xref: /linux/drivers/net/ethernet/intel/igb/igb_main.c (revision db87bd2ad1f736c2f7ab231f9b40c885934f6b2c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 			    struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 			  netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 				   bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 				bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 				 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171 
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176 
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 	.notifier_call	= igb_notify_dca,
181 	.next		= NULL,
182 	.priority	= 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190 
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 		     pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195 
196 static const struct pci_error_handlers igb_err_handler = {
197 	.error_detected = igb_io_error_detected,
198 	.slot_reset = igb_io_slot_reset,
199 	.resume = igb_io_resume,
200 };
201 
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203 
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206 
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 
212 struct igb_reg_info {
213 	u32 ofs;
214 	char *name;
215 };
216 
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218 
219 	/* General Registers */
220 	{E1000_CTRL, "CTRL"},
221 	{E1000_STATUS, "STATUS"},
222 	{E1000_CTRL_EXT, "CTRL_EXT"},
223 
224 	/* Interrupt Registers */
225 	{E1000_ICR, "ICR"},
226 
227 	/* RX Registers */
228 	{E1000_RCTL, "RCTL"},
229 	{E1000_RDLEN(0), "RDLEN"},
230 	{E1000_RDH(0), "RDH"},
231 	{E1000_RDT(0), "RDT"},
232 	{E1000_RXDCTL(0), "RXDCTL"},
233 	{E1000_RDBAL(0), "RDBAL"},
234 	{E1000_RDBAH(0), "RDBAH"},
235 
236 	/* TX Registers */
237 	{E1000_TCTL, "TCTL"},
238 	{E1000_TDBAL(0), "TDBAL"},
239 	{E1000_TDBAH(0), "TDBAH"},
240 	{E1000_TDLEN(0), "TDLEN"},
241 	{E1000_TDH(0), "TDH"},
242 	{E1000_TDT(0), "TDT"},
243 	{E1000_TXDCTL(0), "TXDCTL"},
244 	{E1000_TDFH, "TDFH"},
245 	{E1000_TDFT, "TDFT"},
246 	{E1000_TDFHS, "TDFHS"},
247 	{E1000_TDFPC, "TDFPC"},
248 
249 	/* List Terminator */
250 	{}
251 };
252 
253 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 	int n = 0;
257 	char rname[16];
258 	u32 regs[8];
259 
260 	switch (reginfo->ofs) {
261 	case E1000_RDLEN(0):
262 		for (n = 0; n < 4; n++)
263 			regs[n] = rd32(E1000_RDLEN(n));
264 		break;
265 	case E1000_RDH(0):
266 		for (n = 0; n < 4; n++)
267 			regs[n] = rd32(E1000_RDH(n));
268 		break;
269 	case E1000_RDT(0):
270 		for (n = 0; n < 4; n++)
271 			regs[n] = rd32(E1000_RDT(n));
272 		break;
273 	case E1000_RXDCTL(0):
274 		for (n = 0; n < 4; n++)
275 			regs[n] = rd32(E1000_RXDCTL(n));
276 		break;
277 	case E1000_RDBAL(0):
278 		for (n = 0; n < 4; n++)
279 			regs[n] = rd32(E1000_RDBAL(n));
280 		break;
281 	case E1000_RDBAH(0):
282 		for (n = 0; n < 4; n++)
283 			regs[n] = rd32(E1000_RDBAH(n));
284 		break;
285 	case E1000_TDBAL(0):
286 		for (n = 0; n < 4; n++)
287 			regs[n] = rd32(E1000_TDBAL(n));
288 		break;
289 	case E1000_TDBAH(0):
290 		for (n = 0; n < 4; n++)
291 			regs[n] = rd32(E1000_TDBAH(n));
292 		break;
293 	case E1000_TDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_TDLEN(n));
296 		break;
297 	case E1000_TDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_TDH(n));
300 		break;
301 	case E1000_TDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_TDT(n));
304 		break;
305 	case E1000_TXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_TXDCTL(n));
308 		break;
309 	default:
310 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 		return;
312 	}
313 
314 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 		regs[2], regs[3]);
317 }
318 
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 	struct net_device *netdev = adapter->netdev;
323 	struct e1000_hw *hw = &adapter->hw;
324 	struct igb_reg_info *reginfo;
325 	struct igb_ring *tx_ring;
326 	union e1000_adv_tx_desc *tx_desc;
327 	struct my_u0 { __le64 a; __le64 b; } *u0;
328 	struct igb_ring *rx_ring;
329 	union e1000_adv_rx_desc *rx_desc;
330 	u32 staterr;
331 	u16 i, n;
332 
333 	if (!netif_msg_hw(adapter))
334 		return;
335 
336 	/* Print netdevice Info */
337 	if (netdev) {
338 		dev_info(&adapter->pdev->dev, "Net device Info\n");
339 		pr_info("Device Name     state            trans_start\n");
340 		pr_info("%-15s %016lX %016lX\n", netdev->name,
341 			netdev->state, dev_trans_start(netdev));
342 	}
343 
344 	/* Print Registers */
345 	dev_info(&adapter->pdev->dev, "Register Dump\n");
346 	pr_info(" Register Name   Value\n");
347 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 	     reginfo->name; reginfo++) {
349 		igb_regdump(hw, reginfo);
350 	}
351 
352 	/* Print TX Ring Summary */
353 	if (!netdev || !netif_running(netdev))
354 		goto exit;
355 
356 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
358 	for (n = 0; n < adapter->num_tx_queues; n++) {
359 		struct igb_tx_buffer *buffer_info;
360 		tx_ring = adapter->tx_ring[n];
361 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 			(u64)dma_unmap_addr(buffer_info, dma),
365 			dma_unmap_len(buffer_info, len),
366 			buffer_info->next_to_watch,
367 			(u64)buffer_info->time_stamp);
368 	}
369 
370 	/* Print TX Rings */
371 	if (!netif_msg_tx_done(adapter))
372 		goto rx_ring_summary;
373 
374 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375 
376 	/* Transmit Descriptor Formats
377 	 *
378 	 * Advanced Transmit Descriptor
379 	 *   +--------------------------------------------------------------+
380 	 * 0 |         Buffer Address [63:0]                                |
381 	 *   +--------------------------------------------------------------+
382 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
383 	 *   +--------------------------------------------------------------+
384 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
385 	 */
386 
387 	for (n = 0; n < adapter->num_tx_queues; n++) {
388 		tx_ring = adapter->tx_ring[n];
389 		pr_info("------------------------------------\n");
390 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 		pr_info("------------------------------------\n");
392 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
393 
394 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 			const char *next_desc;
396 			struct igb_tx_buffer *buffer_info;
397 			tx_desc = IGB_TX_DESC(tx_ring, i);
398 			buffer_info = &tx_ring->tx_buffer_info[i];
399 			u0 = (struct my_u0 *)tx_desc;
400 			if (i == tx_ring->next_to_use &&
401 			    i == tx_ring->next_to_clean)
402 				next_desc = " NTC/U";
403 			else if (i == tx_ring->next_to_use)
404 				next_desc = " NTU";
405 			else if (i == tx_ring->next_to_clean)
406 				next_desc = " NTC";
407 			else
408 				next_desc = "";
409 
410 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
411 				i, le64_to_cpu(u0->a),
412 				le64_to_cpu(u0->b),
413 				(u64)dma_unmap_addr(buffer_info, dma),
414 				dma_unmap_len(buffer_info, len),
415 				buffer_info->next_to_watch,
416 				(u64)buffer_info->time_stamp,
417 				buffer_info->skb, next_desc);
418 
419 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 				print_hex_dump(KERN_INFO, "",
421 					DUMP_PREFIX_ADDRESS,
422 					16, 1, buffer_info->skb->data,
423 					dma_unmap_len(buffer_info, len),
424 					true);
425 		}
426 	}
427 
428 	/* Print RX Rings Summary */
429 rx_ring_summary:
430 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 	pr_info("Queue [NTU] [NTC]\n");
432 	for (n = 0; n < adapter->num_rx_queues; n++) {
433 		rx_ring = adapter->rx_ring[n];
434 		pr_info(" %5d %5X %5X\n",
435 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 	}
437 
438 	/* Print RX Rings */
439 	if (!netif_msg_rx_status(adapter))
440 		goto exit;
441 
442 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443 
444 	/* Advanced Receive Descriptor (Read) Format
445 	 *    63                                           1        0
446 	 *    +-----------------------------------------------------+
447 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
448 	 *    +----------------------------------------------+------+
449 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
450 	 *    +-----------------------------------------------------+
451 	 *
452 	 *
453 	 * Advanced Receive Descriptor (Write-Back) Format
454 	 *
455 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
456 	 *   +------------------------------------------------------+
457 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
458 	 *   | Checksum   Ident  |   |           |    | Type | Type |
459 	 *   +------------------------------------------------------+
460 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 	 *   +------------------------------------------------------+
462 	 *   63       48 47    32 31            20 19               0
463 	 */
464 
465 	for (n = 0; n < adapter->num_rx_queues; n++) {
466 		rx_ring = adapter->rx_ring[n];
467 		pr_info("------------------------------------\n");
468 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 		pr_info("------------------------------------\n");
470 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
471 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472 
473 		for (i = 0; i < rx_ring->count; i++) {
474 			const char *next_desc;
475 			dma_addr_t dma = (dma_addr_t)0;
476 			struct igb_rx_buffer *buffer_info = NULL;
477 			rx_desc = IGB_RX_DESC(rx_ring, i);
478 			u0 = (struct my_u0 *)rx_desc;
479 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480 
481 			if (!rx_ring->xsk_pool) {
482 				buffer_info = &rx_ring->rx_buffer_info[i];
483 				dma = buffer_info->dma;
484 			}
485 
486 			if (i == rx_ring->next_to_use)
487 				next_desc = " NTU";
488 			else if (i == rx_ring->next_to_clean)
489 				next_desc = " NTC";
490 			else
491 				next_desc = "";
492 
493 			if (staterr & E1000_RXD_STAT_DD) {
494 				/* Descriptor Done */
495 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
496 					"RWB", i,
497 					le64_to_cpu(u0->a),
498 					le64_to_cpu(u0->b),
499 					next_desc);
500 			} else {
501 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
502 					"R  ", i,
503 					le64_to_cpu(u0->a),
504 					le64_to_cpu(u0->b),
505 					(u64)dma,
506 					next_desc);
507 
508 				if (netif_msg_pktdata(adapter) &&
509 				    buffer_info && dma && buffer_info->page) {
510 					print_hex_dump(KERN_INFO, "",
511 					  DUMP_PREFIX_ADDRESS,
512 					  16, 1,
513 					  page_address(buffer_info->page) +
514 						      buffer_info->page_offset,
515 					  igb_rx_bufsz(rx_ring), true);
516 				}
517 			}
518 		}
519 	}
520 
521 exit:
522 	return;
523 }
524 
525 /**
526  *  igb_get_i2c_data - Reads the I2C SDA data bit
527  *  @data: opaque pointer to adapter struct
528  *
529  *  Returns the I2C data bit value
530  **/
igb_get_i2c_data(void * data)531 static int igb_get_i2c_data(void *data)
532 {
533 	struct igb_adapter *adapter = (struct igb_adapter *)data;
534 	struct e1000_hw *hw = &adapter->hw;
535 	s32 i2cctl = rd32(E1000_I2CPARAMS);
536 
537 	return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539 
540 /**
541  *  igb_set_i2c_data - Sets the I2C data bit
542  *  @data: pointer to hardware structure
543  *  @state: I2C data value (0 or 1) to set
544  *
545  *  Sets the I2C data bit
546  **/
igb_set_i2c_data(void * data,int state)547 static void igb_set_i2c_data(void *data, int state)
548 {
549 	struct igb_adapter *adapter = (struct igb_adapter *)data;
550 	struct e1000_hw *hw = &adapter->hw;
551 	s32 i2cctl = rd32(E1000_I2CPARAMS);
552 
553 	if (state) {
554 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 	} else {
556 		i2cctl &= ~E1000_I2C_DATA_OE_N;
557 		i2cctl &= ~E1000_I2C_DATA_OUT;
558 	}
559 
560 	wr32(E1000_I2CPARAMS, i2cctl);
561 	wrfl();
562 }
563 
564 /**
565  *  igb_set_i2c_clk - Sets the I2C SCL clock
566  *  @data: pointer to hardware structure
567  *  @state: state to set clock
568  *
569  *  Sets the I2C clock line to state
570  **/
igb_set_i2c_clk(void * data,int state)571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	if (state) {
578 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 	} else {
580 		i2cctl &= ~E1000_I2C_CLK_OUT;
581 		i2cctl &= ~E1000_I2C_CLK_OE_N;
582 	}
583 	wr32(E1000_I2CPARAMS, i2cctl);
584 	wrfl();
585 }
586 
587 /**
588  *  igb_get_i2c_clk - Gets the I2C SCL clock state
589  *  @data: pointer to hardware structure
590  *
591  *  Gets the I2C clock state
592  **/
igb_get_i2c_clk(void * data)593 static int igb_get_i2c_clk(void *data)
594 {
595 	struct igb_adapter *adapter = (struct igb_adapter *)data;
596 	struct e1000_hw *hw = &adapter->hw;
597 	s32 i2cctl = rd32(E1000_I2CPARAMS);
598 
599 	return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601 
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 	.setsda		= igb_set_i2c_data,
604 	.setscl		= igb_set_i2c_clk,
605 	.getsda		= igb_get_i2c_data,
606 	.getscl		= igb_get_i2c_clk,
607 	.udelay		= 5,
608 	.timeout	= 20,
609 };
610 
611 /**
612  *  igb_get_hw_dev - return device
613  *  @hw: pointer to hardware structure
614  *
615  *  used by hardware layer to print debugging information
616  **/
igb_get_hw_dev(struct e1000_hw * hw)617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 	struct igb_adapter *adapter = hw->back;
620 	return adapter->netdev;
621 }
622 
623 static struct pci_driver igb_driver;
624 
625 /**
626  *  igb_init_module - Driver Registration Routine
627  *
628  *  igb_init_module is the first routine called when the driver is
629  *  loaded. All it does is register with the PCI subsystem.
630  **/
igb_init_module(void)631 static int __init igb_init_module(void)
632 {
633 	int ret;
634 
635 	pr_info("%s\n", igb_driver_string);
636 	pr_info("%s\n", igb_copyright);
637 
638 #ifdef CONFIG_IGB_DCA
639 	dca_register_notify(&dca_notifier);
640 #endif
641 	ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 	if (ret)
644 		dca_unregister_notify(&dca_notifier);
645 #endif
646 	return ret;
647 }
648 
649 module_init(igb_init_module);
650 
651 /**
652  *  igb_exit_module - Driver Exit Cleanup Routine
653  *
654  *  igb_exit_module is called just before the driver is removed
655  *  from memory.
656  **/
igb_exit_module(void)657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 	dca_unregister_notify(&dca_notifier);
661 #endif
662 	pci_unregister_driver(&igb_driver);
663 }
664 
665 module_exit(igb_exit_module);
666 
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669  *  igb_cache_ring_register - Descriptor ring to register mapping
670  *  @adapter: board private structure to initialize
671  *
672  *  Once we know the feature-set enabled for the device, we'll cache
673  *  the register offset the descriptor ring is assigned to.
674  **/
igb_cache_ring_register(struct igb_adapter * adapter)675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 	int i = 0, j = 0;
678 	u32 rbase_offset = adapter->vfs_allocated_count;
679 
680 	switch (adapter->hw.mac.type) {
681 	case e1000_82576:
682 		/* The queues are allocated for virtualization such that VF 0
683 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 		 * In order to avoid collision we start at the first free queue
685 		 * and continue consuming queues in the same sequence
686 		 */
687 		if (adapter->vfs_allocated_count) {
688 			for (; i < adapter->rss_queues; i++)
689 				adapter->rx_ring[i]->reg_idx = rbase_offset +
690 							       Q_IDX_82576(i);
691 		}
692 		fallthrough;
693 	case e1000_82575:
694 	case e1000_82580:
695 	case e1000_i350:
696 	case e1000_i354:
697 	case e1000_i210:
698 	case e1000_i211:
699 	default:
700 		for (; i < adapter->num_rx_queues; i++)
701 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 		for (; j < adapter->num_tx_queues; j++)
703 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 		break;
705 	}
706 }
707 
igb_rd32(struct e1000_hw * hw,u32 reg)708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 	u32 value = 0;
713 
714 	if (E1000_REMOVED(hw_addr))
715 		return ~value;
716 
717 	value = readl(&hw_addr[reg]);
718 
719 	/* reads should not return all F's */
720 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 		struct net_device *netdev = igb->netdev;
722 		hw->hw_addr = NULL;
723 		netdev_err(netdev, "PCIe link lost\n");
724 		WARN(pci_device_is_present(igb->pdev),
725 		     "igb: Failed to read reg 0x%x!\n", reg);
726 	}
727 
728 	return value;
729 }
730 
731 /**
732  *  igb_write_ivar - configure ivar for given MSI-X vector
733  *  @hw: pointer to the HW structure
734  *  @msix_vector: vector number we are allocating to a given ring
735  *  @index: row index of IVAR register to write within IVAR table
736  *  @offset: column offset of in IVAR, should be multiple of 8
737  *
738  *  This function is intended to handle the writing of the IVAR register
739  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
740  *  each containing an cause allocation for an Rx and Tx ring, and a
741  *  variable number of rows depending on the number of queues supported.
742  **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 			   int index, int offset)
745 {
746 	u32 ivar = array_rd32(E1000_IVAR0, index);
747 
748 	/* clear any bits that are currently set */
749 	ivar &= ~((u32)0xFF << offset);
750 
751 	/* write vector and valid bit */
752 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753 
754 	array_wr32(E1000_IVAR0, index, ivar);
755 }
756 
757 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 	struct igb_adapter *adapter = q_vector->adapter;
761 	struct e1000_hw *hw = &adapter->hw;
762 	int rx_queue = IGB_N0_QUEUE;
763 	int tx_queue = IGB_N0_QUEUE;
764 	u32 msixbm = 0;
765 
766 	if (q_vector->rx.ring)
767 		rx_queue = q_vector->rx.ring->reg_idx;
768 	if (q_vector->tx.ring)
769 		tx_queue = q_vector->tx.ring->reg_idx;
770 
771 	switch (hw->mac.type) {
772 	case e1000_82575:
773 		/* The 82575 assigns vectors using a bitmask, which matches the
774 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
775 		 * or more queues to a vector, we write the appropriate bits
776 		 * into the MSIXBM register for that vector.
777 		 */
778 		if (rx_queue > IGB_N0_QUEUE)
779 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 		if (tx_queue > IGB_N0_QUEUE)
781 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 			msixbm |= E1000_EIMS_OTHER;
784 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 		q_vector->eims_value = msixbm;
786 		break;
787 	case e1000_82576:
788 		/* 82576 uses a table that essentially consists of 2 columns
789 		 * with 8 rows.  The ordering is column-major so we use the
790 		 * lower 3 bits as the row index, and the 4th bit as the
791 		 * column offset.
792 		 */
793 		if (rx_queue > IGB_N0_QUEUE)
794 			igb_write_ivar(hw, msix_vector,
795 				       rx_queue & 0x7,
796 				       (rx_queue & 0x8) << 1);
797 		if (tx_queue > IGB_N0_QUEUE)
798 			igb_write_ivar(hw, msix_vector,
799 				       tx_queue & 0x7,
800 				       ((tx_queue & 0x8) << 1) + 8);
801 		q_vector->eims_value = BIT(msix_vector);
802 		break;
803 	case e1000_82580:
804 	case e1000_i350:
805 	case e1000_i354:
806 	case e1000_i210:
807 	case e1000_i211:
808 		/* On 82580 and newer adapters the scheme is similar to 82576
809 		 * however instead of ordering column-major we have things
810 		 * ordered row-major.  So we traverse the table by using
811 		 * bit 0 as the column offset, and the remaining bits as the
812 		 * row index.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue >> 1,
817 				       (rx_queue & 0x1) << 4);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue >> 1,
821 				       ((tx_queue & 0x1) << 4) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	default:
825 		BUG();
826 		break;
827 	}
828 
829 	/* add q_vector eims value to global eims_enable_mask */
830 	adapter->eims_enable_mask |= q_vector->eims_value;
831 
832 	/* configure q_vector to set itr on first interrupt */
833 	q_vector->set_itr = 1;
834 }
835 
836 /**
837  *  igb_configure_msix - Configure MSI-X hardware
838  *  @adapter: board private structure to initialize
839  *
840  *  igb_configure_msix sets up the hardware to properly
841  *  generate MSI-X interrupts.
842  **/
igb_configure_msix(struct igb_adapter * adapter)843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 	u32 tmp;
846 	int i, vector = 0;
847 	struct e1000_hw *hw = &adapter->hw;
848 
849 	adapter->eims_enable_mask = 0;
850 
851 	/* set vector for other causes, i.e. link changes */
852 	switch (hw->mac.type) {
853 	case e1000_82575:
854 		tmp = rd32(E1000_CTRL_EXT);
855 		/* enable MSI-X PBA support*/
856 		tmp |= E1000_CTRL_EXT_PBA_CLR;
857 
858 		/* Auto-Mask interrupts upon ICR read. */
859 		tmp |= E1000_CTRL_EXT_EIAME;
860 		tmp |= E1000_CTRL_EXT_IRCA;
861 
862 		wr32(E1000_CTRL_EXT, tmp);
863 
864 		/* enable msix_other interrupt */
865 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 		adapter->eims_other = E1000_EIMS_OTHER;
867 
868 		break;
869 
870 	case e1000_82576:
871 	case e1000_82580:
872 	case e1000_i350:
873 	case e1000_i354:
874 	case e1000_i210:
875 	case e1000_i211:
876 		/* Turn on MSI-X capability first, or our settings
877 		 * won't stick.  And it will take days to debug.
878 		 */
879 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 		     E1000_GPIE_NSICR);
882 
883 		/* enable msix_other interrupt */
884 		adapter->eims_other = BIT(vector);
885 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
886 
887 		wr32(E1000_IVAR_MISC, tmp);
888 		break;
889 	default:
890 		/* do nothing, since nothing else supports MSI-X */
891 		break;
892 	} /* switch (hw->mac.type) */
893 
894 	adapter->eims_enable_mask |= adapter->eims_other;
895 
896 	for (i = 0; i < adapter->num_q_vectors; i++)
897 		igb_assign_vector(adapter->q_vector[i], vector++);
898 
899 	wrfl();
900 }
901 
902 /**
903  *  igb_request_msix - Initialize MSI-X interrupts
904  *  @adapter: board private structure to initialize
905  *
906  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
907  *  kernel.
908  **/
igb_request_msix(struct igb_adapter * adapter)909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 	unsigned int num_q_vectors = adapter->num_q_vectors;
912 	struct net_device *netdev = adapter->netdev;
913 	int i, err = 0, vector = 0, free_vector = 0;
914 
915 	err = request_irq(adapter->msix_entries[vector].vector,
916 			  igb_msix_other, 0, netdev->name, adapter);
917 	if (err)
918 		goto err_out;
919 
920 	if (num_q_vectors > MAX_Q_VECTORS) {
921 		num_q_vectors = MAX_Q_VECTORS;
922 		dev_warn(&adapter->pdev->dev,
923 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 			 adapter->num_q_vectors, MAX_Q_VECTORS);
925 	}
926 	for (i = 0; i < num_q_vectors; i++) {
927 		struct igb_q_vector *q_vector = adapter->q_vector[i];
928 
929 		vector++;
930 
931 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932 
933 		if (q_vector->rx.ring && q_vector->tx.ring)
934 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 				q_vector->rx.ring->queue_index);
936 		else if (q_vector->tx.ring)
937 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 				q_vector->tx.ring->queue_index);
939 		else if (q_vector->rx.ring)
940 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 				q_vector->rx.ring->queue_index);
942 		else
943 			sprintf(q_vector->name, "%s-unused", netdev->name);
944 
945 		err = request_irq(adapter->msix_entries[vector].vector,
946 				  igb_msix_ring, 0, q_vector->name,
947 				  q_vector);
948 		if (err)
949 			goto err_free;
950 
951 		netif_napi_set_irq(&q_vector->napi,
952 				   adapter->msix_entries[vector].vector);
953 	}
954 
955 	igb_configure_msix(adapter);
956 	return 0;
957 
958 err_free:
959 	/* free already assigned IRQs */
960 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961 
962 	vector--;
963 	for (i = 0; i < vector; i++) {
964 		free_irq(adapter->msix_entries[free_vector++].vector,
965 			 adapter->q_vector[i]);
966 	}
967 err_out:
968 	return err;
969 }
970 
971 /**
972  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
973  *  @adapter: board private structure to initialize
974  *  @v_idx: Index of vector to be freed
975  *
976  *  This function frees the memory allocated to the q_vector.
977  **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981 
982 	adapter->q_vector[v_idx] = NULL;
983 
984 	/* igb_get_stats64() might access the rings on this vector,
985 	 * we must wait a grace period before freeing it.
986 	 */
987 	if (q_vector)
988 		kfree_rcu(q_vector, rcu);
989 }
990 
991 /**
992  *  igb_reset_q_vector - Reset config for interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be reset
995  *
996  *  If NAPI is enabled it will delete any references to the
997  *  NAPI struct. This is preparation for igb_free_q_vector.
998  **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 
1003 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 	 * allocated. So, q_vector is NULL so we should stop here.
1005 	 */
1006 	if (!q_vector)
1007 		return;
1008 
1009 	if (q_vector->tx.ring)
1010 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011 
1012 	if (q_vector->rx.ring)
1013 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014 
1015 	netif_napi_del(&q_vector->napi);
1016 
1017 }
1018 
igb_reset_interrupt_capability(struct igb_adapter * adapter)1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 	int v_idx = adapter->num_q_vectors;
1022 
1023 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 		pci_disable_msix(adapter->pdev);
1025 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 		pci_disable_msi(adapter->pdev);
1027 
1028 	while (v_idx--)
1029 		igb_reset_q_vector(adapter, v_idx);
1030 }
1031 
1032 /**
1033  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1034  *  @adapter: board private structure to initialize
1035  *
1036  *  This function frees the memory allocated to the q_vectors.  In addition if
1037  *  NAPI is enabled it will delete any references to the NAPI struct prior
1038  *  to freeing the q_vector.
1039  **/
igb_free_q_vectors(struct igb_adapter * adapter)1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 	int v_idx = adapter->num_q_vectors;
1043 
1044 	adapter->num_tx_queues = 0;
1045 	adapter->num_rx_queues = 0;
1046 	adapter->num_q_vectors = 0;
1047 
1048 	while (v_idx--) {
1049 		igb_reset_q_vector(adapter, v_idx);
1050 		igb_free_q_vector(adapter, v_idx);
1051 	}
1052 }
1053 
1054 /**
1055  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056  *  @adapter: board private structure to initialize
1057  *
1058  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1059  *  MSI-X interrupts allocated.
1060  */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 	igb_free_q_vectors(adapter);
1064 	igb_reset_interrupt_capability(adapter);
1065 }
1066 
1067 /**
1068  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1069  *  @adapter: board private structure to initialize
1070  *  @msix: boolean value of MSIX capability
1071  *
1072  *  Attempt to configure interrupts using the best available
1073  *  capabilities of the hardware and kernel.
1074  **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 	int err;
1078 	int numvecs, i;
1079 
1080 	if (!msix)
1081 		goto msi_only;
1082 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1083 
1084 	/* Number of supported queues. */
1085 	adapter->num_rx_queues = adapter->rss_queues;
1086 	if (adapter->vfs_allocated_count)
1087 		adapter->num_tx_queues = 1;
1088 	else
1089 		adapter->num_tx_queues = adapter->rss_queues;
1090 
1091 	/* start with one vector for every Rx queue */
1092 	numvecs = adapter->num_rx_queues;
1093 
1094 	/* if Tx handler is separate add 1 for every Tx queue */
1095 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 		numvecs += adapter->num_tx_queues;
1097 
1098 	/* store the number of vectors reserved for queues */
1099 	adapter->num_q_vectors = numvecs;
1100 
1101 	/* add 1 vector for link status interrupts */
1102 	numvecs++;
1103 	for (i = 0; i < numvecs; i++)
1104 		adapter->msix_entries[i].entry = i;
1105 
1106 	err = pci_enable_msix_range(adapter->pdev,
1107 				    adapter->msix_entries,
1108 				    numvecs,
1109 				    numvecs);
1110 	if (err > 0)
1111 		return;
1112 
1113 	igb_reset_interrupt_capability(adapter);
1114 
1115 	/* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 	/* disable SR-IOV for non MSI-X configurations */
1120 	if (adapter->vf_data) {
1121 		struct e1000_hw *hw = &adapter->hw;
1122 		/* disable iov and allow time for transactions to clear */
1123 		pci_disable_sriov(adapter->pdev);
1124 		msleep(500);
1125 
1126 		kfree(adapter->vf_mac_list);
1127 		adapter->vf_mac_list = NULL;
1128 		kfree(adapter->vf_data);
1129 		adapter->vf_data = NULL;
1130 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 		wrfl();
1132 		msleep(100);
1133 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 	}
1135 #endif
1136 	adapter->vfs_allocated_count = 0;
1137 	adapter->rss_queues = 1;
1138 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 	adapter->num_rx_queues = 1;
1140 	adapter->num_tx_queues = 1;
1141 	adapter->num_q_vectors = 1;
1142 	if (!pci_enable_msi(adapter->pdev))
1143 		adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145 
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1146 static void igb_add_ring(struct igb_ring *ring,
1147 			 struct igb_ring_container *head)
1148 {
1149 	head->ring = ring;
1150 	head->count++;
1151 }
1152 
1153 /**
1154  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155  *  @adapter: board private structure to initialize
1156  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1157  *  @v_idx: index of vector in adapter struct
1158  *  @txr_count: total number of Tx rings to allocate
1159  *  @txr_idx: index of first Tx ring to allocate
1160  *  @rxr_count: total number of Rx rings to allocate
1161  *  @rxr_idx: index of first Rx ring to allocate
1162  *
1163  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1164  **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 			      int v_count, int v_idx,
1167 			      int txr_count, int txr_idx,
1168 			      int rxr_count, int rxr_idx)
1169 {
1170 	struct igb_q_vector *q_vector;
1171 	struct igb_ring *ring;
1172 	int ring_count;
1173 	size_t size;
1174 
1175 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 	if (txr_count > 1 || rxr_count > 1)
1177 		return -ENOMEM;
1178 
1179 	ring_count = txr_count + rxr_count;
1180 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181 
1182 	/* allocate q_vector and rings */
1183 	q_vector = adapter->q_vector[v_idx];
1184 	if (!q_vector) {
1185 		q_vector = kzalloc(size, GFP_KERNEL);
1186 	} else if (size > ksize(q_vector)) {
1187 		struct igb_q_vector *new_q_vector;
1188 
1189 		new_q_vector = kzalloc(size, GFP_KERNEL);
1190 		if (new_q_vector)
1191 			kfree_rcu(q_vector, rcu);
1192 		q_vector = new_q_vector;
1193 	} else {
1194 		memset(q_vector, 0, size);
1195 	}
1196 	if (!q_vector)
1197 		return -ENOMEM;
1198 
1199 	/* initialize NAPI */
1200 	netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 			      v_idx);
1202 
1203 	/* tie q_vector and adapter together */
1204 	adapter->q_vector[v_idx] = q_vector;
1205 	q_vector->adapter = adapter;
1206 
1207 	/* initialize work limits */
1208 	q_vector->tx.work_limit = adapter->tx_work_limit;
1209 
1210 	/* initialize ITR configuration */
1211 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 	q_vector->itr_val = IGB_START_ITR;
1213 
1214 	/* initialize pointer to rings */
1215 	ring = q_vector->ring;
1216 
1217 	/* initialize ITR */
1218 	if (rxr_count) {
1219 		/* rx or rx/tx vector */
1220 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 			q_vector->itr_val = adapter->rx_itr_setting;
1222 	} else {
1223 		/* tx only vector */
1224 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 			q_vector->itr_val = adapter->tx_itr_setting;
1226 	}
1227 
1228 	if (txr_count) {
1229 		/* assign generic ring traits */
1230 		ring->dev = &adapter->pdev->dev;
1231 		ring->netdev = adapter->netdev;
1232 
1233 		/* configure backlink on ring */
1234 		ring->q_vector = q_vector;
1235 
1236 		/* update q_vector Tx values */
1237 		igb_add_ring(ring, &q_vector->tx);
1238 
1239 		/* For 82575, context index must be unique per ring. */
1240 		if (adapter->hw.mac.type == e1000_82575)
1241 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242 
1243 		/* apply Tx specific ring traits */
1244 		ring->count = adapter->tx_ring_count;
1245 		ring->queue_index = txr_idx;
1246 
1247 		ring->cbs_enable = false;
1248 		ring->idleslope = 0;
1249 		ring->sendslope = 0;
1250 		ring->hicredit = 0;
1251 		ring->locredit = 0;
1252 
1253 		u64_stats_init(&ring->tx_syncp);
1254 		u64_stats_init(&ring->tx_syncp2);
1255 
1256 		/* assign ring to adapter */
1257 		adapter->tx_ring[txr_idx] = ring;
1258 
1259 		/* push pointer to next ring */
1260 		ring++;
1261 	}
1262 
1263 	if (rxr_count) {
1264 		/* assign generic ring traits */
1265 		ring->dev = &adapter->pdev->dev;
1266 		ring->netdev = adapter->netdev;
1267 
1268 		/* configure backlink on ring */
1269 		ring->q_vector = q_vector;
1270 
1271 		/* update q_vector Rx values */
1272 		igb_add_ring(ring, &q_vector->rx);
1273 
1274 		/* set flag indicating ring supports SCTP checksum offload */
1275 		if (adapter->hw.mac.type >= e1000_82576)
1276 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277 
1278 		/* On i350, i354, i210, and i211, loopback VLAN packets
1279 		 * have the tag byte-swapped.
1280 		 */
1281 		if (adapter->hw.mac.type >= e1000_i350)
1282 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283 
1284 		/* apply Rx specific ring traits */
1285 		ring->count = adapter->rx_ring_count;
1286 		ring->queue_index = rxr_idx;
1287 
1288 		u64_stats_init(&ring->rx_syncp);
1289 
1290 		/* assign ring to adapter */
1291 		adapter->rx_ring[rxr_idx] = ring;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 
1298 /**
1299  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300  *  @adapter: board private structure to initialize
1301  *
1302  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1303  *  return -ENOMEM.
1304  **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 	int q_vectors = adapter->num_q_vectors;
1308 	int rxr_remaining = adapter->num_rx_queues;
1309 	int txr_remaining = adapter->num_tx_queues;
1310 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 	int err;
1312 
1313 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 		for (; rxr_remaining; v_idx++) {
1315 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 						 0, 0, 1, rxr_idx);
1317 
1318 			if (err)
1319 				goto err_out;
1320 
1321 			/* update counts and index */
1322 			rxr_remaining--;
1323 			rxr_idx++;
1324 		}
1325 	}
1326 
1327 	for (; v_idx < q_vectors; v_idx++) {
1328 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330 
1331 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 					 tqpv, txr_idx, rqpv, rxr_idx);
1333 
1334 		if (err)
1335 			goto err_out;
1336 
1337 		/* update counts and index */
1338 		rxr_remaining -= rqpv;
1339 		txr_remaining -= tqpv;
1340 		rxr_idx++;
1341 		txr_idx++;
1342 	}
1343 
1344 	return 0;
1345 
1346 err_out:
1347 	adapter->num_tx_queues = 0;
1348 	adapter->num_rx_queues = 0;
1349 	adapter->num_q_vectors = 0;
1350 
1351 	while (v_idx--)
1352 		igb_free_q_vector(adapter, v_idx);
1353 
1354 	return -ENOMEM;
1355 }
1356 
1357 /**
1358  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359  *  @adapter: board private structure to initialize
1360  *  @msix: boolean value of MSIX capability
1361  *
1362  *  This function initializes the interrupts and allocates all of the queues.
1363  **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 	struct pci_dev *pdev = adapter->pdev;
1367 	int err;
1368 
1369 	igb_set_interrupt_capability(adapter, msix);
1370 
1371 	err = igb_alloc_q_vectors(adapter);
1372 	if (err) {
1373 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 		goto err_alloc_q_vectors;
1375 	}
1376 
1377 	igb_cache_ring_register(adapter);
1378 
1379 	return 0;
1380 
1381 err_alloc_q_vectors:
1382 	igb_reset_interrupt_capability(adapter);
1383 	return err;
1384 }
1385 
1386 /**
1387  *  igb_request_irq - initialize interrupts
1388  *  @adapter: board private structure to initialize
1389  *
1390  *  Attempts to configure interrupts using the best available
1391  *  capabilities of the hardware and kernel.
1392  **/
igb_request_irq(struct igb_adapter * adapter)1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 	struct net_device *netdev = adapter->netdev;
1396 	struct pci_dev *pdev = adapter->pdev;
1397 	int err = 0;
1398 
1399 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 		err = igb_request_msix(adapter);
1401 		if (!err)
1402 			goto request_done;
1403 		/* fall back to MSI */
1404 		igb_free_all_tx_resources(adapter);
1405 		igb_free_all_rx_resources(adapter);
1406 
1407 		igb_clear_interrupt_scheme(adapter);
1408 		err = igb_init_interrupt_scheme(adapter, false);
1409 		if (err)
1410 			goto request_done;
1411 
1412 		igb_setup_all_tx_resources(adapter);
1413 		igb_setup_all_rx_resources(adapter);
1414 		igb_configure(adapter);
1415 	}
1416 
1417 	igb_assign_vector(adapter->q_vector[0], 0);
1418 
1419 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 				  netdev->name, adapter);
1422 		if (!err)
1423 			goto request_done;
1424 
1425 		/* fall back to legacy interrupts */
1426 		igb_reset_interrupt_capability(adapter);
1427 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 	}
1429 
1430 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 			  netdev->name, adapter);
1432 
1433 	if (err)
1434 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 			err);
1436 
1437 request_done:
1438 	return err;
1439 }
1440 
igb_free_irq(struct igb_adapter * adapter)1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 		int vector = 0, i;
1445 
1446 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1447 
1448 		for (i = 0; i < adapter->num_q_vectors; i++)
1449 			free_irq(adapter->msix_entries[vector++].vector,
1450 				 adapter->q_vector[i]);
1451 	} else {
1452 		free_irq(adapter->pdev->irq, adapter);
1453 	}
1454 }
1455 
1456 /**
1457  *  igb_irq_disable - Mask off interrupt generation on the NIC
1458  *  @adapter: board private structure
1459  **/
igb_irq_disable(struct igb_adapter * adapter)1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 
1464 	/* we need to be careful when disabling interrupts.  The VFs are also
1465 	 * mapped into these registers and so clearing the bits can cause
1466 	 * issues on the VF drivers so we only need to clear what we set
1467 	 */
1468 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 		u32 regval = rd32(E1000_EIAM);
1470 
1471 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 		regval = rd32(E1000_EIAC);
1474 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 	}
1476 
1477 	wr32(E1000_IAM, 0);
1478 	wr32(E1000_IMC, ~0);
1479 	wrfl();
1480 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 		int i;
1482 
1483 		for (i = 0; i < adapter->num_q_vectors; i++)
1484 			synchronize_irq(adapter->msix_entries[i].vector);
1485 	} else {
1486 		synchronize_irq(adapter->pdev->irq);
1487 	}
1488 }
1489 
1490 /**
1491  *  igb_irq_enable - Enable default interrupt generation settings
1492  *  @adapter: board private structure
1493  **/
igb_irq_enable(struct igb_adapter * adapter)1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 	struct e1000_hw *hw = &adapter->hw;
1497 
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 		u32 regval = rd32(E1000_EIAC);
1501 
1502 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 		regval = rd32(E1000_EIAM);
1504 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 		if (adapter->vfs_allocated_count) {
1507 			wr32(E1000_MBVFIMR, 0xFF);
1508 			ims |= E1000_IMS_VMMB;
1509 		}
1510 		wr32(E1000_IMS, ims);
1511 	} else {
1512 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 				E1000_IMS_DRSTA);
1514 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 				E1000_IMS_DRSTA);
1516 	}
1517 }
1518 
igb_update_mng_vlan(struct igb_adapter * adapter)1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 	struct e1000_hw *hw = &adapter->hw;
1522 	u16 pf_id = adapter->vfs_allocated_count;
1523 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 	u16 old_vid = adapter->mng_vlan_id;
1525 
1526 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 		/* add VID to filter table */
1528 		igb_vfta_set(hw, vid, pf_id, true, true);
1529 		adapter->mng_vlan_id = vid;
1530 	} else {
1531 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 	}
1533 
1534 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1535 	    (vid != old_vid) &&
1536 	    !test_bit(old_vid, adapter->active_vlans)) {
1537 		/* remove VID from filter table */
1538 		igb_vfta_set(hw, vid, pf_id, false, true);
1539 	}
1540 }
1541 
1542 /**
1543  *  igb_release_hw_control - release control of the h/w to f/w
1544  *  @adapter: address of board private structure
1545  *
1546  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1547  *  For ASF and Pass Through versions of f/w this means that the
1548  *  driver is no longer loaded.
1549  **/
igb_release_hw_control(struct igb_adapter * adapter)1550 static void igb_release_hw_control(struct igb_adapter *adapter)
1551 {
1552 	struct e1000_hw *hw = &adapter->hw;
1553 	u32 ctrl_ext;
1554 
1555 	/* Let firmware take over control of h/w */
1556 	ctrl_ext = rd32(E1000_CTRL_EXT);
1557 	wr32(E1000_CTRL_EXT,
1558 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1559 }
1560 
1561 /**
1562  *  igb_get_hw_control - get control of the h/w from f/w
1563  *  @adapter: address of board private structure
1564  *
1565  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1566  *  For ASF and Pass Through versions of f/w this means that
1567  *  the driver is loaded.
1568  **/
igb_get_hw_control(struct igb_adapter * adapter)1569 static void igb_get_hw_control(struct igb_adapter *adapter)
1570 {
1571 	struct e1000_hw *hw = &adapter->hw;
1572 	u32 ctrl_ext;
1573 
1574 	/* Let firmware know the driver has taken over */
1575 	ctrl_ext = rd32(E1000_CTRL_EXT);
1576 	wr32(E1000_CTRL_EXT,
1577 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1578 }
1579 
enable_fqtss(struct igb_adapter * adapter,bool enable)1580 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1581 {
1582 	struct net_device *netdev = adapter->netdev;
1583 	struct e1000_hw *hw = &adapter->hw;
1584 
1585 	WARN_ON(hw->mac.type != e1000_i210);
1586 
1587 	if (enable)
1588 		adapter->flags |= IGB_FLAG_FQTSS;
1589 	else
1590 		adapter->flags &= ~IGB_FLAG_FQTSS;
1591 
1592 	if (netif_running(netdev))
1593 		schedule_work(&adapter->reset_task);
1594 }
1595 
is_fqtss_enabled(struct igb_adapter * adapter)1596 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1597 {
1598 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1599 }
1600 
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1601 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1602 				   enum tx_queue_prio prio)
1603 {
1604 	u32 val;
1605 
1606 	WARN_ON(hw->mac.type != e1000_i210);
1607 	WARN_ON(queue < 0 || queue > 4);
1608 
1609 	val = rd32(E1000_I210_TXDCTL(queue));
1610 
1611 	if (prio == TX_QUEUE_PRIO_HIGH)
1612 		val |= E1000_TXDCTL_PRIORITY;
1613 	else
1614 		val &= ~E1000_TXDCTL_PRIORITY;
1615 
1616 	wr32(E1000_I210_TXDCTL(queue), val);
1617 }
1618 
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1619 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 1);
1625 
1626 	val = rd32(E1000_I210_TQAVCC(queue));
1627 
1628 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1629 		val |= E1000_TQAVCC_QUEUEMODE;
1630 	else
1631 		val &= ~E1000_TQAVCC_QUEUEMODE;
1632 
1633 	wr32(E1000_I210_TQAVCC(queue), val);
1634 }
1635 
is_any_cbs_enabled(struct igb_adapter * adapter)1636 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1637 {
1638 	int i;
1639 
1640 	for (i = 0; i < adapter->num_tx_queues; i++) {
1641 		if (adapter->tx_ring[i]->cbs_enable)
1642 			return true;
1643 	}
1644 
1645 	return false;
1646 }
1647 
is_any_txtime_enabled(struct igb_adapter * adapter)1648 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < adapter->num_tx_queues; i++) {
1653 		if (adapter->tx_ring[i]->launchtime_enable)
1654 			return true;
1655 	}
1656 
1657 	return false;
1658 }
1659 
1660 /**
1661  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1662  *  @adapter: pointer to adapter struct
1663  *  @queue: queue number
1664  *
1665  *  Configure CBS and Launchtime for a given hardware queue.
1666  *  Parameters are retrieved from the correct Tx ring, so
1667  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1668  *  for setting those correctly prior to this function being called.
1669  **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1670 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1671 {
1672 	struct net_device *netdev = adapter->netdev;
1673 	struct e1000_hw *hw = &adapter->hw;
1674 	struct igb_ring *ring;
1675 	u32 tqavcc, tqavctrl;
1676 	u16 value;
1677 
1678 	WARN_ON(hw->mac.type != e1000_i210);
1679 	WARN_ON(queue < 0 || queue > 1);
1680 	ring = adapter->tx_ring[queue];
1681 
1682 	/* If any of the Qav features is enabled, configure queues as SR and
1683 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1684 	 * as SP.
1685 	 */
1686 	if (ring->cbs_enable || ring->launchtime_enable) {
1687 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1688 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1689 	} else {
1690 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1691 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1692 	}
1693 
1694 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1695 	if (ring->cbs_enable || queue == 0) {
1696 		/* i210 does not allow the queue 0 to be in the Strict
1697 		 * Priority mode while the Qav mode is enabled, so,
1698 		 * instead of disabling strict priority mode, we give
1699 		 * queue 0 the maximum of credits possible.
1700 		 *
1701 		 * See section 8.12.19 of the i210 datasheet, "Note:
1702 		 * Queue0 QueueMode must be set to 1b when
1703 		 * TransmitMode is set to Qav."
1704 		 */
1705 		if (queue == 0 && !ring->cbs_enable) {
1706 			/* max "linkspeed" idleslope in kbps */
1707 			ring->idleslope = 1000000;
1708 			ring->hicredit = ETH_FRAME_LEN;
1709 		}
1710 
1711 		/* Always set data transfer arbitration to credit-based
1712 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1713 		 * the queues.
1714 		 */
1715 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1716 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1717 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1718 
1719 		/* According to i210 datasheet section 7.2.7.7, we should set
1720 		 * the 'idleSlope' field from TQAVCC register following the
1721 		 * equation:
1722 		 *
1723 		 * For 100 Mbps link speed:
1724 		 *
1725 		 *     value = BW * 0x7735 * 0.2                          (E1)
1726 		 *
1727 		 * For 1000Mbps link speed:
1728 		 *
1729 		 *     value = BW * 0x7735 * 2                            (E2)
1730 		 *
1731 		 * E1 and E2 can be merged into one equation as shown below.
1732 		 * Note that 'link-speed' is in Mbps.
1733 		 *
1734 		 *     value = BW * 0x7735 * 2 * link-speed
1735 		 *                           --------------               (E3)
1736 		 *                                1000
1737 		 *
1738 		 * 'BW' is the percentage bandwidth out of full link speed
1739 		 * which can be found with the following equation. Note that
1740 		 * idleSlope here is the parameter from this function which
1741 		 * is in kbps.
1742 		 *
1743 		 *     BW =     idleSlope
1744 		 *          -----------------                             (E4)
1745 		 *          link-speed * 1000
1746 		 *
1747 		 * That said, we can come up with a generic equation to
1748 		 * calculate the value we should set it TQAVCC register by
1749 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1750 		 *
1751 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1752 		 *         -----------------            --------------    (E5)
1753 		 *         link-speed * 1000                 1000
1754 		 *
1755 		 * 'link-speed' is present in both sides of the fraction so
1756 		 * it is canceled out. The final equation is the following:
1757 		 *
1758 		 *     value = idleSlope * 61034
1759 		 *             -----------------                          (E6)
1760 		 *                  1000000
1761 		 *
1762 		 * NOTE: For i210, given the above, we can see that idleslope
1763 		 *       is represented in 16.38431 kbps units by the value at
1764 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1765 		 *       the granularity for idleslope increments.
1766 		 *       For instance, if you want to configure a 2576kbps
1767 		 *       idleslope, the value to be written on the register
1768 		 *       would have to be 157.23. If rounded down, you end
1769 		 *       up with less bandwidth available than originally
1770 		 *       required (~2572 kbps). If rounded up, you end up
1771 		 *       with a higher bandwidth (~2589 kbps). Below the
1772 		 *       approach we take is to always round up the
1773 		 *       calculated value, so the resulting bandwidth might
1774 		 *       be slightly higher for some configurations.
1775 		 */
1776 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1777 
1778 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 		tqavcc |= value;
1781 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1782 
1783 		wr32(E1000_I210_TQAVHC(queue),
1784 		     0x80000000 + ring->hicredit * 0x7735);
1785 	} else {
1786 
1787 		/* Set idleSlope to zero. */
1788 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1789 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1790 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1791 
1792 		/* Set hiCredit to zero. */
1793 		wr32(E1000_I210_TQAVHC(queue), 0);
1794 
1795 		/* If CBS is not enabled for any queues anymore, then return to
1796 		 * the default state of Data Transmission Arbitration on
1797 		 * TQAVCTRL.
1798 		 */
1799 		if (!is_any_cbs_enabled(adapter)) {
1800 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1801 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1802 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1803 		}
1804 	}
1805 
1806 	/* If LaunchTime is enabled, set DataTranTIM. */
1807 	if (ring->launchtime_enable) {
1808 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1809 		 * for any of the SR queues, and configure fetchtime delta.
1810 		 * XXX NOTE:
1811 		 *     - LaunchTime will be enabled for all SR queues.
1812 		 *     - A fixed offset can be added relative to the launch
1813 		 *       time of all packets if configured at reg LAUNCH_OS0.
1814 		 *       We are keeping it as 0 for now (default value).
1815 		 */
1816 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1818 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 	} else {
1821 		/* If Launchtime is not enabled for any SR queues anymore,
1822 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1823 		 * effectively disabling Launchtime.
1824 		 */
1825 		if (!is_any_txtime_enabled(adapter)) {
1826 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1827 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1828 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1829 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1830 		}
1831 	}
1832 
1833 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1834 	 * CBS are not configurable by software so we don't do any 'controller
1835 	 * configuration' in respect to these parameters.
1836 	 */
1837 
1838 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1839 		   ring->cbs_enable ? "enabled" : "disabled",
1840 		   ring->launchtime_enable ? "enabled" : "disabled",
1841 		   queue,
1842 		   ring->idleslope, ring->sendslope,
1843 		   ring->hicredit, ring->locredit);
1844 }
1845 
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1846 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1847 				  bool enable)
1848 {
1849 	struct igb_ring *ring;
1850 
1851 	if (queue < 0 || queue > adapter->num_tx_queues)
1852 		return -EINVAL;
1853 
1854 	ring = adapter->tx_ring[queue];
1855 	ring->launchtime_enable = enable;
1856 
1857 	return 0;
1858 }
1859 
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1860 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1861 			       bool enable, int idleslope, int sendslope,
1862 			       int hicredit, int locredit)
1863 {
1864 	struct igb_ring *ring;
1865 
1866 	if (queue < 0 || queue > adapter->num_tx_queues)
1867 		return -EINVAL;
1868 
1869 	ring = adapter->tx_ring[queue];
1870 
1871 	ring->cbs_enable = enable;
1872 	ring->idleslope = idleslope;
1873 	ring->sendslope = sendslope;
1874 	ring->hicredit = hicredit;
1875 	ring->locredit = locredit;
1876 
1877 	return 0;
1878 }
1879 
1880 /**
1881  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1882  *  @adapter: pointer to adapter struct
1883  *
1884  *  Configure TQAVCTRL register switching the controller's Tx mode
1885  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1886  *  a call to igb_config_tx_modes() per queue so any previously saved
1887  *  Tx parameters are applied.
1888  **/
igb_setup_tx_mode(struct igb_adapter * adapter)1889 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1890 {
1891 	struct net_device *netdev = adapter->netdev;
1892 	struct e1000_hw *hw = &adapter->hw;
1893 	u32 val;
1894 
1895 	/* Only i210 controller supports changing the transmission mode. */
1896 	if (hw->mac.type != e1000_i210)
1897 		return;
1898 
1899 	if (is_fqtss_enabled(adapter)) {
1900 		int i, max_queue;
1901 
1902 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1903 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1904 		 * so SP queues wait for SR ones.
1905 		 */
1906 		val = rd32(E1000_I210_TQAVCTRL);
1907 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1908 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1909 		wr32(E1000_I210_TQAVCTRL, val);
1910 
1911 		/* Configure Tx and Rx packet buffers sizes as described in
1912 		 * i210 datasheet section 7.2.7.7.
1913 		 */
1914 		val = rd32(E1000_TXPBS);
1915 		val &= ~I210_TXPBSIZE_MASK;
1916 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1917 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1918 		wr32(E1000_TXPBS, val);
1919 
1920 		val = rd32(E1000_RXPBS);
1921 		val &= ~I210_RXPBSIZE_MASK;
1922 		val |= I210_RXPBSIZE_PB_30KB;
1923 		wr32(E1000_RXPBS, val);
1924 
1925 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1926 		 * register should not exceed the buffer size programmed in
1927 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1928 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1929 		 * 4kB / 64.
1930 		 *
1931 		 * However, when we do so, no frame from queue 2 and 3 are
1932 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1933 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1934 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1935 		 */
1936 		val = (4096 - 1) / 64;
1937 		wr32(E1000_I210_DTXMXPKTSZ, val);
1938 
1939 		/* Since FQTSS mode is enabled, apply any CBS configuration
1940 		 * previously set. If no previous CBS configuration has been
1941 		 * done, then the initial configuration is applied, which means
1942 		 * CBS is disabled.
1943 		 */
1944 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1945 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1946 
1947 		for (i = 0; i < max_queue; i++) {
1948 			igb_config_tx_modes(adapter, i);
1949 		}
1950 	} else {
1951 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1952 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1953 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1954 
1955 		val = rd32(E1000_I210_TQAVCTRL);
1956 		/* According to Section 8.12.21, the other flags we've set when
1957 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1958 		 * don't set they here.
1959 		 */
1960 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1961 		wr32(E1000_I210_TQAVCTRL, val);
1962 	}
1963 
1964 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1965 		   "enabled" : "disabled");
1966 }
1967 
1968 /**
1969  *  igb_configure - configure the hardware for RX and TX
1970  *  @adapter: private board structure
1971  **/
igb_configure(struct igb_adapter * adapter)1972 static void igb_configure(struct igb_adapter *adapter)
1973 {
1974 	struct net_device *netdev = adapter->netdev;
1975 	int i;
1976 
1977 	igb_get_hw_control(adapter);
1978 	igb_set_rx_mode(netdev);
1979 	igb_setup_tx_mode(adapter);
1980 
1981 	igb_restore_vlan(adapter);
1982 
1983 	igb_setup_tctl(adapter);
1984 	igb_setup_mrqc(adapter);
1985 	igb_setup_rctl(adapter);
1986 
1987 	igb_nfc_filter_restore(adapter);
1988 	igb_configure_tx(adapter);
1989 	igb_configure_rx(adapter);
1990 
1991 	igb_rx_fifo_flush_82575(&adapter->hw);
1992 
1993 	/* call igb_desc_unused which always leaves
1994 	 * at least 1 descriptor unused to make sure
1995 	 * next_to_use != next_to_clean
1996 	 */
1997 	for (i = 0; i < adapter->num_rx_queues; i++) {
1998 		struct igb_ring *ring = adapter->rx_ring[i];
1999 		if (ring->xsk_pool)
2000 			igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2001 						igb_desc_unused(ring));
2002 		else
2003 			igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 	}
2005 }
2006 
2007 /**
2008  *  igb_power_up_link - Power up the phy/serdes link
2009  *  @adapter: address of board private structure
2010  **/
igb_power_up_link(struct igb_adapter * adapter)2011 void igb_power_up_link(struct igb_adapter *adapter)
2012 {
2013 	igb_reset_phy(&adapter->hw);
2014 
2015 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 		igb_power_up_phy_copper(&adapter->hw);
2017 	else
2018 		igb_power_up_serdes_link_82575(&adapter->hw);
2019 
2020 	igb_setup_link(&adapter->hw);
2021 }
2022 
2023 /**
2024  *  igb_power_down_link - Power down the phy/serdes link
2025  *  @adapter: address of board private structure
2026  */
igb_power_down_link(struct igb_adapter * adapter)2027 static void igb_power_down_link(struct igb_adapter *adapter)
2028 {
2029 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2030 		igb_power_down_phy_copper_82575(&adapter->hw);
2031 	else
2032 		igb_shutdown_serdes_link_82575(&adapter->hw);
2033 }
2034 
2035 /**
2036  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2037  * @adapter: address of the board private structure
2038  **/
igb_check_swap_media(struct igb_adapter * adapter)2039 static void igb_check_swap_media(struct igb_adapter *adapter)
2040 {
2041 	struct e1000_hw *hw = &adapter->hw;
2042 	u32 ctrl_ext, connsw;
2043 	bool swap_now = false;
2044 
2045 	ctrl_ext = rd32(E1000_CTRL_EXT);
2046 	connsw = rd32(E1000_CONNSW);
2047 
2048 	/* need to live swap if current media is copper and we have fiber/serdes
2049 	 * to go to.
2050 	 */
2051 
2052 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2053 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2054 		swap_now = true;
2055 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2056 		   !(connsw & E1000_CONNSW_SERDESD)) {
2057 		/* copper signal takes time to appear */
2058 		if (adapter->copper_tries < 4) {
2059 			adapter->copper_tries++;
2060 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2061 			wr32(E1000_CONNSW, connsw);
2062 			return;
2063 		} else {
2064 			adapter->copper_tries = 0;
2065 			if ((connsw & E1000_CONNSW_PHYSD) &&
2066 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2067 				swap_now = true;
2068 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2069 				wr32(E1000_CONNSW, connsw);
2070 			}
2071 		}
2072 	}
2073 
2074 	if (!swap_now)
2075 		return;
2076 
2077 	switch (hw->phy.media_type) {
2078 	case e1000_media_type_copper:
2079 		netdev_info(adapter->netdev,
2080 			"MAS: changing media to fiber/serdes\n");
2081 		ctrl_ext |=
2082 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2083 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2084 		adapter->copper_tries = 0;
2085 		break;
2086 	case e1000_media_type_internal_serdes:
2087 	case e1000_media_type_fiber:
2088 		netdev_info(adapter->netdev,
2089 			"MAS: changing media to copper\n");
2090 		ctrl_ext &=
2091 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 		break;
2094 	default:
2095 		/* shouldn't get here during regular operation */
2096 		netdev_err(adapter->netdev,
2097 			"AMS: Invalid media type found, returning\n");
2098 		break;
2099 	}
2100 	wr32(E1000_CTRL_EXT, ctrl_ext);
2101 }
2102 
igb_set_queue_napi(struct igb_adapter * adapter,int vector,struct napi_struct * napi)2103 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2104 			struct napi_struct *napi)
2105 {
2106 	struct igb_q_vector *q_vector = adapter->q_vector[vector];
2107 
2108 	if (q_vector->rx.ring)
2109 		netif_queue_set_napi(adapter->netdev,
2110 				     q_vector->rx.ring->queue_index,
2111 				     NETDEV_QUEUE_TYPE_RX, napi);
2112 
2113 	if (q_vector->tx.ring)
2114 		netif_queue_set_napi(adapter->netdev,
2115 				     q_vector->tx.ring->queue_index,
2116 				     NETDEV_QUEUE_TYPE_TX, napi);
2117 }
2118 
2119 /**
2120  *  igb_up - Open the interface and prepare it to handle traffic
2121  *  @adapter: board private structure
2122  **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 	struct e1000_hw *hw = &adapter->hw;
2126 	struct napi_struct *napi;
2127 	int i;
2128 
2129 	/* hardware has been reset, we need to reload some things */
2130 	igb_configure(adapter);
2131 
2132 	clear_bit(__IGB_DOWN, &adapter->state);
2133 
2134 	for (i = 0; i < adapter->num_q_vectors; i++) {
2135 		napi = &adapter->q_vector[i]->napi;
2136 		napi_enable(napi);
2137 		igb_set_queue_napi(adapter, i, napi);
2138 	}
2139 
2140 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2141 		igb_configure_msix(adapter);
2142 	else
2143 		igb_assign_vector(adapter->q_vector[0], 0);
2144 
2145 	/* Clear any pending interrupts. */
2146 	rd32(E1000_TSICR);
2147 	rd32(E1000_ICR);
2148 	igb_irq_enable(adapter);
2149 
2150 	/* notify VFs that reset has been completed */
2151 	if (adapter->vfs_allocated_count) {
2152 		u32 reg_data = rd32(E1000_CTRL_EXT);
2153 
2154 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2155 		wr32(E1000_CTRL_EXT, reg_data);
2156 	}
2157 
2158 	netif_tx_start_all_queues(adapter->netdev);
2159 
2160 	/* start the watchdog. */
2161 	hw->mac.get_link_status = 1;
2162 	schedule_work(&adapter->watchdog_task);
2163 
2164 	if ((adapter->flags & IGB_FLAG_EEE) &&
2165 	    (!hw->dev_spec._82575.eee_disable))
2166 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2167 
2168 	return 0;
2169 }
2170 
igb_down(struct igb_adapter * adapter)2171 void igb_down(struct igb_adapter *adapter)
2172 {
2173 	struct net_device *netdev = adapter->netdev;
2174 	struct e1000_hw *hw = &adapter->hw;
2175 	u32 tctl, rctl;
2176 	int i;
2177 
2178 	/* signal that we're down so the interrupt handler does not
2179 	 * reschedule our watchdog timer
2180 	 */
2181 	set_bit(__IGB_DOWN, &adapter->state);
2182 
2183 	/* disable receives in the hardware */
2184 	rctl = rd32(E1000_RCTL);
2185 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2186 	/* flush and sleep below */
2187 
2188 	igb_nfc_filter_exit(adapter);
2189 
2190 	netif_carrier_off(netdev);
2191 	netif_tx_stop_all_queues(netdev);
2192 
2193 	/* disable transmits in the hardware */
2194 	tctl = rd32(E1000_TCTL);
2195 	tctl &= ~E1000_TCTL_EN;
2196 	wr32(E1000_TCTL, tctl);
2197 	/* flush both disables and wait for them to finish */
2198 	wrfl();
2199 	usleep_range(10000, 11000);
2200 
2201 	igb_irq_disable(adapter);
2202 
2203 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2204 
2205 	for (i = 0; i < adapter->num_q_vectors; i++) {
2206 		if (adapter->q_vector[i]) {
2207 			napi_synchronize(&adapter->q_vector[i]->napi);
2208 			igb_set_queue_napi(adapter, i, NULL);
2209 			napi_disable(&adapter->q_vector[i]->napi);
2210 		}
2211 	}
2212 
2213 	timer_delete_sync(&adapter->watchdog_timer);
2214 	timer_delete_sync(&adapter->phy_info_timer);
2215 
2216 	/* record the stats before reset*/
2217 	spin_lock(&adapter->stats64_lock);
2218 	igb_update_stats(adapter);
2219 	spin_unlock(&adapter->stats64_lock);
2220 
2221 	adapter->link_speed = 0;
2222 	adapter->link_duplex = 0;
2223 
2224 	if (!pci_channel_offline(adapter->pdev))
2225 		igb_reset(adapter);
2226 
2227 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2228 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2229 
2230 	igb_clean_all_tx_rings(adapter);
2231 	igb_clean_all_rx_rings(adapter);
2232 #ifdef CONFIG_IGB_DCA
2233 
2234 	/* since we reset the hardware DCA settings were cleared */
2235 	igb_setup_dca(adapter);
2236 #endif
2237 }
2238 
igb_reinit_locked(struct igb_adapter * adapter)2239 void igb_reinit_locked(struct igb_adapter *adapter)
2240 {
2241 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2242 		usleep_range(1000, 2000);
2243 	igb_down(adapter);
2244 	igb_up(adapter);
2245 	clear_bit(__IGB_RESETTING, &adapter->state);
2246 }
2247 
2248 /** igb_enable_mas - Media Autosense re-enable after swap
2249  *
2250  * @adapter: adapter struct
2251  **/
igb_enable_mas(struct igb_adapter * adapter)2252 static void igb_enable_mas(struct igb_adapter *adapter)
2253 {
2254 	struct e1000_hw *hw = &adapter->hw;
2255 	u32 connsw = rd32(E1000_CONNSW);
2256 
2257 	/* configure for SerDes media detect */
2258 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2259 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2260 		connsw |= E1000_CONNSW_ENRGSRC;
2261 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2262 		wr32(E1000_CONNSW, connsw);
2263 		wrfl();
2264 	}
2265 }
2266 
2267 #ifdef CONFIG_IGB_HWMON
2268 /**
2269  *  igb_set_i2c_bb - Init I2C interface
2270  *  @hw: pointer to hardware structure
2271  **/
igb_set_i2c_bb(struct e1000_hw * hw)2272 static void igb_set_i2c_bb(struct e1000_hw *hw)
2273 {
2274 	u32 ctrl_ext;
2275 	s32 i2cctl;
2276 
2277 	ctrl_ext = rd32(E1000_CTRL_EXT);
2278 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2279 	wr32(E1000_CTRL_EXT, ctrl_ext);
2280 	wrfl();
2281 
2282 	i2cctl = rd32(E1000_I2CPARAMS);
2283 	i2cctl |= E1000_I2CBB_EN
2284 		| E1000_I2C_CLK_OE_N
2285 		| E1000_I2C_DATA_OE_N;
2286 	wr32(E1000_I2CPARAMS, i2cctl);
2287 	wrfl();
2288 }
2289 #endif
2290 
igb_reset(struct igb_adapter * adapter)2291 void igb_reset(struct igb_adapter *adapter)
2292 {
2293 	struct pci_dev *pdev = adapter->pdev;
2294 	struct e1000_hw *hw = &adapter->hw;
2295 	struct e1000_mac_info *mac = &hw->mac;
2296 	struct e1000_fc_info *fc = &hw->fc;
2297 	u32 pba, hwm;
2298 
2299 	/* Repartition Pba for greater than 9k mtu
2300 	 * To take effect CTRL.RST is required.
2301 	 */
2302 	switch (mac->type) {
2303 	case e1000_i350:
2304 	case e1000_i354:
2305 	case e1000_82580:
2306 		pba = rd32(E1000_RXPBS);
2307 		pba = igb_rxpbs_adjust_82580(pba);
2308 		break;
2309 	case e1000_82576:
2310 		pba = rd32(E1000_RXPBS);
2311 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2312 		break;
2313 	case e1000_82575:
2314 	case e1000_i210:
2315 	case e1000_i211:
2316 	default:
2317 		pba = E1000_PBA_34K;
2318 		break;
2319 	}
2320 
2321 	if (mac->type == e1000_82575) {
2322 		u32 min_rx_space, min_tx_space, needed_tx_space;
2323 
2324 		/* write Rx PBA so that hardware can report correct Tx PBA */
2325 		wr32(E1000_PBA, pba);
2326 
2327 		/* To maintain wire speed transmits, the Tx FIFO should be
2328 		 * large enough to accommodate two full transmit packets,
2329 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2330 		 * the Rx FIFO should be large enough to accommodate at least
2331 		 * one full receive packet and is similarly rounded up and
2332 		 * expressed in KB.
2333 		 */
2334 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2335 
2336 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2337 		 * but don't include Ethernet FCS because hardware appends it.
2338 		 * We only need to round down to the nearest 512 byte block
2339 		 * count since the value we care about is 2 frames, not 1.
2340 		 */
2341 		min_tx_space = adapter->max_frame_size;
2342 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2343 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2344 
2345 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2346 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2347 
2348 		/* If current Tx allocation is less than the min Tx FIFO size,
2349 		 * and the min Tx FIFO size is less than the current Rx FIFO
2350 		 * allocation, take space away from current Rx allocation.
2351 		 */
2352 		if (needed_tx_space < pba) {
2353 			pba -= needed_tx_space;
2354 
2355 			/* if short on Rx space, Rx wins and must trump Tx
2356 			 * adjustment
2357 			 */
2358 			if (pba < min_rx_space)
2359 				pba = min_rx_space;
2360 		}
2361 
2362 		/* adjust PBA for jumbo frames */
2363 		wr32(E1000_PBA, pba);
2364 	}
2365 
2366 	/* flow control settings
2367 	 * The high water mark must be low enough to fit one full frame
2368 	 * after transmitting the pause frame.  As such we must have enough
2369 	 * space to allow for us to complete our current transmit and then
2370 	 * receive the frame that is in progress from the link partner.
2371 	 * Set it to:
2372 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2373 	 */
2374 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2375 
2376 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2377 	fc->low_water = fc->high_water - 16;
2378 	fc->pause_time = 0xFFFF;
2379 	fc->send_xon = 1;
2380 	fc->current_mode = fc->requested_mode;
2381 
2382 	/* disable receive for all VFs and wait one second */
2383 	if (adapter->vfs_allocated_count) {
2384 		int i;
2385 
2386 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2387 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2388 
2389 		/* ping all the active vfs to let them know we are going down */
2390 		igb_ping_all_vfs(adapter);
2391 
2392 		/* disable transmits and receives */
2393 		wr32(E1000_VFRE, 0);
2394 		wr32(E1000_VFTE, 0);
2395 	}
2396 
2397 	/* Allow time for pending master requests to run */
2398 	hw->mac.ops.reset_hw(hw);
2399 	wr32(E1000_WUC, 0);
2400 
2401 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2402 		/* need to resetup here after media swap */
2403 		adapter->ei.get_invariants(hw);
2404 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2405 	}
2406 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2407 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2408 		igb_enable_mas(adapter);
2409 	}
2410 	if (hw->mac.ops.init_hw(hw))
2411 		dev_err(&pdev->dev, "Hardware Error\n");
2412 
2413 	/* RAR registers were cleared during init_hw, clear mac table */
2414 	igb_flush_mac_table(adapter);
2415 	__dev_uc_unsync(adapter->netdev, NULL);
2416 
2417 	/* Recover default RAR entry */
2418 	igb_set_default_mac_filter(adapter);
2419 
2420 	/* Flow control settings reset on hardware reset, so guarantee flow
2421 	 * control is off when forcing speed.
2422 	 */
2423 	if (!hw->mac.autoneg)
2424 		igb_force_mac_fc(hw);
2425 
2426 	igb_init_dmac(adapter, pba);
2427 #ifdef CONFIG_IGB_HWMON
2428 	/* Re-initialize the thermal sensor on i350 devices. */
2429 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2430 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2431 			/* If present, re-initialize the external thermal sensor
2432 			 * interface.
2433 			 */
2434 			if (adapter->ets)
2435 				igb_set_i2c_bb(hw);
2436 			mac->ops.init_thermal_sensor_thresh(hw);
2437 		}
2438 	}
2439 #endif
2440 	/* Re-establish EEE setting */
2441 	if (hw->phy.media_type == e1000_media_type_copper) {
2442 		switch (mac->type) {
2443 		case e1000_i350:
2444 		case e1000_i210:
2445 		case e1000_i211:
2446 			igb_set_eee_i350(hw, true, true);
2447 			break;
2448 		case e1000_i354:
2449 			igb_set_eee_i354(hw, true, true);
2450 			break;
2451 		default:
2452 			break;
2453 		}
2454 	}
2455 	if (!netif_running(adapter->netdev))
2456 		igb_power_down_link(adapter);
2457 
2458 	igb_update_mng_vlan(adapter);
2459 
2460 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2462 
2463 	/* Re-enable PTP, where applicable. */
2464 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2465 		igb_ptp_reset(adapter);
2466 
2467 	igb_get_phy_info(hw);
2468 }
2469 
igb_fix_features(struct net_device * netdev,netdev_features_t features)2470 static netdev_features_t igb_fix_features(struct net_device *netdev,
2471 	netdev_features_t features)
2472 {
2473 	/* Since there is no support for separate Rx/Tx vlan accel
2474 	 * enable/disable make sure Tx flag is always in same state as Rx.
2475 	 */
2476 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2477 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2478 	else
2479 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2480 
2481 	return features;
2482 }
2483 
igb_set_features(struct net_device * netdev,netdev_features_t features)2484 static int igb_set_features(struct net_device *netdev,
2485 	netdev_features_t features)
2486 {
2487 	netdev_features_t changed = netdev->features ^ features;
2488 	struct igb_adapter *adapter = netdev_priv(netdev);
2489 
2490 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2491 		igb_vlan_mode(netdev, features);
2492 
2493 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2494 		return 0;
2495 
2496 	if (!(features & NETIF_F_NTUPLE)) {
2497 		struct hlist_node *node2;
2498 		struct igb_nfc_filter *rule;
2499 
2500 		spin_lock(&adapter->nfc_lock);
2501 		hlist_for_each_entry_safe(rule, node2,
2502 					  &adapter->nfc_filter_list, nfc_node) {
2503 			igb_erase_filter(adapter, rule);
2504 			hlist_del(&rule->nfc_node);
2505 			kfree(rule);
2506 		}
2507 		spin_unlock(&adapter->nfc_lock);
2508 		adapter->nfc_filter_count = 0;
2509 	}
2510 
2511 	netdev->features = features;
2512 
2513 	if (netif_running(netdev))
2514 		igb_reinit_locked(adapter);
2515 	else
2516 		igb_reset(adapter);
2517 
2518 	return 1;
2519 }
2520 
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)2521 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2522 			   struct net_device *dev,
2523 			   const unsigned char *addr, u16 vid,
2524 			   u16 flags, bool *notified,
2525 			   struct netlink_ext_ack *extack)
2526 {
2527 	/* guarantee we can provide a unique filter for the unicast address */
2528 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2529 		struct igb_adapter *adapter = netdev_priv(dev);
2530 		int vfn = adapter->vfs_allocated_count;
2531 
2532 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2533 			return -ENOMEM;
2534 	}
2535 
2536 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2537 }
2538 
2539 #define IGB_MAX_MAC_HDR_LEN	127
2540 #define IGB_MAX_NETWORK_HDR_LEN	511
2541 
2542 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2543 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2544 		   netdev_features_t features)
2545 {
2546 	unsigned int network_hdr_len, mac_hdr_len;
2547 
2548 	/* Make certain the headers can be described by a context descriptor */
2549 	mac_hdr_len = skb_network_offset(skb);
2550 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2551 		return features & ~(NETIF_F_HW_CSUM |
2552 				    NETIF_F_SCTP_CRC |
2553 				    NETIF_F_GSO_UDP_L4 |
2554 				    NETIF_F_HW_VLAN_CTAG_TX |
2555 				    NETIF_F_TSO |
2556 				    NETIF_F_TSO6);
2557 
2558 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2559 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2560 		return features & ~(NETIF_F_HW_CSUM |
2561 				    NETIF_F_SCTP_CRC |
2562 				    NETIF_F_GSO_UDP_L4 |
2563 				    NETIF_F_TSO |
2564 				    NETIF_F_TSO6);
2565 
2566 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2567 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2568 	 */
2569 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2570 		features &= ~NETIF_F_TSO;
2571 
2572 	return features;
2573 }
2574 
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2575 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2576 {
2577 	if (!is_fqtss_enabled(adapter)) {
2578 		enable_fqtss(adapter, true);
2579 		return;
2580 	}
2581 
2582 	igb_config_tx_modes(adapter, queue);
2583 
2584 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2585 		enable_fqtss(adapter, false);
2586 }
2587 
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2588 static int igb_offload_cbs(struct igb_adapter *adapter,
2589 			   struct tc_cbs_qopt_offload *qopt)
2590 {
2591 	struct e1000_hw *hw = &adapter->hw;
2592 	int err;
2593 
2594 	/* CBS offloading is only supported by i210 controller. */
2595 	if (hw->mac.type != e1000_i210)
2596 		return -EOPNOTSUPP;
2597 
2598 	/* CBS offloading is only supported by queue 0 and queue 1. */
2599 	if (qopt->queue < 0 || qopt->queue > 1)
2600 		return -EINVAL;
2601 
2602 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2603 				  qopt->idleslope, qopt->sendslope,
2604 				  qopt->hicredit, qopt->locredit);
2605 	if (err)
2606 		return err;
2607 
2608 	igb_offload_apply(adapter, qopt->queue);
2609 
2610 	return 0;
2611 }
2612 
2613 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2614 #define VLAN_PRIO_FULL_MASK (0x07)
2615 
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2616 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2617 				struct flow_cls_offload *f,
2618 				int traffic_class,
2619 				struct igb_nfc_filter *input)
2620 {
2621 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2622 	struct flow_dissector *dissector = rule->match.dissector;
2623 	struct netlink_ext_ack *extack = f->common.extack;
2624 
2625 	if (dissector->used_keys &
2626 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2627 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2628 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2629 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2630 		NL_SET_ERR_MSG_MOD(extack,
2631 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2632 		return -EOPNOTSUPP;
2633 	}
2634 
2635 	if (flow_rule_match_has_control_flags(rule, extack))
2636 		return -EOPNOTSUPP;
2637 
2638 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2639 		struct flow_match_eth_addrs match;
2640 
2641 		flow_rule_match_eth_addrs(rule, &match);
2642 		if (!is_zero_ether_addr(match.mask->dst)) {
2643 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2644 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2645 				return -EINVAL;
2646 			}
2647 
2648 			input->filter.match_flags |=
2649 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2650 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2651 		}
2652 
2653 		if (!is_zero_ether_addr(match.mask->src)) {
2654 			if (!is_broadcast_ether_addr(match.mask->src)) {
2655 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2656 				return -EINVAL;
2657 			}
2658 
2659 			input->filter.match_flags |=
2660 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2661 			ether_addr_copy(input->filter.src_addr, match.key->src);
2662 		}
2663 	}
2664 
2665 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2666 		struct flow_match_basic match;
2667 
2668 		flow_rule_match_basic(rule, &match);
2669 		if (match.mask->n_proto) {
2670 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2671 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2672 				return -EINVAL;
2673 			}
2674 
2675 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2676 			input->filter.etype = match.key->n_proto;
2677 		}
2678 	}
2679 
2680 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2681 		struct flow_match_vlan match;
2682 
2683 		flow_rule_match_vlan(rule, &match);
2684 		if (match.mask->vlan_priority) {
2685 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2686 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2687 				return -EINVAL;
2688 			}
2689 
2690 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2691 			input->filter.vlan_tci =
2692 				(__force __be16)match.key->vlan_priority;
2693 		}
2694 	}
2695 
2696 	input->action = traffic_class;
2697 	input->cookie = f->cookie;
2698 
2699 	return 0;
2700 }
2701 
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2702 static int igb_configure_clsflower(struct igb_adapter *adapter,
2703 				   struct flow_cls_offload *cls_flower)
2704 {
2705 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2706 	struct igb_nfc_filter *filter, *f;
2707 	int err, tc;
2708 
2709 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2710 	if (tc < 0) {
2711 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2712 		return -EINVAL;
2713 	}
2714 
2715 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2716 	if (!filter)
2717 		return -ENOMEM;
2718 
2719 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2720 	if (err < 0)
2721 		goto err_parse;
2722 
2723 	spin_lock(&adapter->nfc_lock);
2724 
2725 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2726 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2727 			err = -EEXIST;
2728 			NL_SET_ERR_MSG_MOD(extack,
2729 					   "This filter is already set in ethtool");
2730 			goto err_locked;
2731 		}
2732 	}
2733 
2734 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2735 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2736 			err = -EEXIST;
2737 			NL_SET_ERR_MSG_MOD(extack,
2738 					   "This filter is already set in cls_flower");
2739 			goto err_locked;
2740 		}
2741 	}
2742 
2743 	err = igb_add_filter(adapter, filter);
2744 	if (err < 0) {
2745 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2746 		goto err_locked;
2747 	}
2748 
2749 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2750 
2751 	spin_unlock(&adapter->nfc_lock);
2752 
2753 	return 0;
2754 
2755 err_locked:
2756 	spin_unlock(&adapter->nfc_lock);
2757 
2758 err_parse:
2759 	kfree(filter);
2760 
2761 	return err;
2762 }
2763 
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2764 static int igb_delete_clsflower(struct igb_adapter *adapter,
2765 				struct flow_cls_offload *cls_flower)
2766 {
2767 	struct igb_nfc_filter *filter;
2768 	int err;
2769 
2770 	spin_lock(&adapter->nfc_lock);
2771 
2772 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2773 		if (filter->cookie == cls_flower->cookie)
2774 			break;
2775 
2776 	if (!filter) {
2777 		err = -ENOENT;
2778 		goto out;
2779 	}
2780 
2781 	err = igb_erase_filter(adapter, filter);
2782 	if (err < 0)
2783 		goto out;
2784 
2785 	hlist_del(&filter->nfc_node);
2786 	kfree(filter);
2787 
2788 out:
2789 	spin_unlock(&adapter->nfc_lock);
2790 
2791 	return err;
2792 }
2793 
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2794 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2795 				   struct flow_cls_offload *cls_flower)
2796 {
2797 	switch (cls_flower->command) {
2798 	case FLOW_CLS_REPLACE:
2799 		return igb_configure_clsflower(adapter, cls_flower);
2800 	case FLOW_CLS_DESTROY:
2801 		return igb_delete_clsflower(adapter, cls_flower);
2802 	case FLOW_CLS_STATS:
2803 		return -EOPNOTSUPP;
2804 	default:
2805 		return -EOPNOTSUPP;
2806 	}
2807 }
2808 
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2809 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2810 				 void *cb_priv)
2811 {
2812 	struct igb_adapter *adapter = cb_priv;
2813 
2814 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2815 		return -EOPNOTSUPP;
2816 
2817 	switch (type) {
2818 	case TC_SETUP_CLSFLOWER:
2819 		return igb_setup_tc_cls_flower(adapter, type_data);
2820 
2821 	default:
2822 		return -EOPNOTSUPP;
2823 	}
2824 }
2825 
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2826 static int igb_offload_txtime(struct igb_adapter *adapter,
2827 			      struct tc_etf_qopt_offload *qopt)
2828 {
2829 	struct e1000_hw *hw = &adapter->hw;
2830 	int err;
2831 
2832 	/* Launchtime offloading is only supported by i210 controller. */
2833 	if (hw->mac.type != e1000_i210)
2834 		return -EOPNOTSUPP;
2835 
2836 	/* Launchtime offloading is only supported by queues 0 and 1. */
2837 	if (qopt->queue < 0 || qopt->queue > 1)
2838 		return -EINVAL;
2839 
2840 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2841 	if (err)
2842 		return err;
2843 
2844 	igb_offload_apply(adapter, qopt->queue);
2845 
2846 	return 0;
2847 }
2848 
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2849 static int igb_tc_query_caps(struct igb_adapter *adapter,
2850 			     struct tc_query_caps_base *base)
2851 {
2852 	switch (base->type) {
2853 	case TC_SETUP_QDISC_TAPRIO: {
2854 		struct tc_taprio_caps *caps = base->caps;
2855 
2856 		caps->broken_mqprio = true;
2857 
2858 		return 0;
2859 	}
2860 	default:
2861 		return -EOPNOTSUPP;
2862 	}
2863 }
2864 
2865 static LIST_HEAD(igb_block_cb_list);
2866 
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2867 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2868 			void *type_data)
2869 {
2870 	struct igb_adapter *adapter = netdev_priv(dev);
2871 
2872 	switch (type) {
2873 	case TC_QUERY_CAPS:
2874 		return igb_tc_query_caps(adapter, type_data);
2875 	case TC_SETUP_QDISC_CBS:
2876 		return igb_offload_cbs(adapter, type_data);
2877 	case TC_SETUP_BLOCK:
2878 		return flow_block_cb_setup_simple(type_data,
2879 						  &igb_block_cb_list,
2880 						  igb_setup_tc_block_cb,
2881 						  adapter, adapter, true);
2882 
2883 	case TC_SETUP_QDISC_ETF:
2884 		return igb_offload_txtime(adapter, type_data);
2885 
2886 	default:
2887 		return -EOPNOTSUPP;
2888 	}
2889 }
2890 
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2891 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2892 {
2893 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2894 	struct igb_adapter *adapter = netdev_priv(dev);
2895 	struct bpf_prog *prog = bpf->prog, *old_prog;
2896 	bool running = netif_running(dev);
2897 	bool need_reset;
2898 
2899 	/* verify igb ring attributes are sufficient for XDP */
2900 	for (i = 0; i < adapter->num_rx_queues; i++) {
2901 		struct igb_ring *ring = adapter->rx_ring[i];
2902 
2903 		if (frame_size > igb_rx_bufsz(ring)) {
2904 			NL_SET_ERR_MSG_MOD(bpf->extack,
2905 					   "The RX buffer size is too small for the frame size");
2906 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2907 				    igb_rx_bufsz(ring), frame_size);
2908 			return -EINVAL;
2909 		}
2910 	}
2911 
2912 	old_prog = xchg(&adapter->xdp_prog, prog);
2913 	need_reset = (!!prog != !!old_prog);
2914 
2915 	/* device is up and bpf is added/removed, must setup the RX queues */
2916 	if (need_reset && running) {
2917 		igb_close(dev);
2918 	} else {
2919 		for (i = 0; i < adapter->num_rx_queues; i++)
2920 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2921 			    adapter->xdp_prog);
2922 	}
2923 
2924 	if (old_prog)
2925 		bpf_prog_put(old_prog);
2926 
2927 	/* bpf is just replaced, RXQ and MTU are already setup */
2928 	if (!need_reset) {
2929 		return 0;
2930 	} else {
2931 		if (prog)
2932 			xdp_features_set_redirect_target(dev, true);
2933 		else
2934 			xdp_features_clear_redirect_target(dev);
2935 	}
2936 
2937 	if (running)
2938 		igb_open(dev);
2939 
2940 	return 0;
2941 }
2942 
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2943 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2944 {
2945 	struct igb_adapter *adapter = netdev_priv(dev);
2946 
2947 	switch (xdp->command) {
2948 	case XDP_SETUP_PROG:
2949 		return igb_xdp_setup(dev, xdp);
2950 	case XDP_SETUP_XSK_POOL:
2951 		return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2952 					  xdp->xsk.queue_id);
2953 	default:
2954 		return -EINVAL;
2955 	}
2956 }
2957 
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2958 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2959 {
2960 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2961 	int cpu = smp_processor_id();
2962 	struct igb_ring *tx_ring;
2963 	struct netdev_queue *nq;
2964 	u32 ret;
2965 
2966 	if (unlikely(!xdpf))
2967 		return IGB_XDP_CONSUMED;
2968 
2969 	/* During program transitions its possible adapter->xdp_prog is assigned
2970 	 * but ring has not been configured yet. In this case simply abort xmit.
2971 	 */
2972 	tx_ring = igb_xdp_is_enabled(adapter) ?
2973 		igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 	if (unlikely(!tx_ring))
2975 		return IGB_XDP_CONSUMED;
2976 
2977 	nq = txring_txq(tx_ring);
2978 	__netif_tx_lock(nq, cpu);
2979 	/* Avoid transmit queue timeout since we share it with the slow path */
2980 	txq_trans_cond_update(nq);
2981 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 	__netif_tx_unlock(nq);
2983 
2984 	return ret;
2985 }
2986 
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 			struct xdp_frame **frames, u32 flags)
2989 {
2990 	struct igb_adapter *adapter = netdev_priv(dev);
2991 	int cpu = smp_processor_id();
2992 	struct igb_ring *tx_ring;
2993 	struct netdev_queue *nq;
2994 	int nxmit = 0;
2995 	int i;
2996 
2997 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 		return -ENETDOWN;
2999 
3000 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 		return -EINVAL;
3002 
3003 	/* During program transitions its possible adapter->xdp_prog is assigned
3004 	 * but ring has not been configured yet. In this case simply abort xmit.
3005 	 */
3006 	tx_ring = igb_xdp_is_enabled(adapter) ?
3007 		igb_xdp_tx_queue_mapping(adapter) : NULL;
3008 	if (unlikely(!tx_ring))
3009 		return -ENXIO;
3010 
3011 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3012 		return -ENXIO;
3013 
3014 	nq = txring_txq(tx_ring);
3015 	__netif_tx_lock(nq, cpu);
3016 
3017 	/* Avoid transmit queue timeout since we share it with the slow path */
3018 	txq_trans_cond_update(nq);
3019 
3020 	for (i = 0; i < n; i++) {
3021 		struct xdp_frame *xdpf = frames[i];
3022 		int err;
3023 
3024 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3025 		if (err != IGB_XDP_TX)
3026 			break;
3027 		nxmit++;
3028 	}
3029 
3030 	if (unlikely(flags & XDP_XMIT_FLUSH))
3031 		igb_xdp_ring_update_tail(tx_ring);
3032 
3033 	__netif_tx_unlock(nq);
3034 
3035 	return nxmit;
3036 }
3037 
3038 static const struct net_device_ops igb_netdev_ops = {
3039 	.ndo_open		= igb_open,
3040 	.ndo_stop		= igb_close,
3041 	.ndo_start_xmit		= igb_xmit_frame,
3042 	.ndo_get_stats64	= igb_get_stats64,
3043 	.ndo_set_rx_mode	= igb_set_rx_mode,
3044 	.ndo_set_mac_address	= igb_set_mac,
3045 	.ndo_change_mtu		= igb_change_mtu,
3046 	.ndo_eth_ioctl		= igb_ioctl,
3047 	.ndo_tx_timeout		= igb_tx_timeout,
3048 	.ndo_validate_addr	= eth_validate_addr,
3049 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3050 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3051 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3052 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3053 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3054 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3055 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3056 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3057 	.ndo_fix_features	= igb_fix_features,
3058 	.ndo_set_features	= igb_set_features,
3059 	.ndo_fdb_add		= igb_ndo_fdb_add,
3060 	.ndo_features_check	= igb_features_check,
3061 	.ndo_setup_tc		= igb_setup_tc,
3062 	.ndo_bpf		= igb_xdp,
3063 	.ndo_xdp_xmit		= igb_xdp_xmit,
3064 	.ndo_xsk_wakeup         = igb_xsk_wakeup,
3065 	.ndo_hwtstamp_get	= igb_ptp_hwtstamp_get,
3066 	.ndo_hwtstamp_set	= igb_ptp_hwtstamp_set,
3067 };
3068 
3069 /**
3070  * igb_set_fw_version - Configure version string for ethtool
3071  * @adapter: adapter struct
3072  **/
igb_set_fw_version(struct igb_adapter * adapter)3073 void igb_set_fw_version(struct igb_adapter *adapter)
3074 {
3075 	struct e1000_hw *hw = &adapter->hw;
3076 	struct e1000_fw_version fw;
3077 
3078 	igb_get_fw_version(hw, &fw);
3079 
3080 	switch (hw->mac.type) {
3081 	case e1000_i210:
3082 	case e1000_i211:
3083 		if (!(igb_get_flash_presence_i210(hw))) {
3084 			snprintf(adapter->fw_version,
3085 				 sizeof(adapter->fw_version),
3086 				 "%2d.%2d-%d",
3087 				 fw.invm_major, fw.invm_minor,
3088 				 fw.invm_img_type);
3089 			break;
3090 		}
3091 		fallthrough;
3092 	default:
3093 		/* if option rom is valid, display its version too */
3094 		if (fw.or_valid) {
3095 			snprintf(adapter->fw_version,
3096 				 sizeof(adapter->fw_version),
3097 				 "%d.%d, 0x%08x, %d.%d.%d",
3098 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3099 				 fw.or_major, fw.or_build, fw.or_patch);
3100 		/* no option rom */
3101 		} else if (fw.etrack_id != 0X0000) {
3102 			snprintf(adapter->fw_version,
3103 				 sizeof(adapter->fw_version),
3104 				 "%d.%d, 0x%08x",
3105 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
3106 		} else {
3107 			snprintf(adapter->fw_version,
3108 				 sizeof(adapter->fw_version),
3109 				 "%d.%d.%d",
3110 				 fw.eep_major, fw.eep_minor, fw.eep_build);
3111 		}
3112 		break;
3113 	}
3114 }
3115 
3116 /**
3117  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3118  *
3119  * @adapter: adapter struct
3120  **/
igb_init_mas(struct igb_adapter * adapter)3121 static void igb_init_mas(struct igb_adapter *adapter)
3122 {
3123 	struct e1000_hw *hw = &adapter->hw;
3124 	u16 eeprom_data;
3125 
3126 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3127 	switch (hw->bus.func) {
3128 	case E1000_FUNC_0:
3129 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3130 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3131 			netdev_info(adapter->netdev,
3132 				"MAS: Enabling Media Autosense for port %d\n",
3133 				hw->bus.func);
3134 		}
3135 		break;
3136 	case E1000_FUNC_1:
3137 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3138 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3139 			netdev_info(adapter->netdev,
3140 				"MAS: Enabling Media Autosense for port %d\n",
3141 				hw->bus.func);
3142 		}
3143 		break;
3144 	case E1000_FUNC_2:
3145 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3146 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3147 			netdev_info(adapter->netdev,
3148 				"MAS: Enabling Media Autosense for port %d\n",
3149 				hw->bus.func);
3150 		}
3151 		break;
3152 	case E1000_FUNC_3:
3153 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3154 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3155 			netdev_info(adapter->netdev,
3156 				"MAS: Enabling Media Autosense for port %d\n",
3157 				hw->bus.func);
3158 		}
3159 		break;
3160 	default:
3161 		/* Shouldn't get here */
3162 		netdev_err(adapter->netdev,
3163 			"MAS: Invalid port configuration, returning\n");
3164 		break;
3165 	}
3166 }
3167 
3168 /**
3169  *  igb_init_i2c - Init I2C interface
3170  *  @adapter: pointer to adapter structure
3171  **/
igb_init_i2c(struct igb_adapter * adapter)3172 static s32 igb_init_i2c(struct igb_adapter *adapter)
3173 {
3174 	s32 status = 0;
3175 
3176 	/* I2C interface supported on i350 devices */
3177 	if (adapter->hw.mac.type != e1000_i350)
3178 		return 0;
3179 
3180 	/* Initialize the i2c bus which is controlled by the registers.
3181 	 * This bus will use the i2c_algo_bit structure that implements
3182 	 * the protocol through toggling of the 4 bits in the register.
3183 	 */
3184 	adapter->i2c_adap.owner = THIS_MODULE;
3185 	adapter->i2c_algo = igb_i2c_algo;
3186 	adapter->i2c_algo.data = adapter;
3187 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3188 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3189 	strscpy(adapter->i2c_adap.name, "igb BB",
3190 		sizeof(adapter->i2c_adap.name));
3191 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3192 	return status;
3193 }
3194 
3195 /**
3196  *  igb_probe - Device Initialization Routine
3197  *  @pdev: PCI device information struct
3198  *  @ent: entry in igb_pci_tbl
3199  *
3200  *  Returns 0 on success, negative on failure
3201  *
3202  *  igb_probe initializes an adapter identified by a pci_dev structure.
3203  *  The OS initialization, configuring of the adapter private structure,
3204  *  and a hardware reset occur.
3205  **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3206 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3207 {
3208 	struct net_device *netdev;
3209 	struct igb_adapter *adapter;
3210 	struct e1000_hw *hw;
3211 	u16 eeprom_data = 0;
3212 	s32 ret_val;
3213 	static int global_quad_port_a; /* global quad port a indication */
3214 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3215 	u8 part_str[E1000_PBANUM_LENGTH];
3216 	int err;
3217 
3218 	/* Catch broken hardware that put the wrong VF device ID in
3219 	 * the PCIe SR-IOV capability.
3220 	 */
3221 	if (pdev->is_virtfn) {
3222 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3223 			pci_name(pdev), pdev->vendor, pdev->device);
3224 		return -EINVAL;
3225 	}
3226 
3227 	err = pci_enable_device_mem(pdev);
3228 	if (err)
3229 		return err;
3230 
3231 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3232 	if (err) {
3233 		dev_err(&pdev->dev,
3234 			"No usable DMA configuration, aborting\n");
3235 		goto err_dma;
3236 	}
3237 
3238 	err = pci_request_mem_regions(pdev, igb_driver_name);
3239 	if (err)
3240 		goto err_pci_reg;
3241 
3242 	pci_set_master(pdev);
3243 	pci_save_state(pdev);
3244 
3245 	err = -ENOMEM;
3246 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3247 				   IGB_MAX_TX_QUEUES);
3248 	if (!netdev)
3249 		goto err_alloc_etherdev;
3250 
3251 	SET_NETDEV_DEV(netdev, &pdev->dev);
3252 
3253 	pci_set_drvdata(pdev, netdev);
3254 	adapter = netdev_priv(netdev);
3255 	adapter->netdev = netdev;
3256 	adapter->pdev = pdev;
3257 	hw = &adapter->hw;
3258 	hw->back = adapter;
3259 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3260 
3261 	err = -EIO;
3262 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3263 	if (!adapter->io_addr)
3264 		goto err_ioremap;
3265 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3266 	hw->hw_addr = adapter->io_addr;
3267 
3268 	netdev->netdev_ops = &igb_netdev_ops;
3269 	igb_set_ethtool_ops(netdev);
3270 	netdev->watchdog_timeo = 5 * HZ;
3271 
3272 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3273 
3274 	netdev->mem_start = pci_resource_start(pdev, 0);
3275 	netdev->mem_end = pci_resource_end(pdev, 0);
3276 
3277 	/* PCI config space info */
3278 	hw->vendor_id = pdev->vendor;
3279 	hw->device_id = pdev->device;
3280 	hw->revision_id = pdev->revision;
3281 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3282 	hw->subsystem_device_id = pdev->subsystem_device;
3283 
3284 	/* Copy the default MAC, PHY and NVM function pointers */
3285 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3286 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3287 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3288 	/* Initialize skew-specific constants */
3289 	err = ei->get_invariants(hw);
3290 	if (err)
3291 		goto err_sw_init;
3292 
3293 	/* setup the private structure */
3294 	err = igb_sw_init(adapter);
3295 	if (err)
3296 		goto err_sw_init;
3297 
3298 	igb_get_bus_info_pcie(hw);
3299 
3300 	hw->phy.autoneg_wait_to_complete = false;
3301 
3302 	/* Copper options */
3303 	if (hw->phy.media_type == e1000_media_type_copper) {
3304 		hw->phy.mdix = AUTO_ALL_MODES;
3305 		hw->phy.disable_polarity_correction = false;
3306 		hw->phy.ms_type = e1000_ms_hw_default;
3307 	}
3308 
3309 	if (igb_check_reset_block(hw))
3310 		dev_info(&pdev->dev,
3311 			"PHY reset is blocked due to SOL/IDER session.\n");
3312 
3313 	/* features is initialized to 0 in allocation, it might have bits
3314 	 * set by igb_sw_init so we should use an or instead of an
3315 	 * assignment.
3316 	 */
3317 	netdev->features |= NETIF_F_SG |
3318 			    NETIF_F_TSO |
3319 			    NETIF_F_TSO6 |
3320 			    NETIF_F_RXHASH |
3321 			    NETIF_F_RXCSUM |
3322 			    NETIF_F_HW_CSUM;
3323 
3324 	if (hw->mac.type >= e1000_82576)
3325 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3326 
3327 	if (hw->mac.type >= e1000_i350)
3328 		netdev->features |= NETIF_F_HW_TC;
3329 
3330 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3331 				  NETIF_F_GSO_GRE_CSUM | \
3332 				  NETIF_F_GSO_IPXIP4 | \
3333 				  NETIF_F_GSO_IPXIP6 | \
3334 				  NETIF_F_GSO_UDP_TUNNEL | \
3335 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3336 
3337 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3338 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3339 
3340 	/* copy netdev features into list of user selectable features */
3341 	netdev->hw_features |= netdev->features |
3342 			       NETIF_F_HW_VLAN_CTAG_RX |
3343 			       NETIF_F_HW_VLAN_CTAG_TX |
3344 			       NETIF_F_RXALL;
3345 
3346 	if (hw->mac.type >= e1000_i350)
3347 		netdev->hw_features |= NETIF_F_NTUPLE;
3348 
3349 	netdev->features |= NETIF_F_HIGHDMA;
3350 
3351 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3352 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3353 	netdev->hw_enc_features |= netdev->vlan_features;
3354 
3355 	/* set this bit last since it cannot be part of vlan_features */
3356 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3357 			    NETIF_F_HW_VLAN_CTAG_RX |
3358 			    NETIF_F_HW_VLAN_CTAG_TX;
3359 
3360 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3361 
3362 	netdev->priv_flags |= IFF_UNICAST_FLT;
3363 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3364 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
3365 
3366 	/* MTU range: 68 - 9216 */
3367 	netdev->min_mtu = ETH_MIN_MTU;
3368 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3369 
3370 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3371 
3372 	/* before reading the NVM, reset the controller to put the device in a
3373 	 * known good starting state
3374 	 */
3375 	hw->mac.ops.reset_hw(hw);
3376 
3377 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3378 	 * that doesn't contain a checksum
3379 	 */
3380 	switch (hw->mac.type) {
3381 	case e1000_i210:
3382 	case e1000_i211:
3383 		if (igb_get_flash_presence_i210(hw)) {
3384 			if (hw->nvm.ops.validate(hw) < 0) {
3385 				dev_err(&pdev->dev,
3386 					"The NVM Checksum Is Not Valid\n");
3387 				err = -EIO;
3388 				goto err_eeprom;
3389 			}
3390 		}
3391 		break;
3392 	default:
3393 		if (hw->nvm.ops.validate(hw) < 0) {
3394 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3395 			err = -EIO;
3396 			goto err_eeprom;
3397 		}
3398 		break;
3399 	}
3400 
3401 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3402 		/* copy the MAC address out of the NVM */
3403 		if (hw->mac.ops.read_mac_addr(hw))
3404 			dev_err(&pdev->dev, "NVM Read Error\n");
3405 	}
3406 
3407 	eth_hw_addr_set(netdev, hw->mac.addr);
3408 
3409 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3410 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3411 		err = -EIO;
3412 		goto err_eeprom;
3413 	}
3414 
3415 	igb_set_default_mac_filter(adapter);
3416 
3417 	/* get firmware version for ethtool -i */
3418 	igb_set_fw_version(adapter);
3419 
3420 	/* configure RXPBSIZE and TXPBSIZE */
3421 	if (hw->mac.type == e1000_i210) {
3422 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3423 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3424 	}
3425 
3426 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3427 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3428 
3429 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3430 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3431 
3432 	/* Initialize link properties that are user-changeable */
3433 	adapter->fc_autoneg = true;
3434 	hw->mac.autoneg = true;
3435 	hw->phy.autoneg_advertised = 0x2f;
3436 
3437 	hw->fc.requested_mode = e1000_fc_default;
3438 	hw->fc.current_mode = e1000_fc_default;
3439 
3440 	igb_validate_mdi_setting(hw);
3441 
3442 	/* By default, support wake on port A */
3443 	if (hw->bus.func == 0)
3444 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3445 
3446 	/* Check the NVM for wake support on non-port A ports */
3447 	if (hw->mac.type >= e1000_82580)
3448 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3449 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3450 				 &eeprom_data);
3451 	else if (hw->bus.func == 1)
3452 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3453 
3454 	if (eeprom_data & IGB_EEPROM_APME)
3455 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456 
3457 	/* now that we have the eeprom settings, apply the special cases where
3458 	 * the eeprom may be wrong or the board simply won't support wake on
3459 	 * lan on a particular port
3460 	 */
3461 	switch (pdev->device) {
3462 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3463 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3464 		break;
3465 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3466 	case E1000_DEV_ID_82576_FIBER:
3467 	case E1000_DEV_ID_82576_SERDES:
3468 		/* Wake events only supported on port A for dual fiber
3469 		 * regardless of eeprom setting
3470 		 */
3471 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3472 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 		break;
3474 	case E1000_DEV_ID_82576_QUAD_COPPER:
3475 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3476 		/* if quad port adapter, disable WoL on all but port A */
3477 		if (global_quad_port_a != 0)
3478 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3479 		else
3480 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3481 		/* Reset for multiple quad port adapters */
3482 		if (++global_quad_port_a == 4)
3483 			global_quad_port_a = 0;
3484 		break;
3485 	default:
3486 		/* If the device can't wake, don't set software support */
3487 		if (!device_can_wakeup(&adapter->pdev->dev))
3488 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3489 	}
3490 
3491 	/* initialize the wol settings based on the eeprom settings */
3492 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3493 		adapter->wol |= E1000_WUFC_MAG;
3494 
3495 	/* Some vendors want WoL disabled by default, but still supported */
3496 	if ((hw->mac.type == e1000_i350) &&
3497 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3498 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3499 		adapter->wol = 0;
3500 	}
3501 
3502 	/* Some vendors want the ability to Use the EEPROM setting as
3503 	 * enable/disable only, and not for capability
3504 	 */
3505 	if (((hw->mac.type == e1000_i350) ||
3506 	     (hw->mac.type == e1000_i354)) &&
3507 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3508 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3509 		adapter->wol = 0;
3510 	}
3511 	if (hw->mac.type == e1000_i350) {
3512 		if (((pdev->subsystem_device == 0x5001) ||
3513 		     (pdev->subsystem_device == 0x5002)) &&
3514 				(hw->bus.func == 0)) {
3515 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3516 			adapter->wol = 0;
3517 		}
3518 		if (pdev->subsystem_device == 0x1F52)
3519 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3520 	}
3521 
3522 	device_set_wakeup_enable(&adapter->pdev->dev,
3523 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3524 
3525 	/* reset the hardware with the new settings */
3526 	igb_reset(adapter);
3527 
3528 	/* Init the I2C interface */
3529 	err = igb_init_i2c(adapter);
3530 	if (err) {
3531 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3532 		goto err_eeprom;
3533 	}
3534 
3535 	/* let the f/w know that the h/w is now under the control of the
3536 	 * driver.
3537 	 */
3538 	igb_get_hw_control(adapter);
3539 
3540 	strcpy(netdev->name, "eth%d");
3541 	err = register_netdev(netdev);
3542 	if (err)
3543 		goto err_register;
3544 
3545 	/* carrier off reporting is important to ethtool even BEFORE open */
3546 	netif_carrier_off(netdev);
3547 
3548 #ifdef CONFIG_IGB_DCA
3549 	if (dca_add_requester(&pdev->dev) == 0) {
3550 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3551 		dev_info(&pdev->dev, "DCA enabled\n");
3552 		igb_setup_dca(adapter);
3553 	}
3554 
3555 #endif
3556 #ifdef CONFIG_IGB_HWMON
3557 	/* Initialize the thermal sensor on i350 devices. */
3558 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3559 		u16 ets_word;
3560 
3561 		/* Read the NVM to determine if this i350 device supports an
3562 		 * external thermal sensor.
3563 		 */
3564 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3565 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3566 			adapter->ets = true;
3567 		else
3568 			adapter->ets = false;
3569 		/* Only enable I2C bit banging if an external thermal
3570 		 * sensor is supported.
3571 		 */
3572 		if (adapter->ets)
3573 			igb_set_i2c_bb(hw);
3574 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3575 		if (igb_sysfs_init(adapter))
3576 			dev_err(&pdev->dev,
3577 				"failed to allocate sysfs resources\n");
3578 	} else {
3579 		adapter->ets = false;
3580 	}
3581 #endif
3582 	/* Check if Media Autosense is enabled */
3583 	adapter->ei = *ei;
3584 	if (hw->dev_spec._82575.mas_capable)
3585 		igb_init_mas(adapter);
3586 
3587 	/* do hw tstamp init after resetting */
3588 	igb_ptp_init(adapter);
3589 
3590 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3591 	/* print bus type/speed/width info, not applicable to i354 */
3592 	if (hw->mac.type != e1000_i354) {
3593 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3594 			 netdev->name,
3595 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3596 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3597 			   "unknown"),
3598 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3599 			  "Width x4" :
3600 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3601 			  "Width x2" :
3602 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3603 			  "Width x1" : "unknown"), netdev->dev_addr);
3604 	}
3605 
3606 	if ((hw->mac.type == e1000_82576 &&
3607 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3608 	    (hw->mac.type >= e1000_i210 ||
3609 	     igb_get_flash_presence_i210(hw))) {
3610 		ret_val = igb_read_part_string(hw, part_str,
3611 					       E1000_PBANUM_LENGTH);
3612 	} else {
3613 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3614 	}
3615 
3616 	if (ret_val)
3617 		strcpy(part_str, "Unknown");
3618 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3619 	dev_info(&pdev->dev,
3620 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3621 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3622 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3623 		adapter->num_rx_queues, adapter->num_tx_queues);
3624 	if (hw->phy.media_type == e1000_media_type_copper) {
3625 		switch (hw->mac.type) {
3626 		case e1000_i350:
3627 		case e1000_i210:
3628 		case e1000_i211:
3629 			/* Enable EEE for internal copper PHY devices */
3630 			err = igb_set_eee_i350(hw, true, true);
3631 			if ((!err) &&
3632 			    (!hw->dev_spec._82575.eee_disable)) {
3633 				adapter->eee_advert =
3634 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3635 				adapter->flags |= IGB_FLAG_EEE;
3636 			}
3637 			break;
3638 		case e1000_i354:
3639 			if ((rd32(E1000_CTRL_EXT) &
3640 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3641 				err = igb_set_eee_i354(hw, true, true);
3642 				if ((!err) &&
3643 					(!hw->dev_spec._82575.eee_disable)) {
3644 					adapter->eee_advert =
3645 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3646 					adapter->flags |= IGB_FLAG_EEE;
3647 				}
3648 			}
3649 			break;
3650 		default:
3651 			break;
3652 		}
3653 	}
3654 
3655 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3656 
3657 	pm_runtime_put_noidle(&pdev->dev);
3658 	return 0;
3659 
3660 err_register:
3661 	igb_release_hw_control(adapter);
3662 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3663 err_eeprom:
3664 	if (!igb_check_reset_block(hw))
3665 		igb_reset_phy(hw);
3666 
3667 	if (hw->flash_address)
3668 		iounmap(hw->flash_address);
3669 err_sw_init:
3670 	kfree(adapter->mac_table);
3671 	kfree(adapter->shadow_vfta);
3672 	igb_clear_interrupt_scheme(adapter);
3673 #ifdef CONFIG_PCI_IOV
3674 	igb_disable_sriov(pdev, false);
3675 #endif
3676 	pci_iounmap(pdev, adapter->io_addr);
3677 err_ioremap:
3678 	free_netdev(netdev);
3679 err_alloc_etherdev:
3680 	pci_release_mem_regions(pdev);
3681 err_pci_reg:
3682 err_dma:
3683 	pci_disable_device(pdev);
3684 	return err;
3685 }
3686 
3687 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3688 static int igb_sriov_reinit(struct pci_dev *dev)
3689 {
3690 	struct net_device *netdev = pci_get_drvdata(dev);
3691 	struct igb_adapter *adapter = netdev_priv(netdev);
3692 	struct pci_dev *pdev = adapter->pdev;
3693 
3694 	rtnl_lock();
3695 
3696 	if (netif_running(netdev))
3697 		igb_close(netdev);
3698 	else
3699 		igb_reset(adapter);
3700 
3701 	igb_clear_interrupt_scheme(adapter);
3702 
3703 	igb_init_queue_configuration(adapter);
3704 
3705 	if (igb_init_interrupt_scheme(adapter, true)) {
3706 		rtnl_unlock();
3707 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3708 		return -ENOMEM;
3709 	}
3710 
3711 	if (netif_running(netdev))
3712 		igb_open(netdev);
3713 
3714 	rtnl_unlock();
3715 
3716 	return 0;
3717 }
3718 
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3719 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3720 {
3721 	struct net_device *netdev = pci_get_drvdata(pdev);
3722 	struct igb_adapter *adapter = netdev_priv(netdev);
3723 	struct e1000_hw *hw = &adapter->hw;
3724 	unsigned long flags;
3725 
3726 	/* reclaim resources allocated to VFs */
3727 	if (adapter->vf_data) {
3728 		/* disable iov and allow time for transactions to clear */
3729 		if (pci_vfs_assigned(pdev)) {
3730 			dev_warn(&pdev->dev,
3731 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3732 			return -EPERM;
3733 		} else {
3734 			pci_disable_sriov(pdev);
3735 			msleep(500);
3736 		}
3737 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3738 		kfree(adapter->vf_mac_list);
3739 		adapter->vf_mac_list = NULL;
3740 		kfree(adapter->vf_data);
3741 		adapter->vf_data = NULL;
3742 		adapter->vfs_allocated_count = 0;
3743 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3744 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3745 		wrfl();
3746 		msleep(100);
3747 		dev_info(&pdev->dev, "IOV Disabled\n");
3748 
3749 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3750 		adapter->flags |= IGB_FLAG_DMAC;
3751 	}
3752 
3753 	return reinit ? igb_sriov_reinit(pdev) : 0;
3754 }
3755 
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3756 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3757 {
3758 	struct net_device *netdev = pci_get_drvdata(pdev);
3759 	struct igb_adapter *adapter = netdev_priv(netdev);
3760 	int old_vfs = pci_num_vf(pdev);
3761 	struct vf_mac_filter *mac_list;
3762 	int err = 0;
3763 	int num_vf_mac_filters, i;
3764 
3765 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3766 		err = -EPERM;
3767 		goto out;
3768 	}
3769 	if (!num_vfs)
3770 		goto out;
3771 
3772 	if (old_vfs) {
3773 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3774 			 old_vfs, max_vfs);
3775 		adapter->vfs_allocated_count = old_vfs;
3776 	} else
3777 		adapter->vfs_allocated_count = num_vfs;
3778 
3779 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3780 				sizeof(struct vf_data_storage), GFP_KERNEL);
3781 
3782 	/* if allocation failed then we do not support SR-IOV */
3783 	if (!adapter->vf_data) {
3784 		adapter->vfs_allocated_count = 0;
3785 		err = -ENOMEM;
3786 		goto out;
3787 	}
3788 
3789 	/* Due to the limited number of RAR entries calculate potential
3790 	 * number of MAC filters available for the VFs. Reserve entries
3791 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3792 	 * for each VF for VF MAC.
3793 	 */
3794 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3795 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3796 			      adapter->vfs_allocated_count);
3797 
3798 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3799 				       sizeof(struct vf_mac_filter),
3800 				       GFP_KERNEL);
3801 
3802 	mac_list = adapter->vf_mac_list;
3803 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3804 
3805 	if (adapter->vf_mac_list) {
3806 		/* Initialize list of VF MAC filters */
3807 		for (i = 0; i < num_vf_mac_filters; i++) {
3808 			mac_list->vf = -1;
3809 			mac_list->free = true;
3810 			list_add(&mac_list->l, &adapter->vf_macs.l);
3811 			mac_list++;
3812 		}
3813 	} else {
3814 		/* If we could not allocate memory for the VF MAC filters
3815 		 * we can continue without this feature but warn user.
3816 		 */
3817 		dev_err(&pdev->dev,
3818 			"Unable to allocate memory for VF MAC filter list\n");
3819 	}
3820 
3821 	dev_info(&pdev->dev, "%d VFs allocated\n",
3822 		 adapter->vfs_allocated_count);
3823 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3824 		igb_vf_configure(adapter, i);
3825 
3826 	/* DMA Coalescing is not supported in IOV mode. */
3827 	adapter->flags &= ~IGB_FLAG_DMAC;
3828 
3829 	if (reinit) {
3830 		err = igb_sriov_reinit(pdev);
3831 		if (err)
3832 			goto err_out;
3833 	}
3834 
3835 	/* only call pci_enable_sriov() if no VFs are allocated already */
3836 	if (!old_vfs) {
3837 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3838 		if (err)
3839 			goto err_out;
3840 	}
3841 
3842 	goto out;
3843 
3844 err_out:
3845 	kfree(adapter->vf_mac_list);
3846 	adapter->vf_mac_list = NULL;
3847 	kfree(adapter->vf_data);
3848 	adapter->vf_data = NULL;
3849 	adapter->vfs_allocated_count = 0;
3850 out:
3851 	return err;
3852 }
3853 
3854 #endif
3855 /**
3856  *  igb_remove_i2c - Cleanup  I2C interface
3857  *  @adapter: pointer to adapter structure
3858  **/
igb_remove_i2c(struct igb_adapter * adapter)3859 static void igb_remove_i2c(struct igb_adapter *adapter)
3860 {
3861 	/* free the adapter bus structure */
3862 	i2c_del_adapter(&adapter->i2c_adap);
3863 }
3864 
3865 /**
3866  *  igb_remove - Device Removal Routine
3867  *  @pdev: PCI device information struct
3868  *
3869  *  igb_remove is called by the PCI subsystem to alert the driver
3870  *  that it should release a PCI device.  The could be caused by a
3871  *  Hot-Plug event, or because the driver is going to be removed from
3872  *  memory.
3873  **/
igb_remove(struct pci_dev * pdev)3874 static void igb_remove(struct pci_dev *pdev)
3875 {
3876 	struct net_device *netdev = pci_get_drvdata(pdev);
3877 	struct igb_adapter *adapter = netdev_priv(netdev);
3878 	struct e1000_hw *hw = &adapter->hw;
3879 
3880 	pm_runtime_get_noresume(&pdev->dev);
3881 #ifdef CONFIG_IGB_HWMON
3882 	igb_sysfs_exit(adapter);
3883 #endif
3884 	igb_remove_i2c(adapter);
3885 	igb_ptp_stop(adapter);
3886 	/* The watchdog timer may be rescheduled, so explicitly
3887 	 * disable watchdog from being rescheduled.
3888 	 */
3889 	set_bit(__IGB_DOWN, &adapter->state);
3890 	timer_delete_sync(&adapter->watchdog_timer);
3891 	timer_delete_sync(&adapter->phy_info_timer);
3892 
3893 	cancel_work_sync(&adapter->reset_task);
3894 	cancel_work_sync(&adapter->watchdog_task);
3895 
3896 #ifdef CONFIG_IGB_DCA
3897 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3898 		dev_info(&pdev->dev, "DCA disabled\n");
3899 		dca_remove_requester(&pdev->dev);
3900 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3901 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3902 	}
3903 #endif
3904 
3905 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3906 	 * would have already happened in close and is redundant.
3907 	 */
3908 	igb_release_hw_control(adapter);
3909 
3910 #ifdef CONFIG_PCI_IOV
3911 	igb_disable_sriov(pdev, false);
3912 #endif
3913 
3914 	unregister_netdev(netdev);
3915 
3916 	igb_clear_interrupt_scheme(adapter);
3917 
3918 	pci_iounmap(pdev, adapter->io_addr);
3919 	if (hw->flash_address)
3920 		iounmap(hw->flash_address);
3921 	pci_release_mem_regions(pdev);
3922 
3923 	kfree(adapter->mac_table);
3924 	kfree(adapter->shadow_vfta);
3925 	free_netdev(netdev);
3926 
3927 	pci_disable_device(pdev);
3928 }
3929 
3930 /**
3931  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3932  *  @adapter: board private structure to initialize
3933  *
3934  *  This function initializes the vf specific data storage and then attempts to
3935  *  allocate the VFs.  The reason for ordering it this way is because it is much
3936  *  more expensive time wise to disable SR-IOV than it is to allocate and free
3937  *  the memory for the VFs.
3938  **/
igb_probe_vfs(struct igb_adapter * adapter)3939 static void igb_probe_vfs(struct igb_adapter *adapter)
3940 {
3941 #ifdef CONFIG_PCI_IOV
3942 	struct pci_dev *pdev = adapter->pdev;
3943 	struct e1000_hw *hw = &adapter->hw;
3944 
3945 	/* Virtualization features not supported on i210 and 82580 family. */
3946 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3947 	    (hw->mac.type == e1000_82580))
3948 		return;
3949 
3950 	/* Of the below we really only want the effect of getting
3951 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3952 	 * igb_enable_sriov() has no effect.
3953 	 */
3954 	igb_set_interrupt_capability(adapter, true);
3955 	igb_reset_interrupt_capability(adapter);
3956 
3957 	pci_sriov_set_totalvfs(pdev, 7);
3958 	igb_enable_sriov(pdev, max_vfs, false);
3959 
3960 #endif /* CONFIG_PCI_IOV */
3961 }
3962 
igb_get_max_rss_queues(struct igb_adapter * adapter)3963 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3964 {
3965 	struct e1000_hw *hw = &adapter->hw;
3966 	unsigned int max_rss_queues;
3967 
3968 	/* Determine the maximum number of RSS queues supported. */
3969 	switch (hw->mac.type) {
3970 	case e1000_i211:
3971 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3972 		break;
3973 	case e1000_82575:
3974 	case e1000_i210:
3975 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3976 		break;
3977 	case e1000_i350:
3978 		/* I350 cannot do RSS and SR-IOV at the same time */
3979 		if (!!adapter->vfs_allocated_count) {
3980 			max_rss_queues = 1;
3981 			break;
3982 		}
3983 		fallthrough;
3984 	case e1000_82576:
3985 		if (!!adapter->vfs_allocated_count) {
3986 			max_rss_queues = 2;
3987 			break;
3988 		}
3989 		fallthrough;
3990 	case e1000_82580:
3991 	case e1000_i354:
3992 	default:
3993 		max_rss_queues = IGB_MAX_RX_QUEUES;
3994 		break;
3995 	}
3996 
3997 	return max_rss_queues;
3998 }
3999 
igb_init_queue_configuration(struct igb_adapter * adapter)4000 static void igb_init_queue_configuration(struct igb_adapter *adapter)
4001 {
4002 	u32 max_rss_queues;
4003 
4004 	max_rss_queues = igb_get_max_rss_queues(adapter);
4005 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4006 
4007 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
4008 }
4009 
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)4010 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4011 			      const u32 max_rss_queues)
4012 {
4013 	struct e1000_hw *hw = &adapter->hw;
4014 
4015 	/* Determine if we need to pair queues. */
4016 	switch (hw->mac.type) {
4017 	case e1000_82575:
4018 	case e1000_i211:
4019 		/* Device supports enough interrupts without queue pairing. */
4020 		break;
4021 	case e1000_82576:
4022 	case e1000_82580:
4023 	case e1000_i350:
4024 	case e1000_i354:
4025 	case e1000_i210:
4026 	default:
4027 		/* If rss_queues > half of max_rss_queues, pair the queues in
4028 		 * order to conserve interrupts due to limited supply.
4029 		 */
4030 		if (adapter->rss_queues > (max_rss_queues / 2))
4031 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4032 		else
4033 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4034 		break;
4035 	}
4036 }
4037 
4038 /**
4039  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4040  *  @adapter: board private structure to initialize
4041  *
4042  *  igb_sw_init initializes the Adapter private data structure.
4043  *  Fields are initialized based on PCI device information and
4044  *  OS network device settings (MTU size).
4045  **/
igb_sw_init(struct igb_adapter * adapter)4046 static int igb_sw_init(struct igb_adapter *adapter)
4047 {
4048 	struct e1000_hw *hw = &adapter->hw;
4049 	struct net_device *netdev = adapter->netdev;
4050 	struct pci_dev *pdev = adapter->pdev;
4051 
4052 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4053 
4054 	/* set default ring sizes */
4055 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4056 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4057 
4058 	/* set default ITR values */
4059 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4060 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4061 
4062 	/* set default work limits */
4063 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4064 
4065 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4066 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4067 
4068 	spin_lock_init(&adapter->nfc_lock);
4069 	spin_lock_init(&adapter->stats64_lock);
4070 
4071 	/* init spinlock to avoid concurrency of VF resources */
4072 	spin_lock_init(&adapter->vfs_lock);
4073 #ifdef CONFIG_PCI_IOV
4074 	switch (hw->mac.type) {
4075 	case e1000_82576:
4076 	case e1000_i350:
4077 		if (max_vfs > 7) {
4078 			dev_warn(&pdev->dev,
4079 				 "Maximum of 7 VFs per PF, using max\n");
4080 			max_vfs = adapter->vfs_allocated_count = 7;
4081 		} else
4082 			adapter->vfs_allocated_count = max_vfs;
4083 		if (adapter->vfs_allocated_count)
4084 			dev_warn(&pdev->dev,
4085 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4086 		break;
4087 	default:
4088 		break;
4089 	}
4090 #endif /* CONFIG_PCI_IOV */
4091 
4092 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4093 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4094 
4095 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4096 				     sizeof(struct igb_mac_addr),
4097 				     GFP_KERNEL);
4098 	if (!adapter->mac_table)
4099 		return -ENOMEM;
4100 
4101 	igb_probe_vfs(adapter);
4102 
4103 	igb_init_queue_configuration(adapter);
4104 
4105 	/* Setup and initialize a copy of the hw vlan table array */
4106 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4107 				       GFP_KERNEL);
4108 	if (!adapter->shadow_vfta)
4109 		return -ENOMEM;
4110 
4111 	/* This call may decrease the number of queues */
4112 	if (igb_init_interrupt_scheme(adapter, true)) {
4113 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4114 		return -ENOMEM;
4115 	}
4116 
4117 	/* Explicitly disable IRQ since the NIC can be in any state. */
4118 	igb_irq_disable(adapter);
4119 
4120 	if (hw->mac.type >= e1000_i350)
4121 		adapter->flags &= ~IGB_FLAG_DMAC;
4122 
4123 	set_bit(__IGB_DOWN, &adapter->state);
4124 	return 0;
4125 }
4126 
4127 /**
4128  *  __igb_open - Called when a network interface is made active
4129  *  @netdev: network interface device structure
4130  *  @resuming: indicates whether we are in a resume call
4131  *
4132  *  Returns 0 on success, negative value on failure
4133  *
4134  *  The open entry point is called when a network interface is made
4135  *  active by the system (IFF_UP).  At this point all resources needed
4136  *  for transmit and receive operations are allocated, the interrupt
4137  *  handler is registered with the OS, the watchdog timer is started,
4138  *  and the stack is notified that the interface is ready.
4139  **/
__igb_open(struct net_device * netdev,bool resuming)4140 static int __igb_open(struct net_device *netdev, bool resuming)
4141 {
4142 	struct igb_adapter *adapter = netdev_priv(netdev);
4143 	struct pci_dev *pdev = adapter->pdev;
4144 	struct e1000_hw *hw = &adapter->hw;
4145 	struct napi_struct *napi;
4146 	int err;
4147 	int i;
4148 
4149 	/* disallow open during test */
4150 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4151 		WARN_ON(resuming);
4152 		return -EBUSY;
4153 	}
4154 
4155 	if (!resuming)
4156 		pm_runtime_get_sync(&pdev->dev);
4157 
4158 	netif_carrier_off(netdev);
4159 
4160 	/* allocate transmit descriptors */
4161 	err = igb_setup_all_tx_resources(adapter);
4162 	if (err)
4163 		goto err_setup_tx;
4164 
4165 	/* allocate receive descriptors */
4166 	err = igb_setup_all_rx_resources(adapter);
4167 	if (err)
4168 		goto err_setup_rx;
4169 
4170 	igb_power_up_link(adapter);
4171 
4172 	/* before we allocate an interrupt, we must be ready to handle it.
4173 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4174 	 * as soon as we call pci_request_irq, so we have to setup our
4175 	 * clean_rx handler before we do so.
4176 	 */
4177 	igb_configure(adapter);
4178 
4179 	err = igb_request_irq(adapter);
4180 	if (err)
4181 		goto err_req_irq;
4182 
4183 	/* Notify the stack of the actual queue counts. */
4184 	err = netif_set_real_num_tx_queues(adapter->netdev,
4185 					   adapter->num_tx_queues);
4186 	if (err)
4187 		goto err_set_queues;
4188 
4189 	err = netif_set_real_num_rx_queues(adapter->netdev,
4190 					   adapter->num_rx_queues);
4191 	if (err)
4192 		goto err_set_queues;
4193 
4194 	/* From here on the code is the same as igb_up() */
4195 	clear_bit(__IGB_DOWN, &adapter->state);
4196 
4197 	for (i = 0; i < adapter->num_q_vectors; i++) {
4198 		napi = &adapter->q_vector[i]->napi;
4199 		napi_enable(napi);
4200 		igb_set_queue_napi(adapter, i, napi);
4201 	}
4202 
4203 	/* Clear any pending interrupts. */
4204 	rd32(E1000_TSICR);
4205 	rd32(E1000_ICR);
4206 
4207 	igb_irq_enable(adapter);
4208 
4209 	/* notify VFs that reset has been completed */
4210 	if (adapter->vfs_allocated_count) {
4211 		u32 reg_data = rd32(E1000_CTRL_EXT);
4212 
4213 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4214 		wr32(E1000_CTRL_EXT, reg_data);
4215 	}
4216 
4217 	netif_tx_start_all_queues(netdev);
4218 
4219 	if (!resuming)
4220 		pm_runtime_put(&pdev->dev);
4221 
4222 	/* start the watchdog. */
4223 	hw->mac.get_link_status = 1;
4224 	schedule_work(&adapter->watchdog_task);
4225 
4226 	return 0;
4227 
4228 err_set_queues:
4229 	igb_free_irq(adapter);
4230 err_req_irq:
4231 	igb_release_hw_control(adapter);
4232 	igb_power_down_link(adapter);
4233 	igb_free_all_rx_resources(adapter);
4234 err_setup_rx:
4235 	igb_free_all_tx_resources(adapter);
4236 err_setup_tx:
4237 	igb_reset(adapter);
4238 	if (!resuming)
4239 		pm_runtime_put(&pdev->dev);
4240 
4241 	return err;
4242 }
4243 
igb_open(struct net_device * netdev)4244 int igb_open(struct net_device *netdev)
4245 {
4246 	return __igb_open(netdev, false);
4247 }
4248 
4249 /**
4250  *  __igb_close - Disables a network interface
4251  *  @netdev: network interface device structure
4252  *  @suspending: indicates we are in a suspend call
4253  *
4254  *  Returns 0, this is not allowed to fail
4255  *
4256  *  The close entry point is called when an interface is de-activated
4257  *  by the OS.  The hardware is still under the driver's control, but
4258  *  needs to be disabled.  A global MAC reset is issued to stop the
4259  *  hardware, and all transmit and receive resources are freed.
4260  **/
__igb_close(struct net_device * netdev,bool suspending)4261 static int __igb_close(struct net_device *netdev, bool suspending)
4262 {
4263 	struct igb_adapter *adapter = netdev_priv(netdev);
4264 	struct pci_dev *pdev = adapter->pdev;
4265 
4266 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4267 
4268 	if (!suspending)
4269 		pm_runtime_get_sync(&pdev->dev);
4270 
4271 	igb_down(adapter);
4272 	igb_free_irq(adapter);
4273 
4274 	igb_free_all_tx_resources(adapter);
4275 	igb_free_all_rx_resources(adapter);
4276 
4277 	if (!suspending)
4278 		pm_runtime_put_sync(&pdev->dev);
4279 	return 0;
4280 }
4281 
igb_close(struct net_device * netdev)4282 int igb_close(struct net_device *netdev)
4283 {
4284 	if (netif_device_present(netdev) || netdev->dismantle)
4285 		return __igb_close(netdev, false);
4286 	return 0;
4287 }
4288 
4289 /**
4290  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4291  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4292  *
4293  *  Return 0 on success, negative on failure
4294  **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4295 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4296 {
4297 	struct device *dev = tx_ring->dev;
4298 	int size;
4299 
4300 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4301 
4302 	tx_ring->tx_buffer_info = vmalloc(size);
4303 	if (!tx_ring->tx_buffer_info)
4304 		goto err;
4305 
4306 	/* round up to nearest 4K */
4307 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4308 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4309 
4310 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4311 					   &tx_ring->dma, GFP_KERNEL);
4312 	if (!tx_ring->desc)
4313 		goto err;
4314 
4315 	tx_ring->next_to_use = 0;
4316 	tx_ring->next_to_clean = 0;
4317 
4318 	return 0;
4319 
4320 err:
4321 	vfree(tx_ring->tx_buffer_info);
4322 	tx_ring->tx_buffer_info = NULL;
4323 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4324 	return -ENOMEM;
4325 }
4326 
4327 /**
4328  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4329  *				 (Descriptors) for all queues
4330  *  @adapter: board private structure
4331  *
4332  *  Return 0 on success, negative on failure
4333  **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4334 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4335 {
4336 	struct pci_dev *pdev = adapter->pdev;
4337 	int i, err = 0;
4338 
4339 	for (i = 0; i < adapter->num_tx_queues; i++) {
4340 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4341 		if (err) {
4342 			dev_err(&pdev->dev,
4343 				"Allocation for Tx Queue %u failed\n", i);
4344 			for (i--; i >= 0; i--)
4345 				igb_free_tx_resources(adapter->tx_ring[i]);
4346 			break;
4347 		}
4348 	}
4349 
4350 	return err;
4351 }
4352 
4353 /**
4354  *  igb_setup_tctl - configure the transmit control registers
4355  *  @adapter: Board private structure
4356  **/
igb_setup_tctl(struct igb_adapter * adapter)4357 void igb_setup_tctl(struct igb_adapter *adapter)
4358 {
4359 	struct e1000_hw *hw = &adapter->hw;
4360 	u32 tctl;
4361 
4362 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4363 	wr32(E1000_TXDCTL(0), 0);
4364 
4365 	/* Program the Transmit Control Register */
4366 	tctl = rd32(E1000_TCTL);
4367 	tctl &= ~E1000_TCTL_CT;
4368 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4369 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4370 
4371 	igb_config_collision_dist(hw);
4372 
4373 	/* Enable transmits */
4374 	tctl |= E1000_TCTL_EN;
4375 
4376 	wr32(E1000_TCTL, tctl);
4377 }
4378 
4379 /**
4380  *  igb_configure_tx_ring - Configure transmit ring after Reset
4381  *  @adapter: board private structure
4382  *  @ring: tx ring to configure
4383  *
4384  *  Configure a transmit ring after a reset.
4385  **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4386 void igb_configure_tx_ring(struct igb_adapter *adapter,
4387 			   struct igb_ring *ring)
4388 {
4389 	struct e1000_hw *hw = &adapter->hw;
4390 	u32 txdctl = 0;
4391 	u64 tdba = ring->dma;
4392 	int reg_idx = ring->reg_idx;
4393 
4394 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4395 
4396 	wr32(E1000_TDLEN(reg_idx),
4397 	     ring->count * sizeof(union e1000_adv_tx_desc));
4398 	wr32(E1000_TDBAL(reg_idx),
4399 	     tdba & 0x00000000ffffffffULL);
4400 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4401 
4402 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4403 	wr32(E1000_TDH(reg_idx), 0);
4404 	writel(0, ring->tail);
4405 
4406 	txdctl |= IGB_TX_PTHRESH;
4407 	txdctl |= IGB_TX_HTHRESH << 8;
4408 	txdctl |= IGB_TX_WTHRESH << 16;
4409 
4410 	/* reinitialize tx_buffer_info */
4411 	memset(ring->tx_buffer_info, 0,
4412 	       sizeof(struct igb_tx_buffer) * ring->count);
4413 
4414 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4415 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4416 }
4417 
4418 /**
4419  *  igb_configure_tx - Configure transmit Unit after Reset
4420  *  @adapter: board private structure
4421  *
4422  *  Configure the Tx unit of the MAC after a reset.
4423  **/
igb_configure_tx(struct igb_adapter * adapter)4424 static void igb_configure_tx(struct igb_adapter *adapter)
4425 {
4426 	struct e1000_hw *hw = &adapter->hw;
4427 	int i;
4428 
4429 	/* disable the queues */
4430 	for (i = 0; i < adapter->num_tx_queues; i++)
4431 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4432 
4433 	wrfl();
4434 	usleep_range(10000, 20000);
4435 
4436 	for (i = 0; i < adapter->num_tx_queues; i++)
4437 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4438 }
4439 
4440 /**
4441  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4442  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4443  *
4444  *  Returns 0 on success, negative on failure
4445  **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4446 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4447 {
4448 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4449 	struct device *dev = rx_ring->dev;
4450 	int size, res;
4451 
4452 	/* XDP RX-queue info */
4453 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4454 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4455 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4456 			       rx_ring->queue_index, 0);
4457 	if (res < 0) {
4458 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4459 			rx_ring->queue_index);
4460 		return res;
4461 	}
4462 
4463 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4464 
4465 	rx_ring->rx_buffer_info = vmalloc(size);
4466 	if (!rx_ring->rx_buffer_info)
4467 		goto err;
4468 
4469 	/* Round up to nearest 4K */
4470 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4471 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4472 
4473 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4474 					   &rx_ring->dma, GFP_KERNEL);
4475 	if (!rx_ring->desc)
4476 		goto err;
4477 
4478 	rx_ring->next_to_alloc = 0;
4479 	rx_ring->next_to_clean = 0;
4480 	rx_ring->next_to_use = 0;
4481 
4482 	rx_ring->xdp_prog = adapter->xdp_prog;
4483 
4484 	return 0;
4485 
4486 err:
4487 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4488 	vfree(rx_ring->rx_buffer_info);
4489 	rx_ring->rx_buffer_info = NULL;
4490 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4491 	return -ENOMEM;
4492 }
4493 
4494 /**
4495  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4496  *				 (Descriptors) for all queues
4497  *  @adapter: board private structure
4498  *
4499  *  Return 0 on success, negative on failure
4500  **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4501 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4502 {
4503 	struct pci_dev *pdev = adapter->pdev;
4504 	int i, err = 0;
4505 
4506 	for (i = 0; i < adapter->num_rx_queues; i++) {
4507 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4508 		if (err) {
4509 			dev_err(&pdev->dev,
4510 				"Allocation for Rx Queue %u failed\n", i);
4511 			for (i--; i >= 0; i--)
4512 				igb_free_rx_resources(adapter->rx_ring[i]);
4513 			break;
4514 		}
4515 	}
4516 
4517 	return err;
4518 }
4519 
4520 /**
4521  *  igb_setup_mrqc - configure the multiple receive queue control registers
4522  *  @adapter: Board private structure
4523  **/
igb_setup_mrqc(struct igb_adapter * adapter)4524 static void igb_setup_mrqc(struct igb_adapter *adapter)
4525 {
4526 	struct e1000_hw *hw = &adapter->hw;
4527 	u32 mrqc, rxcsum;
4528 	u32 j, num_rx_queues;
4529 	u32 rss_key[10];
4530 
4531 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4532 	for (j = 0; j < 10; j++)
4533 		wr32(E1000_RSSRK(j), rss_key[j]);
4534 
4535 	num_rx_queues = adapter->rss_queues;
4536 
4537 	switch (hw->mac.type) {
4538 	case e1000_82576:
4539 		/* 82576 supports 2 RSS queues for SR-IOV */
4540 		if (adapter->vfs_allocated_count)
4541 			num_rx_queues = 2;
4542 		break;
4543 	default:
4544 		break;
4545 	}
4546 
4547 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4548 		for (j = 0; j < IGB_RETA_SIZE; j++)
4549 			adapter->rss_indir_tbl[j] =
4550 			(j * num_rx_queues) / IGB_RETA_SIZE;
4551 		adapter->rss_indir_tbl_init = num_rx_queues;
4552 	}
4553 	igb_write_rss_indir_tbl(adapter);
4554 
4555 	/* Disable raw packet checksumming so that RSS hash is placed in
4556 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4557 	 * offloads as they are enabled by default
4558 	 */
4559 	rxcsum = rd32(E1000_RXCSUM);
4560 	rxcsum |= E1000_RXCSUM_PCSD;
4561 
4562 	if (adapter->hw.mac.type >= e1000_82576)
4563 		/* Enable Receive Checksum Offload for SCTP */
4564 		rxcsum |= E1000_RXCSUM_CRCOFL;
4565 
4566 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4567 	wr32(E1000_RXCSUM, rxcsum);
4568 
4569 	/* Generate RSS hash based on packet types, TCP/UDP
4570 	 * port numbers and/or IPv4/v6 src and dst addresses
4571 	 */
4572 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4573 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4574 	       E1000_MRQC_RSS_FIELD_IPV6 |
4575 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4576 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4577 
4578 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4579 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4580 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4581 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4582 
4583 	/* If VMDq is enabled then we set the appropriate mode for that, else
4584 	 * we default to RSS so that an RSS hash is calculated per packet even
4585 	 * if we are only using one queue
4586 	 */
4587 	if (adapter->vfs_allocated_count) {
4588 		if (hw->mac.type > e1000_82575) {
4589 			/* Set the default pool for the PF's first queue */
4590 			u32 vtctl = rd32(E1000_VT_CTL);
4591 
4592 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4593 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4594 			vtctl |= adapter->vfs_allocated_count <<
4595 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4596 			wr32(E1000_VT_CTL, vtctl);
4597 		}
4598 		if (adapter->rss_queues > 1)
4599 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4600 		else
4601 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4602 	} else {
4603 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4604 	}
4605 	igb_vmm_control(adapter);
4606 
4607 	wr32(E1000_MRQC, mrqc);
4608 }
4609 
4610 /**
4611  *  igb_setup_rctl - configure the receive control registers
4612  *  @adapter: Board private structure
4613  **/
igb_setup_rctl(struct igb_adapter * adapter)4614 void igb_setup_rctl(struct igb_adapter *adapter)
4615 {
4616 	struct e1000_hw *hw = &adapter->hw;
4617 	u32 rctl;
4618 
4619 	rctl = rd32(E1000_RCTL);
4620 
4621 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4622 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4623 
4624 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4625 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4626 
4627 	/* enable stripping of CRC. It's unlikely this will break BMC
4628 	 * redirection as it did with e1000. Newer features require
4629 	 * that the HW strips the CRC.
4630 	 */
4631 	rctl |= E1000_RCTL_SECRC;
4632 
4633 	/* disable store bad packets and clear size bits. */
4634 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4635 
4636 	/* enable LPE to allow for reception of jumbo frames */
4637 	rctl |= E1000_RCTL_LPE;
4638 
4639 	/* disable queue 0 to prevent tail write w/o re-config */
4640 	wr32(E1000_RXDCTL(0), 0);
4641 
4642 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4643 	 * queue drop for all VF and PF queues to prevent head of line blocking
4644 	 * if an un-trusted VF does not provide descriptors to hardware.
4645 	 */
4646 	if (adapter->vfs_allocated_count) {
4647 		/* set all queue drop enable bits */
4648 		wr32(E1000_QDE, ALL_QUEUES);
4649 	}
4650 
4651 	/* This is useful for sniffing bad packets. */
4652 	if (adapter->netdev->features & NETIF_F_RXALL) {
4653 		/* UPE and MPE will be handled by normal PROMISC logic
4654 		 * in e1000e_set_rx_mode
4655 		 */
4656 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4657 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4658 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4659 
4660 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4661 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4662 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4663 		 * and that breaks VLANs.
4664 		 */
4665 	}
4666 
4667 	wr32(E1000_RCTL, rctl);
4668 }
4669 
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4670 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4671 				   int vfn)
4672 {
4673 	struct e1000_hw *hw = &adapter->hw;
4674 	u32 vmolr;
4675 
4676 	if (size > MAX_JUMBO_FRAME_SIZE)
4677 		size = MAX_JUMBO_FRAME_SIZE;
4678 
4679 	vmolr = rd32(E1000_VMOLR(vfn));
4680 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4681 	vmolr |= size | E1000_VMOLR_LPE;
4682 	wr32(E1000_VMOLR(vfn), vmolr);
4683 
4684 	return 0;
4685 }
4686 
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4687 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4688 					 int vfn, bool enable)
4689 {
4690 	struct e1000_hw *hw = &adapter->hw;
4691 	u32 val, reg;
4692 
4693 	if (hw->mac.type < e1000_82576)
4694 		return;
4695 
4696 	if (hw->mac.type == e1000_i350)
4697 		reg = E1000_DVMOLR(vfn);
4698 	else
4699 		reg = E1000_VMOLR(vfn);
4700 
4701 	val = rd32(reg);
4702 	if (enable)
4703 		val |= E1000_VMOLR_STRVLAN;
4704 	else
4705 		val &= ~(E1000_VMOLR_STRVLAN);
4706 	wr32(reg, val);
4707 }
4708 
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4709 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4710 				 int vfn, bool aupe)
4711 {
4712 	struct e1000_hw *hw = &adapter->hw;
4713 	u32 vmolr;
4714 
4715 	/* This register exists only on 82576 and newer so if we are older then
4716 	 * we should exit and do nothing
4717 	 */
4718 	if (hw->mac.type < e1000_82576)
4719 		return;
4720 
4721 	vmolr = rd32(E1000_VMOLR(vfn));
4722 	if (aupe)
4723 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4724 	else
4725 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4726 
4727 	/* clear all bits that might not be set */
4728 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4729 
4730 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4731 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4732 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4733 	 * multicast packets
4734 	 */
4735 	if (vfn <= adapter->vfs_allocated_count)
4736 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4737 
4738 	wr32(E1000_VMOLR(vfn), vmolr);
4739 }
4740 
4741 /**
4742  *  igb_setup_srrctl - configure the split and replication receive control
4743  *                     registers
4744  *  @adapter: Board private structure
4745  *  @ring: receive ring to be configured
4746  **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4747 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4748 {
4749 	struct e1000_hw *hw = &adapter->hw;
4750 	int reg_idx = ring->reg_idx;
4751 	u32 srrctl = 0;
4752 	u32 buf_size;
4753 
4754 	if (ring->xsk_pool)
4755 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4756 	else if (ring_uses_large_buffer(ring))
4757 		buf_size = IGB_RXBUFFER_3072;
4758 	else
4759 		buf_size = IGB_RXBUFFER_2048;
4760 
4761 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4762 	srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4763 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4764 	if (hw->mac.type >= e1000_82580)
4765 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4766 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4767 	 * queues and rx flow control is disabled
4768 	 */
4769 	if (adapter->vfs_allocated_count ||
4770 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4771 	     adapter->num_rx_queues > 1))
4772 		srrctl |= E1000_SRRCTL_DROP_EN;
4773 
4774 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4775 }
4776 
4777 /**
4778  *  igb_configure_rx_ring - Configure a receive ring after Reset
4779  *  @adapter: board private structure
4780  *  @ring: receive ring to be configured
4781  *
4782  *  Configure the Rx unit of the MAC after a reset.
4783  **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4784 void igb_configure_rx_ring(struct igb_adapter *adapter,
4785 			   struct igb_ring *ring)
4786 {
4787 	struct e1000_hw *hw = &adapter->hw;
4788 	union e1000_adv_rx_desc *rx_desc;
4789 	u64 rdba = ring->dma;
4790 	int reg_idx = ring->reg_idx;
4791 	u32 rxdctl = 0;
4792 
4793 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4794 	WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4795 	if (ring->xsk_pool) {
4796 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4797 						   MEM_TYPE_XSK_BUFF_POOL,
4798 						   NULL));
4799 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4800 	} else {
4801 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4802 						   MEM_TYPE_PAGE_SHARED,
4803 						   NULL));
4804 	}
4805 
4806 	/* disable the queue */
4807 	wr32(E1000_RXDCTL(reg_idx), 0);
4808 
4809 	/* Set DMA base address registers */
4810 	wr32(E1000_RDBAL(reg_idx),
4811 	     rdba & 0x00000000ffffffffULL);
4812 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4813 	wr32(E1000_RDLEN(reg_idx),
4814 	     ring->count * sizeof(union e1000_adv_rx_desc));
4815 
4816 	/* initialize head and tail */
4817 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4818 	wr32(E1000_RDH(reg_idx), 0);
4819 	writel(0, ring->tail);
4820 
4821 	/* set descriptor configuration */
4822 	igb_setup_srrctl(adapter, ring);
4823 
4824 	/* set filtering for VMDQ pools */
4825 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4826 
4827 	rxdctl |= IGB_RX_PTHRESH;
4828 	rxdctl |= IGB_RX_HTHRESH << 8;
4829 	rxdctl |= IGB_RX_WTHRESH << 16;
4830 
4831 	if (ring->xsk_pool)
4832 		memset(ring->rx_buffer_info_zc, 0,
4833 		       sizeof(*ring->rx_buffer_info_zc) * ring->count);
4834 	else
4835 		memset(ring->rx_buffer_info, 0,
4836 		       sizeof(*ring->rx_buffer_info) * ring->count);
4837 
4838 	/* initialize Rx descriptor 0 */
4839 	rx_desc = IGB_RX_DESC(ring, 0);
4840 	rx_desc->wb.upper.length = 0;
4841 
4842 	/* enable receive descriptor fetching */
4843 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4844 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4845 }
4846 
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4847 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4848 				  struct igb_ring *rx_ring)
4849 {
4850 #if (PAGE_SIZE < 8192)
4851 	struct e1000_hw *hw = &adapter->hw;
4852 #endif
4853 
4854 	/* set build_skb and buffer size flags */
4855 	clear_ring_build_skb_enabled(rx_ring);
4856 	clear_ring_uses_large_buffer(rx_ring);
4857 
4858 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4859 		return;
4860 
4861 	set_ring_build_skb_enabled(rx_ring);
4862 
4863 #if (PAGE_SIZE < 8192)
4864 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4865 	    IGB_2K_TOO_SMALL_WITH_PADDING ||
4866 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4867 		set_ring_uses_large_buffer(rx_ring);
4868 #endif
4869 }
4870 
4871 /**
4872  *  igb_configure_rx - Configure receive Unit after Reset
4873  *  @adapter: board private structure
4874  *
4875  *  Configure the Rx unit of the MAC after a reset.
4876  **/
igb_configure_rx(struct igb_adapter * adapter)4877 static void igb_configure_rx(struct igb_adapter *adapter)
4878 {
4879 	int i;
4880 
4881 	/* set the correct pool for the PF default MAC address in entry 0 */
4882 	igb_set_default_mac_filter(adapter);
4883 
4884 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4885 	 * the Base and Length of the Rx Descriptor Ring
4886 	 */
4887 	for (i = 0; i < adapter->num_rx_queues; i++) {
4888 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4889 
4890 		igb_set_rx_buffer_len(adapter, rx_ring);
4891 		igb_configure_rx_ring(adapter, rx_ring);
4892 	}
4893 }
4894 
4895 /**
4896  *  igb_free_tx_resources - Free Tx Resources per Queue
4897  *  @tx_ring: Tx descriptor ring for a specific queue
4898  *
4899  *  Free all transmit software resources
4900  **/
igb_free_tx_resources(struct igb_ring * tx_ring)4901 void igb_free_tx_resources(struct igb_ring *tx_ring)
4902 {
4903 	igb_clean_tx_ring(tx_ring);
4904 
4905 	vfree(tx_ring->tx_buffer_info);
4906 	tx_ring->tx_buffer_info = NULL;
4907 
4908 	/* if not set, then don't free */
4909 	if (!tx_ring->desc)
4910 		return;
4911 
4912 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4913 			  tx_ring->desc, tx_ring->dma);
4914 
4915 	tx_ring->desc = NULL;
4916 }
4917 
4918 /**
4919  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4920  *  @adapter: board private structure
4921  *
4922  *  Free all transmit software resources
4923  **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4924 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4925 {
4926 	int i;
4927 
4928 	for (i = 0; i < adapter->num_tx_queues; i++)
4929 		if (adapter->tx_ring[i])
4930 			igb_free_tx_resources(adapter->tx_ring[i]);
4931 }
4932 
4933 /**
4934  *  igb_clean_tx_ring - Free Tx Buffers
4935  *  @tx_ring: ring to be cleaned
4936  **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4937 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4938 {
4939 	u16 i = tx_ring->next_to_clean;
4940 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4941 	u32 xsk_frames = 0;
4942 
4943 	while (i != tx_ring->next_to_use) {
4944 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4945 
4946 		/* Free all the Tx ring sk_buffs or xdp frames */
4947 		if (tx_buffer->type == IGB_TYPE_SKB) {
4948 			dev_kfree_skb_any(tx_buffer->skb);
4949 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
4950 			xdp_return_frame(tx_buffer->xdpf);
4951 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
4952 			xsk_frames++;
4953 			goto skip_for_xsk;
4954 		}
4955 
4956 		/* unmap skb header data */
4957 		dma_unmap_single(tx_ring->dev,
4958 				 dma_unmap_addr(tx_buffer, dma),
4959 				 dma_unmap_len(tx_buffer, len),
4960 				 DMA_TO_DEVICE);
4961 
4962 		/* check for eop_desc to determine the end of the packet */
4963 		eop_desc = tx_buffer->next_to_watch;
4964 		tx_desc = IGB_TX_DESC(tx_ring, i);
4965 
4966 		/* unmap remaining buffers */
4967 		while (tx_desc != eop_desc) {
4968 			tx_buffer++;
4969 			tx_desc++;
4970 			i++;
4971 			if (unlikely(i == tx_ring->count)) {
4972 				i = 0;
4973 				tx_buffer = tx_ring->tx_buffer_info;
4974 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4975 			}
4976 
4977 			/* unmap any remaining paged data */
4978 			if (dma_unmap_len(tx_buffer, len))
4979 				dma_unmap_page(tx_ring->dev,
4980 					       dma_unmap_addr(tx_buffer, dma),
4981 					       dma_unmap_len(tx_buffer, len),
4982 					       DMA_TO_DEVICE);
4983 		}
4984 
4985 skip_for_xsk:
4986 		tx_buffer->next_to_watch = NULL;
4987 
4988 		/* move us one more past the eop_desc for start of next pkt */
4989 		tx_buffer++;
4990 		i++;
4991 		if (unlikely(i == tx_ring->count)) {
4992 			i = 0;
4993 			tx_buffer = tx_ring->tx_buffer_info;
4994 		}
4995 	}
4996 
4997 	/* reset BQL for queue */
4998 	netdev_tx_reset_queue(txring_txq(tx_ring));
4999 
5000 	if (tx_ring->xsk_pool && xsk_frames)
5001 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5002 
5003 	/* reset next_to_use and next_to_clean */
5004 	tx_ring->next_to_use = 0;
5005 	tx_ring->next_to_clean = 0;
5006 }
5007 
5008 /**
5009  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
5010  *  @adapter: board private structure
5011  **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)5012 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5013 {
5014 	int i;
5015 
5016 	for (i = 0; i < adapter->num_tx_queues; i++)
5017 		if (adapter->tx_ring[i])
5018 			igb_clean_tx_ring(adapter->tx_ring[i]);
5019 }
5020 
5021 /**
5022  *  igb_free_rx_resources - Free Rx Resources
5023  *  @rx_ring: ring to clean the resources from
5024  *
5025  *  Free all receive software resources
5026  **/
igb_free_rx_resources(struct igb_ring * rx_ring)5027 void igb_free_rx_resources(struct igb_ring *rx_ring)
5028 {
5029 	igb_clean_rx_ring(rx_ring);
5030 
5031 	rx_ring->xdp_prog = NULL;
5032 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5033 	if (rx_ring->xsk_pool) {
5034 		vfree(rx_ring->rx_buffer_info_zc);
5035 		rx_ring->rx_buffer_info_zc = NULL;
5036 	} else {
5037 		vfree(rx_ring->rx_buffer_info);
5038 		rx_ring->rx_buffer_info = NULL;
5039 	}
5040 
5041 	/* if not set, then don't free */
5042 	if (!rx_ring->desc)
5043 		return;
5044 
5045 	dma_free_coherent(rx_ring->dev, rx_ring->size,
5046 			  rx_ring->desc, rx_ring->dma);
5047 
5048 	rx_ring->desc = NULL;
5049 }
5050 
5051 /**
5052  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5053  *  @adapter: board private structure
5054  *
5055  *  Free all receive software resources
5056  **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5057 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5058 {
5059 	int i;
5060 
5061 	for (i = 0; i < adapter->num_rx_queues; i++)
5062 		if (adapter->rx_ring[i])
5063 			igb_free_rx_resources(adapter->rx_ring[i]);
5064 }
5065 
5066 /**
5067  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5068  *  @rx_ring: ring to free buffers from
5069  **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5070 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5071 {
5072 	u16 i = rx_ring->next_to_clean;
5073 
5074 	dev_kfree_skb(rx_ring->skb);
5075 	rx_ring->skb = NULL;
5076 
5077 	if (rx_ring->xsk_pool) {
5078 		igb_clean_rx_ring_zc(rx_ring);
5079 		goto skip_for_xsk;
5080 	}
5081 
5082 	/* Free all the Rx ring sk_buffs */
5083 	while (i != rx_ring->next_to_alloc) {
5084 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5085 
5086 		/* Invalidate cache lines that may have been written to by
5087 		 * device so that we avoid corrupting memory.
5088 		 */
5089 		dma_sync_single_range_for_cpu(rx_ring->dev,
5090 					      buffer_info->dma,
5091 					      buffer_info->page_offset,
5092 					      igb_rx_bufsz(rx_ring),
5093 					      DMA_FROM_DEVICE);
5094 
5095 		/* free resources associated with mapping */
5096 		dma_unmap_page_attrs(rx_ring->dev,
5097 				     buffer_info->dma,
5098 				     igb_rx_pg_size(rx_ring),
5099 				     DMA_FROM_DEVICE,
5100 				     IGB_RX_DMA_ATTR);
5101 		__page_frag_cache_drain(buffer_info->page,
5102 					buffer_info->pagecnt_bias);
5103 
5104 		i++;
5105 		if (i == rx_ring->count)
5106 			i = 0;
5107 	}
5108 
5109 skip_for_xsk:
5110 	rx_ring->next_to_alloc = 0;
5111 	rx_ring->next_to_clean = 0;
5112 	rx_ring->next_to_use = 0;
5113 }
5114 
5115 /**
5116  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5117  *  @adapter: board private structure
5118  **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5119 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5120 {
5121 	int i;
5122 
5123 	for (i = 0; i < adapter->num_rx_queues; i++)
5124 		if (adapter->rx_ring[i])
5125 			igb_clean_rx_ring(adapter->rx_ring[i]);
5126 }
5127 
5128 /**
5129  *  igb_set_mac - Change the Ethernet Address of the NIC
5130  *  @netdev: network interface device structure
5131  *  @p: pointer to an address structure
5132  *
5133  *  Returns 0 on success, negative on failure
5134  **/
igb_set_mac(struct net_device * netdev,void * p)5135 static int igb_set_mac(struct net_device *netdev, void *p)
5136 {
5137 	struct igb_adapter *adapter = netdev_priv(netdev);
5138 	struct e1000_hw *hw = &adapter->hw;
5139 	struct sockaddr *addr = p;
5140 
5141 	if (!is_valid_ether_addr(addr->sa_data))
5142 		return -EADDRNOTAVAIL;
5143 
5144 	eth_hw_addr_set(netdev, addr->sa_data);
5145 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5146 
5147 	/* set the correct pool for the new PF MAC address in entry 0 */
5148 	igb_set_default_mac_filter(adapter);
5149 
5150 	return 0;
5151 }
5152 
5153 /**
5154  *  igb_write_mc_addr_list - write multicast addresses to MTA
5155  *  @netdev: network interface device structure
5156  *
5157  *  Writes multicast address list to the MTA hash table.
5158  *  Returns: -ENOMEM on failure
5159  *           0 on no addresses written
5160  *           X on writing X addresses to MTA
5161  **/
igb_write_mc_addr_list(struct net_device * netdev)5162 static int igb_write_mc_addr_list(struct net_device *netdev)
5163 {
5164 	struct igb_adapter *adapter = netdev_priv(netdev);
5165 	struct e1000_hw *hw = &adapter->hw;
5166 	struct netdev_hw_addr *ha;
5167 	u8  *mta_list;
5168 	int i;
5169 
5170 	if (netdev_mc_empty(netdev)) {
5171 		/* nothing to program, so clear mc list */
5172 		igb_update_mc_addr_list(hw, NULL, 0);
5173 		igb_restore_vf_multicasts(adapter);
5174 		return 0;
5175 	}
5176 
5177 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5178 	if (!mta_list)
5179 		return -ENOMEM;
5180 
5181 	/* The shared function expects a packed array of only addresses. */
5182 	i = 0;
5183 	netdev_for_each_mc_addr(ha, netdev)
5184 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5185 
5186 	igb_update_mc_addr_list(hw, mta_list, i);
5187 	kfree(mta_list);
5188 
5189 	return netdev_mc_count(netdev);
5190 }
5191 
igb_vlan_promisc_enable(struct igb_adapter * adapter)5192 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5193 {
5194 	struct e1000_hw *hw = &adapter->hw;
5195 	u32 i, pf_id;
5196 
5197 	switch (hw->mac.type) {
5198 	case e1000_i210:
5199 	case e1000_i211:
5200 	case e1000_i350:
5201 		/* VLAN filtering needed for VLAN prio filter */
5202 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5203 			break;
5204 		fallthrough;
5205 	case e1000_82576:
5206 	case e1000_82580:
5207 	case e1000_i354:
5208 		/* VLAN filtering needed for pool filtering */
5209 		if (adapter->vfs_allocated_count)
5210 			break;
5211 		fallthrough;
5212 	default:
5213 		return 1;
5214 	}
5215 
5216 	/* We are already in VLAN promisc, nothing to do */
5217 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5218 		return 0;
5219 
5220 	if (!adapter->vfs_allocated_count)
5221 		goto set_vfta;
5222 
5223 	/* Add PF to all active pools */
5224 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5225 
5226 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5227 		u32 vlvf = rd32(E1000_VLVF(i));
5228 
5229 		vlvf |= BIT(pf_id);
5230 		wr32(E1000_VLVF(i), vlvf);
5231 	}
5232 
5233 set_vfta:
5234 	/* Set all bits in the VLAN filter table array */
5235 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5236 		hw->mac.ops.write_vfta(hw, i, ~0U);
5237 
5238 	/* Set flag so we don't redo unnecessary work */
5239 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5240 
5241 	return 0;
5242 }
5243 
5244 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5245 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5246 {
5247 	struct e1000_hw *hw = &adapter->hw;
5248 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5249 	u32 vid_start = vfta_offset * 32;
5250 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5251 	u32 i, vid, word, bits, pf_id;
5252 
5253 	/* guarantee that we don't scrub out management VLAN */
5254 	vid = adapter->mng_vlan_id;
5255 	if (vid >= vid_start && vid < vid_end)
5256 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5257 
5258 	if (!adapter->vfs_allocated_count)
5259 		goto set_vfta;
5260 
5261 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5262 
5263 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5264 		u32 vlvf = rd32(E1000_VLVF(i));
5265 
5266 		/* pull VLAN ID from VLVF */
5267 		vid = vlvf & VLAN_VID_MASK;
5268 
5269 		/* only concern ourselves with a certain range */
5270 		if (vid < vid_start || vid >= vid_end)
5271 			continue;
5272 
5273 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5274 			/* record VLAN ID in VFTA */
5275 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5276 
5277 			/* if PF is part of this then continue */
5278 			if (test_bit(vid, adapter->active_vlans))
5279 				continue;
5280 		}
5281 
5282 		/* remove PF from the pool */
5283 		bits = ~BIT(pf_id);
5284 		bits &= rd32(E1000_VLVF(i));
5285 		wr32(E1000_VLVF(i), bits);
5286 	}
5287 
5288 set_vfta:
5289 	/* extract values from active_vlans and write back to VFTA */
5290 	for (i = VFTA_BLOCK_SIZE; i--;) {
5291 		vid = (vfta_offset + i) * 32;
5292 		word = vid / BITS_PER_LONG;
5293 		bits = vid % BITS_PER_LONG;
5294 
5295 		vfta[i] |= adapter->active_vlans[word] >> bits;
5296 
5297 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5298 	}
5299 }
5300 
igb_vlan_promisc_disable(struct igb_adapter * adapter)5301 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5302 {
5303 	u32 i;
5304 
5305 	/* We are not in VLAN promisc, nothing to do */
5306 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5307 		return;
5308 
5309 	/* Set flag so we don't redo unnecessary work */
5310 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5311 
5312 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5313 		igb_scrub_vfta(adapter, i);
5314 }
5315 
5316 /**
5317  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5318  *  @netdev: network interface device structure
5319  *
5320  *  The set_rx_mode entry point is called whenever the unicast or multicast
5321  *  address lists or the network interface flags are updated.  This routine is
5322  *  responsible for configuring the hardware for proper unicast, multicast,
5323  *  promiscuous mode, and all-multi behavior.
5324  **/
igb_set_rx_mode(struct net_device * netdev)5325 static void igb_set_rx_mode(struct net_device *netdev)
5326 {
5327 	struct igb_adapter *adapter = netdev_priv(netdev);
5328 	struct e1000_hw *hw = &adapter->hw;
5329 	unsigned int vfn = adapter->vfs_allocated_count;
5330 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5331 	int count;
5332 
5333 	/* Check for Promiscuous and All Multicast modes */
5334 	if (netdev->flags & IFF_PROMISC) {
5335 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5336 		vmolr |= E1000_VMOLR_MPME;
5337 
5338 		/* enable use of UTA filter to force packets to default pool */
5339 		if (hw->mac.type == e1000_82576)
5340 			vmolr |= E1000_VMOLR_ROPE;
5341 	} else {
5342 		if (netdev->flags & IFF_ALLMULTI) {
5343 			rctl |= E1000_RCTL_MPE;
5344 			vmolr |= E1000_VMOLR_MPME;
5345 		} else {
5346 			/* Write addresses to the MTA, if the attempt fails
5347 			 * then we should just turn on promiscuous mode so
5348 			 * that we can at least receive multicast traffic
5349 			 */
5350 			count = igb_write_mc_addr_list(netdev);
5351 			if (count < 0) {
5352 				rctl |= E1000_RCTL_MPE;
5353 				vmolr |= E1000_VMOLR_MPME;
5354 			} else if (count) {
5355 				vmolr |= E1000_VMOLR_ROMPE;
5356 			}
5357 		}
5358 	}
5359 
5360 	/* Write addresses to available RAR registers, if there is not
5361 	 * sufficient space to store all the addresses then enable
5362 	 * unicast promiscuous mode
5363 	 */
5364 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5365 		rctl |= E1000_RCTL_UPE;
5366 		vmolr |= E1000_VMOLR_ROPE;
5367 	}
5368 
5369 	/* enable VLAN filtering by default */
5370 	rctl |= E1000_RCTL_VFE;
5371 
5372 	/* disable VLAN filtering for modes that require it */
5373 	if ((netdev->flags & IFF_PROMISC) ||
5374 	    (netdev->features & NETIF_F_RXALL)) {
5375 		/* if we fail to set all rules then just clear VFE */
5376 		if (igb_vlan_promisc_enable(adapter))
5377 			rctl &= ~E1000_RCTL_VFE;
5378 	} else {
5379 		igb_vlan_promisc_disable(adapter);
5380 	}
5381 
5382 	/* update state of unicast, multicast, and VLAN filtering modes */
5383 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5384 				     E1000_RCTL_VFE);
5385 	wr32(E1000_RCTL, rctl);
5386 
5387 #if (PAGE_SIZE < 8192)
5388 	if (!adapter->vfs_allocated_count) {
5389 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5390 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5391 	}
5392 #endif
5393 	wr32(E1000_RLPML, rlpml);
5394 
5395 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5396 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5397 	 * we will have issues with VLAN tag stripping not being done for frames
5398 	 * that are only arriving because we are the default pool
5399 	 */
5400 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5401 		return;
5402 
5403 	/* set UTA to appropriate mode */
5404 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5405 
5406 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5407 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5408 
5409 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5410 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5411 #if (PAGE_SIZE < 8192)
5412 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5413 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5414 	else
5415 #endif
5416 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5417 	vmolr |= E1000_VMOLR_LPE;
5418 
5419 	wr32(E1000_VMOLR(vfn), vmolr);
5420 
5421 	igb_restore_vf_multicasts(adapter);
5422 }
5423 
igb_check_wvbr(struct igb_adapter * adapter)5424 static void igb_check_wvbr(struct igb_adapter *adapter)
5425 {
5426 	struct e1000_hw *hw = &adapter->hw;
5427 	u32 wvbr = 0;
5428 
5429 	switch (hw->mac.type) {
5430 	case e1000_82576:
5431 	case e1000_i350:
5432 		wvbr = rd32(E1000_WVBR);
5433 		if (!wvbr)
5434 			return;
5435 		break;
5436 	default:
5437 		break;
5438 	}
5439 
5440 	adapter->wvbr |= wvbr;
5441 }
5442 
5443 #define IGB_STAGGERED_QUEUE_OFFSET 8
5444 
igb_spoof_check(struct igb_adapter * adapter)5445 static void igb_spoof_check(struct igb_adapter *adapter)
5446 {
5447 	int j;
5448 
5449 	if (!adapter->wvbr)
5450 		return;
5451 
5452 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5453 		if (adapter->wvbr & BIT(j) ||
5454 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5455 			dev_warn(&adapter->pdev->dev,
5456 				"Spoof event(s) detected on VF %d\n", j);
5457 			adapter->wvbr &=
5458 				~(BIT(j) |
5459 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5460 		}
5461 	}
5462 }
5463 
5464 /* Need to wait a few seconds after link up to get diagnostic information from
5465  * the phy
5466  */
igb_update_phy_info(struct timer_list * t)5467 static void igb_update_phy_info(struct timer_list *t)
5468 {
5469 	struct igb_adapter *adapter = timer_container_of(adapter, t,
5470 							 phy_info_timer);
5471 	igb_get_phy_info(&adapter->hw);
5472 }
5473 
5474 /**
5475  *  igb_has_link - check shared code for link and determine up/down
5476  *  @adapter: pointer to driver private info
5477  **/
igb_has_link(struct igb_adapter * adapter)5478 bool igb_has_link(struct igb_adapter *adapter)
5479 {
5480 	struct e1000_hw *hw = &adapter->hw;
5481 	bool link_active = false;
5482 
5483 	/* get_link_status is set on LSC (link status) interrupt or
5484 	 * rx sequence error interrupt.  get_link_status will stay
5485 	 * false until the e1000_check_for_link establishes link
5486 	 * for copper adapters ONLY
5487 	 */
5488 	switch (hw->phy.media_type) {
5489 	case e1000_media_type_copper:
5490 		if (!hw->mac.get_link_status)
5491 			return true;
5492 		fallthrough;
5493 	case e1000_media_type_internal_serdes:
5494 		hw->mac.ops.check_for_link(hw);
5495 		link_active = !hw->mac.get_link_status;
5496 		break;
5497 	default:
5498 	case e1000_media_type_unknown:
5499 		break;
5500 	}
5501 
5502 	if (((hw->mac.type == e1000_i210) ||
5503 	     (hw->mac.type == e1000_i211)) &&
5504 	     (hw->phy.id == I210_I_PHY_ID)) {
5505 		if (!netif_carrier_ok(adapter->netdev)) {
5506 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5507 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5508 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5509 			adapter->link_check_timeout = jiffies;
5510 		}
5511 	}
5512 
5513 	return link_active;
5514 }
5515 
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5516 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5517 {
5518 	bool ret = false;
5519 	u32 ctrl_ext, thstat;
5520 
5521 	/* check for thermal sensor event on i350 copper only */
5522 	if (hw->mac.type == e1000_i350) {
5523 		thstat = rd32(E1000_THSTAT);
5524 		ctrl_ext = rd32(E1000_CTRL_EXT);
5525 
5526 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5527 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5528 			ret = !!(thstat & event);
5529 	}
5530 
5531 	return ret;
5532 }
5533 
5534 /**
5535  *  igb_check_lvmmc - check for malformed packets received
5536  *  and indicated in LVMMC register
5537  *  @adapter: pointer to adapter
5538  **/
igb_check_lvmmc(struct igb_adapter * adapter)5539 static void igb_check_lvmmc(struct igb_adapter *adapter)
5540 {
5541 	struct e1000_hw *hw = &adapter->hw;
5542 	u32 lvmmc;
5543 
5544 	lvmmc = rd32(E1000_LVMMC);
5545 	if (lvmmc) {
5546 		if (unlikely(net_ratelimit())) {
5547 			netdev_warn(adapter->netdev,
5548 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5549 				    lvmmc);
5550 		}
5551 	}
5552 }
5553 
5554 /**
5555  *  igb_watchdog - Timer Call-back
5556  *  @t: pointer to timer_list containing our private info pointer
5557  **/
igb_watchdog(struct timer_list * t)5558 static void igb_watchdog(struct timer_list *t)
5559 {
5560 	struct igb_adapter *adapter = timer_container_of(adapter, t,
5561 							 watchdog_timer);
5562 	/* Do the rest outside of interrupt context */
5563 	schedule_work(&adapter->watchdog_task);
5564 }
5565 
igb_watchdog_task(struct work_struct * work)5566 static void igb_watchdog_task(struct work_struct *work)
5567 {
5568 	struct igb_adapter *adapter = container_of(work,
5569 						   struct igb_adapter,
5570 						   watchdog_task);
5571 	struct e1000_hw *hw = &adapter->hw;
5572 	struct e1000_phy_info *phy = &hw->phy;
5573 	struct net_device *netdev = adapter->netdev;
5574 	u32 link;
5575 	int i;
5576 	u32 connsw;
5577 	u16 phy_data, retry_count = 20;
5578 
5579 	link = igb_has_link(adapter);
5580 
5581 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5582 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5583 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5584 		else
5585 			link = false;
5586 	}
5587 
5588 	/* Force link down if we have fiber to swap to */
5589 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5590 		if (hw->phy.media_type == e1000_media_type_copper) {
5591 			connsw = rd32(E1000_CONNSW);
5592 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5593 				link = 0;
5594 		}
5595 	}
5596 	if (link) {
5597 		/* Perform a reset if the media type changed. */
5598 		if (hw->dev_spec._82575.media_changed) {
5599 			hw->dev_spec._82575.media_changed = false;
5600 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5601 			igb_reset(adapter);
5602 		}
5603 		/* Cancel scheduled suspend requests. */
5604 		pm_runtime_resume(netdev->dev.parent);
5605 
5606 		if (!netif_carrier_ok(netdev)) {
5607 			u32 ctrl;
5608 
5609 			hw->mac.ops.get_speed_and_duplex(hw,
5610 							 &adapter->link_speed,
5611 							 &adapter->link_duplex);
5612 
5613 			ctrl = rd32(E1000_CTRL);
5614 			/* Links status message must follow this format */
5615 			netdev_info(netdev,
5616 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5617 			       netdev->name,
5618 			       adapter->link_speed,
5619 			       adapter->link_duplex == FULL_DUPLEX ?
5620 			       "Full" : "Half",
5621 			       (ctrl & E1000_CTRL_TFCE) &&
5622 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5623 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5624 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5625 
5626 			/* disable EEE if enabled */
5627 			if ((adapter->flags & IGB_FLAG_EEE) &&
5628 				(adapter->link_duplex == HALF_DUPLEX)) {
5629 				dev_info(&adapter->pdev->dev,
5630 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5631 				adapter->hw.dev_spec._82575.eee_disable = true;
5632 				adapter->flags &= ~IGB_FLAG_EEE;
5633 			}
5634 
5635 			/* check if SmartSpeed worked */
5636 			igb_check_downshift(hw);
5637 			if (phy->speed_downgraded)
5638 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5639 
5640 			/* check for thermal sensor event */
5641 			if (igb_thermal_sensor_event(hw,
5642 			    E1000_THSTAT_LINK_THROTTLE))
5643 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5644 
5645 			/* adjust timeout factor according to speed/duplex */
5646 			adapter->tx_timeout_factor = 1;
5647 			switch (adapter->link_speed) {
5648 			case SPEED_10:
5649 				adapter->tx_timeout_factor = 14;
5650 				break;
5651 			case SPEED_100:
5652 				/* maybe add some timeout factor ? */
5653 				break;
5654 			}
5655 
5656 			if (adapter->link_speed != SPEED_1000 ||
5657 			    !hw->phy.ops.read_reg)
5658 				goto no_wait;
5659 
5660 			/* wait for Remote receiver status OK */
5661 retry_read_status:
5662 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5663 					      &phy_data)) {
5664 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5665 				    retry_count) {
5666 					msleep(100);
5667 					retry_count--;
5668 					goto retry_read_status;
5669 				} else if (!retry_count) {
5670 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5671 				}
5672 			} else {
5673 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5674 			}
5675 no_wait:
5676 			netif_carrier_on(netdev);
5677 
5678 			igb_ping_all_vfs(adapter);
5679 			igb_check_vf_rate_limit(adapter);
5680 
5681 			/* link state has changed, schedule phy info update */
5682 			if (!test_bit(__IGB_DOWN, &adapter->state))
5683 				mod_timer(&adapter->phy_info_timer,
5684 					  round_jiffies(jiffies + 2 * HZ));
5685 		}
5686 	} else {
5687 		if (netif_carrier_ok(netdev)) {
5688 			adapter->link_speed = 0;
5689 			adapter->link_duplex = 0;
5690 
5691 			/* check for thermal sensor event */
5692 			if (igb_thermal_sensor_event(hw,
5693 			    E1000_THSTAT_PWR_DOWN)) {
5694 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5695 			}
5696 
5697 			/* Links status message must follow this format */
5698 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5699 			       netdev->name);
5700 			netif_carrier_off(netdev);
5701 
5702 			igb_ping_all_vfs(adapter);
5703 
5704 			/* link state has changed, schedule phy info update */
5705 			if (!test_bit(__IGB_DOWN, &adapter->state))
5706 				mod_timer(&adapter->phy_info_timer,
5707 					  round_jiffies(jiffies + 2 * HZ));
5708 
5709 			/* link is down, time to check for alternate media */
5710 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5711 				igb_check_swap_media(adapter);
5712 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5713 					schedule_work(&adapter->reset_task);
5714 					/* return immediately */
5715 					return;
5716 				}
5717 			}
5718 			pm_schedule_suspend(netdev->dev.parent,
5719 					    MSEC_PER_SEC * 5);
5720 
5721 		/* also check for alternate media here */
5722 		} else if (!netif_carrier_ok(netdev) &&
5723 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5724 			igb_check_swap_media(adapter);
5725 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5726 				schedule_work(&adapter->reset_task);
5727 				/* return immediately */
5728 				return;
5729 			}
5730 		}
5731 	}
5732 
5733 	spin_lock(&adapter->stats64_lock);
5734 	igb_update_stats(adapter);
5735 	spin_unlock(&adapter->stats64_lock);
5736 
5737 	for (i = 0; i < adapter->num_tx_queues; i++) {
5738 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5739 		if (!netif_carrier_ok(netdev)) {
5740 			/* We've lost link, so the controller stops DMA,
5741 			 * but we've got queued Tx work that's never going
5742 			 * to get done, so reset controller to flush Tx.
5743 			 * (Do the reset outside of interrupt context).
5744 			 */
5745 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5746 				adapter->tx_timeout_count++;
5747 				schedule_work(&adapter->reset_task);
5748 				/* return immediately since reset is imminent */
5749 				return;
5750 			}
5751 		}
5752 
5753 		/* Force detection of hung controller every watchdog period */
5754 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5755 	}
5756 
5757 	/* Cause software interrupt to ensure Rx ring is cleaned */
5758 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5759 		u32 eics = 0;
5760 
5761 		for (i = 0; i < adapter->num_q_vectors; i++) {
5762 			struct igb_q_vector *q_vector = adapter->q_vector[i];
5763 			struct igb_ring *rx_ring;
5764 
5765 			if (!q_vector->rx.ring)
5766 				continue;
5767 
5768 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5769 
5770 			if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5771 				eics |= q_vector->eims_value;
5772 				clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5773 			}
5774 		}
5775 		if (eics)
5776 			wr32(E1000_EICS, eics);
5777 	} else {
5778 		struct igb_ring *rx_ring = adapter->rx_ring[0];
5779 
5780 		if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5781 			clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5782 			wr32(E1000_ICS, E1000_ICS_RXDMT0);
5783 		}
5784 	}
5785 
5786 	igb_spoof_check(adapter);
5787 	igb_ptp_rx_hang(adapter);
5788 	igb_ptp_tx_hang(adapter);
5789 
5790 	/* Check LVMMC register on i350/i354 only */
5791 	if ((adapter->hw.mac.type == e1000_i350) ||
5792 	    (adapter->hw.mac.type == e1000_i354))
5793 		igb_check_lvmmc(adapter);
5794 
5795 	/* Reset the timer */
5796 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5797 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5798 			mod_timer(&adapter->watchdog_timer,
5799 				  round_jiffies(jiffies +  HZ));
5800 		else
5801 			mod_timer(&adapter->watchdog_timer,
5802 				  round_jiffies(jiffies + 2 * HZ));
5803 	}
5804 }
5805 
5806 enum latency_range {
5807 	lowest_latency = 0,
5808 	low_latency = 1,
5809 	bulk_latency = 2,
5810 	latency_invalid = 255
5811 };
5812 
5813 /**
5814  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5815  *  @q_vector: pointer to q_vector
5816  *
5817  *  Stores a new ITR value based on strictly on packet size.  This
5818  *  algorithm is less sophisticated than that used in igb_update_itr,
5819  *  due to the difficulty of synchronizing statistics across multiple
5820  *  receive rings.  The divisors and thresholds used by this function
5821  *  were determined based on theoretical maximum wire speed and testing
5822  *  data, in order to minimize response time while increasing bulk
5823  *  throughput.
5824  *  This functionality is controlled by ethtool's coalescing settings.
5825  *  NOTE:  This function is called only when operating in a multiqueue
5826  *         receive environment.
5827  **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5828 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5829 {
5830 	int new_val = q_vector->itr_val;
5831 	int avg_wire_size = 0;
5832 	struct igb_adapter *adapter = q_vector->adapter;
5833 	unsigned int packets;
5834 
5835 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5836 	 * ints/sec - ITR timer value of 120 ticks.
5837 	 */
5838 	if (adapter->link_speed != SPEED_1000) {
5839 		new_val = IGB_4K_ITR;
5840 		goto set_itr_val;
5841 	}
5842 
5843 	packets = q_vector->rx.total_packets;
5844 	if (packets)
5845 		avg_wire_size = q_vector->rx.total_bytes / packets;
5846 
5847 	packets = q_vector->tx.total_packets;
5848 	if (packets)
5849 		avg_wire_size = max_t(u32, avg_wire_size,
5850 				      q_vector->tx.total_bytes / packets);
5851 
5852 	/* if avg_wire_size isn't set no work was done */
5853 	if (!avg_wire_size)
5854 		goto clear_counts;
5855 
5856 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5857 	avg_wire_size += 24;
5858 
5859 	/* Don't starve jumbo frames */
5860 	avg_wire_size = min(avg_wire_size, 3000);
5861 
5862 	/* Give a little boost to mid-size frames */
5863 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5864 		new_val = avg_wire_size / 3;
5865 	else
5866 		new_val = avg_wire_size / 2;
5867 
5868 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5869 	if (new_val < IGB_20K_ITR &&
5870 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5871 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5872 		new_val = IGB_20K_ITR;
5873 
5874 set_itr_val:
5875 	if (new_val != q_vector->itr_val) {
5876 		q_vector->itr_val = new_val;
5877 		q_vector->set_itr = 1;
5878 	}
5879 clear_counts:
5880 	q_vector->rx.total_bytes = 0;
5881 	q_vector->rx.total_packets = 0;
5882 	q_vector->tx.total_bytes = 0;
5883 	q_vector->tx.total_packets = 0;
5884 }
5885 
5886 /**
5887  *  igb_update_itr - update the dynamic ITR value based on statistics
5888  *  @q_vector: pointer to q_vector
5889  *  @ring_container: ring info to update the itr for
5890  *
5891  *  Stores a new ITR value based on packets and byte
5892  *  counts during the last interrupt.  The advantage of per interrupt
5893  *  computation is faster updates and more accurate ITR for the current
5894  *  traffic pattern.  Constants in this function were computed
5895  *  based on theoretical maximum wire speed and thresholds were set based
5896  *  on testing data as well as attempting to minimize response time
5897  *  while increasing bulk throughput.
5898  *  This functionality is controlled by ethtool's coalescing settings.
5899  *  NOTE:  These calculations are only valid when operating in a single-
5900  *         queue environment.
5901  **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5902 static void igb_update_itr(struct igb_q_vector *q_vector,
5903 			   struct igb_ring_container *ring_container)
5904 {
5905 	unsigned int packets = ring_container->total_packets;
5906 	unsigned int bytes = ring_container->total_bytes;
5907 	u8 itrval = ring_container->itr;
5908 
5909 	/* no packets, exit with status unchanged */
5910 	if (packets == 0)
5911 		return;
5912 
5913 	switch (itrval) {
5914 	case lowest_latency:
5915 		/* handle TSO and jumbo frames */
5916 		if (bytes/packets > 8000)
5917 			itrval = bulk_latency;
5918 		else if ((packets < 5) && (bytes > 512))
5919 			itrval = low_latency;
5920 		break;
5921 	case low_latency:  /* 50 usec aka 20000 ints/s */
5922 		if (bytes > 10000) {
5923 			/* this if handles the TSO accounting */
5924 			if (bytes/packets > 8000)
5925 				itrval = bulk_latency;
5926 			else if ((packets < 10) || ((bytes/packets) > 1200))
5927 				itrval = bulk_latency;
5928 			else if ((packets > 35))
5929 				itrval = lowest_latency;
5930 		} else if (bytes/packets > 2000) {
5931 			itrval = bulk_latency;
5932 		} else if (packets <= 2 && bytes < 512) {
5933 			itrval = lowest_latency;
5934 		}
5935 		break;
5936 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5937 		if (bytes > 25000) {
5938 			if (packets > 35)
5939 				itrval = low_latency;
5940 		} else if (bytes < 1500) {
5941 			itrval = low_latency;
5942 		}
5943 		break;
5944 	}
5945 
5946 	/* clear work counters since we have the values we need */
5947 	ring_container->total_bytes = 0;
5948 	ring_container->total_packets = 0;
5949 
5950 	/* write updated itr to ring container */
5951 	ring_container->itr = itrval;
5952 }
5953 
igb_set_itr(struct igb_q_vector * q_vector)5954 static void igb_set_itr(struct igb_q_vector *q_vector)
5955 {
5956 	struct igb_adapter *adapter = q_vector->adapter;
5957 	u32 new_itr = q_vector->itr_val;
5958 	u8 current_itr = 0;
5959 
5960 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5961 	if (adapter->link_speed != SPEED_1000) {
5962 		current_itr = 0;
5963 		new_itr = IGB_4K_ITR;
5964 		goto set_itr_now;
5965 	}
5966 
5967 	igb_update_itr(q_vector, &q_vector->tx);
5968 	igb_update_itr(q_vector, &q_vector->rx);
5969 
5970 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5971 
5972 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5973 	if (current_itr == lowest_latency &&
5974 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5975 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5976 		current_itr = low_latency;
5977 
5978 	switch (current_itr) {
5979 	/* counts and packets in update_itr are dependent on these numbers */
5980 	case lowest_latency:
5981 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5982 		break;
5983 	case low_latency:
5984 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5985 		break;
5986 	case bulk_latency:
5987 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5988 		break;
5989 	default:
5990 		break;
5991 	}
5992 
5993 set_itr_now:
5994 	if (new_itr != q_vector->itr_val) {
5995 		/* this attempts to bias the interrupt rate towards Bulk
5996 		 * by adding intermediate steps when interrupt rate is
5997 		 * increasing
5998 		 */
5999 		new_itr = new_itr > q_vector->itr_val ?
6000 			  max((new_itr * q_vector->itr_val) /
6001 			  (new_itr + (q_vector->itr_val >> 2)),
6002 			  new_itr) : new_itr;
6003 		/* Don't write the value here; it resets the adapter's
6004 		 * internal timer, and causes us to delay far longer than
6005 		 * we should between interrupts.  Instead, we write the ITR
6006 		 * value at the beginning of the next interrupt so the timing
6007 		 * ends up being correct.
6008 		 */
6009 		q_vector->itr_val = new_itr;
6010 		q_vector->set_itr = 1;
6011 	}
6012 }
6013 
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)6014 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6015 			    struct igb_tx_buffer *first,
6016 			    u32 vlan_macip_lens, u32 type_tucmd,
6017 			    u32 mss_l4len_idx)
6018 {
6019 	struct e1000_adv_tx_context_desc *context_desc;
6020 	u16 i = tx_ring->next_to_use;
6021 	struct timespec64 ts;
6022 
6023 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6024 
6025 	i++;
6026 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6027 
6028 	/* set bits to identify this as an advanced context descriptor */
6029 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6030 
6031 	/* For 82575, context index must be unique per ring. */
6032 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6033 		mss_l4len_idx |= tx_ring->reg_idx << 4;
6034 
6035 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
6036 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
6037 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
6038 
6039 	/* We assume there is always a valid tx time available. Invalid times
6040 	 * should have been handled by the upper layers.
6041 	 */
6042 	if (tx_ring->launchtime_enable) {
6043 		ts = ktime_to_timespec64(first->skb->tstamp);
6044 		skb_txtime_consumed(first->skb);
6045 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6046 	} else {
6047 		context_desc->seqnum_seed = 0;
6048 	}
6049 }
6050 
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)6051 static int igb_tso(struct igb_ring *tx_ring,
6052 		   struct igb_tx_buffer *first,
6053 		   u8 *hdr_len)
6054 {
6055 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6056 	struct sk_buff *skb = first->skb;
6057 	union {
6058 		struct iphdr *v4;
6059 		struct ipv6hdr *v6;
6060 		unsigned char *hdr;
6061 	} ip;
6062 	union {
6063 		struct tcphdr *tcp;
6064 		struct udphdr *udp;
6065 		unsigned char *hdr;
6066 	} l4;
6067 	u32 paylen, l4_offset;
6068 	int err;
6069 
6070 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6071 		return 0;
6072 
6073 	if (!skb_is_gso(skb))
6074 		return 0;
6075 
6076 	err = skb_cow_head(skb, 0);
6077 	if (err < 0)
6078 		return err;
6079 
6080 	ip.hdr = skb_network_header(skb);
6081 	l4.hdr = skb_checksum_start(skb);
6082 
6083 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6084 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6085 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6086 
6087 	/* initialize outer IP header fields */
6088 	if (ip.v4->version == 4) {
6089 		unsigned char *csum_start = skb_checksum_start(skb);
6090 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6091 
6092 		/* IP header will have to cancel out any data that
6093 		 * is not a part of the outer IP header
6094 		 */
6095 		ip.v4->check = csum_fold(csum_partial(trans_start,
6096 						      csum_start - trans_start,
6097 						      0));
6098 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6099 
6100 		ip.v4->tot_len = 0;
6101 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6102 				   IGB_TX_FLAGS_CSUM |
6103 				   IGB_TX_FLAGS_IPV4;
6104 	} else {
6105 		ip.v6->payload_len = 0;
6106 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6107 				   IGB_TX_FLAGS_CSUM;
6108 	}
6109 
6110 	/* determine offset of inner transport header */
6111 	l4_offset = l4.hdr - skb->data;
6112 
6113 	/* remove payload length from inner checksum */
6114 	paylen = skb->len - l4_offset;
6115 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6116 		/* compute length of segmentation header */
6117 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6118 		csum_replace_by_diff(&l4.tcp->check,
6119 			(__force __wsum)htonl(paylen));
6120 	} else {
6121 		/* compute length of segmentation header */
6122 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6123 		csum_replace_by_diff(&l4.udp->check,
6124 				     (__force __wsum)htonl(paylen));
6125 	}
6126 
6127 	/* update gso size and bytecount with header size */
6128 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6129 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6130 
6131 	/* MSS L4LEN IDX */
6132 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6133 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6134 
6135 	/* VLAN MACLEN IPLEN */
6136 	vlan_macip_lens = l4.hdr - ip.hdr;
6137 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6138 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6139 
6140 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6141 			type_tucmd, mss_l4len_idx);
6142 
6143 	return 1;
6144 }
6145 
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6146 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6147 {
6148 	struct sk_buff *skb = first->skb;
6149 	u32 vlan_macip_lens = 0;
6150 	u32 type_tucmd = 0;
6151 
6152 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6153 csum_failed:
6154 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6155 		    !tx_ring->launchtime_enable)
6156 			return;
6157 		goto no_csum;
6158 	}
6159 
6160 	switch (skb->csum_offset) {
6161 	case offsetof(struct tcphdr, check):
6162 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6163 		fallthrough;
6164 	case offsetof(struct udphdr, check):
6165 		break;
6166 	case offsetof(struct sctphdr, checksum):
6167 		/* validate that this is actually an SCTP request */
6168 		if (skb_csum_is_sctp(skb)) {
6169 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6170 			break;
6171 		}
6172 		fallthrough;
6173 	default:
6174 		skb_checksum_help(skb);
6175 		goto csum_failed;
6176 	}
6177 
6178 	/* update TX checksum flag */
6179 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6180 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6181 			  skb_network_offset(skb);
6182 no_csum:
6183 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6184 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6185 
6186 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6187 }
6188 
6189 #define IGB_SET_FLAG(_input, _flag, _result) \
6190 	((_flag <= _result) ? \
6191 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6192 	 ((u32)(_input & _flag) / (_flag / _result)))
6193 
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6194 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6195 {
6196 	/* set type for advanced descriptor with frame checksum insertion */
6197 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6198 		       E1000_ADVTXD_DCMD_DEXT |
6199 		       E1000_ADVTXD_DCMD_IFCS;
6200 
6201 	/* set HW vlan bit if vlan is present */
6202 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6203 				 (E1000_ADVTXD_DCMD_VLE));
6204 
6205 	/* set segmentation bits for TSO */
6206 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6207 				 (E1000_ADVTXD_DCMD_TSE));
6208 
6209 	/* set timestamp bit if present */
6210 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6211 				 (E1000_ADVTXD_MAC_TSTAMP));
6212 
6213 	/* insert frame checksum */
6214 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6215 
6216 	return cmd_type;
6217 }
6218 
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6219 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6220 				 union e1000_adv_tx_desc *tx_desc,
6221 				 u32 tx_flags, unsigned int paylen)
6222 {
6223 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6224 
6225 	/* 82575 requires a unique index per ring */
6226 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6227 		olinfo_status |= tx_ring->reg_idx << 4;
6228 
6229 	/* insert L4 checksum */
6230 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6231 				      IGB_TX_FLAGS_CSUM,
6232 				      (E1000_TXD_POPTS_TXSM << 8));
6233 
6234 	/* insert IPv4 checksum */
6235 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6236 				      IGB_TX_FLAGS_IPV4,
6237 				      (E1000_TXD_POPTS_IXSM << 8));
6238 
6239 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6240 }
6241 
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6242 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6243 {
6244 	struct net_device *netdev = tx_ring->netdev;
6245 
6246 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6247 
6248 	/* Herbert's original patch had:
6249 	 *  smp_mb__after_netif_stop_queue();
6250 	 * but since that doesn't exist yet, just open code it.
6251 	 */
6252 	smp_mb();
6253 
6254 	/* We need to check again in a case another CPU has just
6255 	 * made room available.
6256 	 */
6257 	if (igb_desc_unused(tx_ring) < size)
6258 		return -EBUSY;
6259 
6260 	/* A reprieve! */
6261 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6262 
6263 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6264 	tx_ring->tx_stats.restart_queue2++;
6265 	u64_stats_update_end(&tx_ring->tx_syncp2);
6266 
6267 	return 0;
6268 }
6269 
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6270 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6271 {
6272 	if (igb_desc_unused(tx_ring) >= size)
6273 		return 0;
6274 	return __igb_maybe_stop_tx(tx_ring, size);
6275 }
6276 
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6277 static int igb_tx_map(struct igb_ring *tx_ring,
6278 		      struct igb_tx_buffer *first,
6279 		      const u8 hdr_len)
6280 {
6281 	struct sk_buff *skb = first->skb;
6282 	struct igb_tx_buffer *tx_buffer;
6283 	union e1000_adv_tx_desc *tx_desc;
6284 	skb_frag_t *frag;
6285 	dma_addr_t dma;
6286 	unsigned int data_len, size;
6287 	u32 tx_flags = first->tx_flags;
6288 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6289 	u16 i = tx_ring->next_to_use;
6290 
6291 	tx_desc = IGB_TX_DESC(tx_ring, i);
6292 
6293 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6294 
6295 	size = skb_headlen(skb);
6296 	data_len = skb->data_len;
6297 
6298 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6299 
6300 	tx_buffer = first;
6301 
6302 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6303 		if (dma_mapping_error(tx_ring->dev, dma))
6304 			goto dma_error;
6305 
6306 		/* record length, and DMA address */
6307 		dma_unmap_len_set(tx_buffer, len, size);
6308 		dma_unmap_addr_set(tx_buffer, dma, dma);
6309 
6310 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6311 
6312 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6313 			tx_desc->read.cmd_type_len =
6314 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6315 
6316 			i++;
6317 			tx_desc++;
6318 			if (i == tx_ring->count) {
6319 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6320 				i = 0;
6321 			}
6322 			tx_desc->read.olinfo_status = 0;
6323 
6324 			dma += IGB_MAX_DATA_PER_TXD;
6325 			size -= IGB_MAX_DATA_PER_TXD;
6326 
6327 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6328 		}
6329 
6330 		if (likely(!data_len))
6331 			break;
6332 
6333 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6334 
6335 		i++;
6336 		tx_desc++;
6337 		if (i == tx_ring->count) {
6338 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6339 			i = 0;
6340 		}
6341 		tx_desc->read.olinfo_status = 0;
6342 
6343 		size = skb_frag_size(frag);
6344 		data_len -= size;
6345 
6346 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6347 				       size, DMA_TO_DEVICE);
6348 
6349 		tx_buffer = &tx_ring->tx_buffer_info[i];
6350 	}
6351 
6352 	/* write last descriptor with RS and EOP bits */
6353 	cmd_type |= size | IGB_TXD_DCMD;
6354 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6355 
6356 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6357 
6358 	/* set the timestamp */
6359 	first->time_stamp = jiffies;
6360 
6361 	skb_tx_timestamp(skb);
6362 
6363 	/* Force memory writes to complete before letting h/w know there
6364 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6365 	 * memory model archs, such as IA-64).
6366 	 *
6367 	 * We also need this memory barrier to make certain all of the
6368 	 * status bits have been updated before next_to_watch is written.
6369 	 */
6370 	dma_wmb();
6371 
6372 	/* set next_to_watch value indicating a packet is present */
6373 	first->next_to_watch = tx_desc;
6374 
6375 	i++;
6376 	if (i == tx_ring->count)
6377 		i = 0;
6378 
6379 	tx_ring->next_to_use = i;
6380 
6381 	/* Make sure there is space in the ring for the next send. */
6382 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6383 
6384 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6385 		writel(i, tx_ring->tail);
6386 	}
6387 	return 0;
6388 
6389 dma_error:
6390 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6391 	tx_buffer = &tx_ring->tx_buffer_info[i];
6392 
6393 	/* clear dma mappings for failed tx_buffer_info map */
6394 	while (tx_buffer != first) {
6395 		if (dma_unmap_len(tx_buffer, len))
6396 			dma_unmap_page(tx_ring->dev,
6397 				       dma_unmap_addr(tx_buffer, dma),
6398 				       dma_unmap_len(tx_buffer, len),
6399 				       DMA_TO_DEVICE);
6400 		dma_unmap_len_set(tx_buffer, len, 0);
6401 
6402 		if (i-- == 0)
6403 			i += tx_ring->count;
6404 		tx_buffer = &tx_ring->tx_buffer_info[i];
6405 	}
6406 
6407 	if (dma_unmap_len(tx_buffer, len))
6408 		dma_unmap_single(tx_ring->dev,
6409 				 dma_unmap_addr(tx_buffer, dma),
6410 				 dma_unmap_len(tx_buffer, len),
6411 				 DMA_TO_DEVICE);
6412 	dma_unmap_len_set(tx_buffer, len, 0);
6413 
6414 	dev_kfree_skb_any(tx_buffer->skb);
6415 	tx_buffer->skb = NULL;
6416 
6417 	tx_ring->next_to_use = i;
6418 
6419 	return -1;
6420 }
6421 
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6422 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6423 		      struct igb_ring *tx_ring,
6424 		      struct xdp_frame *xdpf)
6425 {
6426 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6427 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6428 	u16 count, i, index = tx_ring->next_to_use;
6429 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6430 	struct igb_tx_buffer *tx_buffer = tx_head;
6431 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6432 	u32 len = xdpf->len, cmd_type, olinfo_status;
6433 	void *data = xdpf->data;
6434 
6435 	count = TXD_USE_COUNT(len);
6436 	for (i = 0; i < nr_frags; i++)
6437 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6438 
6439 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6440 		return IGB_XDP_CONSUMED;
6441 
6442 	i = 0;
6443 	/* record the location of the first descriptor for this packet */
6444 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6445 	tx_head->type = IGB_TYPE_XDP;
6446 	tx_head->gso_segs = 1;
6447 	tx_head->xdpf = xdpf;
6448 
6449 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6450 	/* 82575 requires a unique index per ring */
6451 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6452 		olinfo_status |= tx_ring->reg_idx << 4;
6453 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6454 
6455 	for (;;) {
6456 		dma_addr_t dma;
6457 
6458 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6459 		if (dma_mapping_error(tx_ring->dev, dma))
6460 			goto unmap;
6461 
6462 		/* record length, and DMA address */
6463 		dma_unmap_len_set(tx_buffer, len, len);
6464 		dma_unmap_addr_set(tx_buffer, dma, dma);
6465 
6466 		/* put descriptor type bits */
6467 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6468 			   E1000_ADVTXD_DCMD_IFCS | len;
6469 
6470 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6471 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6472 
6473 		tx_buffer->protocol = 0;
6474 
6475 		if (++index == tx_ring->count)
6476 			index = 0;
6477 
6478 		if (i == nr_frags)
6479 			break;
6480 
6481 		tx_buffer = &tx_ring->tx_buffer_info[index];
6482 		tx_desc = IGB_TX_DESC(tx_ring, index);
6483 		tx_desc->read.olinfo_status = 0;
6484 
6485 		data = skb_frag_address(&sinfo->frags[i]);
6486 		len = skb_frag_size(&sinfo->frags[i]);
6487 		i++;
6488 	}
6489 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6490 
6491 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6492 	/* set the timestamp */
6493 	tx_head->time_stamp = jiffies;
6494 
6495 	/* Avoid any potential race with xdp_xmit and cleanup */
6496 	smp_wmb();
6497 
6498 	/* set next_to_watch value indicating a packet is present */
6499 	tx_head->next_to_watch = tx_desc;
6500 	tx_ring->next_to_use = index;
6501 
6502 	/* Make sure there is space in the ring for the next send. */
6503 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6504 
6505 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6506 		writel(index, tx_ring->tail);
6507 
6508 	return IGB_XDP_TX;
6509 
6510 unmap:
6511 	for (;;) {
6512 		tx_buffer = &tx_ring->tx_buffer_info[index];
6513 		if (dma_unmap_len(tx_buffer, len))
6514 			dma_unmap_page(tx_ring->dev,
6515 				       dma_unmap_addr(tx_buffer, dma),
6516 				       dma_unmap_len(tx_buffer, len),
6517 				       DMA_TO_DEVICE);
6518 		dma_unmap_len_set(tx_buffer, len, 0);
6519 		if (tx_buffer == tx_head)
6520 			break;
6521 
6522 		if (!index)
6523 			index += tx_ring->count;
6524 		index--;
6525 	}
6526 
6527 	return IGB_XDP_CONSUMED;
6528 }
6529 
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6530 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6531 				struct igb_ring *tx_ring)
6532 {
6533 	struct igb_tx_buffer *first;
6534 	int tso;
6535 	u32 tx_flags = 0;
6536 	unsigned short f;
6537 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6538 	__be16 protocol = vlan_get_protocol(skb);
6539 	u8 hdr_len = 0;
6540 
6541 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6542 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6543 	 *       + 2 desc gap to keep tail from touching head,
6544 	 *       + 1 desc for context descriptor,
6545 	 * otherwise try next time
6546 	 */
6547 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6548 		count += TXD_USE_COUNT(skb_frag_size(
6549 						&skb_shinfo(skb)->frags[f]));
6550 
6551 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6552 		/* this is a hard error */
6553 		return NETDEV_TX_BUSY;
6554 	}
6555 
6556 	if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6557 		return NETDEV_TX_BUSY;
6558 
6559 	/* record the location of the first descriptor for this packet */
6560 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6561 	first->type = IGB_TYPE_SKB;
6562 	first->skb = skb;
6563 	first->bytecount = skb->len;
6564 	first->gso_segs = 1;
6565 
6566 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6567 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6568 
6569 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6570 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6571 					   &adapter->state)) {
6572 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6573 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6574 
6575 			adapter->ptp_tx_skb = skb_get(skb);
6576 			adapter->ptp_tx_start = jiffies;
6577 			if (adapter->hw.mac.type == e1000_82576)
6578 				schedule_work(&adapter->ptp_tx_work);
6579 		} else {
6580 			adapter->tx_hwtstamp_skipped++;
6581 		}
6582 	}
6583 
6584 	if (skb_vlan_tag_present(skb)) {
6585 		tx_flags |= IGB_TX_FLAGS_VLAN;
6586 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6587 	}
6588 
6589 	/* record initial flags and protocol */
6590 	first->tx_flags = tx_flags;
6591 	first->protocol = protocol;
6592 
6593 	tso = igb_tso(tx_ring, first, &hdr_len);
6594 	if (tso < 0)
6595 		goto out_drop;
6596 	else if (!tso)
6597 		igb_tx_csum(tx_ring, first);
6598 
6599 	if (igb_tx_map(tx_ring, first, hdr_len))
6600 		goto cleanup_tx_tstamp;
6601 
6602 	return NETDEV_TX_OK;
6603 
6604 out_drop:
6605 	dev_kfree_skb_any(first->skb);
6606 	first->skb = NULL;
6607 cleanup_tx_tstamp:
6608 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6609 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6610 
6611 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6612 		adapter->ptp_tx_skb = NULL;
6613 		if (adapter->hw.mac.type == e1000_82576)
6614 			cancel_work_sync(&adapter->ptp_tx_work);
6615 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6616 	}
6617 
6618 	return NETDEV_TX_OK;
6619 }
6620 
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6621 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6622 						    struct sk_buff *skb)
6623 {
6624 	unsigned int r_idx = skb->queue_mapping;
6625 
6626 	if (r_idx >= adapter->num_tx_queues)
6627 		r_idx = r_idx % adapter->num_tx_queues;
6628 
6629 	return adapter->tx_ring[r_idx];
6630 }
6631 
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6632 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6633 				  struct net_device *netdev)
6634 {
6635 	struct igb_adapter *adapter = netdev_priv(netdev);
6636 
6637 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6638 	 * in order to meet this minimum size requirement.
6639 	 */
6640 	if (skb_put_padto(skb, 17))
6641 		return NETDEV_TX_OK;
6642 
6643 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6644 }
6645 
6646 /**
6647  *  igb_tx_timeout - Respond to a Tx Hang
6648  *  @netdev: network interface device structure
6649  *  @txqueue: number of the Tx queue that hung (unused)
6650  **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6651 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6652 {
6653 	struct igb_adapter *adapter = netdev_priv(netdev);
6654 	struct e1000_hw *hw = &adapter->hw;
6655 
6656 	/* Do the reset outside of interrupt context */
6657 	adapter->tx_timeout_count++;
6658 
6659 	if (hw->mac.type >= e1000_82580)
6660 		hw->dev_spec._82575.global_device_reset = true;
6661 
6662 	schedule_work(&adapter->reset_task);
6663 	wr32(E1000_EICS,
6664 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6665 }
6666 
igb_reset_task(struct work_struct * work)6667 static void igb_reset_task(struct work_struct *work)
6668 {
6669 	struct igb_adapter *adapter;
6670 	adapter = container_of(work, struct igb_adapter, reset_task);
6671 
6672 	rtnl_lock();
6673 	/* If we're already down or resetting, just bail */
6674 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6675 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6676 		rtnl_unlock();
6677 		return;
6678 	}
6679 
6680 	igb_dump(adapter);
6681 	netdev_err(adapter->netdev, "Reset adapter\n");
6682 	igb_reinit_locked(adapter);
6683 	rtnl_unlock();
6684 }
6685 
6686 /**
6687  *  igb_get_stats64 - Get System Network Statistics
6688  *  @netdev: network interface device structure
6689  *  @stats: rtnl_link_stats64 pointer
6690  **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6691 static void igb_get_stats64(struct net_device *netdev,
6692 			    struct rtnl_link_stats64 *stats)
6693 {
6694 	struct igb_adapter *adapter = netdev_priv(netdev);
6695 
6696 	spin_lock(&adapter->stats64_lock);
6697 	igb_update_stats(adapter);
6698 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6699 	spin_unlock(&adapter->stats64_lock);
6700 }
6701 
6702 /**
6703  *  igb_change_mtu - Change the Maximum Transfer Unit
6704  *  @netdev: network interface device structure
6705  *  @new_mtu: new value for maximum frame size
6706  *
6707  *  Returns 0 on success, negative on failure
6708  **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6709 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6710 {
6711 	struct igb_adapter *adapter = netdev_priv(netdev);
6712 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6713 
6714 	if (igb_xdp_is_enabled(adapter)) {
6715 		int i;
6716 
6717 		for (i = 0; i < adapter->num_rx_queues; i++) {
6718 			struct igb_ring *ring = adapter->rx_ring[i];
6719 
6720 			if (max_frame > igb_rx_bufsz(ring)) {
6721 				netdev_warn(adapter->netdev,
6722 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6723 					    max_frame);
6724 				return -EINVAL;
6725 			}
6726 		}
6727 	}
6728 
6729 	/* adjust max frame to be at least the size of a standard frame */
6730 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6731 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6732 
6733 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6734 		usleep_range(1000, 2000);
6735 
6736 	/* igb_down has a dependency on max_frame_size */
6737 	adapter->max_frame_size = max_frame;
6738 
6739 	if (netif_running(netdev))
6740 		igb_down(adapter);
6741 
6742 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6743 		   netdev->mtu, new_mtu);
6744 	WRITE_ONCE(netdev->mtu, new_mtu);
6745 
6746 	if (netif_running(netdev))
6747 		igb_up(adapter);
6748 	else
6749 		igb_reset(adapter);
6750 
6751 	clear_bit(__IGB_RESETTING, &adapter->state);
6752 
6753 	return 0;
6754 }
6755 
6756 /**
6757  *  igb_update_stats - Update the board statistics counters
6758  *  @adapter: board private structure
6759  **/
igb_update_stats(struct igb_adapter * adapter)6760 void igb_update_stats(struct igb_adapter *adapter)
6761 {
6762 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6763 	struct e1000_hw *hw = &adapter->hw;
6764 	struct pci_dev *pdev = adapter->pdev;
6765 	u32 reg, mpc;
6766 	int i;
6767 	u64 bytes, packets;
6768 	unsigned int start;
6769 	u64 _bytes, _packets;
6770 
6771 	/* Prevent stats update while adapter is being reset, or if the pci
6772 	 * connection is down.
6773 	 */
6774 	if (adapter->link_speed == 0)
6775 		return;
6776 	if (pci_channel_offline(pdev))
6777 		return;
6778 
6779 	bytes = 0;
6780 	packets = 0;
6781 
6782 	rcu_read_lock();
6783 	for (i = 0; i < adapter->num_rx_queues; i++) {
6784 		struct igb_ring *ring = adapter->rx_ring[i];
6785 		u32 rqdpc = rd32(E1000_RQDPC(i));
6786 		if (hw->mac.type >= e1000_i210)
6787 			wr32(E1000_RQDPC(i), 0);
6788 
6789 		if (rqdpc) {
6790 			ring->rx_stats.drops += rqdpc;
6791 			net_stats->rx_fifo_errors += rqdpc;
6792 		}
6793 
6794 		do {
6795 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6796 			_bytes = ring->rx_stats.bytes;
6797 			_packets = ring->rx_stats.packets;
6798 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6799 		bytes += _bytes;
6800 		packets += _packets;
6801 	}
6802 
6803 	net_stats->rx_bytes = bytes;
6804 	net_stats->rx_packets = packets;
6805 
6806 	bytes = 0;
6807 	packets = 0;
6808 	for (i = 0; i < adapter->num_tx_queues; i++) {
6809 		struct igb_ring *ring = adapter->tx_ring[i];
6810 		do {
6811 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6812 			_bytes = ring->tx_stats.bytes;
6813 			_packets = ring->tx_stats.packets;
6814 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6815 		bytes += _bytes;
6816 		packets += _packets;
6817 	}
6818 	net_stats->tx_bytes = bytes;
6819 	net_stats->tx_packets = packets;
6820 	rcu_read_unlock();
6821 
6822 	/* read stats registers */
6823 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6824 	adapter->stats.gprc += rd32(E1000_GPRC);
6825 	adapter->stats.gorc += rd32(E1000_GORCL);
6826 	rd32(E1000_GORCH); /* clear GORCL */
6827 	adapter->stats.bprc += rd32(E1000_BPRC);
6828 	adapter->stats.mprc += rd32(E1000_MPRC);
6829 	adapter->stats.roc += rd32(E1000_ROC);
6830 
6831 	adapter->stats.prc64 += rd32(E1000_PRC64);
6832 	adapter->stats.prc127 += rd32(E1000_PRC127);
6833 	adapter->stats.prc255 += rd32(E1000_PRC255);
6834 	adapter->stats.prc511 += rd32(E1000_PRC511);
6835 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6836 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6837 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6838 	adapter->stats.sec += rd32(E1000_SEC);
6839 
6840 	mpc = rd32(E1000_MPC);
6841 	adapter->stats.mpc += mpc;
6842 	net_stats->rx_fifo_errors += mpc;
6843 	adapter->stats.scc += rd32(E1000_SCC);
6844 	adapter->stats.ecol += rd32(E1000_ECOL);
6845 	adapter->stats.mcc += rd32(E1000_MCC);
6846 	adapter->stats.latecol += rd32(E1000_LATECOL);
6847 	adapter->stats.dc += rd32(E1000_DC);
6848 	adapter->stats.rlec += rd32(E1000_RLEC);
6849 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6850 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6851 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6852 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6853 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6854 	adapter->stats.gptc += rd32(E1000_GPTC);
6855 	adapter->stats.gotc += rd32(E1000_GOTCL);
6856 	rd32(E1000_GOTCH); /* clear GOTCL */
6857 	adapter->stats.rnbc += rd32(E1000_RNBC);
6858 	adapter->stats.ruc += rd32(E1000_RUC);
6859 	adapter->stats.rfc += rd32(E1000_RFC);
6860 	adapter->stats.rjc += rd32(E1000_RJC);
6861 	adapter->stats.tor += rd32(E1000_TORH);
6862 	adapter->stats.tot += rd32(E1000_TOTH);
6863 	adapter->stats.tpr += rd32(E1000_TPR);
6864 
6865 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6866 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6867 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6868 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6869 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6870 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6871 
6872 	adapter->stats.mptc += rd32(E1000_MPTC);
6873 	adapter->stats.bptc += rd32(E1000_BPTC);
6874 
6875 	adapter->stats.tpt += rd32(E1000_TPT);
6876 	adapter->stats.colc += rd32(E1000_COLC);
6877 
6878 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6879 	/* read internal phy specific stats */
6880 	reg = rd32(E1000_CTRL_EXT);
6881 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6882 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6883 
6884 		/* this stat has invalid values on i210/i211 */
6885 		if ((hw->mac.type != e1000_i210) &&
6886 		    (hw->mac.type != e1000_i211))
6887 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6888 	}
6889 
6890 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6891 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6892 
6893 	adapter->stats.iac += rd32(E1000_IAC);
6894 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6895 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6896 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6897 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6898 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6899 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6900 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6901 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6902 
6903 	/* Fill out the OS statistics structure */
6904 	net_stats->multicast = adapter->stats.mprc;
6905 	net_stats->collisions = adapter->stats.colc;
6906 
6907 	/* Rx Errors */
6908 
6909 	/* RLEC on some newer hardware can be incorrect so build
6910 	 * our own version based on RUC and ROC
6911 	 */
6912 	net_stats->rx_errors = adapter->stats.rxerrc +
6913 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6914 		adapter->stats.ruc + adapter->stats.roc +
6915 		adapter->stats.cexterr;
6916 	net_stats->rx_length_errors = adapter->stats.ruc +
6917 				      adapter->stats.roc;
6918 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6919 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6920 	net_stats->rx_missed_errors = adapter->stats.mpc;
6921 
6922 	/* Tx Errors */
6923 	net_stats->tx_errors = adapter->stats.ecol +
6924 			       adapter->stats.latecol;
6925 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6926 	net_stats->tx_window_errors = adapter->stats.latecol;
6927 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6928 
6929 	/* Tx Dropped needs to be maintained elsewhere */
6930 
6931 	/* Management Stats */
6932 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6933 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6934 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6935 
6936 	/* OS2BMC Stats */
6937 	reg = rd32(E1000_MANC);
6938 	if (reg & E1000_MANC_EN_BMC2OS) {
6939 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6940 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6941 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6942 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6943 	}
6944 }
6945 
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6946 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6947 {
6948 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6949 	struct e1000_hw *hw = &adapter->hw;
6950 	struct timespec64 ts;
6951 	u32 tsauxc;
6952 
6953 	if (pin < 0 || pin >= IGB_N_SDP)
6954 		return;
6955 
6956 	spin_lock(&adapter->tmreg_lock);
6957 
6958 	if (hw->mac.type == e1000_82580 ||
6959 	    hw->mac.type == e1000_i354 ||
6960 	    hw->mac.type == e1000_i350) {
6961 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6962 		u32 systiml, systimh, level_mask, level, rem;
6963 		u64 systim, now;
6964 
6965 		/* read systim registers in sequence */
6966 		rd32(E1000_SYSTIMR);
6967 		systiml = rd32(E1000_SYSTIML);
6968 		systimh = rd32(E1000_SYSTIMH);
6969 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6970 		now = timecounter_cyc2time(&adapter->tc, systim);
6971 
6972 		if (pin < 2) {
6973 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6974 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6975 		} else {
6976 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6977 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6978 		}
6979 
6980 		div_u64_rem(now, ns, &rem);
6981 		systim = systim + (ns - rem);
6982 
6983 		/* synchronize pin level with rising/falling edges */
6984 		div_u64_rem(now, ns << 1, &rem);
6985 		if (rem < ns) {
6986 			/* first half of period */
6987 			if (level == 0) {
6988 				/* output is already low, skip this period */
6989 				systim += ns;
6990 				pr_notice("igb: periodic output on %s missed falling edge\n",
6991 					  adapter->sdp_config[pin].name);
6992 			}
6993 		} else {
6994 			/* second half of period */
6995 			if (level == 1) {
6996 				/* output is already high, skip this period */
6997 				systim += ns;
6998 				pr_notice("igb: periodic output on %s missed rising edge\n",
6999 					  adapter->sdp_config[pin].name);
7000 			}
7001 		}
7002 
7003 		/* for this chip family tv_sec is the upper part of the binary value,
7004 		 * so not seconds
7005 		 */
7006 		ts.tv_nsec = (u32)systim;
7007 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
7008 	} else {
7009 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
7010 				    adapter->perout[tsintr_tt].period);
7011 	}
7012 
7013 	/* u32 conversion of tv_sec is safe until y2106 */
7014 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7015 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7016 	tsauxc = rd32(E1000_TSAUXC);
7017 	tsauxc |= TSAUXC_EN_TT0;
7018 	wr32(E1000_TSAUXC, tsauxc);
7019 	adapter->perout[tsintr_tt].start = ts;
7020 
7021 	spin_unlock(&adapter->tmreg_lock);
7022 }
7023 
igb_extts(struct igb_adapter * adapter,int tsintr_tt)7024 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7025 {
7026 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7027 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7028 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7029 	struct e1000_hw *hw = &adapter->hw;
7030 	struct ptp_clock_event event;
7031 	struct timespec64 ts;
7032 	unsigned long flags;
7033 
7034 	if (pin < 0 || pin >= IGB_N_SDP)
7035 		return;
7036 
7037 	if (hw->mac.type == e1000_82580 ||
7038 	    hw->mac.type == e1000_i354 ||
7039 	    hw->mac.type == e1000_i350) {
7040 		u64 ns = rd32(auxstmpl);
7041 
7042 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7043 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
7044 		ns = timecounter_cyc2time(&adapter->tc, ns);
7045 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7046 		ts = ns_to_timespec64(ns);
7047 	} else {
7048 		ts.tv_nsec = rd32(auxstmpl);
7049 		ts.tv_sec  = rd32(auxstmph);
7050 	}
7051 
7052 	event.type = PTP_CLOCK_EXTTS;
7053 	event.index = tsintr_tt;
7054 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7055 	ptp_clock_event(adapter->ptp_clock, &event);
7056 }
7057 
igb_tsync_interrupt(struct igb_adapter * adapter)7058 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7059 {
7060 	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7061 			  TSINTR_TT0 | TSINTR_TT1 |
7062 			  TSINTR_AUTT0 | TSINTR_AUTT1);
7063 	struct e1000_hw *hw = &adapter->hw;
7064 	u32 tsicr = rd32(E1000_TSICR);
7065 	struct ptp_clock_event event;
7066 
7067 	if (hw->mac.type == e1000_82580) {
7068 		/* 82580 has a hardware bug that requires an explicit
7069 		 * write to clear the TimeSync interrupt cause.
7070 		 */
7071 		wr32(E1000_TSICR, tsicr & mask);
7072 	}
7073 
7074 	if (tsicr & TSINTR_SYS_WRAP) {
7075 		event.type = PTP_CLOCK_PPS;
7076 		if (adapter->ptp_caps.pps)
7077 			ptp_clock_event(adapter->ptp_clock, &event);
7078 	}
7079 
7080 	if (tsicr & E1000_TSICR_TXTS) {
7081 		/* retrieve hardware timestamp */
7082 		schedule_work(&adapter->ptp_tx_work);
7083 	}
7084 
7085 	if (tsicr & TSINTR_TT0)
7086 		igb_perout(adapter, 0);
7087 
7088 	if (tsicr & TSINTR_TT1)
7089 		igb_perout(adapter, 1);
7090 
7091 	if (tsicr & TSINTR_AUTT0)
7092 		igb_extts(adapter, 0);
7093 
7094 	if (tsicr & TSINTR_AUTT1)
7095 		igb_extts(adapter, 1);
7096 }
7097 
igb_msix_other(int irq,void * data)7098 static irqreturn_t igb_msix_other(int irq, void *data)
7099 {
7100 	struct igb_adapter *adapter = data;
7101 	struct e1000_hw *hw = &adapter->hw;
7102 	u32 icr = rd32(E1000_ICR);
7103 	/* reading ICR causes bit 31 of EICR to be cleared */
7104 
7105 	if (icr & E1000_ICR_DRSTA)
7106 		schedule_work(&adapter->reset_task);
7107 
7108 	if (icr & E1000_ICR_DOUTSYNC) {
7109 		/* HW is reporting DMA is out of sync */
7110 		adapter->stats.doosync++;
7111 		/* The DMA Out of Sync is also indication of a spoof event
7112 		 * in IOV mode. Check the Wrong VM Behavior register to
7113 		 * see if it is really a spoof event.
7114 		 */
7115 		igb_check_wvbr(adapter);
7116 	}
7117 
7118 	/* Check for a mailbox event */
7119 	if (icr & E1000_ICR_VMMB)
7120 		igb_msg_task(adapter);
7121 
7122 	if (icr & E1000_ICR_LSC) {
7123 		hw->mac.get_link_status = 1;
7124 		/* guard against interrupt when we're going down */
7125 		if (!test_bit(__IGB_DOWN, &adapter->state))
7126 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7127 	}
7128 
7129 	if (icr & E1000_ICR_TS)
7130 		igb_tsync_interrupt(adapter);
7131 
7132 	wr32(E1000_EIMS, adapter->eims_other);
7133 
7134 	return IRQ_HANDLED;
7135 }
7136 
igb_write_itr(struct igb_q_vector * q_vector)7137 static void igb_write_itr(struct igb_q_vector *q_vector)
7138 {
7139 	struct igb_adapter *adapter = q_vector->adapter;
7140 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7141 
7142 	if (!q_vector->set_itr)
7143 		return;
7144 
7145 	if (!itr_val)
7146 		itr_val = 0x4;
7147 
7148 	if (adapter->hw.mac.type == e1000_82575)
7149 		itr_val |= itr_val << 16;
7150 	else
7151 		itr_val |= E1000_EITR_CNT_IGNR;
7152 
7153 	writel(itr_val, q_vector->itr_register);
7154 	q_vector->set_itr = 0;
7155 }
7156 
igb_msix_ring(int irq,void * data)7157 static irqreturn_t igb_msix_ring(int irq, void *data)
7158 {
7159 	struct igb_q_vector *q_vector = data;
7160 
7161 	/* Write the ITR value calculated from the previous interrupt. */
7162 	igb_write_itr(q_vector);
7163 
7164 	napi_schedule(&q_vector->napi);
7165 
7166 	return IRQ_HANDLED;
7167 }
7168 
7169 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7170 static void igb_update_tx_dca(struct igb_adapter *adapter,
7171 			      struct igb_ring *tx_ring,
7172 			      int cpu)
7173 {
7174 	struct e1000_hw *hw = &adapter->hw;
7175 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7176 
7177 	if (hw->mac.type != e1000_82575)
7178 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7179 
7180 	/* We can enable relaxed ordering for reads, but not writes when
7181 	 * DCA is enabled.  This is due to a known issue in some chipsets
7182 	 * which will cause the DCA tag to be cleared.
7183 	 */
7184 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7185 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7186 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7187 
7188 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7189 }
7190 
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7191 static void igb_update_rx_dca(struct igb_adapter *adapter,
7192 			      struct igb_ring *rx_ring,
7193 			      int cpu)
7194 {
7195 	struct e1000_hw *hw = &adapter->hw;
7196 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7197 
7198 	if (hw->mac.type != e1000_82575)
7199 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7200 
7201 	/* We can enable relaxed ordering for reads, but not writes when
7202 	 * DCA is enabled.  This is due to a known issue in some chipsets
7203 	 * which will cause the DCA tag to be cleared.
7204 	 */
7205 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7206 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7207 
7208 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7209 }
7210 
igb_update_dca(struct igb_q_vector * q_vector)7211 static void igb_update_dca(struct igb_q_vector *q_vector)
7212 {
7213 	struct igb_adapter *adapter = q_vector->adapter;
7214 	int cpu = get_cpu();
7215 
7216 	if (q_vector->cpu == cpu)
7217 		goto out_no_update;
7218 
7219 	if (q_vector->tx.ring)
7220 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7221 
7222 	if (q_vector->rx.ring)
7223 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7224 
7225 	q_vector->cpu = cpu;
7226 out_no_update:
7227 	put_cpu();
7228 }
7229 
igb_setup_dca(struct igb_adapter * adapter)7230 static void igb_setup_dca(struct igb_adapter *adapter)
7231 {
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	int i;
7234 
7235 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7236 		return;
7237 
7238 	/* Always use CB2 mode, difference is masked in the CB driver. */
7239 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7240 
7241 	for (i = 0; i < adapter->num_q_vectors; i++) {
7242 		adapter->q_vector[i]->cpu = -1;
7243 		igb_update_dca(adapter->q_vector[i]);
7244 	}
7245 }
7246 
__igb_notify_dca(struct device * dev,void * data)7247 static int __igb_notify_dca(struct device *dev, void *data)
7248 {
7249 	struct net_device *netdev = dev_get_drvdata(dev);
7250 	struct igb_adapter *adapter = netdev_priv(netdev);
7251 	struct pci_dev *pdev = adapter->pdev;
7252 	struct e1000_hw *hw = &adapter->hw;
7253 	unsigned long event = *(unsigned long *)data;
7254 
7255 	switch (event) {
7256 	case DCA_PROVIDER_ADD:
7257 		/* if already enabled, don't do it again */
7258 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7259 			break;
7260 		if (dca_add_requester(dev) == 0) {
7261 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7262 			dev_info(&pdev->dev, "DCA enabled\n");
7263 			igb_setup_dca(adapter);
7264 			break;
7265 		}
7266 		fallthrough; /* since DCA is disabled. */
7267 	case DCA_PROVIDER_REMOVE:
7268 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7269 			/* without this a class_device is left
7270 			 * hanging around in the sysfs model
7271 			 */
7272 			dca_remove_requester(dev);
7273 			dev_info(&pdev->dev, "DCA disabled\n");
7274 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7275 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7276 		}
7277 		break;
7278 	}
7279 
7280 	return 0;
7281 }
7282 
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7283 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7284 			  void *p)
7285 {
7286 	int ret_val;
7287 
7288 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7289 					 __igb_notify_dca);
7290 
7291 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7292 }
7293 #endif /* CONFIG_IGB_DCA */
7294 
7295 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7296 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7297 {
7298 	unsigned char mac_addr[ETH_ALEN];
7299 
7300 	eth_zero_addr(mac_addr);
7301 	igb_set_vf_mac(adapter, vf, mac_addr);
7302 
7303 	/* By default spoof check is enabled for all VFs */
7304 	adapter->vf_data[vf].spoofchk_enabled = true;
7305 
7306 	/* By default VFs are not trusted */
7307 	adapter->vf_data[vf].trusted = false;
7308 
7309 	return 0;
7310 }
7311 
7312 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7313 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7314 {
7315 	struct e1000_hw *hw = &adapter->hw;
7316 	u32 ping;
7317 	int i;
7318 
7319 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7320 		ping = E1000_PF_CONTROL_MSG;
7321 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7322 			ping |= E1000_VT_MSGTYPE_CTS;
7323 		igb_write_mbx(hw, &ping, 1, i);
7324 	}
7325 }
7326 
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7327 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7328 {
7329 	struct e1000_hw *hw = &adapter->hw;
7330 	u32 vmolr = rd32(E1000_VMOLR(vf));
7331 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7332 
7333 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7334 			    IGB_VF_FLAG_MULTI_PROMISC);
7335 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7336 
7337 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7338 		vmolr |= E1000_VMOLR_MPME;
7339 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7340 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7341 	} else {
7342 		/* if we have hashes and we are clearing a multicast promisc
7343 		 * flag we need to write the hashes to the MTA as this step
7344 		 * was previously skipped
7345 		 */
7346 		if (vf_data->num_vf_mc_hashes > 30) {
7347 			vmolr |= E1000_VMOLR_MPME;
7348 		} else if (vf_data->num_vf_mc_hashes) {
7349 			int j;
7350 
7351 			vmolr |= E1000_VMOLR_ROMPE;
7352 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7353 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7354 		}
7355 	}
7356 
7357 	wr32(E1000_VMOLR(vf), vmolr);
7358 
7359 	/* there are flags left unprocessed, likely not supported */
7360 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7361 		return -EINVAL;
7362 
7363 	return 0;
7364 }
7365 
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7366 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7367 				  u32 *msgbuf, u32 vf)
7368 {
7369 	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7370 	u16 *hash_list = (u16 *)&msgbuf[1];
7371 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7372 	int i;
7373 
7374 	/* salt away the number of multicast addresses assigned
7375 	 * to this VF for later use to restore when the PF multi cast
7376 	 * list changes
7377 	 */
7378 	vf_data->num_vf_mc_hashes = n;
7379 
7380 	/* only up to 30 hash values supported */
7381 	if (n > 30)
7382 		n = 30;
7383 
7384 	/* store the hashes for later use */
7385 	for (i = 0; i < n; i++)
7386 		vf_data->vf_mc_hashes[i] = hash_list[i];
7387 
7388 	/* Flush and reset the mta with the new values */
7389 	igb_set_rx_mode(adapter->netdev);
7390 
7391 	return 0;
7392 }
7393 
igb_restore_vf_multicasts(struct igb_adapter * adapter)7394 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7395 {
7396 	struct e1000_hw *hw = &adapter->hw;
7397 	struct vf_data_storage *vf_data;
7398 	int i, j;
7399 
7400 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7401 		u32 vmolr = rd32(E1000_VMOLR(i));
7402 
7403 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7404 
7405 		vf_data = &adapter->vf_data[i];
7406 
7407 		if ((vf_data->num_vf_mc_hashes > 30) ||
7408 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7409 			vmolr |= E1000_VMOLR_MPME;
7410 		} else if (vf_data->num_vf_mc_hashes) {
7411 			vmolr |= E1000_VMOLR_ROMPE;
7412 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7413 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7414 		}
7415 		wr32(E1000_VMOLR(i), vmolr);
7416 	}
7417 }
7418 
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7419 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7420 {
7421 	struct e1000_hw *hw = &adapter->hw;
7422 	u32 pool_mask, vlvf_mask, i;
7423 
7424 	/* create mask for VF and other pools */
7425 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7426 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7427 
7428 	/* drop PF from pool bits */
7429 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7430 			     adapter->vfs_allocated_count);
7431 
7432 	/* Find the vlan filter for this id */
7433 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7434 		u32 vlvf = rd32(E1000_VLVF(i));
7435 		u32 vfta_mask, vid, vfta;
7436 
7437 		/* remove the vf from the pool */
7438 		if (!(vlvf & vlvf_mask))
7439 			continue;
7440 
7441 		/* clear out bit from VLVF */
7442 		vlvf ^= vlvf_mask;
7443 
7444 		/* if other pools are present, just remove ourselves */
7445 		if (vlvf & pool_mask)
7446 			goto update_vlvfb;
7447 
7448 		/* if PF is present, leave VFTA */
7449 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7450 			goto update_vlvf;
7451 
7452 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7453 		vfta_mask = BIT(vid % 32);
7454 
7455 		/* clear bit from VFTA */
7456 		vfta = adapter->shadow_vfta[vid / 32];
7457 		if (vfta & vfta_mask)
7458 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7459 update_vlvf:
7460 		/* clear pool selection enable */
7461 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7462 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7463 		else
7464 			vlvf = 0;
7465 update_vlvfb:
7466 		/* clear pool bits */
7467 		wr32(E1000_VLVF(i), vlvf);
7468 	}
7469 }
7470 
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7471 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7472 {
7473 	u32 vlvf;
7474 	int idx;
7475 
7476 	/* short cut the special case */
7477 	if (vlan == 0)
7478 		return 0;
7479 
7480 	/* Search for the VLAN id in the VLVF entries */
7481 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7482 		vlvf = rd32(E1000_VLVF(idx));
7483 		if ((vlvf & VLAN_VID_MASK) == vlan)
7484 			break;
7485 	}
7486 
7487 	return idx;
7488 }
7489 
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7490 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7491 {
7492 	struct e1000_hw *hw = &adapter->hw;
7493 	u32 bits, pf_id;
7494 	int idx;
7495 
7496 	idx = igb_find_vlvf_entry(hw, vid);
7497 	if (!idx)
7498 		return;
7499 
7500 	/* See if any other pools are set for this VLAN filter
7501 	 * entry other than the PF.
7502 	 */
7503 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7504 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7505 	bits &= rd32(E1000_VLVF(idx));
7506 
7507 	/* Disable the filter so this falls into the default pool. */
7508 	if (!bits) {
7509 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7510 			wr32(E1000_VLVF(idx), BIT(pf_id));
7511 		else
7512 			wr32(E1000_VLVF(idx), 0);
7513 	}
7514 }
7515 
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7516 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7517 			   bool add, u32 vf)
7518 {
7519 	int pf_id = adapter->vfs_allocated_count;
7520 	struct e1000_hw *hw = &adapter->hw;
7521 	int err;
7522 
7523 	/* If VLAN overlaps with one the PF is currently monitoring make
7524 	 * sure that we are able to allocate a VLVF entry.  This may be
7525 	 * redundant but it guarantees PF will maintain visibility to
7526 	 * the VLAN.
7527 	 */
7528 	if (add && test_bit(vid, adapter->active_vlans)) {
7529 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7530 		if (err)
7531 			return err;
7532 	}
7533 
7534 	err = igb_vfta_set(hw, vid, vf, add, false);
7535 
7536 	if (add && !err)
7537 		return err;
7538 
7539 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7540 	 * we may need to drop the PF pool bit in order to allow us to free
7541 	 * up the VLVF resources.
7542 	 */
7543 	if (test_bit(vid, adapter->active_vlans) ||
7544 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7545 		igb_update_pf_vlvf(adapter, vid);
7546 
7547 	return err;
7548 }
7549 
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7550 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7551 {
7552 	struct e1000_hw *hw = &adapter->hw;
7553 
7554 	if (vid)
7555 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7556 	else
7557 		wr32(E1000_VMVIR(vf), 0);
7558 }
7559 
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7560 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7561 				u16 vlan, u8 qos)
7562 {
7563 	int err;
7564 
7565 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7566 	if (err)
7567 		return err;
7568 
7569 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7570 	igb_set_vmolr(adapter, vf, !vlan);
7571 
7572 	/* revoke access to previous VLAN */
7573 	if (vlan != adapter->vf_data[vf].pf_vlan)
7574 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7575 				false, vf);
7576 
7577 	adapter->vf_data[vf].pf_vlan = vlan;
7578 	adapter->vf_data[vf].pf_qos = qos;
7579 	igb_set_vf_vlan_strip(adapter, vf, true);
7580 	dev_info(&adapter->pdev->dev,
7581 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7582 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7583 		dev_warn(&adapter->pdev->dev,
7584 			 "The VF VLAN has been set, but the PF device is not up.\n");
7585 		dev_warn(&adapter->pdev->dev,
7586 			 "Bring the PF device up before attempting to use the VF device.\n");
7587 	}
7588 
7589 	return err;
7590 }
7591 
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7592 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7593 {
7594 	/* Restore tagless access via VLAN 0 */
7595 	igb_set_vf_vlan(adapter, 0, true, vf);
7596 
7597 	igb_set_vmvir(adapter, 0, vf);
7598 	igb_set_vmolr(adapter, vf, true);
7599 
7600 	/* Remove any PF assigned VLAN */
7601 	if (adapter->vf_data[vf].pf_vlan)
7602 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7603 				false, vf);
7604 
7605 	adapter->vf_data[vf].pf_vlan = 0;
7606 	adapter->vf_data[vf].pf_qos = 0;
7607 	igb_set_vf_vlan_strip(adapter, vf, false);
7608 
7609 	return 0;
7610 }
7611 
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7612 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7613 			       u16 vlan, u8 qos, __be16 vlan_proto)
7614 {
7615 	struct igb_adapter *adapter = netdev_priv(netdev);
7616 
7617 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7618 		return -EINVAL;
7619 
7620 	if (vlan_proto != htons(ETH_P_8021Q))
7621 		return -EPROTONOSUPPORT;
7622 
7623 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7624 			       igb_disable_port_vlan(adapter, vf);
7625 }
7626 
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7627 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7628 {
7629 	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7630 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7631 	int ret;
7632 
7633 	if (adapter->vf_data[vf].pf_vlan)
7634 		return -1;
7635 
7636 	/* VLAN 0 is a special case, don't allow it to be removed */
7637 	if (!vid && !add)
7638 		return 0;
7639 
7640 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7641 	if (!ret)
7642 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7643 	return ret;
7644 }
7645 
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7646 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7647 {
7648 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7649 
7650 	/* clear flags - except flag that indicates PF has set the MAC */
7651 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7652 	vf_data->last_nack = jiffies;
7653 
7654 	/* reset vlans for device */
7655 	igb_clear_vf_vfta(adapter, vf);
7656 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7657 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7658 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7659 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7660 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7661 
7662 	/* reset multicast table array for vf */
7663 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7664 
7665 	/* Flush and reset the mta with the new values */
7666 	igb_set_rx_mode(adapter->netdev);
7667 }
7668 
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7669 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7670 {
7671 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7672 
7673 	/* clear mac address as we were hotplug removed/added */
7674 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7675 		eth_zero_addr(vf_mac);
7676 
7677 	/* process remaining reset events */
7678 	igb_vf_reset(adapter, vf);
7679 }
7680 
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7681 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7682 {
7683 	struct e1000_hw *hw = &adapter->hw;
7684 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7685 	u32 reg, msgbuf[3] = {};
7686 	u8 *addr = (u8 *)(&msgbuf[1]);
7687 
7688 	/* process all the same items cleared in a function level reset */
7689 	igb_vf_reset(adapter, vf);
7690 
7691 	/* set vf mac address */
7692 	igb_set_vf_mac(adapter, vf, vf_mac);
7693 
7694 	/* enable transmit and receive for vf */
7695 	reg = rd32(E1000_VFTE);
7696 	wr32(E1000_VFTE, reg | BIT(vf));
7697 	reg = rd32(E1000_VFRE);
7698 	wr32(E1000_VFRE, reg | BIT(vf));
7699 
7700 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7701 
7702 	/* reply to reset with ack and vf mac address */
7703 	if (!is_zero_ether_addr(vf_mac)) {
7704 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7705 		memcpy(addr, vf_mac, ETH_ALEN);
7706 	} else {
7707 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7708 	}
7709 	igb_write_mbx(hw, msgbuf, 3, vf);
7710 }
7711 
igb_flush_mac_table(struct igb_adapter * adapter)7712 static void igb_flush_mac_table(struct igb_adapter *adapter)
7713 {
7714 	struct e1000_hw *hw = &adapter->hw;
7715 	int i;
7716 
7717 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7718 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7719 		eth_zero_addr(adapter->mac_table[i].addr);
7720 		adapter->mac_table[i].queue = 0;
7721 		igb_rar_set_index(adapter, i);
7722 	}
7723 }
7724 
igb_available_rars(struct igb_adapter * adapter,u8 queue)7725 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7726 {
7727 	struct e1000_hw *hw = &adapter->hw;
7728 	/* do not count rar entries reserved for VFs MAC addresses */
7729 	int rar_entries = hw->mac.rar_entry_count -
7730 			  adapter->vfs_allocated_count;
7731 	int i, count = 0;
7732 
7733 	for (i = 0; i < rar_entries; i++) {
7734 		/* do not count default entries */
7735 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7736 			continue;
7737 
7738 		/* do not count "in use" entries for different queues */
7739 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7740 		    (adapter->mac_table[i].queue != queue))
7741 			continue;
7742 
7743 		count++;
7744 	}
7745 
7746 	return count;
7747 }
7748 
7749 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7750 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7751 {
7752 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7753 
7754 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7755 	mac_table->queue = adapter->vfs_allocated_count;
7756 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7757 
7758 	igb_rar_set_index(adapter, 0);
7759 }
7760 
7761 /* If the filter to be added and an already existing filter express
7762  * the same address and address type, it should be possible to only
7763  * override the other configurations, for example the queue to steer
7764  * traffic.
7765  */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7766 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7767 				      const u8 *addr, const u8 flags)
7768 {
7769 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7770 		return true;
7771 
7772 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7773 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7774 		return false;
7775 
7776 	if (!ether_addr_equal(addr, entry->addr))
7777 		return false;
7778 
7779 	return true;
7780 }
7781 
7782 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7783  * 'flags' is used to indicate what kind of match is made, match is by
7784  * default for the destination address, if matching by source address
7785  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7786  */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7787 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7788 				    const u8 *addr, const u8 queue,
7789 				    const u8 flags)
7790 {
7791 	struct e1000_hw *hw = &adapter->hw;
7792 	int rar_entries = hw->mac.rar_entry_count -
7793 			  adapter->vfs_allocated_count;
7794 	int i;
7795 
7796 	if (is_zero_ether_addr(addr))
7797 		return -EINVAL;
7798 
7799 	/* Search for the first empty entry in the MAC table.
7800 	 * Do not touch entries at the end of the table reserved for the VF MAC
7801 	 * addresses.
7802 	 */
7803 	for (i = 0; i < rar_entries; i++) {
7804 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7805 					       addr, flags))
7806 			continue;
7807 
7808 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7809 		adapter->mac_table[i].queue = queue;
7810 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7811 
7812 		igb_rar_set_index(adapter, i);
7813 		return i;
7814 	}
7815 
7816 	return -ENOSPC;
7817 }
7818 
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7819 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7820 			      const u8 queue)
7821 {
7822 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7823 }
7824 
7825 /* Remove a MAC filter for 'addr' directing matching traffic to
7826  * 'queue', 'flags' is used to indicate what kind of match need to be
7827  * removed, match is by default for the destination address, if
7828  * matching by source address is to be removed the flag
7829  * IGB_MAC_STATE_SRC_ADDR can be used.
7830  */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7831 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7832 				    const u8 *addr, const u8 queue,
7833 				    const u8 flags)
7834 {
7835 	struct e1000_hw *hw = &adapter->hw;
7836 	int rar_entries = hw->mac.rar_entry_count -
7837 			  adapter->vfs_allocated_count;
7838 	int i;
7839 
7840 	if (is_zero_ether_addr(addr))
7841 		return -EINVAL;
7842 
7843 	/* Search for matching entry in the MAC table based on given address
7844 	 * and queue. Do not touch entries at the end of the table reserved
7845 	 * for the VF MAC addresses.
7846 	 */
7847 	for (i = 0; i < rar_entries; i++) {
7848 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7849 			continue;
7850 		if ((adapter->mac_table[i].state & flags) != flags)
7851 			continue;
7852 		if (adapter->mac_table[i].queue != queue)
7853 			continue;
7854 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7855 			continue;
7856 
7857 		/* When a filter for the default address is "deleted",
7858 		 * we return it to its initial configuration
7859 		 */
7860 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7861 			adapter->mac_table[i].state =
7862 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7863 			adapter->mac_table[i].queue =
7864 				adapter->vfs_allocated_count;
7865 		} else {
7866 			adapter->mac_table[i].state = 0;
7867 			adapter->mac_table[i].queue = 0;
7868 			eth_zero_addr(adapter->mac_table[i].addr);
7869 		}
7870 
7871 		igb_rar_set_index(adapter, i);
7872 		return 0;
7873 	}
7874 
7875 	return -ENOENT;
7876 }
7877 
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7878 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7879 			      const u8 queue)
7880 {
7881 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7882 }
7883 
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7884 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7885 				const u8 *addr, u8 queue, u8 flags)
7886 {
7887 	struct e1000_hw *hw = &adapter->hw;
7888 
7889 	/* In theory, this should be supported on 82575 as well, but
7890 	 * that part wasn't easily accessible during development.
7891 	 */
7892 	if (hw->mac.type != e1000_i210)
7893 		return -EOPNOTSUPP;
7894 
7895 	return igb_add_mac_filter_flags(adapter, addr, queue,
7896 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7897 }
7898 
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7899 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7900 				const u8 *addr, u8 queue, u8 flags)
7901 {
7902 	return igb_del_mac_filter_flags(adapter, addr, queue,
7903 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7904 }
7905 
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7906 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7907 {
7908 	struct igb_adapter *adapter = netdev_priv(netdev);
7909 	int ret;
7910 
7911 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7912 
7913 	return min_t(int, ret, 0);
7914 }
7915 
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7916 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7917 {
7918 	struct igb_adapter *adapter = netdev_priv(netdev);
7919 
7920 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7921 
7922 	return 0;
7923 }
7924 
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7925 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7926 				 const u32 info, const u8 *addr)
7927 {
7928 	struct pci_dev *pdev = adapter->pdev;
7929 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7930 	struct vf_mac_filter *entry;
7931 	bool found = false;
7932 	int ret = 0;
7933 
7934 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7935 	    !vf_data->trusted) {
7936 		dev_warn(&pdev->dev,
7937 			 "VF %d requested MAC filter but is administratively denied\n",
7938 			  vf);
7939 		return -EINVAL;
7940 	}
7941 	if (!is_valid_ether_addr(addr)) {
7942 		dev_warn(&pdev->dev,
7943 			 "VF %d attempted to set invalid MAC filter\n",
7944 			  vf);
7945 		return -EINVAL;
7946 	}
7947 
7948 	switch (info) {
7949 	case E1000_VF_MAC_FILTER_CLR:
7950 		/* remove all unicast MAC filters related to the current VF */
7951 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7952 			if (entry->vf == vf) {
7953 				entry->vf = -1;
7954 				entry->free = true;
7955 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7956 			}
7957 		}
7958 		break;
7959 	case E1000_VF_MAC_FILTER_ADD:
7960 		/* try to find empty slot in the list */
7961 		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7962 			if (entry->free) {
7963 				found = true;
7964 				break;
7965 			}
7966 		}
7967 
7968 		if (found) {
7969 			entry->free = false;
7970 			entry->vf = vf;
7971 			ether_addr_copy(entry->vf_mac, addr);
7972 
7973 			ret = igb_add_mac_filter(adapter, addr, vf);
7974 			ret = min_t(int, ret, 0);
7975 		} else {
7976 			ret = -ENOSPC;
7977 		}
7978 
7979 		if (ret == -ENOSPC)
7980 			dev_warn(&pdev->dev,
7981 				 "VF %d has requested MAC filter but there is no space for it\n",
7982 				 vf);
7983 		break;
7984 	default:
7985 		ret = -EINVAL;
7986 		break;
7987 	}
7988 
7989 	return ret;
7990 }
7991 
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7992 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7993 {
7994 	struct pci_dev *pdev = adapter->pdev;
7995 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7996 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7997 
7998 	/* The VF MAC Address is stored in a packed array of bytes
7999 	 * starting at the second 32 bit word of the msg array
8000 	 */
8001 	unsigned char *addr = (unsigned char *)&msg[1];
8002 	int ret = 0;
8003 
8004 	if (!info) {
8005 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8006 		    !vf_data->trusted) {
8007 			dev_warn(&pdev->dev,
8008 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8009 				 vf);
8010 			return -EINVAL;
8011 		}
8012 
8013 		if (!is_valid_ether_addr(addr)) {
8014 			dev_warn(&pdev->dev,
8015 				 "VF %d attempted to set invalid MAC\n",
8016 				 vf);
8017 			return -EINVAL;
8018 		}
8019 
8020 		ret = igb_set_vf_mac(adapter, vf, addr);
8021 	} else {
8022 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8023 	}
8024 
8025 	return ret;
8026 }
8027 
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)8028 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8029 {
8030 	struct e1000_hw *hw = &adapter->hw;
8031 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8032 	u32 msg = E1000_VT_MSGTYPE_NACK;
8033 
8034 	/* if device isn't clear to send it shouldn't be reading either */
8035 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8036 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8037 		igb_write_mbx(hw, &msg, 1, vf);
8038 		vf_data->last_nack = jiffies;
8039 	}
8040 }
8041 
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)8042 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8043 {
8044 	struct pci_dev *pdev = adapter->pdev;
8045 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
8046 	struct e1000_hw *hw = &adapter->hw;
8047 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8048 	s32 retval;
8049 
8050 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8051 
8052 	if (retval) {
8053 		/* if receive failed revoke VF CTS stats and restart init */
8054 		dev_err(&pdev->dev, "Error receiving message from VF\n");
8055 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
8056 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8057 			goto unlock;
8058 		goto out;
8059 	}
8060 
8061 	/* this is a message we already processed, do nothing */
8062 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8063 		goto unlock;
8064 
8065 	/* until the vf completes a reset it should not be
8066 	 * allowed to start any configuration.
8067 	 */
8068 	if (msgbuf[0] == E1000_VF_RESET) {
8069 		/* unlocks mailbox */
8070 		igb_vf_reset_msg(adapter, vf);
8071 		return;
8072 	}
8073 
8074 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8075 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8076 			goto unlock;
8077 		retval = -1;
8078 		goto out;
8079 	}
8080 
8081 	switch ((msgbuf[0] & 0xFFFF)) {
8082 	case E1000_VF_SET_MAC_ADDR:
8083 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8084 		break;
8085 	case E1000_VF_SET_PROMISC:
8086 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8087 		break;
8088 	case E1000_VF_SET_MULTICAST:
8089 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8090 		break;
8091 	case E1000_VF_SET_LPE:
8092 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8093 		break;
8094 	case E1000_VF_SET_VLAN:
8095 		retval = -1;
8096 		if (vf_data->pf_vlan)
8097 			dev_warn(&pdev->dev,
8098 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8099 				 vf);
8100 		else
8101 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8102 		break;
8103 	default:
8104 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8105 		retval = -1;
8106 		break;
8107 	}
8108 
8109 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8110 out:
8111 	/* notify the VF of the results of what it sent us */
8112 	if (retval)
8113 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8114 	else
8115 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8116 
8117 	/* unlocks mailbox */
8118 	igb_write_mbx(hw, msgbuf, 1, vf);
8119 	return;
8120 
8121 unlock:
8122 	igb_unlock_mbx(hw, vf);
8123 }
8124 
igb_msg_task(struct igb_adapter * adapter)8125 static void igb_msg_task(struct igb_adapter *adapter)
8126 {
8127 	struct e1000_hw *hw = &adapter->hw;
8128 	unsigned long flags;
8129 	u32 vf;
8130 
8131 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8132 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8133 		/* process any reset requests */
8134 		if (!igb_check_for_rst(hw, vf))
8135 			igb_vf_reset_event(adapter, vf);
8136 
8137 		/* process any messages pending */
8138 		if (!igb_check_for_msg(hw, vf))
8139 			igb_rcv_msg_from_vf(adapter, vf);
8140 
8141 		/* process any acks */
8142 		if (!igb_check_for_ack(hw, vf))
8143 			igb_rcv_ack_from_vf(adapter, vf);
8144 	}
8145 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8146 }
8147 
8148 /**
8149  *  igb_set_uta - Set unicast filter table address
8150  *  @adapter: board private structure
8151  *  @set: boolean indicating if we are setting or clearing bits
8152  *
8153  *  The unicast table address is a register array of 32-bit registers.
8154  *  The table is meant to be used in a way similar to how the MTA is used
8155  *  however due to certain limitations in the hardware it is necessary to
8156  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8157  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8158  **/
igb_set_uta(struct igb_adapter * adapter,bool set)8159 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8160 {
8161 	struct e1000_hw *hw = &adapter->hw;
8162 	u32 uta = set ? ~0 : 0;
8163 	int i;
8164 
8165 	/* we only need to do this if VMDq is enabled */
8166 	if (!adapter->vfs_allocated_count)
8167 		return;
8168 
8169 	for (i = hw->mac.uta_reg_count; i--;)
8170 		array_wr32(E1000_UTA, i, uta);
8171 }
8172 
8173 /**
8174  *  igb_intr_msi - Interrupt Handler
8175  *  @irq: interrupt number
8176  *  @data: pointer to a network interface device structure
8177  **/
igb_intr_msi(int irq,void * data)8178 static irqreturn_t igb_intr_msi(int irq, void *data)
8179 {
8180 	struct igb_adapter *adapter = data;
8181 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8182 	struct e1000_hw *hw = &adapter->hw;
8183 	/* read ICR disables interrupts using IAM */
8184 	u32 icr = rd32(E1000_ICR);
8185 
8186 	igb_write_itr(q_vector);
8187 
8188 	if (icr & E1000_ICR_DRSTA)
8189 		schedule_work(&adapter->reset_task);
8190 
8191 	if (icr & E1000_ICR_DOUTSYNC) {
8192 		/* HW is reporting DMA is out of sync */
8193 		adapter->stats.doosync++;
8194 	}
8195 
8196 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8197 		hw->mac.get_link_status = 1;
8198 		if (!test_bit(__IGB_DOWN, &adapter->state))
8199 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8200 	}
8201 
8202 	if (icr & E1000_ICR_TS)
8203 		igb_tsync_interrupt(adapter);
8204 
8205 	napi_schedule(&q_vector->napi);
8206 
8207 	return IRQ_HANDLED;
8208 }
8209 
8210 /**
8211  *  igb_intr - Legacy Interrupt Handler
8212  *  @irq: interrupt number
8213  *  @data: pointer to a network interface device structure
8214  **/
igb_intr(int irq,void * data)8215 static irqreturn_t igb_intr(int irq, void *data)
8216 {
8217 	struct igb_adapter *adapter = data;
8218 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8219 	struct e1000_hw *hw = &adapter->hw;
8220 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8221 	 * need for the IMC write
8222 	 */
8223 	u32 icr = rd32(E1000_ICR);
8224 
8225 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8226 	 * not set, then the adapter didn't send an interrupt
8227 	 */
8228 	if (!(icr & E1000_ICR_INT_ASSERTED))
8229 		return IRQ_NONE;
8230 
8231 	igb_write_itr(q_vector);
8232 
8233 	if (icr & E1000_ICR_DRSTA)
8234 		schedule_work(&adapter->reset_task);
8235 
8236 	if (icr & E1000_ICR_DOUTSYNC) {
8237 		/* HW is reporting DMA is out of sync */
8238 		adapter->stats.doosync++;
8239 	}
8240 
8241 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8242 		hw->mac.get_link_status = 1;
8243 		/* guard against interrupt when we're going down */
8244 		if (!test_bit(__IGB_DOWN, &adapter->state))
8245 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8246 	}
8247 
8248 	if (icr & E1000_ICR_TS)
8249 		igb_tsync_interrupt(adapter);
8250 
8251 	napi_schedule(&q_vector->napi);
8252 
8253 	return IRQ_HANDLED;
8254 }
8255 
igb_ring_irq_enable(struct igb_q_vector * q_vector)8256 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8257 {
8258 	struct igb_adapter *adapter = q_vector->adapter;
8259 	struct e1000_hw *hw = &adapter->hw;
8260 
8261 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8262 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8263 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8264 			igb_set_itr(q_vector);
8265 		else
8266 			igb_update_ring_itr(q_vector);
8267 	}
8268 
8269 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8270 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8271 			wr32(E1000_EIMS, q_vector->eims_value);
8272 		else
8273 			igb_irq_enable(adapter);
8274 	}
8275 }
8276 
8277 /**
8278  *  igb_poll - NAPI Rx polling callback
8279  *  @napi: napi polling structure
8280  *  @budget: count of how many packets we should handle
8281  **/
igb_poll(struct napi_struct * napi,int budget)8282 static int igb_poll(struct napi_struct *napi, int budget)
8283 {
8284 	struct igb_q_vector *q_vector = container_of(napi,
8285 						     struct igb_q_vector,
8286 						     napi);
8287 	struct xsk_buff_pool *xsk_pool;
8288 	bool clean_complete = true;
8289 	int work_done = 0;
8290 
8291 #ifdef CONFIG_IGB_DCA
8292 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8293 		igb_update_dca(q_vector);
8294 #endif
8295 	if (q_vector->tx.ring)
8296 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8297 
8298 	if (q_vector->rx.ring) {
8299 		int cleaned;
8300 
8301 		xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8302 		cleaned = xsk_pool ?
8303 			igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8304 			igb_clean_rx_irq(q_vector, budget);
8305 
8306 		work_done += cleaned;
8307 		if (cleaned >= budget)
8308 			clean_complete = false;
8309 	}
8310 
8311 	/* If all work not completed, return budget and keep polling */
8312 	if (!clean_complete)
8313 		return budget;
8314 
8315 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8316 	 * poll us due to busy-polling
8317 	 */
8318 	if (likely(napi_complete_done(napi, work_done)))
8319 		igb_ring_irq_enable(q_vector);
8320 
8321 	return work_done;
8322 }
8323 
8324 /**
8325  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8326  *  @q_vector: pointer to q_vector containing needed info
8327  *  @napi_budget: Used to determine if we are in netpoll
8328  *
8329  *  returns true if ring is completely cleaned
8330  **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8331 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8332 {
8333 	unsigned int total_bytes = 0, total_packets = 0;
8334 	struct igb_adapter *adapter = q_vector->adapter;
8335 	unsigned int budget = q_vector->tx.work_limit;
8336 	struct igb_ring *tx_ring = q_vector->tx.ring;
8337 	unsigned int i = tx_ring->next_to_clean;
8338 	union e1000_adv_tx_desc *tx_desc;
8339 	struct igb_tx_buffer *tx_buffer;
8340 	struct xsk_buff_pool *xsk_pool;
8341 	int cpu = smp_processor_id();
8342 	bool xsk_xmit_done = true;
8343 	struct netdev_queue *nq;
8344 	u32 xsk_frames = 0;
8345 
8346 	if (test_bit(__IGB_DOWN, &adapter->state))
8347 		return true;
8348 
8349 	tx_buffer = &tx_ring->tx_buffer_info[i];
8350 	tx_desc = IGB_TX_DESC(tx_ring, i);
8351 	i -= tx_ring->count;
8352 
8353 	do {
8354 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8355 
8356 		/* if next_to_watch is not set then there is no work pending */
8357 		if (!eop_desc)
8358 			break;
8359 
8360 		/* prevent any other reads prior to eop_desc */
8361 		smp_rmb();
8362 
8363 		/* if DD is not set pending work has not been completed */
8364 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8365 			break;
8366 
8367 		/* clear next_to_watch to prevent false hangs */
8368 		tx_buffer->next_to_watch = NULL;
8369 
8370 		/* update the statistics for this packet */
8371 		total_bytes += tx_buffer->bytecount;
8372 		total_packets += tx_buffer->gso_segs;
8373 
8374 		/* free the skb */
8375 		if (tx_buffer->type == IGB_TYPE_SKB) {
8376 			napi_consume_skb(tx_buffer->skb, napi_budget);
8377 		} else if (tx_buffer->type == IGB_TYPE_XDP) {
8378 			xdp_return_frame(tx_buffer->xdpf);
8379 		} else if (tx_buffer->type == IGB_TYPE_XSK) {
8380 			xsk_frames++;
8381 			goto skip_for_xsk;
8382 		}
8383 
8384 		/* unmap skb header data */
8385 		dma_unmap_single(tx_ring->dev,
8386 				 dma_unmap_addr(tx_buffer, dma),
8387 				 dma_unmap_len(tx_buffer, len),
8388 				 DMA_TO_DEVICE);
8389 
8390 		/* clear tx_buffer data */
8391 		dma_unmap_len_set(tx_buffer, len, 0);
8392 
8393 		/* clear last DMA location and unmap remaining buffers */
8394 		while (tx_desc != eop_desc) {
8395 			tx_buffer++;
8396 			tx_desc++;
8397 			i++;
8398 			if (unlikely(!i)) {
8399 				i -= tx_ring->count;
8400 				tx_buffer = tx_ring->tx_buffer_info;
8401 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8402 			}
8403 
8404 			/* unmap any remaining paged data */
8405 			if (dma_unmap_len(tx_buffer, len)) {
8406 				dma_unmap_page(tx_ring->dev,
8407 					       dma_unmap_addr(tx_buffer, dma),
8408 					       dma_unmap_len(tx_buffer, len),
8409 					       DMA_TO_DEVICE);
8410 				dma_unmap_len_set(tx_buffer, len, 0);
8411 			}
8412 		}
8413 
8414 skip_for_xsk:
8415 		/* move us one more past the eop_desc for start of next pkt */
8416 		tx_buffer++;
8417 		tx_desc++;
8418 		i++;
8419 		if (unlikely(!i)) {
8420 			i -= tx_ring->count;
8421 			tx_buffer = tx_ring->tx_buffer_info;
8422 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8423 		}
8424 
8425 		/* issue prefetch for next Tx descriptor */
8426 		prefetch(tx_desc);
8427 
8428 		/* update budget accounting */
8429 		budget--;
8430 	} while (likely(budget));
8431 
8432 	netdev_tx_completed_queue(txring_txq(tx_ring),
8433 				  total_packets, total_bytes);
8434 	i += tx_ring->count;
8435 	tx_ring->next_to_clean = i;
8436 	u64_stats_update_begin(&tx_ring->tx_syncp);
8437 	tx_ring->tx_stats.bytes += total_bytes;
8438 	tx_ring->tx_stats.packets += total_packets;
8439 	u64_stats_update_end(&tx_ring->tx_syncp);
8440 	q_vector->tx.total_bytes += total_bytes;
8441 	q_vector->tx.total_packets += total_packets;
8442 
8443 	xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8444 	if (xsk_pool) {
8445 		if (xsk_frames)
8446 			xsk_tx_completed(xsk_pool, xsk_frames);
8447 		if (xsk_uses_need_wakeup(xsk_pool))
8448 			xsk_set_tx_need_wakeup(xsk_pool);
8449 
8450 		nq = txring_txq(tx_ring);
8451 		__netif_tx_lock(nq, cpu);
8452 		/* Avoid transmit queue timeout since we share it with the slow path */
8453 		txq_trans_cond_update(nq);
8454 		xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8455 		__netif_tx_unlock(nq);
8456 	}
8457 
8458 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8459 		struct e1000_hw *hw = &adapter->hw;
8460 
8461 		/* Detect a transmit hang in hardware, this serializes the
8462 		 * check with the clearing of time_stamp and movement of i
8463 		 */
8464 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8465 		if (tx_buffer->next_to_watch &&
8466 		    time_after(jiffies, tx_buffer->time_stamp +
8467 			       (adapter->tx_timeout_factor * HZ)) &&
8468 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8469 
8470 			/* detected Tx unit hang */
8471 			dev_err(tx_ring->dev,
8472 				"Detected Tx Unit Hang\n"
8473 				"  Tx Queue             <%d>\n"
8474 				"  TDH                  <%x>\n"
8475 				"  TDT                  <%x>\n"
8476 				"  next_to_use          <%x>\n"
8477 				"  next_to_clean        <%x>\n"
8478 				"buffer_info[next_to_clean]\n"
8479 				"  time_stamp           <%lx>\n"
8480 				"  next_to_watch        <%p>\n"
8481 				"  jiffies              <%lx>\n"
8482 				"  desc.status          <%x>\n",
8483 				tx_ring->queue_index,
8484 				rd32(E1000_TDH(tx_ring->reg_idx)),
8485 				readl(tx_ring->tail),
8486 				tx_ring->next_to_use,
8487 				tx_ring->next_to_clean,
8488 				tx_buffer->time_stamp,
8489 				tx_buffer->next_to_watch,
8490 				jiffies,
8491 				tx_buffer->next_to_watch->wb.status);
8492 			netif_stop_subqueue(tx_ring->netdev,
8493 					    tx_ring->queue_index);
8494 
8495 			/* we are about to reset, no point in enabling stuff */
8496 			return true;
8497 		}
8498 	}
8499 
8500 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8501 	if (unlikely(total_packets &&
8502 	    netif_carrier_ok(tx_ring->netdev) &&
8503 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8504 		/* Make sure that anybody stopping the queue after this
8505 		 * sees the new next_to_clean.
8506 		 */
8507 		smp_mb();
8508 		if (__netif_subqueue_stopped(tx_ring->netdev,
8509 					     tx_ring->queue_index) &&
8510 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8511 			netif_wake_subqueue(tx_ring->netdev,
8512 					    tx_ring->queue_index);
8513 
8514 			u64_stats_update_begin(&tx_ring->tx_syncp);
8515 			tx_ring->tx_stats.restart_queue++;
8516 			u64_stats_update_end(&tx_ring->tx_syncp);
8517 		}
8518 	}
8519 
8520 	return !!budget && xsk_xmit_done;
8521 }
8522 
8523 /**
8524  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8525  *  @rx_ring: rx descriptor ring to store buffers on
8526  *  @old_buff: donor buffer to have page reused
8527  *
8528  *  Synchronizes page for reuse by the adapter
8529  **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8530 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8531 			      struct igb_rx_buffer *old_buff)
8532 {
8533 	struct igb_rx_buffer *new_buff;
8534 	u16 nta = rx_ring->next_to_alloc;
8535 
8536 	new_buff = &rx_ring->rx_buffer_info[nta];
8537 
8538 	/* update, and store next to alloc */
8539 	nta++;
8540 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8541 
8542 	/* Transfer page from old buffer to new buffer.
8543 	 * Move each member individually to avoid possible store
8544 	 * forwarding stalls.
8545 	 */
8546 	new_buff->dma		= old_buff->dma;
8547 	new_buff->page		= old_buff->page;
8548 	new_buff->page_offset	= old_buff->page_offset;
8549 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8550 }
8551 
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8552 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8553 				  int rx_buf_pgcnt)
8554 {
8555 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8556 	struct page *page = rx_buffer->page;
8557 
8558 	/* avoid re-using remote and pfmemalloc pages */
8559 	if (!dev_page_is_reusable(page))
8560 		return false;
8561 
8562 #if (PAGE_SIZE < 8192)
8563 	/* if we are only owner of page we can reuse it */
8564 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8565 		return false;
8566 #else
8567 #define IGB_LAST_OFFSET \
8568 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8569 
8570 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8571 		return false;
8572 #endif
8573 
8574 	/* If we have drained the page fragment pool we need to update
8575 	 * the pagecnt_bias and page count so that we fully restock the
8576 	 * number of references the driver holds.
8577 	 */
8578 	if (unlikely(pagecnt_bias == 1)) {
8579 		page_ref_add(page, USHRT_MAX - 1);
8580 		rx_buffer->pagecnt_bias = USHRT_MAX;
8581 	}
8582 
8583 	return true;
8584 }
8585 
8586 /**
8587  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8588  *  @rx_ring: rx descriptor ring to transact packets on
8589  *  @rx_buffer: buffer containing page to add
8590  *  @skb: sk_buff to place the data into
8591  *  @size: size of buffer to be added
8592  *
8593  *  This function will add the data contained in rx_buffer->page to the skb.
8594  **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8595 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8596 			    struct igb_rx_buffer *rx_buffer,
8597 			    struct sk_buff *skb,
8598 			    unsigned int size)
8599 {
8600 #if (PAGE_SIZE < 8192)
8601 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8602 #else
8603 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8604 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8605 				SKB_DATA_ALIGN(size);
8606 #endif
8607 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8608 			rx_buffer->page_offset, size, truesize);
8609 #if (PAGE_SIZE < 8192)
8610 	rx_buffer->page_offset ^= truesize;
8611 #else
8612 	rx_buffer->page_offset += truesize;
8613 #endif
8614 }
8615 
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8616 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8617 					 struct igb_rx_buffer *rx_buffer,
8618 					 struct xdp_buff *xdp,
8619 					 ktime_t timestamp)
8620 {
8621 #if (PAGE_SIZE < 8192)
8622 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8623 #else
8624 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8625 					       xdp->data_hard_start);
8626 #endif
8627 	unsigned int size = xdp->data_end - xdp->data;
8628 	unsigned int headlen;
8629 	struct sk_buff *skb;
8630 
8631 	/* prefetch first cache line of first page */
8632 	net_prefetch(xdp->data);
8633 
8634 	/* allocate a skb to store the frags */
8635 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8636 	if (unlikely(!skb))
8637 		return NULL;
8638 
8639 	if (timestamp)
8640 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8641 
8642 	/* Determine available headroom for copy */
8643 	headlen = size;
8644 	if (headlen > IGB_RX_HDR_LEN)
8645 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8646 
8647 	/* align pull length to size of long to optimize memcpy performance */
8648 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8649 
8650 	/* update all of the pointers */
8651 	size -= headlen;
8652 	if (size) {
8653 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8654 				(xdp->data + headlen) - page_address(rx_buffer->page),
8655 				size, truesize);
8656 #if (PAGE_SIZE < 8192)
8657 		rx_buffer->page_offset ^= truesize;
8658 #else
8659 		rx_buffer->page_offset += truesize;
8660 #endif
8661 	} else {
8662 		rx_buffer->pagecnt_bias++;
8663 	}
8664 
8665 	return skb;
8666 }
8667 
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8668 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8669 				     struct igb_rx_buffer *rx_buffer,
8670 				     struct xdp_buff *xdp,
8671 				     ktime_t timestamp)
8672 {
8673 #if (PAGE_SIZE < 8192)
8674 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8675 #else
8676 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8677 				SKB_DATA_ALIGN(xdp->data_end -
8678 					       xdp->data_hard_start);
8679 #endif
8680 	unsigned int metasize = xdp->data - xdp->data_meta;
8681 	struct sk_buff *skb;
8682 
8683 	/* prefetch first cache line of first page */
8684 	net_prefetch(xdp->data_meta);
8685 
8686 	/* build an skb around the page buffer */
8687 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8688 	if (unlikely(!skb))
8689 		return NULL;
8690 
8691 	/* update pointers within the skb to store the data */
8692 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8693 	__skb_put(skb, xdp->data_end - xdp->data);
8694 
8695 	if (metasize)
8696 		skb_metadata_set(skb, metasize);
8697 
8698 	if (timestamp)
8699 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8700 
8701 	/* update buffer offset */
8702 #if (PAGE_SIZE < 8192)
8703 	rx_buffer->page_offset ^= truesize;
8704 #else
8705 	rx_buffer->page_offset += truesize;
8706 #endif
8707 
8708 	return skb;
8709 }
8710 
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8711 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8712 		       struct xdp_buff *xdp)
8713 {
8714 	int err, result = IGB_XDP_PASS;
8715 	struct bpf_prog *xdp_prog;
8716 	u32 act;
8717 
8718 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8719 
8720 	if (!xdp_prog)
8721 		goto xdp_out;
8722 
8723 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8724 
8725 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8726 	switch (act) {
8727 	case XDP_PASS:
8728 		break;
8729 	case XDP_TX:
8730 		result = igb_xdp_xmit_back(adapter, xdp);
8731 		if (result == IGB_XDP_CONSUMED)
8732 			goto out_failure;
8733 		break;
8734 	case XDP_REDIRECT:
8735 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8736 		if (err)
8737 			goto out_failure;
8738 		result = IGB_XDP_REDIR;
8739 		break;
8740 	default:
8741 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8742 		fallthrough;
8743 	case XDP_ABORTED:
8744 out_failure:
8745 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8746 		fallthrough;
8747 	case XDP_DROP:
8748 		result = IGB_XDP_CONSUMED;
8749 		break;
8750 	}
8751 xdp_out:
8752 	return result;
8753 }
8754 
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8755 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8756 					  unsigned int size)
8757 {
8758 	unsigned int truesize;
8759 
8760 #if (PAGE_SIZE < 8192)
8761 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8762 #else
8763 	truesize = ring_uses_build_skb(rx_ring) ?
8764 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8765 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8766 		SKB_DATA_ALIGN(size);
8767 #endif
8768 	return truesize;
8769 }
8770 
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8771 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8772 			       struct igb_rx_buffer *rx_buffer,
8773 			       unsigned int size)
8774 {
8775 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8776 #if (PAGE_SIZE < 8192)
8777 	rx_buffer->page_offset ^= truesize;
8778 #else
8779 	rx_buffer->page_offset += truesize;
8780 #endif
8781 }
8782 
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8783 static inline void igb_rx_checksum(struct igb_ring *ring,
8784 				   union e1000_adv_rx_desc *rx_desc,
8785 				   struct sk_buff *skb)
8786 {
8787 	skb_checksum_none_assert(skb);
8788 
8789 	/* Ignore Checksum bit is set */
8790 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8791 		return;
8792 
8793 	/* Rx checksum disabled via ethtool */
8794 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8795 		return;
8796 
8797 	/* TCP/UDP checksum error bit is set */
8798 	if (igb_test_staterr(rx_desc,
8799 			     E1000_RXDEXT_STATERR_TCPE |
8800 			     E1000_RXDEXT_STATERR_IPE)) {
8801 		/* work around errata with sctp packets where the TCPE aka
8802 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8803 		 * packets, (aka let the stack check the crc32c)
8804 		 */
8805 		if (!((skb->len == 60) &&
8806 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8807 			u64_stats_update_begin(&ring->rx_syncp);
8808 			ring->rx_stats.csum_err++;
8809 			u64_stats_update_end(&ring->rx_syncp);
8810 		}
8811 		/* let the stack verify checksum errors */
8812 		return;
8813 	}
8814 	/* It must be a TCP or UDP packet with a valid checksum */
8815 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8816 				      E1000_RXD_STAT_UDPCS))
8817 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8818 
8819 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8820 		le32_to_cpu(rx_desc->wb.upper.status_error));
8821 }
8822 
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8823 static inline void igb_rx_hash(struct igb_ring *ring,
8824 			       union e1000_adv_rx_desc *rx_desc,
8825 			       struct sk_buff *skb)
8826 {
8827 	if (ring->netdev->features & NETIF_F_RXHASH)
8828 		skb_set_hash(skb,
8829 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8830 			     PKT_HASH_TYPE_L3);
8831 }
8832 
8833 /**
8834  *  igb_is_non_eop - process handling of non-EOP buffers
8835  *  @rx_ring: Rx ring being processed
8836  *  @rx_desc: Rx descriptor for current buffer
8837  *
8838  *  This function updates next to clean.  If the buffer is an EOP buffer
8839  *  this function exits returning false, otherwise it will place the
8840  *  sk_buff in the next buffer to be chained and return true indicating
8841  *  that this is in fact a non-EOP buffer.
8842  **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8843 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8844 			   union e1000_adv_rx_desc *rx_desc)
8845 {
8846 	u32 ntc = rx_ring->next_to_clean + 1;
8847 
8848 	/* fetch, update, and store next to clean */
8849 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8850 	rx_ring->next_to_clean = ntc;
8851 
8852 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8853 
8854 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8855 		return false;
8856 
8857 	return true;
8858 }
8859 
8860 /**
8861  *  igb_cleanup_headers - Correct corrupted or empty headers
8862  *  @rx_ring: rx descriptor ring packet is being transacted on
8863  *  @rx_desc: pointer to the EOP Rx descriptor
8864  *  @skb: pointer to current skb being fixed
8865  *
8866  *  Address the case where we are pulling data in on pages only
8867  *  and as such no data is present in the skb header.
8868  *
8869  *  In addition if skb is not at least 60 bytes we need to pad it so that
8870  *  it is large enough to qualify as a valid Ethernet frame.
8871  *
8872  *  Returns true if an error was encountered and skb was freed.
8873  **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8874 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8875 				union e1000_adv_rx_desc *rx_desc,
8876 				struct sk_buff *skb)
8877 {
8878 	if (unlikely((igb_test_staterr(rx_desc,
8879 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8880 		struct net_device *netdev = rx_ring->netdev;
8881 		if (!(netdev->features & NETIF_F_RXALL)) {
8882 			dev_kfree_skb_any(skb);
8883 			return true;
8884 		}
8885 	}
8886 
8887 	/* if eth_skb_pad returns an error the skb was freed */
8888 	if (eth_skb_pad(skb))
8889 		return true;
8890 
8891 	return false;
8892 }
8893 
8894 /**
8895  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8896  *  @rx_ring: rx descriptor ring packet is being transacted on
8897  *  @rx_desc: pointer to the EOP Rx descriptor
8898  *  @skb: pointer to current skb being populated
8899  *
8900  *  This function checks the ring, descriptor, and packet information in
8901  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8902  *  other fields within the skb.
8903  **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8904 void igb_process_skb_fields(struct igb_ring *rx_ring,
8905 			    union e1000_adv_rx_desc *rx_desc,
8906 			    struct sk_buff *skb)
8907 {
8908 	struct net_device *dev = rx_ring->netdev;
8909 
8910 	igb_rx_hash(rx_ring, rx_desc, skb);
8911 
8912 	igb_rx_checksum(rx_ring, rx_desc, skb);
8913 
8914 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8915 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8916 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8917 
8918 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8919 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8920 		u16 vid;
8921 
8922 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8923 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8924 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8925 		else
8926 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8927 
8928 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8929 	}
8930 
8931 	skb_record_rx_queue(skb, rx_ring->queue_index);
8932 
8933 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8934 }
8935 
igb_rx_offset(struct igb_ring * rx_ring)8936 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8937 {
8938 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8939 }
8940 
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8941 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8942 					       const unsigned int size, int *rx_buf_pgcnt)
8943 {
8944 	struct igb_rx_buffer *rx_buffer;
8945 
8946 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8947 	*rx_buf_pgcnt =
8948 #if (PAGE_SIZE < 8192)
8949 		page_count(rx_buffer->page);
8950 #else
8951 		0;
8952 #endif
8953 	prefetchw(rx_buffer->page);
8954 
8955 	/* we are reusing so sync this buffer for CPU use */
8956 	dma_sync_single_range_for_cpu(rx_ring->dev,
8957 				      rx_buffer->dma,
8958 				      rx_buffer->page_offset,
8959 				      size,
8960 				      DMA_FROM_DEVICE);
8961 
8962 	rx_buffer->pagecnt_bias--;
8963 
8964 	return rx_buffer;
8965 }
8966 
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8967 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8968 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8969 {
8970 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8971 		/* hand second half of page back to the ring */
8972 		igb_reuse_rx_page(rx_ring, rx_buffer);
8973 	} else {
8974 		/* We are not reusing the buffer so unmap it and free
8975 		 * any references we are holding to it
8976 		 */
8977 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8978 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8979 				     IGB_RX_DMA_ATTR);
8980 		__page_frag_cache_drain(rx_buffer->page,
8981 					rx_buffer->pagecnt_bias);
8982 	}
8983 
8984 	/* clear contents of rx_buffer */
8985 	rx_buffer->page = NULL;
8986 }
8987 
igb_finalize_xdp(struct igb_adapter * adapter,unsigned int status)8988 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8989 {
8990 	int cpu = smp_processor_id();
8991 	struct netdev_queue *nq;
8992 
8993 	if (status & IGB_XDP_REDIR)
8994 		xdp_do_flush();
8995 
8996 	if (status & IGB_XDP_TX) {
8997 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8998 
8999 		nq = txring_txq(tx_ring);
9000 		__netif_tx_lock(nq, cpu);
9001 		igb_xdp_ring_update_tail(tx_ring);
9002 		__netif_tx_unlock(nq);
9003 	}
9004 }
9005 
igb_update_rx_stats(struct igb_q_vector * q_vector,unsigned int packets,unsigned int bytes)9006 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9007 			 unsigned int bytes)
9008 {
9009 	struct igb_ring *ring = q_vector->rx.ring;
9010 
9011 	u64_stats_update_begin(&ring->rx_syncp);
9012 	ring->rx_stats.packets += packets;
9013 	ring->rx_stats.bytes += bytes;
9014 	u64_stats_update_end(&ring->rx_syncp);
9015 
9016 	q_vector->rx.total_packets += packets;
9017 	q_vector->rx.total_bytes += bytes;
9018 }
9019 
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)9020 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9021 {
9022 	unsigned int total_bytes = 0, total_packets = 0;
9023 	struct igb_adapter *adapter = q_vector->adapter;
9024 	struct igb_ring *rx_ring = q_vector->rx.ring;
9025 	u16 cleaned_count = igb_desc_unused(rx_ring);
9026 	struct sk_buff *skb = rx_ring->skb;
9027 	unsigned int xdp_xmit = 0;
9028 	struct xdp_buff xdp;
9029 	u32 frame_sz = 0;
9030 	int rx_buf_pgcnt;
9031 	int xdp_res = 0;
9032 
9033 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9034 #if (PAGE_SIZE < 8192)
9035 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9036 #endif
9037 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9038 
9039 	while (likely(total_packets < budget)) {
9040 		union e1000_adv_rx_desc *rx_desc;
9041 		struct igb_rx_buffer *rx_buffer;
9042 		ktime_t timestamp = 0;
9043 		int pkt_offset = 0;
9044 		unsigned int size;
9045 		void *pktbuf;
9046 
9047 		/* return some buffers to hardware, one at a time is too slow */
9048 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9049 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
9050 			cleaned_count = 0;
9051 		}
9052 
9053 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9054 		size = le16_to_cpu(rx_desc->wb.upper.length);
9055 		if (!size)
9056 			break;
9057 
9058 		/* This memory barrier is needed to keep us from reading
9059 		 * any other fields out of the rx_desc until we know the
9060 		 * descriptor has been written back
9061 		 */
9062 		dma_rmb();
9063 
9064 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9065 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9066 
9067 		/* pull rx packet timestamp if available and valid */
9068 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9069 			int ts_hdr_len;
9070 
9071 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9072 							 pktbuf, &timestamp);
9073 
9074 			pkt_offset += ts_hdr_len;
9075 			size -= ts_hdr_len;
9076 		}
9077 
9078 		/* retrieve a buffer from the ring */
9079 		if (!skb) {
9080 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9081 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9082 
9083 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9084 			xdp_buff_clear_frags_flag(&xdp);
9085 #if (PAGE_SIZE > 4096)
9086 			/* At larger PAGE_SIZE, frame_sz depend on len size */
9087 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9088 #endif
9089 			xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9090 		}
9091 
9092 		if (xdp_res) {
9093 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9094 				xdp_xmit |= xdp_res;
9095 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9096 			} else {
9097 				rx_buffer->pagecnt_bias++;
9098 			}
9099 			total_packets++;
9100 			total_bytes += size;
9101 		} else if (skb)
9102 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9103 		else if (ring_uses_build_skb(rx_ring))
9104 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9105 					    timestamp);
9106 		else
9107 			skb = igb_construct_skb(rx_ring, rx_buffer,
9108 						&xdp, timestamp);
9109 
9110 		/* exit if we failed to retrieve a buffer */
9111 		if (!xdp_res && !skb) {
9112 			rx_ring->rx_stats.alloc_failed++;
9113 			rx_buffer->pagecnt_bias++;
9114 			set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9115 			break;
9116 		}
9117 
9118 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9119 		cleaned_count++;
9120 
9121 		/* fetch next buffer in frame if non-eop */
9122 		if (igb_is_non_eop(rx_ring, rx_desc))
9123 			continue;
9124 
9125 		/* verify the packet layout is correct */
9126 		if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9127 			skb = NULL;
9128 			continue;
9129 		}
9130 
9131 		/* probably a little skewed due to removing CRC */
9132 		total_bytes += skb->len;
9133 
9134 		/* populate checksum, timestamp, VLAN, and protocol */
9135 		igb_process_skb_fields(rx_ring, rx_desc, skb);
9136 
9137 		napi_gro_receive(&q_vector->napi, skb);
9138 
9139 		/* reset skb pointer */
9140 		skb = NULL;
9141 
9142 		/* update budget accounting */
9143 		total_packets++;
9144 	}
9145 
9146 	/* place incomplete frames back on ring for completion */
9147 	rx_ring->skb = skb;
9148 
9149 	if (xdp_xmit)
9150 		igb_finalize_xdp(adapter, xdp_xmit);
9151 
9152 	igb_update_rx_stats(q_vector, total_packets, total_bytes);
9153 
9154 	if (cleaned_count)
9155 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9156 
9157 	return total_packets;
9158 }
9159 
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9160 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9161 				  struct igb_rx_buffer *bi)
9162 {
9163 	struct page *page = bi->page;
9164 	dma_addr_t dma;
9165 
9166 	/* since we are recycling buffers we should seldom need to alloc */
9167 	if (likely(page))
9168 		return true;
9169 
9170 	/* alloc new page for storage */
9171 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9172 	if (unlikely(!page)) {
9173 		rx_ring->rx_stats.alloc_failed++;
9174 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9175 		return false;
9176 	}
9177 
9178 	/* map page for use */
9179 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9180 				 igb_rx_pg_size(rx_ring),
9181 				 DMA_FROM_DEVICE,
9182 				 IGB_RX_DMA_ATTR);
9183 
9184 	/* if mapping failed free memory back to system since
9185 	 * there isn't much point in holding memory we can't use
9186 	 */
9187 	if (dma_mapping_error(rx_ring->dev, dma)) {
9188 		__free_pages(page, igb_rx_pg_order(rx_ring));
9189 
9190 		rx_ring->rx_stats.alloc_failed++;
9191 		set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9192 		return false;
9193 	}
9194 
9195 	bi->dma = dma;
9196 	bi->page = page;
9197 	bi->page_offset = igb_rx_offset(rx_ring);
9198 	page_ref_add(page, USHRT_MAX - 1);
9199 	bi->pagecnt_bias = USHRT_MAX;
9200 
9201 	return true;
9202 }
9203 
9204 /**
9205  *  igb_alloc_rx_buffers - Replace used receive buffers
9206  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9207  *  @cleaned_count: count of buffers to allocate
9208  **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9209 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9210 {
9211 	union e1000_adv_rx_desc *rx_desc;
9212 	struct igb_rx_buffer *bi;
9213 	u16 i = rx_ring->next_to_use;
9214 	u16 bufsz;
9215 
9216 	/* nothing to do */
9217 	if (!cleaned_count)
9218 		return;
9219 
9220 	rx_desc = IGB_RX_DESC(rx_ring, i);
9221 	bi = &rx_ring->rx_buffer_info[i];
9222 	i -= rx_ring->count;
9223 
9224 	bufsz = igb_rx_bufsz(rx_ring);
9225 
9226 	do {
9227 		if (!igb_alloc_mapped_page(rx_ring, bi))
9228 			break;
9229 
9230 		/* sync the buffer for use by the device */
9231 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9232 						 bi->page_offset, bufsz,
9233 						 DMA_FROM_DEVICE);
9234 
9235 		/* Refresh the desc even if buffer_addrs didn't change
9236 		 * because each write-back erases this info.
9237 		 */
9238 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9239 
9240 		rx_desc++;
9241 		bi++;
9242 		i++;
9243 		if (unlikely(!i)) {
9244 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9245 			bi = rx_ring->rx_buffer_info;
9246 			i -= rx_ring->count;
9247 		}
9248 
9249 		/* clear the length for the next_to_use descriptor */
9250 		rx_desc->wb.upper.length = 0;
9251 
9252 		cleaned_count--;
9253 	} while (cleaned_count);
9254 
9255 	i += rx_ring->count;
9256 
9257 	if (rx_ring->next_to_use != i) {
9258 		/* record the next descriptor to use */
9259 		rx_ring->next_to_use = i;
9260 
9261 		/* update next to alloc since we have filled the ring */
9262 		rx_ring->next_to_alloc = i;
9263 
9264 		/* Force memory writes to complete before letting h/w
9265 		 * know there are new descriptors to fetch.  (Only
9266 		 * applicable for weak-ordered memory model archs,
9267 		 * such as IA-64).
9268 		 */
9269 		dma_wmb();
9270 		writel(i, rx_ring->tail);
9271 	}
9272 }
9273 
9274 /**
9275  * igb_mii_ioctl -
9276  * @netdev: pointer to netdev struct
9277  * @ifr: interface structure
9278  * @cmd: ioctl command to execute
9279  **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9280 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9281 {
9282 	struct igb_adapter *adapter = netdev_priv(netdev);
9283 	struct mii_ioctl_data *data = if_mii(ifr);
9284 
9285 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9286 		return -EOPNOTSUPP;
9287 
9288 	switch (cmd) {
9289 	case SIOCGMIIPHY:
9290 		data->phy_id = adapter->hw.phy.addr;
9291 		break;
9292 	case SIOCGMIIREG:
9293 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9294 				     &data->val_out))
9295 			return -EIO;
9296 		break;
9297 	case SIOCSMIIREG:
9298 		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9299 				      data->val_in))
9300 			return -EIO;
9301 		break;
9302 	default:
9303 		return -EOPNOTSUPP;
9304 	}
9305 	return 0;
9306 }
9307 
9308 /**
9309  * igb_ioctl -
9310  * @netdev: pointer to netdev struct
9311  * @ifr: interface structure
9312  * @cmd: ioctl command to execute
9313  **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9314 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9315 {
9316 	switch (cmd) {
9317 	case SIOCGMIIPHY:
9318 	case SIOCGMIIREG:
9319 	case SIOCSMIIREG:
9320 		return igb_mii_ioctl(netdev, ifr, cmd);
9321 	default:
9322 		return -EOPNOTSUPP;
9323 	}
9324 }
9325 
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9326 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9327 {
9328 	struct igb_adapter *adapter = hw->back;
9329 
9330 	pci_read_config_word(adapter->pdev, reg, value);
9331 }
9332 
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9333 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9334 {
9335 	struct igb_adapter *adapter = hw->back;
9336 
9337 	pci_write_config_word(adapter->pdev, reg, *value);
9338 }
9339 
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9340 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9341 {
9342 	struct igb_adapter *adapter = hw->back;
9343 
9344 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9345 		return -E1000_ERR_CONFIG;
9346 
9347 	return 0;
9348 }
9349 
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9350 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9351 {
9352 	struct igb_adapter *adapter = hw->back;
9353 
9354 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9355 		return -E1000_ERR_CONFIG;
9356 
9357 	return 0;
9358 }
9359 
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9360 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9361 {
9362 	struct igb_adapter *adapter = netdev_priv(netdev);
9363 	struct e1000_hw *hw = &adapter->hw;
9364 	u32 ctrl, rctl;
9365 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9366 
9367 	if (enable) {
9368 		/* enable VLAN tag insert/strip */
9369 		ctrl = rd32(E1000_CTRL);
9370 		ctrl |= E1000_CTRL_VME;
9371 		wr32(E1000_CTRL, ctrl);
9372 
9373 		/* Disable CFI check */
9374 		rctl = rd32(E1000_RCTL);
9375 		rctl &= ~E1000_RCTL_CFIEN;
9376 		wr32(E1000_RCTL, rctl);
9377 	} else {
9378 		/* disable VLAN tag insert/strip */
9379 		ctrl = rd32(E1000_CTRL);
9380 		ctrl &= ~E1000_CTRL_VME;
9381 		wr32(E1000_CTRL, ctrl);
9382 	}
9383 
9384 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9385 }
9386 
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9387 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9388 			       __be16 proto, u16 vid)
9389 {
9390 	struct igb_adapter *adapter = netdev_priv(netdev);
9391 	struct e1000_hw *hw = &adapter->hw;
9392 	int pf_id = adapter->vfs_allocated_count;
9393 
9394 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9395 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9396 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9397 
9398 	set_bit(vid, adapter->active_vlans);
9399 
9400 	return 0;
9401 }
9402 
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9403 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9404 				__be16 proto, u16 vid)
9405 {
9406 	struct igb_adapter *adapter = netdev_priv(netdev);
9407 	int pf_id = adapter->vfs_allocated_count;
9408 	struct e1000_hw *hw = &adapter->hw;
9409 
9410 	/* remove VID from filter table */
9411 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9412 		igb_vfta_set(hw, vid, pf_id, false, true);
9413 
9414 	clear_bit(vid, adapter->active_vlans);
9415 
9416 	return 0;
9417 }
9418 
igb_restore_vlan(struct igb_adapter * adapter)9419 static void igb_restore_vlan(struct igb_adapter *adapter)
9420 {
9421 	u16 vid = 1;
9422 
9423 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9424 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9425 
9426 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9427 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9428 }
9429 
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9430 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9431 {
9432 	struct pci_dev *pdev = adapter->pdev;
9433 	struct e1000_mac_info *mac = &adapter->hw.mac;
9434 
9435 	mac->autoneg = 0;
9436 
9437 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9438 	 * for the switch() below to work
9439 	 */
9440 	if ((spd & 1) || (dplx & ~1))
9441 		goto err_inval;
9442 
9443 	/* Fiber NIC's only allow 1000 gbps Full duplex
9444 	 * and 100Mbps Full duplex for 100baseFx sfp
9445 	 */
9446 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9447 		switch (spd + dplx) {
9448 		case SPEED_10 + DUPLEX_HALF:
9449 		case SPEED_10 + DUPLEX_FULL:
9450 		case SPEED_100 + DUPLEX_HALF:
9451 			goto err_inval;
9452 		default:
9453 			break;
9454 		}
9455 	}
9456 
9457 	switch (spd + dplx) {
9458 	case SPEED_10 + DUPLEX_HALF:
9459 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9460 		break;
9461 	case SPEED_10 + DUPLEX_FULL:
9462 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9463 		break;
9464 	case SPEED_100 + DUPLEX_HALF:
9465 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9466 		break;
9467 	case SPEED_100 + DUPLEX_FULL:
9468 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9469 		break;
9470 	case SPEED_1000 + DUPLEX_FULL:
9471 		mac->autoneg = 1;
9472 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9473 		break;
9474 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9475 	default:
9476 		goto err_inval;
9477 	}
9478 
9479 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9480 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9481 
9482 	return 0;
9483 
9484 err_inval:
9485 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9486 	return -EINVAL;
9487 }
9488 
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9489 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9490 			  bool runtime)
9491 {
9492 	struct net_device *netdev = pci_get_drvdata(pdev);
9493 	struct igb_adapter *adapter = netdev_priv(netdev);
9494 	struct e1000_hw *hw = &adapter->hw;
9495 	u32 ctrl, rctl, status;
9496 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9497 	bool wake;
9498 
9499 	rtnl_lock();
9500 	netif_device_detach(netdev);
9501 
9502 	if (netif_running(netdev))
9503 		__igb_close(netdev, true);
9504 
9505 	igb_ptp_suspend(adapter);
9506 
9507 	igb_clear_interrupt_scheme(adapter);
9508 	rtnl_unlock();
9509 
9510 	status = rd32(E1000_STATUS);
9511 	if (status & E1000_STATUS_LU)
9512 		wufc &= ~E1000_WUFC_LNKC;
9513 
9514 	if (wufc) {
9515 		igb_setup_rctl(adapter);
9516 		igb_set_rx_mode(netdev);
9517 
9518 		/* turn on all-multi mode if wake on multicast is enabled */
9519 		if (wufc & E1000_WUFC_MC) {
9520 			rctl = rd32(E1000_RCTL);
9521 			rctl |= E1000_RCTL_MPE;
9522 			wr32(E1000_RCTL, rctl);
9523 		}
9524 
9525 		ctrl = rd32(E1000_CTRL);
9526 		ctrl |= E1000_CTRL_ADVD3WUC;
9527 		wr32(E1000_CTRL, ctrl);
9528 
9529 		/* Allow time for pending master requests to run */
9530 		igb_disable_pcie_master(hw);
9531 
9532 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9533 		wr32(E1000_WUFC, wufc);
9534 	} else {
9535 		wr32(E1000_WUC, 0);
9536 		wr32(E1000_WUFC, 0);
9537 	}
9538 
9539 	wake = wufc || adapter->en_mng_pt;
9540 	if (!wake)
9541 		igb_power_down_link(adapter);
9542 	else
9543 		igb_power_up_link(adapter);
9544 
9545 	if (enable_wake)
9546 		*enable_wake = wake;
9547 
9548 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9549 	 * would have already happened in close and is redundant.
9550 	 */
9551 	igb_release_hw_control(adapter);
9552 
9553 	pci_disable_device(pdev);
9554 
9555 	return 0;
9556 }
9557 
igb_deliver_wake_packet(struct net_device * netdev)9558 static void igb_deliver_wake_packet(struct net_device *netdev)
9559 {
9560 	struct igb_adapter *adapter = netdev_priv(netdev);
9561 	struct e1000_hw *hw = &adapter->hw;
9562 	struct sk_buff *skb;
9563 	u32 wupl;
9564 
9565 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9566 
9567 	/* WUPM stores only the first 128 bytes of the wake packet.
9568 	 * Read the packet only if we have the whole thing.
9569 	 */
9570 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9571 		return;
9572 
9573 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9574 	if (!skb)
9575 		return;
9576 
9577 	skb_put(skb, wupl);
9578 
9579 	/* Ensure reads are 32-bit aligned */
9580 	wupl = roundup(wupl, 4);
9581 
9582 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9583 
9584 	skb->protocol = eth_type_trans(skb, netdev);
9585 	netif_rx(skb);
9586 }
9587 
igb_suspend(struct device * dev)9588 static int igb_suspend(struct device *dev)
9589 {
9590 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9591 }
9592 
__igb_resume(struct device * dev,bool rpm)9593 static int __igb_resume(struct device *dev, bool rpm)
9594 {
9595 	struct pci_dev *pdev = to_pci_dev(dev);
9596 	struct net_device *netdev = pci_get_drvdata(pdev);
9597 	struct igb_adapter *adapter = netdev_priv(netdev);
9598 	struct e1000_hw *hw = &adapter->hw;
9599 	u32 err, val;
9600 
9601 	pci_set_power_state(pdev, PCI_D0);
9602 	pci_restore_state(pdev);
9603 	pci_save_state(pdev);
9604 
9605 	if (!pci_device_is_present(pdev))
9606 		return -ENODEV;
9607 	err = pci_enable_device_mem(pdev);
9608 	if (err) {
9609 		dev_err(&pdev->dev,
9610 			"igb: Cannot enable PCI device from suspend\n");
9611 		return err;
9612 	}
9613 	pci_set_master(pdev);
9614 
9615 	pci_enable_wake(pdev, PCI_D3hot, 0);
9616 	pci_enable_wake(pdev, PCI_D3cold, 0);
9617 
9618 	if (igb_init_interrupt_scheme(adapter, true)) {
9619 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9620 		return -ENOMEM;
9621 	}
9622 
9623 	igb_reset(adapter);
9624 
9625 	/* let the f/w know that the h/w is now under the control of the
9626 	 * driver.
9627 	 */
9628 	igb_get_hw_control(adapter);
9629 
9630 	val = rd32(E1000_WUS);
9631 	if (val & WAKE_PKT_WUS)
9632 		igb_deliver_wake_packet(netdev);
9633 
9634 	wr32(E1000_WUS, ~0);
9635 
9636 	if (!rpm)
9637 		rtnl_lock();
9638 	if (!err && netif_running(netdev))
9639 		err = __igb_open(netdev, true);
9640 
9641 	if (!err)
9642 		netif_device_attach(netdev);
9643 	if (!rpm)
9644 		rtnl_unlock();
9645 
9646 	return err;
9647 }
9648 
igb_resume(struct device * dev)9649 static int igb_resume(struct device *dev)
9650 {
9651 	return __igb_resume(dev, false);
9652 }
9653 
igb_runtime_idle(struct device * dev)9654 static int igb_runtime_idle(struct device *dev)
9655 {
9656 	struct net_device *netdev = dev_get_drvdata(dev);
9657 	struct igb_adapter *adapter = netdev_priv(netdev);
9658 
9659 	if (!igb_has_link(adapter))
9660 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9661 
9662 	return -EBUSY;
9663 }
9664 
igb_runtime_suspend(struct device * dev)9665 static int igb_runtime_suspend(struct device *dev)
9666 {
9667 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9668 }
9669 
igb_runtime_resume(struct device * dev)9670 static int igb_runtime_resume(struct device *dev)
9671 {
9672 	return __igb_resume(dev, true);
9673 }
9674 
igb_shutdown(struct pci_dev * pdev)9675 static void igb_shutdown(struct pci_dev *pdev)
9676 {
9677 	bool wake;
9678 
9679 	__igb_shutdown(pdev, &wake, 0);
9680 
9681 	if (system_state == SYSTEM_POWER_OFF) {
9682 		pci_wake_from_d3(pdev, wake);
9683 		pci_set_power_state(pdev, PCI_D3hot);
9684 	}
9685 }
9686 
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9687 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9688 {
9689 #ifdef CONFIG_PCI_IOV
9690 	int err;
9691 
9692 	if (num_vfs == 0) {
9693 		return igb_disable_sriov(dev, true);
9694 	} else {
9695 		err = igb_enable_sriov(dev, num_vfs, true);
9696 		return err ? err : num_vfs;
9697 	}
9698 #endif
9699 	return 0;
9700 }
9701 
9702 /**
9703  *  igb_io_error_detected - called when PCI error is detected
9704  *  @pdev: Pointer to PCI device
9705  *  @state: The current pci connection state
9706  *
9707  *  This function is called after a PCI bus error affecting
9708  *  this device has been detected.
9709  **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9710 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9711 					      pci_channel_state_t state)
9712 {
9713 	struct net_device *netdev = pci_get_drvdata(pdev);
9714 	struct igb_adapter *adapter = netdev_priv(netdev);
9715 
9716 	if (state == pci_channel_io_normal) {
9717 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9718 		return PCI_ERS_RESULT_CAN_RECOVER;
9719 	}
9720 
9721 	netif_device_detach(netdev);
9722 
9723 	if (state == pci_channel_io_perm_failure)
9724 		return PCI_ERS_RESULT_DISCONNECT;
9725 
9726 	rtnl_lock();
9727 	if (netif_running(netdev))
9728 		igb_down(adapter);
9729 	rtnl_unlock();
9730 
9731 	pci_disable_device(pdev);
9732 
9733 	/* Request a slot reset. */
9734 	return PCI_ERS_RESULT_NEED_RESET;
9735 }
9736 
9737 /**
9738  *  igb_io_slot_reset - called after the pci bus has been reset.
9739  *  @pdev: Pointer to PCI device
9740  *
9741  *  Restart the card from scratch, as if from a cold-boot. Implementation
9742  *  resembles the first-half of the __igb_resume routine.
9743  **/
igb_io_slot_reset(struct pci_dev * pdev)9744 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9745 {
9746 	struct net_device *netdev = pci_get_drvdata(pdev);
9747 	struct igb_adapter *adapter = netdev_priv(netdev);
9748 	struct e1000_hw *hw = &adapter->hw;
9749 	pci_ers_result_t result;
9750 
9751 	if (pci_enable_device_mem(pdev)) {
9752 		dev_err(&pdev->dev,
9753 			"Cannot re-enable PCI device after reset.\n");
9754 		result = PCI_ERS_RESULT_DISCONNECT;
9755 	} else {
9756 		pci_set_master(pdev);
9757 		pci_restore_state(pdev);
9758 		pci_save_state(pdev);
9759 
9760 		pci_enable_wake(pdev, PCI_D3hot, 0);
9761 		pci_enable_wake(pdev, PCI_D3cold, 0);
9762 
9763 		/* In case of PCI error, adapter lose its HW address
9764 		 * so we should re-assign it here.
9765 		 */
9766 		hw->hw_addr = adapter->io_addr;
9767 
9768 		igb_reset(adapter);
9769 		wr32(E1000_WUS, ~0);
9770 		result = PCI_ERS_RESULT_RECOVERED;
9771 	}
9772 
9773 	return result;
9774 }
9775 
9776 /**
9777  *  igb_io_resume - called when traffic can start flowing again.
9778  *  @pdev: Pointer to PCI device
9779  *
9780  *  This callback is called when the error recovery driver tells us that
9781  *  its OK to resume normal operation. Implementation resembles the
9782  *  second-half of the __igb_resume routine.
9783  */
igb_io_resume(struct pci_dev * pdev)9784 static void igb_io_resume(struct pci_dev *pdev)
9785 {
9786 	struct net_device *netdev = pci_get_drvdata(pdev);
9787 	struct igb_adapter *adapter = netdev_priv(netdev);
9788 
9789 	rtnl_lock();
9790 	if (netif_running(netdev)) {
9791 		if (!test_bit(__IGB_DOWN, &adapter->state)) {
9792 			dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9793 			rtnl_unlock();
9794 			return;
9795 		}
9796 
9797 		if (igb_up(adapter)) {
9798 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9799 			rtnl_unlock();
9800 			return;
9801 		}
9802 	}
9803 	rtnl_unlock();
9804 
9805 	netif_device_attach(netdev);
9806 
9807 	/* let the f/w know that the h/w is now under the control of the
9808 	 * driver.
9809 	 */
9810 	igb_get_hw_control(adapter);
9811 }
9812 
9813 /**
9814  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9815  *  @adapter: Pointer to adapter structure
9816  *  @index: Index of the RAR entry which need to be synced with MAC table
9817  **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9818 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9819 {
9820 	struct e1000_hw *hw = &adapter->hw;
9821 	u32 rar_low, rar_high;
9822 	u8 *addr = adapter->mac_table[index].addr;
9823 
9824 	/* HW expects these to be in network order when they are plugged
9825 	 * into the registers which are little endian.  In order to guarantee
9826 	 * that ordering we need to do an leXX_to_cpup here in order to be
9827 	 * ready for the byteswap that occurs with writel
9828 	 */
9829 	rar_low = le32_to_cpup((__le32 *)(addr));
9830 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9831 
9832 	/* Indicate to hardware the Address is Valid. */
9833 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9834 		if (is_valid_ether_addr(addr))
9835 			rar_high |= E1000_RAH_AV;
9836 
9837 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9838 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9839 
9840 		switch (hw->mac.type) {
9841 		case e1000_82575:
9842 		case e1000_i210:
9843 			if (adapter->mac_table[index].state &
9844 			    IGB_MAC_STATE_QUEUE_STEERING)
9845 				rar_high |= E1000_RAH_QSEL_ENABLE;
9846 
9847 			rar_high |= E1000_RAH_POOL_1 *
9848 				    adapter->mac_table[index].queue;
9849 			break;
9850 		default:
9851 			rar_high |= E1000_RAH_POOL_1 <<
9852 				    adapter->mac_table[index].queue;
9853 			break;
9854 		}
9855 	}
9856 
9857 	wr32(E1000_RAL(index), rar_low);
9858 	wrfl();
9859 	wr32(E1000_RAH(index), rar_high);
9860 	wrfl();
9861 }
9862 
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9863 static int igb_set_vf_mac(struct igb_adapter *adapter,
9864 			  int vf, unsigned char *mac_addr)
9865 {
9866 	struct e1000_hw *hw = &adapter->hw;
9867 	/* VF MAC addresses start at end of receive addresses and moves
9868 	 * towards the first, as a result a collision should not be possible
9869 	 */
9870 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9871 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9872 
9873 	ether_addr_copy(vf_mac_addr, mac_addr);
9874 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9875 	adapter->mac_table[rar_entry].queue = vf;
9876 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9877 	igb_rar_set_index(adapter, rar_entry);
9878 
9879 	return 0;
9880 }
9881 
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9882 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9883 {
9884 	struct igb_adapter *adapter = netdev_priv(netdev);
9885 
9886 	if (vf >= adapter->vfs_allocated_count)
9887 		return -EINVAL;
9888 
9889 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9890 	 * flag and allows to overwrite the MAC via VF netdev.  This
9891 	 * is necessary to allow libvirt a way to restore the original
9892 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9893 	 * down a VM.
9894 	 */
9895 	if (is_zero_ether_addr(mac)) {
9896 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9897 		dev_info(&adapter->pdev->dev,
9898 			 "remove administratively set MAC on VF %d\n",
9899 			 vf);
9900 	} else if (is_valid_ether_addr(mac)) {
9901 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9902 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9903 			 mac, vf);
9904 		dev_info(&adapter->pdev->dev,
9905 			 "Reload the VF driver to make this change effective.");
9906 		/* Generate additional warning if PF is down */
9907 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9908 			dev_warn(&adapter->pdev->dev,
9909 				 "The VF MAC address has been set, but the PF device is not up.\n");
9910 			dev_warn(&adapter->pdev->dev,
9911 				 "Bring the PF device up before attempting to use the VF device.\n");
9912 		}
9913 	} else {
9914 		return -EINVAL;
9915 	}
9916 	return igb_set_vf_mac(adapter, vf, mac);
9917 }
9918 
igb_link_mbps(int internal_link_speed)9919 static int igb_link_mbps(int internal_link_speed)
9920 {
9921 	switch (internal_link_speed) {
9922 	case SPEED_100:
9923 		return 100;
9924 	case SPEED_1000:
9925 		return 1000;
9926 	default:
9927 		return 0;
9928 	}
9929 }
9930 
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9931 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9932 				  int link_speed)
9933 {
9934 	int rf_dec, rf_int;
9935 	u32 bcnrc_val;
9936 
9937 	if (tx_rate != 0) {
9938 		/* Calculate the rate factor values to set */
9939 		rf_int = link_speed / tx_rate;
9940 		rf_dec = (link_speed - (rf_int * tx_rate));
9941 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9942 			 tx_rate;
9943 
9944 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9945 		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9946 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9947 	} else {
9948 		bcnrc_val = 0;
9949 	}
9950 
9951 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9952 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9953 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9954 	 */
9955 	wr32(E1000_RTTBCNRM, 0x14);
9956 	wr32(E1000_RTTBCNRC, bcnrc_val);
9957 }
9958 
igb_check_vf_rate_limit(struct igb_adapter * adapter)9959 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9960 {
9961 	int actual_link_speed, i;
9962 	bool reset_rate = false;
9963 
9964 	/* VF TX rate limit was not set or not supported */
9965 	if ((adapter->vf_rate_link_speed == 0) ||
9966 	    (adapter->hw.mac.type != e1000_82576))
9967 		return;
9968 
9969 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9970 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9971 		reset_rate = true;
9972 		adapter->vf_rate_link_speed = 0;
9973 		dev_info(&adapter->pdev->dev,
9974 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9975 	}
9976 
9977 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9978 		if (reset_rate)
9979 			adapter->vf_data[i].tx_rate = 0;
9980 
9981 		igb_set_vf_rate_limit(&adapter->hw, i,
9982 				      adapter->vf_data[i].tx_rate,
9983 				      actual_link_speed);
9984 	}
9985 }
9986 
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9987 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9988 			     int min_tx_rate, int max_tx_rate)
9989 {
9990 	struct igb_adapter *adapter = netdev_priv(netdev);
9991 	struct e1000_hw *hw = &adapter->hw;
9992 	int actual_link_speed;
9993 
9994 	if (hw->mac.type != e1000_82576)
9995 		return -EOPNOTSUPP;
9996 
9997 	if (min_tx_rate)
9998 		return -EINVAL;
9999 
10000 	actual_link_speed = igb_link_mbps(adapter->link_speed);
10001 	if ((vf >= adapter->vfs_allocated_count) ||
10002 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10003 	    (max_tx_rate < 0) ||
10004 	    (max_tx_rate > actual_link_speed))
10005 		return -EINVAL;
10006 
10007 	adapter->vf_rate_link_speed = actual_link_speed;
10008 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10009 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10010 
10011 	return 0;
10012 }
10013 
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)10014 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10015 				   bool setting)
10016 {
10017 	struct igb_adapter *adapter = netdev_priv(netdev);
10018 	struct e1000_hw *hw = &adapter->hw;
10019 	u32 reg_val, reg_offset;
10020 
10021 	if (!adapter->vfs_allocated_count)
10022 		return -EOPNOTSUPP;
10023 
10024 	if (vf >= adapter->vfs_allocated_count)
10025 		return -EINVAL;
10026 
10027 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10028 	reg_val = rd32(reg_offset);
10029 	if (setting)
10030 		reg_val |= (BIT(vf) |
10031 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10032 	else
10033 		reg_val &= ~(BIT(vf) |
10034 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10035 	wr32(reg_offset, reg_val);
10036 
10037 	adapter->vf_data[vf].spoofchk_enabled = setting;
10038 	return 0;
10039 }
10040 
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)10041 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10042 {
10043 	struct igb_adapter *adapter = netdev_priv(netdev);
10044 
10045 	if (vf >= adapter->vfs_allocated_count)
10046 		return -EINVAL;
10047 	if (adapter->vf_data[vf].trusted == setting)
10048 		return 0;
10049 
10050 	adapter->vf_data[vf].trusted = setting;
10051 
10052 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10053 		 vf, setting ? "" : "not ");
10054 	return 0;
10055 }
10056 
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)10057 static int igb_ndo_get_vf_config(struct net_device *netdev,
10058 				 int vf, struct ifla_vf_info *ivi)
10059 {
10060 	struct igb_adapter *adapter = netdev_priv(netdev);
10061 	if (vf >= adapter->vfs_allocated_count)
10062 		return -EINVAL;
10063 	ivi->vf = vf;
10064 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10065 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10066 	ivi->min_tx_rate = 0;
10067 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
10068 	ivi->qos = adapter->vf_data[vf].pf_qos;
10069 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10070 	ivi->trusted = adapter->vf_data[vf].trusted;
10071 	return 0;
10072 }
10073 
igb_vmm_control(struct igb_adapter * adapter)10074 static void igb_vmm_control(struct igb_adapter *adapter)
10075 {
10076 	struct e1000_hw *hw = &adapter->hw;
10077 	u32 reg;
10078 
10079 	switch (hw->mac.type) {
10080 	case e1000_82575:
10081 	case e1000_i210:
10082 	case e1000_i211:
10083 	case e1000_i354:
10084 	default:
10085 		/* replication is not supported for 82575 */
10086 		return;
10087 	case e1000_82576:
10088 		/* notify HW that the MAC is adding vlan tags */
10089 		reg = rd32(E1000_DTXCTL);
10090 		reg |= E1000_DTXCTL_VLAN_ADDED;
10091 		wr32(E1000_DTXCTL, reg);
10092 		fallthrough;
10093 	case e1000_82580:
10094 		/* enable replication vlan tag stripping */
10095 		reg = rd32(E1000_RPLOLR);
10096 		reg |= E1000_RPLOLR_STRVLAN;
10097 		wr32(E1000_RPLOLR, reg);
10098 		fallthrough;
10099 	case e1000_i350:
10100 		/* none of the above registers are supported by i350 */
10101 		break;
10102 	}
10103 
10104 	if (adapter->vfs_allocated_count) {
10105 		igb_vmdq_set_loopback_pf(hw, true);
10106 		igb_vmdq_set_replication_pf(hw, true);
10107 		igb_vmdq_set_anti_spoofing_pf(hw, true,
10108 					      adapter->vfs_allocated_count);
10109 	} else {
10110 		igb_vmdq_set_loopback_pf(hw, false);
10111 		igb_vmdq_set_replication_pf(hw, false);
10112 	}
10113 }
10114 
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10115 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10116 {
10117 	struct e1000_hw *hw = &adapter->hw;
10118 	u32 dmac_thr;
10119 	u16 hwm;
10120 	u32 reg;
10121 
10122 	if (hw->mac.type > e1000_82580) {
10123 		if (adapter->flags & IGB_FLAG_DMAC) {
10124 			/* force threshold to 0. */
10125 			wr32(E1000_DMCTXTH, 0);
10126 
10127 			/* DMA Coalescing high water mark needs to be greater
10128 			 * than the Rx threshold. Set hwm to PBA - max frame
10129 			 * size in 16B units, capping it at PBA - 6KB.
10130 			 */
10131 			hwm = 64 * (pba - 6);
10132 			reg = rd32(E1000_FCRTC);
10133 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10134 			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10135 			wr32(E1000_FCRTC, reg);
10136 
10137 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10138 			 * frame size, capping it at PBA - 10KB.
10139 			 */
10140 			dmac_thr = pba - 10;
10141 			reg = rd32(E1000_DMACR);
10142 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10143 			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10144 
10145 			/* transition to L0x or L1 if available..*/
10146 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10147 
10148 			/* watchdog timer= +-1000 usec in 32usec intervals */
10149 			reg |= (1000 >> 5);
10150 
10151 			/* Disable BMC-to-OS Watchdog Enable */
10152 			if (hw->mac.type != e1000_i354)
10153 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10154 			wr32(E1000_DMACR, reg);
10155 
10156 			/* no lower threshold to disable
10157 			 * coalescing(smart fifb)-UTRESH=0
10158 			 */
10159 			wr32(E1000_DMCRTRH, 0);
10160 
10161 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10162 
10163 			wr32(E1000_DMCTLX, reg);
10164 
10165 			/* free space in tx packet buffer to wake from
10166 			 * DMA coal
10167 			 */
10168 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10169 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10170 		}
10171 
10172 		if (hw->mac.type >= e1000_i210 ||
10173 		    (adapter->flags & IGB_FLAG_DMAC)) {
10174 			reg = rd32(E1000_PCIEMISC);
10175 			reg |= E1000_PCIEMISC_LX_DECISION;
10176 			wr32(E1000_PCIEMISC, reg);
10177 		} /* endif adapter->dmac is not disabled */
10178 	} else if (hw->mac.type == e1000_82580) {
10179 		u32 reg = rd32(E1000_PCIEMISC);
10180 
10181 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10182 		wr32(E1000_DMACR, 0);
10183 	}
10184 }
10185 
10186 /**
10187  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10188  *  @hw: pointer to hardware structure
10189  *  @byte_offset: byte offset to read
10190  *  @dev_addr: device address
10191  *  @data: value read
10192  *
10193  *  Performs byte read operation over I2C interface at
10194  *  a specified device address.
10195  **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10196 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10197 		      u8 dev_addr, u8 *data)
10198 {
10199 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10200 	struct i2c_client *this_client = adapter->i2c_client;
10201 	s32 status;
10202 	u16 swfw_mask = 0;
10203 
10204 	if (!this_client)
10205 		return E1000_ERR_I2C;
10206 
10207 	swfw_mask = E1000_SWFW_PHY0_SM;
10208 
10209 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10210 		return E1000_ERR_SWFW_SYNC;
10211 
10212 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10213 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10214 
10215 	if (status < 0)
10216 		return E1000_ERR_I2C;
10217 	else {
10218 		*data = status;
10219 		return 0;
10220 	}
10221 }
10222 
10223 /**
10224  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10225  *  @hw: pointer to hardware structure
10226  *  @byte_offset: byte offset to write
10227  *  @dev_addr: device address
10228  *  @data: value to write
10229  *
10230  *  Performs byte write operation over I2C interface at
10231  *  a specified device address.
10232  **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10233 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10234 		       u8 dev_addr, u8 data)
10235 {
10236 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10237 	struct i2c_client *this_client = adapter->i2c_client;
10238 	s32 status;
10239 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10240 
10241 	if (!this_client)
10242 		return E1000_ERR_I2C;
10243 
10244 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10245 		return E1000_ERR_SWFW_SYNC;
10246 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10247 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10248 
10249 	if (status)
10250 		return E1000_ERR_I2C;
10251 	else
10252 		return 0;
10253 
10254 }
10255 
igb_reinit_queues(struct igb_adapter * adapter)10256 int igb_reinit_queues(struct igb_adapter *adapter)
10257 {
10258 	struct net_device *netdev = adapter->netdev;
10259 	struct pci_dev *pdev = adapter->pdev;
10260 	int err = 0;
10261 
10262 	if (netif_running(netdev))
10263 		igb_close(netdev);
10264 
10265 	igb_reset_interrupt_capability(adapter);
10266 
10267 	if (igb_init_interrupt_scheme(adapter, true)) {
10268 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10269 		return -ENOMEM;
10270 	}
10271 
10272 	if (netif_running(netdev))
10273 		err = igb_open(netdev);
10274 
10275 	return err;
10276 }
10277 
igb_nfc_filter_exit(struct igb_adapter * adapter)10278 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10279 {
10280 	struct igb_nfc_filter *rule;
10281 
10282 	spin_lock(&adapter->nfc_lock);
10283 
10284 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10285 		igb_erase_filter(adapter, rule);
10286 
10287 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10288 		igb_erase_filter(adapter, rule);
10289 
10290 	spin_unlock(&adapter->nfc_lock);
10291 }
10292 
igb_nfc_filter_restore(struct igb_adapter * adapter)10293 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10294 {
10295 	struct igb_nfc_filter *rule;
10296 
10297 	spin_lock(&adapter->nfc_lock);
10298 
10299 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10300 		igb_add_filter(adapter, rule);
10301 
10302 	spin_unlock(&adapter->nfc_lock);
10303 }
10304 
10305 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10306 			  igb_runtime_suspend, igb_runtime_resume,
10307 			  igb_runtime_idle);
10308 
10309 static struct pci_driver igb_driver = {
10310 	.name     = igb_driver_name,
10311 	.id_table = igb_pci_tbl,
10312 	.probe    = igb_probe,
10313 	.remove   = igb_remove,
10314 	.driver.pm = pm_ptr(&igb_pm_ops),
10315 	.shutdown = igb_shutdown,
10316 	.sriov_configure = igb_pci_sriov_configure,
10317 	.err_handler = &igb_err_handler
10318 };
10319 
10320 /* igb_main.c */
10321