1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
181 .next = NULL,
182 .priority = 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195
196 static const struct pci_error_handlers igb_err_handler = {
197 .error_detected = igb_io_error_detected,
198 .slot_reset = igb_io_slot_reset,
199 .resume = igb_io_resume,
200 };
201
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211
212 struct igb_reg_info {
213 u32 ofs;
214 char *name;
215 };
216
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218
219 /* General Registers */
220 {E1000_CTRL, "CTRL"},
221 {E1000_STATUS, "STATUS"},
222 {E1000_CTRL_EXT, "CTRL_EXT"},
223
224 /* Interrupt Registers */
225 {E1000_ICR, "ICR"},
226
227 /* RX Registers */
228 {E1000_RCTL, "RCTL"},
229 {E1000_RDLEN(0), "RDLEN"},
230 {E1000_RDH(0), "RDH"},
231 {E1000_RDT(0), "RDT"},
232 {E1000_RXDCTL(0), "RXDCTL"},
233 {E1000_RDBAL(0), "RDBAL"},
234 {E1000_RDBAH(0), "RDBAH"},
235
236 /* TX Registers */
237 {E1000_TCTL, "TCTL"},
238 {E1000_TDBAL(0), "TDBAL"},
239 {E1000_TDBAH(0), "TDBAH"},
240 {E1000_TDLEN(0), "TDLEN"},
241 {E1000_TDH(0), "TDH"},
242 {E1000_TDT(0), "TDT"},
243 {E1000_TXDCTL(0), "TXDCTL"},
244 {E1000_TDFH, "TDFH"},
245 {E1000_TDFT, "TDFT"},
246 {E1000_TDFHS, "TDFHS"},
247 {E1000_TDFPC, "TDFPC"},
248
249 /* List Terminator */
250 {}
251 };
252
253 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 int n = 0;
257 char rname[16];
258 u32 regs[8];
259
260 switch (reginfo->ofs) {
261 case E1000_RDLEN(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
264 break;
265 case E1000_RDH(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
268 break;
269 case E1000_RDT(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
272 break;
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
276 break;
277 case E1000_RDBAL(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
280 break;
281 case E1000_RDBAH(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
284 break;
285 case E1000_TDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAL(n));
288 break;
289 case E1000_TDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
292 break;
293 case E1000_TDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
296 break;
297 case E1000_TDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
300 break;
301 case E1000_TDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
304 break;
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
308 break;
309 default:
310 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 return;
312 }
313
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 regs[2], regs[3]);
317 }
318
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 struct net_device *netdev = adapter->netdev;
323 struct e1000_hw *hw = &adapter->hw;
324 struct igb_reg_info *reginfo;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { __le64 a; __le64 b; } *u0;
328 struct igb_ring *rx_ring;
329 union e1000_adv_rx_desc *rx_desc;
330 u32 staterr;
331 u16 i, n;
332
333 if (!netif_msg_hw(adapter))
334 return;
335
336 /* Print netdevice Info */
337 if (netdev) {
338 dev_info(&adapter->pdev->dev, "Net device Info\n");
339 pr_info("Device Name state trans_start\n");
340 pr_info("%-15s %016lX %016lX\n", netdev->name,
341 netdev->state, dev_trans_start(netdev));
342 }
343
344 /* Print Registers */
345 dev_info(&adapter->pdev->dev, "Register Dump\n");
346 pr_info(" Register Name Value\n");
347 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 reginfo->name; reginfo++) {
349 igb_regdump(hw, reginfo);
350 }
351
352 /* Print TX Ring Summary */
353 if (!netdev || !netif_running(netdev))
354 goto exit;
355
356 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
358 for (n = 0; n < adapter->num_tx_queues; n++) {
359 struct igb_tx_buffer *buffer_info;
360 tx_ring = adapter->tx_ring[n];
361 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 (u64)dma_unmap_addr(buffer_info, dma),
365 dma_unmap_len(buffer_info, len),
366 buffer_info->next_to_watch,
367 (u64)buffer_info->time_stamp);
368 }
369
370 /* Print TX Rings */
371 if (!netif_msg_tx_done(adapter))
372 goto rx_ring_summary;
373
374 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375
376 /* Transmit Descriptor Formats
377 *
378 * Advanced Transmit Descriptor
379 * +--------------------------------------------------------------+
380 * 0 | Buffer Address [63:0] |
381 * +--------------------------------------------------------------+
382 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
383 * +--------------------------------------------------------------+
384 * 63 46 45 40 39 38 36 35 32 31 24 15 0
385 */
386
387 for (n = 0; n < adapter->num_tx_queues; n++) {
388 tx_ring = adapter->tx_ring[n];
389 pr_info("------------------------------------\n");
390 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 pr_info("------------------------------------\n");
392 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
393
394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 const char *next_desc;
396 struct igb_tx_buffer *buffer_info;
397 tx_desc = IGB_TX_DESC(tx_ring, i);
398 buffer_info = &tx_ring->tx_buffer_info[i];
399 u0 = (struct my_u0 *)tx_desc;
400 if (i == tx_ring->next_to_use &&
401 i == tx_ring->next_to_clean)
402 next_desc = " NTC/U";
403 else if (i == tx_ring->next_to_use)
404 next_desc = " NTU";
405 else if (i == tx_ring->next_to_clean)
406 next_desc = " NTC";
407 else
408 next_desc = "";
409
410 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
411 i, le64_to_cpu(u0->a),
412 le64_to_cpu(u0->b),
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp,
417 buffer_info->skb, next_desc);
418
419 if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 print_hex_dump(KERN_INFO, "",
421 DUMP_PREFIX_ADDRESS,
422 16, 1, buffer_info->skb->data,
423 dma_unmap_len(buffer_info, len),
424 true);
425 }
426 }
427
428 /* Print RX Rings Summary */
429 rx_ring_summary:
430 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 pr_info("Queue [NTU] [NTC]\n");
432 for (n = 0; n < adapter->num_rx_queues; n++) {
433 rx_ring = adapter->rx_ring[n];
434 pr_info(" %5d %5X %5X\n",
435 n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 }
437
438 /* Print RX Rings */
439 if (!netif_msg_rx_status(adapter))
440 goto exit;
441
442 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443
444 /* Advanced Receive Descriptor (Read) Format
445 * 63 1 0
446 * +-----------------------------------------------------+
447 * 0 | Packet Buffer Address [63:1] |A0/NSE|
448 * +----------------------------------------------+------+
449 * 8 | Header Buffer Address [63:1] | DD |
450 * +-----------------------------------------------------+
451 *
452 *
453 * Advanced Receive Descriptor (Write-Back) Format
454 *
455 * 63 48 47 32 31 30 21 20 17 16 4 3 0
456 * +------------------------------------------------------+
457 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
458 * | Checksum Ident | | | | Type | Type |
459 * +------------------------------------------------------+
460 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 * +------------------------------------------------------+
462 * 63 48 47 32 31 20 19 0
463 */
464
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info("------------------------------------\n");
468 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 pr_info("------------------------------------\n");
470 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
471 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472
473 for (i = 0; i < rx_ring->count; i++) {
474 const char *next_desc;
475 dma_addr_t dma = (dma_addr_t)0;
476 struct igb_rx_buffer *buffer_info = NULL;
477 rx_desc = IGB_RX_DESC(rx_ring, i);
478 u0 = (struct my_u0 *)rx_desc;
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480
481 if (!rx_ring->xsk_pool) {
482 buffer_info = &rx_ring->rx_buffer_info[i];
483 dma = buffer_info->dma;
484 }
485
486 if (i == rx_ring->next_to_use)
487 next_desc = " NTU";
488 else if (i == rx_ring->next_to_clean)
489 next_desc = " NTC";
490 else
491 next_desc = "";
492
493 if (staterr & E1000_RXD_STAT_DD) {
494 /* Descriptor Done */
495 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
496 "RWB", i,
497 le64_to_cpu(u0->a),
498 le64_to_cpu(u0->b),
499 next_desc);
500 } else {
501 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
502 "R ", i,
503 le64_to_cpu(u0->a),
504 le64_to_cpu(u0->b),
505 (u64)dma,
506 next_desc);
507
508 if (netif_msg_pktdata(adapter) &&
509 buffer_info && dma && buffer_info->page) {
510 print_hex_dump(KERN_INFO, "",
511 DUMP_PREFIX_ADDRESS,
512 16, 1,
513 page_address(buffer_info->page) +
514 buffer_info->page_offset,
515 igb_rx_bufsz(rx_ring), true);
516 }
517 }
518 }
519 }
520
521 exit:
522 return;
523 }
524
525 /**
526 * igb_get_i2c_data - Reads the I2C SDA data bit
527 * @data: opaque pointer to adapter struct
528 *
529 * Returns the I2C data bit value
530 **/
igb_get_i2c_data(void * data)531 static int igb_get_i2c_data(void *data)
532 {
533 struct igb_adapter *adapter = (struct igb_adapter *)data;
534 struct e1000_hw *hw = &adapter->hw;
535 s32 i2cctl = rd32(E1000_I2CPARAMS);
536
537 return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539
540 /**
541 * igb_set_i2c_data - Sets the I2C data bit
542 * @data: pointer to hardware structure
543 * @state: I2C data value (0 or 1) to set
544 *
545 * Sets the I2C data bit
546 **/
igb_set_i2c_data(void * data,int state)547 static void igb_set_i2c_data(void *data, int state)
548 {
549 struct igb_adapter *adapter = (struct igb_adapter *)data;
550 struct e1000_hw *hw = &adapter->hw;
551 s32 i2cctl = rd32(E1000_I2CPARAMS);
552
553 if (state) {
554 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 } else {
556 i2cctl &= ~E1000_I2C_DATA_OE_N;
557 i2cctl &= ~E1000_I2C_DATA_OUT;
558 }
559
560 wr32(E1000_I2CPARAMS, i2cctl);
561 wrfl();
562 }
563
564 /**
565 * igb_set_i2c_clk - Sets the I2C SCL clock
566 * @data: pointer to hardware structure
567 * @state: state to set clock
568 *
569 * Sets the I2C clock line to state
570 **/
igb_set_i2c_clk(void * data,int state)571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 if (state) {
578 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 } else {
580 i2cctl &= ~E1000_I2C_CLK_OUT;
581 i2cctl &= ~E1000_I2C_CLK_OE_N;
582 }
583 wr32(E1000_I2CPARAMS, i2cctl);
584 wrfl();
585 }
586
587 /**
588 * igb_get_i2c_clk - Gets the I2C SCL clock state
589 * @data: pointer to hardware structure
590 *
591 * Gets the I2C clock state
592 **/
igb_get_i2c_clk(void * data)593 static int igb_get_i2c_clk(void *data)
594 {
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 .setsda = igb_set_i2c_data,
604 .setscl = igb_set_i2c_clk,
605 .getsda = igb_get_i2c_data,
606 .getscl = igb_get_i2c_clk,
607 .udelay = 5,
608 .timeout = 20,
609 };
610
611 /**
612 * igb_get_hw_dev - return device
613 * @hw: pointer to hardware structure
614 *
615 * used by hardware layer to print debugging information
616 **/
igb_get_hw_dev(struct e1000_hw * hw)617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 struct igb_adapter *adapter = hw->back;
620 return adapter->netdev;
621 }
622
623 static struct pci_driver igb_driver;
624
625 /**
626 * igb_init_module - Driver Registration Routine
627 *
628 * igb_init_module is the first routine called when the driver is
629 * loaded. All it does is register with the PCI subsystem.
630 **/
igb_init_module(void)631 static int __init igb_init_module(void)
632 {
633 int ret;
634
635 pr_info("%s\n", igb_driver_string);
636 pr_info("%s\n", igb_copyright);
637
638 #ifdef CONFIG_IGB_DCA
639 dca_register_notify(&dca_notifier);
640 #endif
641 ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 if (ret)
644 dca_unregister_notify(&dca_notifier);
645 #endif
646 return ret;
647 }
648
649 module_init(igb_init_module);
650
651 /**
652 * igb_exit_module - Driver Exit Cleanup Routine
653 *
654 * igb_exit_module is called just before the driver is removed
655 * from memory.
656 **/
igb_exit_module(void)657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 dca_unregister_notify(&dca_notifier);
661 #endif
662 pci_unregister_driver(&igb_driver);
663 }
664
665 module_exit(igb_exit_module);
666
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669 * igb_cache_ring_register - Descriptor ring to register mapping
670 * @adapter: board private structure to initialize
671 *
672 * Once we know the feature-set enabled for the device, we'll cache
673 * the register offset the descriptor ring is assigned to.
674 **/
igb_cache_ring_register(struct igb_adapter * adapter)675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 int i = 0, j = 0;
678 u32 rbase_offset = adapter->vfs_allocated_count;
679
680 switch (adapter->hw.mac.type) {
681 case e1000_82576:
682 /* The queues are allocated for virtualization such that VF 0
683 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 * In order to avoid collision we start at the first free queue
685 * and continue consuming queues in the same sequence
686 */
687 if (adapter->vfs_allocated_count) {
688 for (; i < adapter->rss_queues; i++)
689 adapter->rx_ring[i]->reg_idx = rbase_offset +
690 Q_IDX_82576(i);
691 }
692 fallthrough;
693 case e1000_82575:
694 case e1000_82580:
695 case e1000_i350:
696 case e1000_i354:
697 case e1000_i210:
698 case e1000_i211:
699 default:
700 for (; i < adapter->num_rx_queues; i++)
701 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 for (; j < adapter->num_tx_queues; j++)
703 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 break;
705 }
706 }
707
igb_rd32(struct e1000_hw * hw,u32 reg)708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 u32 value = 0;
713
714 if (E1000_REMOVED(hw_addr))
715 return ~value;
716
717 value = readl(&hw_addr[reg]);
718
719 /* reads should not return all F's */
720 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 struct net_device *netdev = igb->netdev;
722 hw->hw_addr = NULL;
723 netdev_err(netdev, "PCIe link lost\n");
724 WARN(pci_device_is_present(igb->pdev),
725 "igb: Failed to read reg 0x%x!\n", reg);
726 }
727
728 return value;
729 }
730
731 /**
732 * igb_write_ivar - configure ivar for given MSI-X vector
733 * @hw: pointer to the HW structure
734 * @msix_vector: vector number we are allocating to a given ring
735 * @index: row index of IVAR register to write within IVAR table
736 * @offset: column offset of in IVAR, should be multiple of 8
737 *
738 * This function is intended to handle the writing of the IVAR register
739 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
740 * each containing an cause allocation for an Rx and Tx ring, and a
741 * variable number of rows depending on the number of queues supported.
742 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 int index, int offset)
745 {
746 u32 ivar = array_rd32(E1000_IVAR0, index);
747
748 /* clear any bits that are currently set */
749 ivar &= ~((u32)0xFF << offset);
750
751 /* write vector and valid bit */
752 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753
754 array_wr32(E1000_IVAR0, index, ivar);
755 }
756
757 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 struct igb_adapter *adapter = q_vector->adapter;
761 struct e1000_hw *hw = &adapter->hw;
762 int rx_queue = IGB_N0_QUEUE;
763 int tx_queue = IGB_N0_QUEUE;
764 u32 msixbm = 0;
765
766 if (q_vector->rx.ring)
767 rx_queue = q_vector->rx.ring->reg_idx;
768 if (q_vector->tx.ring)
769 tx_queue = q_vector->tx.ring->reg_idx;
770
771 switch (hw->mac.type) {
772 case e1000_82575:
773 /* The 82575 assigns vectors using a bitmask, which matches the
774 * bitmask for the EICR/EIMS/EIMC registers. To assign one
775 * or more queues to a vector, we write the appropriate bits
776 * into the MSIXBM register for that vector.
777 */
778 if (rx_queue > IGB_N0_QUEUE)
779 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 if (tx_queue > IGB_N0_QUEUE)
781 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 msixbm |= E1000_EIMS_OTHER;
784 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 q_vector->eims_value = msixbm;
786 break;
787 case e1000_82576:
788 /* 82576 uses a table that essentially consists of 2 columns
789 * with 8 rows. The ordering is column-major so we use the
790 * lower 3 bits as the row index, and the 4th bit as the
791 * column offset.
792 */
793 if (rx_queue > IGB_N0_QUEUE)
794 igb_write_ivar(hw, msix_vector,
795 rx_queue & 0x7,
796 (rx_queue & 0x8) << 1);
797 if (tx_queue > IGB_N0_QUEUE)
798 igb_write_ivar(hw, msix_vector,
799 tx_queue & 0x7,
800 ((tx_queue & 0x8) << 1) + 8);
801 q_vector->eims_value = BIT(msix_vector);
802 break;
803 case e1000_82580:
804 case e1000_i350:
805 case e1000_i354:
806 case e1000_i210:
807 case e1000_i211:
808 /* On 82580 and newer adapters the scheme is similar to 82576
809 * however instead of ordering column-major we have things
810 * ordered row-major. So we traverse the table by using
811 * bit 0 as the column offset, and the remaining bits as the
812 * row index.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue >> 1,
817 (rx_queue & 0x1) << 4);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue >> 1,
821 ((tx_queue & 0x1) << 4) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 default:
825 BUG();
826 break;
827 }
828
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
831
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
834 }
835
836 /**
837 * igb_configure_msix - Configure MSI-X hardware
838 * @adapter: board private structure to initialize
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
igb_configure_msix(struct igb_adapter * adapter)843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
850
851 /* set vector for other causes, i.e. link changes */
852 switch (hw->mac.type) {
853 case e1000_82575:
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 adapter->eims_other = E1000_EIMS_OTHER;
867
868 break;
869
870 case e1000_82576:
871 case e1000_82580:
872 case e1000_i350:
873 case e1000_i354:
874 case e1000_i210:
875 case e1000_i211:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug.
878 */
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 E1000_GPIE_NSICR);
882
883 /* enable msix_other interrupt */
884 adapter->eims_other = BIT(vector);
885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
886
887 wr32(E1000_IVAR_MISC, tmp);
888 break;
889 default:
890 /* do nothing, since nothing else supports MSI-X */
891 break;
892 } /* switch (hw->mac.type) */
893
894 adapter->eims_enable_mask |= adapter->eims_other;
895
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
898
899 wrfl();
900 }
901
902 /**
903 * igb_request_msix - Initialize MSI-X interrupts
904 * @adapter: board private structure to initialize
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
igb_request_msix(struct igb_adapter * adapter)909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 unsigned int num_q_vectors = adapter->num_q_vectors;
912 struct net_device *netdev = adapter->netdev;
913 int i, err = 0, vector = 0, free_vector = 0;
914
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
917 if (err)
918 goto err_out;
919
920 if (num_q_vectors > MAX_Q_VECTORS) {
921 num_q_vectors = MAX_Q_VECTORS;
922 dev_warn(&adapter->pdev->dev,
923 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 adapter->num_q_vectors, MAX_Q_VECTORS);
925 }
926 for (i = 0; i < num_q_vectors; i++) {
927 struct igb_q_vector *q_vector = adapter->q_vector[i];
928
929 vector++;
930
931 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932
933 if (q_vector->rx.ring && q_vector->tx.ring)
934 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else if (q_vector->tx.ring)
937 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 q_vector->tx.ring->queue_index);
939 else if (q_vector->rx.ring)
940 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 q_vector->rx.ring->queue_index);
942 else
943 sprintf(q_vector->name, "%s-unused", netdev->name);
944
945 err = request_irq(adapter->msix_entries[vector].vector,
946 igb_msix_ring, 0, q_vector->name,
947 q_vector);
948 if (err)
949 goto err_free;
950
951 netif_napi_set_irq(&q_vector->napi,
952 adapter->msix_entries[vector].vector);
953 }
954
955 igb_configure_msix(adapter);
956 return 0;
957
958 err_free:
959 /* free already assigned IRQs */
960 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961
962 vector--;
963 for (i = 0; i < vector; i++) {
964 free_irq(adapter->msix_entries[free_vector++].vector,
965 adapter->q_vector[i]);
966 }
967 err_out:
968 return err;
969 }
970
971 /**
972 * igb_free_q_vector - Free memory allocated for specific interrupt vector
973 * @adapter: board private structure to initialize
974 * @v_idx: Index of vector to be freed
975 *
976 * This function frees the memory allocated to the q_vector.
977 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981
982 adapter->q_vector[v_idx] = NULL;
983
984 /* igb_get_stats64() might access the rings on this vector,
985 * we must wait a grace period before freeing it.
986 */
987 if (q_vector)
988 kfree_rcu(q_vector, rcu);
989 }
990
991 /**
992 * igb_reset_q_vector - Reset config for interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be reset
995 *
996 * If NAPI is enabled it will delete any references to the
997 * NAPI struct. This is preparation for igb_free_q_vector.
998 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002
1003 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 * allocated. So, q_vector is NULL so we should stop here.
1005 */
1006 if (!q_vector)
1007 return;
1008
1009 if (q_vector->tx.ring)
1010 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012 if (q_vector->rx.ring)
1013 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015 netif_napi_del(&q_vector->napi);
1016
1017 }
1018
igb_reset_interrupt_capability(struct igb_adapter * adapter)1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 int v_idx = adapter->num_q_vectors;
1022
1023 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 pci_disable_msix(adapter->pdev);
1025 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 pci_disable_msi(adapter->pdev);
1027
1028 while (v_idx--)
1029 igb_reset_q_vector(adapter, v_idx);
1030 }
1031
1032 /**
1033 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1034 * @adapter: board private structure to initialize
1035 *
1036 * This function frees the memory allocated to the q_vectors. In addition if
1037 * NAPI is enabled it will delete any references to the NAPI struct prior
1038 * to freeing the q_vector.
1039 **/
igb_free_q_vectors(struct igb_adapter * adapter)1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 int v_idx = adapter->num_q_vectors;
1043
1044 adapter->num_tx_queues = 0;
1045 adapter->num_rx_queues = 0;
1046 adapter->num_q_vectors = 0;
1047
1048 while (v_idx--) {
1049 igb_reset_q_vector(adapter, v_idx);
1050 igb_free_q_vector(adapter, v_idx);
1051 }
1052 }
1053
1054 /**
1055 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056 * @adapter: board private structure to initialize
1057 *
1058 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1059 * MSI-X interrupts allocated.
1060 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 igb_free_q_vectors(adapter);
1064 igb_reset_interrupt_capability(adapter);
1065 }
1066
1067 /**
1068 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1069 * @adapter: board private structure to initialize
1070 * @msix: boolean value of MSIX capability
1071 *
1072 * Attempt to configure interrupts using the best available
1073 * capabilities of the hardware and kernel.
1074 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 int err;
1078 int numvecs, i;
1079
1080 if (!msix)
1081 goto msi_only;
1082 adapter->flags |= IGB_FLAG_HAS_MSIX;
1083
1084 /* Number of supported queues. */
1085 adapter->num_rx_queues = adapter->rss_queues;
1086 if (adapter->vfs_allocated_count)
1087 adapter->num_tx_queues = 1;
1088 else
1089 adapter->num_tx_queues = adapter->rss_queues;
1090
1091 /* start with one vector for every Rx queue */
1092 numvecs = adapter->num_rx_queues;
1093
1094 /* if Tx handler is separate add 1 for every Tx queue */
1095 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 numvecs += adapter->num_tx_queues;
1097
1098 /* store the number of vectors reserved for queues */
1099 adapter->num_q_vectors = numvecs;
1100
1101 /* add 1 vector for link status interrupts */
1102 numvecs++;
1103 for (i = 0; i < numvecs; i++)
1104 adapter->msix_entries[i].entry = i;
1105
1106 err = pci_enable_msix_range(adapter->pdev,
1107 adapter->msix_entries,
1108 numvecs,
1109 numvecs);
1110 if (err > 0)
1111 return;
1112
1113 igb_reset_interrupt_capability(adapter);
1114
1115 /* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 /* disable SR-IOV for non MSI-X configurations */
1120 if (adapter->vf_data) {
1121 struct e1000_hw *hw = &adapter->hw;
1122 /* disable iov and allow time for transactions to clear */
1123 pci_disable_sriov(adapter->pdev);
1124 msleep(500);
1125
1126 kfree(adapter->vf_mac_list);
1127 adapter->vf_mac_list = NULL;
1128 kfree(adapter->vf_data);
1129 adapter->vf_data = NULL;
1130 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 wrfl();
1132 msleep(100);
1133 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 }
1135 #endif
1136 adapter->vfs_allocated_count = 0;
1137 adapter->rss_queues = 1;
1138 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 adapter->num_rx_queues = 1;
1140 adapter->num_tx_queues = 1;
1141 adapter->num_q_vectors = 1;
1142 if (!pci_enable_msi(adapter->pdev))
1143 adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1146 static void igb_add_ring(struct igb_ring *ring,
1147 struct igb_ring_container *head)
1148 {
1149 head->ring = ring;
1150 head->count++;
1151 }
1152
1153 /**
1154 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155 * @adapter: board private structure to initialize
1156 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1157 * @v_idx: index of vector in adapter struct
1158 * @txr_count: total number of Tx rings to allocate
1159 * @txr_idx: index of first Tx ring to allocate
1160 * @rxr_count: total number of Rx rings to allocate
1161 * @rxr_idx: index of first Rx ring to allocate
1162 *
1163 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1164 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 int v_count, int v_idx,
1167 int txr_count, int txr_idx,
1168 int rxr_count, int rxr_idx)
1169 {
1170 struct igb_q_vector *q_vector;
1171 struct igb_ring *ring;
1172 int ring_count;
1173 size_t size;
1174
1175 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 if (txr_count > 1 || rxr_count > 1)
1177 return -ENOMEM;
1178
1179 ring_count = txr_count + rxr_count;
1180 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181
1182 /* allocate q_vector and rings */
1183 q_vector = adapter->q_vector[v_idx];
1184 if (!q_vector) {
1185 q_vector = kzalloc(size, GFP_KERNEL);
1186 } else if (size > ksize(q_vector)) {
1187 struct igb_q_vector *new_q_vector;
1188
1189 new_q_vector = kzalloc(size, GFP_KERNEL);
1190 if (new_q_vector)
1191 kfree_rcu(q_vector, rcu);
1192 q_vector = new_q_vector;
1193 } else {
1194 memset(q_vector, 0, size);
1195 }
1196 if (!q_vector)
1197 return -ENOMEM;
1198
1199 /* initialize NAPI */
1200 netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 v_idx);
1202
1203 /* tie q_vector and adapter together */
1204 adapter->q_vector[v_idx] = q_vector;
1205 q_vector->adapter = adapter;
1206
1207 /* initialize work limits */
1208 q_vector->tx.work_limit = adapter->tx_work_limit;
1209
1210 /* initialize ITR configuration */
1211 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 q_vector->itr_val = IGB_START_ITR;
1213
1214 /* initialize pointer to rings */
1215 ring = q_vector->ring;
1216
1217 /* initialize ITR */
1218 if (rxr_count) {
1219 /* rx or rx/tx vector */
1220 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 q_vector->itr_val = adapter->rx_itr_setting;
1222 } else {
1223 /* tx only vector */
1224 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 q_vector->itr_val = adapter->tx_itr_setting;
1226 }
1227
1228 if (txr_count) {
1229 /* assign generic ring traits */
1230 ring->dev = &adapter->pdev->dev;
1231 ring->netdev = adapter->netdev;
1232
1233 /* configure backlink on ring */
1234 ring->q_vector = q_vector;
1235
1236 /* update q_vector Tx values */
1237 igb_add_ring(ring, &q_vector->tx);
1238
1239 /* For 82575, context index must be unique per ring. */
1240 if (adapter->hw.mac.type == e1000_82575)
1241 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242
1243 /* apply Tx specific ring traits */
1244 ring->count = adapter->tx_ring_count;
1245 ring->queue_index = txr_idx;
1246
1247 ring->cbs_enable = false;
1248 ring->idleslope = 0;
1249 ring->sendslope = 0;
1250 ring->hicredit = 0;
1251 ring->locredit = 0;
1252
1253 u64_stats_init(&ring->tx_syncp);
1254 u64_stats_init(&ring->tx_syncp2);
1255
1256 /* assign ring to adapter */
1257 adapter->tx_ring[txr_idx] = ring;
1258
1259 /* push pointer to next ring */
1260 ring++;
1261 }
1262
1263 if (rxr_count) {
1264 /* assign generic ring traits */
1265 ring->dev = &adapter->pdev->dev;
1266 ring->netdev = adapter->netdev;
1267
1268 /* configure backlink on ring */
1269 ring->q_vector = q_vector;
1270
1271 /* update q_vector Rx values */
1272 igb_add_ring(ring, &q_vector->rx);
1273
1274 /* set flag indicating ring supports SCTP checksum offload */
1275 if (adapter->hw.mac.type >= e1000_82576)
1276 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277
1278 /* On i350, i354, i210, and i211, loopback VLAN packets
1279 * have the tag byte-swapped.
1280 */
1281 if (adapter->hw.mac.type >= e1000_i350)
1282 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283
1284 /* apply Rx specific ring traits */
1285 ring->count = adapter->rx_ring_count;
1286 ring->queue_index = rxr_idx;
1287
1288 u64_stats_init(&ring->rx_syncp);
1289
1290 /* assign ring to adapter */
1291 adapter->rx_ring[rxr_idx] = ring;
1292 }
1293
1294 return 0;
1295 }
1296
1297
1298 /**
1299 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300 * @adapter: board private structure to initialize
1301 *
1302 * We allocate one q_vector per queue interrupt. If allocation fails we
1303 * return -ENOMEM.
1304 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 int q_vectors = adapter->num_q_vectors;
1308 int rxr_remaining = adapter->num_rx_queues;
1309 int txr_remaining = adapter->num_tx_queues;
1310 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 int err;
1312
1313 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 for (; rxr_remaining; v_idx++) {
1315 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 0, 0, 1, rxr_idx);
1317
1318 if (err)
1319 goto err_out;
1320
1321 /* update counts and index */
1322 rxr_remaining--;
1323 rxr_idx++;
1324 }
1325 }
1326
1327 for (; v_idx < q_vectors; v_idx++) {
1328 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 tqpv, txr_idx, rqpv, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining -= rqpv;
1339 txr_remaining -= tqpv;
1340 rxr_idx++;
1341 txr_idx++;
1342 }
1343
1344 return 0;
1345
1346 err_out:
1347 adapter->num_tx_queues = 0;
1348 adapter->num_rx_queues = 0;
1349 adapter->num_q_vectors = 0;
1350
1351 while (v_idx--)
1352 igb_free_q_vector(adapter, v_idx);
1353
1354 return -ENOMEM;
1355 }
1356
1357 /**
1358 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359 * @adapter: board private structure to initialize
1360 * @msix: boolean value of MSIX capability
1361 *
1362 * This function initializes the interrupts and allocates all of the queues.
1363 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 struct pci_dev *pdev = adapter->pdev;
1367 int err;
1368
1369 igb_set_interrupt_capability(adapter, msix);
1370
1371 err = igb_alloc_q_vectors(adapter);
1372 if (err) {
1373 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 goto err_alloc_q_vectors;
1375 }
1376
1377 igb_cache_ring_register(adapter);
1378
1379 return 0;
1380
1381 err_alloc_q_vectors:
1382 igb_reset_interrupt_capability(adapter);
1383 return err;
1384 }
1385
1386 /**
1387 * igb_request_irq - initialize interrupts
1388 * @adapter: board private structure to initialize
1389 *
1390 * Attempts to configure interrupts using the best available
1391 * capabilities of the hardware and kernel.
1392 **/
igb_request_irq(struct igb_adapter * adapter)1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 struct net_device *netdev = adapter->netdev;
1396 struct pci_dev *pdev = adapter->pdev;
1397 int err = 0;
1398
1399 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 err = igb_request_msix(adapter);
1401 if (!err)
1402 goto request_done;
1403 /* fall back to MSI */
1404 igb_free_all_tx_resources(adapter);
1405 igb_free_all_rx_resources(adapter);
1406
1407 igb_clear_interrupt_scheme(adapter);
1408 err = igb_init_interrupt_scheme(adapter, false);
1409 if (err)
1410 goto request_done;
1411
1412 igb_setup_all_tx_resources(adapter);
1413 igb_setup_all_rx_resources(adapter);
1414 igb_configure(adapter);
1415 }
1416
1417 igb_assign_vector(adapter->q_vector[0], 0);
1418
1419 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 netdev->name, adapter);
1422 if (!err)
1423 goto request_done;
1424
1425 /* fall back to legacy interrupts */
1426 igb_reset_interrupt_capability(adapter);
1427 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 }
1429
1430 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 netdev->name, adapter);
1432
1433 if (err)
1434 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 err);
1436
1437 request_done:
1438 return err;
1439 }
1440
igb_free_irq(struct igb_adapter * adapter)1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 int vector = 0, i;
1445
1446 free_irq(adapter->msix_entries[vector++].vector, adapter);
1447
1448 for (i = 0; i < adapter->num_q_vectors; i++)
1449 free_irq(adapter->msix_entries[vector++].vector,
1450 adapter->q_vector[i]);
1451 } else {
1452 free_irq(adapter->pdev->irq, adapter);
1453 }
1454 }
1455
1456 /**
1457 * igb_irq_disable - Mask off interrupt generation on the NIC
1458 * @adapter: board private structure
1459 **/
igb_irq_disable(struct igb_adapter * adapter)1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 struct e1000_hw *hw = &adapter->hw;
1463
1464 /* we need to be careful when disabling interrupts. The VFs are also
1465 * mapped into these registers and so clearing the bits can cause
1466 * issues on the VF drivers so we only need to clear what we set
1467 */
1468 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 u32 regval = rd32(E1000_EIAM);
1470
1471 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 regval = rd32(E1000_EIAC);
1474 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 }
1476
1477 wr32(E1000_IAM, 0);
1478 wr32(E1000_IMC, ~0);
1479 wrfl();
1480 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 int i;
1482
1483 for (i = 0; i < adapter->num_q_vectors; i++)
1484 synchronize_irq(adapter->msix_entries[i].vector);
1485 } else {
1486 synchronize_irq(adapter->pdev->irq);
1487 }
1488 }
1489
1490 /**
1491 * igb_irq_enable - Enable default interrupt generation settings
1492 * @adapter: board private structure
1493 **/
igb_irq_enable(struct igb_adapter * adapter)1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 struct e1000_hw *hw = &adapter->hw;
1497
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 u32 regval = rd32(E1000_EIAC);
1501
1502 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 regval = rd32(E1000_EIAM);
1504 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 if (adapter->vfs_allocated_count) {
1507 wr32(E1000_MBVFIMR, 0xFF);
1508 ims |= E1000_IMS_VMMB;
1509 }
1510 wr32(E1000_IMS, ims);
1511 } else {
1512 wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 E1000_IMS_DRSTA);
1514 wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 E1000_IMS_DRSTA);
1516 }
1517 }
1518
igb_update_mng_vlan(struct igb_adapter * adapter)1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 struct e1000_hw *hw = &adapter->hw;
1522 u16 pf_id = adapter->vfs_allocated_count;
1523 u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 u16 old_vid = adapter->mng_vlan_id;
1525
1526 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 /* add VID to filter table */
1528 igb_vfta_set(hw, vid, pf_id, true, true);
1529 adapter->mng_vlan_id = vid;
1530 } else {
1531 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 }
1533
1534 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1535 (vid != old_vid) &&
1536 !test_bit(old_vid, adapter->active_vlans)) {
1537 /* remove VID from filter table */
1538 igb_vfta_set(hw, vid, pf_id, false, true);
1539 }
1540 }
1541
1542 /**
1543 * igb_release_hw_control - release control of the h/w to f/w
1544 * @adapter: address of board private structure
1545 *
1546 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1547 * For ASF and Pass Through versions of f/w this means that the
1548 * driver is no longer loaded.
1549 **/
igb_release_hw_control(struct igb_adapter * adapter)1550 static void igb_release_hw_control(struct igb_adapter *adapter)
1551 {
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 ctrl_ext;
1554
1555 /* Let firmware take over control of h/w */
1556 ctrl_ext = rd32(E1000_CTRL_EXT);
1557 wr32(E1000_CTRL_EXT,
1558 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1559 }
1560
1561 /**
1562 * igb_get_hw_control - get control of the h/w from f/w
1563 * @adapter: address of board private structure
1564 *
1565 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1566 * For ASF and Pass Through versions of f/w this means that
1567 * the driver is loaded.
1568 **/
igb_get_hw_control(struct igb_adapter * adapter)1569 static void igb_get_hw_control(struct igb_adapter *adapter)
1570 {
1571 struct e1000_hw *hw = &adapter->hw;
1572 u32 ctrl_ext;
1573
1574 /* Let firmware know the driver has taken over */
1575 ctrl_ext = rd32(E1000_CTRL_EXT);
1576 wr32(E1000_CTRL_EXT,
1577 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1578 }
1579
enable_fqtss(struct igb_adapter * adapter,bool enable)1580 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1581 {
1582 struct net_device *netdev = adapter->netdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584
1585 WARN_ON(hw->mac.type != e1000_i210);
1586
1587 if (enable)
1588 adapter->flags |= IGB_FLAG_FQTSS;
1589 else
1590 adapter->flags &= ~IGB_FLAG_FQTSS;
1591
1592 if (netif_running(netdev))
1593 schedule_work(&adapter->reset_task);
1594 }
1595
is_fqtss_enabled(struct igb_adapter * adapter)1596 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1597 {
1598 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1599 }
1600
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1601 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1602 enum tx_queue_prio prio)
1603 {
1604 u32 val;
1605
1606 WARN_ON(hw->mac.type != e1000_i210);
1607 WARN_ON(queue < 0 || queue > 4);
1608
1609 val = rd32(E1000_I210_TXDCTL(queue));
1610
1611 if (prio == TX_QUEUE_PRIO_HIGH)
1612 val |= E1000_TXDCTL_PRIORITY;
1613 else
1614 val &= ~E1000_TXDCTL_PRIORITY;
1615
1616 wr32(E1000_I210_TXDCTL(queue), val);
1617 }
1618
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1619 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1620 {
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 1);
1625
1626 val = rd32(E1000_I210_TQAVCC(queue));
1627
1628 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1629 val |= E1000_TQAVCC_QUEUEMODE;
1630 else
1631 val &= ~E1000_TQAVCC_QUEUEMODE;
1632
1633 wr32(E1000_I210_TQAVCC(queue), val);
1634 }
1635
is_any_cbs_enabled(struct igb_adapter * adapter)1636 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1637 {
1638 int i;
1639
1640 for (i = 0; i < adapter->num_tx_queues; i++) {
1641 if (adapter->tx_ring[i]->cbs_enable)
1642 return true;
1643 }
1644
1645 return false;
1646 }
1647
is_any_txtime_enabled(struct igb_adapter * adapter)1648 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1649 {
1650 int i;
1651
1652 for (i = 0; i < adapter->num_tx_queues; i++) {
1653 if (adapter->tx_ring[i]->launchtime_enable)
1654 return true;
1655 }
1656
1657 return false;
1658 }
1659
1660 /**
1661 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1662 * @adapter: pointer to adapter struct
1663 * @queue: queue number
1664 *
1665 * Configure CBS and Launchtime for a given hardware queue.
1666 * Parameters are retrieved from the correct Tx ring, so
1667 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1668 * for setting those correctly prior to this function being called.
1669 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1670 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1671 {
1672 struct net_device *netdev = adapter->netdev;
1673 struct e1000_hw *hw = &adapter->hw;
1674 struct igb_ring *ring;
1675 u32 tqavcc, tqavctrl;
1676 u16 value;
1677
1678 WARN_ON(hw->mac.type != e1000_i210);
1679 WARN_ON(queue < 0 || queue > 1);
1680 ring = adapter->tx_ring[queue];
1681
1682 /* If any of the Qav features is enabled, configure queues as SR and
1683 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1684 * as SP.
1685 */
1686 if (ring->cbs_enable || ring->launchtime_enable) {
1687 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1688 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1689 } else {
1690 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1691 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1692 }
1693
1694 /* If CBS is enabled, set DataTranARB and config its parameters. */
1695 if (ring->cbs_enable || queue == 0) {
1696 /* i210 does not allow the queue 0 to be in the Strict
1697 * Priority mode while the Qav mode is enabled, so,
1698 * instead of disabling strict priority mode, we give
1699 * queue 0 the maximum of credits possible.
1700 *
1701 * See section 8.12.19 of the i210 datasheet, "Note:
1702 * Queue0 QueueMode must be set to 1b when
1703 * TransmitMode is set to Qav."
1704 */
1705 if (queue == 0 && !ring->cbs_enable) {
1706 /* max "linkspeed" idleslope in kbps */
1707 ring->idleslope = 1000000;
1708 ring->hicredit = ETH_FRAME_LEN;
1709 }
1710
1711 /* Always set data transfer arbitration to credit-based
1712 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1713 * the queues.
1714 */
1715 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1716 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1717 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1718
1719 /* According to i210 datasheet section 7.2.7.7, we should set
1720 * the 'idleSlope' field from TQAVCC register following the
1721 * equation:
1722 *
1723 * For 100 Mbps link speed:
1724 *
1725 * value = BW * 0x7735 * 0.2 (E1)
1726 *
1727 * For 1000Mbps link speed:
1728 *
1729 * value = BW * 0x7735 * 2 (E2)
1730 *
1731 * E1 and E2 can be merged into one equation as shown below.
1732 * Note that 'link-speed' is in Mbps.
1733 *
1734 * value = BW * 0x7735 * 2 * link-speed
1735 * -------------- (E3)
1736 * 1000
1737 *
1738 * 'BW' is the percentage bandwidth out of full link speed
1739 * which can be found with the following equation. Note that
1740 * idleSlope here is the parameter from this function which
1741 * is in kbps.
1742 *
1743 * BW = idleSlope
1744 * ----------------- (E4)
1745 * link-speed * 1000
1746 *
1747 * That said, we can come up with a generic equation to
1748 * calculate the value we should set it TQAVCC register by
1749 * replacing 'BW' in E3 by E4. The resulting equation is:
1750 *
1751 * value = idleSlope * 0x7735 * 2 * link-speed
1752 * ----------------- -------------- (E5)
1753 * link-speed * 1000 1000
1754 *
1755 * 'link-speed' is present in both sides of the fraction so
1756 * it is canceled out. The final equation is the following:
1757 *
1758 * value = idleSlope * 61034
1759 * ----------------- (E6)
1760 * 1000000
1761 *
1762 * NOTE: For i210, given the above, we can see that idleslope
1763 * is represented in 16.38431 kbps units by the value at
1764 * the TQAVCC register (1Gbps / 61034), which reduces
1765 * the granularity for idleslope increments.
1766 * For instance, if you want to configure a 2576kbps
1767 * idleslope, the value to be written on the register
1768 * would have to be 157.23. If rounded down, you end
1769 * up with less bandwidth available than originally
1770 * required (~2572 kbps). If rounded up, you end up
1771 * with a higher bandwidth (~2589 kbps). Below the
1772 * approach we take is to always round up the
1773 * calculated value, so the resulting bandwidth might
1774 * be slightly higher for some configurations.
1775 */
1776 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1777
1778 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 tqavcc |= value;
1781 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1782
1783 wr32(E1000_I210_TQAVHC(queue),
1784 0x80000000 + ring->hicredit * 0x7735);
1785 } else {
1786
1787 /* Set idleSlope to zero. */
1788 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1789 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1790 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1791
1792 /* Set hiCredit to zero. */
1793 wr32(E1000_I210_TQAVHC(queue), 0);
1794
1795 /* If CBS is not enabled for any queues anymore, then return to
1796 * the default state of Data Transmission Arbitration on
1797 * TQAVCTRL.
1798 */
1799 if (!is_any_cbs_enabled(adapter)) {
1800 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1801 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1802 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1803 }
1804 }
1805
1806 /* If LaunchTime is enabled, set DataTranTIM. */
1807 if (ring->launchtime_enable) {
1808 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1809 * for any of the SR queues, and configure fetchtime delta.
1810 * XXX NOTE:
1811 * - LaunchTime will be enabled for all SR queues.
1812 * - A fixed offset can be added relative to the launch
1813 * time of all packets if configured at reg LAUNCH_OS0.
1814 * We are keeping it as 0 for now (default value).
1815 */
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1818 E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 } else {
1821 /* If Launchtime is not enabled for any SR queues anymore,
1822 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1823 * effectively disabling Launchtime.
1824 */
1825 if (!is_any_txtime_enabled(adapter)) {
1826 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1827 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1828 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1829 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1830 }
1831 }
1832
1833 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1834 * CBS are not configurable by software so we don't do any 'controller
1835 * configuration' in respect to these parameters.
1836 */
1837
1838 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1839 ring->cbs_enable ? "enabled" : "disabled",
1840 ring->launchtime_enable ? "enabled" : "disabled",
1841 queue,
1842 ring->idleslope, ring->sendslope,
1843 ring->hicredit, ring->locredit);
1844 }
1845
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1846 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1847 bool enable)
1848 {
1849 struct igb_ring *ring;
1850
1851 if (queue < 0 || queue > adapter->num_tx_queues)
1852 return -EINVAL;
1853
1854 ring = adapter->tx_ring[queue];
1855 ring->launchtime_enable = enable;
1856
1857 return 0;
1858 }
1859
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1860 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1861 bool enable, int idleslope, int sendslope,
1862 int hicredit, int locredit)
1863 {
1864 struct igb_ring *ring;
1865
1866 if (queue < 0 || queue > adapter->num_tx_queues)
1867 return -EINVAL;
1868
1869 ring = adapter->tx_ring[queue];
1870
1871 ring->cbs_enable = enable;
1872 ring->idleslope = idleslope;
1873 ring->sendslope = sendslope;
1874 ring->hicredit = hicredit;
1875 ring->locredit = locredit;
1876
1877 return 0;
1878 }
1879
1880 /**
1881 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1882 * @adapter: pointer to adapter struct
1883 *
1884 * Configure TQAVCTRL register switching the controller's Tx mode
1885 * if FQTSS mode is enabled or disabled. Additionally, will issue
1886 * a call to igb_config_tx_modes() per queue so any previously saved
1887 * Tx parameters are applied.
1888 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1889 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1890 {
1891 struct net_device *netdev = adapter->netdev;
1892 struct e1000_hw *hw = &adapter->hw;
1893 u32 val;
1894
1895 /* Only i210 controller supports changing the transmission mode. */
1896 if (hw->mac.type != e1000_i210)
1897 return;
1898
1899 if (is_fqtss_enabled(adapter)) {
1900 int i, max_queue;
1901
1902 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1903 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1904 * so SP queues wait for SR ones.
1905 */
1906 val = rd32(E1000_I210_TQAVCTRL);
1907 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1908 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1909 wr32(E1000_I210_TQAVCTRL, val);
1910
1911 /* Configure Tx and Rx packet buffers sizes as described in
1912 * i210 datasheet section 7.2.7.7.
1913 */
1914 val = rd32(E1000_TXPBS);
1915 val &= ~I210_TXPBSIZE_MASK;
1916 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1917 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1918 wr32(E1000_TXPBS, val);
1919
1920 val = rd32(E1000_RXPBS);
1921 val &= ~I210_RXPBSIZE_MASK;
1922 val |= I210_RXPBSIZE_PB_30KB;
1923 wr32(E1000_RXPBS, val);
1924
1925 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1926 * register should not exceed the buffer size programmed in
1927 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1928 * so according to the datasheet we should set MAX_TPKT_SIZE to
1929 * 4kB / 64.
1930 *
1931 * However, when we do so, no frame from queue 2 and 3 are
1932 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1933 * or _equal_ to the buffer size programmed in TXPBS. For this
1934 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1935 */
1936 val = (4096 - 1) / 64;
1937 wr32(E1000_I210_DTXMXPKTSZ, val);
1938
1939 /* Since FQTSS mode is enabled, apply any CBS configuration
1940 * previously set. If no previous CBS configuration has been
1941 * done, then the initial configuration is applied, which means
1942 * CBS is disabled.
1943 */
1944 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1945 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1946
1947 for (i = 0; i < max_queue; i++) {
1948 igb_config_tx_modes(adapter, i);
1949 }
1950 } else {
1951 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1952 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1953 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1954
1955 val = rd32(E1000_I210_TQAVCTRL);
1956 /* According to Section 8.12.21, the other flags we've set when
1957 * enabling FQTSS are not relevant when disabling FQTSS so we
1958 * don't set they here.
1959 */
1960 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1961 wr32(E1000_I210_TQAVCTRL, val);
1962 }
1963
1964 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1965 "enabled" : "disabled");
1966 }
1967
1968 /**
1969 * igb_configure - configure the hardware for RX and TX
1970 * @adapter: private board structure
1971 **/
igb_configure(struct igb_adapter * adapter)1972 static void igb_configure(struct igb_adapter *adapter)
1973 {
1974 struct net_device *netdev = adapter->netdev;
1975 int i;
1976
1977 igb_get_hw_control(adapter);
1978 igb_set_rx_mode(netdev);
1979 igb_setup_tx_mode(adapter);
1980
1981 igb_restore_vlan(adapter);
1982
1983 igb_setup_tctl(adapter);
1984 igb_setup_mrqc(adapter);
1985 igb_setup_rctl(adapter);
1986
1987 igb_nfc_filter_restore(adapter);
1988 igb_configure_tx(adapter);
1989 igb_configure_rx(adapter);
1990
1991 igb_rx_fifo_flush_82575(&adapter->hw);
1992
1993 /* call igb_desc_unused which always leaves
1994 * at least 1 descriptor unused to make sure
1995 * next_to_use != next_to_clean
1996 */
1997 for (i = 0; i < adapter->num_rx_queues; i++) {
1998 struct igb_ring *ring = adapter->rx_ring[i];
1999 if (ring->xsk_pool)
2000 igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2001 igb_desc_unused(ring));
2002 else
2003 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 }
2005 }
2006
2007 /**
2008 * igb_power_up_link - Power up the phy/serdes link
2009 * @adapter: address of board private structure
2010 **/
igb_power_up_link(struct igb_adapter * adapter)2011 void igb_power_up_link(struct igb_adapter *adapter)
2012 {
2013 igb_reset_phy(&adapter->hw);
2014
2015 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 igb_power_up_phy_copper(&adapter->hw);
2017 else
2018 igb_power_up_serdes_link_82575(&adapter->hw);
2019
2020 igb_setup_link(&adapter->hw);
2021 }
2022
2023 /**
2024 * igb_power_down_link - Power down the phy/serdes link
2025 * @adapter: address of board private structure
2026 */
igb_power_down_link(struct igb_adapter * adapter)2027 static void igb_power_down_link(struct igb_adapter *adapter)
2028 {
2029 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2030 igb_power_down_phy_copper_82575(&adapter->hw);
2031 else
2032 igb_shutdown_serdes_link_82575(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2037 * @adapter: address of the board private structure
2038 **/
igb_check_swap_media(struct igb_adapter * adapter)2039 static void igb_check_swap_media(struct igb_adapter *adapter)
2040 {
2041 struct e1000_hw *hw = &adapter->hw;
2042 u32 ctrl_ext, connsw;
2043 bool swap_now = false;
2044
2045 ctrl_ext = rd32(E1000_CTRL_EXT);
2046 connsw = rd32(E1000_CONNSW);
2047
2048 /* need to live swap if current media is copper and we have fiber/serdes
2049 * to go to.
2050 */
2051
2052 if ((hw->phy.media_type == e1000_media_type_copper) &&
2053 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2054 swap_now = true;
2055 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2056 !(connsw & E1000_CONNSW_SERDESD)) {
2057 /* copper signal takes time to appear */
2058 if (adapter->copper_tries < 4) {
2059 adapter->copper_tries++;
2060 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2061 wr32(E1000_CONNSW, connsw);
2062 return;
2063 } else {
2064 adapter->copper_tries = 0;
2065 if ((connsw & E1000_CONNSW_PHYSD) &&
2066 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2067 swap_now = true;
2068 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2069 wr32(E1000_CONNSW, connsw);
2070 }
2071 }
2072 }
2073
2074 if (!swap_now)
2075 return;
2076
2077 switch (hw->phy.media_type) {
2078 case e1000_media_type_copper:
2079 netdev_info(adapter->netdev,
2080 "MAS: changing media to fiber/serdes\n");
2081 ctrl_ext |=
2082 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2083 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2084 adapter->copper_tries = 0;
2085 break;
2086 case e1000_media_type_internal_serdes:
2087 case e1000_media_type_fiber:
2088 netdev_info(adapter->netdev,
2089 "MAS: changing media to copper\n");
2090 ctrl_ext &=
2091 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 break;
2094 default:
2095 /* shouldn't get here during regular operation */
2096 netdev_err(adapter->netdev,
2097 "AMS: Invalid media type found, returning\n");
2098 break;
2099 }
2100 wr32(E1000_CTRL_EXT, ctrl_ext);
2101 }
2102
igb_set_queue_napi(struct igb_adapter * adapter,int vector,struct napi_struct * napi)2103 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2104 struct napi_struct *napi)
2105 {
2106 struct igb_q_vector *q_vector = adapter->q_vector[vector];
2107
2108 if (q_vector->rx.ring)
2109 netif_queue_set_napi(adapter->netdev,
2110 q_vector->rx.ring->queue_index,
2111 NETDEV_QUEUE_TYPE_RX, napi);
2112
2113 if (q_vector->tx.ring)
2114 netif_queue_set_napi(adapter->netdev,
2115 q_vector->tx.ring->queue_index,
2116 NETDEV_QUEUE_TYPE_TX, napi);
2117 }
2118
2119 /**
2120 * igb_up - Open the interface and prepare it to handle traffic
2121 * @adapter: board private structure
2122 **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 struct e1000_hw *hw = &adapter->hw;
2126 struct napi_struct *napi;
2127 int i;
2128
2129 /* hardware has been reset, we need to reload some things */
2130 igb_configure(adapter);
2131
2132 clear_bit(__IGB_DOWN, &adapter->state);
2133
2134 for (i = 0; i < adapter->num_q_vectors; i++) {
2135 napi = &adapter->q_vector[i]->napi;
2136 napi_enable(napi);
2137 igb_set_queue_napi(adapter, i, napi);
2138 }
2139
2140 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2141 igb_configure_msix(adapter);
2142 else
2143 igb_assign_vector(adapter->q_vector[0], 0);
2144
2145 /* Clear any pending interrupts. */
2146 rd32(E1000_TSICR);
2147 rd32(E1000_ICR);
2148 igb_irq_enable(adapter);
2149
2150 /* notify VFs that reset has been completed */
2151 if (adapter->vfs_allocated_count) {
2152 u32 reg_data = rd32(E1000_CTRL_EXT);
2153
2154 reg_data |= E1000_CTRL_EXT_PFRSTD;
2155 wr32(E1000_CTRL_EXT, reg_data);
2156 }
2157
2158 netif_tx_start_all_queues(adapter->netdev);
2159
2160 /* start the watchdog. */
2161 hw->mac.get_link_status = 1;
2162 schedule_work(&adapter->watchdog_task);
2163
2164 if ((adapter->flags & IGB_FLAG_EEE) &&
2165 (!hw->dev_spec._82575.eee_disable))
2166 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2167
2168 return 0;
2169 }
2170
igb_down(struct igb_adapter * adapter)2171 void igb_down(struct igb_adapter *adapter)
2172 {
2173 struct net_device *netdev = adapter->netdev;
2174 struct e1000_hw *hw = &adapter->hw;
2175 u32 tctl, rctl;
2176 int i;
2177
2178 /* signal that we're down so the interrupt handler does not
2179 * reschedule our watchdog timer
2180 */
2181 set_bit(__IGB_DOWN, &adapter->state);
2182
2183 /* disable receives in the hardware */
2184 rctl = rd32(E1000_RCTL);
2185 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2186 /* flush and sleep below */
2187
2188 igb_nfc_filter_exit(adapter);
2189
2190 netif_carrier_off(netdev);
2191 netif_tx_stop_all_queues(netdev);
2192
2193 /* disable transmits in the hardware */
2194 tctl = rd32(E1000_TCTL);
2195 tctl &= ~E1000_TCTL_EN;
2196 wr32(E1000_TCTL, tctl);
2197 /* flush both disables and wait for them to finish */
2198 wrfl();
2199 usleep_range(10000, 11000);
2200
2201 igb_irq_disable(adapter);
2202
2203 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2204
2205 for (i = 0; i < adapter->num_q_vectors; i++) {
2206 if (adapter->q_vector[i]) {
2207 napi_synchronize(&adapter->q_vector[i]->napi);
2208 igb_set_queue_napi(adapter, i, NULL);
2209 napi_disable(&adapter->q_vector[i]->napi);
2210 }
2211 }
2212
2213 timer_delete_sync(&adapter->watchdog_timer);
2214 timer_delete_sync(&adapter->phy_info_timer);
2215
2216 /* record the stats before reset*/
2217 spin_lock(&adapter->stats64_lock);
2218 igb_update_stats(adapter);
2219 spin_unlock(&adapter->stats64_lock);
2220
2221 adapter->link_speed = 0;
2222 adapter->link_duplex = 0;
2223
2224 if (!pci_channel_offline(adapter->pdev))
2225 igb_reset(adapter);
2226
2227 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2228 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2229
2230 igb_clean_all_tx_rings(adapter);
2231 igb_clean_all_rx_rings(adapter);
2232 #ifdef CONFIG_IGB_DCA
2233
2234 /* since we reset the hardware DCA settings were cleared */
2235 igb_setup_dca(adapter);
2236 #endif
2237 }
2238
igb_reinit_locked(struct igb_adapter * adapter)2239 void igb_reinit_locked(struct igb_adapter *adapter)
2240 {
2241 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2242 usleep_range(1000, 2000);
2243 igb_down(adapter);
2244 igb_up(adapter);
2245 clear_bit(__IGB_RESETTING, &adapter->state);
2246 }
2247
2248 /** igb_enable_mas - Media Autosense re-enable after swap
2249 *
2250 * @adapter: adapter struct
2251 **/
igb_enable_mas(struct igb_adapter * adapter)2252 static void igb_enable_mas(struct igb_adapter *adapter)
2253 {
2254 struct e1000_hw *hw = &adapter->hw;
2255 u32 connsw = rd32(E1000_CONNSW);
2256
2257 /* configure for SerDes media detect */
2258 if ((hw->phy.media_type == e1000_media_type_copper) &&
2259 (!(connsw & E1000_CONNSW_SERDESD))) {
2260 connsw |= E1000_CONNSW_ENRGSRC;
2261 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2262 wr32(E1000_CONNSW, connsw);
2263 wrfl();
2264 }
2265 }
2266
2267 #ifdef CONFIG_IGB_HWMON
2268 /**
2269 * igb_set_i2c_bb - Init I2C interface
2270 * @hw: pointer to hardware structure
2271 **/
igb_set_i2c_bb(struct e1000_hw * hw)2272 static void igb_set_i2c_bb(struct e1000_hw *hw)
2273 {
2274 u32 ctrl_ext;
2275 s32 i2cctl;
2276
2277 ctrl_ext = rd32(E1000_CTRL_EXT);
2278 ctrl_ext |= E1000_CTRL_I2C_ENA;
2279 wr32(E1000_CTRL_EXT, ctrl_ext);
2280 wrfl();
2281
2282 i2cctl = rd32(E1000_I2CPARAMS);
2283 i2cctl |= E1000_I2CBB_EN
2284 | E1000_I2C_CLK_OE_N
2285 | E1000_I2C_DATA_OE_N;
2286 wr32(E1000_I2CPARAMS, i2cctl);
2287 wrfl();
2288 }
2289 #endif
2290
igb_reset(struct igb_adapter * adapter)2291 void igb_reset(struct igb_adapter *adapter)
2292 {
2293 struct pci_dev *pdev = adapter->pdev;
2294 struct e1000_hw *hw = &adapter->hw;
2295 struct e1000_mac_info *mac = &hw->mac;
2296 struct e1000_fc_info *fc = &hw->fc;
2297 u32 pba, hwm;
2298
2299 /* Repartition Pba for greater than 9k mtu
2300 * To take effect CTRL.RST is required.
2301 */
2302 switch (mac->type) {
2303 case e1000_i350:
2304 case e1000_i354:
2305 case e1000_82580:
2306 pba = rd32(E1000_RXPBS);
2307 pba = igb_rxpbs_adjust_82580(pba);
2308 break;
2309 case e1000_82576:
2310 pba = rd32(E1000_RXPBS);
2311 pba &= E1000_RXPBS_SIZE_MASK_82576;
2312 break;
2313 case e1000_82575:
2314 case e1000_i210:
2315 case e1000_i211:
2316 default:
2317 pba = E1000_PBA_34K;
2318 break;
2319 }
2320
2321 if (mac->type == e1000_82575) {
2322 u32 min_rx_space, min_tx_space, needed_tx_space;
2323
2324 /* write Rx PBA so that hardware can report correct Tx PBA */
2325 wr32(E1000_PBA, pba);
2326
2327 /* To maintain wire speed transmits, the Tx FIFO should be
2328 * large enough to accommodate two full transmit packets,
2329 * rounded up to the next 1KB and expressed in KB. Likewise,
2330 * the Rx FIFO should be large enough to accommodate at least
2331 * one full receive packet and is similarly rounded up and
2332 * expressed in KB.
2333 */
2334 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2335
2336 /* The Tx FIFO also stores 16 bytes of information about the Tx
2337 * but don't include Ethernet FCS because hardware appends it.
2338 * We only need to round down to the nearest 512 byte block
2339 * count since the value we care about is 2 frames, not 1.
2340 */
2341 min_tx_space = adapter->max_frame_size;
2342 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2343 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2344
2345 /* upper 16 bits has Tx packet buffer allocation size in KB */
2346 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2347
2348 /* If current Tx allocation is less than the min Tx FIFO size,
2349 * and the min Tx FIFO size is less than the current Rx FIFO
2350 * allocation, take space away from current Rx allocation.
2351 */
2352 if (needed_tx_space < pba) {
2353 pba -= needed_tx_space;
2354
2355 /* if short on Rx space, Rx wins and must trump Tx
2356 * adjustment
2357 */
2358 if (pba < min_rx_space)
2359 pba = min_rx_space;
2360 }
2361
2362 /* adjust PBA for jumbo frames */
2363 wr32(E1000_PBA, pba);
2364 }
2365
2366 /* flow control settings
2367 * The high water mark must be low enough to fit one full frame
2368 * after transmitting the pause frame. As such we must have enough
2369 * space to allow for us to complete our current transmit and then
2370 * receive the frame that is in progress from the link partner.
2371 * Set it to:
2372 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2373 */
2374 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2375
2376 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2377 fc->low_water = fc->high_water - 16;
2378 fc->pause_time = 0xFFFF;
2379 fc->send_xon = 1;
2380 fc->current_mode = fc->requested_mode;
2381
2382 /* disable receive for all VFs and wait one second */
2383 if (adapter->vfs_allocated_count) {
2384 int i;
2385
2386 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2387 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2388
2389 /* ping all the active vfs to let them know we are going down */
2390 igb_ping_all_vfs(adapter);
2391
2392 /* disable transmits and receives */
2393 wr32(E1000_VFRE, 0);
2394 wr32(E1000_VFTE, 0);
2395 }
2396
2397 /* Allow time for pending master requests to run */
2398 hw->mac.ops.reset_hw(hw);
2399 wr32(E1000_WUC, 0);
2400
2401 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2402 /* need to resetup here after media swap */
2403 adapter->ei.get_invariants(hw);
2404 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2405 }
2406 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2407 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2408 igb_enable_mas(adapter);
2409 }
2410 if (hw->mac.ops.init_hw(hw))
2411 dev_err(&pdev->dev, "Hardware Error\n");
2412
2413 /* RAR registers were cleared during init_hw, clear mac table */
2414 igb_flush_mac_table(adapter);
2415 __dev_uc_unsync(adapter->netdev, NULL);
2416
2417 /* Recover default RAR entry */
2418 igb_set_default_mac_filter(adapter);
2419
2420 /* Flow control settings reset on hardware reset, so guarantee flow
2421 * control is off when forcing speed.
2422 */
2423 if (!hw->mac.autoneg)
2424 igb_force_mac_fc(hw);
2425
2426 igb_init_dmac(adapter, pba);
2427 #ifdef CONFIG_IGB_HWMON
2428 /* Re-initialize the thermal sensor on i350 devices. */
2429 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2430 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2431 /* If present, re-initialize the external thermal sensor
2432 * interface.
2433 */
2434 if (adapter->ets)
2435 igb_set_i2c_bb(hw);
2436 mac->ops.init_thermal_sensor_thresh(hw);
2437 }
2438 }
2439 #endif
2440 /* Re-establish EEE setting */
2441 if (hw->phy.media_type == e1000_media_type_copper) {
2442 switch (mac->type) {
2443 case e1000_i350:
2444 case e1000_i210:
2445 case e1000_i211:
2446 igb_set_eee_i350(hw, true, true);
2447 break;
2448 case e1000_i354:
2449 igb_set_eee_i354(hw, true, true);
2450 break;
2451 default:
2452 break;
2453 }
2454 }
2455 if (!netif_running(adapter->netdev))
2456 igb_power_down_link(adapter);
2457
2458 igb_update_mng_vlan(adapter);
2459
2460 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2462
2463 /* Re-enable PTP, where applicable. */
2464 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2465 igb_ptp_reset(adapter);
2466
2467 igb_get_phy_info(hw);
2468 }
2469
igb_fix_features(struct net_device * netdev,netdev_features_t features)2470 static netdev_features_t igb_fix_features(struct net_device *netdev,
2471 netdev_features_t features)
2472 {
2473 /* Since there is no support for separate Rx/Tx vlan accel
2474 * enable/disable make sure Tx flag is always in same state as Rx.
2475 */
2476 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2477 features |= NETIF_F_HW_VLAN_CTAG_TX;
2478 else
2479 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2480
2481 return features;
2482 }
2483
igb_set_features(struct net_device * netdev,netdev_features_t features)2484 static int igb_set_features(struct net_device *netdev,
2485 netdev_features_t features)
2486 {
2487 netdev_features_t changed = netdev->features ^ features;
2488 struct igb_adapter *adapter = netdev_priv(netdev);
2489
2490 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2491 igb_vlan_mode(netdev, features);
2492
2493 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2494 return 0;
2495
2496 if (!(features & NETIF_F_NTUPLE)) {
2497 struct hlist_node *node2;
2498 struct igb_nfc_filter *rule;
2499
2500 spin_lock(&adapter->nfc_lock);
2501 hlist_for_each_entry_safe(rule, node2,
2502 &adapter->nfc_filter_list, nfc_node) {
2503 igb_erase_filter(adapter, rule);
2504 hlist_del(&rule->nfc_node);
2505 kfree(rule);
2506 }
2507 spin_unlock(&adapter->nfc_lock);
2508 adapter->nfc_filter_count = 0;
2509 }
2510
2511 netdev->features = features;
2512
2513 if (netif_running(netdev))
2514 igb_reinit_locked(adapter);
2515 else
2516 igb_reset(adapter);
2517
2518 return 1;
2519 }
2520
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)2521 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2522 struct net_device *dev,
2523 const unsigned char *addr, u16 vid,
2524 u16 flags, bool *notified,
2525 struct netlink_ext_ack *extack)
2526 {
2527 /* guarantee we can provide a unique filter for the unicast address */
2528 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2529 struct igb_adapter *adapter = netdev_priv(dev);
2530 int vfn = adapter->vfs_allocated_count;
2531
2532 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2533 return -ENOMEM;
2534 }
2535
2536 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2537 }
2538
2539 #define IGB_MAX_MAC_HDR_LEN 127
2540 #define IGB_MAX_NETWORK_HDR_LEN 511
2541
2542 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2543 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2544 netdev_features_t features)
2545 {
2546 unsigned int network_hdr_len, mac_hdr_len;
2547
2548 /* Make certain the headers can be described by a context descriptor */
2549 mac_hdr_len = skb_network_offset(skb);
2550 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2551 return features & ~(NETIF_F_HW_CSUM |
2552 NETIF_F_SCTP_CRC |
2553 NETIF_F_GSO_UDP_L4 |
2554 NETIF_F_HW_VLAN_CTAG_TX |
2555 NETIF_F_TSO |
2556 NETIF_F_TSO6);
2557
2558 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2559 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2560 return features & ~(NETIF_F_HW_CSUM |
2561 NETIF_F_SCTP_CRC |
2562 NETIF_F_GSO_UDP_L4 |
2563 NETIF_F_TSO |
2564 NETIF_F_TSO6);
2565
2566 /* We can only support IPV4 TSO in tunnels if we can mangle the
2567 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2568 */
2569 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2570 features &= ~NETIF_F_TSO;
2571
2572 return features;
2573 }
2574
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2575 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2576 {
2577 if (!is_fqtss_enabled(adapter)) {
2578 enable_fqtss(adapter, true);
2579 return;
2580 }
2581
2582 igb_config_tx_modes(adapter, queue);
2583
2584 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2585 enable_fqtss(adapter, false);
2586 }
2587
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2588 static int igb_offload_cbs(struct igb_adapter *adapter,
2589 struct tc_cbs_qopt_offload *qopt)
2590 {
2591 struct e1000_hw *hw = &adapter->hw;
2592 int err;
2593
2594 /* CBS offloading is only supported by i210 controller. */
2595 if (hw->mac.type != e1000_i210)
2596 return -EOPNOTSUPP;
2597
2598 /* CBS offloading is only supported by queue 0 and queue 1. */
2599 if (qopt->queue < 0 || qopt->queue > 1)
2600 return -EINVAL;
2601
2602 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2603 qopt->idleslope, qopt->sendslope,
2604 qopt->hicredit, qopt->locredit);
2605 if (err)
2606 return err;
2607
2608 igb_offload_apply(adapter, qopt->queue);
2609
2610 return 0;
2611 }
2612
2613 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2614 #define VLAN_PRIO_FULL_MASK (0x07)
2615
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2616 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2617 struct flow_cls_offload *f,
2618 int traffic_class,
2619 struct igb_nfc_filter *input)
2620 {
2621 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2622 struct flow_dissector *dissector = rule->match.dissector;
2623 struct netlink_ext_ack *extack = f->common.extack;
2624
2625 if (dissector->used_keys &
2626 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2627 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2628 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2629 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2630 NL_SET_ERR_MSG_MOD(extack,
2631 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2632 return -EOPNOTSUPP;
2633 }
2634
2635 if (flow_rule_match_has_control_flags(rule, extack))
2636 return -EOPNOTSUPP;
2637
2638 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2639 struct flow_match_eth_addrs match;
2640
2641 flow_rule_match_eth_addrs(rule, &match);
2642 if (!is_zero_ether_addr(match.mask->dst)) {
2643 if (!is_broadcast_ether_addr(match.mask->dst)) {
2644 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2645 return -EINVAL;
2646 }
2647
2648 input->filter.match_flags |=
2649 IGB_FILTER_FLAG_DST_MAC_ADDR;
2650 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2651 }
2652
2653 if (!is_zero_ether_addr(match.mask->src)) {
2654 if (!is_broadcast_ether_addr(match.mask->src)) {
2655 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2656 return -EINVAL;
2657 }
2658
2659 input->filter.match_flags |=
2660 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2661 ether_addr_copy(input->filter.src_addr, match.key->src);
2662 }
2663 }
2664
2665 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2666 struct flow_match_basic match;
2667
2668 flow_rule_match_basic(rule, &match);
2669 if (match.mask->n_proto) {
2670 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2671 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2672 return -EINVAL;
2673 }
2674
2675 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2676 input->filter.etype = match.key->n_proto;
2677 }
2678 }
2679
2680 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2681 struct flow_match_vlan match;
2682
2683 flow_rule_match_vlan(rule, &match);
2684 if (match.mask->vlan_priority) {
2685 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2686 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2687 return -EINVAL;
2688 }
2689
2690 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2691 input->filter.vlan_tci =
2692 (__force __be16)match.key->vlan_priority;
2693 }
2694 }
2695
2696 input->action = traffic_class;
2697 input->cookie = f->cookie;
2698
2699 return 0;
2700 }
2701
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2702 static int igb_configure_clsflower(struct igb_adapter *adapter,
2703 struct flow_cls_offload *cls_flower)
2704 {
2705 struct netlink_ext_ack *extack = cls_flower->common.extack;
2706 struct igb_nfc_filter *filter, *f;
2707 int err, tc;
2708
2709 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2710 if (tc < 0) {
2711 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2712 return -EINVAL;
2713 }
2714
2715 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2716 if (!filter)
2717 return -ENOMEM;
2718
2719 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2720 if (err < 0)
2721 goto err_parse;
2722
2723 spin_lock(&adapter->nfc_lock);
2724
2725 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2726 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2727 err = -EEXIST;
2728 NL_SET_ERR_MSG_MOD(extack,
2729 "This filter is already set in ethtool");
2730 goto err_locked;
2731 }
2732 }
2733
2734 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2735 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2736 err = -EEXIST;
2737 NL_SET_ERR_MSG_MOD(extack,
2738 "This filter is already set in cls_flower");
2739 goto err_locked;
2740 }
2741 }
2742
2743 err = igb_add_filter(adapter, filter);
2744 if (err < 0) {
2745 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2746 goto err_locked;
2747 }
2748
2749 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2750
2751 spin_unlock(&adapter->nfc_lock);
2752
2753 return 0;
2754
2755 err_locked:
2756 spin_unlock(&adapter->nfc_lock);
2757
2758 err_parse:
2759 kfree(filter);
2760
2761 return err;
2762 }
2763
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2764 static int igb_delete_clsflower(struct igb_adapter *adapter,
2765 struct flow_cls_offload *cls_flower)
2766 {
2767 struct igb_nfc_filter *filter;
2768 int err;
2769
2770 spin_lock(&adapter->nfc_lock);
2771
2772 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2773 if (filter->cookie == cls_flower->cookie)
2774 break;
2775
2776 if (!filter) {
2777 err = -ENOENT;
2778 goto out;
2779 }
2780
2781 err = igb_erase_filter(adapter, filter);
2782 if (err < 0)
2783 goto out;
2784
2785 hlist_del(&filter->nfc_node);
2786 kfree(filter);
2787
2788 out:
2789 spin_unlock(&adapter->nfc_lock);
2790
2791 return err;
2792 }
2793
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2794 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2795 struct flow_cls_offload *cls_flower)
2796 {
2797 switch (cls_flower->command) {
2798 case FLOW_CLS_REPLACE:
2799 return igb_configure_clsflower(adapter, cls_flower);
2800 case FLOW_CLS_DESTROY:
2801 return igb_delete_clsflower(adapter, cls_flower);
2802 case FLOW_CLS_STATS:
2803 return -EOPNOTSUPP;
2804 default:
2805 return -EOPNOTSUPP;
2806 }
2807 }
2808
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2809 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2810 void *cb_priv)
2811 {
2812 struct igb_adapter *adapter = cb_priv;
2813
2814 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2815 return -EOPNOTSUPP;
2816
2817 switch (type) {
2818 case TC_SETUP_CLSFLOWER:
2819 return igb_setup_tc_cls_flower(adapter, type_data);
2820
2821 default:
2822 return -EOPNOTSUPP;
2823 }
2824 }
2825
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2826 static int igb_offload_txtime(struct igb_adapter *adapter,
2827 struct tc_etf_qopt_offload *qopt)
2828 {
2829 struct e1000_hw *hw = &adapter->hw;
2830 int err;
2831
2832 /* Launchtime offloading is only supported by i210 controller. */
2833 if (hw->mac.type != e1000_i210)
2834 return -EOPNOTSUPP;
2835
2836 /* Launchtime offloading is only supported by queues 0 and 1. */
2837 if (qopt->queue < 0 || qopt->queue > 1)
2838 return -EINVAL;
2839
2840 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2841 if (err)
2842 return err;
2843
2844 igb_offload_apply(adapter, qopt->queue);
2845
2846 return 0;
2847 }
2848
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2849 static int igb_tc_query_caps(struct igb_adapter *adapter,
2850 struct tc_query_caps_base *base)
2851 {
2852 switch (base->type) {
2853 case TC_SETUP_QDISC_TAPRIO: {
2854 struct tc_taprio_caps *caps = base->caps;
2855
2856 caps->broken_mqprio = true;
2857
2858 return 0;
2859 }
2860 default:
2861 return -EOPNOTSUPP;
2862 }
2863 }
2864
2865 static LIST_HEAD(igb_block_cb_list);
2866
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2867 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2868 void *type_data)
2869 {
2870 struct igb_adapter *adapter = netdev_priv(dev);
2871
2872 switch (type) {
2873 case TC_QUERY_CAPS:
2874 return igb_tc_query_caps(adapter, type_data);
2875 case TC_SETUP_QDISC_CBS:
2876 return igb_offload_cbs(adapter, type_data);
2877 case TC_SETUP_BLOCK:
2878 return flow_block_cb_setup_simple(type_data,
2879 &igb_block_cb_list,
2880 igb_setup_tc_block_cb,
2881 adapter, adapter, true);
2882
2883 case TC_SETUP_QDISC_ETF:
2884 return igb_offload_txtime(adapter, type_data);
2885
2886 default:
2887 return -EOPNOTSUPP;
2888 }
2889 }
2890
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2891 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2892 {
2893 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2894 struct igb_adapter *adapter = netdev_priv(dev);
2895 struct bpf_prog *prog = bpf->prog, *old_prog;
2896 bool running = netif_running(dev);
2897 bool need_reset;
2898
2899 /* verify igb ring attributes are sufficient for XDP */
2900 for (i = 0; i < adapter->num_rx_queues; i++) {
2901 struct igb_ring *ring = adapter->rx_ring[i];
2902
2903 if (frame_size > igb_rx_bufsz(ring)) {
2904 NL_SET_ERR_MSG_MOD(bpf->extack,
2905 "The RX buffer size is too small for the frame size");
2906 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2907 igb_rx_bufsz(ring), frame_size);
2908 return -EINVAL;
2909 }
2910 }
2911
2912 old_prog = xchg(&adapter->xdp_prog, prog);
2913 need_reset = (!!prog != !!old_prog);
2914
2915 /* device is up and bpf is added/removed, must setup the RX queues */
2916 if (need_reset && running) {
2917 igb_close(dev);
2918 } else {
2919 for (i = 0; i < adapter->num_rx_queues; i++)
2920 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2921 adapter->xdp_prog);
2922 }
2923
2924 if (old_prog)
2925 bpf_prog_put(old_prog);
2926
2927 /* bpf is just replaced, RXQ and MTU are already setup */
2928 if (!need_reset) {
2929 return 0;
2930 } else {
2931 if (prog)
2932 xdp_features_set_redirect_target(dev, true);
2933 else
2934 xdp_features_clear_redirect_target(dev);
2935 }
2936
2937 if (running)
2938 igb_open(dev);
2939
2940 return 0;
2941 }
2942
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2943 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2944 {
2945 struct igb_adapter *adapter = netdev_priv(dev);
2946
2947 switch (xdp->command) {
2948 case XDP_SETUP_PROG:
2949 return igb_xdp_setup(dev, xdp);
2950 case XDP_SETUP_XSK_POOL:
2951 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2952 xdp->xsk.queue_id);
2953 default:
2954 return -EINVAL;
2955 }
2956 }
2957
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2958 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2959 {
2960 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2961 int cpu = smp_processor_id();
2962 struct igb_ring *tx_ring;
2963 struct netdev_queue *nq;
2964 u32 ret;
2965
2966 if (unlikely(!xdpf))
2967 return IGB_XDP_CONSUMED;
2968
2969 /* During program transitions its possible adapter->xdp_prog is assigned
2970 * but ring has not been configured yet. In this case simply abort xmit.
2971 */
2972 tx_ring = igb_xdp_is_enabled(adapter) ?
2973 igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 if (unlikely(!tx_ring))
2975 return IGB_XDP_CONSUMED;
2976
2977 nq = txring_txq(tx_ring);
2978 __netif_tx_lock(nq, cpu);
2979 /* Avoid transmit queue timeout since we share it with the slow path */
2980 txq_trans_cond_update(nq);
2981 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 __netif_tx_unlock(nq);
2983
2984 return ret;
2985 }
2986
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 struct xdp_frame **frames, u32 flags)
2989 {
2990 struct igb_adapter *adapter = netdev_priv(dev);
2991 int cpu = smp_processor_id();
2992 struct igb_ring *tx_ring;
2993 struct netdev_queue *nq;
2994 int nxmit = 0;
2995 int i;
2996
2997 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 return -ENETDOWN;
2999
3000 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 return -EINVAL;
3002
3003 /* During program transitions its possible adapter->xdp_prog is assigned
3004 * but ring has not been configured yet. In this case simply abort xmit.
3005 */
3006 tx_ring = igb_xdp_is_enabled(adapter) ?
3007 igb_xdp_tx_queue_mapping(adapter) : NULL;
3008 if (unlikely(!tx_ring))
3009 return -ENXIO;
3010
3011 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3012 return -ENXIO;
3013
3014 nq = txring_txq(tx_ring);
3015 __netif_tx_lock(nq, cpu);
3016
3017 /* Avoid transmit queue timeout since we share it with the slow path */
3018 txq_trans_cond_update(nq);
3019
3020 for (i = 0; i < n; i++) {
3021 struct xdp_frame *xdpf = frames[i];
3022 int err;
3023
3024 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3025 if (err != IGB_XDP_TX)
3026 break;
3027 nxmit++;
3028 }
3029
3030 if (unlikely(flags & XDP_XMIT_FLUSH))
3031 igb_xdp_ring_update_tail(tx_ring);
3032
3033 __netif_tx_unlock(nq);
3034
3035 return nxmit;
3036 }
3037
3038 static const struct net_device_ops igb_netdev_ops = {
3039 .ndo_open = igb_open,
3040 .ndo_stop = igb_close,
3041 .ndo_start_xmit = igb_xmit_frame,
3042 .ndo_get_stats64 = igb_get_stats64,
3043 .ndo_set_rx_mode = igb_set_rx_mode,
3044 .ndo_set_mac_address = igb_set_mac,
3045 .ndo_change_mtu = igb_change_mtu,
3046 .ndo_eth_ioctl = igb_ioctl,
3047 .ndo_tx_timeout = igb_tx_timeout,
3048 .ndo_validate_addr = eth_validate_addr,
3049 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3050 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3051 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3052 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3053 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3054 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3055 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3056 .ndo_get_vf_config = igb_ndo_get_vf_config,
3057 .ndo_fix_features = igb_fix_features,
3058 .ndo_set_features = igb_set_features,
3059 .ndo_fdb_add = igb_ndo_fdb_add,
3060 .ndo_features_check = igb_features_check,
3061 .ndo_setup_tc = igb_setup_tc,
3062 .ndo_bpf = igb_xdp,
3063 .ndo_xdp_xmit = igb_xdp_xmit,
3064 .ndo_xsk_wakeup = igb_xsk_wakeup,
3065 .ndo_hwtstamp_get = igb_ptp_hwtstamp_get,
3066 .ndo_hwtstamp_set = igb_ptp_hwtstamp_set,
3067 };
3068
3069 /**
3070 * igb_set_fw_version - Configure version string for ethtool
3071 * @adapter: adapter struct
3072 **/
igb_set_fw_version(struct igb_adapter * adapter)3073 void igb_set_fw_version(struct igb_adapter *adapter)
3074 {
3075 struct e1000_hw *hw = &adapter->hw;
3076 struct e1000_fw_version fw;
3077
3078 igb_get_fw_version(hw, &fw);
3079
3080 switch (hw->mac.type) {
3081 case e1000_i210:
3082 case e1000_i211:
3083 if (!(igb_get_flash_presence_i210(hw))) {
3084 snprintf(adapter->fw_version,
3085 sizeof(adapter->fw_version),
3086 "%2d.%2d-%d",
3087 fw.invm_major, fw.invm_minor,
3088 fw.invm_img_type);
3089 break;
3090 }
3091 fallthrough;
3092 default:
3093 /* if option rom is valid, display its version too */
3094 if (fw.or_valid) {
3095 snprintf(adapter->fw_version,
3096 sizeof(adapter->fw_version),
3097 "%d.%d, 0x%08x, %d.%d.%d",
3098 fw.eep_major, fw.eep_minor, fw.etrack_id,
3099 fw.or_major, fw.or_build, fw.or_patch);
3100 /* no option rom */
3101 } else if (fw.etrack_id != 0X0000) {
3102 snprintf(adapter->fw_version,
3103 sizeof(adapter->fw_version),
3104 "%d.%d, 0x%08x",
3105 fw.eep_major, fw.eep_minor, fw.etrack_id);
3106 } else {
3107 snprintf(adapter->fw_version,
3108 sizeof(adapter->fw_version),
3109 "%d.%d.%d",
3110 fw.eep_major, fw.eep_minor, fw.eep_build);
3111 }
3112 break;
3113 }
3114 }
3115
3116 /**
3117 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3118 *
3119 * @adapter: adapter struct
3120 **/
igb_init_mas(struct igb_adapter * adapter)3121 static void igb_init_mas(struct igb_adapter *adapter)
3122 {
3123 struct e1000_hw *hw = &adapter->hw;
3124 u16 eeprom_data;
3125
3126 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3127 switch (hw->bus.func) {
3128 case E1000_FUNC_0:
3129 if (eeprom_data & IGB_MAS_ENABLE_0) {
3130 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3131 netdev_info(adapter->netdev,
3132 "MAS: Enabling Media Autosense for port %d\n",
3133 hw->bus.func);
3134 }
3135 break;
3136 case E1000_FUNC_1:
3137 if (eeprom_data & IGB_MAS_ENABLE_1) {
3138 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3139 netdev_info(adapter->netdev,
3140 "MAS: Enabling Media Autosense for port %d\n",
3141 hw->bus.func);
3142 }
3143 break;
3144 case E1000_FUNC_2:
3145 if (eeprom_data & IGB_MAS_ENABLE_2) {
3146 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3147 netdev_info(adapter->netdev,
3148 "MAS: Enabling Media Autosense for port %d\n",
3149 hw->bus.func);
3150 }
3151 break;
3152 case E1000_FUNC_3:
3153 if (eeprom_data & IGB_MAS_ENABLE_3) {
3154 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3155 netdev_info(adapter->netdev,
3156 "MAS: Enabling Media Autosense for port %d\n",
3157 hw->bus.func);
3158 }
3159 break;
3160 default:
3161 /* Shouldn't get here */
3162 netdev_err(adapter->netdev,
3163 "MAS: Invalid port configuration, returning\n");
3164 break;
3165 }
3166 }
3167
3168 /**
3169 * igb_init_i2c - Init I2C interface
3170 * @adapter: pointer to adapter structure
3171 **/
igb_init_i2c(struct igb_adapter * adapter)3172 static s32 igb_init_i2c(struct igb_adapter *adapter)
3173 {
3174 s32 status = 0;
3175
3176 /* I2C interface supported on i350 devices */
3177 if (adapter->hw.mac.type != e1000_i350)
3178 return 0;
3179
3180 /* Initialize the i2c bus which is controlled by the registers.
3181 * This bus will use the i2c_algo_bit structure that implements
3182 * the protocol through toggling of the 4 bits in the register.
3183 */
3184 adapter->i2c_adap.owner = THIS_MODULE;
3185 adapter->i2c_algo = igb_i2c_algo;
3186 adapter->i2c_algo.data = adapter;
3187 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3188 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3189 strscpy(adapter->i2c_adap.name, "igb BB",
3190 sizeof(adapter->i2c_adap.name));
3191 status = i2c_bit_add_bus(&adapter->i2c_adap);
3192 return status;
3193 }
3194
3195 /**
3196 * igb_probe - Device Initialization Routine
3197 * @pdev: PCI device information struct
3198 * @ent: entry in igb_pci_tbl
3199 *
3200 * Returns 0 on success, negative on failure
3201 *
3202 * igb_probe initializes an adapter identified by a pci_dev structure.
3203 * The OS initialization, configuring of the adapter private structure,
3204 * and a hardware reset occur.
3205 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3206 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3207 {
3208 struct net_device *netdev;
3209 struct igb_adapter *adapter;
3210 struct e1000_hw *hw;
3211 u16 eeprom_data = 0;
3212 s32 ret_val;
3213 static int global_quad_port_a; /* global quad port a indication */
3214 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3215 u8 part_str[E1000_PBANUM_LENGTH];
3216 int err;
3217
3218 /* Catch broken hardware that put the wrong VF device ID in
3219 * the PCIe SR-IOV capability.
3220 */
3221 if (pdev->is_virtfn) {
3222 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3223 pci_name(pdev), pdev->vendor, pdev->device);
3224 return -EINVAL;
3225 }
3226
3227 err = pci_enable_device_mem(pdev);
3228 if (err)
3229 return err;
3230
3231 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3232 if (err) {
3233 dev_err(&pdev->dev,
3234 "No usable DMA configuration, aborting\n");
3235 goto err_dma;
3236 }
3237
3238 err = pci_request_mem_regions(pdev, igb_driver_name);
3239 if (err)
3240 goto err_pci_reg;
3241
3242 pci_set_master(pdev);
3243 pci_save_state(pdev);
3244
3245 err = -ENOMEM;
3246 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3247 IGB_MAX_TX_QUEUES);
3248 if (!netdev)
3249 goto err_alloc_etherdev;
3250
3251 SET_NETDEV_DEV(netdev, &pdev->dev);
3252
3253 pci_set_drvdata(pdev, netdev);
3254 adapter = netdev_priv(netdev);
3255 adapter->netdev = netdev;
3256 adapter->pdev = pdev;
3257 hw = &adapter->hw;
3258 hw->back = adapter;
3259 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3260
3261 err = -EIO;
3262 adapter->io_addr = pci_iomap(pdev, 0, 0);
3263 if (!adapter->io_addr)
3264 goto err_ioremap;
3265 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3266 hw->hw_addr = adapter->io_addr;
3267
3268 netdev->netdev_ops = &igb_netdev_ops;
3269 igb_set_ethtool_ops(netdev);
3270 netdev->watchdog_timeo = 5 * HZ;
3271
3272 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3273
3274 netdev->mem_start = pci_resource_start(pdev, 0);
3275 netdev->mem_end = pci_resource_end(pdev, 0);
3276
3277 /* PCI config space info */
3278 hw->vendor_id = pdev->vendor;
3279 hw->device_id = pdev->device;
3280 hw->revision_id = pdev->revision;
3281 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3282 hw->subsystem_device_id = pdev->subsystem_device;
3283
3284 /* Copy the default MAC, PHY and NVM function pointers */
3285 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3286 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3287 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3288 /* Initialize skew-specific constants */
3289 err = ei->get_invariants(hw);
3290 if (err)
3291 goto err_sw_init;
3292
3293 /* setup the private structure */
3294 err = igb_sw_init(adapter);
3295 if (err)
3296 goto err_sw_init;
3297
3298 igb_get_bus_info_pcie(hw);
3299
3300 hw->phy.autoneg_wait_to_complete = false;
3301
3302 /* Copper options */
3303 if (hw->phy.media_type == e1000_media_type_copper) {
3304 hw->phy.mdix = AUTO_ALL_MODES;
3305 hw->phy.disable_polarity_correction = false;
3306 hw->phy.ms_type = e1000_ms_hw_default;
3307 }
3308
3309 if (igb_check_reset_block(hw))
3310 dev_info(&pdev->dev,
3311 "PHY reset is blocked due to SOL/IDER session.\n");
3312
3313 /* features is initialized to 0 in allocation, it might have bits
3314 * set by igb_sw_init so we should use an or instead of an
3315 * assignment.
3316 */
3317 netdev->features |= NETIF_F_SG |
3318 NETIF_F_TSO |
3319 NETIF_F_TSO6 |
3320 NETIF_F_RXHASH |
3321 NETIF_F_RXCSUM |
3322 NETIF_F_HW_CSUM;
3323
3324 if (hw->mac.type >= e1000_82576)
3325 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3326
3327 if (hw->mac.type >= e1000_i350)
3328 netdev->features |= NETIF_F_HW_TC;
3329
3330 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3331 NETIF_F_GSO_GRE_CSUM | \
3332 NETIF_F_GSO_IPXIP4 | \
3333 NETIF_F_GSO_IPXIP6 | \
3334 NETIF_F_GSO_UDP_TUNNEL | \
3335 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3336
3337 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3338 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3339
3340 /* copy netdev features into list of user selectable features */
3341 netdev->hw_features |= netdev->features |
3342 NETIF_F_HW_VLAN_CTAG_RX |
3343 NETIF_F_HW_VLAN_CTAG_TX |
3344 NETIF_F_RXALL;
3345
3346 if (hw->mac.type >= e1000_i350)
3347 netdev->hw_features |= NETIF_F_NTUPLE;
3348
3349 netdev->features |= NETIF_F_HIGHDMA;
3350
3351 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3352 netdev->mpls_features |= NETIF_F_HW_CSUM;
3353 netdev->hw_enc_features |= netdev->vlan_features;
3354
3355 /* set this bit last since it cannot be part of vlan_features */
3356 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3357 NETIF_F_HW_VLAN_CTAG_RX |
3358 NETIF_F_HW_VLAN_CTAG_TX;
3359
3360 netdev->priv_flags |= IFF_SUPP_NOFCS;
3361
3362 netdev->priv_flags |= IFF_UNICAST_FLT;
3363 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3364 NETDEV_XDP_ACT_XSK_ZEROCOPY;
3365
3366 /* MTU range: 68 - 9216 */
3367 netdev->min_mtu = ETH_MIN_MTU;
3368 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3369
3370 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3371
3372 /* before reading the NVM, reset the controller to put the device in a
3373 * known good starting state
3374 */
3375 hw->mac.ops.reset_hw(hw);
3376
3377 /* make sure the NVM is good , i211/i210 parts can have special NVM
3378 * that doesn't contain a checksum
3379 */
3380 switch (hw->mac.type) {
3381 case e1000_i210:
3382 case e1000_i211:
3383 if (igb_get_flash_presence_i210(hw)) {
3384 if (hw->nvm.ops.validate(hw) < 0) {
3385 dev_err(&pdev->dev,
3386 "The NVM Checksum Is Not Valid\n");
3387 err = -EIO;
3388 goto err_eeprom;
3389 }
3390 }
3391 break;
3392 default:
3393 if (hw->nvm.ops.validate(hw) < 0) {
3394 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3395 err = -EIO;
3396 goto err_eeprom;
3397 }
3398 break;
3399 }
3400
3401 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3402 /* copy the MAC address out of the NVM */
3403 if (hw->mac.ops.read_mac_addr(hw))
3404 dev_err(&pdev->dev, "NVM Read Error\n");
3405 }
3406
3407 eth_hw_addr_set(netdev, hw->mac.addr);
3408
3409 if (!is_valid_ether_addr(netdev->dev_addr)) {
3410 dev_err(&pdev->dev, "Invalid MAC Address\n");
3411 err = -EIO;
3412 goto err_eeprom;
3413 }
3414
3415 igb_set_default_mac_filter(adapter);
3416
3417 /* get firmware version for ethtool -i */
3418 igb_set_fw_version(adapter);
3419
3420 /* configure RXPBSIZE and TXPBSIZE */
3421 if (hw->mac.type == e1000_i210) {
3422 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3423 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3424 }
3425
3426 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3427 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3428
3429 INIT_WORK(&adapter->reset_task, igb_reset_task);
3430 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3431
3432 /* Initialize link properties that are user-changeable */
3433 adapter->fc_autoneg = true;
3434 hw->mac.autoneg = true;
3435 hw->phy.autoneg_advertised = 0x2f;
3436
3437 hw->fc.requested_mode = e1000_fc_default;
3438 hw->fc.current_mode = e1000_fc_default;
3439
3440 igb_validate_mdi_setting(hw);
3441
3442 /* By default, support wake on port A */
3443 if (hw->bus.func == 0)
3444 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3445
3446 /* Check the NVM for wake support on non-port A ports */
3447 if (hw->mac.type >= e1000_82580)
3448 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3449 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3450 &eeprom_data);
3451 else if (hw->bus.func == 1)
3452 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3453
3454 if (eeprom_data & IGB_EEPROM_APME)
3455 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456
3457 /* now that we have the eeprom settings, apply the special cases where
3458 * the eeprom may be wrong or the board simply won't support wake on
3459 * lan on a particular port
3460 */
3461 switch (pdev->device) {
3462 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3463 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3464 break;
3465 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3466 case E1000_DEV_ID_82576_FIBER:
3467 case E1000_DEV_ID_82576_SERDES:
3468 /* Wake events only supported on port A for dual fiber
3469 * regardless of eeprom setting
3470 */
3471 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3472 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 break;
3474 case E1000_DEV_ID_82576_QUAD_COPPER:
3475 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3476 /* if quad port adapter, disable WoL on all but port A */
3477 if (global_quad_port_a != 0)
3478 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3479 else
3480 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3481 /* Reset for multiple quad port adapters */
3482 if (++global_quad_port_a == 4)
3483 global_quad_port_a = 0;
3484 break;
3485 default:
3486 /* If the device can't wake, don't set software support */
3487 if (!device_can_wakeup(&adapter->pdev->dev))
3488 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3489 }
3490
3491 /* initialize the wol settings based on the eeprom settings */
3492 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3493 adapter->wol |= E1000_WUFC_MAG;
3494
3495 /* Some vendors want WoL disabled by default, but still supported */
3496 if ((hw->mac.type == e1000_i350) &&
3497 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3498 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3499 adapter->wol = 0;
3500 }
3501
3502 /* Some vendors want the ability to Use the EEPROM setting as
3503 * enable/disable only, and not for capability
3504 */
3505 if (((hw->mac.type == e1000_i350) ||
3506 (hw->mac.type == e1000_i354)) &&
3507 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3508 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3509 adapter->wol = 0;
3510 }
3511 if (hw->mac.type == e1000_i350) {
3512 if (((pdev->subsystem_device == 0x5001) ||
3513 (pdev->subsystem_device == 0x5002)) &&
3514 (hw->bus.func == 0)) {
3515 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3516 adapter->wol = 0;
3517 }
3518 if (pdev->subsystem_device == 0x1F52)
3519 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3520 }
3521
3522 device_set_wakeup_enable(&adapter->pdev->dev,
3523 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3524
3525 /* reset the hardware with the new settings */
3526 igb_reset(adapter);
3527
3528 /* Init the I2C interface */
3529 err = igb_init_i2c(adapter);
3530 if (err) {
3531 dev_err(&pdev->dev, "failed to init i2c interface\n");
3532 goto err_eeprom;
3533 }
3534
3535 /* let the f/w know that the h/w is now under the control of the
3536 * driver.
3537 */
3538 igb_get_hw_control(adapter);
3539
3540 strcpy(netdev->name, "eth%d");
3541 err = register_netdev(netdev);
3542 if (err)
3543 goto err_register;
3544
3545 /* carrier off reporting is important to ethtool even BEFORE open */
3546 netif_carrier_off(netdev);
3547
3548 #ifdef CONFIG_IGB_DCA
3549 if (dca_add_requester(&pdev->dev) == 0) {
3550 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3551 dev_info(&pdev->dev, "DCA enabled\n");
3552 igb_setup_dca(adapter);
3553 }
3554
3555 #endif
3556 #ifdef CONFIG_IGB_HWMON
3557 /* Initialize the thermal sensor on i350 devices. */
3558 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3559 u16 ets_word;
3560
3561 /* Read the NVM to determine if this i350 device supports an
3562 * external thermal sensor.
3563 */
3564 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3565 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3566 adapter->ets = true;
3567 else
3568 adapter->ets = false;
3569 /* Only enable I2C bit banging if an external thermal
3570 * sensor is supported.
3571 */
3572 if (adapter->ets)
3573 igb_set_i2c_bb(hw);
3574 hw->mac.ops.init_thermal_sensor_thresh(hw);
3575 if (igb_sysfs_init(adapter))
3576 dev_err(&pdev->dev,
3577 "failed to allocate sysfs resources\n");
3578 } else {
3579 adapter->ets = false;
3580 }
3581 #endif
3582 /* Check if Media Autosense is enabled */
3583 adapter->ei = *ei;
3584 if (hw->dev_spec._82575.mas_capable)
3585 igb_init_mas(adapter);
3586
3587 /* do hw tstamp init after resetting */
3588 igb_ptp_init(adapter);
3589
3590 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3591 /* print bus type/speed/width info, not applicable to i354 */
3592 if (hw->mac.type != e1000_i354) {
3593 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3594 netdev->name,
3595 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3596 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3597 "unknown"),
3598 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3599 "Width x4" :
3600 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3601 "Width x2" :
3602 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3603 "Width x1" : "unknown"), netdev->dev_addr);
3604 }
3605
3606 if ((hw->mac.type == e1000_82576 &&
3607 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3608 (hw->mac.type >= e1000_i210 ||
3609 igb_get_flash_presence_i210(hw))) {
3610 ret_val = igb_read_part_string(hw, part_str,
3611 E1000_PBANUM_LENGTH);
3612 } else {
3613 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3614 }
3615
3616 if (ret_val)
3617 strcpy(part_str, "Unknown");
3618 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3619 dev_info(&pdev->dev,
3620 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3621 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3622 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3623 adapter->num_rx_queues, adapter->num_tx_queues);
3624 if (hw->phy.media_type == e1000_media_type_copper) {
3625 switch (hw->mac.type) {
3626 case e1000_i350:
3627 case e1000_i210:
3628 case e1000_i211:
3629 /* Enable EEE for internal copper PHY devices */
3630 err = igb_set_eee_i350(hw, true, true);
3631 if ((!err) &&
3632 (!hw->dev_spec._82575.eee_disable)) {
3633 adapter->eee_advert =
3634 MDIO_EEE_100TX | MDIO_EEE_1000T;
3635 adapter->flags |= IGB_FLAG_EEE;
3636 }
3637 break;
3638 case e1000_i354:
3639 if ((rd32(E1000_CTRL_EXT) &
3640 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3641 err = igb_set_eee_i354(hw, true, true);
3642 if ((!err) &&
3643 (!hw->dev_spec._82575.eee_disable)) {
3644 adapter->eee_advert =
3645 MDIO_EEE_100TX | MDIO_EEE_1000T;
3646 adapter->flags |= IGB_FLAG_EEE;
3647 }
3648 }
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3656
3657 pm_runtime_put_noidle(&pdev->dev);
3658 return 0;
3659
3660 err_register:
3661 igb_release_hw_control(adapter);
3662 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3663 err_eeprom:
3664 if (!igb_check_reset_block(hw))
3665 igb_reset_phy(hw);
3666
3667 if (hw->flash_address)
3668 iounmap(hw->flash_address);
3669 err_sw_init:
3670 kfree(adapter->mac_table);
3671 kfree(adapter->shadow_vfta);
3672 igb_clear_interrupt_scheme(adapter);
3673 #ifdef CONFIG_PCI_IOV
3674 igb_disable_sriov(pdev, false);
3675 #endif
3676 pci_iounmap(pdev, adapter->io_addr);
3677 err_ioremap:
3678 free_netdev(netdev);
3679 err_alloc_etherdev:
3680 pci_release_mem_regions(pdev);
3681 err_pci_reg:
3682 err_dma:
3683 pci_disable_device(pdev);
3684 return err;
3685 }
3686
3687 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3688 static int igb_sriov_reinit(struct pci_dev *dev)
3689 {
3690 struct net_device *netdev = pci_get_drvdata(dev);
3691 struct igb_adapter *adapter = netdev_priv(netdev);
3692 struct pci_dev *pdev = adapter->pdev;
3693
3694 rtnl_lock();
3695
3696 if (netif_running(netdev))
3697 igb_close(netdev);
3698 else
3699 igb_reset(adapter);
3700
3701 igb_clear_interrupt_scheme(adapter);
3702
3703 igb_init_queue_configuration(adapter);
3704
3705 if (igb_init_interrupt_scheme(adapter, true)) {
3706 rtnl_unlock();
3707 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3708 return -ENOMEM;
3709 }
3710
3711 if (netif_running(netdev))
3712 igb_open(netdev);
3713
3714 rtnl_unlock();
3715
3716 return 0;
3717 }
3718
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3719 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3720 {
3721 struct net_device *netdev = pci_get_drvdata(pdev);
3722 struct igb_adapter *adapter = netdev_priv(netdev);
3723 struct e1000_hw *hw = &adapter->hw;
3724 unsigned long flags;
3725
3726 /* reclaim resources allocated to VFs */
3727 if (adapter->vf_data) {
3728 /* disable iov and allow time for transactions to clear */
3729 if (pci_vfs_assigned(pdev)) {
3730 dev_warn(&pdev->dev,
3731 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3732 return -EPERM;
3733 } else {
3734 pci_disable_sriov(pdev);
3735 msleep(500);
3736 }
3737 spin_lock_irqsave(&adapter->vfs_lock, flags);
3738 kfree(adapter->vf_mac_list);
3739 adapter->vf_mac_list = NULL;
3740 kfree(adapter->vf_data);
3741 adapter->vf_data = NULL;
3742 adapter->vfs_allocated_count = 0;
3743 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3744 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3745 wrfl();
3746 msleep(100);
3747 dev_info(&pdev->dev, "IOV Disabled\n");
3748
3749 /* Re-enable DMA Coalescing flag since IOV is turned off */
3750 adapter->flags |= IGB_FLAG_DMAC;
3751 }
3752
3753 return reinit ? igb_sriov_reinit(pdev) : 0;
3754 }
3755
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3756 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3757 {
3758 struct net_device *netdev = pci_get_drvdata(pdev);
3759 struct igb_adapter *adapter = netdev_priv(netdev);
3760 int old_vfs = pci_num_vf(pdev);
3761 struct vf_mac_filter *mac_list;
3762 int err = 0;
3763 int num_vf_mac_filters, i;
3764
3765 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3766 err = -EPERM;
3767 goto out;
3768 }
3769 if (!num_vfs)
3770 goto out;
3771
3772 if (old_vfs) {
3773 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3774 old_vfs, max_vfs);
3775 adapter->vfs_allocated_count = old_vfs;
3776 } else
3777 adapter->vfs_allocated_count = num_vfs;
3778
3779 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3780 sizeof(struct vf_data_storage), GFP_KERNEL);
3781
3782 /* if allocation failed then we do not support SR-IOV */
3783 if (!adapter->vf_data) {
3784 adapter->vfs_allocated_count = 0;
3785 err = -ENOMEM;
3786 goto out;
3787 }
3788
3789 /* Due to the limited number of RAR entries calculate potential
3790 * number of MAC filters available for the VFs. Reserve entries
3791 * for PF default MAC, PF MAC filters and at least one RAR entry
3792 * for each VF for VF MAC.
3793 */
3794 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3795 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3796 adapter->vfs_allocated_count);
3797
3798 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3799 sizeof(struct vf_mac_filter),
3800 GFP_KERNEL);
3801
3802 mac_list = adapter->vf_mac_list;
3803 INIT_LIST_HEAD(&adapter->vf_macs.l);
3804
3805 if (adapter->vf_mac_list) {
3806 /* Initialize list of VF MAC filters */
3807 for (i = 0; i < num_vf_mac_filters; i++) {
3808 mac_list->vf = -1;
3809 mac_list->free = true;
3810 list_add(&mac_list->l, &adapter->vf_macs.l);
3811 mac_list++;
3812 }
3813 } else {
3814 /* If we could not allocate memory for the VF MAC filters
3815 * we can continue without this feature but warn user.
3816 */
3817 dev_err(&pdev->dev,
3818 "Unable to allocate memory for VF MAC filter list\n");
3819 }
3820
3821 dev_info(&pdev->dev, "%d VFs allocated\n",
3822 adapter->vfs_allocated_count);
3823 for (i = 0; i < adapter->vfs_allocated_count; i++)
3824 igb_vf_configure(adapter, i);
3825
3826 /* DMA Coalescing is not supported in IOV mode. */
3827 adapter->flags &= ~IGB_FLAG_DMAC;
3828
3829 if (reinit) {
3830 err = igb_sriov_reinit(pdev);
3831 if (err)
3832 goto err_out;
3833 }
3834
3835 /* only call pci_enable_sriov() if no VFs are allocated already */
3836 if (!old_vfs) {
3837 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3838 if (err)
3839 goto err_out;
3840 }
3841
3842 goto out;
3843
3844 err_out:
3845 kfree(adapter->vf_mac_list);
3846 adapter->vf_mac_list = NULL;
3847 kfree(adapter->vf_data);
3848 adapter->vf_data = NULL;
3849 adapter->vfs_allocated_count = 0;
3850 out:
3851 return err;
3852 }
3853
3854 #endif
3855 /**
3856 * igb_remove_i2c - Cleanup I2C interface
3857 * @adapter: pointer to adapter structure
3858 **/
igb_remove_i2c(struct igb_adapter * adapter)3859 static void igb_remove_i2c(struct igb_adapter *adapter)
3860 {
3861 /* free the adapter bus structure */
3862 i2c_del_adapter(&adapter->i2c_adap);
3863 }
3864
3865 /**
3866 * igb_remove - Device Removal Routine
3867 * @pdev: PCI device information struct
3868 *
3869 * igb_remove is called by the PCI subsystem to alert the driver
3870 * that it should release a PCI device. The could be caused by a
3871 * Hot-Plug event, or because the driver is going to be removed from
3872 * memory.
3873 **/
igb_remove(struct pci_dev * pdev)3874 static void igb_remove(struct pci_dev *pdev)
3875 {
3876 struct net_device *netdev = pci_get_drvdata(pdev);
3877 struct igb_adapter *adapter = netdev_priv(netdev);
3878 struct e1000_hw *hw = &adapter->hw;
3879
3880 pm_runtime_get_noresume(&pdev->dev);
3881 #ifdef CONFIG_IGB_HWMON
3882 igb_sysfs_exit(adapter);
3883 #endif
3884 igb_remove_i2c(adapter);
3885 igb_ptp_stop(adapter);
3886 /* The watchdog timer may be rescheduled, so explicitly
3887 * disable watchdog from being rescheduled.
3888 */
3889 set_bit(__IGB_DOWN, &adapter->state);
3890 timer_delete_sync(&adapter->watchdog_timer);
3891 timer_delete_sync(&adapter->phy_info_timer);
3892
3893 cancel_work_sync(&adapter->reset_task);
3894 cancel_work_sync(&adapter->watchdog_task);
3895
3896 #ifdef CONFIG_IGB_DCA
3897 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3898 dev_info(&pdev->dev, "DCA disabled\n");
3899 dca_remove_requester(&pdev->dev);
3900 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3901 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3902 }
3903 #endif
3904
3905 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3906 * would have already happened in close and is redundant.
3907 */
3908 igb_release_hw_control(adapter);
3909
3910 #ifdef CONFIG_PCI_IOV
3911 igb_disable_sriov(pdev, false);
3912 #endif
3913
3914 unregister_netdev(netdev);
3915
3916 igb_clear_interrupt_scheme(adapter);
3917
3918 pci_iounmap(pdev, adapter->io_addr);
3919 if (hw->flash_address)
3920 iounmap(hw->flash_address);
3921 pci_release_mem_regions(pdev);
3922
3923 kfree(adapter->mac_table);
3924 kfree(adapter->shadow_vfta);
3925 free_netdev(netdev);
3926
3927 pci_disable_device(pdev);
3928 }
3929
3930 /**
3931 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3932 * @adapter: board private structure to initialize
3933 *
3934 * This function initializes the vf specific data storage and then attempts to
3935 * allocate the VFs. The reason for ordering it this way is because it is much
3936 * more expensive time wise to disable SR-IOV than it is to allocate and free
3937 * the memory for the VFs.
3938 **/
igb_probe_vfs(struct igb_adapter * adapter)3939 static void igb_probe_vfs(struct igb_adapter *adapter)
3940 {
3941 #ifdef CONFIG_PCI_IOV
3942 struct pci_dev *pdev = adapter->pdev;
3943 struct e1000_hw *hw = &adapter->hw;
3944
3945 /* Virtualization features not supported on i210 and 82580 family. */
3946 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3947 (hw->mac.type == e1000_82580))
3948 return;
3949
3950 /* Of the below we really only want the effect of getting
3951 * IGB_FLAG_HAS_MSIX set (if available), without which
3952 * igb_enable_sriov() has no effect.
3953 */
3954 igb_set_interrupt_capability(adapter, true);
3955 igb_reset_interrupt_capability(adapter);
3956
3957 pci_sriov_set_totalvfs(pdev, 7);
3958 igb_enable_sriov(pdev, max_vfs, false);
3959
3960 #endif /* CONFIG_PCI_IOV */
3961 }
3962
igb_get_max_rss_queues(struct igb_adapter * adapter)3963 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3964 {
3965 struct e1000_hw *hw = &adapter->hw;
3966 unsigned int max_rss_queues;
3967
3968 /* Determine the maximum number of RSS queues supported. */
3969 switch (hw->mac.type) {
3970 case e1000_i211:
3971 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3972 break;
3973 case e1000_82575:
3974 case e1000_i210:
3975 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3976 break;
3977 case e1000_i350:
3978 /* I350 cannot do RSS and SR-IOV at the same time */
3979 if (!!adapter->vfs_allocated_count) {
3980 max_rss_queues = 1;
3981 break;
3982 }
3983 fallthrough;
3984 case e1000_82576:
3985 if (!!adapter->vfs_allocated_count) {
3986 max_rss_queues = 2;
3987 break;
3988 }
3989 fallthrough;
3990 case e1000_82580:
3991 case e1000_i354:
3992 default:
3993 max_rss_queues = IGB_MAX_RX_QUEUES;
3994 break;
3995 }
3996
3997 return max_rss_queues;
3998 }
3999
igb_init_queue_configuration(struct igb_adapter * adapter)4000 static void igb_init_queue_configuration(struct igb_adapter *adapter)
4001 {
4002 u32 max_rss_queues;
4003
4004 max_rss_queues = igb_get_max_rss_queues(adapter);
4005 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4006
4007 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4008 }
4009
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)4010 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4011 const u32 max_rss_queues)
4012 {
4013 struct e1000_hw *hw = &adapter->hw;
4014
4015 /* Determine if we need to pair queues. */
4016 switch (hw->mac.type) {
4017 case e1000_82575:
4018 case e1000_i211:
4019 /* Device supports enough interrupts without queue pairing. */
4020 break;
4021 case e1000_82576:
4022 case e1000_82580:
4023 case e1000_i350:
4024 case e1000_i354:
4025 case e1000_i210:
4026 default:
4027 /* If rss_queues > half of max_rss_queues, pair the queues in
4028 * order to conserve interrupts due to limited supply.
4029 */
4030 if (adapter->rss_queues > (max_rss_queues / 2))
4031 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4032 else
4033 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4034 break;
4035 }
4036 }
4037
4038 /**
4039 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4040 * @adapter: board private structure to initialize
4041 *
4042 * igb_sw_init initializes the Adapter private data structure.
4043 * Fields are initialized based on PCI device information and
4044 * OS network device settings (MTU size).
4045 **/
igb_sw_init(struct igb_adapter * adapter)4046 static int igb_sw_init(struct igb_adapter *adapter)
4047 {
4048 struct e1000_hw *hw = &adapter->hw;
4049 struct net_device *netdev = adapter->netdev;
4050 struct pci_dev *pdev = adapter->pdev;
4051
4052 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4053
4054 /* set default ring sizes */
4055 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4056 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4057
4058 /* set default ITR values */
4059 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4060 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4061
4062 /* set default work limits */
4063 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4064
4065 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4066 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4067
4068 spin_lock_init(&adapter->nfc_lock);
4069 spin_lock_init(&adapter->stats64_lock);
4070
4071 /* init spinlock to avoid concurrency of VF resources */
4072 spin_lock_init(&adapter->vfs_lock);
4073 #ifdef CONFIG_PCI_IOV
4074 switch (hw->mac.type) {
4075 case e1000_82576:
4076 case e1000_i350:
4077 if (max_vfs > 7) {
4078 dev_warn(&pdev->dev,
4079 "Maximum of 7 VFs per PF, using max\n");
4080 max_vfs = adapter->vfs_allocated_count = 7;
4081 } else
4082 adapter->vfs_allocated_count = max_vfs;
4083 if (adapter->vfs_allocated_count)
4084 dev_warn(&pdev->dev,
4085 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4086 break;
4087 default:
4088 break;
4089 }
4090 #endif /* CONFIG_PCI_IOV */
4091
4092 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4093 adapter->flags |= IGB_FLAG_HAS_MSIX;
4094
4095 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4096 sizeof(struct igb_mac_addr),
4097 GFP_KERNEL);
4098 if (!adapter->mac_table)
4099 return -ENOMEM;
4100
4101 igb_probe_vfs(adapter);
4102
4103 igb_init_queue_configuration(adapter);
4104
4105 /* Setup and initialize a copy of the hw vlan table array */
4106 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4107 GFP_KERNEL);
4108 if (!adapter->shadow_vfta)
4109 return -ENOMEM;
4110
4111 /* This call may decrease the number of queues */
4112 if (igb_init_interrupt_scheme(adapter, true)) {
4113 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4114 return -ENOMEM;
4115 }
4116
4117 /* Explicitly disable IRQ since the NIC can be in any state. */
4118 igb_irq_disable(adapter);
4119
4120 if (hw->mac.type >= e1000_i350)
4121 adapter->flags &= ~IGB_FLAG_DMAC;
4122
4123 set_bit(__IGB_DOWN, &adapter->state);
4124 return 0;
4125 }
4126
4127 /**
4128 * __igb_open - Called when a network interface is made active
4129 * @netdev: network interface device structure
4130 * @resuming: indicates whether we are in a resume call
4131 *
4132 * Returns 0 on success, negative value on failure
4133 *
4134 * The open entry point is called when a network interface is made
4135 * active by the system (IFF_UP). At this point all resources needed
4136 * for transmit and receive operations are allocated, the interrupt
4137 * handler is registered with the OS, the watchdog timer is started,
4138 * and the stack is notified that the interface is ready.
4139 **/
__igb_open(struct net_device * netdev,bool resuming)4140 static int __igb_open(struct net_device *netdev, bool resuming)
4141 {
4142 struct igb_adapter *adapter = netdev_priv(netdev);
4143 struct pci_dev *pdev = adapter->pdev;
4144 struct e1000_hw *hw = &adapter->hw;
4145 struct napi_struct *napi;
4146 int err;
4147 int i;
4148
4149 /* disallow open during test */
4150 if (test_bit(__IGB_TESTING, &adapter->state)) {
4151 WARN_ON(resuming);
4152 return -EBUSY;
4153 }
4154
4155 if (!resuming)
4156 pm_runtime_get_sync(&pdev->dev);
4157
4158 netif_carrier_off(netdev);
4159
4160 /* allocate transmit descriptors */
4161 err = igb_setup_all_tx_resources(adapter);
4162 if (err)
4163 goto err_setup_tx;
4164
4165 /* allocate receive descriptors */
4166 err = igb_setup_all_rx_resources(adapter);
4167 if (err)
4168 goto err_setup_rx;
4169
4170 igb_power_up_link(adapter);
4171
4172 /* before we allocate an interrupt, we must be ready to handle it.
4173 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4174 * as soon as we call pci_request_irq, so we have to setup our
4175 * clean_rx handler before we do so.
4176 */
4177 igb_configure(adapter);
4178
4179 err = igb_request_irq(adapter);
4180 if (err)
4181 goto err_req_irq;
4182
4183 /* Notify the stack of the actual queue counts. */
4184 err = netif_set_real_num_tx_queues(adapter->netdev,
4185 adapter->num_tx_queues);
4186 if (err)
4187 goto err_set_queues;
4188
4189 err = netif_set_real_num_rx_queues(adapter->netdev,
4190 adapter->num_rx_queues);
4191 if (err)
4192 goto err_set_queues;
4193
4194 /* From here on the code is the same as igb_up() */
4195 clear_bit(__IGB_DOWN, &adapter->state);
4196
4197 for (i = 0; i < adapter->num_q_vectors; i++) {
4198 napi = &adapter->q_vector[i]->napi;
4199 napi_enable(napi);
4200 igb_set_queue_napi(adapter, i, napi);
4201 }
4202
4203 /* Clear any pending interrupts. */
4204 rd32(E1000_TSICR);
4205 rd32(E1000_ICR);
4206
4207 igb_irq_enable(adapter);
4208
4209 /* notify VFs that reset has been completed */
4210 if (adapter->vfs_allocated_count) {
4211 u32 reg_data = rd32(E1000_CTRL_EXT);
4212
4213 reg_data |= E1000_CTRL_EXT_PFRSTD;
4214 wr32(E1000_CTRL_EXT, reg_data);
4215 }
4216
4217 netif_tx_start_all_queues(netdev);
4218
4219 if (!resuming)
4220 pm_runtime_put(&pdev->dev);
4221
4222 /* start the watchdog. */
4223 hw->mac.get_link_status = 1;
4224 schedule_work(&adapter->watchdog_task);
4225
4226 return 0;
4227
4228 err_set_queues:
4229 igb_free_irq(adapter);
4230 err_req_irq:
4231 igb_release_hw_control(adapter);
4232 igb_power_down_link(adapter);
4233 igb_free_all_rx_resources(adapter);
4234 err_setup_rx:
4235 igb_free_all_tx_resources(adapter);
4236 err_setup_tx:
4237 igb_reset(adapter);
4238 if (!resuming)
4239 pm_runtime_put(&pdev->dev);
4240
4241 return err;
4242 }
4243
igb_open(struct net_device * netdev)4244 int igb_open(struct net_device *netdev)
4245 {
4246 return __igb_open(netdev, false);
4247 }
4248
4249 /**
4250 * __igb_close - Disables a network interface
4251 * @netdev: network interface device structure
4252 * @suspending: indicates we are in a suspend call
4253 *
4254 * Returns 0, this is not allowed to fail
4255 *
4256 * The close entry point is called when an interface is de-activated
4257 * by the OS. The hardware is still under the driver's control, but
4258 * needs to be disabled. A global MAC reset is issued to stop the
4259 * hardware, and all transmit and receive resources are freed.
4260 **/
__igb_close(struct net_device * netdev,bool suspending)4261 static int __igb_close(struct net_device *netdev, bool suspending)
4262 {
4263 struct igb_adapter *adapter = netdev_priv(netdev);
4264 struct pci_dev *pdev = adapter->pdev;
4265
4266 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4267
4268 if (!suspending)
4269 pm_runtime_get_sync(&pdev->dev);
4270
4271 igb_down(adapter);
4272 igb_free_irq(adapter);
4273
4274 igb_free_all_tx_resources(adapter);
4275 igb_free_all_rx_resources(adapter);
4276
4277 if (!suspending)
4278 pm_runtime_put_sync(&pdev->dev);
4279 return 0;
4280 }
4281
igb_close(struct net_device * netdev)4282 int igb_close(struct net_device *netdev)
4283 {
4284 if (netif_device_present(netdev) || netdev->dismantle)
4285 return __igb_close(netdev, false);
4286 return 0;
4287 }
4288
4289 /**
4290 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4292 *
4293 * Return 0 on success, negative on failure
4294 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4295 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4296 {
4297 struct device *dev = tx_ring->dev;
4298 int size;
4299
4300 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4301
4302 tx_ring->tx_buffer_info = vmalloc(size);
4303 if (!tx_ring->tx_buffer_info)
4304 goto err;
4305
4306 /* round up to nearest 4K */
4307 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4308 tx_ring->size = ALIGN(tx_ring->size, 4096);
4309
4310 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4311 &tx_ring->dma, GFP_KERNEL);
4312 if (!tx_ring->desc)
4313 goto err;
4314
4315 tx_ring->next_to_use = 0;
4316 tx_ring->next_to_clean = 0;
4317
4318 return 0;
4319
4320 err:
4321 vfree(tx_ring->tx_buffer_info);
4322 tx_ring->tx_buffer_info = NULL;
4323 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4324 return -ENOMEM;
4325 }
4326
4327 /**
4328 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4329 * (Descriptors) for all queues
4330 * @adapter: board private structure
4331 *
4332 * Return 0 on success, negative on failure
4333 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4334 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4335 {
4336 struct pci_dev *pdev = adapter->pdev;
4337 int i, err = 0;
4338
4339 for (i = 0; i < adapter->num_tx_queues; i++) {
4340 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4341 if (err) {
4342 dev_err(&pdev->dev,
4343 "Allocation for Tx Queue %u failed\n", i);
4344 for (i--; i >= 0; i--)
4345 igb_free_tx_resources(adapter->tx_ring[i]);
4346 break;
4347 }
4348 }
4349
4350 return err;
4351 }
4352
4353 /**
4354 * igb_setup_tctl - configure the transmit control registers
4355 * @adapter: Board private structure
4356 **/
igb_setup_tctl(struct igb_adapter * adapter)4357 void igb_setup_tctl(struct igb_adapter *adapter)
4358 {
4359 struct e1000_hw *hw = &adapter->hw;
4360 u32 tctl;
4361
4362 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4363 wr32(E1000_TXDCTL(0), 0);
4364
4365 /* Program the Transmit Control Register */
4366 tctl = rd32(E1000_TCTL);
4367 tctl &= ~E1000_TCTL_CT;
4368 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4369 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4370
4371 igb_config_collision_dist(hw);
4372
4373 /* Enable transmits */
4374 tctl |= E1000_TCTL_EN;
4375
4376 wr32(E1000_TCTL, tctl);
4377 }
4378
4379 /**
4380 * igb_configure_tx_ring - Configure transmit ring after Reset
4381 * @adapter: board private structure
4382 * @ring: tx ring to configure
4383 *
4384 * Configure a transmit ring after a reset.
4385 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4386 void igb_configure_tx_ring(struct igb_adapter *adapter,
4387 struct igb_ring *ring)
4388 {
4389 struct e1000_hw *hw = &adapter->hw;
4390 u32 txdctl = 0;
4391 u64 tdba = ring->dma;
4392 int reg_idx = ring->reg_idx;
4393
4394 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4395
4396 wr32(E1000_TDLEN(reg_idx),
4397 ring->count * sizeof(union e1000_adv_tx_desc));
4398 wr32(E1000_TDBAL(reg_idx),
4399 tdba & 0x00000000ffffffffULL);
4400 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4401
4402 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4403 wr32(E1000_TDH(reg_idx), 0);
4404 writel(0, ring->tail);
4405
4406 txdctl |= IGB_TX_PTHRESH;
4407 txdctl |= IGB_TX_HTHRESH << 8;
4408 txdctl |= IGB_TX_WTHRESH << 16;
4409
4410 /* reinitialize tx_buffer_info */
4411 memset(ring->tx_buffer_info, 0,
4412 sizeof(struct igb_tx_buffer) * ring->count);
4413
4414 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4415 wr32(E1000_TXDCTL(reg_idx), txdctl);
4416 }
4417
4418 /**
4419 * igb_configure_tx - Configure transmit Unit after Reset
4420 * @adapter: board private structure
4421 *
4422 * Configure the Tx unit of the MAC after a reset.
4423 **/
igb_configure_tx(struct igb_adapter * adapter)4424 static void igb_configure_tx(struct igb_adapter *adapter)
4425 {
4426 struct e1000_hw *hw = &adapter->hw;
4427 int i;
4428
4429 /* disable the queues */
4430 for (i = 0; i < adapter->num_tx_queues; i++)
4431 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4432
4433 wrfl();
4434 usleep_range(10000, 20000);
4435
4436 for (i = 0; i < adapter->num_tx_queues; i++)
4437 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4438 }
4439
4440 /**
4441 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4442 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4443 *
4444 * Returns 0 on success, negative on failure
4445 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4446 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4447 {
4448 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4449 struct device *dev = rx_ring->dev;
4450 int size, res;
4451
4452 /* XDP RX-queue info */
4453 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4454 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4455 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4456 rx_ring->queue_index, 0);
4457 if (res < 0) {
4458 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4459 rx_ring->queue_index);
4460 return res;
4461 }
4462
4463 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4464
4465 rx_ring->rx_buffer_info = vmalloc(size);
4466 if (!rx_ring->rx_buffer_info)
4467 goto err;
4468
4469 /* Round up to nearest 4K */
4470 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4471 rx_ring->size = ALIGN(rx_ring->size, 4096);
4472
4473 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4474 &rx_ring->dma, GFP_KERNEL);
4475 if (!rx_ring->desc)
4476 goto err;
4477
4478 rx_ring->next_to_alloc = 0;
4479 rx_ring->next_to_clean = 0;
4480 rx_ring->next_to_use = 0;
4481
4482 rx_ring->xdp_prog = adapter->xdp_prog;
4483
4484 return 0;
4485
4486 err:
4487 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4488 vfree(rx_ring->rx_buffer_info);
4489 rx_ring->rx_buffer_info = NULL;
4490 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4491 return -ENOMEM;
4492 }
4493
4494 /**
4495 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4496 * (Descriptors) for all queues
4497 * @adapter: board private structure
4498 *
4499 * Return 0 on success, negative on failure
4500 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4501 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4502 {
4503 struct pci_dev *pdev = adapter->pdev;
4504 int i, err = 0;
4505
4506 for (i = 0; i < adapter->num_rx_queues; i++) {
4507 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4508 if (err) {
4509 dev_err(&pdev->dev,
4510 "Allocation for Rx Queue %u failed\n", i);
4511 for (i--; i >= 0; i--)
4512 igb_free_rx_resources(adapter->rx_ring[i]);
4513 break;
4514 }
4515 }
4516
4517 return err;
4518 }
4519
4520 /**
4521 * igb_setup_mrqc - configure the multiple receive queue control registers
4522 * @adapter: Board private structure
4523 **/
igb_setup_mrqc(struct igb_adapter * adapter)4524 static void igb_setup_mrqc(struct igb_adapter *adapter)
4525 {
4526 struct e1000_hw *hw = &adapter->hw;
4527 u32 mrqc, rxcsum;
4528 u32 j, num_rx_queues;
4529 u32 rss_key[10];
4530
4531 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4532 for (j = 0; j < 10; j++)
4533 wr32(E1000_RSSRK(j), rss_key[j]);
4534
4535 num_rx_queues = adapter->rss_queues;
4536
4537 switch (hw->mac.type) {
4538 case e1000_82576:
4539 /* 82576 supports 2 RSS queues for SR-IOV */
4540 if (adapter->vfs_allocated_count)
4541 num_rx_queues = 2;
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4548 for (j = 0; j < IGB_RETA_SIZE; j++)
4549 adapter->rss_indir_tbl[j] =
4550 (j * num_rx_queues) / IGB_RETA_SIZE;
4551 adapter->rss_indir_tbl_init = num_rx_queues;
4552 }
4553 igb_write_rss_indir_tbl(adapter);
4554
4555 /* Disable raw packet checksumming so that RSS hash is placed in
4556 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4557 * offloads as they are enabled by default
4558 */
4559 rxcsum = rd32(E1000_RXCSUM);
4560 rxcsum |= E1000_RXCSUM_PCSD;
4561
4562 if (adapter->hw.mac.type >= e1000_82576)
4563 /* Enable Receive Checksum Offload for SCTP */
4564 rxcsum |= E1000_RXCSUM_CRCOFL;
4565
4566 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4567 wr32(E1000_RXCSUM, rxcsum);
4568
4569 /* Generate RSS hash based on packet types, TCP/UDP
4570 * port numbers and/or IPv4/v6 src and dst addresses
4571 */
4572 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4573 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4574 E1000_MRQC_RSS_FIELD_IPV6 |
4575 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4576 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4577
4578 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4579 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4580 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4581 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4582
4583 /* If VMDq is enabled then we set the appropriate mode for that, else
4584 * we default to RSS so that an RSS hash is calculated per packet even
4585 * if we are only using one queue
4586 */
4587 if (adapter->vfs_allocated_count) {
4588 if (hw->mac.type > e1000_82575) {
4589 /* Set the default pool for the PF's first queue */
4590 u32 vtctl = rd32(E1000_VT_CTL);
4591
4592 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4593 E1000_VT_CTL_DISABLE_DEF_POOL);
4594 vtctl |= adapter->vfs_allocated_count <<
4595 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4596 wr32(E1000_VT_CTL, vtctl);
4597 }
4598 if (adapter->rss_queues > 1)
4599 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4600 else
4601 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4602 } else {
4603 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4604 }
4605 igb_vmm_control(adapter);
4606
4607 wr32(E1000_MRQC, mrqc);
4608 }
4609
4610 /**
4611 * igb_setup_rctl - configure the receive control registers
4612 * @adapter: Board private structure
4613 **/
igb_setup_rctl(struct igb_adapter * adapter)4614 void igb_setup_rctl(struct igb_adapter *adapter)
4615 {
4616 struct e1000_hw *hw = &adapter->hw;
4617 u32 rctl;
4618
4619 rctl = rd32(E1000_RCTL);
4620
4621 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4622 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4623
4624 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4625 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4626
4627 /* enable stripping of CRC. It's unlikely this will break BMC
4628 * redirection as it did with e1000. Newer features require
4629 * that the HW strips the CRC.
4630 */
4631 rctl |= E1000_RCTL_SECRC;
4632
4633 /* disable store bad packets and clear size bits. */
4634 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4635
4636 /* enable LPE to allow for reception of jumbo frames */
4637 rctl |= E1000_RCTL_LPE;
4638
4639 /* disable queue 0 to prevent tail write w/o re-config */
4640 wr32(E1000_RXDCTL(0), 0);
4641
4642 /* Attention!!! For SR-IOV PF driver operations you must enable
4643 * queue drop for all VF and PF queues to prevent head of line blocking
4644 * if an un-trusted VF does not provide descriptors to hardware.
4645 */
4646 if (adapter->vfs_allocated_count) {
4647 /* set all queue drop enable bits */
4648 wr32(E1000_QDE, ALL_QUEUES);
4649 }
4650
4651 /* This is useful for sniffing bad packets. */
4652 if (adapter->netdev->features & NETIF_F_RXALL) {
4653 /* UPE and MPE will be handled by normal PROMISC logic
4654 * in e1000e_set_rx_mode
4655 */
4656 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4657 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4658 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4659
4660 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4661 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4662 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4663 * and that breaks VLANs.
4664 */
4665 }
4666
4667 wr32(E1000_RCTL, rctl);
4668 }
4669
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4670 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4671 int vfn)
4672 {
4673 struct e1000_hw *hw = &adapter->hw;
4674 u32 vmolr;
4675
4676 if (size > MAX_JUMBO_FRAME_SIZE)
4677 size = MAX_JUMBO_FRAME_SIZE;
4678
4679 vmolr = rd32(E1000_VMOLR(vfn));
4680 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4681 vmolr |= size | E1000_VMOLR_LPE;
4682 wr32(E1000_VMOLR(vfn), vmolr);
4683
4684 return 0;
4685 }
4686
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4687 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4688 int vfn, bool enable)
4689 {
4690 struct e1000_hw *hw = &adapter->hw;
4691 u32 val, reg;
4692
4693 if (hw->mac.type < e1000_82576)
4694 return;
4695
4696 if (hw->mac.type == e1000_i350)
4697 reg = E1000_DVMOLR(vfn);
4698 else
4699 reg = E1000_VMOLR(vfn);
4700
4701 val = rd32(reg);
4702 if (enable)
4703 val |= E1000_VMOLR_STRVLAN;
4704 else
4705 val &= ~(E1000_VMOLR_STRVLAN);
4706 wr32(reg, val);
4707 }
4708
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4709 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4710 int vfn, bool aupe)
4711 {
4712 struct e1000_hw *hw = &adapter->hw;
4713 u32 vmolr;
4714
4715 /* This register exists only on 82576 and newer so if we are older then
4716 * we should exit and do nothing
4717 */
4718 if (hw->mac.type < e1000_82576)
4719 return;
4720
4721 vmolr = rd32(E1000_VMOLR(vfn));
4722 if (aupe)
4723 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4724 else
4725 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4726
4727 /* clear all bits that might not be set */
4728 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4729
4730 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4731 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4732 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4733 * multicast packets
4734 */
4735 if (vfn <= adapter->vfs_allocated_count)
4736 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4737
4738 wr32(E1000_VMOLR(vfn), vmolr);
4739 }
4740
4741 /**
4742 * igb_setup_srrctl - configure the split and replication receive control
4743 * registers
4744 * @adapter: Board private structure
4745 * @ring: receive ring to be configured
4746 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4747 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4748 {
4749 struct e1000_hw *hw = &adapter->hw;
4750 int reg_idx = ring->reg_idx;
4751 u32 srrctl = 0;
4752 u32 buf_size;
4753
4754 if (ring->xsk_pool)
4755 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4756 else if (ring_uses_large_buffer(ring))
4757 buf_size = IGB_RXBUFFER_3072;
4758 else
4759 buf_size = IGB_RXBUFFER_2048;
4760
4761 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4762 srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4763 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4764 if (hw->mac.type >= e1000_82580)
4765 srrctl |= E1000_SRRCTL_TIMESTAMP;
4766 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4767 * queues and rx flow control is disabled
4768 */
4769 if (adapter->vfs_allocated_count ||
4770 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4771 adapter->num_rx_queues > 1))
4772 srrctl |= E1000_SRRCTL_DROP_EN;
4773
4774 wr32(E1000_SRRCTL(reg_idx), srrctl);
4775 }
4776
4777 /**
4778 * igb_configure_rx_ring - Configure a receive ring after Reset
4779 * @adapter: board private structure
4780 * @ring: receive ring to be configured
4781 *
4782 * Configure the Rx unit of the MAC after a reset.
4783 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4784 void igb_configure_rx_ring(struct igb_adapter *adapter,
4785 struct igb_ring *ring)
4786 {
4787 struct e1000_hw *hw = &adapter->hw;
4788 union e1000_adv_rx_desc *rx_desc;
4789 u64 rdba = ring->dma;
4790 int reg_idx = ring->reg_idx;
4791 u32 rxdctl = 0;
4792
4793 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4794 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4795 if (ring->xsk_pool) {
4796 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4797 MEM_TYPE_XSK_BUFF_POOL,
4798 NULL));
4799 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4800 } else {
4801 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4802 MEM_TYPE_PAGE_SHARED,
4803 NULL));
4804 }
4805
4806 /* disable the queue */
4807 wr32(E1000_RXDCTL(reg_idx), 0);
4808
4809 /* Set DMA base address registers */
4810 wr32(E1000_RDBAL(reg_idx),
4811 rdba & 0x00000000ffffffffULL);
4812 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4813 wr32(E1000_RDLEN(reg_idx),
4814 ring->count * sizeof(union e1000_adv_rx_desc));
4815
4816 /* initialize head and tail */
4817 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4818 wr32(E1000_RDH(reg_idx), 0);
4819 writel(0, ring->tail);
4820
4821 /* set descriptor configuration */
4822 igb_setup_srrctl(adapter, ring);
4823
4824 /* set filtering for VMDQ pools */
4825 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4826
4827 rxdctl |= IGB_RX_PTHRESH;
4828 rxdctl |= IGB_RX_HTHRESH << 8;
4829 rxdctl |= IGB_RX_WTHRESH << 16;
4830
4831 if (ring->xsk_pool)
4832 memset(ring->rx_buffer_info_zc, 0,
4833 sizeof(*ring->rx_buffer_info_zc) * ring->count);
4834 else
4835 memset(ring->rx_buffer_info, 0,
4836 sizeof(*ring->rx_buffer_info) * ring->count);
4837
4838 /* initialize Rx descriptor 0 */
4839 rx_desc = IGB_RX_DESC(ring, 0);
4840 rx_desc->wb.upper.length = 0;
4841
4842 /* enable receive descriptor fetching */
4843 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4844 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4845 }
4846
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4847 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4848 struct igb_ring *rx_ring)
4849 {
4850 #if (PAGE_SIZE < 8192)
4851 struct e1000_hw *hw = &adapter->hw;
4852 #endif
4853
4854 /* set build_skb and buffer size flags */
4855 clear_ring_build_skb_enabled(rx_ring);
4856 clear_ring_uses_large_buffer(rx_ring);
4857
4858 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4859 return;
4860
4861 set_ring_build_skb_enabled(rx_ring);
4862
4863 #if (PAGE_SIZE < 8192)
4864 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4865 IGB_2K_TOO_SMALL_WITH_PADDING ||
4866 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4867 set_ring_uses_large_buffer(rx_ring);
4868 #endif
4869 }
4870
4871 /**
4872 * igb_configure_rx - Configure receive Unit after Reset
4873 * @adapter: board private structure
4874 *
4875 * Configure the Rx unit of the MAC after a reset.
4876 **/
igb_configure_rx(struct igb_adapter * adapter)4877 static void igb_configure_rx(struct igb_adapter *adapter)
4878 {
4879 int i;
4880
4881 /* set the correct pool for the PF default MAC address in entry 0 */
4882 igb_set_default_mac_filter(adapter);
4883
4884 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4885 * the Base and Length of the Rx Descriptor Ring
4886 */
4887 for (i = 0; i < adapter->num_rx_queues; i++) {
4888 struct igb_ring *rx_ring = adapter->rx_ring[i];
4889
4890 igb_set_rx_buffer_len(adapter, rx_ring);
4891 igb_configure_rx_ring(adapter, rx_ring);
4892 }
4893 }
4894
4895 /**
4896 * igb_free_tx_resources - Free Tx Resources per Queue
4897 * @tx_ring: Tx descriptor ring for a specific queue
4898 *
4899 * Free all transmit software resources
4900 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4901 void igb_free_tx_resources(struct igb_ring *tx_ring)
4902 {
4903 igb_clean_tx_ring(tx_ring);
4904
4905 vfree(tx_ring->tx_buffer_info);
4906 tx_ring->tx_buffer_info = NULL;
4907
4908 /* if not set, then don't free */
4909 if (!tx_ring->desc)
4910 return;
4911
4912 dma_free_coherent(tx_ring->dev, tx_ring->size,
4913 tx_ring->desc, tx_ring->dma);
4914
4915 tx_ring->desc = NULL;
4916 }
4917
4918 /**
4919 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4920 * @adapter: board private structure
4921 *
4922 * Free all transmit software resources
4923 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4924 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4925 {
4926 int i;
4927
4928 for (i = 0; i < adapter->num_tx_queues; i++)
4929 if (adapter->tx_ring[i])
4930 igb_free_tx_resources(adapter->tx_ring[i]);
4931 }
4932
4933 /**
4934 * igb_clean_tx_ring - Free Tx Buffers
4935 * @tx_ring: ring to be cleaned
4936 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4937 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4938 {
4939 u16 i = tx_ring->next_to_clean;
4940 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4941 u32 xsk_frames = 0;
4942
4943 while (i != tx_ring->next_to_use) {
4944 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4945
4946 /* Free all the Tx ring sk_buffs or xdp frames */
4947 if (tx_buffer->type == IGB_TYPE_SKB) {
4948 dev_kfree_skb_any(tx_buffer->skb);
4949 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4950 xdp_return_frame(tx_buffer->xdpf);
4951 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4952 xsk_frames++;
4953 goto skip_for_xsk;
4954 }
4955
4956 /* unmap skb header data */
4957 dma_unmap_single(tx_ring->dev,
4958 dma_unmap_addr(tx_buffer, dma),
4959 dma_unmap_len(tx_buffer, len),
4960 DMA_TO_DEVICE);
4961
4962 /* check for eop_desc to determine the end of the packet */
4963 eop_desc = tx_buffer->next_to_watch;
4964 tx_desc = IGB_TX_DESC(tx_ring, i);
4965
4966 /* unmap remaining buffers */
4967 while (tx_desc != eop_desc) {
4968 tx_buffer++;
4969 tx_desc++;
4970 i++;
4971 if (unlikely(i == tx_ring->count)) {
4972 i = 0;
4973 tx_buffer = tx_ring->tx_buffer_info;
4974 tx_desc = IGB_TX_DESC(tx_ring, 0);
4975 }
4976
4977 /* unmap any remaining paged data */
4978 if (dma_unmap_len(tx_buffer, len))
4979 dma_unmap_page(tx_ring->dev,
4980 dma_unmap_addr(tx_buffer, dma),
4981 dma_unmap_len(tx_buffer, len),
4982 DMA_TO_DEVICE);
4983 }
4984
4985 skip_for_xsk:
4986 tx_buffer->next_to_watch = NULL;
4987
4988 /* move us one more past the eop_desc for start of next pkt */
4989 tx_buffer++;
4990 i++;
4991 if (unlikely(i == tx_ring->count)) {
4992 i = 0;
4993 tx_buffer = tx_ring->tx_buffer_info;
4994 }
4995 }
4996
4997 /* reset BQL for queue */
4998 netdev_tx_reset_queue(txring_txq(tx_ring));
4999
5000 if (tx_ring->xsk_pool && xsk_frames)
5001 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5002
5003 /* reset next_to_use and next_to_clean */
5004 tx_ring->next_to_use = 0;
5005 tx_ring->next_to_clean = 0;
5006 }
5007
5008 /**
5009 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
5010 * @adapter: board private structure
5011 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)5012 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5013 {
5014 int i;
5015
5016 for (i = 0; i < adapter->num_tx_queues; i++)
5017 if (adapter->tx_ring[i])
5018 igb_clean_tx_ring(adapter->tx_ring[i]);
5019 }
5020
5021 /**
5022 * igb_free_rx_resources - Free Rx Resources
5023 * @rx_ring: ring to clean the resources from
5024 *
5025 * Free all receive software resources
5026 **/
igb_free_rx_resources(struct igb_ring * rx_ring)5027 void igb_free_rx_resources(struct igb_ring *rx_ring)
5028 {
5029 igb_clean_rx_ring(rx_ring);
5030
5031 rx_ring->xdp_prog = NULL;
5032 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5033 if (rx_ring->xsk_pool) {
5034 vfree(rx_ring->rx_buffer_info_zc);
5035 rx_ring->rx_buffer_info_zc = NULL;
5036 } else {
5037 vfree(rx_ring->rx_buffer_info);
5038 rx_ring->rx_buffer_info = NULL;
5039 }
5040
5041 /* if not set, then don't free */
5042 if (!rx_ring->desc)
5043 return;
5044
5045 dma_free_coherent(rx_ring->dev, rx_ring->size,
5046 rx_ring->desc, rx_ring->dma);
5047
5048 rx_ring->desc = NULL;
5049 }
5050
5051 /**
5052 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5053 * @adapter: board private structure
5054 *
5055 * Free all receive software resources
5056 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5057 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5058 {
5059 int i;
5060
5061 for (i = 0; i < adapter->num_rx_queues; i++)
5062 if (adapter->rx_ring[i])
5063 igb_free_rx_resources(adapter->rx_ring[i]);
5064 }
5065
5066 /**
5067 * igb_clean_rx_ring - Free Rx Buffers per Queue
5068 * @rx_ring: ring to free buffers from
5069 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5070 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5071 {
5072 u16 i = rx_ring->next_to_clean;
5073
5074 dev_kfree_skb(rx_ring->skb);
5075 rx_ring->skb = NULL;
5076
5077 if (rx_ring->xsk_pool) {
5078 igb_clean_rx_ring_zc(rx_ring);
5079 goto skip_for_xsk;
5080 }
5081
5082 /* Free all the Rx ring sk_buffs */
5083 while (i != rx_ring->next_to_alloc) {
5084 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5085
5086 /* Invalidate cache lines that may have been written to by
5087 * device so that we avoid corrupting memory.
5088 */
5089 dma_sync_single_range_for_cpu(rx_ring->dev,
5090 buffer_info->dma,
5091 buffer_info->page_offset,
5092 igb_rx_bufsz(rx_ring),
5093 DMA_FROM_DEVICE);
5094
5095 /* free resources associated with mapping */
5096 dma_unmap_page_attrs(rx_ring->dev,
5097 buffer_info->dma,
5098 igb_rx_pg_size(rx_ring),
5099 DMA_FROM_DEVICE,
5100 IGB_RX_DMA_ATTR);
5101 __page_frag_cache_drain(buffer_info->page,
5102 buffer_info->pagecnt_bias);
5103
5104 i++;
5105 if (i == rx_ring->count)
5106 i = 0;
5107 }
5108
5109 skip_for_xsk:
5110 rx_ring->next_to_alloc = 0;
5111 rx_ring->next_to_clean = 0;
5112 rx_ring->next_to_use = 0;
5113 }
5114
5115 /**
5116 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5117 * @adapter: board private structure
5118 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5119 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5120 {
5121 int i;
5122
5123 for (i = 0; i < adapter->num_rx_queues; i++)
5124 if (adapter->rx_ring[i])
5125 igb_clean_rx_ring(adapter->rx_ring[i]);
5126 }
5127
5128 /**
5129 * igb_set_mac - Change the Ethernet Address of the NIC
5130 * @netdev: network interface device structure
5131 * @p: pointer to an address structure
5132 *
5133 * Returns 0 on success, negative on failure
5134 **/
igb_set_mac(struct net_device * netdev,void * p)5135 static int igb_set_mac(struct net_device *netdev, void *p)
5136 {
5137 struct igb_adapter *adapter = netdev_priv(netdev);
5138 struct e1000_hw *hw = &adapter->hw;
5139 struct sockaddr *addr = p;
5140
5141 if (!is_valid_ether_addr(addr->sa_data))
5142 return -EADDRNOTAVAIL;
5143
5144 eth_hw_addr_set(netdev, addr->sa_data);
5145 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5146
5147 /* set the correct pool for the new PF MAC address in entry 0 */
5148 igb_set_default_mac_filter(adapter);
5149
5150 return 0;
5151 }
5152
5153 /**
5154 * igb_write_mc_addr_list - write multicast addresses to MTA
5155 * @netdev: network interface device structure
5156 *
5157 * Writes multicast address list to the MTA hash table.
5158 * Returns: -ENOMEM on failure
5159 * 0 on no addresses written
5160 * X on writing X addresses to MTA
5161 **/
igb_write_mc_addr_list(struct net_device * netdev)5162 static int igb_write_mc_addr_list(struct net_device *netdev)
5163 {
5164 struct igb_adapter *adapter = netdev_priv(netdev);
5165 struct e1000_hw *hw = &adapter->hw;
5166 struct netdev_hw_addr *ha;
5167 u8 *mta_list;
5168 int i;
5169
5170 if (netdev_mc_empty(netdev)) {
5171 /* nothing to program, so clear mc list */
5172 igb_update_mc_addr_list(hw, NULL, 0);
5173 igb_restore_vf_multicasts(adapter);
5174 return 0;
5175 }
5176
5177 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5178 if (!mta_list)
5179 return -ENOMEM;
5180
5181 /* The shared function expects a packed array of only addresses. */
5182 i = 0;
5183 netdev_for_each_mc_addr(ha, netdev)
5184 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5185
5186 igb_update_mc_addr_list(hw, mta_list, i);
5187 kfree(mta_list);
5188
5189 return netdev_mc_count(netdev);
5190 }
5191
igb_vlan_promisc_enable(struct igb_adapter * adapter)5192 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5193 {
5194 struct e1000_hw *hw = &adapter->hw;
5195 u32 i, pf_id;
5196
5197 switch (hw->mac.type) {
5198 case e1000_i210:
5199 case e1000_i211:
5200 case e1000_i350:
5201 /* VLAN filtering needed for VLAN prio filter */
5202 if (adapter->netdev->features & NETIF_F_NTUPLE)
5203 break;
5204 fallthrough;
5205 case e1000_82576:
5206 case e1000_82580:
5207 case e1000_i354:
5208 /* VLAN filtering needed for pool filtering */
5209 if (adapter->vfs_allocated_count)
5210 break;
5211 fallthrough;
5212 default:
5213 return 1;
5214 }
5215
5216 /* We are already in VLAN promisc, nothing to do */
5217 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5218 return 0;
5219
5220 if (!adapter->vfs_allocated_count)
5221 goto set_vfta;
5222
5223 /* Add PF to all active pools */
5224 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5225
5226 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5227 u32 vlvf = rd32(E1000_VLVF(i));
5228
5229 vlvf |= BIT(pf_id);
5230 wr32(E1000_VLVF(i), vlvf);
5231 }
5232
5233 set_vfta:
5234 /* Set all bits in the VLAN filter table array */
5235 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5236 hw->mac.ops.write_vfta(hw, i, ~0U);
5237
5238 /* Set flag so we don't redo unnecessary work */
5239 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5240
5241 return 0;
5242 }
5243
5244 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5245 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5246 {
5247 struct e1000_hw *hw = &adapter->hw;
5248 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5249 u32 vid_start = vfta_offset * 32;
5250 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5251 u32 i, vid, word, bits, pf_id;
5252
5253 /* guarantee that we don't scrub out management VLAN */
5254 vid = adapter->mng_vlan_id;
5255 if (vid >= vid_start && vid < vid_end)
5256 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5257
5258 if (!adapter->vfs_allocated_count)
5259 goto set_vfta;
5260
5261 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5262
5263 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5264 u32 vlvf = rd32(E1000_VLVF(i));
5265
5266 /* pull VLAN ID from VLVF */
5267 vid = vlvf & VLAN_VID_MASK;
5268
5269 /* only concern ourselves with a certain range */
5270 if (vid < vid_start || vid >= vid_end)
5271 continue;
5272
5273 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5274 /* record VLAN ID in VFTA */
5275 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5276
5277 /* if PF is part of this then continue */
5278 if (test_bit(vid, adapter->active_vlans))
5279 continue;
5280 }
5281
5282 /* remove PF from the pool */
5283 bits = ~BIT(pf_id);
5284 bits &= rd32(E1000_VLVF(i));
5285 wr32(E1000_VLVF(i), bits);
5286 }
5287
5288 set_vfta:
5289 /* extract values from active_vlans and write back to VFTA */
5290 for (i = VFTA_BLOCK_SIZE; i--;) {
5291 vid = (vfta_offset + i) * 32;
5292 word = vid / BITS_PER_LONG;
5293 bits = vid % BITS_PER_LONG;
5294
5295 vfta[i] |= adapter->active_vlans[word] >> bits;
5296
5297 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5298 }
5299 }
5300
igb_vlan_promisc_disable(struct igb_adapter * adapter)5301 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5302 {
5303 u32 i;
5304
5305 /* We are not in VLAN promisc, nothing to do */
5306 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5307 return;
5308
5309 /* Set flag so we don't redo unnecessary work */
5310 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5311
5312 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5313 igb_scrub_vfta(adapter, i);
5314 }
5315
5316 /**
5317 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5318 * @netdev: network interface device structure
5319 *
5320 * The set_rx_mode entry point is called whenever the unicast or multicast
5321 * address lists or the network interface flags are updated. This routine is
5322 * responsible for configuring the hardware for proper unicast, multicast,
5323 * promiscuous mode, and all-multi behavior.
5324 **/
igb_set_rx_mode(struct net_device * netdev)5325 static void igb_set_rx_mode(struct net_device *netdev)
5326 {
5327 struct igb_adapter *adapter = netdev_priv(netdev);
5328 struct e1000_hw *hw = &adapter->hw;
5329 unsigned int vfn = adapter->vfs_allocated_count;
5330 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5331 int count;
5332
5333 /* Check for Promiscuous and All Multicast modes */
5334 if (netdev->flags & IFF_PROMISC) {
5335 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5336 vmolr |= E1000_VMOLR_MPME;
5337
5338 /* enable use of UTA filter to force packets to default pool */
5339 if (hw->mac.type == e1000_82576)
5340 vmolr |= E1000_VMOLR_ROPE;
5341 } else {
5342 if (netdev->flags & IFF_ALLMULTI) {
5343 rctl |= E1000_RCTL_MPE;
5344 vmolr |= E1000_VMOLR_MPME;
5345 } else {
5346 /* Write addresses to the MTA, if the attempt fails
5347 * then we should just turn on promiscuous mode so
5348 * that we can at least receive multicast traffic
5349 */
5350 count = igb_write_mc_addr_list(netdev);
5351 if (count < 0) {
5352 rctl |= E1000_RCTL_MPE;
5353 vmolr |= E1000_VMOLR_MPME;
5354 } else if (count) {
5355 vmolr |= E1000_VMOLR_ROMPE;
5356 }
5357 }
5358 }
5359
5360 /* Write addresses to available RAR registers, if there is not
5361 * sufficient space to store all the addresses then enable
5362 * unicast promiscuous mode
5363 */
5364 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5365 rctl |= E1000_RCTL_UPE;
5366 vmolr |= E1000_VMOLR_ROPE;
5367 }
5368
5369 /* enable VLAN filtering by default */
5370 rctl |= E1000_RCTL_VFE;
5371
5372 /* disable VLAN filtering for modes that require it */
5373 if ((netdev->flags & IFF_PROMISC) ||
5374 (netdev->features & NETIF_F_RXALL)) {
5375 /* if we fail to set all rules then just clear VFE */
5376 if (igb_vlan_promisc_enable(adapter))
5377 rctl &= ~E1000_RCTL_VFE;
5378 } else {
5379 igb_vlan_promisc_disable(adapter);
5380 }
5381
5382 /* update state of unicast, multicast, and VLAN filtering modes */
5383 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5384 E1000_RCTL_VFE);
5385 wr32(E1000_RCTL, rctl);
5386
5387 #if (PAGE_SIZE < 8192)
5388 if (!adapter->vfs_allocated_count) {
5389 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5390 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5391 }
5392 #endif
5393 wr32(E1000_RLPML, rlpml);
5394
5395 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5396 * the VMOLR to enable the appropriate modes. Without this workaround
5397 * we will have issues with VLAN tag stripping not being done for frames
5398 * that are only arriving because we are the default pool
5399 */
5400 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5401 return;
5402
5403 /* set UTA to appropriate mode */
5404 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5405
5406 vmolr |= rd32(E1000_VMOLR(vfn)) &
5407 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5408
5409 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5410 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5411 #if (PAGE_SIZE < 8192)
5412 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5413 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5414 else
5415 #endif
5416 vmolr |= MAX_JUMBO_FRAME_SIZE;
5417 vmolr |= E1000_VMOLR_LPE;
5418
5419 wr32(E1000_VMOLR(vfn), vmolr);
5420
5421 igb_restore_vf_multicasts(adapter);
5422 }
5423
igb_check_wvbr(struct igb_adapter * adapter)5424 static void igb_check_wvbr(struct igb_adapter *adapter)
5425 {
5426 struct e1000_hw *hw = &adapter->hw;
5427 u32 wvbr = 0;
5428
5429 switch (hw->mac.type) {
5430 case e1000_82576:
5431 case e1000_i350:
5432 wvbr = rd32(E1000_WVBR);
5433 if (!wvbr)
5434 return;
5435 break;
5436 default:
5437 break;
5438 }
5439
5440 adapter->wvbr |= wvbr;
5441 }
5442
5443 #define IGB_STAGGERED_QUEUE_OFFSET 8
5444
igb_spoof_check(struct igb_adapter * adapter)5445 static void igb_spoof_check(struct igb_adapter *adapter)
5446 {
5447 int j;
5448
5449 if (!adapter->wvbr)
5450 return;
5451
5452 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5453 if (adapter->wvbr & BIT(j) ||
5454 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5455 dev_warn(&adapter->pdev->dev,
5456 "Spoof event(s) detected on VF %d\n", j);
5457 adapter->wvbr &=
5458 ~(BIT(j) |
5459 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5460 }
5461 }
5462 }
5463
5464 /* Need to wait a few seconds after link up to get diagnostic information from
5465 * the phy
5466 */
igb_update_phy_info(struct timer_list * t)5467 static void igb_update_phy_info(struct timer_list *t)
5468 {
5469 struct igb_adapter *adapter = timer_container_of(adapter, t,
5470 phy_info_timer);
5471 igb_get_phy_info(&adapter->hw);
5472 }
5473
5474 /**
5475 * igb_has_link - check shared code for link and determine up/down
5476 * @adapter: pointer to driver private info
5477 **/
igb_has_link(struct igb_adapter * adapter)5478 bool igb_has_link(struct igb_adapter *adapter)
5479 {
5480 struct e1000_hw *hw = &adapter->hw;
5481 bool link_active = false;
5482
5483 /* get_link_status is set on LSC (link status) interrupt or
5484 * rx sequence error interrupt. get_link_status will stay
5485 * false until the e1000_check_for_link establishes link
5486 * for copper adapters ONLY
5487 */
5488 switch (hw->phy.media_type) {
5489 case e1000_media_type_copper:
5490 if (!hw->mac.get_link_status)
5491 return true;
5492 fallthrough;
5493 case e1000_media_type_internal_serdes:
5494 hw->mac.ops.check_for_link(hw);
5495 link_active = !hw->mac.get_link_status;
5496 break;
5497 default:
5498 case e1000_media_type_unknown:
5499 break;
5500 }
5501
5502 if (((hw->mac.type == e1000_i210) ||
5503 (hw->mac.type == e1000_i211)) &&
5504 (hw->phy.id == I210_I_PHY_ID)) {
5505 if (!netif_carrier_ok(adapter->netdev)) {
5506 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5507 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5508 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5509 adapter->link_check_timeout = jiffies;
5510 }
5511 }
5512
5513 return link_active;
5514 }
5515
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5516 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5517 {
5518 bool ret = false;
5519 u32 ctrl_ext, thstat;
5520
5521 /* check for thermal sensor event on i350 copper only */
5522 if (hw->mac.type == e1000_i350) {
5523 thstat = rd32(E1000_THSTAT);
5524 ctrl_ext = rd32(E1000_CTRL_EXT);
5525
5526 if ((hw->phy.media_type == e1000_media_type_copper) &&
5527 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5528 ret = !!(thstat & event);
5529 }
5530
5531 return ret;
5532 }
5533
5534 /**
5535 * igb_check_lvmmc - check for malformed packets received
5536 * and indicated in LVMMC register
5537 * @adapter: pointer to adapter
5538 **/
igb_check_lvmmc(struct igb_adapter * adapter)5539 static void igb_check_lvmmc(struct igb_adapter *adapter)
5540 {
5541 struct e1000_hw *hw = &adapter->hw;
5542 u32 lvmmc;
5543
5544 lvmmc = rd32(E1000_LVMMC);
5545 if (lvmmc) {
5546 if (unlikely(net_ratelimit())) {
5547 netdev_warn(adapter->netdev,
5548 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5549 lvmmc);
5550 }
5551 }
5552 }
5553
5554 /**
5555 * igb_watchdog - Timer Call-back
5556 * @t: pointer to timer_list containing our private info pointer
5557 **/
igb_watchdog(struct timer_list * t)5558 static void igb_watchdog(struct timer_list *t)
5559 {
5560 struct igb_adapter *adapter = timer_container_of(adapter, t,
5561 watchdog_timer);
5562 /* Do the rest outside of interrupt context */
5563 schedule_work(&adapter->watchdog_task);
5564 }
5565
igb_watchdog_task(struct work_struct * work)5566 static void igb_watchdog_task(struct work_struct *work)
5567 {
5568 struct igb_adapter *adapter = container_of(work,
5569 struct igb_adapter,
5570 watchdog_task);
5571 struct e1000_hw *hw = &adapter->hw;
5572 struct e1000_phy_info *phy = &hw->phy;
5573 struct net_device *netdev = adapter->netdev;
5574 u32 link;
5575 int i;
5576 u32 connsw;
5577 u16 phy_data, retry_count = 20;
5578
5579 link = igb_has_link(adapter);
5580
5581 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5582 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5583 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5584 else
5585 link = false;
5586 }
5587
5588 /* Force link down if we have fiber to swap to */
5589 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5590 if (hw->phy.media_type == e1000_media_type_copper) {
5591 connsw = rd32(E1000_CONNSW);
5592 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5593 link = 0;
5594 }
5595 }
5596 if (link) {
5597 /* Perform a reset if the media type changed. */
5598 if (hw->dev_spec._82575.media_changed) {
5599 hw->dev_spec._82575.media_changed = false;
5600 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5601 igb_reset(adapter);
5602 }
5603 /* Cancel scheduled suspend requests. */
5604 pm_runtime_resume(netdev->dev.parent);
5605
5606 if (!netif_carrier_ok(netdev)) {
5607 u32 ctrl;
5608
5609 hw->mac.ops.get_speed_and_duplex(hw,
5610 &adapter->link_speed,
5611 &adapter->link_duplex);
5612
5613 ctrl = rd32(E1000_CTRL);
5614 /* Links status message must follow this format */
5615 netdev_info(netdev,
5616 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5617 netdev->name,
5618 adapter->link_speed,
5619 adapter->link_duplex == FULL_DUPLEX ?
5620 "Full" : "Half",
5621 (ctrl & E1000_CTRL_TFCE) &&
5622 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5623 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5624 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5625
5626 /* disable EEE if enabled */
5627 if ((adapter->flags & IGB_FLAG_EEE) &&
5628 (adapter->link_duplex == HALF_DUPLEX)) {
5629 dev_info(&adapter->pdev->dev,
5630 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5631 adapter->hw.dev_spec._82575.eee_disable = true;
5632 adapter->flags &= ~IGB_FLAG_EEE;
5633 }
5634
5635 /* check if SmartSpeed worked */
5636 igb_check_downshift(hw);
5637 if (phy->speed_downgraded)
5638 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5639
5640 /* check for thermal sensor event */
5641 if (igb_thermal_sensor_event(hw,
5642 E1000_THSTAT_LINK_THROTTLE))
5643 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5644
5645 /* adjust timeout factor according to speed/duplex */
5646 adapter->tx_timeout_factor = 1;
5647 switch (adapter->link_speed) {
5648 case SPEED_10:
5649 adapter->tx_timeout_factor = 14;
5650 break;
5651 case SPEED_100:
5652 /* maybe add some timeout factor ? */
5653 break;
5654 }
5655
5656 if (adapter->link_speed != SPEED_1000 ||
5657 !hw->phy.ops.read_reg)
5658 goto no_wait;
5659
5660 /* wait for Remote receiver status OK */
5661 retry_read_status:
5662 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5663 &phy_data)) {
5664 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5665 retry_count) {
5666 msleep(100);
5667 retry_count--;
5668 goto retry_read_status;
5669 } else if (!retry_count) {
5670 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5671 }
5672 } else {
5673 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5674 }
5675 no_wait:
5676 netif_carrier_on(netdev);
5677
5678 igb_ping_all_vfs(adapter);
5679 igb_check_vf_rate_limit(adapter);
5680
5681 /* link state has changed, schedule phy info update */
5682 if (!test_bit(__IGB_DOWN, &adapter->state))
5683 mod_timer(&adapter->phy_info_timer,
5684 round_jiffies(jiffies + 2 * HZ));
5685 }
5686 } else {
5687 if (netif_carrier_ok(netdev)) {
5688 adapter->link_speed = 0;
5689 adapter->link_duplex = 0;
5690
5691 /* check for thermal sensor event */
5692 if (igb_thermal_sensor_event(hw,
5693 E1000_THSTAT_PWR_DOWN)) {
5694 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5695 }
5696
5697 /* Links status message must follow this format */
5698 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5699 netdev->name);
5700 netif_carrier_off(netdev);
5701
5702 igb_ping_all_vfs(adapter);
5703
5704 /* link state has changed, schedule phy info update */
5705 if (!test_bit(__IGB_DOWN, &adapter->state))
5706 mod_timer(&adapter->phy_info_timer,
5707 round_jiffies(jiffies + 2 * HZ));
5708
5709 /* link is down, time to check for alternate media */
5710 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5711 igb_check_swap_media(adapter);
5712 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5713 schedule_work(&adapter->reset_task);
5714 /* return immediately */
5715 return;
5716 }
5717 }
5718 pm_schedule_suspend(netdev->dev.parent,
5719 MSEC_PER_SEC * 5);
5720
5721 /* also check for alternate media here */
5722 } else if (!netif_carrier_ok(netdev) &&
5723 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5724 igb_check_swap_media(adapter);
5725 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5726 schedule_work(&adapter->reset_task);
5727 /* return immediately */
5728 return;
5729 }
5730 }
5731 }
5732
5733 spin_lock(&adapter->stats64_lock);
5734 igb_update_stats(adapter);
5735 spin_unlock(&adapter->stats64_lock);
5736
5737 for (i = 0; i < adapter->num_tx_queues; i++) {
5738 struct igb_ring *tx_ring = adapter->tx_ring[i];
5739 if (!netif_carrier_ok(netdev)) {
5740 /* We've lost link, so the controller stops DMA,
5741 * but we've got queued Tx work that's never going
5742 * to get done, so reset controller to flush Tx.
5743 * (Do the reset outside of interrupt context).
5744 */
5745 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5746 adapter->tx_timeout_count++;
5747 schedule_work(&adapter->reset_task);
5748 /* return immediately since reset is imminent */
5749 return;
5750 }
5751 }
5752
5753 /* Force detection of hung controller every watchdog period */
5754 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5755 }
5756
5757 /* Cause software interrupt to ensure Rx ring is cleaned */
5758 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5759 u32 eics = 0;
5760
5761 for (i = 0; i < adapter->num_q_vectors; i++) {
5762 struct igb_q_vector *q_vector = adapter->q_vector[i];
5763 struct igb_ring *rx_ring;
5764
5765 if (!q_vector->rx.ring)
5766 continue;
5767
5768 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5769
5770 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5771 eics |= q_vector->eims_value;
5772 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5773 }
5774 }
5775 if (eics)
5776 wr32(E1000_EICS, eics);
5777 } else {
5778 struct igb_ring *rx_ring = adapter->rx_ring[0];
5779
5780 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5781 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5782 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5783 }
5784 }
5785
5786 igb_spoof_check(adapter);
5787 igb_ptp_rx_hang(adapter);
5788 igb_ptp_tx_hang(adapter);
5789
5790 /* Check LVMMC register on i350/i354 only */
5791 if ((adapter->hw.mac.type == e1000_i350) ||
5792 (adapter->hw.mac.type == e1000_i354))
5793 igb_check_lvmmc(adapter);
5794
5795 /* Reset the timer */
5796 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5797 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5798 mod_timer(&adapter->watchdog_timer,
5799 round_jiffies(jiffies + HZ));
5800 else
5801 mod_timer(&adapter->watchdog_timer,
5802 round_jiffies(jiffies + 2 * HZ));
5803 }
5804 }
5805
5806 enum latency_range {
5807 lowest_latency = 0,
5808 low_latency = 1,
5809 bulk_latency = 2,
5810 latency_invalid = 255
5811 };
5812
5813 /**
5814 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5815 * @q_vector: pointer to q_vector
5816 *
5817 * Stores a new ITR value based on strictly on packet size. This
5818 * algorithm is less sophisticated than that used in igb_update_itr,
5819 * due to the difficulty of synchronizing statistics across multiple
5820 * receive rings. The divisors and thresholds used by this function
5821 * were determined based on theoretical maximum wire speed and testing
5822 * data, in order to minimize response time while increasing bulk
5823 * throughput.
5824 * This functionality is controlled by ethtool's coalescing settings.
5825 * NOTE: This function is called only when operating in a multiqueue
5826 * receive environment.
5827 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5828 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5829 {
5830 int new_val = q_vector->itr_val;
5831 int avg_wire_size = 0;
5832 struct igb_adapter *adapter = q_vector->adapter;
5833 unsigned int packets;
5834
5835 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5836 * ints/sec - ITR timer value of 120 ticks.
5837 */
5838 if (adapter->link_speed != SPEED_1000) {
5839 new_val = IGB_4K_ITR;
5840 goto set_itr_val;
5841 }
5842
5843 packets = q_vector->rx.total_packets;
5844 if (packets)
5845 avg_wire_size = q_vector->rx.total_bytes / packets;
5846
5847 packets = q_vector->tx.total_packets;
5848 if (packets)
5849 avg_wire_size = max_t(u32, avg_wire_size,
5850 q_vector->tx.total_bytes / packets);
5851
5852 /* if avg_wire_size isn't set no work was done */
5853 if (!avg_wire_size)
5854 goto clear_counts;
5855
5856 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5857 avg_wire_size += 24;
5858
5859 /* Don't starve jumbo frames */
5860 avg_wire_size = min(avg_wire_size, 3000);
5861
5862 /* Give a little boost to mid-size frames */
5863 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5864 new_val = avg_wire_size / 3;
5865 else
5866 new_val = avg_wire_size / 2;
5867
5868 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5869 if (new_val < IGB_20K_ITR &&
5870 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5871 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5872 new_val = IGB_20K_ITR;
5873
5874 set_itr_val:
5875 if (new_val != q_vector->itr_val) {
5876 q_vector->itr_val = new_val;
5877 q_vector->set_itr = 1;
5878 }
5879 clear_counts:
5880 q_vector->rx.total_bytes = 0;
5881 q_vector->rx.total_packets = 0;
5882 q_vector->tx.total_bytes = 0;
5883 q_vector->tx.total_packets = 0;
5884 }
5885
5886 /**
5887 * igb_update_itr - update the dynamic ITR value based on statistics
5888 * @q_vector: pointer to q_vector
5889 * @ring_container: ring info to update the itr for
5890 *
5891 * Stores a new ITR value based on packets and byte
5892 * counts during the last interrupt. The advantage of per interrupt
5893 * computation is faster updates and more accurate ITR for the current
5894 * traffic pattern. Constants in this function were computed
5895 * based on theoretical maximum wire speed and thresholds were set based
5896 * on testing data as well as attempting to minimize response time
5897 * while increasing bulk throughput.
5898 * This functionality is controlled by ethtool's coalescing settings.
5899 * NOTE: These calculations are only valid when operating in a single-
5900 * queue environment.
5901 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5902 static void igb_update_itr(struct igb_q_vector *q_vector,
5903 struct igb_ring_container *ring_container)
5904 {
5905 unsigned int packets = ring_container->total_packets;
5906 unsigned int bytes = ring_container->total_bytes;
5907 u8 itrval = ring_container->itr;
5908
5909 /* no packets, exit with status unchanged */
5910 if (packets == 0)
5911 return;
5912
5913 switch (itrval) {
5914 case lowest_latency:
5915 /* handle TSO and jumbo frames */
5916 if (bytes/packets > 8000)
5917 itrval = bulk_latency;
5918 else if ((packets < 5) && (bytes > 512))
5919 itrval = low_latency;
5920 break;
5921 case low_latency: /* 50 usec aka 20000 ints/s */
5922 if (bytes > 10000) {
5923 /* this if handles the TSO accounting */
5924 if (bytes/packets > 8000)
5925 itrval = bulk_latency;
5926 else if ((packets < 10) || ((bytes/packets) > 1200))
5927 itrval = bulk_latency;
5928 else if ((packets > 35))
5929 itrval = lowest_latency;
5930 } else if (bytes/packets > 2000) {
5931 itrval = bulk_latency;
5932 } else if (packets <= 2 && bytes < 512) {
5933 itrval = lowest_latency;
5934 }
5935 break;
5936 case bulk_latency: /* 250 usec aka 4000 ints/s */
5937 if (bytes > 25000) {
5938 if (packets > 35)
5939 itrval = low_latency;
5940 } else if (bytes < 1500) {
5941 itrval = low_latency;
5942 }
5943 break;
5944 }
5945
5946 /* clear work counters since we have the values we need */
5947 ring_container->total_bytes = 0;
5948 ring_container->total_packets = 0;
5949
5950 /* write updated itr to ring container */
5951 ring_container->itr = itrval;
5952 }
5953
igb_set_itr(struct igb_q_vector * q_vector)5954 static void igb_set_itr(struct igb_q_vector *q_vector)
5955 {
5956 struct igb_adapter *adapter = q_vector->adapter;
5957 u32 new_itr = q_vector->itr_val;
5958 u8 current_itr = 0;
5959
5960 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5961 if (adapter->link_speed != SPEED_1000) {
5962 current_itr = 0;
5963 new_itr = IGB_4K_ITR;
5964 goto set_itr_now;
5965 }
5966
5967 igb_update_itr(q_vector, &q_vector->tx);
5968 igb_update_itr(q_vector, &q_vector->rx);
5969
5970 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5971
5972 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5973 if (current_itr == lowest_latency &&
5974 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5975 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5976 current_itr = low_latency;
5977
5978 switch (current_itr) {
5979 /* counts and packets in update_itr are dependent on these numbers */
5980 case lowest_latency:
5981 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5982 break;
5983 case low_latency:
5984 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5985 break;
5986 case bulk_latency:
5987 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5988 break;
5989 default:
5990 break;
5991 }
5992
5993 set_itr_now:
5994 if (new_itr != q_vector->itr_val) {
5995 /* this attempts to bias the interrupt rate towards Bulk
5996 * by adding intermediate steps when interrupt rate is
5997 * increasing
5998 */
5999 new_itr = new_itr > q_vector->itr_val ?
6000 max((new_itr * q_vector->itr_val) /
6001 (new_itr + (q_vector->itr_val >> 2)),
6002 new_itr) : new_itr;
6003 /* Don't write the value here; it resets the adapter's
6004 * internal timer, and causes us to delay far longer than
6005 * we should between interrupts. Instead, we write the ITR
6006 * value at the beginning of the next interrupt so the timing
6007 * ends up being correct.
6008 */
6009 q_vector->itr_val = new_itr;
6010 q_vector->set_itr = 1;
6011 }
6012 }
6013
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)6014 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6015 struct igb_tx_buffer *first,
6016 u32 vlan_macip_lens, u32 type_tucmd,
6017 u32 mss_l4len_idx)
6018 {
6019 struct e1000_adv_tx_context_desc *context_desc;
6020 u16 i = tx_ring->next_to_use;
6021 struct timespec64 ts;
6022
6023 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6024
6025 i++;
6026 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6027
6028 /* set bits to identify this as an advanced context descriptor */
6029 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6030
6031 /* For 82575, context index must be unique per ring. */
6032 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6033 mss_l4len_idx |= tx_ring->reg_idx << 4;
6034
6035 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
6036 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
6037 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
6038
6039 /* We assume there is always a valid tx time available. Invalid times
6040 * should have been handled by the upper layers.
6041 */
6042 if (tx_ring->launchtime_enable) {
6043 ts = ktime_to_timespec64(first->skb->tstamp);
6044 skb_txtime_consumed(first->skb);
6045 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6046 } else {
6047 context_desc->seqnum_seed = 0;
6048 }
6049 }
6050
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)6051 static int igb_tso(struct igb_ring *tx_ring,
6052 struct igb_tx_buffer *first,
6053 u8 *hdr_len)
6054 {
6055 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6056 struct sk_buff *skb = first->skb;
6057 union {
6058 struct iphdr *v4;
6059 struct ipv6hdr *v6;
6060 unsigned char *hdr;
6061 } ip;
6062 union {
6063 struct tcphdr *tcp;
6064 struct udphdr *udp;
6065 unsigned char *hdr;
6066 } l4;
6067 u32 paylen, l4_offset;
6068 int err;
6069
6070 if (skb->ip_summed != CHECKSUM_PARTIAL)
6071 return 0;
6072
6073 if (!skb_is_gso(skb))
6074 return 0;
6075
6076 err = skb_cow_head(skb, 0);
6077 if (err < 0)
6078 return err;
6079
6080 ip.hdr = skb_network_header(skb);
6081 l4.hdr = skb_checksum_start(skb);
6082
6083 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6084 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6085 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6086
6087 /* initialize outer IP header fields */
6088 if (ip.v4->version == 4) {
6089 unsigned char *csum_start = skb_checksum_start(skb);
6090 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6091
6092 /* IP header will have to cancel out any data that
6093 * is not a part of the outer IP header
6094 */
6095 ip.v4->check = csum_fold(csum_partial(trans_start,
6096 csum_start - trans_start,
6097 0));
6098 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6099
6100 ip.v4->tot_len = 0;
6101 first->tx_flags |= IGB_TX_FLAGS_TSO |
6102 IGB_TX_FLAGS_CSUM |
6103 IGB_TX_FLAGS_IPV4;
6104 } else {
6105 ip.v6->payload_len = 0;
6106 first->tx_flags |= IGB_TX_FLAGS_TSO |
6107 IGB_TX_FLAGS_CSUM;
6108 }
6109
6110 /* determine offset of inner transport header */
6111 l4_offset = l4.hdr - skb->data;
6112
6113 /* remove payload length from inner checksum */
6114 paylen = skb->len - l4_offset;
6115 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6116 /* compute length of segmentation header */
6117 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6118 csum_replace_by_diff(&l4.tcp->check,
6119 (__force __wsum)htonl(paylen));
6120 } else {
6121 /* compute length of segmentation header */
6122 *hdr_len = sizeof(*l4.udp) + l4_offset;
6123 csum_replace_by_diff(&l4.udp->check,
6124 (__force __wsum)htonl(paylen));
6125 }
6126
6127 /* update gso size and bytecount with header size */
6128 first->gso_segs = skb_shinfo(skb)->gso_segs;
6129 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6130
6131 /* MSS L4LEN IDX */
6132 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6133 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6134
6135 /* VLAN MACLEN IPLEN */
6136 vlan_macip_lens = l4.hdr - ip.hdr;
6137 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6138 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6139
6140 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6141 type_tucmd, mss_l4len_idx);
6142
6143 return 1;
6144 }
6145
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6146 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6147 {
6148 struct sk_buff *skb = first->skb;
6149 u32 vlan_macip_lens = 0;
6150 u32 type_tucmd = 0;
6151
6152 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6153 csum_failed:
6154 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6155 !tx_ring->launchtime_enable)
6156 return;
6157 goto no_csum;
6158 }
6159
6160 switch (skb->csum_offset) {
6161 case offsetof(struct tcphdr, check):
6162 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6163 fallthrough;
6164 case offsetof(struct udphdr, check):
6165 break;
6166 case offsetof(struct sctphdr, checksum):
6167 /* validate that this is actually an SCTP request */
6168 if (skb_csum_is_sctp(skb)) {
6169 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6170 break;
6171 }
6172 fallthrough;
6173 default:
6174 skb_checksum_help(skb);
6175 goto csum_failed;
6176 }
6177
6178 /* update TX checksum flag */
6179 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6180 vlan_macip_lens = skb_checksum_start_offset(skb) -
6181 skb_network_offset(skb);
6182 no_csum:
6183 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6184 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6185
6186 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6187 }
6188
6189 #define IGB_SET_FLAG(_input, _flag, _result) \
6190 ((_flag <= _result) ? \
6191 ((u32)(_input & _flag) * (_result / _flag)) : \
6192 ((u32)(_input & _flag) / (_flag / _result)))
6193
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6194 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6195 {
6196 /* set type for advanced descriptor with frame checksum insertion */
6197 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6198 E1000_ADVTXD_DCMD_DEXT |
6199 E1000_ADVTXD_DCMD_IFCS;
6200
6201 /* set HW vlan bit if vlan is present */
6202 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6203 (E1000_ADVTXD_DCMD_VLE));
6204
6205 /* set segmentation bits for TSO */
6206 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6207 (E1000_ADVTXD_DCMD_TSE));
6208
6209 /* set timestamp bit if present */
6210 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6211 (E1000_ADVTXD_MAC_TSTAMP));
6212
6213 /* insert frame checksum */
6214 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6215
6216 return cmd_type;
6217 }
6218
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6219 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6220 union e1000_adv_tx_desc *tx_desc,
6221 u32 tx_flags, unsigned int paylen)
6222 {
6223 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6224
6225 /* 82575 requires a unique index per ring */
6226 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6227 olinfo_status |= tx_ring->reg_idx << 4;
6228
6229 /* insert L4 checksum */
6230 olinfo_status |= IGB_SET_FLAG(tx_flags,
6231 IGB_TX_FLAGS_CSUM,
6232 (E1000_TXD_POPTS_TXSM << 8));
6233
6234 /* insert IPv4 checksum */
6235 olinfo_status |= IGB_SET_FLAG(tx_flags,
6236 IGB_TX_FLAGS_IPV4,
6237 (E1000_TXD_POPTS_IXSM << 8));
6238
6239 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6240 }
6241
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6242 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6243 {
6244 struct net_device *netdev = tx_ring->netdev;
6245
6246 netif_stop_subqueue(netdev, tx_ring->queue_index);
6247
6248 /* Herbert's original patch had:
6249 * smp_mb__after_netif_stop_queue();
6250 * but since that doesn't exist yet, just open code it.
6251 */
6252 smp_mb();
6253
6254 /* We need to check again in a case another CPU has just
6255 * made room available.
6256 */
6257 if (igb_desc_unused(tx_ring) < size)
6258 return -EBUSY;
6259
6260 /* A reprieve! */
6261 netif_wake_subqueue(netdev, tx_ring->queue_index);
6262
6263 u64_stats_update_begin(&tx_ring->tx_syncp2);
6264 tx_ring->tx_stats.restart_queue2++;
6265 u64_stats_update_end(&tx_ring->tx_syncp2);
6266
6267 return 0;
6268 }
6269
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6270 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6271 {
6272 if (igb_desc_unused(tx_ring) >= size)
6273 return 0;
6274 return __igb_maybe_stop_tx(tx_ring, size);
6275 }
6276
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6277 static int igb_tx_map(struct igb_ring *tx_ring,
6278 struct igb_tx_buffer *first,
6279 const u8 hdr_len)
6280 {
6281 struct sk_buff *skb = first->skb;
6282 struct igb_tx_buffer *tx_buffer;
6283 union e1000_adv_tx_desc *tx_desc;
6284 skb_frag_t *frag;
6285 dma_addr_t dma;
6286 unsigned int data_len, size;
6287 u32 tx_flags = first->tx_flags;
6288 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6289 u16 i = tx_ring->next_to_use;
6290
6291 tx_desc = IGB_TX_DESC(tx_ring, i);
6292
6293 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6294
6295 size = skb_headlen(skb);
6296 data_len = skb->data_len;
6297
6298 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6299
6300 tx_buffer = first;
6301
6302 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6303 if (dma_mapping_error(tx_ring->dev, dma))
6304 goto dma_error;
6305
6306 /* record length, and DMA address */
6307 dma_unmap_len_set(tx_buffer, len, size);
6308 dma_unmap_addr_set(tx_buffer, dma, dma);
6309
6310 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6311
6312 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6313 tx_desc->read.cmd_type_len =
6314 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6315
6316 i++;
6317 tx_desc++;
6318 if (i == tx_ring->count) {
6319 tx_desc = IGB_TX_DESC(tx_ring, 0);
6320 i = 0;
6321 }
6322 tx_desc->read.olinfo_status = 0;
6323
6324 dma += IGB_MAX_DATA_PER_TXD;
6325 size -= IGB_MAX_DATA_PER_TXD;
6326
6327 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6328 }
6329
6330 if (likely(!data_len))
6331 break;
6332
6333 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6334
6335 i++;
6336 tx_desc++;
6337 if (i == tx_ring->count) {
6338 tx_desc = IGB_TX_DESC(tx_ring, 0);
6339 i = 0;
6340 }
6341 tx_desc->read.olinfo_status = 0;
6342
6343 size = skb_frag_size(frag);
6344 data_len -= size;
6345
6346 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6347 size, DMA_TO_DEVICE);
6348
6349 tx_buffer = &tx_ring->tx_buffer_info[i];
6350 }
6351
6352 /* write last descriptor with RS and EOP bits */
6353 cmd_type |= size | IGB_TXD_DCMD;
6354 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6355
6356 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6357
6358 /* set the timestamp */
6359 first->time_stamp = jiffies;
6360
6361 skb_tx_timestamp(skb);
6362
6363 /* Force memory writes to complete before letting h/w know there
6364 * are new descriptors to fetch. (Only applicable for weak-ordered
6365 * memory model archs, such as IA-64).
6366 *
6367 * We also need this memory barrier to make certain all of the
6368 * status bits have been updated before next_to_watch is written.
6369 */
6370 dma_wmb();
6371
6372 /* set next_to_watch value indicating a packet is present */
6373 first->next_to_watch = tx_desc;
6374
6375 i++;
6376 if (i == tx_ring->count)
6377 i = 0;
6378
6379 tx_ring->next_to_use = i;
6380
6381 /* Make sure there is space in the ring for the next send. */
6382 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6383
6384 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6385 writel(i, tx_ring->tail);
6386 }
6387 return 0;
6388
6389 dma_error:
6390 dev_err(tx_ring->dev, "TX DMA map failed\n");
6391 tx_buffer = &tx_ring->tx_buffer_info[i];
6392
6393 /* clear dma mappings for failed tx_buffer_info map */
6394 while (tx_buffer != first) {
6395 if (dma_unmap_len(tx_buffer, len))
6396 dma_unmap_page(tx_ring->dev,
6397 dma_unmap_addr(tx_buffer, dma),
6398 dma_unmap_len(tx_buffer, len),
6399 DMA_TO_DEVICE);
6400 dma_unmap_len_set(tx_buffer, len, 0);
6401
6402 if (i-- == 0)
6403 i += tx_ring->count;
6404 tx_buffer = &tx_ring->tx_buffer_info[i];
6405 }
6406
6407 if (dma_unmap_len(tx_buffer, len))
6408 dma_unmap_single(tx_ring->dev,
6409 dma_unmap_addr(tx_buffer, dma),
6410 dma_unmap_len(tx_buffer, len),
6411 DMA_TO_DEVICE);
6412 dma_unmap_len_set(tx_buffer, len, 0);
6413
6414 dev_kfree_skb_any(tx_buffer->skb);
6415 tx_buffer->skb = NULL;
6416
6417 tx_ring->next_to_use = i;
6418
6419 return -1;
6420 }
6421
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6422 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6423 struct igb_ring *tx_ring,
6424 struct xdp_frame *xdpf)
6425 {
6426 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6427 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6428 u16 count, i, index = tx_ring->next_to_use;
6429 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6430 struct igb_tx_buffer *tx_buffer = tx_head;
6431 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6432 u32 len = xdpf->len, cmd_type, olinfo_status;
6433 void *data = xdpf->data;
6434
6435 count = TXD_USE_COUNT(len);
6436 for (i = 0; i < nr_frags; i++)
6437 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6438
6439 if (igb_maybe_stop_tx(tx_ring, count + 3))
6440 return IGB_XDP_CONSUMED;
6441
6442 i = 0;
6443 /* record the location of the first descriptor for this packet */
6444 tx_head->bytecount = xdp_get_frame_len(xdpf);
6445 tx_head->type = IGB_TYPE_XDP;
6446 tx_head->gso_segs = 1;
6447 tx_head->xdpf = xdpf;
6448
6449 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6450 /* 82575 requires a unique index per ring */
6451 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6452 olinfo_status |= tx_ring->reg_idx << 4;
6453 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6454
6455 for (;;) {
6456 dma_addr_t dma;
6457
6458 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6459 if (dma_mapping_error(tx_ring->dev, dma))
6460 goto unmap;
6461
6462 /* record length, and DMA address */
6463 dma_unmap_len_set(tx_buffer, len, len);
6464 dma_unmap_addr_set(tx_buffer, dma, dma);
6465
6466 /* put descriptor type bits */
6467 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6468 E1000_ADVTXD_DCMD_IFCS | len;
6469
6470 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6471 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6472
6473 tx_buffer->protocol = 0;
6474
6475 if (++index == tx_ring->count)
6476 index = 0;
6477
6478 if (i == nr_frags)
6479 break;
6480
6481 tx_buffer = &tx_ring->tx_buffer_info[index];
6482 tx_desc = IGB_TX_DESC(tx_ring, index);
6483 tx_desc->read.olinfo_status = 0;
6484
6485 data = skb_frag_address(&sinfo->frags[i]);
6486 len = skb_frag_size(&sinfo->frags[i]);
6487 i++;
6488 }
6489 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6490
6491 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6492 /* set the timestamp */
6493 tx_head->time_stamp = jiffies;
6494
6495 /* Avoid any potential race with xdp_xmit and cleanup */
6496 smp_wmb();
6497
6498 /* set next_to_watch value indicating a packet is present */
6499 tx_head->next_to_watch = tx_desc;
6500 tx_ring->next_to_use = index;
6501
6502 /* Make sure there is space in the ring for the next send. */
6503 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6504
6505 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6506 writel(index, tx_ring->tail);
6507
6508 return IGB_XDP_TX;
6509
6510 unmap:
6511 for (;;) {
6512 tx_buffer = &tx_ring->tx_buffer_info[index];
6513 if (dma_unmap_len(tx_buffer, len))
6514 dma_unmap_page(tx_ring->dev,
6515 dma_unmap_addr(tx_buffer, dma),
6516 dma_unmap_len(tx_buffer, len),
6517 DMA_TO_DEVICE);
6518 dma_unmap_len_set(tx_buffer, len, 0);
6519 if (tx_buffer == tx_head)
6520 break;
6521
6522 if (!index)
6523 index += tx_ring->count;
6524 index--;
6525 }
6526
6527 return IGB_XDP_CONSUMED;
6528 }
6529
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6530 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6531 struct igb_ring *tx_ring)
6532 {
6533 struct igb_tx_buffer *first;
6534 int tso;
6535 u32 tx_flags = 0;
6536 unsigned short f;
6537 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6538 __be16 protocol = vlan_get_protocol(skb);
6539 u8 hdr_len = 0;
6540
6541 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6542 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6543 * + 2 desc gap to keep tail from touching head,
6544 * + 1 desc for context descriptor,
6545 * otherwise try next time
6546 */
6547 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6548 count += TXD_USE_COUNT(skb_frag_size(
6549 &skb_shinfo(skb)->frags[f]));
6550
6551 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6552 /* this is a hard error */
6553 return NETDEV_TX_BUSY;
6554 }
6555
6556 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6557 return NETDEV_TX_BUSY;
6558
6559 /* record the location of the first descriptor for this packet */
6560 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6561 first->type = IGB_TYPE_SKB;
6562 first->skb = skb;
6563 first->bytecount = skb->len;
6564 first->gso_segs = 1;
6565
6566 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6567 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6568
6569 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6570 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6571 &adapter->state)) {
6572 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6573 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6574
6575 adapter->ptp_tx_skb = skb_get(skb);
6576 adapter->ptp_tx_start = jiffies;
6577 if (adapter->hw.mac.type == e1000_82576)
6578 schedule_work(&adapter->ptp_tx_work);
6579 } else {
6580 adapter->tx_hwtstamp_skipped++;
6581 }
6582 }
6583
6584 if (skb_vlan_tag_present(skb)) {
6585 tx_flags |= IGB_TX_FLAGS_VLAN;
6586 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6587 }
6588
6589 /* record initial flags and protocol */
6590 first->tx_flags = tx_flags;
6591 first->protocol = protocol;
6592
6593 tso = igb_tso(tx_ring, first, &hdr_len);
6594 if (tso < 0)
6595 goto out_drop;
6596 else if (!tso)
6597 igb_tx_csum(tx_ring, first);
6598
6599 if (igb_tx_map(tx_ring, first, hdr_len))
6600 goto cleanup_tx_tstamp;
6601
6602 return NETDEV_TX_OK;
6603
6604 out_drop:
6605 dev_kfree_skb_any(first->skb);
6606 first->skb = NULL;
6607 cleanup_tx_tstamp:
6608 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6609 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6610
6611 dev_kfree_skb_any(adapter->ptp_tx_skb);
6612 adapter->ptp_tx_skb = NULL;
6613 if (adapter->hw.mac.type == e1000_82576)
6614 cancel_work_sync(&adapter->ptp_tx_work);
6615 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6616 }
6617
6618 return NETDEV_TX_OK;
6619 }
6620
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6621 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6622 struct sk_buff *skb)
6623 {
6624 unsigned int r_idx = skb->queue_mapping;
6625
6626 if (r_idx >= adapter->num_tx_queues)
6627 r_idx = r_idx % adapter->num_tx_queues;
6628
6629 return adapter->tx_ring[r_idx];
6630 }
6631
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6632 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6633 struct net_device *netdev)
6634 {
6635 struct igb_adapter *adapter = netdev_priv(netdev);
6636
6637 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6638 * in order to meet this minimum size requirement.
6639 */
6640 if (skb_put_padto(skb, 17))
6641 return NETDEV_TX_OK;
6642
6643 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6644 }
6645
6646 /**
6647 * igb_tx_timeout - Respond to a Tx Hang
6648 * @netdev: network interface device structure
6649 * @txqueue: number of the Tx queue that hung (unused)
6650 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6651 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6652 {
6653 struct igb_adapter *adapter = netdev_priv(netdev);
6654 struct e1000_hw *hw = &adapter->hw;
6655
6656 /* Do the reset outside of interrupt context */
6657 adapter->tx_timeout_count++;
6658
6659 if (hw->mac.type >= e1000_82580)
6660 hw->dev_spec._82575.global_device_reset = true;
6661
6662 schedule_work(&adapter->reset_task);
6663 wr32(E1000_EICS,
6664 (adapter->eims_enable_mask & ~adapter->eims_other));
6665 }
6666
igb_reset_task(struct work_struct * work)6667 static void igb_reset_task(struct work_struct *work)
6668 {
6669 struct igb_adapter *adapter;
6670 adapter = container_of(work, struct igb_adapter, reset_task);
6671
6672 rtnl_lock();
6673 /* If we're already down or resetting, just bail */
6674 if (test_bit(__IGB_DOWN, &adapter->state) ||
6675 test_bit(__IGB_RESETTING, &adapter->state)) {
6676 rtnl_unlock();
6677 return;
6678 }
6679
6680 igb_dump(adapter);
6681 netdev_err(adapter->netdev, "Reset adapter\n");
6682 igb_reinit_locked(adapter);
6683 rtnl_unlock();
6684 }
6685
6686 /**
6687 * igb_get_stats64 - Get System Network Statistics
6688 * @netdev: network interface device structure
6689 * @stats: rtnl_link_stats64 pointer
6690 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6691 static void igb_get_stats64(struct net_device *netdev,
6692 struct rtnl_link_stats64 *stats)
6693 {
6694 struct igb_adapter *adapter = netdev_priv(netdev);
6695
6696 spin_lock(&adapter->stats64_lock);
6697 igb_update_stats(adapter);
6698 memcpy(stats, &adapter->stats64, sizeof(*stats));
6699 spin_unlock(&adapter->stats64_lock);
6700 }
6701
6702 /**
6703 * igb_change_mtu - Change the Maximum Transfer Unit
6704 * @netdev: network interface device structure
6705 * @new_mtu: new value for maximum frame size
6706 *
6707 * Returns 0 on success, negative on failure
6708 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6709 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6710 {
6711 struct igb_adapter *adapter = netdev_priv(netdev);
6712 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6713
6714 if (igb_xdp_is_enabled(adapter)) {
6715 int i;
6716
6717 for (i = 0; i < adapter->num_rx_queues; i++) {
6718 struct igb_ring *ring = adapter->rx_ring[i];
6719
6720 if (max_frame > igb_rx_bufsz(ring)) {
6721 netdev_warn(adapter->netdev,
6722 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6723 max_frame);
6724 return -EINVAL;
6725 }
6726 }
6727 }
6728
6729 /* adjust max frame to be at least the size of a standard frame */
6730 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6731 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6732
6733 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6734 usleep_range(1000, 2000);
6735
6736 /* igb_down has a dependency on max_frame_size */
6737 adapter->max_frame_size = max_frame;
6738
6739 if (netif_running(netdev))
6740 igb_down(adapter);
6741
6742 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6743 netdev->mtu, new_mtu);
6744 WRITE_ONCE(netdev->mtu, new_mtu);
6745
6746 if (netif_running(netdev))
6747 igb_up(adapter);
6748 else
6749 igb_reset(adapter);
6750
6751 clear_bit(__IGB_RESETTING, &adapter->state);
6752
6753 return 0;
6754 }
6755
6756 /**
6757 * igb_update_stats - Update the board statistics counters
6758 * @adapter: board private structure
6759 **/
igb_update_stats(struct igb_adapter * adapter)6760 void igb_update_stats(struct igb_adapter *adapter)
6761 {
6762 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6763 struct e1000_hw *hw = &adapter->hw;
6764 struct pci_dev *pdev = adapter->pdev;
6765 u32 reg, mpc;
6766 int i;
6767 u64 bytes, packets;
6768 unsigned int start;
6769 u64 _bytes, _packets;
6770
6771 /* Prevent stats update while adapter is being reset, or if the pci
6772 * connection is down.
6773 */
6774 if (adapter->link_speed == 0)
6775 return;
6776 if (pci_channel_offline(pdev))
6777 return;
6778
6779 bytes = 0;
6780 packets = 0;
6781
6782 rcu_read_lock();
6783 for (i = 0; i < adapter->num_rx_queues; i++) {
6784 struct igb_ring *ring = adapter->rx_ring[i];
6785 u32 rqdpc = rd32(E1000_RQDPC(i));
6786 if (hw->mac.type >= e1000_i210)
6787 wr32(E1000_RQDPC(i), 0);
6788
6789 if (rqdpc) {
6790 ring->rx_stats.drops += rqdpc;
6791 net_stats->rx_fifo_errors += rqdpc;
6792 }
6793
6794 do {
6795 start = u64_stats_fetch_begin(&ring->rx_syncp);
6796 _bytes = ring->rx_stats.bytes;
6797 _packets = ring->rx_stats.packets;
6798 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6799 bytes += _bytes;
6800 packets += _packets;
6801 }
6802
6803 net_stats->rx_bytes = bytes;
6804 net_stats->rx_packets = packets;
6805
6806 bytes = 0;
6807 packets = 0;
6808 for (i = 0; i < adapter->num_tx_queues; i++) {
6809 struct igb_ring *ring = adapter->tx_ring[i];
6810 do {
6811 start = u64_stats_fetch_begin(&ring->tx_syncp);
6812 _bytes = ring->tx_stats.bytes;
6813 _packets = ring->tx_stats.packets;
6814 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6815 bytes += _bytes;
6816 packets += _packets;
6817 }
6818 net_stats->tx_bytes = bytes;
6819 net_stats->tx_packets = packets;
6820 rcu_read_unlock();
6821
6822 /* read stats registers */
6823 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6824 adapter->stats.gprc += rd32(E1000_GPRC);
6825 adapter->stats.gorc += rd32(E1000_GORCL);
6826 rd32(E1000_GORCH); /* clear GORCL */
6827 adapter->stats.bprc += rd32(E1000_BPRC);
6828 adapter->stats.mprc += rd32(E1000_MPRC);
6829 adapter->stats.roc += rd32(E1000_ROC);
6830
6831 adapter->stats.prc64 += rd32(E1000_PRC64);
6832 adapter->stats.prc127 += rd32(E1000_PRC127);
6833 adapter->stats.prc255 += rd32(E1000_PRC255);
6834 adapter->stats.prc511 += rd32(E1000_PRC511);
6835 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6836 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6837 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6838 adapter->stats.sec += rd32(E1000_SEC);
6839
6840 mpc = rd32(E1000_MPC);
6841 adapter->stats.mpc += mpc;
6842 net_stats->rx_fifo_errors += mpc;
6843 adapter->stats.scc += rd32(E1000_SCC);
6844 adapter->stats.ecol += rd32(E1000_ECOL);
6845 adapter->stats.mcc += rd32(E1000_MCC);
6846 adapter->stats.latecol += rd32(E1000_LATECOL);
6847 adapter->stats.dc += rd32(E1000_DC);
6848 adapter->stats.rlec += rd32(E1000_RLEC);
6849 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6850 adapter->stats.xontxc += rd32(E1000_XONTXC);
6851 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6852 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6853 adapter->stats.fcruc += rd32(E1000_FCRUC);
6854 adapter->stats.gptc += rd32(E1000_GPTC);
6855 adapter->stats.gotc += rd32(E1000_GOTCL);
6856 rd32(E1000_GOTCH); /* clear GOTCL */
6857 adapter->stats.rnbc += rd32(E1000_RNBC);
6858 adapter->stats.ruc += rd32(E1000_RUC);
6859 adapter->stats.rfc += rd32(E1000_RFC);
6860 adapter->stats.rjc += rd32(E1000_RJC);
6861 adapter->stats.tor += rd32(E1000_TORH);
6862 adapter->stats.tot += rd32(E1000_TOTH);
6863 adapter->stats.tpr += rd32(E1000_TPR);
6864
6865 adapter->stats.ptc64 += rd32(E1000_PTC64);
6866 adapter->stats.ptc127 += rd32(E1000_PTC127);
6867 adapter->stats.ptc255 += rd32(E1000_PTC255);
6868 adapter->stats.ptc511 += rd32(E1000_PTC511);
6869 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6870 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6871
6872 adapter->stats.mptc += rd32(E1000_MPTC);
6873 adapter->stats.bptc += rd32(E1000_BPTC);
6874
6875 adapter->stats.tpt += rd32(E1000_TPT);
6876 adapter->stats.colc += rd32(E1000_COLC);
6877
6878 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6879 /* read internal phy specific stats */
6880 reg = rd32(E1000_CTRL_EXT);
6881 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6882 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6883
6884 /* this stat has invalid values on i210/i211 */
6885 if ((hw->mac.type != e1000_i210) &&
6886 (hw->mac.type != e1000_i211))
6887 adapter->stats.tncrs += rd32(E1000_TNCRS);
6888 }
6889
6890 adapter->stats.tsctc += rd32(E1000_TSCTC);
6891 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6892
6893 adapter->stats.iac += rd32(E1000_IAC);
6894 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6895 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6896 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6897 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6898 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6899 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6900 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6901 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6902
6903 /* Fill out the OS statistics structure */
6904 net_stats->multicast = adapter->stats.mprc;
6905 net_stats->collisions = adapter->stats.colc;
6906
6907 /* Rx Errors */
6908
6909 /* RLEC on some newer hardware can be incorrect so build
6910 * our own version based on RUC and ROC
6911 */
6912 net_stats->rx_errors = adapter->stats.rxerrc +
6913 adapter->stats.crcerrs + adapter->stats.algnerrc +
6914 adapter->stats.ruc + adapter->stats.roc +
6915 adapter->stats.cexterr;
6916 net_stats->rx_length_errors = adapter->stats.ruc +
6917 adapter->stats.roc;
6918 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6919 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6920 net_stats->rx_missed_errors = adapter->stats.mpc;
6921
6922 /* Tx Errors */
6923 net_stats->tx_errors = adapter->stats.ecol +
6924 adapter->stats.latecol;
6925 net_stats->tx_aborted_errors = adapter->stats.ecol;
6926 net_stats->tx_window_errors = adapter->stats.latecol;
6927 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6928
6929 /* Tx Dropped needs to be maintained elsewhere */
6930
6931 /* Management Stats */
6932 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6933 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6934 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6935
6936 /* OS2BMC Stats */
6937 reg = rd32(E1000_MANC);
6938 if (reg & E1000_MANC_EN_BMC2OS) {
6939 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6940 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6941 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6942 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6943 }
6944 }
6945
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6946 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6947 {
6948 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6949 struct e1000_hw *hw = &adapter->hw;
6950 struct timespec64 ts;
6951 u32 tsauxc;
6952
6953 if (pin < 0 || pin >= IGB_N_SDP)
6954 return;
6955
6956 spin_lock(&adapter->tmreg_lock);
6957
6958 if (hw->mac.type == e1000_82580 ||
6959 hw->mac.type == e1000_i354 ||
6960 hw->mac.type == e1000_i350) {
6961 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6962 u32 systiml, systimh, level_mask, level, rem;
6963 u64 systim, now;
6964
6965 /* read systim registers in sequence */
6966 rd32(E1000_SYSTIMR);
6967 systiml = rd32(E1000_SYSTIML);
6968 systimh = rd32(E1000_SYSTIMH);
6969 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6970 now = timecounter_cyc2time(&adapter->tc, systim);
6971
6972 if (pin < 2) {
6973 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6974 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6975 } else {
6976 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6977 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6978 }
6979
6980 div_u64_rem(now, ns, &rem);
6981 systim = systim + (ns - rem);
6982
6983 /* synchronize pin level with rising/falling edges */
6984 div_u64_rem(now, ns << 1, &rem);
6985 if (rem < ns) {
6986 /* first half of period */
6987 if (level == 0) {
6988 /* output is already low, skip this period */
6989 systim += ns;
6990 pr_notice("igb: periodic output on %s missed falling edge\n",
6991 adapter->sdp_config[pin].name);
6992 }
6993 } else {
6994 /* second half of period */
6995 if (level == 1) {
6996 /* output is already high, skip this period */
6997 systim += ns;
6998 pr_notice("igb: periodic output on %s missed rising edge\n",
6999 adapter->sdp_config[pin].name);
7000 }
7001 }
7002
7003 /* for this chip family tv_sec is the upper part of the binary value,
7004 * so not seconds
7005 */
7006 ts.tv_nsec = (u32)systim;
7007 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
7008 } else {
7009 ts = timespec64_add(adapter->perout[tsintr_tt].start,
7010 adapter->perout[tsintr_tt].period);
7011 }
7012
7013 /* u32 conversion of tv_sec is safe until y2106 */
7014 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7015 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7016 tsauxc = rd32(E1000_TSAUXC);
7017 tsauxc |= TSAUXC_EN_TT0;
7018 wr32(E1000_TSAUXC, tsauxc);
7019 adapter->perout[tsintr_tt].start = ts;
7020
7021 spin_unlock(&adapter->tmreg_lock);
7022 }
7023
igb_extts(struct igb_adapter * adapter,int tsintr_tt)7024 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7025 {
7026 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7027 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7028 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7029 struct e1000_hw *hw = &adapter->hw;
7030 struct ptp_clock_event event;
7031 struct timespec64 ts;
7032 unsigned long flags;
7033
7034 if (pin < 0 || pin >= IGB_N_SDP)
7035 return;
7036
7037 if (hw->mac.type == e1000_82580 ||
7038 hw->mac.type == e1000_i354 ||
7039 hw->mac.type == e1000_i350) {
7040 u64 ns = rd32(auxstmpl);
7041
7042 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7043 spin_lock_irqsave(&adapter->tmreg_lock, flags);
7044 ns = timecounter_cyc2time(&adapter->tc, ns);
7045 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7046 ts = ns_to_timespec64(ns);
7047 } else {
7048 ts.tv_nsec = rd32(auxstmpl);
7049 ts.tv_sec = rd32(auxstmph);
7050 }
7051
7052 event.type = PTP_CLOCK_EXTTS;
7053 event.index = tsintr_tt;
7054 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7055 ptp_clock_event(adapter->ptp_clock, &event);
7056 }
7057
igb_tsync_interrupt(struct igb_adapter * adapter)7058 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7059 {
7060 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7061 TSINTR_TT0 | TSINTR_TT1 |
7062 TSINTR_AUTT0 | TSINTR_AUTT1);
7063 struct e1000_hw *hw = &adapter->hw;
7064 u32 tsicr = rd32(E1000_TSICR);
7065 struct ptp_clock_event event;
7066
7067 if (hw->mac.type == e1000_82580) {
7068 /* 82580 has a hardware bug that requires an explicit
7069 * write to clear the TimeSync interrupt cause.
7070 */
7071 wr32(E1000_TSICR, tsicr & mask);
7072 }
7073
7074 if (tsicr & TSINTR_SYS_WRAP) {
7075 event.type = PTP_CLOCK_PPS;
7076 if (adapter->ptp_caps.pps)
7077 ptp_clock_event(adapter->ptp_clock, &event);
7078 }
7079
7080 if (tsicr & E1000_TSICR_TXTS) {
7081 /* retrieve hardware timestamp */
7082 schedule_work(&adapter->ptp_tx_work);
7083 }
7084
7085 if (tsicr & TSINTR_TT0)
7086 igb_perout(adapter, 0);
7087
7088 if (tsicr & TSINTR_TT1)
7089 igb_perout(adapter, 1);
7090
7091 if (tsicr & TSINTR_AUTT0)
7092 igb_extts(adapter, 0);
7093
7094 if (tsicr & TSINTR_AUTT1)
7095 igb_extts(adapter, 1);
7096 }
7097
igb_msix_other(int irq,void * data)7098 static irqreturn_t igb_msix_other(int irq, void *data)
7099 {
7100 struct igb_adapter *adapter = data;
7101 struct e1000_hw *hw = &adapter->hw;
7102 u32 icr = rd32(E1000_ICR);
7103 /* reading ICR causes bit 31 of EICR to be cleared */
7104
7105 if (icr & E1000_ICR_DRSTA)
7106 schedule_work(&adapter->reset_task);
7107
7108 if (icr & E1000_ICR_DOUTSYNC) {
7109 /* HW is reporting DMA is out of sync */
7110 adapter->stats.doosync++;
7111 /* The DMA Out of Sync is also indication of a spoof event
7112 * in IOV mode. Check the Wrong VM Behavior register to
7113 * see if it is really a spoof event.
7114 */
7115 igb_check_wvbr(adapter);
7116 }
7117
7118 /* Check for a mailbox event */
7119 if (icr & E1000_ICR_VMMB)
7120 igb_msg_task(adapter);
7121
7122 if (icr & E1000_ICR_LSC) {
7123 hw->mac.get_link_status = 1;
7124 /* guard against interrupt when we're going down */
7125 if (!test_bit(__IGB_DOWN, &adapter->state))
7126 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7127 }
7128
7129 if (icr & E1000_ICR_TS)
7130 igb_tsync_interrupt(adapter);
7131
7132 wr32(E1000_EIMS, adapter->eims_other);
7133
7134 return IRQ_HANDLED;
7135 }
7136
igb_write_itr(struct igb_q_vector * q_vector)7137 static void igb_write_itr(struct igb_q_vector *q_vector)
7138 {
7139 struct igb_adapter *adapter = q_vector->adapter;
7140 u32 itr_val = q_vector->itr_val & 0x7FFC;
7141
7142 if (!q_vector->set_itr)
7143 return;
7144
7145 if (!itr_val)
7146 itr_val = 0x4;
7147
7148 if (adapter->hw.mac.type == e1000_82575)
7149 itr_val |= itr_val << 16;
7150 else
7151 itr_val |= E1000_EITR_CNT_IGNR;
7152
7153 writel(itr_val, q_vector->itr_register);
7154 q_vector->set_itr = 0;
7155 }
7156
igb_msix_ring(int irq,void * data)7157 static irqreturn_t igb_msix_ring(int irq, void *data)
7158 {
7159 struct igb_q_vector *q_vector = data;
7160
7161 /* Write the ITR value calculated from the previous interrupt. */
7162 igb_write_itr(q_vector);
7163
7164 napi_schedule(&q_vector->napi);
7165
7166 return IRQ_HANDLED;
7167 }
7168
7169 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7170 static void igb_update_tx_dca(struct igb_adapter *adapter,
7171 struct igb_ring *tx_ring,
7172 int cpu)
7173 {
7174 struct e1000_hw *hw = &adapter->hw;
7175 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7176
7177 if (hw->mac.type != e1000_82575)
7178 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7179
7180 /* We can enable relaxed ordering for reads, but not writes when
7181 * DCA is enabled. This is due to a known issue in some chipsets
7182 * which will cause the DCA tag to be cleared.
7183 */
7184 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7185 E1000_DCA_TXCTRL_DATA_RRO_EN |
7186 E1000_DCA_TXCTRL_DESC_DCA_EN;
7187
7188 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7189 }
7190
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7191 static void igb_update_rx_dca(struct igb_adapter *adapter,
7192 struct igb_ring *rx_ring,
7193 int cpu)
7194 {
7195 struct e1000_hw *hw = &adapter->hw;
7196 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7197
7198 if (hw->mac.type != e1000_82575)
7199 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7200
7201 /* We can enable relaxed ordering for reads, but not writes when
7202 * DCA is enabled. This is due to a known issue in some chipsets
7203 * which will cause the DCA tag to be cleared.
7204 */
7205 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7206 E1000_DCA_RXCTRL_DESC_DCA_EN;
7207
7208 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7209 }
7210
igb_update_dca(struct igb_q_vector * q_vector)7211 static void igb_update_dca(struct igb_q_vector *q_vector)
7212 {
7213 struct igb_adapter *adapter = q_vector->adapter;
7214 int cpu = get_cpu();
7215
7216 if (q_vector->cpu == cpu)
7217 goto out_no_update;
7218
7219 if (q_vector->tx.ring)
7220 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7221
7222 if (q_vector->rx.ring)
7223 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7224
7225 q_vector->cpu = cpu;
7226 out_no_update:
7227 put_cpu();
7228 }
7229
igb_setup_dca(struct igb_adapter * adapter)7230 static void igb_setup_dca(struct igb_adapter *adapter)
7231 {
7232 struct e1000_hw *hw = &adapter->hw;
7233 int i;
7234
7235 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7236 return;
7237
7238 /* Always use CB2 mode, difference is masked in the CB driver. */
7239 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7240
7241 for (i = 0; i < adapter->num_q_vectors; i++) {
7242 adapter->q_vector[i]->cpu = -1;
7243 igb_update_dca(adapter->q_vector[i]);
7244 }
7245 }
7246
__igb_notify_dca(struct device * dev,void * data)7247 static int __igb_notify_dca(struct device *dev, void *data)
7248 {
7249 struct net_device *netdev = dev_get_drvdata(dev);
7250 struct igb_adapter *adapter = netdev_priv(netdev);
7251 struct pci_dev *pdev = adapter->pdev;
7252 struct e1000_hw *hw = &adapter->hw;
7253 unsigned long event = *(unsigned long *)data;
7254
7255 switch (event) {
7256 case DCA_PROVIDER_ADD:
7257 /* if already enabled, don't do it again */
7258 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7259 break;
7260 if (dca_add_requester(dev) == 0) {
7261 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7262 dev_info(&pdev->dev, "DCA enabled\n");
7263 igb_setup_dca(adapter);
7264 break;
7265 }
7266 fallthrough; /* since DCA is disabled. */
7267 case DCA_PROVIDER_REMOVE:
7268 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7269 /* without this a class_device is left
7270 * hanging around in the sysfs model
7271 */
7272 dca_remove_requester(dev);
7273 dev_info(&pdev->dev, "DCA disabled\n");
7274 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7275 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7276 }
7277 break;
7278 }
7279
7280 return 0;
7281 }
7282
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7283 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7284 void *p)
7285 {
7286 int ret_val;
7287
7288 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7289 __igb_notify_dca);
7290
7291 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7292 }
7293 #endif /* CONFIG_IGB_DCA */
7294
7295 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7296 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7297 {
7298 unsigned char mac_addr[ETH_ALEN];
7299
7300 eth_zero_addr(mac_addr);
7301 igb_set_vf_mac(adapter, vf, mac_addr);
7302
7303 /* By default spoof check is enabled for all VFs */
7304 adapter->vf_data[vf].spoofchk_enabled = true;
7305
7306 /* By default VFs are not trusted */
7307 adapter->vf_data[vf].trusted = false;
7308
7309 return 0;
7310 }
7311
7312 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7313 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7314 {
7315 struct e1000_hw *hw = &adapter->hw;
7316 u32 ping;
7317 int i;
7318
7319 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7320 ping = E1000_PF_CONTROL_MSG;
7321 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7322 ping |= E1000_VT_MSGTYPE_CTS;
7323 igb_write_mbx(hw, &ping, 1, i);
7324 }
7325 }
7326
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7327 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7328 {
7329 struct e1000_hw *hw = &adapter->hw;
7330 u32 vmolr = rd32(E1000_VMOLR(vf));
7331 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7332
7333 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7334 IGB_VF_FLAG_MULTI_PROMISC);
7335 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7336
7337 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7338 vmolr |= E1000_VMOLR_MPME;
7339 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7340 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7341 } else {
7342 /* if we have hashes and we are clearing a multicast promisc
7343 * flag we need to write the hashes to the MTA as this step
7344 * was previously skipped
7345 */
7346 if (vf_data->num_vf_mc_hashes > 30) {
7347 vmolr |= E1000_VMOLR_MPME;
7348 } else if (vf_data->num_vf_mc_hashes) {
7349 int j;
7350
7351 vmolr |= E1000_VMOLR_ROMPE;
7352 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7353 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7354 }
7355 }
7356
7357 wr32(E1000_VMOLR(vf), vmolr);
7358
7359 /* there are flags left unprocessed, likely not supported */
7360 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7361 return -EINVAL;
7362
7363 return 0;
7364 }
7365
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7366 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7367 u32 *msgbuf, u32 vf)
7368 {
7369 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7370 u16 *hash_list = (u16 *)&msgbuf[1];
7371 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7372 int i;
7373
7374 /* salt away the number of multicast addresses assigned
7375 * to this VF for later use to restore when the PF multi cast
7376 * list changes
7377 */
7378 vf_data->num_vf_mc_hashes = n;
7379
7380 /* only up to 30 hash values supported */
7381 if (n > 30)
7382 n = 30;
7383
7384 /* store the hashes for later use */
7385 for (i = 0; i < n; i++)
7386 vf_data->vf_mc_hashes[i] = hash_list[i];
7387
7388 /* Flush and reset the mta with the new values */
7389 igb_set_rx_mode(adapter->netdev);
7390
7391 return 0;
7392 }
7393
igb_restore_vf_multicasts(struct igb_adapter * adapter)7394 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7395 {
7396 struct e1000_hw *hw = &adapter->hw;
7397 struct vf_data_storage *vf_data;
7398 int i, j;
7399
7400 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7401 u32 vmolr = rd32(E1000_VMOLR(i));
7402
7403 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7404
7405 vf_data = &adapter->vf_data[i];
7406
7407 if ((vf_data->num_vf_mc_hashes > 30) ||
7408 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7409 vmolr |= E1000_VMOLR_MPME;
7410 } else if (vf_data->num_vf_mc_hashes) {
7411 vmolr |= E1000_VMOLR_ROMPE;
7412 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7413 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7414 }
7415 wr32(E1000_VMOLR(i), vmolr);
7416 }
7417 }
7418
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7419 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7420 {
7421 struct e1000_hw *hw = &adapter->hw;
7422 u32 pool_mask, vlvf_mask, i;
7423
7424 /* create mask for VF and other pools */
7425 pool_mask = E1000_VLVF_POOLSEL_MASK;
7426 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7427
7428 /* drop PF from pool bits */
7429 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7430 adapter->vfs_allocated_count);
7431
7432 /* Find the vlan filter for this id */
7433 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7434 u32 vlvf = rd32(E1000_VLVF(i));
7435 u32 vfta_mask, vid, vfta;
7436
7437 /* remove the vf from the pool */
7438 if (!(vlvf & vlvf_mask))
7439 continue;
7440
7441 /* clear out bit from VLVF */
7442 vlvf ^= vlvf_mask;
7443
7444 /* if other pools are present, just remove ourselves */
7445 if (vlvf & pool_mask)
7446 goto update_vlvfb;
7447
7448 /* if PF is present, leave VFTA */
7449 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7450 goto update_vlvf;
7451
7452 vid = vlvf & E1000_VLVF_VLANID_MASK;
7453 vfta_mask = BIT(vid % 32);
7454
7455 /* clear bit from VFTA */
7456 vfta = adapter->shadow_vfta[vid / 32];
7457 if (vfta & vfta_mask)
7458 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7459 update_vlvf:
7460 /* clear pool selection enable */
7461 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7462 vlvf &= E1000_VLVF_POOLSEL_MASK;
7463 else
7464 vlvf = 0;
7465 update_vlvfb:
7466 /* clear pool bits */
7467 wr32(E1000_VLVF(i), vlvf);
7468 }
7469 }
7470
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7471 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7472 {
7473 u32 vlvf;
7474 int idx;
7475
7476 /* short cut the special case */
7477 if (vlan == 0)
7478 return 0;
7479
7480 /* Search for the VLAN id in the VLVF entries */
7481 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7482 vlvf = rd32(E1000_VLVF(idx));
7483 if ((vlvf & VLAN_VID_MASK) == vlan)
7484 break;
7485 }
7486
7487 return idx;
7488 }
7489
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7490 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7491 {
7492 struct e1000_hw *hw = &adapter->hw;
7493 u32 bits, pf_id;
7494 int idx;
7495
7496 idx = igb_find_vlvf_entry(hw, vid);
7497 if (!idx)
7498 return;
7499
7500 /* See if any other pools are set for this VLAN filter
7501 * entry other than the PF.
7502 */
7503 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7504 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7505 bits &= rd32(E1000_VLVF(idx));
7506
7507 /* Disable the filter so this falls into the default pool. */
7508 if (!bits) {
7509 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7510 wr32(E1000_VLVF(idx), BIT(pf_id));
7511 else
7512 wr32(E1000_VLVF(idx), 0);
7513 }
7514 }
7515
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7516 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7517 bool add, u32 vf)
7518 {
7519 int pf_id = adapter->vfs_allocated_count;
7520 struct e1000_hw *hw = &adapter->hw;
7521 int err;
7522
7523 /* If VLAN overlaps with one the PF is currently monitoring make
7524 * sure that we are able to allocate a VLVF entry. This may be
7525 * redundant but it guarantees PF will maintain visibility to
7526 * the VLAN.
7527 */
7528 if (add && test_bit(vid, adapter->active_vlans)) {
7529 err = igb_vfta_set(hw, vid, pf_id, true, false);
7530 if (err)
7531 return err;
7532 }
7533
7534 err = igb_vfta_set(hw, vid, vf, add, false);
7535
7536 if (add && !err)
7537 return err;
7538
7539 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7540 * we may need to drop the PF pool bit in order to allow us to free
7541 * up the VLVF resources.
7542 */
7543 if (test_bit(vid, adapter->active_vlans) ||
7544 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7545 igb_update_pf_vlvf(adapter, vid);
7546
7547 return err;
7548 }
7549
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7550 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7551 {
7552 struct e1000_hw *hw = &adapter->hw;
7553
7554 if (vid)
7555 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7556 else
7557 wr32(E1000_VMVIR(vf), 0);
7558 }
7559
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7560 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7561 u16 vlan, u8 qos)
7562 {
7563 int err;
7564
7565 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7566 if (err)
7567 return err;
7568
7569 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7570 igb_set_vmolr(adapter, vf, !vlan);
7571
7572 /* revoke access to previous VLAN */
7573 if (vlan != adapter->vf_data[vf].pf_vlan)
7574 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7575 false, vf);
7576
7577 adapter->vf_data[vf].pf_vlan = vlan;
7578 adapter->vf_data[vf].pf_qos = qos;
7579 igb_set_vf_vlan_strip(adapter, vf, true);
7580 dev_info(&adapter->pdev->dev,
7581 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7582 if (test_bit(__IGB_DOWN, &adapter->state)) {
7583 dev_warn(&adapter->pdev->dev,
7584 "The VF VLAN has been set, but the PF device is not up.\n");
7585 dev_warn(&adapter->pdev->dev,
7586 "Bring the PF device up before attempting to use the VF device.\n");
7587 }
7588
7589 return err;
7590 }
7591
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7592 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7593 {
7594 /* Restore tagless access via VLAN 0 */
7595 igb_set_vf_vlan(adapter, 0, true, vf);
7596
7597 igb_set_vmvir(adapter, 0, vf);
7598 igb_set_vmolr(adapter, vf, true);
7599
7600 /* Remove any PF assigned VLAN */
7601 if (adapter->vf_data[vf].pf_vlan)
7602 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7603 false, vf);
7604
7605 adapter->vf_data[vf].pf_vlan = 0;
7606 adapter->vf_data[vf].pf_qos = 0;
7607 igb_set_vf_vlan_strip(adapter, vf, false);
7608
7609 return 0;
7610 }
7611
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7612 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7613 u16 vlan, u8 qos, __be16 vlan_proto)
7614 {
7615 struct igb_adapter *adapter = netdev_priv(netdev);
7616
7617 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7618 return -EINVAL;
7619
7620 if (vlan_proto != htons(ETH_P_8021Q))
7621 return -EPROTONOSUPPORT;
7622
7623 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7624 igb_disable_port_vlan(adapter, vf);
7625 }
7626
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7627 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7628 {
7629 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7630 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7631 int ret;
7632
7633 if (adapter->vf_data[vf].pf_vlan)
7634 return -1;
7635
7636 /* VLAN 0 is a special case, don't allow it to be removed */
7637 if (!vid && !add)
7638 return 0;
7639
7640 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7641 if (!ret)
7642 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7643 return ret;
7644 }
7645
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7646 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7647 {
7648 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7649
7650 /* clear flags - except flag that indicates PF has set the MAC */
7651 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7652 vf_data->last_nack = jiffies;
7653
7654 /* reset vlans for device */
7655 igb_clear_vf_vfta(adapter, vf);
7656 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7657 igb_set_vmvir(adapter, vf_data->pf_vlan |
7658 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7659 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7660 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7661
7662 /* reset multicast table array for vf */
7663 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7664
7665 /* Flush and reset the mta with the new values */
7666 igb_set_rx_mode(adapter->netdev);
7667 }
7668
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7669 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7670 {
7671 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7672
7673 /* clear mac address as we were hotplug removed/added */
7674 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7675 eth_zero_addr(vf_mac);
7676
7677 /* process remaining reset events */
7678 igb_vf_reset(adapter, vf);
7679 }
7680
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7681 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7682 {
7683 struct e1000_hw *hw = &adapter->hw;
7684 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7685 u32 reg, msgbuf[3] = {};
7686 u8 *addr = (u8 *)(&msgbuf[1]);
7687
7688 /* process all the same items cleared in a function level reset */
7689 igb_vf_reset(adapter, vf);
7690
7691 /* set vf mac address */
7692 igb_set_vf_mac(adapter, vf, vf_mac);
7693
7694 /* enable transmit and receive for vf */
7695 reg = rd32(E1000_VFTE);
7696 wr32(E1000_VFTE, reg | BIT(vf));
7697 reg = rd32(E1000_VFRE);
7698 wr32(E1000_VFRE, reg | BIT(vf));
7699
7700 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7701
7702 /* reply to reset with ack and vf mac address */
7703 if (!is_zero_ether_addr(vf_mac)) {
7704 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7705 memcpy(addr, vf_mac, ETH_ALEN);
7706 } else {
7707 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7708 }
7709 igb_write_mbx(hw, msgbuf, 3, vf);
7710 }
7711
igb_flush_mac_table(struct igb_adapter * adapter)7712 static void igb_flush_mac_table(struct igb_adapter *adapter)
7713 {
7714 struct e1000_hw *hw = &adapter->hw;
7715 int i;
7716
7717 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7718 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7719 eth_zero_addr(adapter->mac_table[i].addr);
7720 adapter->mac_table[i].queue = 0;
7721 igb_rar_set_index(adapter, i);
7722 }
7723 }
7724
igb_available_rars(struct igb_adapter * adapter,u8 queue)7725 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7726 {
7727 struct e1000_hw *hw = &adapter->hw;
7728 /* do not count rar entries reserved for VFs MAC addresses */
7729 int rar_entries = hw->mac.rar_entry_count -
7730 adapter->vfs_allocated_count;
7731 int i, count = 0;
7732
7733 for (i = 0; i < rar_entries; i++) {
7734 /* do not count default entries */
7735 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7736 continue;
7737
7738 /* do not count "in use" entries for different queues */
7739 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7740 (adapter->mac_table[i].queue != queue))
7741 continue;
7742
7743 count++;
7744 }
7745
7746 return count;
7747 }
7748
7749 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7750 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7751 {
7752 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7753
7754 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7755 mac_table->queue = adapter->vfs_allocated_count;
7756 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7757
7758 igb_rar_set_index(adapter, 0);
7759 }
7760
7761 /* If the filter to be added and an already existing filter express
7762 * the same address and address type, it should be possible to only
7763 * override the other configurations, for example the queue to steer
7764 * traffic.
7765 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7766 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7767 const u8 *addr, const u8 flags)
7768 {
7769 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7770 return true;
7771
7772 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7773 (flags & IGB_MAC_STATE_SRC_ADDR))
7774 return false;
7775
7776 if (!ether_addr_equal(addr, entry->addr))
7777 return false;
7778
7779 return true;
7780 }
7781
7782 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7783 * 'flags' is used to indicate what kind of match is made, match is by
7784 * default for the destination address, if matching by source address
7785 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7786 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7787 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7788 const u8 *addr, const u8 queue,
7789 const u8 flags)
7790 {
7791 struct e1000_hw *hw = &adapter->hw;
7792 int rar_entries = hw->mac.rar_entry_count -
7793 adapter->vfs_allocated_count;
7794 int i;
7795
7796 if (is_zero_ether_addr(addr))
7797 return -EINVAL;
7798
7799 /* Search for the first empty entry in the MAC table.
7800 * Do not touch entries at the end of the table reserved for the VF MAC
7801 * addresses.
7802 */
7803 for (i = 0; i < rar_entries; i++) {
7804 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7805 addr, flags))
7806 continue;
7807
7808 ether_addr_copy(adapter->mac_table[i].addr, addr);
7809 adapter->mac_table[i].queue = queue;
7810 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7811
7812 igb_rar_set_index(adapter, i);
7813 return i;
7814 }
7815
7816 return -ENOSPC;
7817 }
7818
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7819 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7820 const u8 queue)
7821 {
7822 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7823 }
7824
7825 /* Remove a MAC filter for 'addr' directing matching traffic to
7826 * 'queue', 'flags' is used to indicate what kind of match need to be
7827 * removed, match is by default for the destination address, if
7828 * matching by source address is to be removed the flag
7829 * IGB_MAC_STATE_SRC_ADDR can be used.
7830 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7831 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7832 const u8 *addr, const u8 queue,
7833 const u8 flags)
7834 {
7835 struct e1000_hw *hw = &adapter->hw;
7836 int rar_entries = hw->mac.rar_entry_count -
7837 adapter->vfs_allocated_count;
7838 int i;
7839
7840 if (is_zero_ether_addr(addr))
7841 return -EINVAL;
7842
7843 /* Search for matching entry in the MAC table based on given address
7844 * and queue. Do not touch entries at the end of the table reserved
7845 * for the VF MAC addresses.
7846 */
7847 for (i = 0; i < rar_entries; i++) {
7848 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7849 continue;
7850 if ((adapter->mac_table[i].state & flags) != flags)
7851 continue;
7852 if (adapter->mac_table[i].queue != queue)
7853 continue;
7854 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7855 continue;
7856
7857 /* When a filter for the default address is "deleted",
7858 * we return it to its initial configuration
7859 */
7860 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7861 adapter->mac_table[i].state =
7862 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7863 adapter->mac_table[i].queue =
7864 adapter->vfs_allocated_count;
7865 } else {
7866 adapter->mac_table[i].state = 0;
7867 adapter->mac_table[i].queue = 0;
7868 eth_zero_addr(adapter->mac_table[i].addr);
7869 }
7870
7871 igb_rar_set_index(adapter, i);
7872 return 0;
7873 }
7874
7875 return -ENOENT;
7876 }
7877
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7878 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7879 const u8 queue)
7880 {
7881 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7882 }
7883
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7884 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7885 const u8 *addr, u8 queue, u8 flags)
7886 {
7887 struct e1000_hw *hw = &adapter->hw;
7888
7889 /* In theory, this should be supported on 82575 as well, but
7890 * that part wasn't easily accessible during development.
7891 */
7892 if (hw->mac.type != e1000_i210)
7893 return -EOPNOTSUPP;
7894
7895 return igb_add_mac_filter_flags(adapter, addr, queue,
7896 IGB_MAC_STATE_QUEUE_STEERING | flags);
7897 }
7898
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7899 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7900 const u8 *addr, u8 queue, u8 flags)
7901 {
7902 return igb_del_mac_filter_flags(adapter, addr, queue,
7903 IGB_MAC_STATE_QUEUE_STEERING | flags);
7904 }
7905
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7906 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7907 {
7908 struct igb_adapter *adapter = netdev_priv(netdev);
7909 int ret;
7910
7911 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7912
7913 return min_t(int, ret, 0);
7914 }
7915
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7916 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7917 {
7918 struct igb_adapter *adapter = netdev_priv(netdev);
7919
7920 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7921
7922 return 0;
7923 }
7924
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7925 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7926 const u32 info, const u8 *addr)
7927 {
7928 struct pci_dev *pdev = adapter->pdev;
7929 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7930 struct vf_mac_filter *entry;
7931 bool found = false;
7932 int ret = 0;
7933
7934 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7935 !vf_data->trusted) {
7936 dev_warn(&pdev->dev,
7937 "VF %d requested MAC filter but is administratively denied\n",
7938 vf);
7939 return -EINVAL;
7940 }
7941 if (!is_valid_ether_addr(addr)) {
7942 dev_warn(&pdev->dev,
7943 "VF %d attempted to set invalid MAC filter\n",
7944 vf);
7945 return -EINVAL;
7946 }
7947
7948 switch (info) {
7949 case E1000_VF_MAC_FILTER_CLR:
7950 /* remove all unicast MAC filters related to the current VF */
7951 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7952 if (entry->vf == vf) {
7953 entry->vf = -1;
7954 entry->free = true;
7955 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7956 }
7957 }
7958 break;
7959 case E1000_VF_MAC_FILTER_ADD:
7960 /* try to find empty slot in the list */
7961 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7962 if (entry->free) {
7963 found = true;
7964 break;
7965 }
7966 }
7967
7968 if (found) {
7969 entry->free = false;
7970 entry->vf = vf;
7971 ether_addr_copy(entry->vf_mac, addr);
7972
7973 ret = igb_add_mac_filter(adapter, addr, vf);
7974 ret = min_t(int, ret, 0);
7975 } else {
7976 ret = -ENOSPC;
7977 }
7978
7979 if (ret == -ENOSPC)
7980 dev_warn(&pdev->dev,
7981 "VF %d has requested MAC filter but there is no space for it\n",
7982 vf);
7983 break;
7984 default:
7985 ret = -EINVAL;
7986 break;
7987 }
7988
7989 return ret;
7990 }
7991
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7992 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7993 {
7994 struct pci_dev *pdev = adapter->pdev;
7995 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7996 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7997
7998 /* The VF MAC Address is stored in a packed array of bytes
7999 * starting at the second 32 bit word of the msg array
8000 */
8001 unsigned char *addr = (unsigned char *)&msg[1];
8002 int ret = 0;
8003
8004 if (!info) {
8005 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8006 !vf_data->trusted) {
8007 dev_warn(&pdev->dev,
8008 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8009 vf);
8010 return -EINVAL;
8011 }
8012
8013 if (!is_valid_ether_addr(addr)) {
8014 dev_warn(&pdev->dev,
8015 "VF %d attempted to set invalid MAC\n",
8016 vf);
8017 return -EINVAL;
8018 }
8019
8020 ret = igb_set_vf_mac(adapter, vf, addr);
8021 } else {
8022 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8023 }
8024
8025 return ret;
8026 }
8027
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)8028 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8029 {
8030 struct e1000_hw *hw = &adapter->hw;
8031 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8032 u32 msg = E1000_VT_MSGTYPE_NACK;
8033
8034 /* if device isn't clear to send it shouldn't be reading either */
8035 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8036 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8037 igb_write_mbx(hw, &msg, 1, vf);
8038 vf_data->last_nack = jiffies;
8039 }
8040 }
8041
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)8042 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8043 {
8044 struct pci_dev *pdev = adapter->pdev;
8045 u32 msgbuf[E1000_VFMAILBOX_SIZE];
8046 struct e1000_hw *hw = &adapter->hw;
8047 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8048 s32 retval;
8049
8050 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8051
8052 if (retval) {
8053 /* if receive failed revoke VF CTS stats and restart init */
8054 dev_err(&pdev->dev, "Error receiving message from VF\n");
8055 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8056 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8057 goto unlock;
8058 goto out;
8059 }
8060
8061 /* this is a message we already processed, do nothing */
8062 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8063 goto unlock;
8064
8065 /* until the vf completes a reset it should not be
8066 * allowed to start any configuration.
8067 */
8068 if (msgbuf[0] == E1000_VF_RESET) {
8069 /* unlocks mailbox */
8070 igb_vf_reset_msg(adapter, vf);
8071 return;
8072 }
8073
8074 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8075 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8076 goto unlock;
8077 retval = -1;
8078 goto out;
8079 }
8080
8081 switch ((msgbuf[0] & 0xFFFF)) {
8082 case E1000_VF_SET_MAC_ADDR:
8083 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8084 break;
8085 case E1000_VF_SET_PROMISC:
8086 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8087 break;
8088 case E1000_VF_SET_MULTICAST:
8089 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8090 break;
8091 case E1000_VF_SET_LPE:
8092 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8093 break;
8094 case E1000_VF_SET_VLAN:
8095 retval = -1;
8096 if (vf_data->pf_vlan)
8097 dev_warn(&pdev->dev,
8098 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8099 vf);
8100 else
8101 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8102 break;
8103 default:
8104 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8105 retval = -1;
8106 break;
8107 }
8108
8109 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8110 out:
8111 /* notify the VF of the results of what it sent us */
8112 if (retval)
8113 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8114 else
8115 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8116
8117 /* unlocks mailbox */
8118 igb_write_mbx(hw, msgbuf, 1, vf);
8119 return;
8120
8121 unlock:
8122 igb_unlock_mbx(hw, vf);
8123 }
8124
igb_msg_task(struct igb_adapter * adapter)8125 static void igb_msg_task(struct igb_adapter *adapter)
8126 {
8127 struct e1000_hw *hw = &adapter->hw;
8128 unsigned long flags;
8129 u32 vf;
8130
8131 spin_lock_irqsave(&adapter->vfs_lock, flags);
8132 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8133 /* process any reset requests */
8134 if (!igb_check_for_rst(hw, vf))
8135 igb_vf_reset_event(adapter, vf);
8136
8137 /* process any messages pending */
8138 if (!igb_check_for_msg(hw, vf))
8139 igb_rcv_msg_from_vf(adapter, vf);
8140
8141 /* process any acks */
8142 if (!igb_check_for_ack(hw, vf))
8143 igb_rcv_ack_from_vf(adapter, vf);
8144 }
8145 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8146 }
8147
8148 /**
8149 * igb_set_uta - Set unicast filter table address
8150 * @adapter: board private structure
8151 * @set: boolean indicating if we are setting or clearing bits
8152 *
8153 * The unicast table address is a register array of 32-bit registers.
8154 * The table is meant to be used in a way similar to how the MTA is used
8155 * however due to certain limitations in the hardware it is necessary to
8156 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8157 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8158 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8159 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8160 {
8161 struct e1000_hw *hw = &adapter->hw;
8162 u32 uta = set ? ~0 : 0;
8163 int i;
8164
8165 /* we only need to do this if VMDq is enabled */
8166 if (!adapter->vfs_allocated_count)
8167 return;
8168
8169 for (i = hw->mac.uta_reg_count; i--;)
8170 array_wr32(E1000_UTA, i, uta);
8171 }
8172
8173 /**
8174 * igb_intr_msi - Interrupt Handler
8175 * @irq: interrupt number
8176 * @data: pointer to a network interface device structure
8177 **/
igb_intr_msi(int irq,void * data)8178 static irqreturn_t igb_intr_msi(int irq, void *data)
8179 {
8180 struct igb_adapter *adapter = data;
8181 struct igb_q_vector *q_vector = adapter->q_vector[0];
8182 struct e1000_hw *hw = &adapter->hw;
8183 /* read ICR disables interrupts using IAM */
8184 u32 icr = rd32(E1000_ICR);
8185
8186 igb_write_itr(q_vector);
8187
8188 if (icr & E1000_ICR_DRSTA)
8189 schedule_work(&adapter->reset_task);
8190
8191 if (icr & E1000_ICR_DOUTSYNC) {
8192 /* HW is reporting DMA is out of sync */
8193 adapter->stats.doosync++;
8194 }
8195
8196 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8197 hw->mac.get_link_status = 1;
8198 if (!test_bit(__IGB_DOWN, &adapter->state))
8199 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8200 }
8201
8202 if (icr & E1000_ICR_TS)
8203 igb_tsync_interrupt(adapter);
8204
8205 napi_schedule(&q_vector->napi);
8206
8207 return IRQ_HANDLED;
8208 }
8209
8210 /**
8211 * igb_intr - Legacy Interrupt Handler
8212 * @irq: interrupt number
8213 * @data: pointer to a network interface device structure
8214 **/
igb_intr(int irq,void * data)8215 static irqreturn_t igb_intr(int irq, void *data)
8216 {
8217 struct igb_adapter *adapter = data;
8218 struct igb_q_vector *q_vector = adapter->q_vector[0];
8219 struct e1000_hw *hw = &adapter->hw;
8220 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8221 * need for the IMC write
8222 */
8223 u32 icr = rd32(E1000_ICR);
8224
8225 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8226 * not set, then the adapter didn't send an interrupt
8227 */
8228 if (!(icr & E1000_ICR_INT_ASSERTED))
8229 return IRQ_NONE;
8230
8231 igb_write_itr(q_vector);
8232
8233 if (icr & E1000_ICR_DRSTA)
8234 schedule_work(&adapter->reset_task);
8235
8236 if (icr & E1000_ICR_DOUTSYNC) {
8237 /* HW is reporting DMA is out of sync */
8238 adapter->stats.doosync++;
8239 }
8240
8241 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8242 hw->mac.get_link_status = 1;
8243 /* guard against interrupt when we're going down */
8244 if (!test_bit(__IGB_DOWN, &adapter->state))
8245 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8246 }
8247
8248 if (icr & E1000_ICR_TS)
8249 igb_tsync_interrupt(adapter);
8250
8251 napi_schedule(&q_vector->napi);
8252
8253 return IRQ_HANDLED;
8254 }
8255
igb_ring_irq_enable(struct igb_q_vector * q_vector)8256 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8257 {
8258 struct igb_adapter *adapter = q_vector->adapter;
8259 struct e1000_hw *hw = &adapter->hw;
8260
8261 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8262 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8263 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8264 igb_set_itr(q_vector);
8265 else
8266 igb_update_ring_itr(q_vector);
8267 }
8268
8269 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8270 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8271 wr32(E1000_EIMS, q_vector->eims_value);
8272 else
8273 igb_irq_enable(adapter);
8274 }
8275 }
8276
8277 /**
8278 * igb_poll - NAPI Rx polling callback
8279 * @napi: napi polling structure
8280 * @budget: count of how many packets we should handle
8281 **/
igb_poll(struct napi_struct * napi,int budget)8282 static int igb_poll(struct napi_struct *napi, int budget)
8283 {
8284 struct igb_q_vector *q_vector = container_of(napi,
8285 struct igb_q_vector,
8286 napi);
8287 struct xsk_buff_pool *xsk_pool;
8288 bool clean_complete = true;
8289 int work_done = 0;
8290
8291 #ifdef CONFIG_IGB_DCA
8292 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8293 igb_update_dca(q_vector);
8294 #endif
8295 if (q_vector->tx.ring)
8296 clean_complete = igb_clean_tx_irq(q_vector, budget);
8297
8298 if (q_vector->rx.ring) {
8299 int cleaned;
8300
8301 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8302 cleaned = xsk_pool ?
8303 igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8304 igb_clean_rx_irq(q_vector, budget);
8305
8306 work_done += cleaned;
8307 if (cleaned >= budget)
8308 clean_complete = false;
8309 }
8310
8311 /* If all work not completed, return budget and keep polling */
8312 if (!clean_complete)
8313 return budget;
8314
8315 /* Exit the polling mode, but don't re-enable interrupts if stack might
8316 * poll us due to busy-polling
8317 */
8318 if (likely(napi_complete_done(napi, work_done)))
8319 igb_ring_irq_enable(q_vector);
8320
8321 return work_done;
8322 }
8323
8324 /**
8325 * igb_clean_tx_irq - Reclaim resources after transmit completes
8326 * @q_vector: pointer to q_vector containing needed info
8327 * @napi_budget: Used to determine if we are in netpoll
8328 *
8329 * returns true if ring is completely cleaned
8330 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8331 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8332 {
8333 unsigned int total_bytes = 0, total_packets = 0;
8334 struct igb_adapter *adapter = q_vector->adapter;
8335 unsigned int budget = q_vector->tx.work_limit;
8336 struct igb_ring *tx_ring = q_vector->tx.ring;
8337 unsigned int i = tx_ring->next_to_clean;
8338 union e1000_adv_tx_desc *tx_desc;
8339 struct igb_tx_buffer *tx_buffer;
8340 struct xsk_buff_pool *xsk_pool;
8341 int cpu = smp_processor_id();
8342 bool xsk_xmit_done = true;
8343 struct netdev_queue *nq;
8344 u32 xsk_frames = 0;
8345
8346 if (test_bit(__IGB_DOWN, &adapter->state))
8347 return true;
8348
8349 tx_buffer = &tx_ring->tx_buffer_info[i];
8350 tx_desc = IGB_TX_DESC(tx_ring, i);
8351 i -= tx_ring->count;
8352
8353 do {
8354 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8355
8356 /* if next_to_watch is not set then there is no work pending */
8357 if (!eop_desc)
8358 break;
8359
8360 /* prevent any other reads prior to eop_desc */
8361 smp_rmb();
8362
8363 /* if DD is not set pending work has not been completed */
8364 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8365 break;
8366
8367 /* clear next_to_watch to prevent false hangs */
8368 tx_buffer->next_to_watch = NULL;
8369
8370 /* update the statistics for this packet */
8371 total_bytes += tx_buffer->bytecount;
8372 total_packets += tx_buffer->gso_segs;
8373
8374 /* free the skb */
8375 if (tx_buffer->type == IGB_TYPE_SKB) {
8376 napi_consume_skb(tx_buffer->skb, napi_budget);
8377 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8378 xdp_return_frame(tx_buffer->xdpf);
8379 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8380 xsk_frames++;
8381 goto skip_for_xsk;
8382 }
8383
8384 /* unmap skb header data */
8385 dma_unmap_single(tx_ring->dev,
8386 dma_unmap_addr(tx_buffer, dma),
8387 dma_unmap_len(tx_buffer, len),
8388 DMA_TO_DEVICE);
8389
8390 /* clear tx_buffer data */
8391 dma_unmap_len_set(tx_buffer, len, 0);
8392
8393 /* clear last DMA location and unmap remaining buffers */
8394 while (tx_desc != eop_desc) {
8395 tx_buffer++;
8396 tx_desc++;
8397 i++;
8398 if (unlikely(!i)) {
8399 i -= tx_ring->count;
8400 tx_buffer = tx_ring->tx_buffer_info;
8401 tx_desc = IGB_TX_DESC(tx_ring, 0);
8402 }
8403
8404 /* unmap any remaining paged data */
8405 if (dma_unmap_len(tx_buffer, len)) {
8406 dma_unmap_page(tx_ring->dev,
8407 dma_unmap_addr(tx_buffer, dma),
8408 dma_unmap_len(tx_buffer, len),
8409 DMA_TO_DEVICE);
8410 dma_unmap_len_set(tx_buffer, len, 0);
8411 }
8412 }
8413
8414 skip_for_xsk:
8415 /* move us one more past the eop_desc for start of next pkt */
8416 tx_buffer++;
8417 tx_desc++;
8418 i++;
8419 if (unlikely(!i)) {
8420 i -= tx_ring->count;
8421 tx_buffer = tx_ring->tx_buffer_info;
8422 tx_desc = IGB_TX_DESC(tx_ring, 0);
8423 }
8424
8425 /* issue prefetch for next Tx descriptor */
8426 prefetch(tx_desc);
8427
8428 /* update budget accounting */
8429 budget--;
8430 } while (likely(budget));
8431
8432 netdev_tx_completed_queue(txring_txq(tx_ring),
8433 total_packets, total_bytes);
8434 i += tx_ring->count;
8435 tx_ring->next_to_clean = i;
8436 u64_stats_update_begin(&tx_ring->tx_syncp);
8437 tx_ring->tx_stats.bytes += total_bytes;
8438 tx_ring->tx_stats.packets += total_packets;
8439 u64_stats_update_end(&tx_ring->tx_syncp);
8440 q_vector->tx.total_bytes += total_bytes;
8441 q_vector->tx.total_packets += total_packets;
8442
8443 xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8444 if (xsk_pool) {
8445 if (xsk_frames)
8446 xsk_tx_completed(xsk_pool, xsk_frames);
8447 if (xsk_uses_need_wakeup(xsk_pool))
8448 xsk_set_tx_need_wakeup(xsk_pool);
8449
8450 nq = txring_txq(tx_ring);
8451 __netif_tx_lock(nq, cpu);
8452 /* Avoid transmit queue timeout since we share it with the slow path */
8453 txq_trans_cond_update(nq);
8454 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8455 __netif_tx_unlock(nq);
8456 }
8457
8458 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8459 struct e1000_hw *hw = &adapter->hw;
8460
8461 /* Detect a transmit hang in hardware, this serializes the
8462 * check with the clearing of time_stamp and movement of i
8463 */
8464 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8465 if (tx_buffer->next_to_watch &&
8466 time_after(jiffies, tx_buffer->time_stamp +
8467 (adapter->tx_timeout_factor * HZ)) &&
8468 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8469
8470 /* detected Tx unit hang */
8471 dev_err(tx_ring->dev,
8472 "Detected Tx Unit Hang\n"
8473 " Tx Queue <%d>\n"
8474 " TDH <%x>\n"
8475 " TDT <%x>\n"
8476 " next_to_use <%x>\n"
8477 " next_to_clean <%x>\n"
8478 "buffer_info[next_to_clean]\n"
8479 " time_stamp <%lx>\n"
8480 " next_to_watch <%p>\n"
8481 " jiffies <%lx>\n"
8482 " desc.status <%x>\n",
8483 tx_ring->queue_index,
8484 rd32(E1000_TDH(tx_ring->reg_idx)),
8485 readl(tx_ring->tail),
8486 tx_ring->next_to_use,
8487 tx_ring->next_to_clean,
8488 tx_buffer->time_stamp,
8489 tx_buffer->next_to_watch,
8490 jiffies,
8491 tx_buffer->next_to_watch->wb.status);
8492 netif_stop_subqueue(tx_ring->netdev,
8493 tx_ring->queue_index);
8494
8495 /* we are about to reset, no point in enabling stuff */
8496 return true;
8497 }
8498 }
8499
8500 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8501 if (unlikely(total_packets &&
8502 netif_carrier_ok(tx_ring->netdev) &&
8503 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8504 /* Make sure that anybody stopping the queue after this
8505 * sees the new next_to_clean.
8506 */
8507 smp_mb();
8508 if (__netif_subqueue_stopped(tx_ring->netdev,
8509 tx_ring->queue_index) &&
8510 !(test_bit(__IGB_DOWN, &adapter->state))) {
8511 netif_wake_subqueue(tx_ring->netdev,
8512 tx_ring->queue_index);
8513
8514 u64_stats_update_begin(&tx_ring->tx_syncp);
8515 tx_ring->tx_stats.restart_queue++;
8516 u64_stats_update_end(&tx_ring->tx_syncp);
8517 }
8518 }
8519
8520 return !!budget && xsk_xmit_done;
8521 }
8522
8523 /**
8524 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8525 * @rx_ring: rx descriptor ring to store buffers on
8526 * @old_buff: donor buffer to have page reused
8527 *
8528 * Synchronizes page for reuse by the adapter
8529 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8530 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8531 struct igb_rx_buffer *old_buff)
8532 {
8533 struct igb_rx_buffer *new_buff;
8534 u16 nta = rx_ring->next_to_alloc;
8535
8536 new_buff = &rx_ring->rx_buffer_info[nta];
8537
8538 /* update, and store next to alloc */
8539 nta++;
8540 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8541
8542 /* Transfer page from old buffer to new buffer.
8543 * Move each member individually to avoid possible store
8544 * forwarding stalls.
8545 */
8546 new_buff->dma = old_buff->dma;
8547 new_buff->page = old_buff->page;
8548 new_buff->page_offset = old_buff->page_offset;
8549 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8550 }
8551
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8552 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8553 int rx_buf_pgcnt)
8554 {
8555 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8556 struct page *page = rx_buffer->page;
8557
8558 /* avoid re-using remote and pfmemalloc pages */
8559 if (!dev_page_is_reusable(page))
8560 return false;
8561
8562 #if (PAGE_SIZE < 8192)
8563 /* if we are only owner of page we can reuse it */
8564 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8565 return false;
8566 #else
8567 #define IGB_LAST_OFFSET \
8568 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8569
8570 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8571 return false;
8572 #endif
8573
8574 /* If we have drained the page fragment pool we need to update
8575 * the pagecnt_bias and page count so that we fully restock the
8576 * number of references the driver holds.
8577 */
8578 if (unlikely(pagecnt_bias == 1)) {
8579 page_ref_add(page, USHRT_MAX - 1);
8580 rx_buffer->pagecnt_bias = USHRT_MAX;
8581 }
8582
8583 return true;
8584 }
8585
8586 /**
8587 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8588 * @rx_ring: rx descriptor ring to transact packets on
8589 * @rx_buffer: buffer containing page to add
8590 * @skb: sk_buff to place the data into
8591 * @size: size of buffer to be added
8592 *
8593 * This function will add the data contained in rx_buffer->page to the skb.
8594 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8595 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8596 struct igb_rx_buffer *rx_buffer,
8597 struct sk_buff *skb,
8598 unsigned int size)
8599 {
8600 #if (PAGE_SIZE < 8192)
8601 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8602 #else
8603 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8604 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8605 SKB_DATA_ALIGN(size);
8606 #endif
8607 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8608 rx_buffer->page_offset, size, truesize);
8609 #if (PAGE_SIZE < 8192)
8610 rx_buffer->page_offset ^= truesize;
8611 #else
8612 rx_buffer->page_offset += truesize;
8613 #endif
8614 }
8615
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8616 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8617 struct igb_rx_buffer *rx_buffer,
8618 struct xdp_buff *xdp,
8619 ktime_t timestamp)
8620 {
8621 #if (PAGE_SIZE < 8192)
8622 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8623 #else
8624 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8625 xdp->data_hard_start);
8626 #endif
8627 unsigned int size = xdp->data_end - xdp->data;
8628 unsigned int headlen;
8629 struct sk_buff *skb;
8630
8631 /* prefetch first cache line of first page */
8632 net_prefetch(xdp->data);
8633
8634 /* allocate a skb to store the frags */
8635 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8636 if (unlikely(!skb))
8637 return NULL;
8638
8639 if (timestamp)
8640 skb_hwtstamps(skb)->hwtstamp = timestamp;
8641
8642 /* Determine available headroom for copy */
8643 headlen = size;
8644 if (headlen > IGB_RX_HDR_LEN)
8645 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8646
8647 /* align pull length to size of long to optimize memcpy performance */
8648 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8649
8650 /* update all of the pointers */
8651 size -= headlen;
8652 if (size) {
8653 skb_add_rx_frag(skb, 0, rx_buffer->page,
8654 (xdp->data + headlen) - page_address(rx_buffer->page),
8655 size, truesize);
8656 #if (PAGE_SIZE < 8192)
8657 rx_buffer->page_offset ^= truesize;
8658 #else
8659 rx_buffer->page_offset += truesize;
8660 #endif
8661 } else {
8662 rx_buffer->pagecnt_bias++;
8663 }
8664
8665 return skb;
8666 }
8667
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8668 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8669 struct igb_rx_buffer *rx_buffer,
8670 struct xdp_buff *xdp,
8671 ktime_t timestamp)
8672 {
8673 #if (PAGE_SIZE < 8192)
8674 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8675 #else
8676 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8677 SKB_DATA_ALIGN(xdp->data_end -
8678 xdp->data_hard_start);
8679 #endif
8680 unsigned int metasize = xdp->data - xdp->data_meta;
8681 struct sk_buff *skb;
8682
8683 /* prefetch first cache line of first page */
8684 net_prefetch(xdp->data_meta);
8685
8686 /* build an skb around the page buffer */
8687 skb = napi_build_skb(xdp->data_hard_start, truesize);
8688 if (unlikely(!skb))
8689 return NULL;
8690
8691 /* update pointers within the skb to store the data */
8692 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8693 __skb_put(skb, xdp->data_end - xdp->data);
8694
8695 if (metasize)
8696 skb_metadata_set(skb, metasize);
8697
8698 if (timestamp)
8699 skb_hwtstamps(skb)->hwtstamp = timestamp;
8700
8701 /* update buffer offset */
8702 #if (PAGE_SIZE < 8192)
8703 rx_buffer->page_offset ^= truesize;
8704 #else
8705 rx_buffer->page_offset += truesize;
8706 #endif
8707
8708 return skb;
8709 }
8710
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8711 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8712 struct xdp_buff *xdp)
8713 {
8714 int err, result = IGB_XDP_PASS;
8715 struct bpf_prog *xdp_prog;
8716 u32 act;
8717
8718 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8719
8720 if (!xdp_prog)
8721 goto xdp_out;
8722
8723 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8724
8725 act = bpf_prog_run_xdp(xdp_prog, xdp);
8726 switch (act) {
8727 case XDP_PASS:
8728 break;
8729 case XDP_TX:
8730 result = igb_xdp_xmit_back(adapter, xdp);
8731 if (result == IGB_XDP_CONSUMED)
8732 goto out_failure;
8733 break;
8734 case XDP_REDIRECT:
8735 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8736 if (err)
8737 goto out_failure;
8738 result = IGB_XDP_REDIR;
8739 break;
8740 default:
8741 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8742 fallthrough;
8743 case XDP_ABORTED:
8744 out_failure:
8745 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8746 fallthrough;
8747 case XDP_DROP:
8748 result = IGB_XDP_CONSUMED;
8749 break;
8750 }
8751 xdp_out:
8752 return result;
8753 }
8754
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8755 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8756 unsigned int size)
8757 {
8758 unsigned int truesize;
8759
8760 #if (PAGE_SIZE < 8192)
8761 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8762 #else
8763 truesize = ring_uses_build_skb(rx_ring) ?
8764 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8765 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8766 SKB_DATA_ALIGN(size);
8767 #endif
8768 return truesize;
8769 }
8770
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8771 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8772 struct igb_rx_buffer *rx_buffer,
8773 unsigned int size)
8774 {
8775 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8776 #if (PAGE_SIZE < 8192)
8777 rx_buffer->page_offset ^= truesize;
8778 #else
8779 rx_buffer->page_offset += truesize;
8780 #endif
8781 }
8782
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8783 static inline void igb_rx_checksum(struct igb_ring *ring,
8784 union e1000_adv_rx_desc *rx_desc,
8785 struct sk_buff *skb)
8786 {
8787 skb_checksum_none_assert(skb);
8788
8789 /* Ignore Checksum bit is set */
8790 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8791 return;
8792
8793 /* Rx checksum disabled via ethtool */
8794 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8795 return;
8796
8797 /* TCP/UDP checksum error bit is set */
8798 if (igb_test_staterr(rx_desc,
8799 E1000_RXDEXT_STATERR_TCPE |
8800 E1000_RXDEXT_STATERR_IPE)) {
8801 /* work around errata with sctp packets where the TCPE aka
8802 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8803 * packets, (aka let the stack check the crc32c)
8804 */
8805 if (!((skb->len == 60) &&
8806 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8807 u64_stats_update_begin(&ring->rx_syncp);
8808 ring->rx_stats.csum_err++;
8809 u64_stats_update_end(&ring->rx_syncp);
8810 }
8811 /* let the stack verify checksum errors */
8812 return;
8813 }
8814 /* It must be a TCP or UDP packet with a valid checksum */
8815 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8816 E1000_RXD_STAT_UDPCS))
8817 skb->ip_summed = CHECKSUM_UNNECESSARY;
8818
8819 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8820 le32_to_cpu(rx_desc->wb.upper.status_error));
8821 }
8822
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8823 static inline void igb_rx_hash(struct igb_ring *ring,
8824 union e1000_adv_rx_desc *rx_desc,
8825 struct sk_buff *skb)
8826 {
8827 if (ring->netdev->features & NETIF_F_RXHASH)
8828 skb_set_hash(skb,
8829 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8830 PKT_HASH_TYPE_L3);
8831 }
8832
8833 /**
8834 * igb_is_non_eop - process handling of non-EOP buffers
8835 * @rx_ring: Rx ring being processed
8836 * @rx_desc: Rx descriptor for current buffer
8837 *
8838 * This function updates next to clean. If the buffer is an EOP buffer
8839 * this function exits returning false, otherwise it will place the
8840 * sk_buff in the next buffer to be chained and return true indicating
8841 * that this is in fact a non-EOP buffer.
8842 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8843 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8844 union e1000_adv_rx_desc *rx_desc)
8845 {
8846 u32 ntc = rx_ring->next_to_clean + 1;
8847
8848 /* fetch, update, and store next to clean */
8849 ntc = (ntc < rx_ring->count) ? ntc : 0;
8850 rx_ring->next_to_clean = ntc;
8851
8852 prefetch(IGB_RX_DESC(rx_ring, ntc));
8853
8854 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8855 return false;
8856
8857 return true;
8858 }
8859
8860 /**
8861 * igb_cleanup_headers - Correct corrupted or empty headers
8862 * @rx_ring: rx descriptor ring packet is being transacted on
8863 * @rx_desc: pointer to the EOP Rx descriptor
8864 * @skb: pointer to current skb being fixed
8865 *
8866 * Address the case where we are pulling data in on pages only
8867 * and as such no data is present in the skb header.
8868 *
8869 * In addition if skb is not at least 60 bytes we need to pad it so that
8870 * it is large enough to qualify as a valid Ethernet frame.
8871 *
8872 * Returns true if an error was encountered and skb was freed.
8873 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8874 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8875 union e1000_adv_rx_desc *rx_desc,
8876 struct sk_buff *skb)
8877 {
8878 if (unlikely((igb_test_staterr(rx_desc,
8879 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8880 struct net_device *netdev = rx_ring->netdev;
8881 if (!(netdev->features & NETIF_F_RXALL)) {
8882 dev_kfree_skb_any(skb);
8883 return true;
8884 }
8885 }
8886
8887 /* if eth_skb_pad returns an error the skb was freed */
8888 if (eth_skb_pad(skb))
8889 return true;
8890
8891 return false;
8892 }
8893
8894 /**
8895 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8896 * @rx_ring: rx descriptor ring packet is being transacted on
8897 * @rx_desc: pointer to the EOP Rx descriptor
8898 * @skb: pointer to current skb being populated
8899 *
8900 * This function checks the ring, descriptor, and packet information in
8901 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8902 * other fields within the skb.
8903 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8904 void igb_process_skb_fields(struct igb_ring *rx_ring,
8905 union e1000_adv_rx_desc *rx_desc,
8906 struct sk_buff *skb)
8907 {
8908 struct net_device *dev = rx_ring->netdev;
8909
8910 igb_rx_hash(rx_ring, rx_desc, skb);
8911
8912 igb_rx_checksum(rx_ring, rx_desc, skb);
8913
8914 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8915 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8916 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8917
8918 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8919 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8920 u16 vid;
8921
8922 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8923 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8924 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8925 else
8926 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8927
8928 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8929 }
8930
8931 skb_record_rx_queue(skb, rx_ring->queue_index);
8932
8933 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8934 }
8935
igb_rx_offset(struct igb_ring * rx_ring)8936 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8937 {
8938 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8939 }
8940
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8941 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8942 const unsigned int size, int *rx_buf_pgcnt)
8943 {
8944 struct igb_rx_buffer *rx_buffer;
8945
8946 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8947 *rx_buf_pgcnt =
8948 #if (PAGE_SIZE < 8192)
8949 page_count(rx_buffer->page);
8950 #else
8951 0;
8952 #endif
8953 prefetchw(rx_buffer->page);
8954
8955 /* we are reusing so sync this buffer for CPU use */
8956 dma_sync_single_range_for_cpu(rx_ring->dev,
8957 rx_buffer->dma,
8958 rx_buffer->page_offset,
8959 size,
8960 DMA_FROM_DEVICE);
8961
8962 rx_buffer->pagecnt_bias--;
8963
8964 return rx_buffer;
8965 }
8966
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8967 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8968 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8969 {
8970 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8971 /* hand second half of page back to the ring */
8972 igb_reuse_rx_page(rx_ring, rx_buffer);
8973 } else {
8974 /* We are not reusing the buffer so unmap it and free
8975 * any references we are holding to it
8976 */
8977 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8978 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8979 IGB_RX_DMA_ATTR);
8980 __page_frag_cache_drain(rx_buffer->page,
8981 rx_buffer->pagecnt_bias);
8982 }
8983
8984 /* clear contents of rx_buffer */
8985 rx_buffer->page = NULL;
8986 }
8987
igb_finalize_xdp(struct igb_adapter * adapter,unsigned int status)8988 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8989 {
8990 int cpu = smp_processor_id();
8991 struct netdev_queue *nq;
8992
8993 if (status & IGB_XDP_REDIR)
8994 xdp_do_flush();
8995
8996 if (status & IGB_XDP_TX) {
8997 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8998
8999 nq = txring_txq(tx_ring);
9000 __netif_tx_lock(nq, cpu);
9001 igb_xdp_ring_update_tail(tx_ring);
9002 __netif_tx_unlock(nq);
9003 }
9004 }
9005
igb_update_rx_stats(struct igb_q_vector * q_vector,unsigned int packets,unsigned int bytes)9006 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9007 unsigned int bytes)
9008 {
9009 struct igb_ring *ring = q_vector->rx.ring;
9010
9011 u64_stats_update_begin(&ring->rx_syncp);
9012 ring->rx_stats.packets += packets;
9013 ring->rx_stats.bytes += bytes;
9014 u64_stats_update_end(&ring->rx_syncp);
9015
9016 q_vector->rx.total_packets += packets;
9017 q_vector->rx.total_bytes += bytes;
9018 }
9019
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)9020 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9021 {
9022 unsigned int total_bytes = 0, total_packets = 0;
9023 struct igb_adapter *adapter = q_vector->adapter;
9024 struct igb_ring *rx_ring = q_vector->rx.ring;
9025 u16 cleaned_count = igb_desc_unused(rx_ring);
9026 struct sk_buff *skb = rx_ring->skb;
9027 unsigned int xdp_xmit = 0;
9028 struct xdp_buff xdp;
9029 u32 frame_sz = 0;
9030 int rx_buf_pgcnt;
9031 int xdp_res = 0;
9032
9033 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9034 #if (PAGE_SIZE < 8192)
9035 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9036 #endif
9037 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9038
9039 while (likely(total_packets < budget)) {
9040 union e1000_adv_rx_desc *rx_desc;
9041 struct igb_rx_buffer *rx_buffer;
9042 ktime_t timestamp = 0;
9043 int pkt_offset = 0;
9044 unsigned int size;
9045 void *pktbuf;
9046
9047 /* return some buffers to hardware, one at a time is too slow */
9048 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9049 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9050 cleaned_count = 0;
9051 }
9052
9053 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9054 size = le16_to_cpu(rx_desc->wb.upper.length);
9055 if (!size)
9056 break;
9057
9058 /* This memory barrier is needed to keep us from reading
9059 * any other fields out of the rx_desc until we know the
9060 * descriptor has been written back
9061 */
9062 dma_rmb();
9063
9064 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9065 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9066
9067 /* pull rx packet timestamp if available and valid */
9068 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9069 int ts_hdr_len;
9070
9071 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9072 pktbuf, ×tamp);
9073
9074 pkt_offset += ts_hdr_len;
9075 size -= ts_hdr_len;
9076 }
9077
9078 /* retrieve a buffer from the ring */
9079 if (!skb) {
9080 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9081 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9082
9083 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9084 xdp_buff_clear_frags_flag(&xdp);
9085 #if (PAGE_SIZE > 4096)
9086 /* At larger PAGE_SIZE, frame_sz depend on len size */
9087 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9088 #endif
9089 xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9090 }
9091
9092 if (xdp_res) {
9093 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9094 xdp_xmit |= xdp_res;
9095 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9096 } else {
9097 rx_buffer->pagecnt_bias++;
9098 }
9099 total_packets++;
9100 total_bytes += size;
9101 } else if (skb)
9102 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9103 else if (ring_uses_build_skb(rx_ring))
9104 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9105 timestamp);
9106 else
9107 skb = igb_construct_skb(rx_ring, rx_buffer,
9108 &xdp, timestamp);
9109
9110 /* exit if we failed to retrieve a buffer */
9111 if (!xdp_res && !skb) {
9112 rx_ring->rx_stats.alloc_failed++;
9113 rx_buffer->pagecnt_bias++;
9114 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9115 break;
9116 }
9117
9118 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9119 cleaned_count++;
9120
9121 /* fetch next buffer in frame if non-eop */
9122 if (igb_is_non_eop(rx_ring, rx_desc))
9123 continue;
9124
9125 /* verify the packet layout is correct */
9126 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9127 skb = NULL;
9128 continue;
9129 }
9130
9131 /* probably a little skewed due to removing CRC */
9132 total_bytes += skb->len;
9133
9134 /* populate checksum, timestamp, VLAN, and protocol */
9135 igb_process_skb_fields(rx_ring, rx_desc, skb);
9136
9137 napi_gro_receive(&q_vector->napi, skb);
9138
9139 /* reset skb pointer */
9140 skb = NULL;
9141
9142 /* update budget accounting */
9143 total_packets++;
9144 }
9145
9146 /* place incomplete frames back on ring for completion */
9147 rx_ring->skb = skb;
9148
9149 if (xdp_xmit)
9150 igb_finalize_xdp(adapter, xdp_xmit);
9151
9152 igb_update_rx_stats(q_vector, total_packets, total_bytes);
9153
9154 if (cleaned_count)
9155 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9156
9157 return total_packets;
9158 }
9159
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9160 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9161 struct igb_rx_buffer *bi)
9162 {
9163 struct page *page = bi->page;
9164 dma_addr_t dma;
9165
9166 /* since we are recycling buffers we should seldom need to alloc */
9167 if (likely(page))
9168 return true;
9169
9170 /* alloc new page for storage */
9171 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9172 if (unlikely(!page)) {
9173 rx_ring->rx_stats.alloc_failed++;
9174 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9175 return false;
9176 }
9177
9178 /* map page for use */
9179 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9180 igb_rx_pg_size(rx_ring),
9181 DMA_FROM_DEVICE,
9182 IGB_RX_DMA_ATTR);
9183
9184 /* if mapping failed free memory back to system since
9185 * there isn't much point in holding memory we can't use
9186 */
9187 if (dma_mapping_error(rx_ring->dev, dma)) {
9188 __free_pages(page, igb_rx_pg_order(rx_ring));
9189
9190 rx_ring->rx_stats.alloc_failed++;
9191 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9192 return false;
9193 }
9194
9195 bi->dma = dma;
9196 bi->page = page;
9197 bi->page_offset = igb_rx_offset(rx_ring);
9198 page_ref_add(page, USHRT_MAX - 1);
9199 bi->pagecnt_bias = USHRT_MAX;
9200
9201 return true;
9202 }
9203
9204 /**
9205 * igb_alloc_rx_buffers - Replace used receive buffers
9206 * @rx_ring: rx descriptor ring to allocate new receive buffers
9207 * @cleaned_count: count of buffers to allocate
9208 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9209 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9210 {
9211 union e1000_adv_rx_desc *rx_desc;
9212 struct igb_rx_buffer *bi;
9213 u16 i = rx_ring->next_to_use;
9214 u16 bufsz;
9215
9216 /* nothing to do */
9217 if (!cleaned_count)
9218 return;
9219
9220 rx_desc = IGB_RX_DESC(rx_ring, i);
9221 bi = &rx_ring->rx_buffer_info[i];
9222 i -= rx_ring->count;
9223
9224 bufsz = igb_rx_bufsz(rx_ring);
9225
9226 do {
9227 if (!igb_alloc_mapped_page(rx_ring, bi))
9228 break;
9229
9230 /* sync the buffer for use by the device */
9231 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9232 bi->page_offset, bufsz,
9233 DMA_FROM_DEVICE);
9234
9235 /* Refresh the desc even if buffer_addrs didn't change
9236 * because each write-back erases this info.
9237 */
9238 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9239
9240 rx_desc++;
9241 bi++;
9242 i++;
9243 if (unlikely(!i)) {
9244 rx_desc = IGB_RX_DESC(rx_ring, 0);
9245 bi = rx_ring->rx_buffer_info;
9246 i -= rx_ring->count;
9247 }
9248
9249 /* clear the length for the next_to_use descriptor */
9250 rx_desc->wb.upper.length = 0;
9251
9252 cleaned_count--;
9253 } while (cleaned_count);
9254
9255 i += rx_ring->count;
9256
9257 if (rx_ring->next_to_use != i) {
9258 /* record the next descriptor to use */
9259 rx_ring->next_to_use = i;
9260
9261 /* update next to alloc since we have filled the ring */
9262 rx_ring->next_to_alloc = i;
9263
9264 /* Force memory writes to complete before letting h/w
9265 * know there are new descriptors to fetch. (Only
9266 * applicable for weak-ordered memory model archs,
9267 * such as IA-64).
9268 */
9269 dma_wmb();
9270 writel(i, rx_ring->tail);
9271 }
9272 }
9273
9274 /**
9275 * igb_mii_ioctl -
9276 * @netdev: pointer to netdev struct
9277 * @ifr: interface structure
9278 * @cmd: ioctl command to execute
9279 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9280 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9281 {
9282 struct igb_adapter *adapter = netdev_priv(netdev);
9283 struct mii_ioctl_data *data = if_mii(ifr);
9284
9285 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9286 return -EOPNOTSUPP;
9287
9288 switch (cmd) {
9289 case SIOCGMIIPHY:
9290 data->phy_id = adapter->hw.phy.addr;
9291 break;
9292 case SIOCGMIIREG:
9293 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9294 &data->val_out))
9295 return -EIO;
9296 break;
9297 case SIOCSMIIREG:
9298 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9299 data->val_in))
9300 return -EIO;
9301 break;
9302 default:
9303 return -EOPNOTSUPP;
9304 }
9305 return 0;
9306 }
9307
9308 /**
9309 * igb_ioctl -
9310 * @netdev: pointer to netdev struct
9311 * @ifr: interface structure
9312 * @cmd: ioctl command to execute
9313 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9314 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9315 {
9316 switch (cmd) {
9317 case SIOCGMIIPHY:
9318 case SIOCGMIIREG:
9319 case SIOCSMIIREG:
9320 return igb_mii_ioctl(netdev, ifr, cmd);
9321 default:
9322 return -EOPNOTSUPP;
9323 }
9324 }
9325
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9326 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9327 {
9328 struct igb_adapter *adapter = hw->back;
9329
9330 pci_read_config_word(adapter->pdev, reg, value);
9331 }
9332
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9333 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9334 {
9335 struct igb_adapter *adapter = hw->back;
9336
9337 pci_write_config_word(adapter->pdev, reg, *value);
9338 }
9339
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9340 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9341 {
9342 struct igb_adapter *adapter = hw->back;
9343
9344 if (pcie_capability_read_word(adapter->pdev, reg, value))
9345 return -E1000_ERR_CONFIG;
9346
9347 return 0;
9348 }
9349
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9350 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9351 {
9352 struct igb_adapter *adapter = hw->back;
9353
9354 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9355 return -E1000_ERR_CONFIG;
9356
9357 return 0;
9358 }
9359
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9360 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9361 {
9362 struct igb_adapter *adapter = netdev_priv(netdev);
9363 struct e1000_hw *hw = &adapter->hw;
9364 u32 ctrl, rctl;
9365 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9366
9367 if (enable) {
9368 /* enable VLAN tag insert/strip */
9369 ctrl = rd32(E1000_CTRL);
9370 ctrl |= E1000_CTRL_VME;
9371 wr32(E1000_CTRL, ctrl);
9372
9373 /* Disable CFI check */
9374 rctl = rd32(E1000_RCTL);
9375 rctl &= ~E1000_RCTL_CFIEN;
9376 wr32(E1000_RCTL, rctl);
9377 } else {
9378 /* disable VLAN tag insert/strip */
9379 ctrl = rd32(E1000_CTRL);
9380 ctrl &= ~E1000_CTRL_VME;
9381 wr32(E1000_CTRL, ctrl);
9382 }
9383
9384 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9385 }
9386
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9387 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9388 __be16 proto, u16 vid)
9389 {
9390 struct igb_adapter *adapter = netdev_priv(netdev);
9391 struct e1000_hw *hw = &adapter->hw;
9392 int pf_id = adapter->vfs_allocated_count;
9393
9394 /* add the filter since PF can receive vlans w/o entry in vlvf */
9395 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9396 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9397
9398 set_bit(vid, adapter->active_vlans);
9399
9400 return 0;
9401 }
9402
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9403 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9404 __be16 proto, u16 vid)
9405 {
9406 struct igb_adapter *adapter = netdev_priv(netdev);
9407 int pf_id = adapter->vfs_allocated_count;
9408 struct e1000_hw *hw = &adapter->hw;
9409
9410 /* remove VID from filter table */
9411 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9412 igb_vfta_set(hw, vid, pf_id, false, true);
9413
9414 clear_bit(vid, adapter->active_vlans);
9415
9416 return 0;
9417 }
9418
igb_restore_vlan(struct igb_adapter * adapter)9419 static void igb_restore_vlan(struct igb_adapter *adapter)
9420 {
9421 u16 vid = 1;
9422
9423 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9424 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9425
9426 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9427 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9428 }
9429
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9430 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9431 {
9432 struct pci_dev *pdev = adapter->pdev;
9433 struct e1000_mac_info *mac = &adapter->hw.mac;
9434
9435 mac->autoneg = 0;
9436
9437 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9438 * for the switch() below to work
9439 */
9440 if ((spd & 1) || (dplx & ~1))
9441 goto err_inval;
9442
9443 /* Fiber NIC's only allow 1000 gbps Full duplex
9444 * and 100Mbps Full duplex for 100baseFx sfp
9445 */
9446 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9447 switch (spd + dplx) {
9448 case SPEED_10 + DUPLEX_HALF:
9449 case SPEED_10 + DUPLEX_FULL:
9450 case SPEED_100 + DUPLEX_HALF:
9451 goto err_inval;
9452 default:
9453 break;
9454 }
9455 }
9456
9457 switch (spd + dplx) {
9458 case SPEED_10 + DUPLEX_HALF:
9459 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9460 break;
9461 case SPEED_10 + DUPLEX_FULL:
9462 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9463 break;
9464 case SPEED_100 + DUPLEX_HALF:
9465 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9466 break;
9467 case SPEED_100 + DUPLEX_FULL:
9468 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9469 break;
9470 case SPEED_1000 + DUPLEX_FULL:
9471 mac->autoneg = 1;
9472 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9473 break;
9474 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9475 default:
9476 goto err_inval;
9477 }
9478
9479 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9480 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9481
9482 return 0;
9483
9484 err_inval:
9485 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9486 return -EINVAL;
9487 }
9488
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9489 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9490 bool runtime)
9491 {
9492 struct net_device *netdev = pci_get_drvdata(pdev);
9493 struct igb_adapter *adapter = netdev_priv(netdev);
9494 struct e1000_hw *hw = &adapter->hw;
9495 u32 ctrl, rctl, status;
9496 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9497 bool wake;
9498
9499 rtnl_lock();
9500 netif_device_detach(netdev);
9501
9502 if (netif_running(netdev))
9503 __igb_close(netdev, true);
9504
9505 igb_ptp_suspend(adapter);
9506
9507 igb_clear_interrupt_scheme(adapter);
9508 rtnl_unlock();
9509
9510 status = rd32(E1000_STATUS);
9511 if (status & E1000_STATUS_LU)
9512 wufc &= ~E1000_WUFC_LNKC;
9513
9514 if (wufc) {
9515 igb_setup_rctl(adapter);
9516 igb_set_rx_mode(netdev);
9517
9518 /* turn on all-multi mode if wake on multicast is enabled */
9519 if (wufc & E1000_WUFC_MC) {
9520 rctl = rd32(E1000_RCTL);
9521 rctl |= E1000_RCTL_MPE;
9522 wr32(E1000_RCTL, rctl);
9523 }
9524
9525 ctrl = rd32(E1000_CTRL);
9526 ctrl |= E1000_CTRL_ADVD3WUC;
9527 wr32(E1000_CTRL, ctrl);
9528
9529 /* Allow time for pending master requests to run */
9530 igb_disable_pcie_master(hw);
9531
9532 wr32(E1000_WUC, E1000_WUC_PME_EN);
9533 wr32(E1000_WUFC, wufc);
9534 } else {
9535 wr32(E1000_WUC, 0);
9536 wr32(E1000_WUFC, 0);
9537 }
9538
9539 wake = wufc || adapter->en_mng_pt;
9540 if (!wake)
9541 igb_power_down_link(adapter);
9542 else
9543 igb_power_up_link(adapter);
9544
9545 if (enable_wake)
9546 *enable_wake = wake;
9547
9548 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9549 * would have already happened in close and is redundant.
9550 */
9551 igb_release_hw_control(adapter);
9552
9553 pci_disable_device(pdev);
9554
9555 return 0;
9556 }
9557
igb_deliver_wake_packet(struct net_device * netdev)9558 static void igb_deliver_wake_packet(struct net_device *netdev)
9559 {
9560 struct igb_adapter *adapter = netdev_priv(netdev);
9561 struct e1000_hw *hw = &adapter->hw;
9562 struct sk_buff *skb;
9563 u32 wupl;
9564
9565 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9566
9567 /* WUPM stores only the first 128 bytes of the wake packet.
9568 * Read the packet only if we have the whole thing.
9569 */
9570 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9571 return;
9572
9573 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9574 if (!skb)
9575 return;
9576
9577 skb_put(skb, wupl);
9578
9579 /* Ensure reads are 32-bit aligned */
9580 wupl = roundup(wupl, 4);
9581
9582 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9583
9584 skb->protocol = eth_type_trans(skb, netdev);
9585 netif_rx(skb);
9586 }
9587
igb_suspend(struct device * dev)9588 static int igb_suspend(struct device *dev)
9589 {
9590 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9591 }
9592
__igb_resume(struct device * dev,bool rpm)9593 static int __igb_resume(struct device *dev, bool rpm)
9594 {
9595 struct pci_dev *pdev = to_pci_dev(dev);
9596 struct net_device *netdev = pci_get_drvdata(pdev);
9597 struct igb_adapter *adapter = netdev_priv(netdev);
9598 struct e1000_hw *hw = &adapter->hw;
9599 u32 err, val;
9600
9601 pci_set_power_state(pdev, PCI_D0);
9602 pci_restore_state(pdev);
9603 pci_save_state(pdev);
9604
9605 if (!pci_device_is_present(pdev))
9606 return -ENODEV;
9607 err = pci_enable_device_mem(pdev);
9608 if (err) {
9609 dev_err(&pdev->dev,
9610 "igb: Cannot enable PCI device from suspend\n");
9611 return err;
9612 }
9613 pci_set_master(pdev);
9614
9615 pci_enable_wake(pdev, PCI_D3hot, 0);
9616 pci_enable_wake(pdev, PCI_D3cold, 0);
9617
9618 if (igb_init_interrupt_scheme(adapter, true)) {
9619 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9620 return -ENOMEM;
9621 }
9622
9623 igb_reset(adapter);
9624
9625 /* let the f/w know that the h/w is now under the control of the
9626 * driver.
9627 */
9628 igb_get_hw_control(adapter);
9629
9630 val = rd32(E1000_WUS);
9631 if (val & WAKE_PKT_WUS)
9632 igb_deliver_wake_packet(netdev);
9633
9634 wr32(E1000_WUS, ~0);
9635
9636 if (!rpm)
9637 rtnl_lock();
9638 if (!err && netif_running(netdev))
9639 err = __igb_open(netdev, true);
9640
9641 if (!err)
9642 netif_device_attach(netdev);
9643 if (!rpm)
9644 rtnl_unlock();
9645
9646 return err;
9647 }
9648
igb_resume(struct device * dev)9649 static int igb_resume(struct device *dev)
9650 {
9651 return __igb_resume(dev, false);
9652 }
9653
igb_runtime_idle(struct device * dev)9654 static int igb_runtime_idle(struct device *dev)
9655 {
9656 struct net_device *netdev = dev_get_drvdata(dev);
9657 struct igb_adapter *adapter = netdev_priv(netdev);
9658
9659 if (!igb_has_link(adapter))
9660 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9661
9662 return -EBUSY;
9663 }
9664
igb_runtime_suspend(struct device * dev)9665 static int igb_runtime_suspend(struct device *dev)
9666 {
9667 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9668 }
9669
igb_runtime_resume(struct device * dev)9670 static int igb_runtime_resume(struct device *dev)
9671 {
9672 return __igb_resume(dev, true);
9673 }
9674
igb_shutdown(struct pci_dev * pdev)9675 static void igb_shutdown(struct pci_dev *pdev)
9676 {
9677 bool wake;
9678
9679 __igb_shutdown(pdev, &wake, 0);
9680
9681 if (system_state == SYSTEM_POWER_OFF) {
9682 pci_wake_from_d3(pdev, wake);
9683 pci_set_power_state(pdev, PCI_D3hot);
9684 }
9685 }
9686
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9687 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9688 {
9689 #ifdef CONFIG_PCI_IOV
9690 int err;
9691
9692 if (num_vfs == 0) {
9693 return igb_disable_sriov(dev, true);
9694 } else {
9695 err = igb_enable_sriov(dev, num_vfs, true);
9696 return err ? err : num_vfs;
9697 }
9698 #endif
9699 return 0;
9700 }
9701
9702 /**
9703 * igb_io_error_detected - called when PCI error is detected
9704 * @pdev: Pointer to PCI device
9705 * @state: The current pci connection state
9706 *
9707 * This function is called after a PCI bus error affecting
9708 * this device has been detected.
9709 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9710 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9711 pci_channel_state_t state)
9712 {
9713 struct net_device *netdev = pci_get_drvdata(pdev);
9714 struct igb_adapter *adapter = netdev_priv(netdev);
9715
9716 if (state == pci_channel_io_normal) {
9717 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9718 return PCI_ERS_RESULT_CAN_RECOVER;
9719 }
9720
9721 netif_device_detach(netdev);
9722
9723 if (state == pci_channel_io_perm_failure)
9724 return PCI_ERS_RESULT_DISCONNECT;
9725
9726 rtnl_lock();
9727 if (netif_running(netdev))
9728 igb_down(adapter);
9729 rtnl_unlock();
9730
9731 pci_disable_device(pdev);
9732
9733 /* Request a slot reset. */
9734 return PCI_ERS_RESULT_NEED_RESET;
9735 }
9736
9737 /**
9738 * igb_io_slot_reset - called after the pci bus has been reset.
9739 * @pdev: Pointer to PCI device
9740 *
9741 * Restart the card from scratch, as if from a cold-boot. Implementation
9742 * resembles the first-half of the __igb_resume routine.
9743 **/
igb_io_slot_reset(struct pci_dev * pdev)9744 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9745 {
9746 struct net_device *netdev = pci_get_drvdata(pdev);
9747 struct igb_adapter *adapter = netdev_priv(netdev);
9748 struct e1000_hw *hw = &adapter->hw;
9749 pci_ers_result_t result;
9750
9751 if (pci_enable_device_mem(pdev)) {
9752 dev_err(&pdev->dev,
9753 "Cannot re-enable PCI device after reset.\n");
9754 result = PCI_ERS_RESULT_DISCONNECT;
9755 } else {
9756 pci_set_master(pdev);
9757 pci_restore_state(pdev);
9758 pci_save_state(pdev);
9759
9760 pci_enable_wake(pdev, PCI_D3hot, 0);
9761 pci_enable_wake(pdev, PCI_D3cold, 0);
9762
9763 /* In case of PCI error, adapter lose its HW address
9764 * so we should re-assign it here.
9765 */
9766 hw->hw_addr = adapter->io_addr;
9767
9768 igb_reset(adapter);
9769 wr32(E1000_WUS, ~0);
9770 result = PCI_ERS_RESULT_RECOVERED;
9771 }
9772
9773 return result;
9774 }
9775
9776 /**
9777 * igb_io_resume - called when traffic can start flowing again.
9778 * @pdev: Pointer to PCI device
9779 *
9780 * This callback is called when the error recovery driver tells us that
9781 * its OK to resume normal operation. Implementation resembles the
9782 * second-half of the __igb_resume routine.
9783 */
igb_io_resume(struct pci_dev * pdev)9784 static void igb_io_resume(struct pci_dev *pdev)
9785 {
9786 struct net_device *netdev = pci_get_drvdata(pdev);
9787 struct igb_adapter *adapter = netdev_priv(netdev);
9788
9789 rtnl_lock();
9790 if (netif_running(netdev)) {
9791 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9792 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9793 rtnl_unlock();
9794 return;
9795 }
9796
9797 if (igb_up(adapter)) {
9798 dev_err(&pdev->dev, "igb_up failed after reset\n");
9799 rtnl_unlock();
9800 return;
9801 }
9802 }
9803 rtnl_unlock();
9804
9805 netif_device_attach(netdev);
9806
9807 /* let the f/w know that the h/w is now under the control of the
9808 * driver.
9809 */
9810 igb_get_hw_control(adapter);
9811 }
9812
9813 /**
9814 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9815 * @adapter: Pointer to adapter structure
9816 * @index: Index of the RAR entry which need to be synced with MAC table
9817 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9818 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9819 {
9820 struct e1000_hw *hw = &adapter->hw;
9821 u32 rar_low, rar_high;
9822 u8 *addr = adapter->mac_table[index].addr;
9823
9824 /* HW expects these to be in network order when they are plugged
9825 * into the registers which are little endian. In order to guarantee
9826 * that ordering we need to do an leXX_to_cpup here in order to be
9827 * ready for the byteswap that occurs with writel
9828 */
9829 rar_low = le32_to_cpup((__le32 *)(addr));
9830 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9831
9832 /* Indicate to hardware the Address is Valid. */
9833 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9834 if (is_valid_ether_addr(addr))
9835 rar_high |= E1000_RAH_AV;
9836
9837 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9838 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9839
9840 switch (hw->mac.type) {
9841 case e1000_82575:
9842 case e1000_i210:
9843 if (adapter->mac_table[index].state &
9844 IGB_MAC_STATE_QUEUE_STEERING)
9845 rar_high |= E1000_RAH_QSEL_ENABLE;
9846
9847 rar_high |= E1000_RAH_POOL_1 *
9848 adapter->mac_table[index].queue;
9849 break;
9850 default:
9851 rar_high |= E1000_RAH_POOL_1 <<
9852 adapter->mac_table[index].queue;
9853 break;
9854 }
9855 }
9856
9857 wr32(E1000_RAL(index), rar_low);
9858 wrfl();
9859 wr32(E1000_RAH(index), rar_high);
9860 wrfl();
9861 }
9862
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9863 static int igb_set_vf_mac(struct igb_adapter *adapter,
9864 int vf, unsigned char *mac_addr)
9865 {
9866 struct e1000_hw *hw = &adapter->hw;
9867 /* VF MAC addresses start at end of receive addresses and moves
9868 * towards the first, as a result a collision should not be possible
9869 */
9870 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9871 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9872
9873 ether_addr_copy(vf_mac_addr, mac_addr);
9874 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9875 adapter->mac_table[rar_entry].queue = vf;
9876 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9877 igb_rar_set_index(adapter, rar_entry);
9878
9879 return 0;
9880 }
9881
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9882 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9883 {
9884 struct igb_adapter *adapter = netdev_priv(netdev);
9885
9886 if (vf >= adapter->vfs_allocated_count)
9887 return -EINVAL;
9888
9889 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9890 * flag and allows to overwrite the MAC via VF netdev. This
9891 * is necessary to allow libvirt a way to restore the original
9892 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9893 * down a VM.
9894 */
9895 if (is_zero_ether_addr(mac)) {
9896 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9897 dev_info(&adapter->pdev->dev,
9898 "remove administratively set MAC on VF %d\n",
9899 vf);
9900 } else if (is_valid_ether_addr(mac)) {
9901 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9902 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9903 mac, vf);
9904 dev_info(&adapter->pdev->dev,
9905 "Reload the VF driver to make this change effective.");
9906 /* Generate additional warning if PF is down */
9907 if (test_bit(__IGB_DOWN, &adapter->state)) {
9908 dev_warn(&adapter->pdev->dev,
9909 "The VF MAC address has been set, but the PF device is not up.\n");
9910 dev_warn(&adapter->pdev->dev,
9911 "Bring the PF device up before attempting to use the VF device.\n");
9912 }
9913 } else {
9914 return -EINVAL;
9915 }
9916 return igb_set_vf_mac(adapter, vf, mac);
9917 }
9918
igb_link_mbps(int internal_link_speed)9919 static int igb_link_mbps(int internal_link_speed)
9920 {
9921 switch (internal_link_speed) {
9922 case SPEED_100:
9923 return 100;
9924 case SPEED_1000:
9925 return 1000;
9926 default:
9927 return 0;
9928 }
9929 }
9930
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9931 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9932 int link_speed)
9933 {
9934 int rf_dec, rf_int;
9935 u32 bcnrc_val;
9936
9937 if (tx_rate != 0) {
9938 /* Calculate the rate factor values to set */
9939 rf_int = link_speed / tx_rate;
9940 rf_dec = (link_speed - (rf_int * tx_rate));
9941 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9942 tx_rate;
9943
9944 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9945 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9946 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9947 } else {
9948 bcnrc_val = 0;
9949 }
9950
9951 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9952 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9953 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9954 */
9955 wr32(E1000_RTTBCNRM, 0x14);
9956 wr32(E1000_RTTBCNRC, bcnrc_val);
9957 }
9958
igb_check_vf_rate_limit(struct igb_adapter * adapter)9959 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9960 {
9961 int actual_link_speed, i;
9962 bool reset_rate = false;
9963
9964 /* VF TX rate limit was not set or not supported */
9965 if ((adapter->vf_rate_link_speed == 0) ||
9966 (adapter->hw.mac.type != e1000_82576))
9967 return;
9968
9969 actual_link_speed = igb_link_mbps(adapter->link_speed);
9970 if (actual_link_speed != adapter->vf_rate_link_speed) {
9971 reset_rate = true;
9972 adapter->vf_rate_link_speed = 0;
9973 dev_info(&adapter->pdev->dev,
9974 "Link speed has been changed. VF Transmit rate is disabled\n");
9975 }
9976
9977 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9978 if (reset_rate)
9979 adapter->vf_data[i].tx_rate = 0;
9980
9981 igb_set_vf_rate_limit(&adapter->hw, i,
9982 adapter->vf_data[i].tx_rate,
9983 actual_link_speed);
9984 }
9985 }
9986
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9987 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9988 int min_tx_rate, int max_tx_rate)
9989 {
9990 struct igb_adapter *adapter = netdev_priv(netdev);
9991 struct e1000_hw *hw = &adapter->hw;
9992 int actual_link_speed;
9993
9994 if (hw->mac.type != e1000_82576)
9995 return -EOPNOTSUPP;
9996
9997 if (min_tx_rate)
9998 return -EINVAL;
9999
10000 actual_link_speed = igb_link_mbps(adapter->link_speed);
10001 if ((vf >= adapter->vfs_allocated_count) ||
10002 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10003 (max_tx_rate < 0) ||
10004 (max_tx_rate > actual_link_speed))
10005 return -EINVAL;
10006
10007 adapter->vf_rate_link_speed = actual_link_speed;
10008 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10009 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10010
10011 return 0;
10012 }
10013
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)10014 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10015 bool setting)
10016 {
10017 struct igb_adapter *adapter = netdev_priv(netdev);
10018 struct e1000_hw *hw = &adapter->hw;
10019 u32 reg_val, reg_offset;
10020
10021 if (!adapter->vfs_allocated_count)
10022 return -EOPNOTSUPP;
10023
10024 if (vf >= adapter->vfs_allocated_count)
10025 return -EINVAL;
10026
10027 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10028 reg_val = rd32(reg_offset);
10029 if (setting)
10030 reg_val |= (BIT(vf) |
10031 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10032 else
10033 reg_val &= ~(BIT(vf) |
10034 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10035 wr32(reg_offset, reg_val);
10036
10037 adapter->vf_data[vf].spoofchk_enabled = setting;
10038 return 0;
10039 }
10040
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)10041 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10042 {
10043 struct igb_adapter *adapter = netdev_priv(netdev);
10044
10045 if (vf >= adapter->vfs_allocated_count)
10046 return -EINVAL;
10047 if (adapter->vf_data[vf].trusted == setting)
10048 return 0;
10049
10050 adapter->vf_data[vf].trusted = setting;
10051
10052 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10053 vf, setting ? "" : "not ");
10054 return 0;
10055 }
10056
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)10057 static int igb_ndo_get_vf_config(struct net_device *netdev,
10058 int vf, struct ifla_vf_info *ivi)
10059 {
10060 struct igb_adapter *adapter = netdev_priv(netdev);
10061 if (vf >= adapter->vfs_allocated_count)
10062 return -EINVAL;
10063 ivi->vf = vf;
10064 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10065 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10066 ivi->min_tx_rate = 0;
10067 ivi->vlan = adapter->vf_data[vf].pf_vlan;
10068 ivi->qos = adapter->vf_data[vf].pf_qos;
10069 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10070 ivi->trusted = adapter->vf_data[vf].trusted;
10071 return 0;
10072 }
10073
igb_vmm_control(struct igb_adapter * adapter)10074 static void igb_vmm_control(struct igb_adapter *adapter)
10075 {
10076 struct e1000_hw *hw = &adapter->hw;
10077 u32 reg;
10078
10079 switch (hw->mac.type) {
10080 case e1000_82575:
10081 case e1000_i210:
10082 case e1000_i211:
10083 case e1000_i354:
10084 default:
10085 /* replication is not supported for 82575 */
10086 return;
10087 case e1000_82576:
10088 /* notify HW that the MAC is adding vlan tags */
10089 reg = rd32(E1000_DTXCTL);
10090 reg |= E1000_DTXCTL_VLAN_ADDED;
10091 wr32(E1000_DTXCTL, reg);
10092 fallthrough;
10093 case e1000_82580:
10094 /* enable replication vlan tag stripping */
10095 reg = rd32(E1000_RPLOLR);
10096 reg |= E1000_RPLOLR_STRVLAN;
10097 wr32(E1000_RPLOLR, reg);
10098 fallthrough;
10099 case e1000_i350:
10100 /* none of the above registers are supported by i350 */
10101 break;
10102 }
10103
10104 if (adapter->vfs_allocated_count) {
10105 igb_vmdq_set_loopback_pf(hw, true);
10106 igb_vmdq_set_replication_pf(hw, true);
10107 igb_vmdq_set_anti_spoofing_pf(hw, true,
10108 adapter->vfs_allocated_count);
10109 } else {
10110 igb_vmdq_set_loopback_pf(hw, false);
10111 igb_vmdq_set_replication_pf(hw, false);
10112 }
10113 }
10114
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10115 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10116 {
10117 struct e1000_hw *hw = &adapter->hw;
10118 u32 dmac_thr;
10119 u16 hwm;
10120 u32 reg;
10121
10122 if (hw->mac.type > e1000_82580) {
10123 if (adapter->flags & IGB_FLAG_DMAC) {
10124 /* force threshold to 0. */
10125 wr32(E1000_DMCTXTH, 0);
10126
10127 /* DMA Coalescing high water mark needs to be greater
10128 * than the Rx threshold. Set hwm to PBA - max frame
10129 * size in 16B units, capping it at PBA - 6KB.
10130 */
10131 hwm = 64 * (pba - 6);
10132 reg = rd32(E1000_FCRTC);
10133 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10134 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10135 wr32(E1000_FCRTC, reg);
10136
10137 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10138 * frame size, capping it at PBA - 10KB.
10139 */
10140 dmac_thr = pba - 10;
10141 reg = rd32(E1000_DMACR);
10142 reg &= ~E1000_DMACR_DMACTHR_MASK;
10143 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10144
10145 /* transition to L0x or L1 if available..*/
10146 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10147
10148 /* watchdog timer= +-1000 usec in 32usec intervals */
10149 reg |= (1000 >> 5);
10150
10151 /* Disable BMC-to-OS Watchdog Enable */
10152 if (hw->mac.type != e1000_i354)
10153 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10154 wr32(E1000_DMACR, reg);
10155
10156 /* no lower threshold to disable
10157 * coalescing(smart fifb)-UTRESH=0
10158 */
10159 wr32(E1000_DMCRTRH, 0);
10160
10161 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10162
10163 wr32(E1000_DMCTLX, reg);
10164
10165 /* free space in tx packet buffer to wake from
10166 * DMA coal
10167 */
10168 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10169 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10170 }
10171
10172 if (hw->mac.type >= e1000_i210 ||
10173 (adapter->flags & IGB_FLAG_DMAC)) {
10174 reg = rd32(E1000_PCIEMISC);
10175 reg |= E1000_PCIEMISC_LX_DECISION;
10176 wr32(E1000_PCIEMISC, reg);
10177 } /* endif adapter->dmac is not disabled */
10178 } else if (hw->mac.type == e1000_82580) {
10179 u32 reg = rd32(E1000_PCIEMISC);
10180
10181 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10182 wr32(E1000_DMACR, 0);
10183 }
10184 }
10185
10186 /**
10187 * igb_read_i2c_byte - Reads 8 bit word over I2C
10188 * @hw: pointer to hardware structure
10189 * @byte_offset: byte offset to read
10190 * @dev_addr: device address
10191 * @data: value read
10192 *
10193 * Performs byte read operation over I2C interface at
10194 * a specified device address.
10195 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10196 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10197 u8 dev_addr, u8 *data)
10198 {
10199 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10200 struct i2c_client *this_client = adapter->i2c_client;
10201 s32 status;
10202 u16 swfw_mask = 0;
10203
10204 if (!this_client)
10205 return E1000_ERR_I2C;
10206
10207 swfw_mask = E1000_SWFW_PHY0_SM;
10208
10209 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10210 return E1000_ERR_SWFW_SYNC;
10211
10212 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10213 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10214
10215 if (status < 0)
10216 return E1000_ERR_I2C;
10217 else {
10218 *data = status;
10219 return 0;
10220 }
10221 }
10222
10223 /**
10224 * igb_write_i2c_byte - Writes 8 bit word over I2C
10225 * @hw: pointer to hardware structure
10226 * @byte_offset: byte offset to write
10227 * @dev_addr: device address
10228 * @data: value to write
10229 *
10230 * Performs byte write operation over I2C interface at
10231 * a specified device address.
10232 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10233 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10234 u8 dev_addr, u8 data)
10235 {
10236 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10237 struct i2c_client *this_client = adapter->i2c_client;
10238 s32 status;
10239 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10240
10241 if (!this_client)
10242 return E1000_ERR_I2C;
10243
10244 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10245 return E1000_ERR_SWFW_SYNC;
10246 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10247 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10248
10249 if (status)
10250 return E1000_ERR_I2C;
10251 else
10252 return 0;
10253
10254 }
10255
igb_reinit_queues(struct igb_adapter * adapter)10256 int igb_reinit_queues(struct igb_adapter *adapter)
10257 {
10258 struct net_device *netdev = adapter->netdev;
10259 struct pci_dev *pdev = adapter->pdev;
10260 int err = 0;
10261
10262 if (netif_running(netdev))
10263 igb_close(netdev);
10264
10265 igb_reset_interrupt_capability(adapter);
10266
10267 if (igb_init_interrupt_scheme(adapter, true)) {
10268 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10269 return -ENOMEM;
10270 }
10271
10272 if (netif_running(netdev))
10273 err = igb_open(netdev);
10274
10275 return err;
10276 }
10277
igb_nfc_filter_exit(struct igb_adapter * adapter)10278 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10279 {
10280 struct igb_nfc_filter *rule;
10281
10282 spin_lock(&adapter->nfc_lock);
10283
10284 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10285 igb_erase_filter(adapter, rule);
10286
10287 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10288 igb_erase_filter(adapter, rule);
10289
10290 spin_unlock(&adapter->nfc_lock);
10291 }
10292
igb_nfc_filter_restore(struct igb_adapter * adapter)10293 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10294 {
10295 struct igb_nfc_filter *rule;
10296
10297 spin_lock(&adapter->nfc_lock);
10298
10299 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10300 igb_add_filter(adapter, rule);
10301
10302 spin_unlock(&adapter->nfc_lock);
10303 }
10304
10305 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10306 igb_runtime_suspend, igb_runtime_resume,
10307 igb_runtime_idle);
10308
10309 static struct pci_driver igb_driver = {
10310 .name = igb_driver_name,
10311 .id_table = igb_pci_tbl,
10312 .probe = igb_probe,
10313 .remove = igb_remove,
10314 .driver.pm = pm_ptr(&igb_pm_ops),
10315 .shutdown = igb_shutdown,
10316 .sriov_configure = igb_pci_sriov_configure,
10317 .err_handler = &igb_err_handler
10318 };
10319
10320 /* igb_main.c */
10321