = E1000_EITR(vector);
1065 adapter->tx_ring->itr_val = adapter->current_itr;
1066 vector++;
1067
1068 err = request_irq(adapter->msix_entries[vector].vector,
1069 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1070 netdev);
1071 if (err)
1072 goto free_irq_tx;
1073
1074 adapter->rx_ring->itr_register = E1000_EITR(vector);
1075 adapter->rx_ring->itr_val = adapter->current_itr;
1076 vector++;
1077
1078 err = request_irq(adapter->msix_entries[vector].vector,
1079 igbvf_msix_other, 0, netdev->name, netdev);
1080 if (err)
1081 goto free_irq_rx;
1082
1083 igbvf_configure_msix(adapter);
1084 return 0;
1085 free_irq_rx:
1086 free_irq(adapter->msix_entries[--vector].vector, netdev);
1087 free_irq_tx:
1088 free_irq(adapter->msix_entries[--vector].vector, netdev);
1089 out:
1090 return err;
1091 }
1092
1093 /**
1094 * igbvf_alloc_queues - Allocate memory for all rings
1095 * @adapter: board private structure to initialize
1096 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1097 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1098 {
1099 struct net_device *netdev = adapter->netdev;
1100
1101 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1102 if (!adapter->tx_ring)
1103 return -ENOMEM;
1104
1105 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->rx_ring) {
1107 kfree(adapter->tx_ring);
1108 return -ENOMEM;
1109 }
1110
1111 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1112
1113 return 0;
1114 }
1115
1116 /**
1117 * igbvf_request_irq - initialize interrupts
1118 * @adapter: board private structure
1119 *
1120 * Attempts to configure interrupts using the best available
1121 * capabilities of the hardware and kernel.
1122 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1123 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1124 {
1125 int err = -1;
1126
1127 /* igbvf supports msi-x only */
1128 if (adapter->msix_entries)
1129 err = igbvf_request_msix(adapter);
1130
1131 if (!err)
1132 return err;
1133
1134 dev_err(&adapter->pdev->dev,
1135 "Unable to allocate interrupt, Error: %d\n", err);
1136
1137 return err;
1138 }
1139
igbvf_free_irq(struct igbvf_adapter * adapter)1140 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1141 {
1142 struct net_device *netdev = adapter->netdev;
1143 int vector;
1144
1145 if (adapter->msix_entries) {
1146 for (vector = 0; vector < 3; vector++)
1147 free_irq(adapter->msix_entries[vector].vector, netdev);
1148 }
1149 }
1150
1151 /**
1152 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1153 * @adapter: board private structure
1154 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1155 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1156 {
1157 struct e1000_hw *hw = &adapter->hw;
1158
1159 ew32(EIMC, ~0);
1160
1161 if (adapter->msix_entries)
1162 ew32(EIAC, 0);
1163 }
1164
1165 /**
1166 * igbvf_irq_enable - Enable default interrupt generation settings
1167 * @adapter: board private structure
1168 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1169 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1170 {
1171 struct e1000_hw *hw = &adapter->hw;
1172
1173 ew32(EIAC, adapter->eims_enable_mask);
1174 ew32(EIAM, adapter->eims_enable_mask);
1175 ew32(EIMS, adapter->eims_enable_mask);
1176 }
1177
1178 /**
1179 * igbvf_poll - NAPI Rx polling callback
1180 * @napi: struct associated with this polling callback
1181 * @budget: amount of packets driver is allowed to process this poll
1182 **/
igbvf_poll(struct napi_struct * napi,int budget)1183 static int igbvf_poll(struct napi_struct *napi, int budget)
1184 {
1185 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1186 struct igbvf_adapter *adapter = rx_ring->adapter;
1187 struct e1000_hw *hw = &adapter->hw;
1188 int work_done = 0;
1189
1190 igbvf_clean_rx_irq(adapter, &work_done, budget);
1191
1192 if (work_done == budget)
1193 return budget;
1194
1195 /* Exit the polling mode, but don't re-enable interrupts if stack might
1196 * poll us due to busy-polling
1197 */
1198 if (likely(napi_complete_done(napi, work_done))) {
1199 if (adapter->requested_itr & 3)
1200 igbvf_set_itr(adapter);
1201
1202 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1203 ew32(EIMS, adapter->rx_ring->eims_value);
1204 }
1205
1206 return work_done;
1207 }
1208
1209 /**
1210 * igbvf_set_rlpml - set receive large packet maximum length
1211 * @adapter: board private structure
1212 *
1213 * Configure the maximum size of packets that will be received
1214 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1215 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1216 {
1217 int max_frame_size;
1218 struct e1000_hw *hw = &adapter->hw;
1219
1220 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1221
1222 spin_lock_bh(&hw->mbx_lock);
1223
1224 e1000_rlpml_set_vf(hw, max_frame_size);
1225
1226 spin_unlock_bh(&hw->mbx_lock);
1227 }
1228
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1229 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1230 __be16 proto, u16 vid)
1231 {
1232 struct igbvf_adapter *adapter = netdev_priv(netdev);
1233 struct e1000_hw *hw = &adapter->hw;
1234
1235 spin_lock_bh(&hw->mbx_lock);
1236
1237 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1238 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1239 spin_unlock_bh(&hw->mbx_lock);
1240 return -EINVAL;
1241 }
1242
1243 spin_unlock_bh(&hw->mbx_lock);
1244
1245 set_bit(vid, adapter->active_vlans);
1246 return 0;
1247 }
1248
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1249 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1250 __be16 proto, u16 vid)
1251 {
1252 struct igbvf_adapter *adapter = netdev_priv(netdev);
1253 struct e1000_hw *hw = &adapter->hw;
1254
1255 spin_lock_bh(&hw->mbx_lock);
1256
1257 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1258 dev_err(&adapter->pdev->dev,
1259 "Failed to remove vlan id %d\n", vid);
1260 spin_unlock_bh(&hw->mbx_lock);
1261 return -EINVAL;
1262 }
1263
1264 spin_unlock_bh(&hw->mbx_lock);
1265
1266 clear_bit(vid, adapter->active_vlans);
1267 return 0;
1268 }
1269
igbvf_restore_vlan(struct igbvf_adapter * adapter)1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272 u16 vid;
1273
1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277
1278 /**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286 struct e1000_hw *hw = &adapter->hw;
1287 struct igbvf_ring *tx_ring = adapter->tx_ring;
1288 u64 tdba;
1289 u32 txdctl, dca_txctrl;
1290
1291 /* disable transmits */
1292 txdctl = er32(TXDCTL(0));
1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294 e1e_flush();
1295 msleep(10);
1296
1297 /* Setup the HW Tx Head and Tail descriptor pointers */
1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299 tdba = tx_ring->dma;
1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301 ew32(TDBAH(0), (tdba >> 32));
1302 ew32(TDH(0), 0);
1303 ew32(TDT(0), 0);
1304 tx_ring->head = E1000_TDH(0);
1305 tx_ring->tail = E1000_TDT(0);
1306
1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1308 * MUST be delivered in order or it will completely screw up
1309 * our bookkeeping.
1310 */
1311 dca_txctrl = er32(DCA_TXCTRL(0));
1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313 ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315 /* enable transmits */
1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317 ew32(TXDCTL(0), txdctl);
1318
1319 /* Setup Transmit Descriptor Settings for eop descriptor */
1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322 /* enable Report Status bit */
1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325
1326 /**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 srrctl = 0;
1334
1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336 E1000_SRRCTL_BSIZEHDR_MASK |
1337 E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339 /* Enable queue drop to avoid head of line blocking */
1340 srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342 /* Setup buffer sizes */
1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344 E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346 if (adapter->rx_buffer_len < 2048) {
1347 adapter->rx_ps_hdr_size = 0;
1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349 } else {
1350 adapter->rx_ps_hdr_size = 128;
1351 srrctl |= adapter->rx_ps_hdr_size <<
1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354 }
1355
1356 ew32(SRRCTL(0), srrctl);
1357 }
1358
1359 /**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367 struct e1000_hw *hw = &adapter->hw;
1368 struct igbvf_ring *rx_ring = adapter->rx_ring;
1369 u64 rdba;
1370 u32 rxdctl;
1371
1372 /* disable receives */
1373 rxdctl = er32(RXDCTL(0));
1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375 e1e_flush();
1376 msleep(10);
1377
1378 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1379 * the Base and Length of the Rx Descriptor Ring
1380 */
1381 rdba = rx_ring->dma;
1382 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1383 ew32(RDBAH(0), (rdba >> 32));
1384 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1385 rx_ring->head = E1000_RDH(0);
1386 rx_ring->tail = E1000_RDT(0);
1387 ew32(RDH(0), 0);
1388 ew32(RDT(0), 0);
1389
1390 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1391 rxdctl &= 0xFFF00000;
1392 rxdctl |= IGBVF_RX_PTHRESH;
1393 rxdctl |= IGBVF_RX_HTHRESH << 8;
1394 rxdctl |= IGBVF_RX_WTHRESH << 16;
1395
1396 igbvf_set_rlpml(adapter);
1397
1398 /* enable receives */
1399 ew32(RXDCTL(0), rxdctl);
1400 }
1401
1402 /**
1403 * igbvf_set_multi - Multicast and Promiscuous mode set
1404 * @netdev: network interface device structure
1405 *
1406 * The set_multi entry point is called whenever the multicast address
1407 * list or the network interface flags are updated. This routine is
1408 * responsible for configuring the hardware for proper multicast,
1409 * promiscuous mode, and all-multi behavior.
1410 **/
igbvf_set_multi(struct net_device * netdev)1411 static void igbvf_set_multi(struct net_device *netdev)
1412 {
1413 struct igbvf_adapter *adapter = netdev_priv(netdev);
1414 struct e1000_hw *hw = &adapter->hw;
1415 struct netdev_hw_addr *ha;
1416 u8 *mta_list = NULL;
1417 int i;
1418
1419 if (!netdev_mc_empty(netdev)) {
1420 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421 GFP_ATOMIC);
1422 if (!mta_list)
1423 return;
1424 }
1425
1426 /* prepare a packed array of only addresses. */
1427 i = 0;
1428 netdev_for_each_mc_addr(ha, netdev)
1429 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1430
1431 spin_lock_bh(&hw->mbx_lock);
1432
1433 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434
1435 spin_unlock_bh(&hw->mbx_lock);
1436 kfree(mta_list);
1437 }
1438
1439 /**
1440 * igbvf_set_uni - Configure unicast MAC filters
1441 * @netdev: network interface device structure
1442 *
1443 * This routine is responsible for configuring the hardware for proper
1444 * unicast filters.
1445 **/
igbvf_set_uni(struct net_device * netdev)1446 static int igbvf_set_uni(struct net_device *netdev)
1447 {
1448 struct igbvf_adapter *adapter = netdev_priv(netdev);
1449 struct e1000_hw *hw = &adapter->hw;
1450
1451 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1452 pr_err("Too many unicast filters - No Space\n");
1453 return -ENOSPC;
1454 }
1455
1456 spin_lock_bh(&hw->mbx_lock);
1457
1458 /* Clear all unicast MAC filters */
1459 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1460
1461 spin_unlock_bh(&hw->mbx_lock);
1462
1463 if (!netdev_uc_empty(netdev)) {
1464 struct netdev_hw_addr *ha;
1465
1466 /* Add MAC filters one by one */
1467 netdev_for_each_uc_addr(ha, netdev) {
1468 spin_lock_bh(&hw->mbx_lock);
1469
1470 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1471 ha->addr);
1472
1473 spin_unlock_bh(&hw->mbx_lock);
1474 udelay(200);
1475 }
1476 }
1477
1478 return 0;
1479 }
1480
igbvf_set_rx_mode(struct net_device * netdev)1481 static void igbvf_set_rx_mode(struct net_device *netdev)
1482 {
1483 igbvf_set_multi(netdev);
1484 igbvf_set_uni(netdev);
1485 }
1486
1487 /**
1488 * igbvf_configure - configure the hardware for Rx and Tx
1489 * @adapter: private board structure
1490 **/
igbvf_configure(struct igbvf_adapter * adapter)1491 static void igbvf_configure(struct igbvf_adapter *adapter)
1492 {
1493 igbvf_set_rx_mode(adapter->netdev);
1494
1495 igbvf_restore_vlan(adapter);
1496
1497 igbvf_configure_tx(adapter);
1498 igbvf_setup_srrctl(adapter);
1499 igbvf_configure_rx(adapter);
1500 igbvf_alloc_rx_buffers(adapter->rx_ring,
1501 igbvf_desc_unused(adapter->rx_ring));
1502 }
1503
1504 /* igbvf_reset - bring the hardware into a known good state
1505 * @adapter: private board structure
1506 *
1507 * This function boots the hardware and enables some settings that
1508 * require a configuration cycle of the hardware - those cannot be
1509 * set/changed during runtime. After reset the device needs to be
1510 * properly configured for Rx, Tx etc.
1511 */
igbvf_reset(struct igbvf_adapter * adapter)1512 static void igbvf_reset(struct igbvf_adapter *adapter)
1513 {
1514 struct e1000_mac_info *mac = &adapter->hw.mac;
1515 struct net_device *netdev = adapter->netdev;
1516 struct e1000_hw *hw = &adapter->hw;
1517
1518 spin_lock_bh(&hw->mbx_lock);
1519
1520 /* Allow time for pending master requests to run */
1521 if (mac->ops.reset_hw(hw))
1522 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1523
1524 mac->ops.init_hw(hw);
1525
1526 spin_unlock_bh(&hw->mbx_lock);
1527
1528 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1529 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1530 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1531 netdev->addr_len);
1532 }
1533
1534 adapter->last_reset = jiffies;
1535 }
1536
igbvf_up(struct igbvf_adapter * adapter)1537 int igbvf_up(struct igbvf_adapter *adapter)
1538 {
1539 struct e1000_hw *hw = &adapter->hw;
1540
1541 /* hardware has been reset, we need to reload some things */
1542 igbvf_configure(adapter);
1543
1544 clear_bit(__IGBVF_DOWN, &adapter->state);
1545
1546 napi_enable(&adapter->rx_ring->napi);
1547 if (adapter->msix_entries)
1548 igbvf_configure_msix(adapter);
1549
1550 /* Clear any pending interrupts. */
1551 er32(EICR);
1552 igbvf_irq_enable(adapter);
1553
1554 /* start the watchdog */
1555 hw->mac.get_link_status = 1;
1556 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1557
1558 return 0;
1559 }
1560
igbvf_down(struct igbvf_adapter * adapter)1561 void igbvf_down(struct igbvf_adapter *adapter)
1562 {
1563 struct net_device *netdev = adapter->netdev;
1564 struct e1000_hw *hw = &adapter->hw;
1565 u32 rxdctl, txdctl;
1566
1567 /* signal that we're down so the interrupt handler does not
1568 * reschedule our watchdog timer
1569 */
1570 set_bit(__IGBVF_DOWN, &adapter->state);
1571
1572 /* disable receives in the hardware */
1573 rxdctl = er32(RXDCTL(0));
1574 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1575
1576 netif_carrier_off(netdev);
1577 netif_stop_queue(netdev);
1578
1579 /* disable transmits in the hardware */
1580 txdctl = er32(TXDCTL(0));
1581 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1582
1583 /* flush both disables and wait for them to finish */
1584 e1e_flush();
1585 msleep(10);
1586
1587 napi_disable(&adapter->rx_ring->napi);
1588
1589 igbvf_irq_disable(adapter);
1590
1591 timer_delete_sync(&adapter->watchdog_timer);
1592
1593 /* record the stats before reset*/
1594 igbvf_update_stats(adapter);
1595
1596 adapter->link_speed = 0;
1597 adapter->link_duplex = 0;
1598
1599 igbvf_reset(adapter);
1600 igbvf_clean_tx_ring(adapter->tx_ring);
1601 igbvf_clean_rx_ring(adapter->rx_ring);
1602 }
1603
igbvf_reinit_locked(struct igbvf_adapter * adapter)1604 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1605 {
1606 might_sleep();
1607 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1608 usleep_range(1000, 2000);
1609 igbvf_down(adapter);
1610 igbvf_up(adapter);
1611 clear_bit(__IGBVF_RESETTING, &adapter->state);
1612 }
1613
1614 /**
1615 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1616 * @adapter: board private structure to initialize
1617 *
1618 * igbvf_sw_init initializes the Adapter private data structure.
1619 * Fields are initialized based on PCI device information and
1620 * OS network device settings (MTU size).
1621 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1622 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1623 {
1624 struct net_device *netdev = adapter->netdev;
1625 s32 rc;
1626
1627 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1628 adapter->rx_ps_hdr_size = 0;
1629 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1630 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1631
1632 adapter->requested_itr = 3;
1633 adapter->current_itr = IGBVF_START_ITR;
1634
1635 /* Set various function pointers */
1636 adapter->ei->init_ops(&adapter->hw);
1637
1638 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1639 if (rc)
1640 return rc;
1641
1642 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1643 if (rc)
1644 return rc;
1645
1646 igbvf_set_interrupt_capability(adapter);
1647
1648 if (igbvf_alloc_queues(adapter))
1649 return -ENOMEM;
1650
1651 /* Explicitly disable IRQ since the NIC can be in any state. */
1652 igbvf_irq_disable(adapter);
1653
1654 spin_lock_init(&adapter->hw.mbx_lock);
1655
1656 set_bit(__IGBVF_DOWN, &adapter->state);
1657 return 0;
1658 }
1659
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1660 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1661 {
1662 struct e1000_hw *hw = &adapter->hw;
1663
1664 adapter->stats.last_gprc = er32(VFGPRC);
1665 adapter->stats.last_gorc = er32(VFGORC);
1666 adapter->stats.last_gptc = er32(VFGPTC);
1667 adapter->stats.last_gotc = er32(VFGOTC);
1668 adapter->stats.last_mprc = er32(VFMPRC);
1669 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1670 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1671 adapter->stats.last_gorlbc = er32(VFGORLBC);
1672 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1673
1674 adapter->stats.base_gprc = er32(VFGPRC);
1675 adapter->stats.base_gorc = er32(VFGORC);
1676 adapter->stats.base_gptc = er32(VFGPTC);
1677 adapter->stats.base_gotc = er32(VFGOTC);
1678 adapter->stats.base_mprc = er32(VFMPRC);
1679 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1680 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1681 adapter->stats.base_gorlbc = er32(VFGORLBC);
1682 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1683 }
1684
1685 /**
1686 * igbvf_open - Called when a network interface is made active
1687 * @netdev: network interface device structure
1688 *
1689 * Returns 0 on success, negative value on failure
1690 *
1691 * The open entry point is called when a network interface is made
1692 * active by the system (IFF_UP). At this point all resources needed
1693 * for transmit and receive operations are allocated, the interrupt
1694 * handler is registered with the OS, the watchdog timer is started,
1695 * and the stack is notified that the interface is ready.
1696 **/
igbvf_open(struct net_device * netdev)1697 static int igbvf_open(struct net_device *netdev)
1698 {
1699 struct igbvf_adapter *adapter = netdev_priv(netdev);
1700 struct e1000_hw *hw = &adapter->hw;
1701 int err;
1702
1703 /* disallow open during test */
1704 if (test_bit(__IGBVF_TESTING, &adapter->state))
1705 return -EBUSY;
1706
1707 /* allocate transmit descriptors */
1708 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1709 if (err)
1710 goto err_setup_tx;
1711
1712 /* allocate receive descriptors */
1713 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1714 if (err)
1715 goto err_setup_rx;
1716
1717 /* before we allocate an interrupt, we must be ready to handle it.
1718 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1719 * as soon as we call pci_request_irq, so we have to setup our
1720 * clean_rx handler before we do so.
1721 */
1722 igbvf_configure(adapter);
1723
1724 err = igbvf_request_irq(adapter);
1725 if (err)
1726 goto err_req_irq;
1727
1728 /* From here on the code is the same as igbvf_up() */
1729 clear_bit(__IGBVF_DOWN, &adapter->state);
1730
1731 napi_enable(&adapter->rx_ring->napi);
1732
1733 /* clear any pending interrupts */
1734 er32(EICR);
1735
1736 igbvf_irq_enable(adapter);
1737
1738 /* start the watchdog */
1739 hw->mac.get_link_status = 1;
1740 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1741
1742 return 0;
1743
1744 err_req_irq:
1745 igbvf_free_rx_resources(adapter->rx_ring);
1746 err_setup_rx:
1747 igbvf_free_tx_resources(adapter->tx_ring);
1748 err_setup_tx:
1749 igbvf_reset(adapter);
1750
1751 return err;
1752 }
1753
1754 /**
1755 * igbvf_close - Disables a network interface
1756 * @netdev: network interface device structure
1757 *
1758 * Returns 0, this is not allowed to fail
1759 *
1760 * The close entry point is called when an interface is de-activated
1761 * by the OS. The hardware is still under the drivers control, but
1762 * needs to be disabled. A global MAC reset is issued to stop the
1763 * hardware, and all transmit and receive resources are freed.
1764 **/
igbvf_close(struct net_device * netdev)1765 static int igbvf_close(struct net_device *netdev)
1766 {
1767 struct igbvf_adapter *adapter = netdev_priv(netdev);
1768
1769 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1770 igbvf_down(adapter);
1771
1772 igbvf_free_irq(adapter);
1773
1774 igbvf_free_tx_resources(adapter->tx_ring);
1775 igbvf_free_rx_resources(adapter->rx_ring);
1776
1777 return 0;
1778 }
1779
1780 /**
1781 * igbvf_set_mac - Change the Ethernet Address of the NIC
1782 * @netdev: network interface device structure
1783 * @p: pointer to an address structure
1784 *
1785 * Returns 0 on success, negative on failure
1786 **/
igbvf_set_mac(struct net_device * netdev,void * p)1787 static int igbvf_set_mac(struct net_device *netdev, void *p)
1788 {
1789 struct igbvf_adapter *adapter = netdev_priv(netdev);
1790 struct e1000_hw *hw = &adapter->hw;
1791 struct sockaddr *addr = p;
1792
1793 if (!is_valid_ether_addr(addr->sa_data))
1794 return -EADDRNOTAVAIL;
1795
1796 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1797
1798 spin_lock_bh(&hw->mbx_lock);
1799
1800 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1801
1802 spin_unlock_bh(&hw->mbx_lock);
1803
1804 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1805 return -EADDRNOTAVAIL;
1806
1807 eth_hw_addr_set(netdev, addr->sa_data);
1808
1809 return 0;
1810 }
1811
1812 #define UPDATE_VF_COUNTER(reg, name) \
1813 { \
1814 u32 current_counter = er32(reg); \
1815 if (current_counter < adapter->stats.last_##name) \
1816 adapter->stats.name += 0x100000000LL; \
1817 adapter->stats.last_##name = current_counter; \
1818 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1819 adapter->stats.name |= current_counter; \
1820 }
1821
1822 /**
1823 * igbvf_update_stats - Update the board statistics counters
1824 * @adapter: board private structure
1825 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1826 void igbvf_update_stats(struct igbvf_adapter *adapter)
1827 {
1828 struct e1000_hw *hw = &adapter->hw;
1829 struct pci_dev *pdev = adapter->pdev;
1830
1831 /* Prevent stats update while adapter is being reset, link is down
1832 * or if the pci connection is down.
1833 */
1834 if (adapter->link_speed == 0)
1835 return;
1836
1837 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1838 return;
1839
1840 if (pci_channel_offline(pdev))
1841 return;
1842
1843 UPDATE_VF_COUNTER(VFGPRC, gprc);
1844 UPDATE_VF_COUNTER(VFGORC, gorc);
1845 UPDATE_VF_COUNTER(VFGPTC, gptc);
1846 UPDATE_VF_COUNTER(VFGOTC, gotc);
1847 UPDATE_VF_COUNTER(VFMPRC, mprc);
1848 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1849 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1850 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1851 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1852
1853 /* Fill out the OS statistics structure */
1854 adapter->netdev->stats.multicast = adapter->stats.mprc;
1855 }
1856
igbvf_print_link_info(struct igbvf_adapter * adapter)1857 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1858 {
1859 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1860 adapter->link_speed,
1861 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1862 }
1863
igbvf_has_link(struct igbvf_adapter * adapter)1864 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1865 {
1866 struct e1000_hw *hw = &adapter->hw;
1867 s32 ret_val = E1000_SUCCESS;
1868 bool link_active;
1869
1870 /* If interface is down, stay link down */
1871 if (test_bit(__IGBVF_DOWN, &adapter->state))
1872 return false;
1873
1874 spin_lock_bh(&hw->mbx_lock);
1875
1876 ret_val = hw->mac.ops.check_for_link(hw);
1877
1878 spin_unlock_bh(&hw->mbx_lock);
1879
1880 link_active = !hw->mac.get_link_status;
1881
1882 /* if check for link returns error we will need to reset */
1883 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1884 schedule_work(&adapter->reset_task);
1885
1886 return link_active;
1887 }
1888
1889 /**
1890 * igbvf_watchdog - Timer Call-back
1891 * @t: timer list pointer containing private struct
1892 **/
igbvf_watchdog(struct timer_list * t)1893 static void igbvf_watchdog(struct timer_list *t)
1894 {
1895 struct igbvf_adapter *adapter = timer_container_of(adapter, t,
1896 watchdog_timer);
1897
1898 /* Do the rest outside of interrupt context */
1899 schedule_work(&adapter->watchdog_task);
1900 }
1901
igbvf_watchdog_task(struct work_struct * work)1902 static void igbvf_watchdog_task(struct work_struct *work)
1903 {
1904 struct igbvf_adapter *adapter = container_of(work,
1905 struct igbvf_adapter,
1906 watchdog_task);
1907 struct net_device *netdev = adapter->netdev;
1908 struct e1000_mac_info *mac = &adapter->hw.mac;
1909 struct igbvf_ring *tx_ring = adapter->tx_ring;
1910 struct e1000_hw *hw = &adapter->hw;
1911 u32 link;
1912 int tx_pending = 0;
1913
1914 link = igbvf_has_link(adapter);
1915
1916 if (link) {
1917 if (!netif_carrier_ok(netdev)) {
1918 mac->ops.get_link_up_info(&adapter->hw,
1919 &adapter->link_speed,
1920 &adapter->link_duplex);
1921 igbvf_print_link_info(adapter);
1922
1923 netif_carrier_on(netdev);
1924 netif_wake_queue(netdev);
1925 }
1926 } else {
1927 if (netif_carrier_ok(netdev)) {
1928 adapter->link_speed = 0;
1929 adapter->link_duplex = 0;
1930 dev_info(&adapter->pdev->dev, "Link is Down\n");
1931 netif_carrier_off(netdev);
1932 netif_stop_queue(netdev);
1933 }
1934 }
1935
1936 if (netif_carrier_ok(netdev)) {
1937 igbvf_update_stats(adapter);
1938 } else {
1939 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1940 tx_ring->count);
1941 if (tx_pending) {
1942 /* We've lost link, so the controller stops DMA,
1943 * but we've got queued Tx work that's never going
1944 * to get done, so reset controller to flush Tx.
1945 * (Do the reset outside of interrupt context).
1946 */
1947 adapter->tx_timeout_count++;
1948 schedule_work(&adapter->reset_task);
1949 }
1950 }
1951
1952 /* Cause software interrupt to ensure Rx ring is cleaned */
1953 ew32(EICS, adapter->rx_ring->eims_value);
1954
1955 /* Reset the timer */
1956 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1957 mod_timer(&adapter->watchdog_timer,
1958 round_jiffies(jiffies + (2 * HZ)));
1959 }
1960
1961 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1962 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1963 #define IGBVF_TX_FLAGS_TSO 0x00000004
1964 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1965 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1966 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1967
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1968 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1969 u32 type_tucmd, u32 mss_l4len_idx)
1970 {
1971 struct e1000_adv_tx_context_desc *context_desc;
1972 struct igbvf_buffer *buffer_info;
1973 u16 i = tx_ring->next_to_use;
1974
1975 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1976 buffer_info = &tx_ring->buffer_info[i];
1977
1978 i++;
1979 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1980
1981 /* set bits to identify this as an advanced context descriptor */
1982 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1983
1984 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1985 context_desc->seqnum_seed = 0;
1986 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1987 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1988
1989 buffer_info->time_stamp = jiffies;
1990 buffer_info->dma = 0;
1991 }
1992
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)1993 static int igbvf_tso(struct igbvf_ring *tx_ring,
1994 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1995 {
1996 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1997 union {
1998 struct iphdr *v4;
1999 struct ipv6hdr *v6;
2000 unsigned char *hdr;
2001 } ip;
2002 union {
2003 struct tcphdr *tcp;
2004 unsigned char *hdr;
2005 } l4;
2006 u32 paylen, l4_offset;
2007 int err;
2008
2009 if (skb->ip_summed != CHECKSUM_PARTIAL)
2010 return 0;
2011
2012 if (!skb_is_gso(skb))
2013 return 0;
2014
2015 err = skb_cow_head(skb, 0);
2016 if (err < 0)
2017 return err;
2018
2019 ip.hdr = skb_network_header(skb);
2020 l4.hdr = skb_checksum_start(skb);
2021
2022 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2023 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2024
2025 /* initialize outer IP header fields */
2026 if (ip.v4->version == 4) {
2027 unsigned char *csum_start = skb_checksum_start(skb);
2028 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2029
2030 /* IP header will have to cancel out any data that
2031 * is not a part of the outer IP header
2032 */
2033 ip.v4->check = csum_fold(csum_partial(trans_start,
2034 csum_start - trans_start,
2035 0));
2036 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2037
2038 ip.v4->tot_len = 0;
2039 } else {
2040 ip.v6->payload_len = 0;
2041 }
2042
2043 /* determine offset of inner transport header */
2044 l4_offset = l4.hdr - skb->data;
2045
2046 /* compute length of segmentation header */
2047 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2048
2049 /* remove payload length from inner checksum */
2050 paylen = skb->len - l4_offset;
2051 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2052
2053 /* MSS L4LEN IDX */
2054 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2055 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2056
2057 /* VLAN MACLEN IPLEN */
2058 vlan_macip_lens = l4.hdr - ip.hdr;
2059 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2060 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2061
2062 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2063
2064 return 1;
2065 }
2066
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2067 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2068 u32 tx_flags, __be16 protocol)
2069 {
2070 u32 vlan_macip_lens = 0;
2071 u32 type_tucmd = 0;
2072
2073 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2074 csum_failed:
2075 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2076 return false;
2077 goto no_csum;
2078 }
2079
2080 switch (skb->csum_offset) {
2081 case offsetof(struct tcphdr, check):
2082 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2083 fallthrough;
2084 case offsetof(struct udphdr, check):
2085 break;
2086 case offsetof(struct sctphdr, checksum):
2087 /* validate that this is actually an SCTP request */
2088 if (skb_csum_is_sctp(skb)) {
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2090 break;
2091 }
2092 fallthrough;
2093 default:
2094 skb_checksum_help(skb);
2095 goto csum_failed;
2096 }
2097
2098 vlan_macip_lens = skb_checksum_start_offset(skb) -
2099 skb_network_offset(skb);
2100 no_csum:
2101 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2102 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2103
2104 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2105 return true;
2106 }
2107
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2108 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2109 {
2110 struct igbvf_adapter *adapter = netdev_priv(netdev);
2111
2112 /* there is enough descriptors then we don't need to worry */
2113 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2114 return 0;
2115
2116 netif_stop_queue(netdev);
2117
2118 /* Herbert's original patch had:
2119 * smp_mb__after_netif_stop_queue();
2120 * but since that doesn't exist yet, just open code it.
2121 */
2122 smp_mb();
2123
2124 /* We need to check again just in case room has been made available */
2125 if (igbvf_desc_unused(adapter->tx_ring) < size)
2126 return -EBUSY;
2127
2128 netif_wake_queue(netdev);
2129
2130 ++adapter->restart_queue;
2131 return 0;
2132 }
2133
2134 #define IGBVF_MAX_TXD_PWR 16
2135 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2136
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2137 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2138 struct igbvf_ring *tx_ring,
2139 struct sk_buff *skb)
2140 {
2141 struct igbvf_buffer *buffer_info;
2142 struct pci_dev *pdev = adapter->pdev;
2143 unsigned int len = skb_headlen(skb);
2144 unsigned int count = 0, i;
2145 unsigned int f;
2146
2147 i = tx_ring->next_to_use;
2148
2149 buffer_info = &tx_ring->buffer_info[i];
2150 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2151 buffer_info->length = len;
2152 /* set time_stamp *before* dma to help avoid a possible race */
2153 buffer_info->time_stamp = jiffies;
2154 buffer_info->mapped_as_page = false;
2155 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2156 DMA_TO_DEVICE);
2157 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2158 goto dma_error;
2159
2160 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2161 const skb_frag_t *frag;
2162
2163 count++;
2164 i++;
2165 if (i == tx_ring->count)
2166 i = 0;
2167
2168 frag = &skb_shinfo(skb)->frags[f];
2169 len = skb_frag_size(frag);
2170
2171 buffer_info = &tx_ring->buffer_info[i];
2172 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2173 buffer_info->length = len;
2174 buffer_info->time_stamp = jiffies;
2175 buffer_info->mapped_as_page = true;
2176 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2177 DMA_TO_DEVICE);
2178 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2179 goto dma_error;
2180 }
2181
2182 tx_ring->buffer_info[i].skb = skb;
2183
2184 return ++count;
2185
2186 dma_error:
2187 dev_err(&pdev->dev, "TX DMA map failed\n");
2188
2189 /* clear timestamp and dma mappings for failed buffer_info mapping */
2190 buffer_info->dma = 0;
2191 buffer_info->time_stamp = 0;
2192 buffer_info->length = 0;
2193 buffer_info->mapped_as_page = false;
2194 if (count)
2195 count--;
2196
2197 /* clear timestamp and dma mappings for remaining portion of packet */
2198 while (count--) {
2199 if (i == 0)
2200 i += tx_ring->count;
2201 i--;
2202 buffer_info = &tx_ring->buffer_info[i];
2203 igbvf_put_txbuf(adapter, buffer_info);
2204 }
2205
2206 return 0;
2207 }
2208
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2209 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2210 struct igbvf_ring *tx_ring,
2211 int tx_flags, int count,
2212 unsigned int first, u32 paylen,
2213 u8 hdr_len)
2214 {
2215 union e1000_adv_tx_desc *tx_desc = NULL;
2216 struct igbvf_buffer *buffer_info;
2217 u32 olinfo_status = 0, cmd_type_len;
2218 unsigned int i;
2219
2220 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2221 E1000_ADVTXD_DCMD_DEXT);
2222
2223 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2224 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2225
2226 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2227 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2228
2229 /* insert tcp checksum */
2230 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2231
2232 /* insert ip checksum */
2233 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2234 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2235
2236 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238 }
2239
2240 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2241
2242 i = tx_ring->next_to_use;
2243 while (count--) {
2244 buffer_info = &tx_ring->buffer_info[i];
2245 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2246 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2247 tx_desc->read.cmd_type_len =
2248 cpu_to_le32(cmd_type_len | buffer_info->length);
2249 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2250 i++;
2251 if (i == tx_ring->count)
2252 i = 0;
2253 }
2254
2255 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2256 /* Force memory writes to complete before letting h/w
2257 * know there are new descriptors to fetch. (Only
2258 * applicable for weak-ordered memory model archs,
2259 * such as IA-64).
2260 */
2261 wmb();
2262
2263 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2264 tx_ring->next_to_use = i;
2265 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2266 }
2267
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2268 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2269 struct net_device *netdev,
2270 struct igbvf_ring *tx_ring)
2271 {
2272 struct igbvf_adapter *adapter = netdev_priv(netdev);
2273 unsigned int first, tx_flags = 0;
2274 u8 hdr_len = 0;
2275 int count = 0;
2276 int tso = 0;
2277 __be16 protocol = vlan_get_protocol(skb);
2278
2279 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2280 dev_kfree_skb_any(skb);
2281 return NETDEV_TX_OK;
2282 }
2283
2284 if (skb->len <= 0) {
2285 dev_kfree_skb_any(skb);
2286 return NETDEV_TX_OK;
2287 }
2288
2289 /* need: count + 4 desc gap to keep tail from touching
2290 * + 2 desc gap to keep tail from touching head,
2291 * + 1 desc for skb->data,
2292 * + 1 desc for context descriptor,
2293 * head, otherwise try next time
2294 */
2295 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2296 /* this is a hard error */
2297 return NETDEV_TX_BUSY;
2298 }
2299
2300 if (skb_vlan_tag_present(skb)) {
2301 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2302 tx_flags |= (skb_vlan_tag_get(skb) <<
2303 IGBVF_TX_FLAGS_VLAN_SHIFT);
2304 }
2305
2306 if (protocol == htons(ETH_P_IP))
2307 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2308
2309 first = tx_ring->next_to_use;
2310
2311 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2312 if (unlikely(tso < 0)) {
2313 dev_kfree_skb_any(skb);
2314 return NETDEV_TX_OK;
2315 }
2316
2317 if (tso)
2318 tx_flags |= IGBVF_TX_FLAGS_TSO;
2319 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2320 (skb->ip_summed == CHECKSUM_PARTIAL))
2321 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2322
2323 /* count reflects descriptors mapped, if 0 then mapping error
2324 * has occurred and we need to rewind the descriptor queue
2325 */
2326 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2327
2328 if (count) {
2329 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2330 first, skb->len, hdr_len);
2331 /* Make sure there is space in the ring for the next send. */
2332 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2333 } else {
2334 dev_kfree_skb_any(skb);
2335 tx_ring->buffer_info[first].time_stamp = 0;
2336 tx_ring->next_to_use = first;
2337 }
2338
2339 return NETDEV_TX_OK;
2340 }
2341
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2342 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2343 struct net_device *netdev)
2344 {
2345 struct igbvf_adapter *adapter = netdev_priv(netdev);
2346 struct igbvf_ring *tx_ring;
2347
2348 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2349 dev_kfree_skb_any(skb);
2350 return NETDEV_TX_OK;
2351 }
2352
2353 tx_ring = &adapter->tx_ring[0];
2354
2355 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2356 }
2357
2358 /**
2359 * igbvf_tx_timeout - Respond to a Tx Hang
2360 * @netdev: network interface device structure
2361 * @txqueue: queue timing out (unused)
2362 **/
igbvf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)2363 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2364 {
2365 struct igbvf_adapter *adapter = netdev_priv(netdev);
2366
2367 /* Do the reset outside of interrupt context */
2368 adapter->tx_timeout_count++;
2369 schedule_work(&adapter->reset_task);
2370 }
2371
igbvf_reset_task(struct work_struct * work)2372 static void igbvf_reset_task(struct work_struct *work)
2373 {
2374 struct igbvf_adapter *adapter;
2375
2376 adapter = container_of(work, struct igbvf_adapter, reset_task);
2377
2378 igbvf_reinit_locked(adapter);
2379 }
2380
2381 /**
2382 * igbvf_change_mtu - Change the Maximum Transfer Unit
2383 * @netdev: network interface device structure
2384 * @new_mtu: new value for maximum frame size
2385 *
2386 * Returns 0 on success, negative on failure
2387 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2388 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2389 {
2390 struct igbvf_adapter *adapter = netdev_priv(netdev);
2391 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2392
2393 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2394 usleep_range(1000, 2000);
2395 /* igbvf_down has a dependency on max_frame_size */
2396 adapter->max_frame_size = max_frame;
2397 if (netif_running(netdev))
2398 igbvf_down(adapter);
2399
2400 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2401 * means we reserve 2 more, this pushes us to allocate from the next
2402 * larger slab size.
2403 * i.e. RXBUFFER_2048 --> size-4096 slab
2404 * However with the new *_jumbo_rx* routines, jumbo receives will use
2405 * fragmented skbs
2406 */
2407
2408 if (max_frame <= 1024)
2409 adapter->rx_buffer_len = 1024;
2410 else if (max_frame <= 2048)
2411 adapter->rx_buffer_len = 2048;
2412 else
2413 #if (PAGE_SIZE / 2) > 16384
2414 adapter->rx_buffer_len = 16384;
2415 #else
2416 adapter->rx_buffer_len = PAGE_SIZE / 2;
2417 #endif
2418
2419 /* adjust allocation if LPE protects us, and we aren't using SBP */
2420 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2421 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2422 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2423 ETH_FCS_LEN;
2424
2425 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2426 netdev->mtu, new_mtu);
2427 WRITE_ONCE(netdev->mtu, new_mtu);
2428
2429 if (netif_running(netdev))
2430 igbvf_up(adapter);
2431 else
2432 igbvf_reset(adapter);
2433
2434 clear_bit(__IGBVF_RESETTING, &adapter->state);
2435
2436 return 0;
2437 }
2438
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2439 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2440 {
2441 switch (cmd) {
2442 default:
2443 return -EOPNOTSUPP;
2444 }
2445 }
2446
igbvf_suspend(struct device * dev_d)2447 static int igbvf_suspend(struct device *dev_d)
2448 {
2449 struct net_device *netdev = dev_get_drvdata(dev_d);
2450 struct igbvf_adapter *adapter = netdev_priv(netdev);
2451
2452 netif_device_detach(netdev);
2453
2454 if (netif_running(netdev)) {
2455 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2456 igbvf_down(adapter);
2457 igbvf_free_irq(adapter);
2458 }
2459
2460 return 0;
2461 }
2462
igbvf_resume(struct device * dev_d)2463 static int igbvf_resume(struct device *dev_d)
2464 {
2465 struct pci_dev *pdev = to_pci_dev(dev_d);
2466 struct net_device *netdev = pci_get_drvdata(pdev);
2467 struct igbvf_adapter *adapter = netdev_priv(netdev);
2468 u32 err;
2469
2470 pci_set_master(pdev);
2471
2472 if (netif_running(netdev)) {
2473 err = igbvf_request_irq(adapter);
2474 if (err)
2475 return err;
2476 }
2477
2478 igbvf_reset(adapter);
2479
2480 if (netif_running(netdev))
2481 igbvf_up(adapter);
2482
2483 netif_device_attach(netdev);
2484
2485 return 0;
2486 }
2487
igbvf_shutdown(struct pci_dev * pdev)2488 static void igbvf_shutdown(struct pci_dev *pdev)
2489 {
2490 igbvf_suspend(&pdev->dev);
2491 }
2492
2493 #ifdef CONFIG_NET_POLL_CONTROLLER
2494 /* Polling 'interrupt' - used by things like netconsole to send skbs
2495 * without having to re-enable interrupts. It's not called while
2496 * the interrupt routine is executing.
2497 */
igbvf_netpoll(struct net_device * netdev)2498 static void igbvf_netpoll(struct net_device *netdev)
2499 {
2500 struct igbvf_adapter *adapter = netdev_priv(netdev);
2501
2502 disable_irq(adapter->pdev->irq);
2503
2504 igbvf_clean_tx_irq(adapter->tx_ring);
2505
2506 enable_irq(adapter->pdev->irq);
2507 }
2508 #endif
2509
2510 /**
2511 * igbvf_io_error_detected - called when PCI error is detected
2512 * @pdev: Pointer to PCI device
2513 * @state: The current pci connection state
2514 *
2515 * This function is called after a PCI bus error affecting
2516 * this device has been detected.
2517 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2518 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2519 pci_channel_state_t state)
2520 {
2521 struct net_device *netdev = pci_get_drvdata(pdev);
2522 struct igbvf_adapter *adapter = netdev_priv(netdev);
2523
2524 netif_device_detach(netdev);
2525
2526 if (state == pci_channel_io_perm_failure)
2527 return PCI_ERS_RESULT_DISCONNECT;
2528
2529 if (netif_running(netdev))
2530 igbvf_down(adapter);
2531 pci_disable_device(pdev);
2532
2533 /* Request a slot reset. */
2534 return PCI_ERS_RESULT_NEED_RESET;
2535 }
2536
2537 /**
2538 * igbvf_io_slot_reset - called after the pci bus has been reset.
2539 * @pdev: Pointer to PCI device
2540 *
2541 * Restart the card from scratch, as if from a cold-boot. Implementation
2542 * resembles the first-half of the igbvf_resume routine.
2543 */
igbvf_io_slot_reset(struct pci_dev * pdev)2544 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2545 {
2546 struct net_device *netdev = pci_get_drvdata(pdev);
2547 struct igbvf_adapter *adapter = netdev_priv(netdev);
2548
2549 if (pci_enable_device_mem(pdev)) {
2550 dev_err(&pdev->dev,
2551 "Cannot re-enable PCI device after reset.\n");
2552 return PCI_ERS_RESULT_DISCONNECT;
2553 }
2554 pci_set_master(pdev);
2555
2556 igbvf_reset(adapter);
2557
2558 return PCI_ERS_RESULT_RECOVERED;
2559 }
2560
2561 /**
2562 * igbvf_io_resume - called when traffic can start flowing again.
2563 * @pdev: Pointer to PCI device
2564 *
2565 * This callback is called when the error recovery driver tells us that
2566 * its OK to resume normal operation. Implementation resembles the
2567 * second-half of the igbvf_resume routine.
2568 */
igbvf_io_resume(struct pci_dev * pdev)2569 static void igbvf_io_resume(struct pci_dev *pdev)
2570 {
2571 struct net_device *netdev = pci_get_drvdata(pdev);
2572 struct igbvf_adapter *adapter = netdev_priv(netdev);
2573
2574 if (netif_running(netdev)) {
2575 if (igbvf_up(adapter)) {
2576 dev_err(&pdev->dev,
2577 "can't bring device back up after reset\n");
2578 return;
2579 }
2580 }
2581
2582 netif_device_attach(netdev);
2583 }
2584
2585 /**
2586 * igbvf_io_prepare - prepare device driver for PCI reset
2587 * @pdev: PCI device information struct
2588 */
igbvf_io_prepare(struct pci_dev * pdev)2589 static void igbvf_io_prepare(struct pci_dev *pdev)
2590 {
2591 struct net_device *netdev = pci_get_drvdata(pdev);
2592 struct igbvf_adapter *adapter = netdev_priv(netdev);
2593
2594 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2595 usleep_range(1000, 2000);
2596 igbvf_down(adapter);
2597 }
2598
2599 /**
2600 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2601 * @pdev: PCI device information struct
2602 */
igbvf_io_reset_done(struct pci_dev * pdev)2603 static void igbvf_io_reset_done(struct pci_dev *pdev)
2604 {
2605 struct net_device *netdev = pci_get_drvdata(pdev);
2606 struct igbvf_adapter *adapter = netdev_priv(netdev);
2607
2608 igbvf_up(adapter);
2609 clear_bit(__IGBVF_RESETTING, &adapter->state);
2610 }
2611
igbvf_print_device_info(struct igbvf_adapter * adapter)2612 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2613 {
2614 struct e1000_hw *hw = &adapter->hw;
2615 struct net_device *netdev = adapter->netdev;
2616 struct pci_dev *pdev = adapter->pdev;
2617
2618 if (hw->mac.type == e1000_vfadapt_i350)
2619 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2620 else
2621 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2622 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2623 }
2624
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2625 static int igbvf_set_features(struct net_device *netdev,
2626 netdev_features_t features)
2627 {
2628 struct igbvf_adapter *adapter = netdev_priv(netdev);
2629
2630 if (features & NETIF_F_RXCSUM)
2631 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2632 else
2633 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2634
2635 return 0;
2636 }
2637
2638 #define IGBVF_MAX_MAC_HDR_LEN 127
2639 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2640
2641 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2642 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2643 netdev_features_t features)
2644 {
2645 unsigned int network_hdr_len, mac_hdr_len;
2646
2647 /* Make certain the headers can be described by a context descriptor */
2648 mac_hdr_len = skb_network_offset(skb);
2649 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2650 return features & ~(NETIF_F_HW_CSUM |
2651 NETIF_F_SCTP_CRC |
2652 NETIF_F_HW_VLAN_CTAG_TX |
2653 NETIF_F_TSO |
2654 NETIF_F_TSO6);
2655
2656 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2657 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2658 return features & ~(NETIF_F_HW_CSUM |
2659 NETIF_F_SCTP_CRC |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2662
2663 /* We can only support IPV4 TSO in tunnels if we can mangle the
2664 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2665 */
2666 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2667 features &= ~NETIF_F_TSO;
2668
2669 return features;
2670 }
2671
2672 static const struct net_device_ops igbvf_netdev_ops = {
2673 .ndo_open = igbvf_open,
2674 .ndo_stop = igbvf_close,
2675 .ndo_start_xmit = igbvf_xmit_frame,
2676 .ndo_set_rx_mode = igbvf_set_rx_mode,
2677 .ndo_set_mac_address = igbvf_set_mac,
2678 .ndo_change_mtu = igbvf_change_mtu,
2679 .ndo_eth_ioctl = igbvf_ioctl,
2680 .ndo_tx_timeout = igbvf_tx_timeout,
2681 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2682 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2683 #ifdef CONFIG_NET_POLL_CONTROLLER
2684 .ndo_poll_controller = igbvf_netpoll,
2685 #endif
2686 .ndo_set_features = igbvf_set_features,
2687 .ndo_features_check = igbvf_features_check,
2688 };
2689
2690 /**
2691 * igbvf_probe - Device Initialization Routine
2692 * @pdev: PCI device information struct
2693 * @ent: entry in igbvf_pci_tbl
2694 *
2695 * Returns 0 on success, negative on failure
2696 *
2697 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2698 * The OS initialization, configuring of the adapter private structure,
2699 * and a hardware reset occur.
2700 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2701 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2702 {
2703 struct net_device *netdev;
2704 struct igbvf_adapter *adapter;
2705 struct e1000_hw *hw;
2706 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2707 int err;
2708
2709 err = pci_enable_device_mem(pdev);
2710 if (err)
2711 return err;
2712
2713 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2714 if (err) {
2715 dev_err(&pdev->dev,
2716 "No usable DMA configuration, aborting\n");
2717 goto err_dma;
2718 }
2719
2720 err = pci_request_regions(pdev, igbvf_driver_name);
2721 if (err)
2722 goto err_pci_reg;
2723
2724 pci_set_master(pdev);
2725
2726 err = -ENOMEM;
2727 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2728 if (!netdev)
2729 goto err_alloc_etherdev;
2730
2731 SET_NETDEV_DEV(netdev, &pdev->dev);
2732
2733 pci_set_drvdata(pdev, netdev);
2734 adapter = netdev_priv(netdev);
2735 hw = &adapter->hw;
2736 adapter->netdev = netdev;
2737 adapter->pdev = pdev;
2738 adapter->ei = ei;
2739 adapter->pba = ei->pba;
2740 adapter->flags = ei->flags;
2741 adapter->hw.back = adapter;
2742 adapter->hw.mac.type = ei->mac;
2743 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2744
2745 /* PCI config space info */
2746
2747 hw->vendor_id = pdev->vendor;
2748 hw->device_id = pdev->device;
2749 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2750 hw->subsystem_device_id = pdev->subsystem_device;
2751 hw->revision_id = pdev->revision;
2752
2753 err = -EIO;
2754 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2755 pci_resource_len(pdev, 0));
2756
2757 if (!adapter->hw.hw_addr)
2758 goto err_ioremap;
2759
2760 if (ei->get_variants) {
2761 err = ei->get_variants(adapter);
2762 if (err)
2763 goto err_get_variants;
2764 }
2765
2766 /* setup adapter struct */
2767 err = igbvf_sw_init(adapter);
2768 if (err)
2769 goto err_sw_init;
2770
2771 /* construct the net_device struct */
2772 netdev->netdev_ops = &igbvf_netdev_ops;
2773
2774 igbvf_set_ethtool_ops(netdev);
2775 netdev->watchdog_timeo = 5 * HZ;
2776 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2777
2778 netdev->hw_features = NETIF_F_SG |
2779 NETIF_F_TSO |
2780 NETIF_F_TSO6 |
2781 NETIF_F_RXCSUM |
2782 NETIF_F_HW_CSUM |
2783 NETIF_F_SCTP_CRC;
2784
2785 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2786 NETIF_F_GSO_GRE_CSUM | \
2787 NETIF_F_GSO_IPXIP4 | \
2788 NETIF_F_GSO_IPXIP6 | \
2789 NETIF_F_GSO_UDP_TUNNEL | \
2790 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2791
2792 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2793 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2794 IGBVF_GSO_PARTIAL_FEATURES;
2795
2796 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2797
2798 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2799 netdev->mpls_features |= NETIF_F_HW_CSUM;
2800 netdev->hw_enc_features |= netdev->vlan_features;
2801
2802 /* set this bit last since it cannot be part of vlan_features */
2803 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2804 NETIF_F_HW_VLAN_CTAG_RX |
2805 NETIF_F_HW_VLAN_CTAG_TX;
2806
2807 /* MTU range: 68 - 9216 */
2808 netdev->min_mtu = ETH_MIN_MTU;
2809 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2810
2811 spin_lock_bh(&hw->mbx_lock);
2812
2813 /*reset the controller to put the device in a known good state */
2814 err = hw->mac.ops.reset_hw(hw);
2815 if (err) {
2816 dev_info(&pdev->dev,
2817 "PF still in reset state. Is the PF interface up?\n");
2818 } else {
2819 err = hw->mac.ops.read_mac_addr(hw);
2820 if (err)
2821 dev_info(&pdev->dev, "Error reading MAC address.\n");
2822 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2823 dev_info(&pdev->dev,
2824 "MAC address not assigned by administrator.\n");
2825 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2826 }
2827
2828 spin_unlock_bh(&hw->mbx_lock);
2829
2830 if (!is_valid_ether_addr(netdev->dev_addr)) {
2831 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2832 eth_hw_addr_random(netdev);
2833 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2834 netdev->addr_len);
2835 }
2836
2837 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2838
2839 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2840 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2841
2842 /* ring size defaults */
2843 adapter->rx_ring->count = 1024;
2844 adapter->tx_ring->count = 1024;
2845
2846 /* reset the hardware with the new settings */
2847 igbvf_reset(adapter);
2848
2849 /* set hardware-specific flags */
2850 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2851 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2852
2853 strcpy(netdev->name, "eth%d");
2854 err = register_netdev(netdev);
2855 if (err)
2856 goto err_hw_init;
2857
2858 /* tell the stack to leave us alone until igbvf_open() is called */
2859 netif_carrier_off(netdev);
2860 netif_stop_queue(netdev);
2861
2862 igbvf_print_device_info(adapter);
2863
2864 igbvf_initialize_last_counter_stats(adapter);
2865
2866 return 0;
2867
2868 err_hw_init:
2869 netif_napi_del(&adapter->rx_ring->napi);
2870 kfree(adapter->tx_ring);
2871 kfree(adapter->rx_ring);
2872 err_sw_init:
2873 igbvf_reset_interrupt_capability(adapter);
2874 err_get_variants:
2875 iounmap(adapter->hw.hw_addr);
2876 err_ioremap:
2877 free_netdev(netdev);
2878 err_alloc_etherdev:
2879 pci_release_regions(pdev);
2880 err_pci_reg:
2881 err_dma:
2882 pci_disable_device(pdev);
2883 return err;
2884 }
2885
2886 /**
2887 * igbvf_remove - Device Removal Routine
2888 * @pdev: PCI device information struct
2889 *
2890 * igbvf_remove is called by the PCI subsystem to alert the driver
2891 * that it should release a PCI device. The could be caused by a
2892 * Hot-Plug event, or because the driver is going to be removed from
2893 * memory.
2894 **/
igbvf_remove(struct pci_dev * pdev)2895 static void igbvf_remove(struct pci_dev *pdev)
2896 {
2897 struct net_device *netdev = pci_get_drvdata(pdev);
2898 struct igbvf_adapter *adapter = netdev_priv(netdev);
2899 struct e1000_hw *hw = &adapter->hw;
2900
2901 /* The watchdog timer may be rescheduled, so explicitly
2902 * disable it from being rescheduled.
2903 */
2904 set_bit(__IGBVF_DOWN, &adapter->state);
2905 timer_delete_sync(&adapter->watchdog_timer);
2906
2907 cancel_work_sync(&adapter->reset_task);
2908 cancel_work_sync(&adapter->watchdog_task);
2909
2910 unregister_netdev(netdev);
2911
2912 igbvf_reset_interrupt_capability(adapter);
2913
2914 /* it is important to delete the NAPI struct prior to freeing the
2915 * Rx ring so that you do not end up with null pointer refs
2916 */
2917 netif_napi_del(&adapter->rx_ring->napi);
2918 kfree(adapter->tx_ring);
2919 kfree(adapter->rx_ring);
2920
2921 iounmap(hw->hw_addr);
2922 if (hw->flash_address)
2923 iounmap(hw->flash_address);
2924 pci_release_regions(pdev);
2925
2926 free_netdev(netdev);
2927
2928 pci_disable_device(pdev);
2929 }
2930
2931 /* PCI Error Recovery (ERS) */
2932 static const struct pci_error_handlers igbvf_err_handler = {
2933 .error_detected = igbvf_io_error_detected,
2934 .slot_reset = igbvf_io_slot_reset,
2935 .resume = igbvf_io_resume,
2936 .reset_prepare = igbvf_io_prepare,
2937 .reset_done = igbvf_io_reset_done,
2938 };
2939
2940 static const struct pci_device_id igbvf_pci_tbl[] = {
2941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2943 { } /* terminate list */
2944 };
2945 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2946
2947 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2948
2949 /* PCI Device API Driver */
2950 static struct pci_driver igbvf_driver = {
2951 .name = igbvf_driver_name,
2952 .id_table = igbvf_pci_tbl,
2953 .probe = igbvf_probe,
2954 .remove = igbvf_remove,
2955 .driver.pm = pm_sleep_ptr(&igbvf_pm_ops),
2956 .shutdown = igbvf_shutdown,
2957 .err_handler = &igbvf_err_handler
2958 };
2959
2960 /**
2961 * igbvf_init_module - Driver Registration Routine
2962 *
2963 * igbvf_init_module is the first routine called when the driver is
2964 * loaded. All it does is register with the PCI subsystem.
2965 **/
igbvf_init_module(void)2966 static int __init igbvf_init_module(void)
2967 {
2968 int ret;
2969
2970 pr_info("%s\n", igbvf_driver_string);
2971 pr_info("%s\n", igbvf_copyright);
2972
2973 ret = pci_register_driver(&igbvf_driver);
2974
2975 return ret;
2976 }
2977 module_init(igbvf_init_module);
2978
2979 /**
2980 * igbvf_exit_module - Driver Exit Cleanup Routine
2981 *
2982 * igbvf_exit_module is called just before the driver is removed
2983 * from memory.
2984 **/
igbvf_exit_module(void)2985 static void __exit igbvf_exit_module(void)
2986 {
2987 pci_unregister_driver(&igbvf_driver);
2988 }
2989 module_exit(igbvf_exit_module);
2990
2991 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2992 MODULE_LICENSE("GPL v2");
2993
2994 /* netdev.c */
2995