1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
181 .next = NULL,
182 .priority = 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195
196 static const struct pci_error_handlers igb_err_handler = {
197 .error_detected = igb_io_error_detected,
198 .slot_reset = igb_io_slot_reset,
199 .resume = igb_io_resume,
200 };
201
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211
212 struct igb_reg_info {
213 u32 ofs;
214 char *name;
215 };
216
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218
219 /* General Registers */
220 {E1000_CTRL, "CTRL"},
221 {E1000_STATUS, "STATUS"},
222 {E1000_CTRL_EXT, "CTRL_EXT"},
223
224 /* Interrupt Registers */
225 {E1000_ICR, "ICR"},
226
227 /* RX Registers */
228 {E1000_RCTL, "RCTL"},
229 {E1000_RDLEN(0), "RDLEN"},
230 {E1000_RDH(0), "RDH"},
231 {E1000_RDT(0), "RDT"},
232 {E1000_RXDCTL(0), "RXDCTL"},
233 {E1000_RDBAL(0), "RDBAL"},
234 {E1000_RDBAH(0), "RDBAH"},
235
236 /* TX Registers */
237 {E1000_TCTL, "TCTL"},
238 {E1000_TDBAL(0), "TDBAL"},
239 {E1000_TDBAH(0), "TDBAH"},
240 {E1000_TDLEN(0), "TDLEN"},
241 {E1000_TDH(0), "TDH"},
242 {E1000_TDT(0), "TDT"},
243 {E1000_TXDCTL(0), "TXDCTL"},
244 {E1000_TDFH, "TDFH"},
245 {E1000_TDFT, "TDFT"},
246 {E1000_TDFHS, "TDFHS"},
247 {E1000_TDFPC, "TDFPC"},
248
249 /* List Terminator */
250 {}
251 };
252
253 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 int n = 0;
257 char rname[16];
258 u32 regs[8];
259
260 switch (reginfo->ofs) {
261 case E1000_RDLEN(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
264 break;
265 case E1000_RDH(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
268 break;
269 case E1000_RDT(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
272 break;
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
276 break;
277 case E1000_RDBAL(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
280 break;
281 case E1000_RDBAH(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
284 break;
285 case E1000_TDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAL(n));
288 break;
289 case E1000_TDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
292 break;
293 case E1000_TDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
296 break;
297 case E1000_TDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
300 break;
301 case E1000_TDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
304 break;
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
308 break;
309 default:
310 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 return;
312 }
313
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 regs[2], regs[3]);
317 }
318
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 struct net_device *netdev = adapter->netdev;
323 struct e1000_hw *hw = &adapter->hw;
324 struct igb_reg_info *reginfo;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { __le64 a; __le64 b; } *u0;
328 struct igb_ring *rx_ring;
329 union e1000_adv_rx_desc *rx_desc;
330 u32 staterr;
331 u16 i, n;
332
333 if (!netif_msg_hw(adapter))
334 return;
335
336 /* Print netdevice Info */
337 if (netdev) {
338 dev_info(&adapter->pdev->dev, "Net device Info\n");
339 pr_info("Device Name state trans_start\n");
340 pr_info("%-15s %016lX %016lX\n", netdev->name,
341 netdev->state, dev_trans_start(netdev));
342 }
343
344 /* Print Registers */
345 dev_info(&adapter->pdev->dev, "Register Dump\n");
346 pr_info(" Register Name Value\n");
347 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 reginfo->name; reginfo++) {
349 igb_regdump(hw, reginfo);
350 }
351
352 /* Print TX Ring Summary */
353 if (!netdev || !netif_running(netdev))
354 goto exit;
355
356 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
358 for (n = 0; n < adapter->num_tx_queues; n++) {
359 struct igb_tx_buffer *buffer_info;
360 tx_ring = adapter->tx_ring[n];
361 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 (u64)dma_unmap_addr(buffer_info, dma),
365 dma_unmap_len(buffer_info, len),
366 buffer_info->next_to_watch,
367 (u64)buffer_info->time_stamp);
368 }
369
370 /* Print TX Rings */
371 if (!netif_msg_tx_done(adapter))
372 goto rx_ring_summary;
373
374 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375
376 /* Transmit Descriptor Formats
377 *
378 * Advanced Transmit Descriptor
379 * +--------------------------------------------------------------+
380 * 0 | Buffer Address [63:0] |
381 * +--------------------------------------------------------------+
382 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
383 * +--------------------------------------------------------------+
384 * 63 46 45 40 39 38 36 35 32 31 24 15 0
385 */
386
387 for (n = 0; n < adapter->num_tx_queues; n++) {
388 tx_ring = adapter->tx_ring[n];
389 pr_info("------------------------------------\n");
390 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 pr_info("------------------------------------\n");
392 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
393
394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 const char *next_desc;
396 struct igb_tx_buffer *buffer_info;
397 tx_desc = IGB_TX_DESC(tx_ring, i);
398 buffer_info = &tx_ring->tx_buffer_info[i];
399 u0 = (struct my_u0 *)tx_desc;
400 if (i == tx_ring->next_to_use &&
401 i == tx_ring->next_to_clean)
402 next_desc = " NTC/U";
403 else if (i == tx_ring->next_to_use)
404 next_desc = " NTU";
405 else if (i == tx_ring->next_to_clean)
406 next_desc = " NTC";
407 else
408 next_desc = "";
409
410 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
411 i, le64_to_cpu(u0->a),
412 le64_to_cpu(u0->b),
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp,
417 buffer_info->skb, next_desc);
418
419 if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 print_hex_dump(KERN_INFO, "",
421 DUMP_PREFIX_ADDRESS,
422 16, 1, buffer_info->skb->data,
423 dma_unmap_len(buffer_info, len),
424 true);
425 }
426 }
427
428 /* Print RX Rings Summary */
429 rx_ring_summary:
430 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 pr_info("Queue [NTU] [NTC]\n");
432 for (n = 0; n < adapter->num_rx_queues; n++) {
433 rx_ring = adapter->rx_ring[n];
434 pr_info(" %5d %5X %5X\n",
435 n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 }
437
438 /* Print RX Rings */
439 if (!netif_msg_rx_status(adapter))
440 goto exit;
441
442 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443
444 /* Advanced Receive Descriptor (Read) Format
445 * 63 1 0
446 * +-----------------------------------------------------+
447 * 0 | Packet Buffer Address [63:1] |A0/NSE|
448 * +----------------------------------------------+------+
449 * 8 | Header Buffer Address [63:1] | DD |
450 * +-----------------------------------------------------+
451 *
452 *
453 * Advanced Receive Descriptor (Write-Back) Format
454 *
455 * 63 48 47 32 31 30 21 20 17 16 4 3 0
456 * +------------------------------------------------------+
457 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
458 * | Checksum Ident | | | | Type | Type |
459 * +------------------------------------------------------+
460 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 * +------------------------------------------------------+
462 * 63 48 47 32 31 20 19 0
463 */
464
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info("------------------------------------\n");
468 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 pr_info("------------------------------------\n");
470 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
471 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472
473 for (i = 0; i < rx_ring->count; i++) {
474 const char *next_desc;
475 dma_addr_t dma = (dma_addr_t)0;
476 struct igb_rx_buffer *buffer_info = NULL;
477 rx_desc = IGB_RX_DESC(rx_ring, i);
478 u0 = (struct my_u0 *)rx_desc;
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480
481 if (!rx_ring->xsk_pool) {
482 buffer_info = &rx_ring->rx_buffer_info[i];
483 dma = buffer_info->dma;
484 }
485
486 if (i == rx_ring->next_to_use)
487 next_desc = " NTU";
488 else if (i == rx_ring->next_to_clean)
489 next_desc = " NTC";
490 else
491 next_desc = "";
492
493 if (staterr & E1000_RXD_STAT_DD) {
494 /* Descriptor Done */
495 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
496 "RWB", i,
497 le64_to_cpu(u0->a),
498 le64_to_cpu(u0->b),
499 next_desc);
500 } else {
501 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
502 "R ", i,
503 le64_to_cpu(u0->a),
504 le64_to_cpu(u0->b),
505 (u64)dma,
506 next_desc);
507
508 if (netif_msg_pktdata(adapter) &&
509 buffer_info && dma && buffer_info->page) {
510 print_hex_dump(KERN_INFO, "",
511 DUMP_PREFIX_ADDRESS,
512 16, 1,
513 page_address(buffer_info->page) +
514 buffer_info->page_offset,
515 igb_rx_bufsz(rx_ring), true);
516 }
517 }
518 }
519 }
520
521 exit:
522 return;
523 }
524
525 /**
526 * igb_get_i2c_data - Reads the I2C SDA data bit
527 * @data: opaque pointer to adapter struct
528 *
529 * Returns the I2C data bit value
530 **/
igb_get_i2c_data(void * data)531 static int igb_get_i2c_data(void *data)
532 {
533 struct igb_adapter *adapter = (struct igb_adapter *)data;
534 struct e1000_hw *hw = &adapter->hw;
535 s32 i2cctl = rd32(E1000_I2CPARAMS);
536
537 return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539
540 /**
541 * igb_set_i2c_data - Sets the I2C data bit
542 * @data: pointer to hardware structure
543 * @state: I2C data value (0 or 1) to set
544 *
545 * Sets the I2C data bit
546 **/
igb_set_i2c_data(void * data,int state)547 static void igb_set_i2c_data(void *data, int state)
548 {
549 struct igb_adapter *adapter = (struct igb_adapter *)data;
550 struct e1000_hw *hw = &adapter->hw;
551 s32 i2cctl = rd32(E1000_I2CPARAMS);
552
553 if (state) {
554 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 } else {
556 i2cctl &= ~E1000_I2C_DATA_OE_N;
557 i2cctl &= ~E1000_I2C_DATA_OUT;
558 }
559
560 wr32(E1000_I2CPARAMS, i2cctl);
561 wrfl();
562 }
563
564 /**
565 * igb_set_i2c_clk - Sets the I2C SCL clock
566 * @data: pointer to hardware structure
567 * @state: state to set clock
568 *
569 * Sets the I2C clock line to state
570 **/
igb_set_i2c_clk(void * data,int state)571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 if (state) {
578 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 } else {
580 i2cctl &= ~E1000_I2C_CLK_OUT;
581 i2cctl &= ~E1000_I2C_CLK_OE_N;
582 }
583 wr32(E1000_I2CPARAMS, i2cctl);
584 wrfl();
585 }
586
587 /**
588 * igb_get_i2c_clk - Gets the I2C SCL clock state
589 * @data: pointer to hardware structure
590 *
591 * Gets the I2C clock state
592 **/
igb_get_i2c_clk(void * data)593 static int igb_get_i2c_clk(void *data)
594 {
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 .setsda = igb_set_i2c_data,
604 .setscl = igb_set_i2c_clk,
605 .getsda = igb_get_i2c_data,
606 .getscl = igb_get_i2c_clk,
607 .udelay = 5,
608 .timeout = 20,
609 };
610
611 /**
612 * igb_get_hw_dev - return device
613 * @hw: pointer to hardware structure
614 *
615 * used by hardware layer to print debugging information
616 **/
igb_get_hw_dev(struct e1000_hw * hw)617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 struct igb_adapter *adapter = hw->back;
620 return adapter->netdev;
621 }
622
623 static struct pci_driver igb_driver;
624
625 /**
626 * igb_init_module - Driver Registration Routine
627 *
628 * igb_init_module is the first routine called when the driver is
629 * loaded. All it does is register with the PCI subsystem.
630 **/
igb_init_module(void)631 static int __init igb_init_module(void)
632 {
633 int ret;
634
635 pr_info("%s\n", igb_driver_string);
636 pr_info("%s\n", igb_copyright);
637
638 #ifdef CONFIG_IGB_DCA
639 dca_register_notify(&dca_notifier);
640 #endif
641 ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 if (ret)
644 dca_unregister_notify(&dca_notifier);
645 #endif
646 return ret;
647 }
648
649 module_init(igb_init_module);
650
651 /**
652 * igb_exit_module - Driver Exit Cleanup Routine
653 *
654 * igb_exit_module is called just before the driver is removed
655 * from memory.
656 **/
igb_exit_module(void)657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 dca_unregister_notify(&dca_notifier);
661 #endif
662 pci_unregister_driver(&igb_driver);
663 }
664
665 module_exit(igb_exit_module);
666
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669 * igb_cache_ring_register - Descriptor ring to register mapping
670 * @adapter: board private structure to initialize
671 *
672 * Once we know the feature-set enabled for the device, we'll cache
673 * the register offset the descriptor ring is assigned to.
674 **/
igb_cache_ring_register(struct igb_adapter * adapter)675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 int i = 0, j = 0;
678 u32 rbase_offset = adapter->vfs_allocated_count;
679
680 switch (adapter->hw.mac.type) {
681 case e1000_82576:
682 /* The queues are allocated for virtualization such that VF 0
683 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 * In order to avoid collision we start at the first free queue
685 * and continue consuming queues in the same sequence
686 */
687 if (adapter->vfs_allocated_count) {
688 for (; i < adapter->rss_queues; i++)
689 adapter->rx_ring[i]->reg_idx = rbase_offset +
690 Q_IDX_82576(i);
691 }
692 fallthrough;
693 case e1000_82575:
694 case e1000_82580:
695 case e1000_i350:
696 case e1000_i354:
697 case e1000_i210:
698 case e1000_i211:
699 default:
700 for (; i < adapter->num_rx_queues; i++)
701 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 for (; j < adapter->num_tx_queues; j++)
703 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 break;
705 }
706 }
707
igb_rd32(struct e1000_hw * hw,u32 reg)708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 u32 value = 0;
713
714 if (E1000_REMOVED(hw_addr))
715 return ~value;
716
717 value = readl(&hw_addr[reg]);
718
719 /* reads should not return all F's */
720 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 struct net_device *netdev = igb->netdev;
722 hw->hw_addr = NULL;
723 netdev_err(netdev, "PCIe link lost\n");
724 WARN(pci_device_is_present(igb->pdev),
725 "igb: Failed to read reg 0x%x!\n", reg);
726 }
727
728 return value;
729 }
730
731 /**
732 * igb_write_ivar - configure ivar for given MSI-X vector
733 * @hw: pointer to the HW structure
734 * @msix_vector: vector number we are allocating to a given ring
735 * @index: row index of IVAR register to write within IVAR table
736 * @offset: column offset of in IVAR, should be multiple of 8
737 *
738 * This function is intended to handle the writing of the IVAR register
739 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
740 * each containing an cause allocation for an Rx and Tx ring, and a
741 * variable number of rows depending on the number of queues supported.
742 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 int index, int offset)
745 {
746 u32 ivar = array_rd32(E1000_IVAR0, index);
747
748 /* clear any bits that are currently set */
749 ivar &= ~((u32)0xFF << offset);
750
751 /* write vector and valid bit */
752 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753
754 array_wr32(E1000_IVAR0, index, ivar);
755 }
756
757 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 struct igb_adapter *adapter = q_vector->adapter;
761 struct e1000_hw *hw = &adapter->hw;
762 int rx_queue = IGB_N0_QUEUE;
763 int tx_queue = IGB_N0_QUEUE;
764 u32 msixbm = 0;
765
766 if (q_vector->rx.ring)
767 rx_queue = q_vector->rx.ring->reg_idx;
768 if (q_vector->tx.ring)
769 tx_queue = q_vector->tx.ring->reg_idx;
770
771 switch (hw->mac.type) {
772 case e1000_82575:
773 /* The 82575 assigns vectors using a bitmask, which matches the
774 * bitmask for the EICR/EIMS/EIMC registers. To assign one
775 * or more queues to a vector, we write the appropriate bits
776 * into the MSIXBM register for that vector.
777 */
778 if (rx_queue > IGB_N0_QUEUE)
779 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 if (tx_queue > IGB_N0_QUEUE)
781 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 msixbm |= E1000_EIMS_OTHER;
784 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 q_vector->eims_value = msixbm;
786 break;
787 case e1000_82576:
788 /* 82576 uses a table that essentially consists of 2 columns
789 * with 8 rows. The ordering is column-major so we use the
790 * lower 3 bits as the row index, and the 4th bit as the
791 * column offset.
792 */
793 if (rx_queue > IGB_N0_QUEUE)
794 igb_write_ivar(hw, msix_vector,
795 rx_queue & 0x7,
796 (rx_queue & 0x8) << 1);
797 if (tx_queue > IGB_N0_QUEUE)
798 igb_write_ivar(hw, msix_vector,
799 tx_queue & 0x7,
800 ((tx_queue & 0x8) << 1) + 8);
801 q_vector->eims_value = BIT(msix_vector);
802 break;
803 case e1000_82580:
804 case e1000_i350:
805 case e1000_i354:
806 case e1000_i210:
807 case e1000_i211:
808 /* On 82580 and newer adapters the scheme is similar to 82576
809 * however instead of ordering column-major we have things
810 * ordered row-major. So we traverse the table by using
811 * bit 0 as the column offset, and the remaining bits as the
812 * row index.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue >> 1,
817 (rx_queue & 0x1) << 4);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue >> 1,
821 ((tx_queue & 0x1) << 4) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 default:
825 BUG();
826 break;
827 }
828
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
831
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
834 }
835
836 /**
837 * igb_configure_msix - Configure MSI-X hardware
838 * @adapter: board private structure to initialize
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
igb_configure_msix(struct igb_adapter * adapter)843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
850
851 /* set vector for other causes, i.e. link changes */
852 switch (hw->mac.type) {
853 case e1000_82575:
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 adapter->eims_other = E1000_EIMS_OTHER;
867
868 break;
869
870 case e1000_82576:
871 case e1000_82580:
872 case e1000_i350:
873 case e1000_i354:
874 case e1000_i210:
875 case e1000_i211:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug.
878 */
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 E1000_GPIE_NSICR);
882
883 /* enable msix_other interrupt */
884 adapter->eims_other = BIT(vector);
885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
886
887 wr32(E1000_IVAR_MISC, tmp);
888 break;
889 default:
890 /* do nothing, since nothing else supports MSI-X */
891 break;
892 } /* switch (hw->mac.type) */
893
894 adapter->eims_enable_mask |= adapter->eims_other;
895
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
898
899 wrfl();
900 }
901
902 /**
903 * igb_request_msix - Initialize MSI-X interrupts
904 * @adapter: board private structure to initialize
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
igb_request_msix(struct igb_adapter * adapter)909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 unsigned int num_q_vectors = adapter->num_q_vectors;
912 struct net_device *netdev = adapter->netdev;
913 int i, err = 0, vector = 0, free_vector = 0;
914
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
917 if (err)
918 goto err_out;
919
920 if (num_q_vectors > MAX_Q_VECTORS) {
921 num_q_vectors = MAX_Q_VECTORS;
922 dev_warn(&adapter->pdev->dev,
923 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 adapter->num_q_vectors, MAX_Q_VECTORS);
925 }
926 for (i = 0; i < num_q_vectors; i++) {
927 struct igb_q_vector *q_vector = adapter->q_vector[i];
928
929 vector++;
930
931 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932
933 if (q_vector->rx.ring && q_vector->tx.ring)
934 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else if (q_vector->tx.ring)
937 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 q_vector->tx.ring->queue_index);
939 else if (q_vector->rx.ring)
940 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 q_vector->rx.ring->queue_index);
942 else
943 sprintf(q_vector->name, "%s-unused", netdev->name);
944
945 err = request_irq(adapter->msix_entries[vector].vector,
946 igb_msix_ring, 0, q_vector->name,
947 q_vector);
948 if (err)
949 goto err_free;
950
951 netif_napi_set_irq(&q_vector->napi,
952 adapter->msix_entries[vector].vector);
953 }
954
955 igb_configure_msix(adapter);
956 return 0;
957
958 err_free:
959 /* free already assigned IRQs */
960 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961
962 vector--;
963 for (i = 0; i < vector; i++) {
964 free_irq(adapter->msix_entries[free_vector++].vector,
965 adapter->q_vector[i]);
966 }
967 err_out:
968 return err;
969 }
970
971 /**
972 * igb_free_q_vector - Free memory allocated for specific interrupt vector
973 * @adapter: board private structure to initialize
974 * @v_idx: Index of vector to be freed
975 *
976 * This function frees the memory allocated to the q_vector.
977 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981
982 adapter->q_vector[v_idx] = NULL;
983
984 /* igb_get_stats64() might access the rings on this vector,
985 * we must wait a grace period before freeing it.
986 */
987 if (q_vector)
988 kfree_rcu(q_vector, rcu);
989 }
990
991 /**
992 * igb_reset_q_vector - Reset config for interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be reset
995 *
996 * If NAPI is enabled it will delete any references to the
997 * NAPI struct. This is preparation for igb_free_q_vector.
998 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002
1003 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 * allocated. So, q_vector is NULL so we should stop here.
1005 */
1006 if (!q_vector)
1007 return;
1008
1009 if (q_vector->tx.ring)
1010 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012 if (q_vector->rx.ring)
1013 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015 netif_napi_del(&q_vector->napi);
1016
1017 }
1018
igb_reset_interrupt_capability(struct igb_adapter * adapter)1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 int v_idx = adapter->num_q_vectors;
1022
1023 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 pci_disable_msix(adapter->pdev);
1025 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 pci_disable_msi(adapter->pdev);
1027
1028 while (v_idx--)
1029 igb_reset_q_vector(adapter, v_idx);
1030 }
1031
1032 /**
1033 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1034 * @adapter: board private structure to initialize
1035 *
1036 * This function frees the memory allocated to the q_vectors. In addition if
1037 * NAPI is enabled it will delete any references to the NAPI struct prior
1038 * to freeing the q_vector.
1039 **/
igb_free_q_vectors(struct igb_adapter * adapter)1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 int v_idx = adapter->num_q_vectors;
1043
1044 adapter->num_tx_queues = 0;
1045 adapter->num_rx_queues = 0;
1046 adapter->num_q_vectors = 0;
1047
1048 while (v_idx--) {
1049 igb_reset_q_vector(adapter, v_idx);
1050 igb_free_q_vector(adapter, v_idx);
1051 }
1052 }
1053
1054 /**
1055 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056 * @adapter: board private structure to initialize
1057 *
1058 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1059 * MSI-X interrupts allocated.
1060 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 igb_free_q_vectors(adapter);
1064 igb_reset_interrupt_capability(adapter);
1065 }
1066
1067 /**
1068 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1069 * @adapter: board private structure to initialize
1070 * @msix: boolean value of MSIX capability
1071 *
1072 * Attempt to configure interrupts using the best available
1073 * capabilities of the hardware and kernel.
1074 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 int err;
1078 int numvecs, i;
1079
1080 if (!msix)
1081 goto msi_only;
1082 adapter->flags |= IGB_FLAG_HAS_MSIX;
1083
1084 /* Number of supported queues. */
1085 adapter->num_rx_queues = adapter->rss_queues;
1086 if (adapter->vfs_allocated_count)
1087 adapter->num_tx_queues = 1;
1088 else
1089 adapter->num_tx_queues = adapter->rss_queues;
1090
1091 /* start with one vector for every Rx queue */
1092 numvecs = adapter->num_rx_queues;
1093
1094 /* if Tx handler is separate add 1 for every Tx queue */
1095 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 numvecs += adapter->num_tx_queues;
1097
1098 /* store the number of vectors reserved for queues */
1099 adapter->num_q_vectors = numvecs;
1100
1101 /* add 1 vector for link status interrupts */
1102 numvecs++;
1103 for (i = 0; i < numvecs; i++)
1104 adapter->msix_entries[i].entry = i;
1105
1106 err = pci_enable_msix_range(adapter->pdev,
1107 adapter->msix_entries,
1108 numvecs,
1109 numvecs);
1110 if (err > 0)
1111 return;
1112
1113 igb_reset_interrupt_capability(adapter);
1114
1115 /* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 /* disable SR-IOV for non MSI-X configurations */
1120 if (adapter->vf_data) {
1121 struct e1000_hw *hw = &adapter->hw;
1122 /* disable iov and allow time for transactions to clear */
1123 pci_disable_sriov(adapter->pdev);
1124 msleep(500);
1125
1126 kfree(adapter->vf_mac_list);
1127 adapter->vf_mac_list = NULL;
1128 kfree(adapter->vf_data);
1129 adapter->vf_data = NULL;
1130 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 wrfl();
1132 msleep(100);
1133 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 }
1135 #endif
1136 adapter->vfs_allocated_count = 0;
1137 adapter->rss_queues = 1;
1138 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 adapter->num_rx_queues = 1;
1140 adapter->num_tx_queues = 1;
1141 adapter->num_q_vectors = 1;
1142 if (!pci_enable_msi(adapter->pdev))
1143 adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1146 static void igb_add_ring(struct igb_ring *ring,
1147 struct igb_ring_container *head)
1148 {
1149 head->ring = ring;
1150 head->count++;
1151 }
1152
1153 /**
1154 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155 * @adapter: board private structure to initialize
1156 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1157 * @v_idx: index of vector in adapter struct
1158 * @txr_count: total number of Tx rings to allocate
1159 * @txr_idx: index of first Tx ring to allocate
1160 * @rxr_count: total number of Rx rings to allocate
1161 * @rxr_idx: index of first Rx ring to allocate
1162 *
1163 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1164 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 int v_count, int v_idx,
1167 int txr_count, int txr_idx,
1168 int rxr_count, int rxr_idx)
1169 {
1170 struct igb_q_vector *q_vector;
1171 struct igb_ring *ring;
1172 int ring_count;
1173 size_t size;
1174
1175 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 if (txr_count > 1 || rxr_count > 1)
1177 return -ENOMEM;
1178
1179 ring_count = txr_count + rxr_count;
1180 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181
1182 /* allocate q_vector and rings */
1183 q_vector = adapter->q_vector[v_idx];
1184 if (!q_vector) {
1185 q_vector = kzalloc(size, GFP_KERNEL);
1186 } else if (size > ksize(q_vector)) {
1187 struct igb_q_vector *new_q_vector;
1188
1189 new_q_vector = kzalloc(size, GFP_KERNEL);
1190 if (new_q_vector)
1191 kfree_rcu(q_vector, rcu);
1192 q_vector = new_q_vector;
1193 } else {
1194 memset(q_vector, 0, size);
1195 }
1196 if (!q_vector)
1197 return -ENOMEM;
1198
1199 /* initialize NAPI */
1200 netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 v_idx);
1202
1203 /* tie q_vector and adapter together */
1204 adapter->q_vector[v_idx] = q_vector;
1205 q_vector->adapter = adapter;
1206
1207 /* initialize work limits */
1208 q_vector->tx.work_limit = adapter->tx_work_limit;
1209
1210 /* initialize ITR configuration */
1211 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 q_vector->itr_val = IGB_START_ITR;
1213
1214 /* initialize pointer to rings */
1215 ring = q_vector->ring;
1216
1217 /* initialize ITR */
1218 if (rxr_count) {
1219 /* rx or rx/tx vector */
1220 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 q_vector->itr_val = adapter->rx_itr_setting;
1222 } else {
1223 /* tx only vector */
1224 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 q_vector->itr_val = adapter->tx_itr_setting;
1226 }
1227
1228 if (txr_count) {
1229 /* assign generic ring traits */
1230 ring->dev = &adapter->pdev->dev;
1231 ring->netdev = adapter->netdev;
1232
1233 /* configure backlink on ring */
1234 ring->q_vector = q_vector;
1235
1236 /* update q_vector Tx values */
1237 igb_add_ring(ring, &q_vector->tx);
1238
1239 /* For 82575, context index must be unique per ring. */
1240 if (adapter->hw.mac.type == e1000_82575)
1241 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242
1243 /* apply Tx specific ring traits */
1244 ring->count = adapter->tx_ring_count;
1245 ring->queue_index = txr_idx;
1246
1247 ring->cbs_enable = false;
1248 ring->idleslope = 0;
1249 ring->sendslope = 0;
1250 ring->hicredit = 0;
1251 ring->locredit = 0;
1252
1253 u64_stats_init(&ring->tx_syncp);
1254 u64_stats_init(&ring->tx_syncp2);
1255
1256 /* assign ring to adapter */
1257 adapter->tx_ring[txr_idx] = ring;
1258
1259 /* push pointer to next ring */
1260 ring++;
1261 }
1262
1263 if (rxr_count) {
1264 /* assign generic ring traits */
1265 ring->dev = &adapter->pdev->dev;
1266 ring->netdev = adapter->netdev;
1267
1268 /* configure backlink on ring */
1269 ring->q_vector = q_vector;
1270
1271 /* update q_vector Rx values */
1272 igb_add_ring(ring, &q_vector->rx);
1273
1274 /* set flag indicating ring supports SCTP checksum offload */
1275 if (adapter->hw.mac.type >= e1000_82576)
1276 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277
1278 /* On i350, i354, i210, and i211, loopback VLAN packets
1279 * have the tag byte-swapped.
1280 */
1281 if (adapter->hw.mac.type >= e1000_i350)
1282 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283
1284 /* apply Rx specific ring traits */
1285 ring->count = adapter->rx_ring_count;
1286 ring->queue_index = rxr_idx;
1287
1288 u64_stats_init(&ring->rx_syncp);
1289
1290 /* assign ring to adapter */
1291 adapter->rx_ring[rxr_idx] = ring;
1292 }
1293
1294 return 0;
1295 }
1296
1297
1298 /**
1299 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300 * @adapter: board private structure to initialize
1301 *
1302 * We allocate one q_vector per queue interrupt. If allocation fails we
1303 * return -ENOMEM.
1304 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 int q_vectors = adapter->num_q_vectors;
1308 int rxr_remaining = adapter->num_rx_queues;
1309 int txr_remaining = adapter->num_tx_queues;
1310 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 int err;
1312
1313 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 for (; rxr_remaining; v_idx++) {
1315 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 0, 0, 1, rxr_idx);
1317
1318 if (err)
1319 goto err_out;
1320
1321 /* update counts and index */
1322 rxr_remaining--;
1323 rxr_idx++;
1324 }
1325 }
1326
1327 for (; v_idx < q_vectors; v_idx++) {
1328 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 tqpv, txr_idx, rqpv, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining -= rqpv;
1339 txr_remaining -= tqpv;
1340 rxr_idx++;
1341 txr_idx++;
1342 }
1343
1344 return 0;
1345
1346 err_out:
1347 adapter->num_tx_queues = 0;
1348 adapter->num_rx_queues = 0;
1349 adapter->num_q_vectors = 0;
1350
1351 while (v_idx--)
1352 igb_free_q_vector(adapter, v_idx);
1353
1354 return -ENOMEM;
1355 }
1356
1357 /**
1358 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359 * @adapter: board private structure to initialize
1360 * @msix: boolean value of MSIX capability
1361 *
1362 * This function initializes the interrupts and allocates all of the queues.
1363 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 struct pci_dev *pdev = adapter->pdev;
1367 int err;
1368
1369 igb_set_interrupt_capability(adapter, msix);
1370
1371 err = igb_alloc_q_vectors(adapter);
1372 if (err) {
1373 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 goto err_alloc_q_vectors;
1375 }
1376
1377 igb_cache_ring_register(adapter);
1378
1379 return 0;
1380
1381 err_alloc_q_vectors:
1382 igb_reset_interrupt_capability(adapter);
1383 return err;
1384 }
1385
1386 /**
1387 * igb_request_irq - initialize interrupts
1388 * @adapter: board private structure to initialize
1389 *
1390 * Attempts to configure interrupts using the best available
1391 * capabilities of the hardware and kernel.
1392 **/
igb_request_irq(struct igb_adapter * adapter)1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 struct net_device *netdev = adapter->netdev;
1396 struct pci_dev *pdev = adapter->pdev;
1397 int err = 0;
1398
1399 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 err = igb_request_msix(adapter);
1401 if (!err)
1402 goto request_done;
1403 /* fall back to MSI */
1404 igb_free_all_tx_resources(adapter);
1405 igb_free_all_rx_resources(adapter);
1406
1407 igb_clear_interrupt_scheme(adapter);
1408 err = igb_init_interrupt_scheme(adapter, false);
1409 if (err)
1410 goto request_done;
1411
1412 igb_setup_all_tx_resources(adapter);
1413 igb_setup_all_rx_resources(adapter);
1414 igb_configure(adapter);
1415 }
1416
1417 igb_assign_vector(adapter->q_vector[0], 0);
1418
1419 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 netdev->name, adapter);
1422 if (!err)
1423 goto request_done;
1424
1425 /* fall back to legacy interrupts */
1426 igb_reset_interrupt_capability(adapter);
1427 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 }
1429
1430 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 netdev->name, adapter);
1432
1433 if (err)
1434 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 err);
1436
1437 request_done:
1438 return err;
1439 }
1440
igb_free_irq(struct igb_adapter * adapter)1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 int vector = 0, i;
1445
1446 free_irq(adapter->msix_entries[vector++].vector, adapter);
1447
1448 for (i = 0; i < adapter->num_q_vectors; i++)
1449 free_irq(adapter->msix_entries[vector++].vector,
1450 adapter->q_vector[i]);
1451 } else {
1452 free_irq(adapter->pdev->irq, adapter);
1453 }
1454 }
1455
1456 /**
1457 * igb_irq_disable - Mask off interrupt generation on the NIC
1458 * @adapter: board private structure
1459 **/
igb_irq_disable(struct igb_adapter * adapter)1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 struct e1000_hw *hw = &adapter->hw;
1463
1464 /* we need to be careful when disabling interrupts. The VFs are also
1465 * mapped into these registers and so clearing the bits can cause
1466 * issues on the VF drivers so we only need to clear what we set
1467 */
1468 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 u32 regval = rd32(E1000_EIAM);
1470
1471 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 regval = rd32(E1000_EIAC);
1474 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 }
1476
1477 wr32(E1000_IAM, 0);
1478 wr32(E1000_IMC, ~0);
1479 wrfl();
1480 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 int i;
1482
1483 for (i = 0; i < adapter->num_q_vectors; i++)
1484 synchronize_irq(adapter->msix_entries[i].vector);
1485 } else {
1486 synchronize_irq(adapter->pdev->irq);
1487 }
1488 }
1489
1490 /**
1491 * igb_irq_enable - Enable default interrupt generation settings
1492 * @adapter: board private structure
1493 **/
igb_irq_enable(struct igb_adapter * adapter)1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 struct e1000_hw *hw = &adapter->hw;
1497
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 u32 regval = rd32(E1000_EIAC);
1501
1502 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 regval = rd32(E1000_EIAM);
1504 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 if (adapter->vfs_allocated_count) {
1507 wr32(E1000_MBVFIMR, 0xFF);
1508 ims |= E1000_IMS_VMMB;
1509 }
1510 wr32(E1000_IMS, ims);
1511 } else {
1512 wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 E1000_IMS_DRSTA);
1514 wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 E1000_IMS_DRSTA);
1516 }
1517 }
1518
igb_update_mng_vlan(struct igb_adapter * adapter)1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 struct e1000_hw *hw = &adapter->hw;
1522 u16 pf_id = adapter->vfs_allocated_count;
1523 u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 u16 old_vid = adapter->mng_vlan_id;
1525
1526 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 /* add VID to filter table */
1528 igb_vfta_set(hw, vid, pf_id, true, true);
1529 adapter->mng_vlan_id = vid;
1530 } else {
1531 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 }
1533
1534 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1535 (vid != old_vid) &&
1536 !test_bit(old_vid, adapter->active_vlans)) {
1537 /* remove VID from filter table */
1538 igb_vfta_set(hw, vid, pf_id, false, true);
1539 }
1540 }
1541
1542 /**
1543 * igb_release_hw_control - release control of the h/w to f/w
1544 * @adapter: address of board private structure
1545 *
1546 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1547 * For ASF and Pass Through versions of f/w this means that the
1548 * driver is no longer loaded.
1549 **/
igb_release_hw_control(struct igb_adapter * adapter)1550 static void igb_release_hw_control(struct igb_adapter *adapter)
1551 {
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 ctrl_ext;
1554
1555 /* Let firmware take over control of h/w */
1556 ctrl_ext = rd32(E1000_CTRL_EXT);
1557 wr32(E1000_CTRL_EXT,
1558 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1559 }
1560
1561 /**
1562 * igb_get_hw_control - get control of the h/w from f/w
1563 * @adapter: address of board private structure
1564 *
1565 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1566 * For ASF and Pass Through versions of f/w this means that
1567 * the driver is loaded.
1568 **/
igb_get_hw_control(struct igb_adapter * adapter)1569 static void igb_get_hw_control(struct igb_adapter *adapter)
1570 {
1571 struct e1000_hw *hw = &adapter->hw;
1572 u32 ctrl_ext;
1573
1574 /* Let firmware know the driver has taken over */
1575 ctrl_ext = rd32(E1000_CTRL_EXT);
1576 wr32(E1000_CTRL_EXT,
1577 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1578 }
1579
enable_fqtss(struct igb_adapter * adapter,bool enable)1580 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1581 {
1582 struct net_device *netdev = adapter->netdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584
1585 WARN_ON(hw->mac.type != e1000_i210);
1586
1587 if (enable)
1588 adapter->flags |= IGB_FLAG_FQTSS;
1589 else
1590 adapter->flags &= ~IGB_FLAG_FQTSS;
1591
1592 if (netif_running(netdev))
1593 schedule_work(&adapter->reset_task);
1594 }
1595
is_fqtss_enabled(struct igb_adapter * adapter)1596 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1597 {
1598 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1599 }
1600
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1601 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1602 enum tx_queue_prio prio)
1603 {
1604 u32 val;
1605
1606 WARN_ON(hw->mac.type != e1000_i210);
1607 WARN_ON(queue < 0 || queue > 4);
1608
1609 val = rd32(E1000_I210_TXDCTL(queue));
1610
1611 if (prio == TX_QUEUE_PRIO_HIGH)
1612 val |= E1000_TXDCTL_PRIORITY;
1613 else
1614 val &= ~E1000_TXDCTL_PRIORITY;
1615
1616 wr32(E1000_I210_TXDCTL(queue), val);
1617 }
1618
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1619 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1620 {
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 1);
1625
1626 val = rd32(E1000_I210_TQAVCC(queue));
1627
1628 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1629 val |= E1000_TQAVCC_QUEUEMODE;
1630 else
1631 val &= ~E1000_TQAVCC_QUEUEMODE;
1632
1633 wr32(E1000_I210_TQAVCC(queue), val);
1634 }
1635
is_any_cbs_enabled(struct igb_adapter * adapter)1636 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1637 {
1638 int i;
1639
1640 for (i = 0; i < adapter->num_tx_queues; i++) {
1641 if (adapter->tx_ring[i]->cbs_enable)
1642 return true;
1643 }
1644
1645 return false;
1646 }
1647
is_any_txtime_enabled(struct igb_adapter * adapter)1648 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1649 {
1650 int i;
1651
1652 for (i = 0; i < adapter->num_tx_queues; i++) {
1653 if (adapter->tx_ring[i]->launchtime_enable)
1654 return true;
1655 }
1656
1657 return false;
1658 }
1659
1660 /**
1661 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1662 * @adapter: pointer to adapter struct
1663 * @queue: queue number
1664 *
1665 * Configure CBS and Launchtime for a given hardware queue.
1666 * Parameters are retrieved from the correct Tx ring, so
1667 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1668 * for setting those correctly prior to this function being called.
1669 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1670 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1671 {
1672 struct net_device *netdev = adapter->netdev;
1673 struct e1000_hw *hw = &adapter->hw;
1674 struct igb_ring *ring;
1675 u32 tqavcc, tqavctrl;
1676 u16 value;
1677
1678 WARN_ON(hw->mac.type != e1000_i210);
1679 WARN_ON(queue < 0 || queue > 1);
1680 ring = adapter->tx_ring[queue];
1681
1682 /* If any of the Qav features is enabled, configure queues as SR and
1683 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1684 * as SP.
1685 */
1686 if (ring->cbs_enable || ring->launchtime_enable) {
1687 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1688 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1689 } else {
1690 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1691 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1692 }
1693
1694 /* If CBS is enabled, set DataTranARB and config its parameters. */
1695 if (ring->cbs_enable || queue == 0) {
1696 /* i210 does not allow the queue 0 to be in the Strict
1697 * Priority mode while the Qav mode is enabled, so,
1698 * instead of disabling strict priority mode, we give
1699 * queue 0 the maximum of credits possible.
1700 *
1701 * See section 8.12.19 of the i210 datasheet, "Note:
1702 * Queue0 QueueMode must be set to 1b when
1703 * TransmitMode is set to Qav."
1704 */
1705 if (queue == 0 && !ring->cbs_enable) {
1706 /* max "linkspeed" idleslope in kbps */
1707 ring->idleslope = 1000000;
1708 ring->hicredit = ETH_FRAME_LEN;
1709 }
1710
1711 /* Always set data transfer arbitration to credit-based
1712 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1713 * the queues.
1714 */
1715 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1716 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1717 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1718
1719 /* According to i210 datasheet section 7.2.7.7, we should set
1720 * the 'idleSlope' field from TQAVCC register following the
1721 * equation:
1722 *
1723 * For 100 Mbps link speed:
1724 *
1725 * value = BW * 0x7735 * 0.2 (E1)
1726 *
1727 * For 1000Mbps link speed:
1728 *
1729 * value = BW * 0x7735 * 2 (E2)
1730 *
1731 * E1 and E2 can be merged into one equation as shown below.
1732 * Note that 'link-speed' is in Mbps.
1733 *
1734 * value = BW * 0x7735 * 2 * link-speed
1735 * -------------- (E3)
1736 * 1000
1737 *
1738 * 'BW' is the percentage bandwidth out of full link speed
1739 * which can be found with the following equation. Note that
1740 * idleSlope here is the parameter from this function which
1741 * is in kbps.
1742 *
1743 * BW = idleSlope
1744 * ----------------- (E4)
1745 * link-speed * 1000
1746 *
1747 * That said, we can come up with a generic equation to
1748 * calculate the value we should set it TQAVCC register by
1749 * replacing 'BW' in E3 by E4. The resulting equation is:
1750 *
1751 * value = idleSlope * 0x7735 * 2 * link-speed
1752 * ----------------- -------------- (E5)
1753 * link-speed * 1000 1000
1754 *
1755 * 'link-speed' is present in both sides of the fraction so
1756 * it is canceled out. The final equation is the following:
1757 *
1758 * value = idleSlope * 61034
1759 * ----------------- (E6)
1760 * 1000000
1761 *
1762 * NOTE: For i210, given the above, we can see that idleslope
1763 * is represented in 16.38431 kbps units by the value at
1764 * the TQAVCC register (1Gbps / 61034), which reduces
1765 * the granularity for idleslope increments.
1766 * For instance, if you want to configure a 2576kbps
1767 * idleslope, the value to be written on the register
1768 * would have to be 157.23. If rounded down, you end
1769 * up with less bandwidth available than originally
1770 * required (~2572 kbps). If rounded up, you end up
1771 * with a higher bandwidth (~2589 kbps). Below the
1772 * approach we take is to always round up the
1773 * calculated value, so the resulting bandwidth might
1774 * be slightly higher for some configurations.
1775 */
1776 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1777
1778 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 tqavcc |= value;
1781 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1782
1783 wr32(E1000_I210_TQAVHC(queue),
1784 0x80000000 + ring->hicredit * 0x7735);
1785 } else {
1786
1787 /* Set idleSlope to zero. */
1788 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1789 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1790 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1791
1792 /* Set hiCredit to zero. */
1793 wr32(E1000_I210_TQAVHC(queue), 0);
1794
1795 /* If CBS is not enabled for any queues anymore, then return to
1796 * the default state of Data Transmission Arbitration on
1797 * TQAVCTRL.
1798 */
1799 if (!is_any_cbs_enabled(adapter)) {
1800 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1801 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1802 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1803 }
1804 }
1805
1806 /* If LaunchTime is enabled, set DataTranTIM. */
1807 if (ring->launchtime_enable) {
1808 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1809 * for any of the SR queues, and configure fetchtime delta.
1810 * XXX NOTE:
1811 * - LaunchTime will be enabled for all SR queues.
1812 * - A fixed offset can be added relative to the launch
1813 * time of all packets if configured at reg LAUNCH_OS0.
1814 * We are keeping it as 0 for now (default value).
1815 */
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1818 E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 } else {
1821 /* If Launchtime is not enabled for any SR queues anymore,
1822 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1823 * effectively disabling Launchtime.
1824 */
1825 if (!is_any_txtime_enabled(adapter)) {
1826 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1827 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1828 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1829 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1830 }
1831 }
1832
1833 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1834 * CBS are not configurable by software so we don't do any 'controller
1835 * configuration' in respect to these parameters.
1836 */
1837
1838 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1839 ring->cbs_enable ? "enabled" : "disabled",
1840 ring->launchtime_enable ? "enabled" : "disabled",
1841 queue,
1842 ring->idleslope, ring->sendslope,
1843 ring->hicredit, ring->locredit);
1844 }
1845
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1846 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1847 bool enable)
1848 {
1849 struct igb_ring *ring;
1850
1851 if (queue < 0 || queue > adapter->num_tx_queues)
1852 return -EINVAL;
1853
1854 ring = adapter->tx_ring[queue];
1855 ring->launchtime_enable = enable;
1856
1857 return 0;
1858 }
1859
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1860 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1861 bool enable, int idleslope, int sendslope,
1862 int hicredit, int locredit)
1863 {
1864 struct igb_ring *ring;
1865
1866 if (queue < 0 || queue > adapter->num_tx_queues)
1867 return -EINVAL;
1868
1869 ring = adapter->tx_ring[queue];
1870
1871 ring->cbs_enable = enable;
1872 ring->idleslope = idleslope;
1873 ring->sendslope = sendslope;
1874 ring->hicredit = hicredit;
1875 ring->locredit = locredit;
1876
1877 return 0;
1878 }
1879
1880 /**
1881 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1882 * @adapter: pointer to adapter struct
1883 *
1884 * Configure TQAVCTRL register switching the controller's Tx mode
1885 * if FQTSS mode is enabled or disabled. Additionally, will issue
1886 * a call to igb_config_tx_modes() per queue so any previously saved
1887 * Tx parameters are applied.
1888 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1889 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1890 {
1891 struct net_device *netdev = adapter->netdev;
1892 struct e1000_hw *hw = &adapter->hw;
1893 u32 val;
1894
1895 /* Only i210 controller supports changing the transmission mode. */
1896 if (hw->mac.type != e1000_i210)
1897 return;
1898
1899 if (is_fqtss_enabled(adapter)) {
1900 int i, max_queue;
1901
1902 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1903 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1904 * so SP queues wait for SR ones.
1905 */
1906 val = rd32(E1000_I210_TQAVCTRL);
1907 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1908 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1909 wr32(E1000_I210_TQAVCTRL, val);
1910
1911 /* Configure Tx and Rx packet buffers sizes as described in
1912 * i210 datasheet section 7.2.7.7.
1913 */
1914 val = rd32(E1000_TXPBS);
1915 val &= ~I210_TXPBSIZE_MASK;
1916 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1917 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1918 wr32(E1000_TXPBS, val);
1919
1920 val = rd32(E1000_RXPBS);
1921 val &= ~I210_RXPBSIZE_MASK;
1922 val |= I210_RXPBSIZE_PB_30KB;
1923 wr32(E1000_RXPBS, val);
1924
1925 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1926 * register should not exceed the buffer size programmed in
1927 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1928 * so according to the datasheet we should set MAX_TPKT_SIZE to
1929 * 4kB / 64.
1930 *
1931 * However, when we do so, no frame from queue 2 and 3 are
1932 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1933 * or _equal_ to the buffer size programmed in TXPBS. For this
1934 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1935 */
1936 val = (4096 - 1) / 64;
1937 wr32(E1000_I210_DTXMXPKTSZ, val);
1938
1939 /* Since FQTSS mode is enabled, apply any CBS configuration
1940 * previously set. If no previous CBS configuration has been
1941 * done, then the initial configuration is applied, which means
1942 * CBS is disabled.
1943 */
1944 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1945 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1946
1947 for (i = 0; i < max_queue; i++) {
1948 igb_config_tx_modes(adapter, i);
1949 }
1950 } else {
1951 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1952 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1953 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1954
1955 val = rd32(E1000_I210_TQAVCTRL);
1956 /* According to Section 8.12.21, the other flags we've set when
1957 * enabling FQTSS are not relevant when disabling FQTSS so we
1958 * don't set they here.
1959 */
1960 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1961 wr32(E1000_I210_TQAVCTRL, val);
1962 }
1963
1964 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1965 "enabled" : "disabled");
1966 }
1967
1968 /**
1969 * igb_configure - configure the hardware for RX and TX
1970 * @adapter: private board structure
1971 **/
igb_configure(struct igb_adapter * adapter)1972 static void igb_configure(struct igb_adapter *adapter)
1973 {
1974 struct net_device *netdev = adapter->netdev;
1975 int i;
1976
1977 igb_get_hw_control(adapter);
1978 igb_set_rx_mode(netdev);
1979 igb_setup_tx_mode(adapter);
1980
1981 igb_restore_vlan(adapter);
1982
1983 igb_setup_tctl(adapter);
1984 igb_setup_mrqc(adapter);
1985 igb_setup_rctl(adapter);
1986
1987 igb_nfc_filter_restore(adapter);
1988 igb_configure_tx(adapter);
1989 igb_configure_rx(adapter);
1990
1991 igb_rx_fifo_flush_82575(&adapter->hw);
1992
1993 /* call igb_desc_unused which always leaves
1994 * at least 1 descriptor unused to make sure
1995 * next_to_use != next_to_clean
1996 */
1997 for (i = 0; i < adapter->num_rx_queues; i++) {
1998 struct igb_ring *ring = adapter->rx_ring[i];
1999 if (ring->xsk_pool)
2000 igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2001 igb_desc_unused(ring));
2002 else
2003 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 }
2005 }
2006
2007 /**
2008 * igb_power_up_link - Power up the phy/serdes link
2009 * @adapter: address of board private structure
2010 **/
igb_power_up_link(struct igb_adapter * adapter)2011 void igb_power_up_link(struct igb_adapter *adapter)
2012 {
2013 igb_reset_phy(&adapter->hw);
2014
2015 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 igb_power_up_phy_copper(&adapter->hw);
2017 else
2018 igb_power_up_serdes_link_82575(&adapter->hw);
2019
2020 igb_setup_link(&adapter->hw);
2021 }
2022
2023 /**
2024 * igb_power_down_link - Power down the phy/serdes link
2025 * @adapter: address of board private structure
2026 */
igb_power_down_link(struct igb_adapter * adapter)2027 static void igb_power_down_link(struct igb_adapter *adapter)
2028 {
2029 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2030 igb_power_down_phy_copper_82575(&adapter->hw);
2031 else
2032 igb_shutdown_serdes_link_82575(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2037 * @adapter: address of the board private structure
2038 **/
igb_check_swap_media(struct igb_adapter * adapter)2039 static void igb_check_swap_media(struct igb_adapter *adapter)
2040 {
2041 struct e1000_hw *hw = &adapter->hw;
2042 u32 ctrl_ext, connsw;
2043 bool swap_now = false;
2044
2045 ctrl_ext = rd32(E1000_CTRL_EXT);
2046 connsw = rd32(E1000_CONNSW);
2047
2048 /* need to live swap if current media is copper and we have fiber/serdes
2049 * to go to.
2050 */
2051
2052 if ((hw->phy.media_type == e1000_media_type_copper) &&
2053 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2054 swap_now = true;
2055 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2056 !(connsw & E1000_CONNSW_SERDESD)) {
2057 /* copper signal takes time to appear */
2058 if (adapter->copper_tries < 4) {
2059 adapter->copper_tries++;
2060 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2061 wr32(E1000_CONNSW, connsw);
2062 return;
2063 } else {
2064 adapter->copper_tries = 0;
2065 if ((connsw & E1000_CONNSW_PHYSD) &&
2066 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2067 swap_now = true;
2068 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2069 wr32(E1000_CONNSW, connsw);
2070 }
2071 }
2072 }
2073
2074 if (!swap_now)
2075 return;
2076
2077 switch (hw->phy.media_type) {
2078 case e1000_media_type_copper:
2079 netdev_info(adapter->netdev,
2080 "MAS: changing media to fiber/serdes\n");
2081 ctrl_ext |=
2082 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2083 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2084 adapter->copper_tries = 0;
2085 break;
2086 case e1000_media_type_internal_serdes:
2087 case e1000_media_type_fiber:
2088 netdev_info(adapter->netdev,
2089 "MAS: changing media to copper\n");
2090 ctrl_ext &=
2091 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 break;
2094 default:
2095 /* shouldn't get here during regular operation */
2096 netdev_err(adapter->netdev,
2097 "AMS: Invalid media type found, returning\n");
2098 break;
2099 }
2100 wr32(E1000_CTRL_EXT, ctrl_ext);
2101 }
2102
igb_set_queue_napi(struct igb_adapter * adapter,int vector,struct napi_struct * napi)2103 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2104 struct napi_struct *napi)
2105 {
2106 struct igb_q_vector *q_vector = adapter->q_vector[vector];
2107
2108 if (q_vector->rx.ring)
2109 netif_queue_set_napi(adapter->netdev,
2110 q_vector->rx.ring->queue_index,
2111 NETDEV_QUEUE_TYPE_RX, napi);
2112
2113 if (q_vector->tx.ring)
2114 netif_queue_set_napi(adapter->netdev,
2115 q_vector->tx.ring->queue_index,
2116 NETDEV_QUEUE_TYPE_TX, napi);
2117 }
2118
2119 /**
2120 * igb_up - Open the interface and prepare it to handle traffic
2121 * @adapter: board private structure
2122 **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 struct e1000_hw *hw = &adapter->hw;
2126 struct napi_struct *napi;
2127 int i;
2128
2129 /* hardware has been reset, we need to reload some things */
2130 igb_configure(adapter);
2131
2132 clear_bit(__IGB_DOWN, &adapter->state);
2133
2134 for (i = 0; i < adapter->num_q_vectors; i++) {
2135 napi = &adapter->q_vector[i]->napi;
2136 napi_enable(napi);
2137 igb_set_queue_napi(adapter, i, napi);
2138 }
2139
2140 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2141 igb_configure_msix(adapter);
2142 else
2143 igb_assign_vector(adapter->q_vector[0], 0);
2144
2145 /* Clear any pending interrupts. */
2146 rd32(E1000_TSICR);
2147 rd32(E1000_ICR);
2148 igb_irq_enable(adapter);
2149
2150 /* notify VFs that reset has been completed */
2151 if (adapter->vfs_allocated_count) {
2152 u32 reg_data = rd32(E1000_CTRL_EXT);
2153
2154 reg_data |= E1000_CTRL_EXT_PFRSTD;
2155 wr32(E1000_CTRL_EXT, reg_data);
2156 }
2157
2158 netif_tx_start_all_queues(adapter->netdev);
2159
2160 /* start the watchdog. */
2161 hw->mac.get_link_status = 1;
2162 schedule_work(&adapter->watchdog_task);
2163
2164 if ((adapter->flags & IGB_FLAG_EEE) &&
2165 (!hw->dev_spec._82575.eee_disable))
2166 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2167
2168 return 0;
2169 }
2170
igb_down(struct igb_adapter * adapter)2171 void igb_down(struct igb_adapter *adapter)
2172 {
2173 struct net_device *netdev = adapter->netdev;
2174 struct e1000_hw *hw = &adapter->hw;
2175 u32 tctl, rctl;
2176 int i;
2177
2178 /* signal that we're down so the interrupt handler does not
2179 * reschedule our watchdog timer
2180 */
2181 set_bit(__IGB_DOWN, &adapter->state);
2182
2183 /* disable receives in the hardware */
2184 rctl = rd32(E1000_RCTL);
2185 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2186 /* flush and sleep below */
2187
2188 igb_nfc_filter_exit(adapter);
2189
2190 netif_carrier_off(netdev);
2191 netif_tx_stop_all_queues(netdev);
2192
2193 /* disable transmits in the hardware */
2194 tctl = rd32(E1000_TCTL);
2195 tctl &= ~E1000_TCTL_EN;
2196 wr32(E1000_TCTL, tctl);
2197 /* flush both disables and wait for them to finish */
2198 wrfl();
2199 usleep_range(10000, 11000);
2200
2201 igb_irq_disable(adapter);
2202
2203 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2204
2205 for (i = 0; i < adapter->num_q_vectors; i++) {
2206 if (adapter->q_vector[i]) {
2207 napi_synchronize(&adapter->q_vector[i]->napi);
2208 igb_set_queue_napi(adapter, i, NULL);
2209 napi_disable(&adapter->q_vector[i]->napi);
2210 }
2211 }
2212
2213 timer_delete_sync(&adapter->watchdog_timer);
2214 timer_delete_sync(&adapter->phy_info_timer);
2215
2216 /* record the stats before reset*/
2217 spin_lock(&adapter->stats64_lock);
2218 igb_update_stats(adapter);
2219 spin_unlock(&adapter->stats64_lock);
2220
2221 adapter->link_speed = 0;
2222 adapter->link_duplex = 0;
2223
2224 if (!pci_channel_offline(adapter->pdev))
2225 igb_reset(adapter);
2226
2227 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2228 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2229
2230 igb_clean_all_tx_rings(adapter);
2231 igb_clean_all_rx_rings(adapter);
2232 #ifdef CONFIG_IGB_DCA
2233
2234 /* since we reset the hardware DCA settings were cleared */
2235 igb_setup_dca(adapter);
2236 #endif
2237 }
2238
igb_reinit_locked(struct igb_adapter * adapter)2239 void igb_reinit_locked(struct igb_adapter *adapter)
2240 {
2241 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2242 usleep_range(1000, 2000);
2243 igb_down(adapter);
2244 igb_up(adapter);
2245 clear_bit(__IGB_RESETTING, &adapter->state);
2246 }
2247
2248 /** igb_enable_mas - Media Autosense re-enable after swap
2249 *
2250 * @adapter: adapter struct
2251 **/
igb_enable_mas(struct igb_adapter * adapter)2252 static void igb_enable_mas(struct igb_adapter *adapter)
2253 {
2254 struct e1000_hw *hw = &adapter->hw;
2255 u32 connsw = rd32(E1000_CONNSW);
2256
2257 /* configure for SerDes media detect */
2258 if ((hw->phy.media_type == e1000_media_type_copper) &&
2259 (!(connsw & E1000_CONNSW_SERDESD))) {
2260 connsw |= E1000_CONNSW_ENRGSRC;
2261 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2262 wr32(E1000_CONNSW, connsw);
2263 wrfl();
2264 }
2265 }
2266
2267 #ifdef CONFIG_IGB_HWMON
2268 /**
2269 * igb_set_i2c_bb - Init I2C interface
2270 * @hw: pointer to hardware structure
2271 **/
igb_set_i2c_bb(struct e1000_hw * hw)2272 static void igb_set_i2c_bb(struct e1000_hw *hw)
2273 {
2274 u32 ctrl_ext;
2275 s32 i2cctl;
2276
2277 ctrl_ext = rd32(E1000_CTRL_EXT);
2278 ctrl_ext |= E1000_CTRL_I2C_ENA;
2279 wr32(E1000_CTRL_EXT, ctrl_ext);
2280 wrfl();
2281
2282 i2cctl = rd32(E1000_I2CPARAMS);
2283 i2cctl |= E1000_I2CBB_EN
2284 | E1000_I2C_CLK_OE_N
2285 | E1000_I2C_DATA_OE_N;
2286 wr32(E1000_I2CPARAMS, i2cctl);
2287 wrfl();
2288 }
2289 #endif
2290
igb_reset(struct igb_adapter * adapter)2291 void igb_reset(struct igb_adapter *adapter)
2292 {
2293 struct pci_dev *pdev = adapter->pdev;
2294 struct e1000_hw *hw = &adapter->hw;
2295 struct e1000_mac_info *mac = &hw->mac;
2296 struct e1000_fc_info *fc = &hw->fc;
2297 u32 pba, hwm;
2298
2299 /* Repartition Pba for greater than 9k mtu
2300 * To take effect CTRL.RST is required.
2301 */
2302 switch (mac->type) {
2303 case e1000_i350:
2304 case e1000_i354:
2305 case e1000_82580:
2306 pba = rd32(E1000_RXPBS);
2307 pba = igb_rxpbs_adjust_82580(pba);
2308 break;
2309 case e1000_82576:
2310 pba = rd32(E1000_RXPBS);
2311 pba &= E1000_RXPBS_SIZE_MASK_82576;
2312 break;
2313 case e1000_82575:
2314 case e1000_i210:
2315 case e1000_i211:
2316 default:
2317 pba = E1000_PBA_34K;
2318 break;
2319 }
2320
2321 if (mac->type == e1000_82575) {
2322 u32 min_rx_space, min_tx_space, needed_tx_space;
2323
2324 /* write Rx PBA so that hardware can report correct Tx PBA */
2325 wr32(E1000_PBA, pba);
2326
2327 /* To maintain wire speed transmits, the Tx FIFO should be
2328 * large enough to accommodate two full transmit packets,
2329 * rounded up to the next 1KB and expressed in KB. Likewise,
2330 * the Rx FIFO should be large enough to accommodate at least
2331 * one full receive packet and is similarly rounded up and
2332 * expressed in KB.
2333 */
2334 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2335
2336 /* The Tx FIFO also stores 16 bytes of information about the Tx
2337 * but don't include Ethernet FCS because hardware appends it.
2338 * We only need to round down to the nearest 512 byte block
2339 * count since the value we care about is 2 frames, not 1.
2340 */
2341 min_tx_space = adapter->max_frame_size;
2342 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2343 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2344
2345 /* upper 16 bits has Tx packet buffer allocation size in KB */
2346 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2347
2348 /* If current Tx allocation is less than the min Tx FIFO size,
2349 * and the min Tx FIFO size is less than the current Rx FIFO
2350 * allocation, take space away from current Rx allocation.
2351 */
2352 if (needed_tx_space < pba) {
2353 pba -= needed_tx_space;
2354
2355 /* if short on Rx space, Rx wins and must trump Tx
2356 * adjustment
2357 */
2358 if (pba < min_rx_space)
2359 pba = min_rx_space;
2360 }
2361
2362 /* adjust PBA for jumbo frames */
2363 wr32(E1000_PBA, pba);
2364 }
2365
2366 /* flow control settings
2367 * The high water mark must be low enough to fit one full frame
2368 * after transmitting the pause frame. As such we must have enough
2369 * space to allow for us to complete our current transmit and then
2370 * receive the frame that is in progress from the link partner.
2371 * Set it to:
2372 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2373 */
2374 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2375
2376 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2377 fc->low_water = fc->high_water - 16;
2378 fc->pause_time = 0xFFFF;
2379 fc->send_xon = 1;
2380 fc->current_mode = fc->requested_mode;
2381
2382 /* disable receive for all VFs and wait one second */
2383 if (adapter->vfs_allocated_count) {
2384 int i;
2385
2386 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2387 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2388
2389 /* ping all the active vfs to let them know we are going down */
2390 igb_ping_all_vfs(adapter);
2391
2392 /* disable transmits and receives */
2393 wr32(E1000_VFRE, 0);
2394 wr32(E1000_VFTE, 0);
2395 }
2396
2397 /* Allow time for pending master requests to run */
2398 hw->mac.ops.reset_hw(hw);
2399 wr32(E1000_WUC, 0);
2400
2401 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2402 /* need to resetup here after media swap */
2403 adapter->ei.get_invariants(hw);
2404 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2405 }
2406 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2407 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2408 igb_enable_mas(adapter);
2409 }
2410 if (hw->mac.ops.init_hw(hw))
2411 dev_err(&pdev->dev, "Hardware Error\n");
2412
2413 /* RAR registers were cleared during init_hw, clear mac table */
2414 igb_flush_mac_table(adapter);
2415 __dev_uc_unsync(adapter->netdev, NULL);
2416
2417 /* Recover default RAR entry */
2418 igb_set_default_mac_filter(adapter);
2419
2420 /* Flow control settings reset on hardware reset, so guarantee flow
2421 * control is off when forcing speed.
2422 */
2423 if (!hw->mac.autoneg)
2424 igb_force_mac_fc(hw);
2425
2426 igb_init_dmac(adapter, pba);
2427 #ifdef CONFIG_IGB_HWMON
2428 /* Re-initialize the thermal sensor on i350 devices. */
2429 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2430 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2431 /* If present, re-initialize the external thermal sensor
2432 * interface.
2433 */
2434 if (adapter->ets)
2435 igb_set_i2c_bb(hw);
2436 mac->ops.init_thermal_sensor_thresh(hw);
2437 }
2438 }
2439 #endif
2440 /* Re-establish EEE setting */
2441 if (hw->phy.media_type == e1000_media_type_copper) {
2442 switch (mac->type) {
2443 case e1000_i350:
2444 case e1000_i210:
2445 case e1000_i211:
2446 igb_set_eee_i350(hw, true, true);
2447 break;
2448 case e1000_i354:
2449 igb_set_eee_i354(hw, true, true);
2450 break;
2451 default:
2452 break;
2453 }
2454 }
2455 if (!netif_running(adapter->netdev))
2456 igb_power_down_link(adapter);
2457
2458 igb_update_mng_vlan(adapter);
2459
2460 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2462
2463 /* Re-enable PTP, where applicable. */
2464 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2465 igb_ptp_reset(adapter);
2466
2467 igb_get_phy_info(hw);
2468 }
2469
igb_fix_features(struct net_device * netdev,netdev_features_t features)2470 static netdev_features_t igb_fix_features(struct net_device *netdev,
2471 netdev_features_t features)
2472 {
2473 /* Since there is no support for separate Rx/Tx vlan accel
2474 * enable/disable make sure Tx flag is always in same state as Rx.
2475 */
2476 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2477 features |= NETIF_F_HW_VLAN_CTAG_TX;
2478 else
2479 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2480
2481 return features;
2482 }
2483
igb_set_features(struct net_device * netdev,netdev_features_t features)2484 static int igb_set_features(struct net_device *netdev,
2485 netdev_features_t features)
2486 {
2487 netdev_features_t changed = netdev->features ^ features;
2488 struct igb_adapter *adapter = netdev_priv(netdev);
2489
2490 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2491 igb_vlan_mode(netdev, features);
2492
2493 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2494 return 0;
2495
2496 if (!(features & NETIF_F_NTUPLE)) {
2497 struct hlist_node *node2;
2498 struct igb_nfc_filter *rule;
2499
2500 spin_lock(&adapter->nfc_lock);
2501 hlist_for_each_entry_safe(rule, node2,
2502 &adapter->nfc_filter_list, nfc_node) {
2503 igb_erase_filter(adapter, rule);
2504 hlist_del(&rule->nfc_node);
2505 kfree(rule);
2506 }
2507 spin_unlock(&adapter->nfc_lock);
2508 adapter->nfc_filter_count = 0;
2509 }
2510
2511 netdev->features = features;
2512
2513 if (netif_running(netdev))
2514 igb_reinit_locked(adapter);
2515 else
2516 igb_reset(adapter);
2517
2518 return 1;
2519 }
2520
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)2521 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2522 struct net_device *dev,
2523 const unsigned char *addr, u16 vid,
2524 u16 flags, bool *notified,
2525 struct netlink_ext_ack *extack)
2526 {
2527 /* guarantee we can provide a unique filter for the unicast address */
2528 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2529 struct igb_adapter *adapter = netdev_priv(dev);
2530 int vfn = adapter->vfs_allocated_count;
2531
2532 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2533 return -ENOMEM;
2534 }
2535
2536 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2537 }
2538
2539 #define IGB_MAX_MAC_HDR_LEN 127
2540 #define IGB_MAX_NETWORK_HDR_LEN 511
2541
2542 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2543 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2544 netdev_features_t features)
2545 {
2546 unsigned int network_hdr_len, mac_hdr_len;
2547
2548 /* Make certain the headers can be described by a context descriptor */
2549 mac_hdr_len = skb_network_offset(skb);
2550 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2551 return features & ~(NETIF_F_HW_CSUM |
2552 NETIF_F_SCTP_CRC |
2553 NETIF_F_GSO_UDP_L4 |
2554 NETIF_F_HW_VLAN_CTAG_TX |
2555 NETIF_F_TSO |
2556 NETIF_F_TSO6);
2557
2558 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2559 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2560 return features & ~(NETIF_F_HW_CSUM |
2561 NETIF_F_SCTP_CRC |
2562 NETIF_F_GSO_UDP_L4 |
2563 NETIF_F_TSO |
2564 NETIF_F_TSO6);
2565
2566 /* We can only support IPV4 TSO in tunnels if we can mangle the
2567 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2568 */
2569 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2570 features &= ~NETIF_F_TSO;
2571
2572 return features;
2573 }
2574
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2575 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2576 {
2577 if (!is_fqtss_enabled(adapter)) {
2578 enable_fqtss(adapter, true);
2579 return;
2580 }
2581
2582 igb_config_tx_modes(adapter, queue);
2583
2584 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2585 enable_fqtss(adapter, false);
2586 }
2587
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2588 static int igb_offload_cbs(struct igb_adapter *adapter,
2589 struct tc_cbs_qopt_offload *qopt)
2590 {
2591 struct e1000_hw *hw = &adapter->hw;
2592 int err;
2593
2594 /* CBS offloading is only supported by i210 controller. */
2595 if (hw->mac.type != e1000_i210)
2596 return -EOPNOTSUPP;
2597
2598 /* CBS offloading is only supported by queue 0 and queue 1. */
2599 if (qopt->queue < 0 || qopt->queue > 1)
2600 return -EINVAL;
2601
2602 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2603 qopt->idleslope, qopt->sendslope,
2604 qopt->hicredit, qopt->locredit);
2605 if (err)
2606 return err;
2607
2608 igb_offload_apply(adapter, qopt->queue);
2609
2610 return 0;
2611 }
2612
2613 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2614 #define VLAN_PRIO_FULL_MASK (0x07)
2615
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2616 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2617 struct flow_cls_offload *f,
2618 int traffic_class,
2619 struct igb_nfc_filter *input)
2620 {
2621 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2622 struct flow_dissector *dissector = rule->match.dissector;
2623 struct netlink_ext_ack *extack = f->common.extack;
2624
2625 if (dissector->used_keys &
2626 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2627 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2628 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2629 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2630 NL_SET_ERR_MSG_MOD(extack,
2631 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2632 return -EOPNOTSUPP;
2633 }
2634
2635 if (flow_rule_match_has_control_flags(rule, extack))
2636 return -EOPNOTSUPP;
2637
2638 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2639 struct flow_match_eth_addrs match;
2640
2641 flow_rule_match_eth_addrs(rule, &match);
2642 if (!is_zero_ether_addr(match.mask->dst)) {
2643 if (!is_broadcast_ether_addr(match.mask->dst)) {
2644 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2645 return -EINVAL;
2646 }
2647
2648 input->filter.match_flags |=
2649 IGB_FILTER_FLAG_DST_MAC_ADDR;
2650 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2651 }
2652
2653 if (!is_zero_ether_addr(match.mask->src)) {
2654 if (!is_broadcast_ether_addr(match.mask->src)) {
2655 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2656 return -EINVAL;
2657 }
2658
2659 input->filter.match_flags |=
2660 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2661 ether_addr_copy(input->filter.src_addr, match.key->src);
2662 }
2663 }
2664
2665 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2666 struct flow_match_basic match;
2667
2668 flow_rule_match_basic(rule, &match);
2669 if (match.mask->n_proto) {
2670 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2671 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2672 return -EINVAL;
2673 }
2674
2675 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2676 input->filter.etype = match.key->n_proto;
2677 }
2678 }
2679
2680 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2681 struct flow_match_vlan match;
2682
2683 flow_rule_match_vlan(rule, &match);
2684 if (match.mask->vlan_priority) {
2685 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2686 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2687 return -EINVAL;
2688 }
2689
2690 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2691 input->filter.vlan_tci =
2692 (__force __be16)match.key->vlan_priority;
2693 }
2694 }
2695
2696 input->action = traffic_class;
2697 input->cookie = f->cookie;
2698
2699 return 0;
2700 }
2701
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2702 static int igb_configure_clsflower(struct igb_adapter *adapter,
2703 struct flow_cls_offload *cls_flower)
2704 {
2705 struct netlink_ext_ack *extack = cls_flower->common.extack;
2706 struct igb_nfc_filter *filter, *f;
2707 int err, tc;
2708
2709 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2710 if (tc < 0) {
2711 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2712 return -EINVAL;
2713 }
2714
2715 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2716 if (!filter)
2717 return -ENOMEM;
2718
2719 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2720 if (err < 0)
2721 goto err_parse;
2722
2723 spin_lock(&adapter->nfc_lock);
2724
2725 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2726 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2727 err = -EEXIST;
2728 NL_SET_ERR_MSG_MOD(extack,
2729 "This filter is already set in ethtool");
2730 goto err_locked;
2731 }
2732 }
2733
2734 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2735 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2736 err = -EEXIST;
2737 NL_SET_ERR_MSG_MOD(extack,
2738 "This filter is already set in cls_flower");
2739 goto err_locked;
2740 }
2741 }
2742
2743 err = igb_add_filter(adapter, filter);
2744 if (err < 0) {
2745 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2746 goto err_locked;
2747 }
2748
2749 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2750
2751 spin_unlock(&adapter->nfc_lock);
2752
2753 return 0;
2754
2755 err_locked:
2756 spin_unlock(&adapter->nfc_lock);
2757
2758 err_parse:
2759 kfree(filter);
2760
2761 return err;
2762 }
2763
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2764 static int igb_delete_clsflower(struct igb_adapter *adapter,
2765 struct flow_cls_offload *cls_flower)
2766 {
2767 struct igb_nfc_filter *filter;
2768 int err;
2769
2770 spin_lock(&adapter->nfc_lock);
2771
2772 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2773 if (filter->cookie == cls_flower->cookie)
2774 break;
2775
2776 if (!filter) {
2777 err = -ENOENT;
2778 goto out;
2779 }
2780
2781 err = igb_erase_filter(adapter, filter);
2782 if (err < 0)
2783 goto out;
2784
2785 hlist_del(&filter->nfc_node);
2786 kfree(filter);
2787
2788 out:
2789 spin_unlock(&adapter->nfc_lock);
2790
2791 return err;
2792 }
2793
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2794 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2795 struct flow_cls_offload *cls_flower)
2796 {
2797 switch (cls_flower->command) {
2798 case FLOW_CLS_REPLACE:
2799 return igb_configure_clsflower(adapter, cls_flower);
2800 case FLOW_CLS_DESTROY:
2801 return igb_delete_clsflower(adapter, cls_flower);
2802 case FLOW_CLS_STATS:
2803 return -EOPNOTSUPP;
2804 default:
2805 return -EOPNOTSUPP;
2806 }
2807 }
2808
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2809 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2810 void *cb_priv)
2811 {
2812 struct igb_adapter *adapter = cb_priv;
2813
2814 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2815 return -EOPNOTSUPP;
2816
2817 switch (type) {
2818 case TC_SETUP_CLSFLOWER:
2819 return igb_setup_tc_cls_flower(adapter, type_data);
2820
2821 default:
2822 return -EOPNOTSUPP;
2823 }
2824 }
2825
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2826 static int igb_offload_txtime(struct igb_adapter *adapter,
2827 struct tc_etf_qopt_offload *qopt)
2828 {
2829 struct e1000_hw *hw = &adapter->hw;
2830 int err;
2831
2832 /* Launchtime offloading is only supported by i210 controller. */
2833 if (hw->mac.type != e1000_i210)
2834 return -EOPNOTSUPP;
2835
2836 /* Launchtime offloading is only supported by queues 0 and 1. */
2837 if (qopt->queue < 0 || qopt->queue > 1)
2838 return -EINVAL;
2839
2840 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2841 if (err)
2842 return err;
2843
2844 igb_offload_apply(adapter, qopt->queue);
2845
2846 return 0;
2847 }
2848
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2849 static int igb_tc_query_caps(struct igb_adapter *adapter,
2850 struct tc_query_caps_base *base)
2851 {
2852 switch (base->type) {
2853 case TC_SETUP_QDISC_TAPRIO: {
2854 struct tc_taprio_caps *caps = base->caps;
2855
2856 caps->broken_mqprio = true;
2857
2858 return 0;
2859 }
2860 default:
2861 return -EOPNOTSUPP;
2862 }
2863 }
2864
2865 static LIST_HEAD(igb_block_cb_list);
2866
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2867 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2868 void *type_data)
2869 {
2870 struct igb_adapter *adapter = netdev_priv(dev);
2871
2872 switch (type) {
2873 case TC_QUERY_CAPS:
2874 return igb_tc_query_caps(adapter, type_data);
2875 case TC_SETUP_QDISC_CBS:
2876 return igb_offload_cbs(adapter, type_data);
2877 case TC_SETUP_BLOCK:
2878 return flow_block_cb_setup_simple(type_data,
2879 &igb_block_cb_list,
2880 igb_setup_tc_block_cb,
2881 adapter, adapter, true);
2882
2883 case TC_SETUP_QDISC_ETF:
2884 return igb_offload_txtime(adapter, type_data);
2885
2886 default:
2887 return -EOPNOTSUPP;
2888 }
2889 }
2890
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2891 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2892 {
2893 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2894 struct igb_adapter *adapter = netdev_priv(dev);
2895 struct bpf_prog *prog = bpf->prog, *old_prog;
2896 bool running = netif_running(dev);
2897 bool need_reset;
2898
2899 /* verify igb ring attributes are sufficient for XDP */
2900 for (i = 0; i < adapter->num_rx_queues; i++) {
2901 struct igb_ring *ring = adapter->rx_ring[i];
2902
2903 if (frame_size > igb_rx_bufsz(ring)) {
2904 NL_SET_ERR_MSG_MOD(bpf->extack,
2905 "The RX buffer size is too small for the frame size");
2906 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2907 igb_rx_bufsz(ring), frame_size);
2908 return -EINVAL;
2909 }
2910 }
2911
2912 old_prog = xchg(&adapter->xdp_prog, prog);
2913 need_reset = (!!prog != !!old_prog);
2914
2915 /* device is up and bpf is added/removed, must setup the RX queues */
2916 if (need_reset && running) {
2917 igb_close(dev);
2918 } else {
2919 for (i = 0; i < adapter->num_rx_queues; i++)
2920 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2921 adapter->xdp_prog);
2922 }
2923
2924 if (old_prog)
2925 bpf_prog_put(old_prog);
2926
2927 /* bpf is just replaced, RXQ and MTU are already setup */
2928 if (!need_reset) {
2929 return 0;
2930 } else {
2931 if (prog)
2932 xdp_features_set_redirect_target(dev, true);
2933 else
2934 xdp_features_clear_redirect_target(dev);
2935 }
2936
2937 if (running)
2938 igb_open(dev);
2939
2940 return 0;
2941 }
2942
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2943 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2944 {
2945 struct igb_adapter *adapter = netdev_priv(dev);
2946
2947 switch (xdp->command) {
2948 case XDP_SETUP_PROG:
2949 return igb_xdp_setup(dev, xdp);
2950 case XDP_SETUP_XSK_POOL:
2951 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2952 xdp->xsk.queue_id);
2953 default:
2954 return -EINVAL;
2955 }
2956 }
2957
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2958 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2959 {
2960 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2961 int cpu = smp_processor_id();
2962 struct igb_ring *tx_ring;
2963 struct netdev_queue *nq;
2964 u32 ret;
2965
2966 if (unlikely(!xdpf))
2967 return IGB_XDP_CONSUMED;
2968
2969 /* During program transitions its possible adapter->xdp_prog is assigned
2970 * but ring has not been configured yet. In this case simply abort xmit.
2971 */
2972 tx_ring = igb_xdp_is_enabled(adapter) ?
2973 igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 if (unlikely(!tx_ring))
2975 return IGB_XDP_CONSUMED;
2976
2977 nq = txring_txq(tx_ring);
2978 __netif_tx_lock(nq, cpu);
2979 /* Avoid transmit queue timeout since we share it with the slow path */
2980 txq_trans_cond_update(nq);
2981 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 __netif_tx_unlock(nq);
2983
2984 return ret;
2985 }
2986
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 struct xdp_frame **frames, u32 flags)
2989 {
2990 struct igb_adapter *adapter = netdev_priv(dev);
2991 int cpu = smp_processor_id();
2992 struct igb_ring *tx_ring;
2993 struct netdev_queue *nq;
2994 int nxmit = 0;
2995 int i;
2996
2997 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 return -ENETDOWN;
2999
3000 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 return -EINVAL;
3002
3003 /* During program transitions its possible adapter->xdp_prog is assigned
3004 * but ring has not been configured yet. In this case simply abort xmit.
3005 */
3006 tx_ring = igb_xdp_is_enabled(adapter) ?
3007 igb_xdp_tx_queue_mapping(adapter) : NULL;
3008 if (unlikely(!tx_ring))
3009 return -ENXIO;
3010
3011 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3012 return -ENXIO;
3013
3014 nq = txring_txq(tx_ring);
3015 __netif_tx_lock(nq, cpu);
3016
3017 /* Avoid transmit queue timeout since we share it with the slow path */
3018 txq_trans_cond_update(nq);
3019
3020 for (i = 0; i < n; i++) {
3021 struct xdp_frame *xdpf = frames[i];
3022 int err;
3023
3024 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3025 if (err != IGB_XDP_TX)
3026 break;
3027 nxmit++;
3028 }
3029
3030 if (unlikely(flags & XDP_XMIT_FLUSH))
3031 igb_xdp_ring_update_tail(tx_ring);
3032
3033 __netif_tx_unlock(nq);
3034
3035 return nxmit;
3036 }
3037
3038 static const struct net_device_ops igb_netdev_ops = {
3039 .ndo_open = igb_open,
3040 .ndo_stop = igb_close,
3041 .ndo_start_xmit = igb_xmit_frame,
3042 .ndo_get_stats64 = igb_get_stats64,
3043 .ndo_set_rx_mode = igb_set_rx_mode,
3044 .ndo_set_mac_address = igb_set_mac,
3045 .ndo_change_mtu = igb_change_mtu,
3046 .ndo_eth_ioctl = igb_ioctl,
3047 .ndo_tx_timeout = igb_tx_timeout,
3048 .ndo_validate_addr = eth_validate_addr,
3049 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3050 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3051 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3052 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3053 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3054 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3055 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3056 .ndo_get_vf_config = igb_ndo_get_vf_config,
3057 .ndo_fix_features = igb_fix_features,
3058 .ndo_set_features = igb_set_features,
3059 .ndo_fdb_add = igb_ndo_fdb_add,
3060 .ndo_features_check = igb_features_check,
3061 .ndo_setup_tc = igb_setup_tc,
3062 .ndo_bpf = igb_xdp,
3063 .ndo_xdp_xmit = igb_xdp_xmit,
3064 .ndo_xsk_wakeup = igb_xsk_wakeup,
3065 .ndo_hwtstamp_get = igb_ptp_hwtstamp_get,
3066 .ndo_hwtstamp_set = igb_ptp_hwtstamp_set,
3067 };
3068
3069 /**
3070 * igb_set_fw_version - Configure version string for ethtool
3071 * @adapter: adapter struct
3072 **/
igb_set_fw_version(struct igb_adapter * adapter)3073 void igb_set_fw_version(struct igb_adapter *adapter)
3074 {
3075 struct e1000_hw *hw = &adapter->hw;
3076 struct e1000_fw_version fw;
3077
3078 igb_get_fw_version(hw, &fw);
3079
3080 switch (hw->mac.type) {
3081 case e1000_i210:
3082 case e1000_i211:
3083 if (!(igb_get_flash_presence_i210(hw))) {
3084 snprintf(adapter->fw_version,
3085 sizeof(adapter->fw_version),
3086 "%2d.%2d-%d",
3087 fw.invm_major, fw.invm_minor,
3088 fw.invm_img_type);
3089 break;
3090 }
3091 fallthrough;
3092 default:
3093 /* if option rom is valid, display its version too */
3094 if (fw.or_valid) {
3095 snprintf(adapter->fw_version,
3096 sizeof(adapter->fw_version),
3097 "%d.%d, 0x%08x, %d.%d.%d",
3098 fw.eep_major, fw.eep_minor, fw.etrack_id,
3099 fw.or_major, fw.or_build, fw.or_patch);
3100 /* no option rom */
3101 } else if (fw.etrack_id != 0X0000) {
3102 snprintf(adapter->fw_version,
3103 sizeof(adapter->fw_version),
3104 "%d.%d, 0x%08x",
3105 fw.eep_major, fw.eep_minor, fw.etrack_id);
3106 } else {
3107 snprintf(adapter->fw_version,
3108 sizeof(adapter->fw_version),
3109 "%d.%d.%d",
3110 fw.eep_major, fw.eep_minor, fw.eep_build);
3111 }
3112 break;
3113 }
3114 }
3115
3116 /**
3117 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3118 *
3119 * @adapter: adapter struct
3120 **/
igb_init_mas(struct igb_adapter * adapter)3121 static void igb_init_mas(struct igb_adapter *adapter)
3122 {
3123 struct e1000_hw *hw = &adapter->hw;
3124 u16 eeprom_data;
3125
3126 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3127 switch (hw->bus.func) {
3128 case E1000_FUNC_0:
3129 if (eeprom_data & IGB_MAS_ENABLE_0) {
3130 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3131 netdev_info(adapter->netdev,
3132 "MAS: Enabling Media Autosense for port %d\n",
3133 hw->bus.func);
3134 }
3135 break;
3136 case E1000_FUNC_1:
3137 if (eeprom_data & IGB_MAS_ENABLE_1) {
3138 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3139 netdev_info(adapter->netdev,
3140 "MAS: Enabling Media Autosense for port %d\n",
3141 hw->bus.func);
3142 }
3143 break;
3144 case E1000_FUNC_2:
3145 if (eeprom_data & IGB_MAS_ENABLE_2) {
3146 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3147 netdev_info(adapter->netdev,
3148 "MAS: Enabling Media Autosense for port %d\n",
3149 hw->bus.func);
3150 }
3151 break;
3152 case E1000_FUNC_3:
3153 if (eeprom_data & IGB_MAS_ENABLE_3) {
3154 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3155 netdev_info(adapter->netdev,
3156 "MAS: Enabling Media Autosense for port %d\n",
3157 hw->bus.func);
3158 }
3159 break;
3160 default:
3161 /* Shouldn't get here */
3162 netdev_err(adapter->netdev,
3163 "MAS: Invalid port configuration, returning\n");
3164 break;
3165 }
3166 }
3167
3168 /**
3169 * igb_init_i2c - Init I2C interface
3170 * @adapter: pointer to adapter structure
3171 **/
igb_init_i2c(struct igb_adapter * adapter)3172 static s32 igb_init_i2c(struct igb_adapter *adapter)
3173 {
3174 s32 status = 0;
3175
3176 /* I2C interface supported on i350 devices */
3177 if (adapter->hw.mac.type != e1000_i350)
3178 return 0;
3179
3180 /* Initialize the i2c bus which is controlled by the registers.
3181 * This bus will use the i2c_algo_bit structure that implements
3182 * the protocol through toggling of the 4 bits in the register.
3183 */
3184 adapter->i2c_adap.owner = THIS_MODULE;
3185 adapter->i2c_algo = igb_i2c_algo;
3186 adapter->i2c_algo.data = adapter;
3187 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3188 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3189 strscpy(adapter->i2c_adap.name, "igb BB",
3190 sizeof(adapter->i2c_adap.name));
3191 status = i2c_bit_add_bus(&adapter->i2c_adap);
3192 return status;
3193 }
3194
3195 /**
3196 * igb_probe - Device Initialization Routine
3197 * @pdev: PCI device information struct
3198 * @ent: entry in igb_pci_tbl
3199 *
3200 * Returns 0 on success, negative on failure
3201 *
3202 * igb_probe initializes an adapter identified by a pci_dev structure.
3203 * The OS initialization, configuring of the adapter private structure,
3204 * and a hardware reset occur.
3205 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3206 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3207 {
3208 struct net_device *netdev;
3209 struct igb_adapter *adapter;
3210 struct e1000_hw *hw;
3211 u16 eeprom_data = 0;
3212 s32 ret_val;
3213 static int global_quad_port_a; /* global quad port a indication */
3214 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3215 u8 part_str[E1000_PBANUM_LENGTH];
3216 int err;
3217
3218 /* Catch broken hardware that put the wrong VF device ID in
3219 * the PCIe SR-IOV capability.
3220 */
3221 if (pdev->is_virtfn) {
3222 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3223 pci_name(pdev), pdev->vendor, pdev->device);
3224 return -EINVAL;
3225 }
3226
3227 err = pci_enable_device_mem(pdev);
3228 if (err)
3229 return err;
3230
3231 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3232 if (err) {
3233 dev_err(&pdev->dev,
3234 "No usable DMA configuration, aborting\n");
3235 goto err_dma;
3236 }
3237
3238 err = pci_request_mem_regions(pdev, igb_driver_name);
3239 if (err)
3240 goto err_pci_reg;
3241
3242 pci_set_master(pdev);
3243 pci_save_state(pdev);
3244
3245 err = -ENOMEM;
3246 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3247 IGB_MAX_TX_QUEUES);
3248 if (!netdev)
3249 goto err_alloc_etherdev;
3250
3251 SET_NETDEV_DEV(netdev, &pdev->dev);
3252
3253 pci_set_drvdata(pdev, netdev);
3254 adapter = netdev_priv(netdev);
3255 adapter->netdev = netdev;
3256 adapter->pdev = pdev;
3257 hw = &adapter->hw;
3258 hw->back = adapter;
3259 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3260
3261 err = -EIO;
3262 adapter->io_addr = pci_iomap(pdev, 0, 0);
3263 if (!adapter->io_addr)
3264 goto err_ioremap;
3265 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3266 hw->hw_addr = adapter->io_addr;
3267
3268 netdev->netdev_ops = &igb_netdev_ops;
3269 igb_set_ethtool_ops(netdev);
3270 netdev->watchdog_timeo = 5 * HZ;
3271
3272 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3273
3274 netdev->mem_start = pci_resource_start(pdev, 0);
3275 netdev->mem_end = pci_resource_end(pdev, 0);
3276
3277 /* PCI config space info */
3278 hw->vendor_id = pdev->vendor;
3279 hw->device_id = pdev->device;
3280 hw->revision_id = pdev->revision;
3281 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3282 hw->subsystem_device_id = pdev->subsystem_device;
3283
3284 /* Copy the default MAC, PHY and NVM function pointers */
3285 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3286 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3287 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3288 /* Initialize skew-specific constants */
3289 err = ei->get_invariants(hw);
3290 if (err)
3291 goto err_sw_init;
3292
3293 /* setup the private structure */
3294 err = igb_sw_init(adapter);
3295 if (err)
3296 goto err_sw_init;
3297
3298 igb_get_bus_info_pcie(hw);
3299
3300 hw->phy.autoneg_wait_to_complete = false;
3301
3302 /* Copper options */
3303 if (hw->phy.media_type == e1000_media_type_copper) {
3304 hw->phy.mdix = AUTO_ALL_MODES;
3305 hw->phy.disable_polarity_correction = false;
3306 hw->phy.ms_type = e1000_ms_hw_default;
3307 }
3308
3309 if (igb_check_reset_block(hw))
3310 dev_info(&pdev->dev,
3311 "PHY reset is blocked due to SOL/IDER session.\n");
3312
3313 /* features is initialized to 0 in allocation, it might have bits
3314 * set by igb_sw_init so we should use an or instead of an
3315 * assignment.
3316 */
3317 netdev->features |= NETIF_F_SG |
3318 NETIF_F_TSO |
3319 NETIF_F_TSO6 |
3320 NETIF_F_RXHASH |
3321 NETIF_F_RXCSUM |
3322 NETIF_F_HW_CSUM;
3323
3324 if (hw->mac.type >= e1000_82576)
3325 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3326
3327 if (hw->mac.type >= e1000_i350)
3328 netdev->features |= NETIF_F_HW_TC;
3329
3330 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3331 NETIF_F_GSO_GRE_CSUM | \
3332 NETIF_F_GSO_IPXIP4 | \
3333 NETIF_F_GSO_IPXIP6 | \
3334 NETIF_F_GSO_UDP_TUNNEL | \
3335 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3336
3337 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3338 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3339
3340 /* copy netdev features into list of user selectable features */
3341 netdev->hw_features |= netdev->features |
3342 NETIF_F_HW_VLAN_CTAG_RX |
3343 NETIF_F_HW_VLAN_CTAG_TX |
3344 NETIF_F_RXALL;
3345
3346 if (hw->mac.type >= e1000_i350)
3347 netdev->hw_features |= NETIF_F_NTUPLE;
3348
3349 netdev->features |= NETIF_F_HIGHDMA;
3350
3351 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3352 netdev->mpls_features |= NETIF_F_HW_CSUM;
3353 netdev->hw_enc_features |= netdev->vlan_features;
3354
3355 /* set this bit last since it cannot be part of vlan_features */
3356 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3357 NETIF_F_HW_VLAN_CTAG_RX |
3358 NETIF_F_HW_VLAN_CTAG_TX;
3359
3360 netdev->priv_flags |= IFF_SUPP_NOFCS;
3361
3362 netdev->priv_flags |= IFF_UNICAST_FLT;
3363 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3364 NETDEV_XDP_ACT_XSK_ZEROCOPY;
3365
3366 /* MTU range: 68 - 9216 */
3367 netdev->min_mtu = ETH_MIN_MTU;
3368 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3369
3370 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3371
3372 /* before reading the NVM, reset the controller to put the device in a
3373 * known good starting state
3374 */
3375 hw->mac.ops.reset_hw(hw);
3376
3377 /* make sure the NVM is good , i211/i210 parts can have special NVM
3378 * that doesn't contain a checksum
3379 */
3380 switch (hw->mac.type) {
3381 case e1000_i210:
3382 case e1000_i211:
3383 if (igb_get_flash_presence_i210(hw)) {
3384 if (hw->nvm.ops.validate(hw) < 0) {
3385 dev_err(&pdev->dev,
3386 "The NVM Checksum Is Not Valid\n");
3387 err = -EIO;
3388 goto err_eeprom;
3389 }
3390 }
3391 break;
3392 default:
3393 if (hw->nvm.ops.validate(hw) < 0) {
3394 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3395 err = -EIO;
3396 goto err_eeprom;
3397 }
3398 break;
3399 }
3400
3401 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3402 /* copy the MAC address out of the NVM */
3403 if (hw->mac.ops.read_mac_addr(hw))
3404 dev_err(&pdev->dev, "NVM Read Error\n");
3405 }
3406
3407 eth_hw_addr_set(netdev, hw->mac.addr);
3408
3409 if (!is_valid_ether_addr(netdev->dev_addr)) {
3410 dev_err(&pdev->dev, "Invalid MAC Address\n");
3411 err = -EIO;
3412 goto err_eeprom;
3413 }
3414
3415 igb_set_default_mac_filter(adapter);
3416
3417 /* get firmware version for ethtool -i */
3418 igb_set_fw_version(adapter);
3419
3420 /* configure RXPBSIZE and TXPBSIZE */
3421 if (hw->mac.type == e1000_i210) {
3422 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3423 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3424 }
3425
3426 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3427 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3428
3429 INIT_WORK(&adapter->reset_task, igb_reset_task);
3430 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3431
3432 /* Initialize link properties that are user-changeable */
3433 adapter->fc_autoneg = true;
3434 hw->mac.autoneg = true;
3435 hw->phy.autoneg_advertised = 0x2f;
3436
3437 hw->fc.requested_mode = e1000_fc_default;
3438 hw->fc.current_mode = e1000_fc_default;
3439
3440 igb_validate_mdi_setting(hw);
3441
3442 /* By default, support wake on port A */
3443 if (hw->bus.func == 0)
3444 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3445
3446 /* Check the NVM for wake support on non-port A ports */
3447 if (hw->mac.type >= e1000_82580)
3448 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3449 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3450 &eeprom_data);
3451 else if (hw->bus.func == 1)
3452 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3453
3454 if (eeprom_data & IGB_EEPROM_APME)
3455 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456
3457 /* now that we have the eeprom settings, apply the special cases where
3458 * the eeprom may be wrong or the board simply won't support wake on
3459 * lan on a particular port
3460 */
3461 switch (pdev->device) {
3462 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3463 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3464 break;
3465 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3466 case E1000_DEV_ID_82576_FIBER:
3467 case E1000_DEV_ID_82576_SERDES:
3468 /* Wake events only supported on port A for dual fiber
3469 * regardless of eeprom setting
3470 */
3471 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3472 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 break;
3474 case E1000_DEV_ID_82576_QUAD_COPPER:
3475 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3476 /* if quad port adapter, disable WoL on all but port A */
3477 if (global_quad_port_a != 0)
3478 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3479 else
3480 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3481 /* Reset for multiple quad port adapters */
3482 if (++global_quad_port_a == 4)
3483 global_quad_port_a = 0;
3484 break;
3485 default:
3486 /* If the device can't wake, don't set software support */
3487 if (!device_can_wakeup(&adapter->pdev->dev))
3488 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3489 }
3490
3491 /* initialize the wol settings based on the eeprom settings */
3492 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3493 adapter->wol |= E1000_WUFC_MAG;
3494
3495 /* Some vendors want WoL disabled by default, but still supported */
3496 if ((hw->mac.type == e1000_i350) &&
3497 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3498 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3499 adapter->wol = 0;
3500 }
3501
3502 /* Some vendors want the ability to Use the EEPROM setting as
3503 * enable/disable only, and not for capability
3504 */
3505 if (((hw->mac.type == e1000_i350) ||
3506 (hw->mac.type == e1000_i354)) &&
3507 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3508 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3509 adapter->wol = 0;
3510 }
3511 if (hw->mac.type == e1000_i350) {
3512 if (((pdev->subsystem_device == 0x5001) ||
3513 (pdev->subsystem_device == 0x5002)) &&
3514 (hw->bus.func == 0)) {
3515 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3516 adapter->wol = 0;
3517 }
3518 if (pdev->subsystem_device == 0x1F52)
3519 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3520 }
3521
3522 device_set_wakeup_enable(&adapter->pdev->dev,
3523 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3524
3525 /* reset the hardware with the new settings */
3526 igb_reset(adapter);
3527
3528 /* Init the I2C interface */
3529 err = igb_init_i2c(adapter);
3530 if (err) {
3531 dev_err(&pdev->dev, "failed to init i2c interface\n");
3532 goto err_eeprom;
3533 }
3534
3535 /* let the f/w know that the h/w is now under the control of the
3536 * driver.
3537 */
3538 igb_get_hw_control(adapter);
3539
3540 strcpy(netdev->name, "eth%d");
3541 err = register_netdev(netdev);
3542 if (err)
3543 goto err_register;
3544
3545 /* carrier off reporting is important to ethtool even BEFORE open */
3546 netif_carrier_off(netdev);
3547
3548 #ifdef CONFIG_IGB_DCA
3549 if (dca_add_requester(&pdev->dev) == 0) {
3550 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3551 dev_info(&pdev->dev, "DCA enabled\n");
3552 igb_setup_dca(adapter);
3553 }
3554
3555 #endif
3556 #ifdef CONFIG_IGB_HWMON
3557 /* Initialize the thermal sensor on i350 devices. */
3558 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3559 u16 ets_word;
3560
3561 /* Read the NVM to determine if this i350 device supports an
3562 * external thermal sensor.
3563 */
3564 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3565 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3566 adapter->ets = true;
3567 else
3568 adapter->ets = false;
3569 /* Only enable I2C bit banging if an external thermal
3570 * sensor is supported.
3571 */
3572 if (adapter->ets)
3573 igb_set_i2c_bb(hw);
3574 hw->mac.ops.init_thermal_sensor_thresh(hw);
3575 if (igb_sysfs_init(adapter))
3576 dev_err(&pdev->dev,
3577 "failed to allocate sysfs resources\n");
3578 } else {
3579 adapter->ets = false;
3580 }
3581 #endif
3582 /* Check if Media Autosense is enabled */
3583 adapter->ei = *ei;
3584 if (hw->dev_spec._82575.mas_capable)
3585 igb_init_mas(adapter);
3586
3587 /* do hw tstamp init after resetting */
3588 igb_ptp_init(adapter);
3589
3590 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3591 /* print bus type/speed/width info, not applicable to i354 */
3592 if (hw->mac.type != e1000_i354) {
3593 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3594 netdev->name,
3595 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3596 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3597 "unknown"),
3598 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3599 "Width x4" :
3600 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3601 "Width x2" :
3602 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3603 "Width x1" : "unknown"), netdev->dev_addr);
3604 }
3605
3606 if ((hw->mac.type == e1000_82576 &&
3607 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3608 (hw->mac.type >= e1000_i210 ||
3609 igb_get_flash_presence_i210(hw))) {
3610 ret_val = igb_read_part_string(hw, part_str,
3611 E1000_PBANUM_LENGTH);
3612 } else {
3613 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3614 }
3615
3616 if (ret_val)
3617 strcpy(part_str, "Unknown");
3618 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3619 dev_info(&pdev->dev,
3620 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3621 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3622 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3623 adapter->num_rx_queues, adapter->num_tx_queues);
3624 if (hw->phy.media_type == e1000_media_type_copper) {
3625 switch (hw->mac.type) {
3626 case e1000_i350:
3627 case e1000_i210:
3628 case e1000_i211:
3629 /* Enable EEE for internal copper PHY devices */
3630 err = igb_set_eee_i350(hw, true, true);
3631 if ((!err) &&
3632 (!hw->dev_spec._82575.eee_disable)) {
3633 adapter->eee_advert =
3634 MDIO_EEE_100TX | MDIO_EEE_1000T;
3635 adapter->flags |= IGB_FLAG_EEE;
3636 }
3637 break;
3638 case e1000_i354:
3639 if ((rd32(E1000_CTRL_EXT) &
3640 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3641 err = igb_set_eee_i354(hw, true, true);
3642 if ((!err) &&
3643 (!hw->dev_spec._82575.eee_disable)) {
3644 adapter->eee_advert =
3645 MDIO_EEE_100TX | MDIO_EEE_1000T;
3646 adapter->flags |= IGB_FLAG_EEE;
3647 }
3648 }
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3656
3657 pm_runtime_put_noidle(&pdev->dev);
3658 return 0;
3659
3660 err_register:
3661 igb_release_hw_control(adapter);
3662 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3663 err_eeprom:
3664 if (!igb_check_reset_block(hw))
3665 igb_reset_phy(hw);
3666
3667 if (hw->flash_address)
3668 iounmap(hw->flash_address);
3669 err_sw_init:
3670 kfree(adapter->mac_table);
3671 kfree(adapter->shadow_vfta);
3672 igb_clear_interrupt_scheme(adapter);
3673 #ifdef CONFIG_PCI_IOV
3674 igb_disable_sriov(pdev, false);
3675 #endif
3676 pci_iounmap(pdev, adapter->io_addr);
3677 err_ioremap:
3678 free_netdev(netdev);
3679 err_alloc_etherdev:
3680 pci_release_mem_regions(pdev);
3681 err_pci_reg:
3682 err_dma:
3683 pci_disable_device(pdev);
3684 return err;
3685 }
3686
3687 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3688 static int igb_sriov_reinit(struct pci_dev *dev)
3689 {
3690 struct net_device *netdev = pci_get_drvdata(dev);
3691 struct igb_adapter *adapter = netdev_priv(netdev);
3692 struct pci_dev *pdev = adapter->pdev;
3693
3694 rtnl_lock();
3695
3696 if (netif_running(netdev))
3697 igb_close(netdev);
3698 else
3699 igb_reset(adapter);
3700
3701 igb_clear_interrupt_scheme(adapter);
3702
3703 igb_init_queue_configuration(adapter);
3704
3705 if (igb_init_interrupt_scheme(adapter, true)) {
3706 rtnl_unlock();
3707 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3708 return -ENOMEM;
3709 }
3710
3711 if (netif_running(netdev))
3712 igb_open(netdev);
3713
3714 rtnl_unlock();
3715
3716 return 0;
3717 }
3718
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3719 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3720 {
3721 struct net_device *netdev = pci_get_drvdata(pdev);
3722 struct igb_adapter *adapter = netdev_priv(netdev);
3723 struct e1000_hw *hw = &adapter->hw;
3724 unsigned long flags;
3725
3726 /* reclaim resources allocated to VFs */
3727 if (adapter->vf_data) {
3728 /* disable iov and allow time for transactions to clear */
3729 if (pci_vfs_assigned(pdev)) {
3730 dev_warn(&pdev->dev,
3731 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3732 return -EPERM;
3733 } else {
3734 pci_disable_sriov(pdev);
3735 msleep(500);
3736 }
3737 spin_lock_irqsave(&adapter->vfs_lock, flags);
3738 kfree(adapter->vf_mac_list);
3739 adapter->vf_mac_list = NULL;
3740 kfree(adapter->vf_data);
3741 adapter->vf_data = NULL;
3742 adapter->vfs_allocated_count = 0;
3743 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3744 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3745 wrfl();
3746 msleep(100);
3747 dev_info(&pdev->dev, "IOV Disabled\n");
3748
3749 /* Re-enable DMA Coalescing flag since IOV is turned off */
3750 adapter->flags |= IGB_FLAG_DMAC;
3751 }
3752
3753 return reinit ? igb_sriov_reinit(pdev) : 0;
3754 }
3755
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3756 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3757 {
3758 struct net_device *netdev = pci_get_drvdata(pdev);
3759 struct igb_adapter *adapter = netdev_priv(netdev);
3760 int old_vfs = pci_num_vf(pdev);
3761 struct vf_mac_filter *mac_list;
3762 int err = 0;
3763 int num_vf_mac_filters, i;
3764
3765 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3766 err = -EPERM;
3767 goto out;
3768 }
3769 if (!num_vfs)
3770 goto out;
3771
3772 if (old_vfs) {
3773 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3774 old_vfs, max_vfs);
3775 adapter->vfs_allocated_count = old_vfs;
3776 } else
3777 adapter->vfs_allocated_count = num_vfs;
3778
3779 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3780 sizeof(struct vf_data_storage), GFP_KERNEL);
3781
3782 /* if allocation failed then we do not support SR-IOV */
3783 if (!adapter->vf_data) {
3784 adapter->vfs_allocated_count = 0;
3785 err = -ENOMEM;
3786 goto out;
3787 }
3788
3789 /* Due to the limited number of RAR entries calculate potential
3790 * number of MAC filters available for the VFs. Reserve entries
3791 * for PF default MAC, PF MAC filters and at least one RAR entry
3792 * for each VF for VF MAC.
3793 */
3794 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3795 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3796 adapter->vfs_allocated_count);
3797
3798 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3799 sizeof(struct vf_mac_filter),
3800 GFP_KERNEL);
3801
3802 mac_list = adapter->vf_mac_list;
3803 INIT_LIST_HEAD(&adapter->vf_macs.l);
3804
3805 if (adapter->vf_mac_list) {
3806 /* Initialize list of VF MAC filters */
3807 for (i = 0; i < num_vf_mac_filters; i++) {
3808 mac_list->vf = -1;
3809 mac_list->free = true;
3810 list_add(&mac_list->l, &adapter->vf_macs.l);
3811 mac_list++;
3812 }
3813 } else {
3814 /* If we could not allocate memory for the VF MAC filters
3815 * we can continue without this feature but warn user.
3816 */
3817 dev_err(&pdev->dev,
3818 "Unable to allocate memory for VF MAC filter list\n");
3819 }
3820
3821 dev_info(&pdev->dev, "%d VFs allocated\n",
3822 adapter->vfs_allocated_count);
3823 for (i = 0; i < adapter->vfs_allocated_count; i++)
3824 igb_vf_configure(adapter, i);
3825
3826 /* DMA Coalescing is not supported in IOV mode. */
3827 adapter->flags &= ~IGB_FLAG_DMAC;
3828
3829 if (reinit) {
3830 err = igb_sriov_reinit(pdev);
3831 if (err)
3832 goto err_out;
3833 }
3834
3835 /* only call pci_enable_sriov() if no VFs are allocated already */
3836 if (!old_vfs) {
3837 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3838 if (err)
3839 goto err_out;
3840 }
3841
3842 goto out;
3843
3844 err_out:
3845 kfree(adapter->vf_mac_list);
3846 adapter->vf_mac_list = NULL;
3847 kfree(adapter->vf_data);
3848 adapter->vf_data = NULL;
3849 adapter->vfs_allocated_count = 0;
3850 out:
3851 return err;
3852 }
3853
3854 #endif
3855 /**
3856 * igb_remove_i2c - Cleanup I2C interface
3857 * @adapter: pointer to adapter structure
3858 **/
igb_remove_i2c(struct igb_adapter * adapter)3859 static void igb_remove_i2c(struct igb_adapter *adapter)
3860 {
3861 /* free the adapter bus structure */
3862 i2c_del_adapter(&adapter->i2c_adap);
3863 }
3864
3865 /**
3866 * igb_remove - Device Removal Routine
3867 * @pdev: PCI device information struct
3868 *
3869 * igb_remove is called by the PCI subsystem to alert the driver
3870 * that it should release a PCI device. The could be caused by a
3871 * Hot-Plug event, or because the driver is going to be removed from
3872 * memory.
3873 **/
igb_remove(struct pci_dev * pdev)3874 static void igb_remove(struct pci_dev *pdev)
3875 {
3876 struct net_device *netdev = pci_get_drvdata(pdev);
3877 struct igb_adapter *adapter = netdev_priv(netdev);
3878 struct e1000_hw *hw = &adapter->hw;
3879
3880 pm_runtime_get_noresume(&pdev->dev);
3881 #ifdef CONFIG_IGB_HWMON
3882 igb_sysfs_exit(adapter);
3883 #endif
3884 igb_remove_i2c(adapter);
3885 igb_ptp_stop(adapter);
3886 /* The watchdog timer may be rescheduled, so explicitly
3887 * disable watchdog from being rescheduled.
3888 */
3889 set_bit(__IGB_DOWN, &adapter->state);
3890 timer_delete_sync(&adapter->watchdog_timer);
3891 timer_delete_sync(&adapter->phy_info_timer);
3892
3893 cancel_work_sync(&adapter->reset_task);
3894 cancel_work_sync(&adapter->watchdog_task);
3895
3896 #ifdef CONFIG_IGB_DCA
3897 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3898 dev_info(&pdev->dev, "DCA disabled\n");
3899 dca_remove_requester(&pdev->dev);
3900 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3901 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3902 }
3903 #endif
3904
3905 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3906 * would have already happened in close and is redundant.
3907 */
3908 igb_release_hw_control(adapter);
3909
3910 #ifdef CONFIG_PCI_IOV
3911 igb_disable_sriov(pdev, false);
3912 #endif
3913
3914 unregister_netdev(netdev);
3915
3916 igb_clear_interrupt_scheme(adapter);
3917
3918 pci_iounmap(pdev, adapter->io_addr);
3919 if (hw->flash_address)
3920 iounmap(hw->flash_address);
3921 pci_release_mem_regions(pdev);
3922
3923 kfree(adapter->mac_table);
3924 kfree(adapter->shadow_vfta);
3925 free_netdev(netdev);
3926
3927 pci_disable_device(pdev);
3928 }
3929
3930 /**
3931 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3932 * @adapter: board private structure to initialize
3933 *
3934 * This function initializes the vf specific data storage and then attempts to
3935 * allocate the VFs. The reason for ordering it this way is because it is much
3936 * more expensive time wise to disable SR-IOV than it is to allocate and free
3937 * the memory for the VFs.
3938 **/
igb_probe_vfs(struct igb_adapter * adapter)3939 static void igb_probe_vfs(struct igb_adapter *adapter)
3940 {
3941 #ifdef CONFIG_PCI_IOV
3942 struct pci_dev *pdev = adapter->pdev;
3943 struct e1000_hw *hw = &adapter->hw;
3944
3945 /* Virtualization features not supported on i210 and 82580 family. */
3946 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3947 (hw->mac.type == e1000_82580))
3948 return;
3949
3950 /* Of the below we really only want the effect of getting
3951 * IGB_FLAG_HAS_MSIX set (if available), without which
3952 * igb_enable_sriov() has no effect.
3953 */
3954 igb_set_interrupt_capability(adapter, true);
3955 igb_reset_interrupt_capability(adapter);
3956
3957 pci_sriov_set_totalvfs(pdev, 7);
3958 igb_enable_sriov(pdev, max_vfs, false);
3959
3960 #endif /* CONFIG_PCI_IOV */
3961 }
3962
igb_get_max_rss_queues(struct igb_adapter * adapter)3963 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3964 {
3965 struct e1000_hw *hw = &adapter->hw;
3966 unsigned int max_rss_queues;
3967
3968 /* Determine the maximum number of RSS queues supported. */
3969 switch (hw->mac.type) {
3970 case e1000_i211:
3971 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3972 break;
3973 case e1000_82575:
3974 case e1000_i210:
3975 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3976 break;
3977 case e1000_i350:
3978 /* I350 cannot do RSS and SR-IOV at the same time */
3979 if (!!adapter->vfs_allocated_count) {
3980 max_rss_queues = 1;
3981 break;
3982 }
3983 fallthrough;
3984 case e1000_82576:
3985 if (!!adapter->vfs_allocated_count) {
3986 max_rss_queues = 2;
3987 break;
3988 }
3989 fallthrough;
3990 case e1000_82580:
3991 case e1000_i354:
3992 default:
3993 max_rss_queues = IGB_MAX_RX_QUEUES;
3994 break;
3995 }
3996
3997 return max_rss_queues;
3998 }
3999
igb_init_queue_configuration(struct igb_adapter * adapter)4000 static void igb_init_queue_configuration(struct igb_adapter *adapter)
4001 {
4002 u32 max_rss_queues;
4003
4004 max_rss_queues = igb_get_max_rss_queues(adapter);
4005 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4006
4007 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4008 }
4009
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)4010 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4011 const u32 max_rss_queues)
4012 {
4013 struct e1000_hw *hw = &adapter->hw;
4014
4015 /* Determine if we need to pair queues. */
4016 switch (hw->mac.type) {
4017 case e1000_82575:
4018 case e1000_i211:
4019 /* Device supports enough interrupts without queue pairing. */
4020 break;
4021 case e1000_82576:
4022 case e1000_82580:
4023 case e1000_i350:
4024 case e1000_i354:
4025 case e1000_i210:
4026 default:
4027 /* If rss_queues > half of max_rss_queues, pair the queues in
4028 * order to conserve interrupts due to limited supply.
4029 */
4030 if (adapter->rss_queues > (max_rss_queues / 2))
4031 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4032 else
4033 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4034 break;
4035 }
4036 }
4037
4038 /**
4039 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4040 * @adapter: board private structure to initialize
4041 *
4042 * igb_sw_init initializes the Adapter private data structure.
4043 * Fields are initialized based on PCI device information and
4044 * OS network device settings (MTU size).
4045 **/
igb_sw_init(struct igb_adapter * adapter)4046 static int igb_sw_init(struct igb_adapter *adapter)
4047 {
4048 struct e1000_hw *hw = &adapter->hw;
4049 struct net_device *netdev = adapter->netdev;
4050 struct pci_dev *pdev = adapter->pdev;
4051
4052 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4053
4054 /* set default ring sizes */
4055 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4056 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4057
4058 /* set default ITR values */
4059 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4060 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4061
4062 /* set default work limits */
4063 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4064
4065 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4066 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4067
4068 spin_lock_init(&adapter->nfc_lock);
4069 spin_lock_init(&adapter->stats64_lock);
4070
4071 /* init spinlock to avoid concurrency of VF resources */
4072 spin_lock_init(&adapter->vfs_lock);
4073 #ifdef CONFIG_PCI_IOV
4074 switch (hw->mac.type) {
4075 case e1000_82576:
4076 case e1000_i350:
4077 if (max_vfs > 7) {
4078 dev_warn(&pdev->dev,
4079 "Maximum of 7 VFs per PF, using max\n");
4080 max_vfs = adapter->vfs_allocated_count = 7;
4081 } else
4082 adapter->vfs_allocated_count = max_vfs;
4083 if (adapter->vfs_allocated_count)
4084 dev_warn(&pdev->dev,
4085 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4086 break;
4087 default:
4088 break;
4089 }
4090 #endif /* CONFIG_PCI_IOV */
4091
4092 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4093 adapter->flags |= IGB_FLAG_HAS_MSIX;
4094
4095 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4096 sizeof(struct igb_mac_addr),
4097 GFP_KERNEL);
4098 if (!adapter->mac_table)
4099 return -ENOMEM;
4100
4101 igb_probe_vfs(adapter);
4102
4103 igb_init_queue_configuration(adapter);
4104
4105 /* Setup and initialize a copy of the hw vlan table array */
4106 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4107 GFP_KERNEL);
4108 if (!adapter->shadow_vfta)
4109 return -ENOMEM;
4110
4111 /* This call may decrease the number of queues */
4112 if (igb_init_interrupt_scheme(adapter, true)) {
4113 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4114 return -ENOMEM;
4115 }
4116
4117 /* Explicitly disable IRQ since the NIC can be in any state. */
4118 igb_irq_disable(adapter);
4119
4120 if (hw->mac.type >= e1000_i350)
4121 adapter->flags &= ~IGB_FLAG_DMAC;
4122
4123 set_bit(__IGB_DOWN, &adapter->state);
4124 return 0;
4125 }
4126
4127 /**
4128 * __igb_open - Called when a network interface is made active
4129 * @netdev: network interface device structure
4130 * @resuming: indicates whether we are in a resume call
4131 *
4132 * Returns 0 on success, negative value on failure
4133 *
4134 * The open entry point is called when a network interface is made
4135 * active by the system (IFF_UP). At this point all resources needed
4136 * for transmit and receive operations are allocated, the interrupt
4137 * handler is registered with the OS, the watchdog timer is started,
4138 * and the stack is notified that the interface is ready.
4139 **/
__igb_open(struct net_device * netdev,bool resuming)4140 static int __igb_open(struct net_device *netdev, bool resuming)
4141 {
4142 struct igb_adapter *adapter = netdev_priv(netdev);
4143 struct pci_dev *pdev = adapter->pdev;
4144 struct e1000_hw *hw = &adapter->hw;
4145 struct napi_struct *napi;
4146 int err;
4147 int i;
4148
4149 /* disallow open during test */
4150 if (test_bit(__IGB_TESTING, &adapter->state)) {
4151 WARN_ON(resuming);
4152 return -EBUSY;
4153 }
4154
4155 if (!resuming)
4156 pm_runtime_get_sync(&pdev->dev);
4157
4158 netif_carrier_off(netdev);
4159
4160 /* allocate transmit descriptors */
4161 err = igb_setup_all_tx_resources(adapter);
4162 if (err)
4163 goto err_setup_tx;
4164
4165 /* allocate receive descriptors */
4166 err = igb_setup_all_rx_resources(adapter);
4167 if (err)
4168 goto err_setup_rx;
4169
4170 igb_power_up_link(adapter);
4171
4172 /* before we allocate an interrupt, we must be ready to handle it.
4173 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4174 * as soon as we call pci_request_irq, so we have to setup our
4175 * clean_rx handler before we do so.
4176 */
4177 igb_configure(adapter);
4178
4179 err = igb_request_irq(adapter);
4180 if (err)
4181 goto err_req_irq;
4182
4183 /* Notify the stack of the actual queue counts. */
4184 err = netif_set_real_num_tx_queues(adapter->netdev,
4185 adapter->num_tx_queues);
4186 if (err)
4187 goto err_set_queues;
4188
4189 err = netif_set_real_num_rx_queues(adapter->netdev,
4190 adapter->num_rx_queues);
4191 if (err)
4192 goto err_set_queues;
4193
4194 /* From here on the code is the same as igb_up() */
4195 clear_bit(__IGB_DOWN, &adapter->state);
4196
4197 for (i = 0; i < adapter->num_q_vectors; i++) {
4198 napi = &adapter->q_vector[i]->napi;
4199 napi_enable(napi);
4200 igb_set_queue_napi(adapter, i, napi);
4201 }
4202
4203 /* Clear any pending interrupts. */
4204 rd32(E1000_TSICR);
4205 rd32(E1000_ICR);
4206
4207 igb_irq_enable(adapter);
4208
4209 /* notify VFs that reset has been completed */
4210 if (adapter->vfs_allocated_count) {
4211 u32 reg_data = rd32(E1000_CTRL_EXT);
4212
4213 reg_data |= E1000_CTRL_EXT_PFRSTD;
4214 wr32(E1000_CTRL_EXT, reg_data);
4215 }
4216
4217 netif_tx_start_all_queues(netdev);
4218
4219 if (!resuming)
4220 pm_runtime_put(&pdev->dev);
4221
4222 /* start the watchdog. */
4223 hw->mac.get_link_status = 1;
4224 schedule_work(&adapter->watchdog_task);
4225
4226 return 0;
4227
4228 err_set_queues:
4229 igb_free_irq(adapter);
4230 err_req_irq:
4231 igb_release_hw_control(adapter);
4232 igb_power_down_link(adapter);
4233 igb_free_all_rx_resources(adapter);
4234 err_setup_rx:
4235 igb_free_all_tx_resources(adapter);
4236 err_setup_tx:
4237 igb_reset(adapter);
4238 if (!resuming)
4239 pm_runtime_put(&pdev->dev);
4240
4241 return err;
4242 }
4243
igb_open(struct net_device * netdev)4244 int igb_open(struct net_device *netdev)
4245 {
4246 return __igb_open(netdev, false);
4247 }
4248
4249 /**
4250 * __igb_close - Disables a network interface
4251 * @netdev: network interface device structure
4252 * @suspending: indicates we are in a suspend call
4253 *
4254 * Returns 0, this is not allowed to fail
4255 *
4256 * The close entry point is called when an interface is de-activated
4257 * by the OS. The hardware is still under the driver's control, but
4258 * needs to be disabled. A global MAC reset is issued to stop the
4259 * hardware, and all transmit and receive resources are freed.
4260 **/
__igb_close(struct net_device * netdev,bool suspending)4261 static int __igb_close(struct net_device *netdev, bool suspending)
4262 {
4263 struct igb_adapter *adapter = netdev_priv(netdev);
4264 struct pci_dev *pdev = adapter->pdev;
4265
4266 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4267
4268 if (!suspending)
4269 pm_runtime_get_sync(&pdev->dev);
4270
4271 igb_down(adapter);
4272 igb_free_irq(adapter);
4273
4274 igb_free_all_tx_resources(adapter);
4275 igb_free_all_rx_resources(adapter);
4276
4277 if (!suspending)
4278 pm_runtime_put_sync(&pdev->dev);
4279 return 0;
4280 }
4281
igb_close(struct net_device * netdev)4282 int igb_close(struct net_device *netdev)
4283 {
4284 if (netif_device_present(netdev) || netdev->dismantle)
4285 return __igb_close(netdev, false);
4286 return 0;
4287 }
4288
4289 /**
4290 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4292 *
4293 * Return 0 on success, negative on failure
4294 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4295 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4296 {
4297 struct device *dev = tx_ring->dev;
4298 int size;
4299
4300 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4301
4302 tx_ring->tx_buffer_info = vmalloc(size);
4303 if (!tx_ring->tx_buffer_info)
4304 goto err;
4305
4306 /* round up to nearest 4K */
4307 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4308 tx_ring->size = ALIGN(tx_ring->size, 4096);
4309
4310 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4311 &tx_ring->dma, GFP_KERNEL);
4312 if (!tx_ring->desc)
4313 goto err;
4314
4315 tx_ring->next_to_use = 0;
4316 tx_ring->next_to_clean = 0;
4317
4318 return 0;
4319
4320 err:
4321 vfree(tx_ring->tx_buffer_info);
4322 tx_ring->tx_buffer_info = NULL;
4323 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4324 return -ENOMEM;
4325 }
4326
4327 /**
4328 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4329 * (Descriptors) for all queues
4330 * @adapter: board private structure
4331 *
4332 * Return 0 on success, negative on failure
4333 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4334 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4335 {
4336 struct pci_dev *pdev = adapter->pdev;
4337 int i, err = 0;
4338
4339 for (i = 0; i < adapter->num_tx_queues; i++) {
4340 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4341 if (err) {
4342 dev_err(&pdev->dev,
4343 "Allocation for Tx Queue %u failed\n", i);
4344 for (i--; i >= 0; i--)
4345 igb_free_tx_resources(adapter->tx_ring[i]);
4346 break;
4347 }
4348 }
4349
4350 return err;
4351 }
4352
4353 /**
4354 * igb_setup_tctl - configure the transmit control registers
4355 * @adapter: Board private structure
4356 **/
igb_setup_tctl(struct igb_adapter * adapter)4357 void igb_setup_tctl(struct igb_adapter *adapter)
4358 {
4359 struct e1000_hw *hw = &adapter->hw;
4360 u32 tctl;
4361
4362 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4363 wr32(E1000_TXDCTL(0), 0);
4364
4365 /* Program the Transmit Control Register */
4366 tctl = rd32(E1000_TCTL);
4367 tctl &= ~E1000_TCTL_CT;
4368 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4369 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4370
4371 igb_config_collision_dist(hw);
4372
4373 /* Enable transmits */
4374 tctl |= E1000_TCTL_EN;
4375
4376 wr32(E1000_TCTL, tctl);
4377 }
4378
4379 /**
4380 * igb_configure_tx_ring - Configure transmit ring after Reset
4381 * @adapter: board private structure
4382 * @ring: tx ring to configure
4383 *
4384 * Configure a transmit ring after a reset.
4385 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4386 void igb_configure_tx_ring(struct igb_adapter *adapter,
4387 struct igb_ring *ring)
4388 {
4389 struct e1000_hw *hw = &adapter->hw;
4390 u32 txdctl = 0;
4391 u64 tdba = ring->dma;
4392 int reg_idx = ring->reg_idx;
4393
4394 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4395
4396 wr32(E1000_TDLEN(reg_idx),
4397 ring->count * sizeof(union e1000_adv_tx_desc));
4398 wr32(E1000_TDBAL(reg_idx),
4399 tdba & 0x00000000ffffffffULL);
4400 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4401
4402 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4403 wr32(E1000_TDH(reg_idx), 0);
4404 writel(0, ring->tail);
4405
4406 txdctl |= IGB_TX_PTHRESH;
4407 txdctl |= IGB_TX_HTHRESH << 8;
4408 txdctl |= IGB_TX_WTHRESH << 16;
4409
4410 /* reinitialize tx_buffer_info */
4411 memset(ring->tx_buffer_info, 0,
4412 sizeof(struct igb_tx_buffer) * ring->count);
4413
4414 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4415 wr32(E1000_TXDCTL(reg_idx), txdctl);
4416 }
4417
4418 /**
4419 * igb_configure_tx - Configure transmit Unit after Reset
4420 * @adapter: board private structure
4421 *
4422 * Configure the Tx unit of the MAC after a reset.
4423 **/
igb_configure_tx(struct igb_adapter * adapter)4424 static void igb_configure_tx(struct igb_adapter *adapter)
4425 {
4426 struct e1000_hw *hw = &adapter->hw;
4427 int i;
4428
4429 /* disable the queues */
4430 for (i = 0; i < adapter->num_tx_queues; i++)
4431 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4432
4433 wrfl();
4434 usleep_range(10000, 20000);
4435
4436 for (i = 0; i < adapter->num_tx_queues; i++)
4437 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4438 }
4439
4440 /**
4441 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4442 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4443 *
4444 * Returns 0 on success, negative on failure
4445 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4446 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4447 {
4448 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4449 struct device *dev = rx_ring->dev;
4450 int size, res;
4451
4452 /* XDP RX-queue info */
4453 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4454 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4455 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4456 rx_ring->queue_index,
4457 rx_ring->q_vector->napi.napi_id);
4458 if (res < 0) {
4459 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4460 rx_ring->queue_index);
4461 return res;
4462 }
4463
4464 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4465
4466 rx_ring->rx_buffer_info = vmalloc(size);
4467 if (!rx_ring->rx_buffer_info)
4468 goto err;
4469
4470 /* Round up to nearest 4K */
4471 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4472 rx_ring->size = ALIGN(rx_ring->size, 4096);
4473
4474 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4475 &rx_ring->dma, GFP_KERNEL);
4476 if (!rx_ring->desc)
4477 goto err;
4478
4479 rx_ring->next_to_alloc = 0;
4480 rx_ring->next_to_clean = 0;
4481 rx_ring->next_to_use = 0;
4482
4483 rx_ring->xdp_prog = adapter->xdp_prog;
4484
4485 return 0;
4486
4487 err:
4488 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4489 vfree(rx_ring->rx_buffer_info);
4490 rx_ring->rx_buffer_info = NULL;
4491 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4492 return -ENOMEM;
4493 }
4494
4495 /**
4496 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4497 * (Descriptors) for all queues
4498 * @adapter: board private structure
4499 *
4500 * Return 0 on success, negative on failure
4501 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4502 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4503 {
4504 struct pci_dev *pdev = adapter->pdev;
4505 int i, err = 0;
4506
4507 for (i = 0; i < adapter->num_rx_queues; i++) {
4508 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4509 if (err) {
4510 dev_err(&pdev->dev,
4511 "Allocation for Rx Queue %u failed\n", i);
4512 for (i--; i >= 0; i--)
4513 igb_free_rx_resources(adapter->rx_ring[i]);
4514 break;
4515 }
4516 }
4517
4518 return err;
4519 }
4520
4521 /**
4522 * igb_setup_mrqc - configure the multiple receive queue control registers
4523 * @adapter: Board private structure
4524 **/
igb_setup_mrqc(struct igb_adapter * adapter)4525 static void igb_setup_mrqc(struct igb_adapter *adapter)
4526 {
4527 struct e1000_hw *hw = &adapter->hw;
4528 u32 mrqc, rxcsum;
4529 u32 j, num_rx_queues;
4530 u32 rss_key[10];
4531
4532 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4533 for (j = 0; j < 10; j++)
4534 wr32(E1000_RSSRK(j), rss_key[j]);
4535
4536 num_rx_queues = adapter->rss_queues;
4537
4538 switch (hw->mac.type) {
4539 case e1000_82576:
4540 /* 82576 supports 2 RSS queues for SR-IOV */
4541 if (adapter->vfs_allocated_count)
4542 num_rx_queues = 2;
4543 break;
4544 default:
4545 break;
4546 }
4547
4548 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4549 for (j = 0; j < IGB_RETA_SIZE; j++)
4550 adapter->rss_indir_tbl[j] =
4551 (j * num_rx_queues) / IGB_RETA_SIZE;
4552 adapter->rss_indir_tbl_init = num_rx_queues;
4553 }
4554 igb_write_rss_indir_tbl(adapter);
4555
4556 /* Disable raw packet checksumming so that RSS hash is placed in
4557 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4558 * offloads as they are enabled by default
4559 */
4560 rxcsum = rd32(E1000_RXCSUM);
4561 rxcsum |= E1000_RXCSUM_PCSD;
4562
4563 if (adapter->hw.mac.type >= e1000_82576)
4564 /* Enable Receive Checksum Offload for SCTP */
4565 rxcsum |= E1000_RXCSUM_CRCOFL;
4566
4567 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4568 wr32(E1000_RXCSUM, rxcsum);
4569
4570 /* Generate RSS hash based on packet types, TCP/UDP
4571 * port numbers and/or IPv4/v6 src and dst addresses
4572 */
4573 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4574 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4575 E1000_MRQC_RSS_FIELD_IPV6 |
4576 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4577 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4578
4579 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4580 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4581 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4582 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4583
4584 /* If VMDq is enabled then we set the appropriate mode for that, else
4585 * we default to RSS so that an RSS hash is calculated per packet even
4586 * if we are only using one queue
4587 */
4588 if (adapter->vfs_allocated_count) {
4589 if (hw->mac.type > e1000_82575) {
4590 /* Set the default pool for the PF's first queue */
4591 u32 vtctl = rd32(E1000_VT_CTL);
4592
4593 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4594 E1000_VT_CTL_DISABLE_DEF_POOL);
4595 vtctl |= adapter->vfs_allocated_count <<
4596 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4597 wr32(E1000_VT_CTL, vtctl);
4598 }
4599 if (adapter->rss_queues > 1)
4600 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4601 else
4602 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4603 } else {
4604 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4605 }
4606 igb_vmm_control(adapter);
4607
4608 wr32(E1000_MRQC, mrqc);
4609 }
4610
4611 /**
4612 * igb_setup_rctl - configure the receive control registers
4613 * @adapter: Board private structure
4614 **/
igb_setup_rctl(struct igb_adapter * adapter)4615 void igb_setup_rctl(struct igb_adapter *adapter)
4616 {
4617 struct e1000_hw *hw = &adapter->hw;
4618 u32 rctl;
4619
4620 rctl = rd32(E1000_RCTL);
4621
4622 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4623 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4624
4625 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4626 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4627
4628 /* enable stripping of CRC. It's unlikely this will break BMC
4629 * redirection as it did with e1000. Newer features require
4630 * that the HW strips the CRC.
4631 */
4632 rctl |= E1000_RCTL_SECRC;
4633
4634 /* disable store bad packets and clear size bits. */
4635 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4636
4637 /* enable LPE to allow for reception of jumbo frames */
4638 rctl |= E1000_RCTL_LPE;
4639
4640 /* disable queue 0 to prevent tail write w/o re-config */
4641 wr32(E1000_RXDCTL(0), 0);
4642
4643 /* Attention!!! For SR-IOV PF driver operations you must enable
4644 * queue drop for all VF and PF queues to prevent head of line blocking
4645 * if an un-trusted VF does not provide descriptors to hardware.
4646 */
4647 if (adapter->vfs_allocated_count) {
4648 /* set all queue drop enable bits */
4649 wr32(E1000_QDE, ALL_QUEUES);
4650 }
4651
4652 /* This is useful for sniffing bad packets. */
4653 if (adapter->netdev->features & NETIF_F_RXALL) {
4654 /* UPE and MPE will be handled by normal PROMISC logic
4655 * in e1000e_set_rx_mode
4656 */
4657 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4658 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4659 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4660
4661 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4662 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4663 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4664 * and that breaks VLANs.
4665 */
4666 }
4667
4668 wr32(E1000_RCTL, rctl);
4669 }
4670
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4671 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4672 int vfn)
4673 {
4674 struct e1000_hw *hw = &adapter->hw;
4675 u32 vmolr;
4676
4677 if (size > MAX_JUMBO_FRAME_SIZE)
4678 size = MAX_JUMBO_FRAME_SIZE;
4679
4680 vmolr = rd32(E1000_VMOLR(vfn));
4681 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4682 vmolr |= size | E1000_VMOLR_LPE;
4683 wr32(E1000_VMOLR(vfn), vmolr);
4684
4685 return 0;
4686 }
4687
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4688 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4689 int vfn, bool enable)
4690 {
4691 struct e1000_hw *hw = &adapter->hw;
4692 u32 val, reg;
4693
4694 if (hw->mac.type < e1000_82576)
4695 return;
4696
4697 if (hw->mac.type == e1000_i350)
4698 reg = E1000_DVMOLR(vfn);
4699 else
4700 reg = E1000_VMOLR(vfn);
4701
4702 val = rd32(reg);
4703 if (enable)
4704 val |= E1000_VMOLR_STRVLAN;
4705 else
4706 val &= ~(E1000_VMOLR_STRVLAN);
4707 wr32(reg, val);
4708 }
4709
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4710 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4711 int vfn, bool aupe)
4712 {
4713 struct e1000_hw *hw = &adapter->hw;
4714 u32 vmolr;
4715
4716 /* This register exists only on 82576 and newer so if we are older then
4717 * we should exit and do nothing
4718 */
4719 if (hw->mac.type < e1000_82576)
4720 return;
4721
4722 vmolr = rd32(E1000_VMOLR(vfn));
4723 if (aupe)
4724 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4725 else
4726 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4727
4728 /* clear all bits that might not be set */
4729 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4730
4731 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4732 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4733 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4734 * multicast packets
4735 */
4736 if (vfn <= adapter->vfs_allocated_count)
4737 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4738
4739 wr32(E1000_VMOLR(vfn), vmolr);
4740 }
4741
4742 /**
4743 * igb_setup_srrctl - configure the split and replication receive control
4744 * registers
4745 * @adapter: Board private structure
4746 * @ring: receive ring to be configured
4747 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4748 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4749 {
4750 struct e1000_hw *hw = &adapter->hw;
4751 int reg_idx = ring->reg_idx;
4752 u32 srrctl = 0;
4753 u32 buf_size;
4754
4755 if (ring->xsk_pool)
4756 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4757 else if (ring_uses_large_buffer(ring))
4758 buf_size = IGB_RXBUFFER_3072;
4759 else
4760 buf_size = IGB_RXBUFFER_2048;
4761
4762 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4763 srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4764 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4765 if (hw->mac.type >= e1000_82580)
4766 srrctl |= E1000_SRRCTL_TIMESTAMP;
4767 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4768 * queues and rx flow control is disabled
4769 */
4770 if (adapter->vfs_allocated_count ||
4771 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4772 adapter->num_rx_queues > 1))
4773 srrctl |= E1000_SRRCTL_DROP_EN;
4774
4775 wr32(E1000_SRRCTL(reg_idx), srrctl);
4776 }
4777
4778 /**
4779 * igb_configure_rx_ring - Configure a receive ring after Reset
4780 * @adapter: board private structure
4781 * @ring: receive ring to be configured
4782 *
4783 * Configure the Rx unit of the MAC after a reset.
4784 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4785 void igb_configure_rx_ring(struct igb_adapter *adapter,
4786 struct igb_ring *ring)
4787 {
4788 struct e1000_hw *hw = &adapter->hw;
4789 union e1000_adv_rx_desc *rx_desc;
4790 u64 rdba = ring->dma;
4791 int reg_idx = ring->reg_idx;
4792 u32 rxdctl = 0;
4793
4794 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4795 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4796 if (ring->xsk_pool) {
4797 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4798 MEM_TYPE_XSK_BUFF_POOL,
4799 NULL));
4800 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4801 } else {
4802 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4803 MEM_TYPE_PAGE_SHARED,
4804 NULL));
4805 }
4806
4807 /* disable the queue */
4808 wr32(E1000_RXDCTL(reg_idx), 0);
4809
4810 /* Set DMA base address registers */
4811 wr32(E1000_RDBAL(reg_idx),
4812 rdba & 0x00000000ffffffffULL);
4813 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4814 wr32(E1000_RDLEN(reg_idx),
4815 ring->count * sizeof(union e1000_adv_rx_desc));
4816
4817 /* initialize head and tail */
4818 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4819 wr32(E1000_RDH(reg_idx), 0);
4820 writel(0, ring->tail);
4821
4822 /* set descriptor configuration */
4823 igb_setup_srrctl(adapter, ring);
4824
4825 /* set filtering for VMDQ pools */
4826 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4827
4828 rxdctl |= IGB_RX_PTHRESH;
4829 rxdctl |= IGB_RX_HTHRESH << 8;
4830 rxdctl |= IGB_RX_WTHRESH << 16;
4831
4832 if (ring->xsk_pool)
4833 memset(ring->rx_buffer_info_zc, 0,
4834 sizeof(*ring->rx_buffer_info_zc) * ring->count);
4835 else
4836 memset(ring->rx_buffer_info, 0,
4837 sizeof(*ring->rx_buffer_info) * ring->count);
4838
4839 /* initialize Rx descriptor 0 */
4840 rx_desc = IGB_RX_DESC(ring, 0);
4841 rx_desc->wb.upper.length = 0;
4842
4843 /* enable receive descriptor fetching */
4844 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4845 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4846 }
4847
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4848 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4849 struct igb_ring *rx_ring)
4850 {
4851 #if (PAGE_SIZE < 8192)
4852 struct e1000_hw *hw = &adapter->hw;
4853 #endif
4854
4855 /* set build_skb and buffer size flags */
4856 clear_ring_build_skb_enabled(rx_ring);
4857 clear_ring_uses_large_buffer(rx_ring);
4858
4859 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4860 return;
4861
4862 set_ring_build_skb_enabled(rx_ring);
4863
4864 #if (PAGE_SIZE < 8192)
4865 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4866 IGB_2K_TOO_SMALL_WITH_PADDING ||
4867 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4868 set_ring_uses_large_buffer(rx_ring);
4869 #endif
4870 }
4871
4872 /**
4873 * igb_configure_rx - Configure receive Unit after Reset
4874 * @adapter: board private structure
4875 *
4876 * Configure the Rx unit of the MAC after a reset.
4877 **/
igb_configure_rx(struct igb_adapter * adapter)4878 static void igb_configure_rx(struct igb_adapter *adapter)
4879 {
4880 int i;
4881
4882 /* set the correct pool for the PF default MAC address in entry 0 */
4883 igb_set_default_mac_filter(adapter);
4884
4885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4886 * the Base and Length of the Rx Descriptor Ring
4887 */
4888 for (i = 0; i < adapter->num_rx_queues; i++) {
4889 struct igb_ring *rx_ring = adapter->rx_ring[i];
4890
4891 igb_set_rx_buffer_len(adapter, rx_ring);
4892 igb_configure_rx_ring(adapter, rx_ring);
4893 }
4894 }
4895
4896 /**
4897 * igb_free_tx_resources - Free Tx Resources per Queue
4898 * @tx_ring: Tx descriptor ring for a specific queue
4899 *
4900 * Free all transmit software resources
4901 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4902 void igb_free_tx_resources(struct igb_ring *tx_ring)
4903 {
4904 igb_clean_tx_ring(tx_ring);
4905
4906 vfree(tx_ring->tx_buffer_info);
4907 tx_ring->tx_buffer_info = NULL;
4908
4909 /* if not set, then don't free */
4910 if (!tx_ring->desc)
4911 return;
4912
4913 dma_free_coherent(tx_ring->dev, tx_ring->size,
4914 tx_ring->desc, tx_ring->dma);
4915
4916 tx_ring->desc = NULL;
4917 }
4918
4919 /**
4920 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4921 * @adapter: board private structure
4922 *
4923 * Free all transmit software resources
4924 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4925 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4926 {
4927 int i;
4928
4929 for (i = 0; i < adapter->num_tx_queues; i++)
4930 if (adapter->tx_ring[i])
4931 igb_free_tx_resources(adapter->tx_ring[i]);
4932 }
4933
4934 /**
4935 * igb_clean_tx_ring - Free Tx Buffers
4936 * @tx_ring: ring to be cleaned
4937 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4938 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4939 {
4940 u16 i = tx_ring->next_to_clean;
4941 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4942 u32 xsk_frames = 0;
4943
4944 while (i != tx_ring->next_to_use) {
4945 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4946
4947 /* Free all the Tx ring sk_buffs or xdp frames */
4948 if (tx_buffer->type == IGB_TYPE_SKB) {
4949 dev_kfree_skb_any(tx_buffer->skb);
4950 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4951 xdp_return_frame(tx_buffer->xdpf);
4952 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4953 xsk_frames++;
4954 goto skip_for_xsk;
4955 }
4956
4957 /* unmap skb header data */
4958 dma_unmap_single(tx_ring->dev,
4959 dma_unmap_addr(tx_buffer, dma),
4960 dma_unmap_len(tx_buffer, len),
4961 DMA_TO_DEVICE);
4962
4963 /* check for eop_desc to determine the end of the packet */
4964 eop_desc = tx_buffer->next_to_watch;
4965 tx_desc = IGB_TX_DESC(tx_ring, i);
4966
4967 /* unmap remaining buffers */
4968 while (tx_desc != eop_desc) {
4969 tx_buffer++;
4970 tx_desc++;
4971 i++;
4972 if (unlikely(i == tx_ring->count)) {
4973 i = 0;
4974 tx_buffer = tx_ring->tx_buffer_info;
4975 tx_desc = IGB_TX_DESC(tx_ring, 0);
4976 }
4977
4978 /* unmap any remaining paged data */
4979 if (dma_unmap_len(tx_buffer, len))
4980 dma_unmap_page(tx_ring->dev,
4981 dma_unmap_addr(tx_buffer, dma),
4982 dma_unmap_len(tx_buffer, len),
4983 DMA_TO_DEVICE);
4984 }
4985
4986 skip_for_xsk:
4987 tx_buffer->next_to_watch = NULL;
4988
4989 /* move us one more past the eop_desc for start of next pkt */
4990 tx_buffer++;
4991 i++;
4992 if (unlikely(i == tx_ring->count)) {
4993 i = 0;
4994 tx_buffer = tx_ring->tx_buffer_info;
4995 }
4996 }
4997
4998 /* reset BQL for queue */
4999 netdev_tx_reset_queue(txring_txq(tx_ring));
5000
5001 if (tx_ring->xsk_pool && xsk_frames)
5002 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5003
5004 /* reset next_to_use and next_to_clean */
5005 tx_ring->next_to_use = 0;
5006 tx_ring->next_to_clean = 0;
5007 }
5008
5009 /**
5010 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
5011 * @adapter: board private structure
5012 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)5013 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5014 {
5015 int i;
5016
5017 for (i = 0; i < adapter->num_tx_queues; i++)
5018 if (adapter->tx_ring[i])
5019 igb_clean_tx_ring(adapter->tx_ring[i]);
5020 }
5021
5022 /**
5023 * igb_free_rx_resources - Free Rx Resources
5024 * @rx_ring: ring to clean the resources from
5025 *
5026 * Free all receive software resources
5027 **/
igb_free_rx_resources(struct igb_ring * rx_ring)5028 void igb_free_rx_resources(struct igb_ring *rx_ring)
5029 {
5030 igb_clean_rx_ring(rx_ring);
5031
5032 rx_ring->xdp_prog = NULL;
5033 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5034 if (rx_ring->xsk_pool) {
5035 vfree(rx_ring->rx_buffer_info_zc);
5036 rx_ring->rx_buffer_info_zc = NULL;
5037 } else {
5038 vfree(rx_ring->rx_buffer_info);
5039 rx_ring->rx_buffer_info = NULL;
5040 }
5041
5042 /* if not set, then don't free */
5043 if (!rx_ring->desc)
5044 return;
5045
5046 dma_free_coherent(rx_ring->dev, rx_ring->size,
5047 rx_ring->desc, rx_ring->dma);
5048
5049 rx_ring->desc = NULL;
5050 }
5051
5052 /**
5053 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5054 * @adapter: board private structure
5055 *
5056 * Free all receive software resources
5057 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5058 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5059 {
5060 int i;
5061
5062 for (i = 0; i < adapter->num_rx_queues; i++)
5063 if (adapter->rx_ring[i])
5064 igb_free_rx_resources(adapter->rx_ring[i]);
5065 }
5066
5067 /**
5068 * igb_clean_rx_ring - Free Rx Buffers per Queue
5069 * @rx_ring: ring to free buffers from
5070 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5071 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5072 {
5073 u16 i = rx_ring->next_to_clean;
5074
5075 dev_kfree_skb(rx_ring->skb);
5076 rx_ring->skb = NULL;
5077
5078 if (rx_ring->xsk_pool) {
5079 igb_clean_rx_ring_zc(rx_ring);
5080 goto skip_for_xsk;
5081 }
5082
5083 /* Free all the Rx ring sk_buffs */
5084 while (i != rx_ring->next_to_alloc) {
5085 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5086
5087 /* Invalidate cache lines that may have been written to by
5088 * device so that we avoid corrupting memory.
5089 */
5090 dma_sync_single_range_for_cpu(rx_ring->dev,
5091 buffer_info->dma,
5092 buffer_info->page_offset,
5093 igb_rx_bufsz(rx_ring),
5094 DMA_FROM_DEVICE);
5095
5096 /* free resources associated with mapping */
5097 dma_unmap_page_attrs(rx_ring->dev,
5098 buffer_info->dma,
5099 igb_rx_pg_size(rx_ring),
5100 DMA_FROM_DEVICE,
5101 IGB_RX_DMA_ATTR);
5102 __page_frag_cache_drain(buffer_info->page,
5103 buffer_info->pagecnt_bias);
5104
5105 i++;
5106 if (i == rx_ring->count)
5107 i = 0;
5108 }
5109
5110 skip_for_xsk:
5111 rx_ring->next_to_alloc = 0;
5112 rx_ring->next_to_clean = 0;
5113 rx_ring->next_to_use = 0;
5114 }
5115
5116 /**
5117 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5118 * @adapter: board private structure
5119 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5120 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5121 {
5122 int i;
5123
5124 for (i = 0; i < adapter->num_rx_queues; i++)
5125 if (adapter->rx_ring[i])
5126 igb_clean_rx_ring(adapter->rx_ring[i]);
5127 }
5128
5129 /**
5130 * igb_set_mac - Change the Ethernet Address of the NIC
5131 * @netdev: network interface device structure
5132 * @p: pointer to an address structure
5133 *
5134 * Returns 0 on success, negative on failure
5135 **/
igb_set_mac(struct net_device * netdev,void * p)5136 static int igb_set_mac(struct net_device *netdev, void *p)
5137 {
5138 struct igb_adapter *adapter = netdev_priv(netdev);
5139 struct e1000_hw *hw = &adapter->hw;
5140 struct sockaddr *addr = p;
5141
5142 if (!is_valid_ether_addr(addr->sa_data))
5143 return -EADDRNOTAVAIL;
5144
5145 eth_hw_addr_set(netdev, addr->sa_data);
5146 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5147
5148 /* set the correct pool for the new PF MAC address in entry 0 */
5149 igb_set_default_mac_filter(adapter);
5150
5151 return 0;
5152 }
5153
5154 /**
5155 * igb_write_mc_addr_list - write multicast addresses to MTA
5156 * @netdev: network interface device structure
5157 *
5158 * Writes multicast address list to the MTA hash table.
5159 * Returns: -ENOMEM on failure
5160 * 0 on no addresses written
5161 * X on writing X addresses to MTA
5162 **/
igb_write_mc_addr_list(struct net_device * netdev)5163 static int igb_write_mc_addr_list(struct net_device *netdev)
5164 {
5165 struct igb_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 struct netdev_hw_addr *ha;
5168 u8 *mta_list;
5169 int i;
5170
5171 if (netdev_mc_empty(netdev)) {
5172 /* nothing to program, so clear mc list */
5173 igb_update_mc_addr_list(hw, NULL, 0);
5174 igb_restore_vf_multicasts(adapter);
5175 return 0;
5176 }
5177
5178 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5179 if (!mta_list)
5180 return -ENOMEM;
5181
5182 /* The shared function expects a packed array of only addresses. */
5183 i = 0;
5184 netdev_for_each_mc_addr(ha, netdev)
5185 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5186
5187 igb_update_mc_addr_list(hw, mta_list, i);
5188 kfree(mta_list);
5189
5190 return netdev_mc_count(netdev);
5191 }
5192
igb_vlan_promisc_enable(struct igb_adapter * adapter)5193 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5194 {
5195 struct e1000_hw *hw = &adapter->hw;
5196 u32 i, pf_id;
5197
5198 switch (hw->mac.type) {
5199 case e1000_i210:
5200 case e1000_i211:
5201 case e1000_i350:
5202 /* VLAN filtering needed for VLAN prio filter */
5203 if (adapter->netdev->features & NETIF_F_NTUPLE)
5204 break;
5205 fallthrough;
5206 case e1000_82576:
5207 case e1000_82580:
5208 case e1000_i354:
5209 /* VLAN filtering needed for pool filtering */
5210 if (adapter->vfs_allocated_count)
5211 break;
5212 fallthrough;
5213 default:
5214 return 1;
5215 }
5216
5217 /* We are already in VLAN promisc, nothing to do */
5218 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5219 return 0;
5220
5221 if (!adapter->vfs_allocated_count)
5222 goto set_vfta;
5223
5224 /* Add PF to all active pools */
5225 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5226
5227 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5228 u32 vlvf = rd32(E1000_VLVF(i));
5229
5230 vlvf |= BIT(pf_id);
5231 wr32(E1000_VLVF(i), vlvf);
5232 }
5233
5234 set_vfta:
5235 /* Set all bits in the VLAN filter table array */
5236 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5237 hw->mac.ops.write_vfta(hw, i, ~0U);
5238
5239 /* Set flag so we don't redo unnecessary work */
5240 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5241
5242 return 0;
5243 }
5244
5245 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5246 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5247 {
5248 struct e1000_hw *hw = &adapter->hw;
5249 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5250 u32 vid_start = vfta_offset * 32;
5251 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5252 u32 i, vid, word, bits, pf_id;
5253
5254 /* guarantee that we don't scrub out management VLAN */
5255 vid = adapter->mng_vlan_id;
5256 if (vid >= vid_start && vid < vid_end)
5257 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5258
5259 if (!adapter->vfs_allocated_count)
5260 goto set_vfta;
5261
5262 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5263
5264 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5265 u32 vlvf = rd32(E1000_VLVF(i));
5266
5267 /* pull VLAN ID from VLVF */
5268 vid = vlvf & VLAN_VID_MASK;
5269
5270 /* only concern ourselves with a certain range */
5271 if (vid < vid_start || vid >= vid_end)
5272 continue;
5273
5274 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5275 /* record VLAN ID in VFTA */
5276 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5277
5278 /* if PF is part of this then continue */
5279 if (test_bit(vid, adapter->active_vlans))
5280 continue;
5281 }
5282
5283 /* remove PF from the pool */
5284 bits = ~BIT(pf_id);
5285 bits &= rd32(E1000_VLVF(i));
5286 wr32(E1000_VLVF(i), bits);
5287 }
5288
5289 set_vfta:
5290 /* extract values from active_vlans and write back to VFTA */
5291 for (i = VFTA_BLOCK_SIZE; i--;) {
5292 vid = (vfta_offset + i) * 32;
5293 word = vid / BITS_PER_LONG;
5294 bits = vid % BITS_PER_LONG;
5295
5296 vfta[i] |= adapter->active_vlans[word] >> bits;
5297
5298 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5299 }
5300 }
5301
igb_vlan_promisc_disable(struct igb_adapter * adapter)5302 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5303 {
5304 u32 i;
5305
5306 /* We are not in VLAN promisc, nothing to do */
5307 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5308 return;
5309
5310 /* Set flag so we don't redo unnecessary work */
5311 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5312
5313 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5314 igb_scrub_vfta(adapter, i);
5315 }
5316
5317 /**
5318 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5319 * @netdev: network interface device structure
5320 *
5321 * The set_rx_mode entry point is called whenever the unicast or multicast
5322 * address lists or the network interface flags are updated. This routine is
5323 * responsible for configuring the hardware for proper unicast, multicast,
5324 * promiscuous mode, and all-multi behavior.
5325 **/
igb_set_rx_mode(struct net_device * netdev)5326 static void igb_set_rx_mode(struct net_device *netdev)
5327 {
5328 struct igb_adapter *adapter = netdev_priv(netdev);
5329 struct e1000_hw *hw = &adapter->hw;
5330 unsigned int vfn = adapter->vfs_allocated_count;
5331 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5332 int count;
5333
5334 /* Check for Promiscuous and All Multicast modes */
5335 if (netdev->flags & IFF_PROMISC) {
5336 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5337 vmolr |= E1000_VMOLR_MPME;
5338
5339 /* enable use of UTA filter to force packets to default pool */
5340 if (hw->mac.type == e1000_82576)
5341 vmolr |= E1000_VMOLR_ROPE;
5342 } else {
5343 if (netdev->flags & IFF_ALLMULTI) {
5344 rctl |= E1000_RCTL_MPE;
5345 vmolr |= E1000_VMOLR_MPME;
5346 } else {
5347 /* Write addresses to the MTA, if the attempt fails
5348 * then we should just turn on promiscuous mode so
5349 * that we can at least receive multicast traffic
5350 */
5351 count = igb_write_mc_addr_list(netdev);
5352 if (count < 0) {
5353 rctl |= E1000_RCTL_MPE;
5354 vmolr |= E1000_VMOLR_MPME;
5355 } else if (count) {
5356 vmolr |= E1000_VMOLR_ROMPE;
5357 }
5358 }
5359 }
5360
5361 /* Write addresses to available RAR registers, if there is not
5362 * sufficient space to store all the addresses then enable
5363 * unicast promiscuous mode
5364 */
5365 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5366 rctl |= E1000_RCTL_UPE;
5367 vmolr |= E1000_VMOLR_ROPE;
5368 }
5369
5370 /* enable VLAN filtering by default */
5371 rctl |= E1000_RCTL_VFE;
5372
5373 /* disable VLAN filtering for modes that require it */
5374 if ((netdev->flags & IFF_PROMISC) ||
5375 (netdev->features & NETIF_F_RXALL)) {
5376 /* if we fail to set all rules then just clear VFE */
5377 if (igb_vlan_promisc_enable(adapter))
5378 rctl &= ~E1000_RCTL_VFE;
5379 } else {
5380 igb_vlan_promisc_disable(adapter);
5381 }
5382
5383 /* update state of unicast, multicast, and VLAN filtering modes */
5384 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5385 E1000_RCTL_VFE);
5386 wr32(E1000_RCTL, rctl);
5387
5388 #if (PAGE_SIZE < 8192)
5389 if (!adapter->vfs_allocated_count) {
5390 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5391 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5392 }
5393 #endif
5394 wr32(E1000_RLPML, rlpml);
5395
5396 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5397 * the VMOLR to enable the appropriate modes. Without this workaround
5398 * we will have issues with VLAN tag stripping not being done for frames
5399 * that are only arriving because we are the default pool
5400 */
5401 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5402 return;
5403
5404 /* set UTA to appropriate mode */
5405 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5406
5407 vmolr |= rd32(E1000_VMOLR(vfn)) &
5408 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5409
5410 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5411 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5412 #if (PAGE_SIZE < 8192)
5413 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5414 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5415 else
5416 #endif
5417 vmolr |= MAX_JUMBO_FRAME_SIZE;
5418 vmolr |= E1000_VMOLR_LPE;
5419
5420 wr32(E1000_VMOLR(vfn), vmolr);
5421
5422 igb_restore_vf_multicasts(adapter);
5423 }
5424
igb_check_wvbr(struct igb_adapter * adapter)5425 static void igb_check_wvbr(struct igb_adapter *adapter)
5426 {
5427 struct e1000_hw *hw = &adapter->hw;
5428 u32 wvbr = 0;
5429
5430 switch (hw->mac.type) {
5431 case e1000_82576:
5432 case e1000_i350:
5433 wvbr = rd32(E1000_WVBR);
5434 if (!wvbr)
5435 return;
5436 break;
5437 default:
5438 break;
5439 }
5440
5441 adapter->wvbr |= wvbr;
5442 }
5443
5444 #define IGB_STAGGERED_QUEUE_OFFSET 8
5445
igb_spoof_check(struct igb_adapter * adapter)5446 static void igb_spoof_check(struct igb_adapter *adapter)
5447 {
5448 int j;
5449
5450 if (!adapter->wvbr)
5451 return;
5452
5453 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5454 if (adapter->wvbr & BIT(j) ||
5455 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5456 dev_warn(&adapter->pdev->dev,
5457 "Spoof event(s) detected on VF %d\n", j);
5458 adapter->wvbr &=
5459 ~(BIT(j) |
5460 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5461 }
5462 }
5463 }
5464
5465 /* Need to wait a few seconds after link up to get diagnostic information from
5466 * the phy
5467 */
igb_update_phy_info(struct timer_list * t)5468 static void igb_update_phy_info(struct timer_list *t)
5469 {
5470 struct igb_adapter *adapter = timer_container_of(adapter, t,
5471 phy_info_timer);
5472 igb_get_phy_info(&adapter->hw);
5473 }
5474
5475 /**
5476 * igb_has_link - check shared code for link and determine up/down
5477 * @adapter: pointer to driver private info
5478 **/
igb_has_link(struct igb_adapter * adapter)5479 bool igb_has_link(struct igb_adapter *adapter)
5480 {
5481 struct e1000_hw *hw = &adapter->hw;
5482 bool link_active = false;
5483
5484 /* get_link_status is set on LSC (link status) interrupt or
5485 * rx sequence error interrupt. get_link_status will stay
5486 * false until the e1000_check_for_link establishes link
5487 * for copper adapters ONLY
5488 */
5489 switch (hw->phy.media_type) {
5490 case e1000_media_type_copper:
5491 if (!hw->mac.get_link_status)
5492 return true;
5493 fallthrough;
5494 case e1000_media_type_internal_serdes:
5495 hw->mac.ops.check_for_link(hw);
5496 link_active = !hw->mac.get_link_status;
5497 break;
5498 default:
5499 case e1000_media_type_unknown:
5500 break;
5501 }
5502
5503 if (((hw->mac.type == e1000_i210) ||
5504 (hw->mac.type == e1000_i211)) &&
5505 (hw->phy.id == I210_I_PHY_ID)) {
5506 if (!netif_carrier_ok(adapter->netdev)) {
5507 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5508 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5509 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5510 adapter->link_check_timeout = jiffies;
5511 }
5512 }
5513
5514 return link_active;
5515 }
5516
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5517 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5518 {
5519 bool ret = false;
5520 u32 ctrl_ext, thstat;
5521
5522 /* check for thermal sensor event on i350 copper only */
5523 if (hw->mac.type == e1000_i350) {
5524 thstat = rd32(E1000_THSTAT);
5525 ctrl_ext = rd32(E1000_CTRL_EXT);
5526
5527 if ((hw->phy.media_type == e1000_media_type_copper) &&
5528 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5529 ret = !!(thstat & event);
5530 }
5531
5532 return ret;
5533 }
5534
5535 /**
5536 * igb_check_lvmmc - check for malformed packets received
5537 * and indicated in LVMMC register
5538 * @adapter: pointer to adapter
5539 **/
igb_check_lvmmc(struct igb_adapter * adapter)5540 static void igb_check_lvmmc(struct igb_adapter *adapter)
5541 {
5542 struct e1000_hw *hw = &adapter->hw;
5543 u32 lvmmc;
5544
5545 lvmmc = rd32(E1000_LVMMC);
5546 if (lvmmc) {
5547 if (unlikely(net_ratelimit())) {
5548 netdev_warn(adapter->netdev,
5549 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5550 lvmmc);
5551 }
5552 }
5553 }
5554
5555 /**
5556 * igb_watchdog - Timer Call-back
5557 * @t: pointer to timer_list containing our private info pointer
5558 **/
igb_watchdog(struct timer_list * t)5559 static void igb_watchdog(struct timer_list *t)
5560 {
5561 struct igb_adapter *adapter = timer_container_of(adapter, t,
5562 watchdog_timer);
5563 /* Do the rest outside of interrupt context */
5564 schedule_work(&adapter->watchdog_task);
5565 }
5566
igb_watchdog_task(struct work_struct * work)5567 static void igb_watchdog_task(struct work_struct *work)
5568 {
5569 struct igb_adapter *adapter = container_of(work,
5570 struct igb_adapter,
5571 watchdog_task);
5572 struct e1000_hw *hw = &adapter->hw;
5573 struct e1000_phy_info *phy = &hw->phy;
5574 struct net_device *netdev = adapter->netdev;
5575 u32 link;
5576 int i;
5577 u32 connsw;
5578 u16 phy_data, retry_count = 20;
5579
5580 link = igb_has_link(adapter);
5581
5582 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5583 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5584 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5585 else
5586 link = false;
5587 }
5588
5589 /* Force link down if we have fiber to swap to */
5590 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5591 if (hw->phy.media_type == e1000_media_type_copper) {
5592 connsw = rd32(E1000_CONNSW);
5593 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5594 link = 0;
5595 }
5596 }
5597 if (link) {
5598 /* Perform a reset if the media type changed. */
5599 if (hw->dev_spec._82575.media_changed) {
5600 hw->dev_spec._82575.media_changed = false;
5601 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5602 igb_reset(adapter);
5603 }
5604 /* Cancel scheduled suspend requests. */
5605 pm_runtime_resume(netdev->dev.parent);
5606
5607 if (!netif_carrier_ok(netdev)) {
5608 u32 ctrl;
5609
5610 hw->mac.ops.get_speed_and_duplex(hw,
5611 &adapter->link_speed,
5612 &adapter->link_duplex);
5613
5614 ctrl = rd32(E1000_CTRL);
5615 /* Links status message must follow this format */
5616 netdev_info(netdev,
5617 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5618 netdev->name,
5619 adapter->link_speed,
5620 adapter->link_duplex == FULL_DUPLEX ?
5621 "Full" : "Half",
5622 (ctrl & E1000_CTRL_TFCE) &&
5623 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5624 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5625 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5626
5627 /* disable EEE if enabled */
5628 if ((adapter->flags & IGB_FLAG_EEE) &&
5629 (adapter->link_duplex == HALF_DUPLEX)) {
5630 dev_info(&adapter->pdev->dev,
5631 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5632 adapter->hw.dev_spec._82575.eee_disable = true;
5633 adapter->flags &= ~IGB_FLAG_EEE;
5634 }
5635
5636 /* check if SmartSpeed worked */
5637 igb_check_downshift(hw);
5638 if (phy->speed_downgraded)
5639 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5640
5641 /* check for thermal sensor event */
5642 if (igb_thermal_sensor_event(hw,
5643 E1000_THSTAT_LINK_THROTTLE))
5644 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5645
5646 /* adjust timeout factor according to speed/duplex */
5647 adapter->tx_timeout_factor = 1;
5648 switch (adapter->link_speed) {
5649 case SPEED_10:
5650 adapter->tx_timeout_factor = 14;
5651 break;
5652 case SPEED_100:
5653 /* maybe add some timeout factor ? */
5654 break;
5655 }
5656
5657 if (adapter->link_speed != SPEED_1000 ||
5658 !hw->phy.ops.read_reg)
5659 goto no_wait;
5660
5661 /* wait for Remote receiver status OK */
5662 retry_read_status:
5663 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5664 &phy_data)) {
5665 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5666 retry_count) {
5667 msleep(100);
5668 retry_count--;
5669 goto retry_read_status;
5670 } else if (!retry_count) {
5671 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5672 }
5673 } else {
5674 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5675 }
5676 no_wait:
5677 netif_carrier_on(netdev);
5678
5679 igb_ping_all_vfs(adapter);
5680 igb_check_vf_rate_limit(adapter);
5681
5682 /* link state has changed, schedule phy info update */
5683 if (!test_bit(__IGB_DOWN, &adapter->state))
5684 mod_timer(&adapter->phy_info_timer,
5685 round_jiffies(jiffies + 2 * HZ));
5686 }
5687 } else {
5688 if (netif_carrier_ok(netdev)) {
5689 adapter->link_speed = 0;
5690 adapter->link_duplex = 0;
5691
5692 /* check for thermal sensor event */
5693 if (igb_thermal_sensor_event(hw,
5694 E1000_THSTAT_PWR_DOWN)) {
5695 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5696 }
5697
5698 /* Links status message must follow this format */
5699 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5700 netdev->name);
5701 netif_carrier_off(netdev);
5702
5703 igb_ping_all_vfs(adapter);
5704
5705 /* link state has changed, schedule phy info update */
5706 if (!test_bit(__IGB_DOWN, &adapter->state))
5707 mod_timer(&adapter->phy_info_timer,
5708 round_jiffies(jiffies + 2 * HZ));
5709
5710 /* link is down, time to check for alternate media */
5711 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5712 igb_check_swap_media(adapter);
5713 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5714 schedule_work(&adapter->reset_task);
5715 /* return immediately */
5716 return;
5717 }
5718 }
5719 pm_schedule_suspend(netdev->dev.parent,
5720 MSEC_PER_SEC * 5);
5721
5722 /* also check for alternate media here */
5723 } else if (!netif_carrier_ok(netdev) &&
5724 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5725 igb_check_swap_media(adapter);
5726 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5727 schedule_work(&adapter->reset_task);
5728 /* return immediately */
5729 return;
5730 }
5731 }
5732 }
5733
5734 spin_lock(&adapter->stats64_lock);
5735 igb_update_stats(adapter);
5736 spin_unlock(&adapter->stats64_lock);
5737
5738 for (i = 0; i < adapter->num_tx_queues; i++) {
5739 struct igb_ring *tx_ring = adapter->tx_ring[i];
5740 if (!netif_carrier_ok(netdev)) {
5741 /* We've lost link, so the controller stops DMA,
5742 * but we've got queued Tx work that's never going
5743 * to get done, so reset controller to flush Tx.
5744 * (Do the reset outside of interrupt context).
5745 */
5746 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5747 adapter->tx_timeout_count++;
5748 schedule_work(&adapter->reset_task);
5749 /* return immediately since reset is imminent */
5750 return;
5751 }
5752 }
5753
5754 /* Force detection of hung controller every watchdog period */
5755 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5756 }
5757
5758 /* Cause software interrupt to ensure Rx ring is cleaned */
5759 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5760 u32 eics = 0;
5761
5762 for (i = 0; i < adapter->num_q_vectors; i++) {
5763 struct igb_q_vector *q_vector = adapter->q_vector[i];
5764 struct igb_ring *rx_ring;
5765
5766 if (!q_vector->rx.ring)
5767 continue;
5768
5769 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5770
5771 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5772 eics |= q_vector->eims_value;
5773 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5774 }
5775 }
5776 if (eics)
5777 wr32(E1000_EICS, eics);
5778 } else {
5779 struct igb_ring *rx_ring = adapter->rx_ring[0];
5780
5781 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5782 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5783 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5784 }
5785 }
5786
5787 igb_spoof_check(adapter);
5788 igb_ptp_rx_hang(adapter);
5789 igb_ptp_tx_hang(adapter);
5790
5791 /* Check LVMMC register on i350/i354 only */
5792 if ((adapter->hw.mac.type == e1000_i350) ||
5793 (adapter->hw.mac.type == e1000_i354))
5794 igb_check_lvmmc(adapter);
5795
5796 /* Reset the timer */
5797 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5798 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5799 mod_timer(&adapter->watchdog_timer,
5800 round_jiffies(jiffies + HZ));
5801 else
5802 mod_timer(&adapter->watchdog_timer,
5803 round_jiffies(jiffies + 2 * HZ));
5804 }
5805 }
5806
5807 enum latency_range {
5808 lowest_latency = 0,
5809 low_latency = 1,
5810 bulk_latency = 2,
5811 latency_invalid = 255
5812 };
5813
5814 /**
5815 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5816 * @q_vector: pointer to q_vector
5817 *
5818 * Stores a new ITR value based on strictly on packet size. This
5819 * algorithm is less sophisticated than that used in igb_update_itr,
5820 * due to the difficulty of synchronizing statistics across multiple
5821 * receive rings. The divisors and thresholds used by this function
5822 * were determined based on theoretical maximum wire speed and testing
5823 * data, in order to minimize response time while increasing bulk
5824 * throughput.
5825 * This functionality is controlled by ethtool's coalescing settings.
5826 * NOTE: This function is called only when operating in a multiqueue
5827 * receive environment.
5828 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5829 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5830 {
5831 int new_val = q_vector->itr_val;
5832 int avg_wire_size = 0;
5833 struct igb_adapter *adapter = q_vector->adapter;
5834 unsigned int packets;
5835
5836 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5837 * ints/sec - ITR timer value of 120 ticks.
5838 */
5839 if (adapter->link_speed != SPEED_1000) {
5840 new_val = IGB_4K_ITR;
5841 goto set_itr_val;
5842 }
5843
5844 packets = q_vector->rx.total_packets;
5845 if (packets)
5846 avg_wire_size = q_vector->rx.total_bytes / packets;
5847
5848 packets = q_vector->tx.total_packets;
5849 if (packets)
5850 avg_wire_size = max_t(u32, avg_wire_size,
5851 q_vector->tx.total_bytes / packets);
5852
5853 /* if avg_wire_size isn't set no work was done */
5854 if (!avg_wire_size)
5855 goto clear_counts;
5856
5857 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5858 avg_wire_size += 24;
5859
5860 /* Don't starve jumbo frames */
5861 avg_wire_size = min(avg_wire_size, 3000);
5862
5863 /* Give a little boost to mid-size frames */
5864 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5865 new_val = avg_wire_size / 3;
5866 else
5867 new_val = avg_wire_size / 2;
5868
5869 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5870 if (new_val < IGB_20K_ITR &&
5871 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5872 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5873 new_val = IGB_20K_ITR;
5874
5875 set_itr_val:
5876 if (new_val != q_vector->itr_val) {
5877 q_vector->itr_val = new_val;
5878 q_vector->set_itr = 1;
5879 }
5880 clear_counts:
5881 q_vector->rx.total_bytes = 0;
5882 q_vector->rx.total_packets = 0;
5883 q_vector->tx.total_bytes = 0;
5884 q_vector->tx.total_packets = 0;
5885 }
5886
5887 /**
5888 * igb_update_itr - update the dynamic ITR value based on statistics
5889 * @q_vector: pointer to q_vector
5890 * @ring_container: ring info to update the itr for
5891 *
5892 * Stores a new ITR value based on packets and byte
5893 * counts during the last interrupt. The advantage of per interrupt
5894 * computation is faster updates and more accurate ITR for the current
5895 * traffic pattern. Constants in this function were computed
5896 * based on theoretical maximum wire speed and thresholds were set based
5897 * on testing data as well as attempting to minimize response time
5898 * while increasing bulk throughput.
5899 * This functionality is controlled by ethtool's coalescing settings.
5900 * NOTE: These calculations are only valid when operating in a single-
5901 * queue environment.
5902 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5903 static void igb_update_itr(struct igb_q_vector *q_vector,
5904 struct igb_ring_container *ring_container)
5905 {
5906 unsigned int packets = ring_container->total_packets;
5907 unsigned int bytes = ring_container->total_bytes;
5908 u8 itrval = ring_container->itr;
5909
5910 /* no packets, exit with status unchanged */
5911 if (packets == 0)
5912 return;
5913
5914 switch (itrval) {
5915 case lowest_latency:
5916 /* handle TSO and jumbo frames */
5917 if (bytes/packets > 8000)
5918 itrval = bulk_latency;
5919 else if ((packets < 5) && (bytes > 512))
5920 itrval = low_latency;
5921 break;
5922 case low_latency: /* 50 usec aka 20000 ints/s */
5923 if (bytes > 10000) {
5924 /* this if handles the TSO accounting */
5925 if (bytes/packets > 8000)
5926 itrval = bulk_latency;
5927 else if ((packets < 10) || ((bytes/packets) > 1200))
5928 itrval = bulk_latency;
5929 else if ((packets > 35))
5930 itrval = lowest_latency;
5931 } else if (bytes/packets > 2000) {
5932 itrval = bulk_latency;
5933 } else if (packets <= 2 && bytes < 512) {
5934 itrval = lowest_latency;
5935 }
5936 break;
5937 case bulk_latency: /* 250 usec aka 4000 ints/s */
5938 if (bytes > 25000) {
5939 if (packets > 35)
5940 itrval = low_latency;
5941 } else if (bytes < 1500) {
5942 itrval = low_latency;
5943 }
5944 break;
5945 }
5946
5947 /* clear work counters since we have the values we need */
5948 ring_container->total_bytes = 0;
5949 ring_container->total_packets = 0;
5950
5951 /* write updated itr to ring container */
5952 ring_container->itr = itrval;
5953 }
5954
igb_set_itr(struct igb_q_vector * q_vector)5955 static void igb_set_itr(struct igb_q_vector *q_vector)
5956 {
5957 struct igb_adapter *adapter = q_vector->adapter;
5958 u32 new_itr = q_vector->itr_val;
5959 u8 current_itr = 0;
5960
5961 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5962 if (adapter->link_speed != SPEED_1000) {
5963 current_itr = 0;
5964 new_itr = IGB_4K_ITR;
5965 goto set_itr_now;
5966 }
5967
5968 igb_update_itr(q_vector, &q_vector->tx);
5969 igb_update_itr(q_vector, &q_vector->rx);
5970
5971 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5972
5973 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5974 if (current_itr == lowest_latency &&
5975 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5976 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5977 current_itr = low_latency;
5978
5979 switch (current_itr) {
5980 /* counts and packets in update_itr are dependent on these numbers */
5981 case lowest_latency:
5982 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5983 break;
5984 case low_latency:
5985 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5986 break;
5987 case bulk_latency:
5988 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5989 break;
5990 default:
5991 break;
5992 }
5993
5994 set_itr_now:
5995 if (new_itr != q_vector->itr_val) {
5996 /* this attempts to bias the interrupt rate towards Bulk
5997 * by adding intermediate steps when interrupt rate is
5998 * increasing
5999 */
6000 new_itr = new_itr > q_vector->itr_val ?
6001 max((new_itr * q_vector->itr_val) /
6002 (new_itr + (q_vector->itr_val >> 2)),
6003 new_itr) : new_itr;
6004 /* Don't write the value here; it resets the adapter's
6005 * internal timer, and causes us to delay far longer than
6006 * we should between interrupts. Instead, we write the ITR
6007 * value at the beginning of the next interrupt so the timing
6008 * ends up being correct.
6009 */
6010 q_vector->itr_val = new_itr;
6011 q_vector->set_itr = 1;
6012 }
6013 }
6014
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)6015 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6016 struct igb_tx_buffer *first,
6017 u32 vlan_macip_lens, u32 type_tucmd,
6018 u32 mss_l4len_idx)
6019 {
6020 struct e1000_adv_tx_context_desc *context_desc;
6021 u16 i = tx_ring->next_to_use;
6022 struct timespec64 ts;
6023
6024 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6025
6026 i++;
6027 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6028
6029 /* set bits to identify this as an advanced context descriptor */
6030 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6031
6032 /* For 82575, context index must be unique per ring. */
6033 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6034 mss_l4len_idx |= tx_ring->reg_idx << 4;
6035
6036 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
6037 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
6038 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
6039
6040 /* We assume there is always a valid tx time available. Invalid times
6041 * should have been handled by the upper layers.
6042 */
6043 if (tx_ring->launchtime_enable) {
6044 ts = ktime_to_timespec64(first->skb->tstamp);
6045 skb_txtime_consumed(first->skb);
6046 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6047 } else {
6048 context_desc->seqnum_seed = 0;
6049 }
6050 }
6051
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)6052 static int igb_tso(struct igb_ring *tx_ring,
6053 struct igb_tx_buffer *first,
6054 u8 *hdr_len)
6055 {
6056 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6057 struct sk_buff *skb = first->skb;
6058 union {
6059 struct iphdr *v4;
6060 struct ipv6hdr *v6;
6061 unsigned char *hdr;
6062 } ip;
6063 union {
6064 struct tcphdr *tcp;
6065 struct udphdr *udp;
6066 unsigned char *hdr;
6067 } l4;
6068 u32 paylen, l4_offset;
6069 int err;
6070
6071 if (skb->ip_summed != CHECKSUM_PARTIAL)
6072 return 0;
6073
6074 if (!skb_is_gso(skb))
6075 return 0;
6076
6077 err = skb_cow_head(skb, 0);
6078 if (err < 0)
6079 return err;
6080
6081 ip.hdr = skb_network_header(skb);
6082 l4.hdr = skb_checksum_start(skb);
6083
6084 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6085 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6086 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6087
6088 /* initialize outer IP header fields */
6089 if (ip.v4->version == 4) {
6090 unsigned char *csum_start = skb_checksum_start(skb);
6091 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6092
6093 /* IP header will have to cancel out any data that
6094 * is not a part of the outer IP header
6095 */
6096 ip.v4->check = csum_fold(csum_partial(trans_start,
6097 csum_start - trans_start,
6098 0));
6099 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6100
6101 ip.v4->tot_len = 0;
6102 first->tx_flags |= IGB_TX_FLAGS_TSO |
6103 IGB_TX_FLAGS_CSUM |
6104 IGB_TX_FLAGS_IPV4;
6105 } else {
6106 ip.v6->payload_len = 0;
6107 first->tx_flags |= IGB_TX_FLAGS_TSO |
6108 IGB_TX_FLAGS_CSUM;
6109 }
6110
6111 /* determine offset of inner transport header */
6112 l4_offset = l4.hdr - skb->data;
6113
6114 /* remove payload length from inner checksum */
6115 paylen = skb->len - l4_offset;
6116 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6117 /* compute length of segmentation header */
6118 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6119 csum_replace_by_diff(&l4.tcp->check,
6120 (__force __wsum)htonl(paylen));
6121 } else {
6122 /* compute length of segmentation header */
6123 *hdr_len = sizeof(*l4.udp) + l4_offset;
6124 csum_replace_by_diff(&l4.udp->check,
6125 (__force __wsum)htonl(paylen));
6126 }
6127
6128 /* update gso size and bytecount with header size */
6129 first->gso_segs = skb_shinfo(skb)->gso_segs;
6130 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6131
6132 /* MSS L4LEN IDX */
6133 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6134 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6135
6136 /* VLAN MACLEN IPLEN */
6137 vlan_macip_lens = l4.hdr - ip.hdr;
6138 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6139 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6140
6141 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6142 type_tucmd, mss_l4len_idx);
6143
6144 return 1;
6145 }
6146
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6147 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6148 {
6149 struct sk_buff *skb = first->skb;
6150 u32 vlan_macip_lens = 0;
6151 u32 type_tucmd = 0;
6152
6153 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6154 csum_failed:
6155 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6156 !tx_ring->launchtime_enable)
6157 return;
6158 goto no_csum;
6159 }
6160
6161 switch (skb->csum_offset) {
6162 case offsetof(struct tcphdr, check):
6163 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6164 fallthrough;
6165 case offsetof(struct udphdr, check):
6166 break;
6167 case offsetof(struct sctphdr, checksum):
6168 /* validate that this is actually an SCTP request */
6169 if (skb_csum_is_sctp(skb)) {
6170 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6171 break;
6172 }
6173 fallthrough;
6174 default:
6175 skb_checksum_help(skb);
6176 goto csum_failed;
6177 }
6178
6179 /* update TX checksum flag */
6180 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6181 vlan_macip_lens = skb_checksum_start_offset(skb) -
6182 skb_network_offset(skb);
6183 no_csum:
6184 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6185 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6186
6187 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6188 }
6189
6190 #define IGB_SET_FLAG(_input, _flag, _result) \
6191 ((_flag <= _result) ? \
6192 ((u32)(_input & _flag) * (_result / _flag)) : \
6193 ((u32)(_input & _flag) / (_flag / _result)))
6194
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6195 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6196 {
6197 /* set type for advanced descriptor with frame checksum insertion */
6198 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6199 E1000_ADVTXD_DCMD_DEXT |
6200 E1000_ADVTXD_DCMD_IFCS;
6201
6202 /* set HW vlan bit if vlan is present */
6203 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6204 (E1000_ADVTXD_DCMD_VLE));
6205
6206 /* set segmentation bits for TSO */
6207 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6208 (E1000_ADVTXD_DCMD_TSE));
6209
6210 /* set timestamp bit if present */
6211 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6212 (E1000_ADVTXD_MAC_TSTAMP));
6213
6214 /* insert frame checksum */
6215 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6216
6217 return cmd_type;
6218 }
6219
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6220 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6221 union e1000_adv_tx_desc *tx_desc,
6222 u32 tx_flags, unsigned int paylen)
6223 {
6224 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6225
6226 /* 82575 requires a unique index per ring */
6227 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6228 olinfo_status |= tx_ring->reg_idx << 4;
6229
6230 /* insert L4 checksum */
6231 olinfo_status |= IGB_SET_FLAG(tx_flags,
6232 IGB_TX_FLAGS_CSUM,
6233 (E1000_TXD_POPTS_TXSM << 8));
6234
6235 /* insert IPv4 checksum */
6236 olinfo_status |= IGB_SET_FLAG(tx_flags,
6237 IGB_TX_FLAGS_IPV4,
6238 (E1000_TXD_POPTS_IXSM << 8));
6239
6240 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6241 }
6242
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6243 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6244 {
6245 struct net_device *netdev = tx_ring->netdev;
6246
6247 netif_stop_subqueue(netdev, tx_ring->queue_index);
6248
6249 /* Herbert's original patch had:
6250 * smp_mb__after_netif_stop_queue();
6251 * but since that doesn't exist yet, just open code it.
6252 */
6253 smp_mb();
6254
6255 /* We need to check again in a case another CPU has just
6256 * made room available.
6257 */
6258 if (igb_desc_unused(tx_ring) < size)
6259 return -EBUSY;
6260
6261 /* A reprieve! */
6262 netif_wake_subqueue(netdev, tx_ring->queue_index);
6263
6264 u64_stats_update_begin(&tx_ring->tx_syncp2);
6265 tx_ring->tx_stats.restart_queue2++;
6266 u64_stats_update_end(&tx_ring->tx_syncp2);
6267
6268 return 0;
6269 }
6270
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6271 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6272 {
6273 if (igb_desc_unused(tx_ring) >= size)
6274 return 0;
6275 return __igb_maybe_stop_tx(tx_ring, size);
6276 }
6277
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6278 static int igb_tx_map(struct igb_ring *tx_ring,
6279 struct igb_tx_buffer *first,
6280 const u8 hdr_len)
6281 {
6282 struct sk_buff *skb = first->skb;
6283 struct igb_tx_buffer *tx_buffer;
6284 union e1000_adv_tx_desc *tx_desc;
6285 skb_frag_t *frag;
6286 dma_addr_t dma;
6287 unsigned int data_len, size;
6288 u32 tx_flags = first->tx_flags;
6289 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6290 u16 i = tx_ring->next_to_use;
6291
6292 tx_desc = IGB_TX_DESC(tx_ring, i);
6293
6294 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6295
6296 size = skb_headlen(skb);
6297 data_len = skb->data_len;
6298
6299 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6300
6301 tx_buffer = first;
6302
6303 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6304 if (dma_mapping_error(tx_ring->dev, dma))
6305 goto dma_error;
6306
6307 /* record length, and DMA address */
6308 dma_unmap_len_set(tx_buffer, len, size);
6309 dma_unmap_addr_set(tx_buffer, dma, dma);
6310
6311 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6312
6313 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6314 tx_desc->read.cmd_type_len =
6315 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6316
6317 i++;
6318 tx_desc++;
6319 if (i == tx_ring->count) {
6320 tx_desc = IGB_TX_DESC(tx_ring, 0);
6321 i = 0;
6322 }
6323 tx_desc->read.olinfo_status = 0;
6324
6325 dma += IGB_MAX_DATA_PER_TXD;
6326 size -= IGB_MAX_DATA_PER_TXD;
6327
6328 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6329 }
6330
6331 if (likely(!data_len))
6332 break;
6333
6334 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6335
6336 i++;
6337 tx_desc++;
6338 if (i == tx_ring->count) {
6339 tx_desc = IGB_TX_DESC(tx_ring, 0);
6340 i = 0;
6341 }
6342 tx_desc->read.olinfo_status = 0;
6343
6344 size = skb_frag_size(frag);
6345 data_len -= size;
6346
6347 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6348 size, DMA_TO_DEVICE);
6349
6350 tx_buffer = &tx_ring->tx_buffer_info[i];
6351 }
6352
6353 /* write last descriptor with RS and EOP bits */
6354 cmd_type |= size | IGB_TXD_DCMD;
6355 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6356
6357 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6358
6359 /* set the timestamp */
6360 first->time_stamp = jiffies;
6361
6362 skb_tx_timestamp(skb);
6363
6364 /* Force memory writes to complete before letting h/w know there
6365 * are new descriptors to fetch. (Only applicable for weak-ordered
6366 * memory model archs, such as IA-64).
6367 *
6368 * We also need this memory barrier to make certain all of the
6369 * status bits have been updated before next_to_watch is written.
6370 */
6371 dma_wmb();
6372
6373 /* set next_to_watch value indicating a packet is present */
6374 first->next_to_watch = tx_desc;
6375
6376 i++;
6377 if (i == tx_ring->count)
6378 i = 0;
6379
6380 tx_ring->next_to_use = i;
6381
6382 /* Make sure there is space in the ring for the next send. */
6383 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6384
6385 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6386 writel(i, tx_ring->tail);
6387 }
6388 return 0;
6389
6390 dma_error:
6391 dev_err(tx_ring->dev, "TX DMA map failed\n");
6392 tx_buffer = &tx_ring->tx_buffer_info[i];
6393
6394 /* clear dma mappings for failed tx_buffer_info map */
6395 while (tx_buffer != first) {
6396 if (dma_unmap_len(tx_buffer, len))
6397 dma_unmap_page(tx_ring->dev,
6398 dma_unmap_addr(tx_buffer, dma),
6399 dma_unmap_len(tx_buffer, len),
6400 DMA_TO_DEVICE);
6401 dma_unmap_len_set(tx_buffer, len, 0);
6402
6403 if (i-- == 0)
6404 i += tx_ring->count;
6405 tx_buffer = &tx_ring->tx_buffer_info[i];
6406 }
6407
6408 if (dma_unmap_len(tx_buffer, len))
6409 dma_unmap_single(tx_ring->dev,
6410 dma_unmap_addr(tx_buffer, dma),
6411 dma_unmap_len(tx_buffer, len),
6412 DMA_TO_DEVICE);
6413 dma_unmap_len_set(tx_buffer, len, 0);
6414
6415 dev_kfree_skb_any(tx_buffer->skb);
6416 tx_buffer->skb = NULL;
6417
6418 tx_ring->next_to_use = i;
6419
6420 return -1;
6421 }
6422
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6423 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6424 struct igb_ring *tx_ring,
6425 struct xdp_frame *xdpf)
6426 {
6427 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6428 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6429 u16 count, i, index = tx_ring->next_to_use;
6430 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6431 struct igb_tx_buffer *tx_buffer = tx_head;
6432 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6433 u32 len = xdpf->len, cmd_type, olinfo_status;
6434 void *data = xdpf->data;
6435
6436 count = TXD_USE_COUNT(len);
6437 for (i = 0; i < nr_frags; i++)
6438 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6439
6440 if (igb_maybe_stop_tx(tx_ring, count + 3))
6441 return IGB_XDP_CONSUMED;
6442
6443 i = 0;
6444 /* record the location of the first descriptor for this packet */
6445 tx_head->bytecount = xdp_get_frame_len(xdpf);
6446 tx_head->type = IGB_TYPE_XDP;
6447 tx_head->gso_segs = 1;
6448 tx_head->xdpf = xdpf;
6449
6450 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6451 /* 82575 requires a unique index per ring */
6452 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6453 olinfo_status |= tx_ring->reg_idx << 4;
6454 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6455
6456 for (;;) {
6457 dma_addr_t dma;
6458
6459 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6460 if (dma_mapping_error(tx_ring->dev, dma))
6461 goto unmap;
6462
6463 /* record length, and DMA address */
6464 dma_unmap_len_set(tx_buffer, len, len);
6465 dma_unmap_addr_set(tx_buffer, dma, dma);
6466
6467 /* put descriptor type bits */
6468 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6469 E1000_ADVTXD_DCMD_IFCS | len;
6470
6471 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6472 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6473
6474 tx_buffer->protocol = 0;
6475
6476 if (++index == tx_ring->count)
6477 index = 0;
6478
6479 if (i == nr_frags)
6480 break;
6481
6482 tx_buffer = &tx_ring->tx_buffer_info[index];
6483 tx_desc = IGB_TX_DESC(tx_ring, index);
6484 tx_desc->read.olinfo_status = 0;
6485
6486 data = skb_frag_address(&sinfo->frags[i]);
6487 len = skb_frag_size(&sinfo->frags[i]);
6488 i++;
6489 }
6490 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6491
6492 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6493 /* set the timestamp */
6494 tx_head->time_stamp = jiffies;
6495
6496 /* Avoid any potential race with xdp_xmit and cleanup */
6497 smp_wmb();
6498
6499 /* set next_to_watch value indicating a packet is present */
6500 tx_head->next_to_watch = tx_desc;
6501 tx_ring->next_to_use = index;
6502
6503 /* Make sure there is space in the ring for the next send. */
6504 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6505
6506 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6507 writel(index, tx_ring->tail);
6508
6509 return IGB_XDP_TX;
6510
6511 unmap:
6512 for (;;) {
6513 tx_buffer = &tx_ring->tx_buffer_info[index];
6514 if (dma_unmap_len(tx_buffer, len))
6515 dma_unmap_page(tx_ring->dev,
6516 dma_unmap_addr(tx_buffer, dma),
6517 dma_unmap_len(tx_buffer, len),
6518 DMA_TO_DEVICE);
6519 dma_unmap_len_set(tx_buffer, len, 0);
6520 if (tx_buffer == tx_head)
6521 break;
6522
6523 if (!index)
6524 index += tx_ring->count;
6525 index--;
6526 }
6527
6528 return IGB_XDP_CONSUMED;
6529 }
6530
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6531 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6532 struct igb_ring *tx_ring)
6533 {
6534 struct igb_tx_buffer *first;
6535 int tso;
6536 u32 tx_flags = 0;
6537 unsigned short f;
6538 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6539 __be16 protocol = vlan_get_protocol(skb);
6540 u8 hdr_len = 0;
6541
6542 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6543 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6544 * + 2 desc gap to keep tail from touching head,
6545 * + 1 desc for context descriptor,
6546 * otherwise try next time
6547 */
6548 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6549 count += TXD_USE_COUNT(skb_frag_size(
6550 &skb_shinfo(skb)->frags[f]));
6551
6552 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6553 /* this is a hard error */
6554 return NETDEV_TX_BUSY;
6555 }
6556
6557 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6558 return NETDEV_TX_BUSY;
6559
6560 /* record the location of the first descriptor for this packet */
6561 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6562 first->type = IGB_TYPE_SKB;
6563 first->skb = skb;
6564 first->bytecount = skb->len;
6565 first->gso_segs = 1;
6566
6567 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6568 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6569
6570 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6571 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6572 &adapter->state)) {
6573 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6574 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6575
6576 adapter->ptp_tx_skb = skb_get(skb);
6577 adapter->ptp_tx_start = jiffies;
6578 if (adapter->hw.mac.type == e1000_82576)
6579 schedule_work(&adapter->ptp_tx_work);
6580 } else {
6581 adapter->tx_hwtstamp_skipped++;
6582 }
6583 }
6584
6585 if (skb_vlan_tag_present(skb)) {
6586 tx_flags |= IGB_TX_FLAGS_VLAN;
6587 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6588 }
6589
6590 /* record initial flags and protocol */
6591 first->tx_flags = tx_flags;
6592 first->protocol = protocol;
6593
6594 tso = igb_tso(tx_ring, first, &hdr_len);
6595 if (tso < 0)
6596 goto out_drop;
6597 else if (!tso)
6598 igb_tx_csum(tx_ring, first);
6599
6600 if (igb_tx_map(tx_ring, first, hdr_len))
6601 goto cleanup_tx_tstamp;
6602
6603 return NETDEV_TX_OK;
6604
6605 out_drop:
6606 dev_kfree_skb_any(first->skb);
6607 first->skb = NULL;
6608 cleanup_tx_tstamp:
6609 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6610 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6611
6612 dev_kfree_skb_any(adapter->ptp_tx_skb);
6613 adapter->ptp_tx_skb = NULL;
6614 if (adapter->hw.mac.type == e1000_82576)
6615 cancel_work_sync(&adapter->ptp_tx_work);
6616 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6617 }
6618
6619 return NETDEV_TX_OK;
6620 }
6621
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6622 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6623 struct sk_buff *skb)
6624 {
6625 unsigned int r_idx = skb->queue_mapping;
6626
6627 if (r_idx >= adapter->num_tx_queues)
6628 r_idx = r_idx % adapter->num_tx_queues;
6629
6630 return adapter->tx_ring[r_idx];
6631 }
6632
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6633 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6634 struct net_device *netdev)
6635 {
6636 struct igb_adapter *adapter = netdev_priv(netdev);
6637
6638 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6639 * in order to meet this minimum size requirement.
6640 */
6641 if (skb_put_padto(skb, 17))
6642 return NETDEV_TX_OK;
6643
6644 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6645 }
6646
6647 /**
6648 * igb_tx_timeout - Respond to a Tx Hang
6649 * @netdev: network interface device structure
6650 * @txqueue: number of the Tx queue that hung (unused)
6651 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6652 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6653 {
6654 struct igb_adapter *adapter = netdev_priv(netdev);
6655 struct e1000_hw *hw = &adapter->hw;
6656
6657 /* Do the reset outside of interrupt context */
6658 adapter->tx_timeout_count++;
6659
6660 if (hw->mac.type >= e1000_82580)
6661 hw->dev_spec._82575.global_device_reset = true;
6662
6663 schedule_work(&adapter->reset_task);
6664 wr32(E1000_EICS,
6665 (adapter->eims_enable_mask & ~adapter->eims_other));
6666 }
6667
igb_reset_task(struct work_struct * work)6668 static void igb_reset_task(struct work_struct *work)
6669 {
6670 struct igb_adapter *adapter;
6671 adapter = container_of(work, struct igb_adapter, reset_task);
6672
6673 rtnl_lock();
6674 /* If we're already down or resetting, just bail */
6675 if (test_bit(__IGB_DOWN, &adapter->state) ||
6676 test_bit(__IGB_RESETTING, &adapter->state)) {
6677 rtnl_unlock();
6678 return;
6679 }
6680
6681 igb_dump(adapter);
6682 netdev_err(adapter->netdev, "Reset adapter\n");
6683 igb_reinit_locked(adapter);
6684 rtnl_unlock();
6685 }
6686
6687 /**
6688 * igb_get_stats64 - Get System Network Statistics
6689 * @netdev: network interface device structure
6690 * @stats: rtnl_link_stats64 pointer
6691 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6692 static void igb_get_stats64(struct net_device *netdev,
6693 struct rtnl_link_stats64 *stats)
6694 {
6695 struct igb_adapter *adapter = netdev_priv(netdev);
6696
6697 spin_lock(&adapter->stats64_lock);
6698 igb_update_stats(adapter);
6699 memcpy(stats, &adapter->stats64, sizeof(*stats));
6700 spin_unlock(&adapter->stats64_lock);
6701 }
6702
6703 /**
6704 * igb_change_mtu - Change the Maximum Transfer Unit
6705 * @netdev: network interface device structure
6706 * @new_mtu: new value for maximum frame size
6707 *
6708 * Returns 0 on success, negative on failure
6709 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6710 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6711 {
6712 struct igb_adapter *adapter = netdev_priv(netdev);
6713 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6714
6715 if (igb_xdp_is_enabled(adapter)) {
6716 int i;
6717
6718 for (i = 0; i < adapter->num_rx_queues; i++) {
6719 struct igb_ring *ring = adapter->rx_ring[i];
6720
6721 if (max_frame > igb_rx_bufsz(ring)) {
6722 netdev_warn(adapter->netdev,
6723 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6724 max_frame);
6725 return -EINVAL;
6726 }
6727 }
6728 }
6729
6730 /* adjust max frame to be at least the size of a standard frame */
6731 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6732 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6733
6734 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6735 usleep_range(1000, 2000);
6736
6737 /* igb_down has a dependency on max_frame_size */
6738 adapter->max_frame_size = max_frame;
6739
6740 if (netif_running(netdev))
6741 igb_down(adapter);
6742
6743 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6744 netdev->mtu, new_mtu);
6745 WRITE_ONCE(netdev->mtu, new_mtu);
6746
6747 if (netif_running(netdev))
6748 igb_up(adapter);
6749 else
6750 igb_reset(adapter);
6751
6752 clear_bit(__IGB_RESETTING, &adapter->state);
6753
6754 return 0;
6755 }
6756
6757 /**
6758 * igb_update_stats - Update the board statistics counters
6759 * @adapter: board private structure
6760 **/
igb_update_stats(struct igb_adapter * adapter)6761 void igb_update_stats(struct igb_adapter *adapter)
6762 {
6763 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6764 struct e1000_hw *hw = &adapter->hw;
6765 struct pci_dev *pdev = adapter->pdev;
6766 u32 reg, mpc;
6767 int i;
6768 u64 bytes, packets;
6769 unsigned int start;
6770 u64 _bytes, _packets;
6771
6772 /* Prevent stats update while adapter is being reset, or if the pci
6773 * connection is down.
6774 */
6775 if (adapter->link_speed == 0)
6776 return;
6777 if (pci_channel_offline(pdev))
6778 return;
6779
6780 bytes = 0;
6781 packets = 0;
6782
6783 rcu_read_lock();
6784 for (i = 0; i < adapter->num_rx_queues; i++) {
6785 struct igb_ring *ring = adapter->rx_ring[i];
6786 u32 rqdpc = rd32(E1000_RQDPC(i));
6787 if (hw->mac.type >= e1000_i210)
6788 wr32(E1000_RQDPC(i), 0);
6789
6790 if (rqdpc) {
6791 ring->rx_stats.drops += rqdpc;
6792 net_stats->rx_fifo_errors += rqdpc;
6793 }
6794
6795 do {
6796 start = u64_stats_fetch_begin(&ring->rx_syncp);
6797 _bytes = ring->rx_stats.bytes;
6798 _packets = ring->rx_stats.packets;
6799 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6800 bytes += _bytes;
6801 packets += _packets;
6802 }
6803
6804 net_stats->rx_bytes = bytes;
6805 net_stats->rx_packets = packets;
6806
6807 bytes = 0;
6808 packets = 0;
6809 for (i = 0; i < adapter->num_tx_queues; i++) {
6810 struct igb_ring *ring = adapter->tx_ring[i];
6811 do {
6812 start = u64_stats_fetch_begin(&ring->tx_syncp);
6813 _bytes = ring->tx_stats.bytes;
6814 _packets = ring->tx_stats.packets;
6815 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6816 bytes += _bytes;
6817 packets += _packets;
6818 }
6819 net_stats->tx_bytes = bytes;
6820 net_stats->tx_packets = packets;
6821 rcu_read_unlock();
6822
6823 /* read stats registers */
6824 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6825 adapter->stats.gprc += rd32(E1000_GPRC);
6826 adapter->stats.gorc += rd32(E1000_GORCL);
6827 rd32(E1000_GORCH); /* clear GORCL */
6828 adapter->stats.bprc += rd32(E1000_BPRC);
6829 adapter->stats.mprc += rd32(E1000_MPRC);
6830 adapter->stats.roc += rd32(E1000_ROC);
6831
6832 adapter->stats.prc64 += rd32(E1000_PRC64);
6833 adapter->stats.prc127 += rd32(E1000_PRC127);
6834 adapter->stats.prc255 += rd32(E1000_PRC255);
6835 adapter->stats.prc511 += rd32(E1000_PRC511);
6836 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6837 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6838 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6839 adapter->stats.sec += rd32(E1000_SEC);
6840
6841 mpc = rd32(E1000_MPC);
6842 adapter->stats.mpc += mpc;
6843 net_stats->rx_fifo_errors += mpc;
6844 adapter->stats.scc += rd32(E1000_SCC);
6845 adapter->stats.ecol += rd32(E1000_ECOL);
6846 adapter->stats.mcc += rd32(E1000_MCC);
6847 adapter->stats.latecol += rd32(E1000_LATECOL);
6848 adapter->stats.dc += rd32(E1000_DC);
6849 adapter->stats.rlec += rd32(E1000_RLEC);
6850 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6851 adapter->stats.xontxc += rd32(E1000_XONTXC);
6852 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6853 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6854 adapter->stats.fcruc += rd32(E1000_FCRUC);
6855 adapter->stats.gptc += rd32(E1000_GPTC);
6856 adapter->stats.gotc += rd32(E1000_GOTCL);
6857 rd32(E1000_GOTCH); /* clear GOTCL */
6858 adapter->stats.rnbc += rd32(E1000_RNBC);
6859 adapter->stats.ruc += rd32(E1000_RUC);
6860 adapter->stats.rfc += rd32(E1000_RFC);
6861 adapter->stats.rjc += rd32(E1000_RJC);
6862 adapter->stats.tor += rd32(E1000_TORH);
6863 adapter->stats.tot += rd32(E1000_TOTH);
6864 adapter->stats.tpr += rd32(E1000_TPR);
6865
6866 adapter->stats.ptc64 += rd32(E1000_PTC64);
6867 adapter->stats.ptc127 += rd32(E1000_PTC127);
6868 adapter->stats.ptc255 += rd32(E1000_PTC255);
6869 adapter->stats.ptc511 += rd32(E1000_PTC511);
6870 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6871 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6872
6873 adapter->stats.mptc += rd32(E1000_MPTC);
6874 adapter->stats.bptc += rd32(E1000_BPTC);
6875
6876 adapter->stats.tpt += rd32(E1000_TPT);
6877 adapter->stats.colc += rd32(E1000_COLC);
6878
6879 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6880 /* read internal phy specific stats */
6881 reg = rd32(E1000_CTRL_EXT);
6882 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6883 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6884
6885 /* this stat has invalid values on i210/i211 */
6886 if ((hw->mac.type != e1000_i210) &&
6887 (hw->mac.type != e1000_i211))
6888 adapter->stats.tncrs += rd32(E1000_TNCRS);
6889 }
6890
6891 adapter->stats.tsctc += rd32(E1000_TSCTC);
6892 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6893
6894 adapter->stats.iac += rd32(E1000_IAC);
6895 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6896 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6897 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6898 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6899 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6900 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6901 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6902 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6903
6904 /* Fill out the OS statistics structure */
6905 net_stats->multicast = adapter->stats.mprc;
6906 net_stats->collisions = adapter->stats.colc;
6907
6908 /* Rx Errors */
6909
6910 /* RLEC on some newer hardware can be incorrect so build
6911 * our own version based on RUC and ROC
6912 */
6913 net_stats->rx_errors = adapter->stats.rxerrc +
6914 adapter->stats.crcerrs + adapter->stats.algnerrc +
6915 adapter->stats.ruc + adapter->stats.roc +
6916 adapter->stats.cexterr;
6917 net_stats->rx_length_errors = adapter->stats.ruc +
6918 adapter->stats.roc;
6919 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6920 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6921 net_stats->rx_missed_errors = adapter->stats.mpc;
6922
6923 /* Tx Errors */
6924 net_stats->tx_errors = adapter->stats.ecol +
6925 adapter->stats.latecol;
6926 net_stats->tx_aborted_errors = adapter->stats.ecol;
6927 net_stats->tx_window_errors = adapter->stats.latecol;
6928 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6929
6930 /* Tx Dropped needs to be maintained elsewhere */
6931
6932 /* Management Stats */
6933 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6934 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6935 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6936
6937 /* OS2BMC Stats */
6938 reg = rd32(E1000_MANC);
6939 if (reg & E1000_MANC_EN_BMC2OS) {
6940 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6941 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6942 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6943 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6944 }
6945 }
6946
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6947 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6948 {
6949 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6950 struct e1000_hw *hw = &adapter->hw;
6951 struct timespec64 ts;
6952 u32 tsauxc;
6953
6954 if (pin < 0 || pin >= IGB_N_SDP)
6955 return;
6956
6957 spin_lock(&adapter->tmreg_lock);
6958
6959 if (hw->mac.type == e1000_82580 ||
6960 hw->mac.type == e1000_i354 ||
6961 hw->mac.type == e1000_i350) {
6962 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6963 u32 systiml, systimh, level_mask, level, rem;
6964 u64 systim, now;
6965
6966 /* read systim registers in sequence */
6967 rd32(E1000_SYSTIMR);
6968 systiml = rd32(E1000_SYSTIML);
6969 systimh = rd32(E1000_SYSTIMH);
6970 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6971 now = timecounter_cyc2time(&adapter->tc, systim);
6972
6973 if (pin < 2) {
6974 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6975 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6976 } else {
6977 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6978 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6979 }
6980
6981 div_u64_rem(now, ns, &rem);
6982 systim = systim + (ns - rem);
6983
6984 /* synchronize pin level with rising/falling edges */
6985 div_u64_rem(now, ns << 1, &rem);
6986 if (rem < ns) {
6987 /* first half of period */
6988 if (level == 0) {
6989 /* output is already low, skip this period */
6990 systim += ns;
6991 pr_notice("igb: periodic output on %s missed falling edge\n",
6992 adapter->sdp_config[pin].name);
6993 }
6994 } else {
6995 /* second half of period */
6996 if (level == 1) {
6997 /* output is already high, skip this period */
6998 systim += ns;
6999 pr_notice("igb: periodic output on %s missed rising edge\n",
7000 adapter->sdp_config[pin].name);
7001 }
7002 }
7003
7004 /* for this chip family tv_sec is the upper part of the binary value,
7005 * so not seconds
7006 */
7007 ts.tv_nsec = (u32)systim;
7008 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
7009 } else {
7010 ts = timespec64_add(adapter->perout[tsintr_tt].start,
7011 adapter->perout[tsintr_tt].period);
7012 }
7013
7014 /* u32 conversion of tv_sec is safe until y2106 */
7015 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7016 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7017 tsauxc = rd32(E1000_TSAUXC);
7018 tsauxc |= TSAUXC_EN_TT0;
7019 wr32(E1000_TSAUXC, tsauxc);
7020 adapter->perout[tsintr_tt].start = ts;
7021
7022 spin_unlock(&adapter->tmreg_lock);
7023 }
7024
igb_extts(struct igb_adapter * adapter,int tsintr_tt)7025 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7026 {
7027 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7028 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7029 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7030 struct e1000_hw *hw = &adapter->hw;
7031 struct ptp_clock_event event;
7032 struct timespec64 ts;
7033 unsigned long flags;
7034
7035 if (pin < 0 || pin >= IGB_N_SDP)
7036 return;
7037
7038 if (hw->mac.type == e1000_82580 ||
7039 hw->mac.type == e1000_i354 ||
7040 hw->mac.type == e1000_i350) {
7041 u64 ns = rd32(auxstmpl);
7042
7043 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7044 spin_lock_irqsave(&adapter->tmreg_lock, flags);
7045 ns = timecounter_cyc2time(&adapter->tc, ns);
7046 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7047 ts = ns_to_timespec64(ns);
7048 } else {
7049 ts.tv_nsec = rd32(auxstmpl);
7050 ts.tv_sec = rd32(auxstmph);
7051 }
7052
7053 event.type = PTP_CLOCK_EXTTS;
7054 event.index = tsintr_tt;
7055 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7056 ptp_clock_event(adapter->ptp_clock, &event);
7057 }
7058
igb_tsync_interrupt(struct igb_adapter * adapter)7059 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7060 {
7061 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7062 TSINTR_TT0 | TSINTR_TT1 |
7063 TSINTR_AUTT0 | TSINTR_AUTT1);
7064 struct e1000_hw *hw = &adapter->hw;
7065 u32 tsicr = rd32(E1000_TSICR);
7066 struct ptp_clock_event event;
7067
7068 if (hw->mac.type == e1000_82580) {
7069 /* 82580 has a hardware bug that requires an explicit
7070 * write to clear the TimeSync interrupt cause.
7071 */
7072 wr32(E1000_TSICR, tsicr & mask);
7073 }
7074
7075 if (tsicr & TSINTR_SYS_WRAP) {
7076 event.type = PTP_CLOCK_PPS;
7077 if (adapter->ptp_caps.pps)
7078 ptp_clock_event(adapter->ptp_clock, &event);
7079 }
7080
7081 if (tsicr & E1000_TSICR_TXTS) {
7082 /* retrieve hardware timestamp */
7083 schedule_work(&adapter->ptp_tx_work);
7084 }
7085
7086 if (tsicr & TSINTR_TT0)
7087 igb_perout(adapter, 0);
7088
7089 if (tsicr & TSINTR_TT1)
7090 igb_perout(adapter, 1);
7091
7092 if (tsicr & TSINTR_AUTT0)
7093 igb_extts(adapter, 0);
7094
7095 if (tsicr & TSINTR_AUTT1)
7096 igb_extts(adapter, 1);
7097 }
7098
igb_msix_other(int irq,void * data)7099 static irqreturn_t igb_msix_other(int irq, void *data)
7100 {
7101 struct igb_adapter *adapter = data;
7102 struct e1000_hw *hw = &adapter->hw;
7103 u32 icr = rd32(E1000_ICR);
7104 /* reading ICR causes bit 31 of EICR to be cleared */
7105
7106 if (icr & E1000_ICR_DRSTA)
7107 schedule_work(&adapter->reset_task);
7108
7109 if (icr & E1000_ICR_DOUTSYNC) {
7110 /* HW is reporting DMA is out of sync */
7111 adapter->stats.doosync++;
7112 /* The DMA Out of Sync is also indication of a spoof event
7113 * in IOV mode. Check the Wrong VM Behavior register to
7114 * see if it is really a spoof event.
7115 */
7116 igb_check_wvbr(adapter);
7117 }
7118
7119 /* Check for a mailbox event */
7120 if (icr & E1000_ICR_VMMB)
7121 igb_msg_task(adapter);
7122
7123 if (icr & E1000_ICR_LSC) {
7124 hw->mac.get_link_status = 1;
7125 /* guard against interrupt when we're going down */
7126 if (!test_bit(__IGB_DOWN, &adapter->state))
7127 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7128 }
7129
7130 if (icr & E1000_ICR_TS)
7131 igb_tsync_interrupt(adapter);
7132
7133 wr32(E1000_EIMS, adapter->eims_other);
7134
7135 return IRQ_HANDLED;
7136 }
7137
igb_write_itr(struct igb_q_vector * q_vector)7138 static void igb_write_itr(struct igb_q_vector *q_vector)
7139 {
7140 struct igb_adapter *adapter = q_vector->adapter;
7141 u32 itr_val = q_vector->itr_val & 0x7FFC;
7142
7143 if (!q_vector->set_itr)
7144 return;
7145
7146 if (!itr_val)
7147 itr_val = 0x4;
7148
7149 if (adapter->hw.mac.type == e1000_82575)
7150 itr_val |= itr_val << 16;
7151 else
7152 itr_val |= E1000_EITR_CNT_IGNR;
7153
7154 writel(itr_val, q_vector->itr_register);
7155 q_vector->set_itr = 0;
7156 }
7157
igb_msix_ring(int irq,void * data)7158 static irqreturn_t igb_msix_ring(int irq, void *data)
7159 {
7160 struct igb_q_vector *q_vector = data;
7161
7162 /* Write the ITR value calculated from the previous interrupt. */
7163 igb_write_itr(q_vector);
7164
7165 napi_schedule(&q_vector->napi);
7166
7167 return IRQ_HANDLED;
7168 }
7169
7170 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7171 static void igb_update_tx_dca(struct igb_adapter *adapter,
7172 struct igb_ring *tx_ring,
7173 int cpu)
7174 {
7175 struct e1000_hw *hw = &adapter->hw;
7176 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7177
7178 if (hw->mac.type != e1000_82575)
7179 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7180
7181 /* We can enable relaxed ordering for reads, but not writes when
7182 * DCA is enabled. This is due to a known issue in some chipsets
7183 * which will cause the DCA tag to be cleared.
7184 */
7185 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7186 E1000_DCA_TXCTRL_DATA_RRO_EN |
7187 E1000_DCA_TXCTRL_DESC_DCA_EN;
7188
7189 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7190 }
7191
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7192 static void igb_update_rx_dca(struct igb_adapter *adapter,
7193 struct igb_ring *rx_ring,
7194 int cpu)
7195 {
7196 struct e1000_hw *hw = &adapter->hw;
7197 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7198
7199 if (hw->mac.type != e1000_82575)
7200 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7201
7202 /* We can enable relaxed ordering for reads, but not writes when
7203 * DCA is enabled. This is due to a known issue in some chipsets
7204 * which will cause the DCA tag to be cleared.
7205 */
7206 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7207 E1000_DCA_RXCTRL_DESC_DCA_EN;
7208
7209 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7210 }
7211
igb_update_dca(struct igb_q_vector * q_vector)7212 static void igb_update_dca(struct igb_q_vector *q_vector)
7213 {
7214 struct igb_adapter *adapter = q_vector->adapter;
7215 int cpu = get_cpu();
7216
7217 if (q_vector->cpu == cpu)
7218 goto out_no_update;
7219
7220 if (q_vector->tx.ring)
7221 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7222
7223 if (q_vector->rx.ring)
7224 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7225
7226 q_vector->cpu = cpu;
7227 out_no_update:
7228 put_cpu();
7229 }
7230
igb_setup_dca(struct igb_adapter * adapter)7231 static void igb_setup_dca(struct igb_adapter *adapter)
7232 {
7233 struct e1000_hw *hw = &adapter->hw;
7234 int i;
7235
7236 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7237 return;
7238
7239 /* Always use CB2 mode, difference is masked in the CB driver. */
7240 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7241
7242 for (i = 0; i < adapter->num_q_vectors; i++) {
7243 adapter->q_vector[i]->cpu = -1;
7244 igb_update_dca(adapter->q_vector[i]);
7245 }
7246 }
7247
__igb_notify_dca(struct device * dev,void * data)7248 static int __igb_notify_dca(struct device *dev, void *data)
7249 {
7250 struct net_device *netdev = dev_get_drvdata(dev);
7251 struct igb_adapter *adapter = netdev_priv(netdev);
7252 struct pci_dev *pdev = adapter->pdev;
7253 struct e1000_hw *hw = &adapter->hw;
7254 unsigned long event = *(unsigned long *)data;
7255
7256 switch (event) {
7257 case DCA_PROVIDER_ADD:
7258 /* if already enabled, don't do it again */
7259 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7260 break;
7261 if (dca_add_requester(dev) == 0) {
7262 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7263 dev_info(&pdev->dev, "DCA enabled\n");
7264 igb_setup_dca(adapter);
7265 break;
7266 }
7267 fallthrough; /* since DCA is disabled. */
7268 case DCA_PROVIDER_REMOVE:
7269 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7270 /* without this a class_device is left
7271 * hanging around in the sysfs model
7272 */
7273 dca_remove_requester(dev);
7274 dev_info(&pdev->dev, "DCA disabled\n");
7275 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7276 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7277 }
7278 break;
7279 }
7280
7281 return 0;
7282 }
7283
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7284 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7285 void *p)
7286 {
7287 int ret_val;
7288
7289 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7290 __igb_notify_dca);
7291
7292 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7293 }
7294 #endif /* CONFIG_IGB_DCA */
7295
7296 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7297 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7298 {
7299 unsigned char mac_addr[ETH_ALEN];
7300
7301 eth_zero_addr(mac_addr);
7302 igb_set_vf_mac(adapter, vf, mac_addr);
7303
7304 /* By default spoof check is enabled for all VFs */
7305 adapter->vf_data[vf].spoofchk_enabled = true;
7306
7307 /* By default VFs are not trusted */
7308 adapter->vf_data[vf].trusted = false;
7309
7310 return 0;
7311 }
7312
7313 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7314 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7315 {
7316 struct e1000_hw *hw = &adapter->hw;
7317 u32 ping;
7318 int i;
7319
7320 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7321 ping = E1000_PF_CONTROL_MSG;
7322 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7323 ping |= E1000_VT_MSGTYPE_CTS;
7324 igb_write_mbx(hw, &ping, 1, i);
7325 }
7326 }
7327
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7328 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7329 {
7330 struct e1000_hw *hw = &adapter->hw;
7331 u32 vmolr = rd32(E1000_VMOLR(vf));
7332 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7333
7334 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7335 IGB_VF_FLAG_MULTI_PROMISC);
7336 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7337
7338 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7339 vmolr |= E1000_VMOLR_MPME;
7340 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7341 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7342 } else {
7343 /* if we have hashes and we are clearing a multicast promisc
7344 * flag we need to write the hashes to the MTA as this step
7345 * was previously skipped
7346 */
7347 if (vf_data->num_vf_mc_hashes > 30) {
7348 vmolr |= E1000_VMOLR_MPME;
7349 } else if (vf_data->num_vf_mc_hashes) {
7350 int j;
7351
7352 vmolr |= E1000_VMOLR_ROMPE;
7353 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7354 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7355 }
7356 }
7357
7358 wr32(E1000_VMOLR(vf), vmolr);
7359
7360 /* there are flags left unprocessed, likely not supported */
7361 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7362 return -EINVAL;
7363
7364 return 0;
7365 }
7366
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7367 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7368 u32 *msgbuf, u32 vf)
7369 {
7370 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7371 u16 *hash_list = (u16 *)&msgbuf[1];
7372 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7373 int i;
7374
7375 /* salt away the number of multicast addresses assigned
7376 * to this VF for later use to restore when the PF multi cast
7377 * list changes
7378 */
7379 vf_data->num_vf_mc_hashes = n;
7380
7381 /* only up to 30 hash values supported */
7382 if (n > 30)
7383 n = 30;
7384
7385 /* store the hashes for later use */
7386 for (i = 0; i < n; i++)
7387 vf_data->vf_mc_hashes[i] = hash_list[i];
7388
7389 /* Flush and reset the mta with the new values */
7390 igb_set_rx_mode(adapter->netdev);
7391
7392 return 0;
7393 }
7394
igb_restore_vf_multicasts(struct igb_adapter * adapter)7395 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7396 {
7397 struct e1000_hw *hw = &adapter->hw;
7398 struct vf_data_storage *vf_data;
7399 int i, j;
7400
7401 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7402 u32 vmolr = rd32(E1000_VMOLR(i));
7403
7404 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7405
7406 vf_data = &adapter->vf_data[i];
7407
7408 if ((vf_data->num_vf_mc_hashes > 30) ||
7409 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7410 vmolr |= E1000_VMOLR_MPME;
7411 } else if (vf_data->num_vf_mc_hashes) {
7412 vmolr |= E1000_VMOLR_ROMPE;
7413 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7414 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7415 }
7416 wr32(E1000_VMOLR(i), vmolr);
7417 }
7418 }
7419
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7420 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7421 {
7422 struct e1000_hw *hw = &adapter->hw;
7423 u32 pool_mask, vlvf_mask, i;
7424
7425 /* create mask for VF and other pools */
7426 pool_mask = E1000_VLVF_POOLSEL_MASK;
7427 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7428
7429 /* drop PF from pool bits */
7430 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7431 adapter->vfs_allocated_count);
7432
7433 /* Find the vlan filter for this id */
7434 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7435 u32 vlvf = rd32(E1000_VLVF(i));
7436 u32 vfta_mask, vid, vfta;
7437
7438 /* remove the vf from the pool */
7439 if (!(vlvf & vlvf_mask))
7440 continue;
7441
7442 /* clear out bit from VLVF */
7443 vlvf ^= vlvf_mask;
7444
7445 /* if other pools are present, just remove ourselves */
7446 if (vlvf & pool_mask)
7447 goto update_vlvfb;
7448
7449 /* if PF is present, leave VFTA */
7450 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7451 goto update_vlvf;
7452
7453 vid = vlvf & E1000_VLVF_VLANID_MASK;
7454 vfta_mask = BIT(vid % 32);
7455
7456 /* clear bit from VFTA */
7457 vfta = adapter->shadow_vfta[vid / 32];
7458 if (vfta & vfta_mask)
7459 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7460 update_vlvf:
7461 /* clear pool selection enable */
7462 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7463 vlvf &= E1000_VLVF_POOLSEL_MASK;
7464 else
7465 vlvf = 0;
7466 update_vlvfb:
7467 /* clear pool bits */
7468 wr32(E1000_VLVF(i), vlvf);
7469 }
7470 }
7471
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7472 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7473 {
7474 u32 vlvf;
7475 int idx;
7476
7477 /* short cut the special case */
7478 if (vlan == 0)
7479 return 0;
7480
7481 /* Search for the VLAN id in the VLVF entries */
7482 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7483 vlvf = rd32(E1000_VLVF(idx));
7484 if ((vlvf & VLAN_VID_MASK) == vlan)
7485 break;
7486 }
7487
7488 return idx;
7489 }
7490
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7491 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7492 {
7493 struct e1000_hw *hw = &adapter->hw;
7494 u32 bits, pf_id;
7495 int idx;
7496
7497 idx = igb_find_vlvf_entry(hw, vid);
7498 if (!idx)
7499 return;
7500
7501 /* See if any other pools are set for this VLAN filter
7502 * entry other than the PF.
7503 */
7504 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7505 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7506 bits &= rd32(E1000_VLVF(idx));
7507
7508 /* Disable the filter so this falls into the default pool. */
7509 if (!bits) {
7510 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7511 wr32(E1000_VLVF(idx), BIT(pf_id));
7512 else
7513 wr32(E1000_VLVF(idx), 0);
7514 }
7515 }
7516
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7517 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7518 bool add, u32 vf)
7519 {
7520 int pf_id = adapter->vfs_allocated_count;
7521 struct e1000_hw *hw = &adapter->hw;
7522 int err;
7523
7524 /* If VLAN overlaps with one the PF is currently monitoring make
7525 * sure that we are able to allocate a VLVF entry. This may be
7526 * redundant but it guarantees PF will maintain visibility to
7527 * the VLAN.
7528 */
7529 if (add && test_bit(vid, adapter->active_vlans)) {
7530 err = igb_vfta_set(hw, vid, pf_id, true, false);
7531 if (err)
7532 return err;
7533 }
7534
7535 err = igb_vfta_set(hw, vid, vf, add, false);
7536
7537 if (add && !err)
7538 return err;
7539
7540 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7541 * we may need to drop the PF pool bit in order to allow us to free
7542 * up the VLVF resources.
7543 */
7544 if (test_bit(vid, adapter->active_vlans) ||
7545 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7546 igb_update_pf_vlvf(adapter, vid);
7547
7548 return err;
7549 }
7550
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7551 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7552 {
7553 struct e1000_hw *hw = &adapter->hw;
7554
7555 if (vid)
7556 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7557 else
7558 wr32(E1000_VMVIR(vf), 0);
7559 }
7560
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7561 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7562 u16 vlan, u8 qos)
7563 {
7564 int err;
7565
7566 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7567 if (err)
7568 return err;
7569
7570 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7571 igb_set_vmolr(adapter, vf, !vlan);
7572
7573 /* revoke access to previous VLAN */
7574 if (vlan != adapter->vf_data[vf].pf_vlan)
7575 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7576 false, vf);
7577
7578 adapter->vf_data[vf].pf_vlan = vlan;
7579 adapter->vf_data[vf].pf_qos = qos;
7580 igb_set_vf_vlan_strip(adapter, vf, true);
7581 dev_info(&adapter->pdev->dev,
7582 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7583 if (test_bit(__IGB_DOWN, &adapter->state)) {
7584 dev_warn(&adapter->pdev->dev,
7585 "The VF VLAN has been set, but the PF device is not up.\n");
7586 dev_warn(&adapter->pdev->dev,
7587 "Bring the PF device up before attempting to use the VF device.\n");
7588 }
7589
7590 return err;
7591 }
7592
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7593 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7594 {
7595 /* Restore tagless access via VLAN 0 */
7596 igb_set_vf_vlan(adapter, 0, true, vf);
7597
7598 igb_set_vmvir(adapter, 0, vf);
7599 igb_set_vmolr(adapter, vf, true);
7600
7601 /* Remove any PF assigned VLAN */
7602 if (adapter->vf_data[vf].pf_vlan)
7603 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7604 false, vf);
7605
7606 adapter->vf_data[vf].pf_vlan = 0;
7607 adapter->vf_data[vf].pf_qos = 0;
7608 igb_set_vf_vlan_strip(adapter, vf, false);
7609
7610 return 0;
7611 }
7612
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7613 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7614 u16 vlan, u8 qos, __be16 vlan_proto)
7615 {
7616 struct igb_adapter *adapter = netdev_priv(netdev);
7617
7618 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7619 return -EINVAL;
7620
7621 if (vlan_proto != htons(ETH_P_8021Q))
7622 return -EPROTONOSUPPORT;
7623
7624 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7625 igb_disable_port_vlan(adapter, vf);
7626 }
7627
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7628 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7629 {
7630 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7631 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7632 int ret;
7633
7634 if (adapter->vf_data[vf].pf_vlan)
7635 return -1;
7636
7637 /* VLAN 0 is a special case, don't allow it to be removed */
7638 if (!vid && !add)
7639 return 0;
7640
7641 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7642 if (!ret)
7643 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7644 return ret;
7645 }
7646
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7647 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7648 {
7649 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7650
7651 /* clear flags - except flag that indicates PF has set the MAC */
7652 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7653 vf_data->last_nack = jiffies;
7654
7655 /* reset vlans for device */
7656 igb_clear_vf_vfta(adapter, vf);
7657 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7658 igb_set_vmvir(adapter, vf_data->pf_vlan |
7659 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7660 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7661 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7662
7663 /* reset multicast table array for vf */
7664 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7665
7666 /* Flush and reset the mta with the new values */
7667 igb_set_rx_mode(adapter->netdev);
7668 }
7669
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7670 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7671 {
7672 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7673
7674 /* clear mac address as we were hotplug removed/added */
7675 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7676 eth_zero_addr(vf_mac);
7677
7678 /* process remaining reset events */
7679 igb_vf_reset(adapter, vf);
7680 }
7681
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7682 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7683 {
7684 struct e1000_hw *hw = &adapter->hw;
7685 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7686 u32 reg, msgbuf[3] = {};
7687 u8 *addr = (u8 *)(&msgbuf[1]);
7688
7689 /* process all the same items cleared in a function level reset */
7690 igb_vf_reset(adapter, vf);
7691
7692 /* set vf mac address */
7693 igb_set_vf_mac(adapter, vf, vf_mac);
7694
7695 /* enable transmit and receive for vf */
7696 reg = rd32(E1000_VFTE);
7697 wr32(E1000_VFTE, reg | BIT(vf));
7698 reg = rd32(E1000_VFRE);
7699 wr32(E1000_VFRE, reg | BIT(vf));
7700
7701 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7702
7703 /* reply to reset with ack and vf mac address */
7704 if (!is_zero_ether_addr(vf_mac)) {
7705 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7706 memcpy(addr, vf_mac, ETH_ALEN);
7707 } else {
7708 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7709 }
7710 igb_write_mbx(hw, msgbuf, 3, vf);
7711 }
7712
igb_flush_mac_table(struct igb_adapter * adapter)7713 static void igb_flush_mac_table(struct igb_adapter *adapter)
7714 {
7715 struct e1000_hw *hw = &adapter->hw;
7716 int i;
7717
7718 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7719 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7720 eth_zero_addr(adapter->mac_table[i].addr);
7721 adapter->mac_table[i].queue = 0;
7722 igb_rar_set_index(adapter, i);
7723 }
7724 }
7725
igb_available_rars(struct igb_adapter * adapter,u8 queue)7726 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7727 {
7728 struct e1000_hw *hw = &adapter->hw;
7729 /* do not count rar entries reserved for VFs MAC addresses */
7730 int rar_entries = hw->mac.rar_entry_count -
7731 adapter->vfs_allocated_count;
7732 int i, count = 0;
7733
7734 for (i = 0; i < rar_entries; i++) {
7735 /* do not count default entries */
7736 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7737 continue;
7738
7739 /* do not count "in use" entries for different queues */
7740 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7741 (adapter->mac_table[i].queue != queue))
7742 continue;
7743
7744 count++;
7745 }
7746
7747 return count;
7748 }
7749
7750 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7751 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7752 {
7753 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7754
7755 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7756 mac_table->queue = adapter->vfs_allocated_count;
7757 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7758
7759 igb_rar_set_index(adapter, 0);
7760 }
7761
7762 /* If the filter to be added and an already existing filter express
7763 * the same address and address type, it should be possible to only
7764 * override the other configurations, for example the queue to steer
7765 * traffic.
7766 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7767 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7768 const u8 *addr, const u8 flags)
7769 {
7770 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7771 return true;
7772
7773 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7774 (flags & IGB_MAC_STATE_SRC_ADDR))
7775 return false;
7776
7777 if (!ether_addr_equal(addr, entry->addr))
7778 return false;
7779
7780 return true;
7781 }
7782
7783 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7784 * 'flags' is used to indicate what kind of match is made, match is by
7785 * default for the destination address, if matching by source address
7786 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7787 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7788 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7789 const u8 *addr, const u8 queue,
7790 const u8 flags)
7791 {
7792 struct e1000_hw *hw = &adapter->hw;
7793 int rar_entries = hw->mac.rar_entry_count -
7794 adapter->vfs_allocated_count;
7795 int i;
7796
7797 if (is_zero_ether_addr(addr))
7798 return -EINVAL;
7799
7800 /* Search for the first empty entry in the MAC table.
7801 * Do not touch entries at the end of the table reserved for the VF MAC
7802 * addresses.
7803 */
7804 for (i = 0; i < rar_entries; i++) {
7805 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7806 addr, flags))
7807 continue;
7808
7809 ether_addr_copy(adapter->mac_table[i].addr, addr);
7810 adapter->mac_table[i].queue = queue;
7811 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7812
7813 igb_rar_set_index(adapter, i);
7814 return i;
7815 }
7816
7817 return -ENOSPC;
7818 }
7819
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7820 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7821 const u8 queue)
7822 {
7823 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7824 }
7825
7826 /* Remove a MAC filter for 'addr' directing matching traffic to
7827 * 'queue', 'flags' is used to indicate what kind of match need to be
7828 * removed, match is by default for the destination address, if
7829 * matching by source address is to be removed the flag
7830 * IGB_MAC_STATE_SRC_ADDR can be used.
7831 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7832 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7833 const u8 *addr, const u8 queue,
7834 const u8 flags)
7835 {
7836 struct e1000_hw *hw = &adapter->hw;
7837 int rar_entries = hw->mac.rar_entry_count -
7838 adapter->vfs_allocated_count;
7839 int i;
7840
7841 if (is_zero_ether_addr(addr))
7842 return -EINVAL;
7843
7844 /* Search for matching entry in the MAC table based on given address
7845 * and queue. Do not touch entries at the end of the table reserved
7846 * for the VF MAC addresses.
7847 */
7848 for (i = 0; i < rar_entries; i++) {
7849 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7850 continue;
7851 if ((adapter->mac_table[i].state & flags) != flags)
7852 continue;
7853 if (adapter->mac_table[i].queue != queue)
7854 continue;
7855 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7856 continue;
7857
7858 /* When a filter for the default address is "deleted",
7859 * we return it to its initial configuration
7860 */
7861 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7862 adapter->mac_table[i].state =
7863 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7864 adapter->mac_table[i].queue =
7865 adapter->vfs_allocated_count;
7866 } else {
7867 adapter->mac_table[i].state = 0;
7868 adapter->mac_table[i].queue = 0;
7869 eth_zero_addr(adapter->mac_table[i].addr);
7870 }
7871
7872 igb_rar_set_index(adapter, i);
7873 return 0;
7874 }
7875
7876 return -ENOENT;
7877 }
7878
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7879 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7880 const u8 queue)
7881 {
7882 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7883 }
7884
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7885 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7886 const u8 *addr, u8 queue, u8 flags)
7887 {
7888 struct e1000_hw *hw = &adapter->hw;
7889
7890 /* In theory, this should be supported on 82575 as well, but
7891 * that part wasn't easily accessible during development.
7892 */
7893 if (hw->mac.type != e1000_i210)
7894 return -EOPNOTSUPP;
7895
7896 return igb_add_mac_filter_flags(adapter, addr, queue,
7897 IGB_MAC_STATE_QUEUE_STEERING | flags);
7898 }
7899
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7900 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7901 const u8 *addr, u8 queue, u8 flags)
7902 {
7903 return igb_del_mac_filter_flags(adapter, addr, queue,
7904 IGB_MAC_STATE_QUEUE_STEERING | flags);
7905 }
7906
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7907 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7908 {
7909 struct igb_adapter *adapter = netdev_priv(netdev);
7910 int ret;
7911
7912 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7913
7914 return min_t(int, ret, 0);
7915 }
7916
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7917 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7918 {
7919 struct igb_adapter *adapter = netdev_priv(netdev);
7920
7921 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7922
7923 return 0;
7924 }
7925
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7926 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7927 const u32 info, const u8 *addr)
7928 {
7929 struct pci_dev *pdev = adapter->pdev;
7930 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7931 struct vf_mac_filter *entry;
7932 bool found = false;
7933 int ret = 0;
7934
7935 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7936 !vf_data->trusted) {
7937 dev_warn(&pdev->dev,
7938 "VF %d requested MAC filter but is administratively denied\n",
7939 vf);
7940 return -EINVAL;
7941 }
7942 if (!is_valid_ether_addr(addr)) {
7943 dev_warn(&pdev->dev,
7944 "VF %d attempted to set invalid MAC filter\n",
7945 vf);
7946 return -EINVAL;
7947 }
7948
7949 switch (info) {
7950 case E1000_VF_MAC_FILTER_CLR:
7951 /* remove all unicast MAC filters related to the current VF */
7952 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7953 if (entry->vf == vf) {
7954 entry->vf = -1;
7955 entry->free = true;
7956 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7957 }
7958 }
7959 break;
7960 case E1000_VF_MAC_FILTER_ADD:
7961 /* try to find empty slot in the list */
7962 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7963 if (entry->free) {
7964 found = true;
7965 break;
7966 }
7967 }
7968
7969 if (found) {
7970 entry->free = false;
7971 entry->vf = vf;
7972 ether_addr_copy(entry->vf_mac, addr);
7973
7974 ret = igb_add_mac_filter(adapter, addr, vf);
7975 ret = min_t(int, ret, 0);
7976 } else {
7977 ret = -ENOSPC;
7978 }
7979
7980 if (ret == -ENOSPC)
7981 dev_warn(&pdev->dev,
7982 "VF %d has requested MAC filter but there is no space for it\n",
7983 vf);
7984 break;
7985 default:
7986 ret = -EINVAL;
7987 break;
7988 }
7989
7990 return ret;
7991 }
7992
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7993 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7994 {
7995 struct pci_dev *pdev = adapter->pdev;
7996 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7997 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7998
7999 /* The VF MAC Address is stored in a packed array of bytes
8000 * starting at the second 32 bit word of the msg array
8001 */
8002 unsigned char *addr = (unsigned char *)&msg[1];
8003 int ret = 0;
8004
8005 if (!info) {
8006 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8007 !vf_data->trusted) {
8008 dev_warn(&pdev->dev,
8009 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8010 vf);
8011 return -EINVAL;
8012 }
8013
8014 if (!is_valid_ether_addr(addr)) {
8015 dev_warn(&pdev->dev,
8016 "VF %d attempted to set invalid MAC\n",
8017 vf);
8018 return -EINVAL;
8019 }
8020
8021 ret = igb_set_vf_mac(adapter, vf, addr);
8022 } else {
8023 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8024 }
8025
8026 return ret;
8027 }
8028
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)8029 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8030 {
8031 struct e1000_hw *hw = &adapter->hw;
8032 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8033 u32 msg = E1000_VT_MSGTYPE_NACK;
8034
8035 /* if device isn't clear to send it shouldn't be reading either */
8036 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8037 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8038 igb_write_mbx(hw, &msg, 1, vf);
8039 vf_data->last_nack = jiffies;
8040 }
8041 }
8042
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)8043 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8044 {
8045 struct pci_dev *pdev = adapter->pdev;
8046 u32 msgbuf[E1000_VFMAILBOX_SIZE];
8047 struct e1000_hw *hw = &adapter->hw;
8048 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8049 s32 retval;
8050
8051 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8052
8053 if (retval) {
8054 /* if receive failed revoke VF CTS stats and restart init */
8055 dev_err(&pdev->dev, "Error receiving message from VF\n");
8056 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8057 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8058 goto unlock;
8059 goto out;
8060 }
8061
8062 /* this is a message we already processed, do nothing */
8063 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8064 goto unlock;
8065
8066 /* until the vf completes a reset it should not be
8067 * allowed to start any configuration.
8068 */
8069 if (msgbuf[0] == E1000_VF_RESET) {
8070 /* unlocks mailbox */
8071 igb_vf_reset_msg(adapter, vf);
8072 return;
8073 }
8074
8075 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8076 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8077 goto unlock;
8078 retval = -1;
8079 goto out;
8080 }
8081
8082 switch ((msgbuf[0] & 0xFFFF)) {
8083 case E1000_VF_SET_MAC_ADDR:
8084 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8085 break;
8086 case E1000_VF_SET_PROMISC:
8087 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8088 break;
8089 case E1000_VF_SET_MULTICAST:
8090 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8091 break;
8092 case E1000_VF_SET_LPE:
8093 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8094 break;
8095 case E1000_VF_SET_VLAN:
8096 retval = -1;
8097 if (vf_data->pf_vlan)
8098 dev_warn(&pdev->dev,
8099 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8100 vf);
8101 else
8102 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8103 break;
8104 default:
8105 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8106 retval = -1;
8107 break;
8108 }
8109
8110 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8111 out:
8112 /* notify the VF of the results of what it sent us */
8113 if (retval)
8114 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8115 else
8116 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8117
8118 /* unlocks mailbox */
8119 igb_write_mbx(hw, msgbuf, 1, vf);
8120 return;
8121
8122 unlock:
8123 igb_unlock_mbx(hw, vf);
8124 }
8125
igb_msg_task(struct igb_adapter * adapter)8126 static void igb_msg_task(struct igb_adapter *adapter)
8127 {
8128 struct e1000_hw *hw = &adapter->hw;
8129 unsigned long flags;
8130 u32 vf;
8131
8132 spin_lock_irqsave(&adapter->vfs_lock, flags);
8133 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8134 /* process any reset requests */
8135 if (!igb_check_for_rst(hw, vf))
8136 igb_vf_reset_event(adapter, vf);
8137
8138 /* process any messages pending */
8139 if (!igb_check_for_msg(hw, vf))
8140 igb_rcv_msg_from_vf(adapter, vf);
8141
8142 /* process any acks */
8143 if (!igb_check_for_ack(hw, vf))
8144 igb_rcv_ack_from_vf(adapter, vf);
8145 }
8146 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8147 }
8148
8149 /**
8150 * igb_set_uta - Set unicast filter table address
8151 * @adapter: board private structure
8152 * @set: boolean indicating if we are setting or clearing bits
8153 *
8154 * The unicast table address is a register array of 32-bit registers.
8155 * The table is meant to be used in a way similar to how the MTA is used
8156 * however due to certain limitations in the hardware it is necessary to
8157 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8158 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8159 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8160 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8161 {
8162 struct e1000_hw *hw = &adapter->hw;
8163 u32 uta = set ? ~0 : 0;
8164 int i;
8165
8166 /* we only need to do this if VMDq is enabled */
8167 if (!adapter->vfs_allocated_count)
8168 return;
8169
8170 for (i = hw->mac.uta_reg_count; i--;)
8171 array_wr32(E1000_UTA, i, uta);
8172 }
8173
8174 /**
8175 * igb_intr_msi - Interrupt Handler
8176 * @irq: interrupt number
8177 * @data: pointer to a network interface device structure
8178 **/
igb_intr_msi(int irq,void * data)8179 static irqreturn_t igb_intr_msi(int irq, void *data)
8180 {
8181 struct igb_adapter *adapter = data;
8182 struct igb_q_vector *q_vector = adapter->q_vector[0];
8183 struct e1000_hw *hw = &adapter->hw;
8184 /* read ICR disables interrupts using IAM */
8185 u32 icr = rd32(E1000_ICR);
8186
8187 igb_write_itr(q_vector);
8188
8189 if (icr & E1000_ICR_DRSTA)
8190 schedule_work(&adapter->reset_task);
8191
8192 if (icr & E1000_ICR_DOUTSYNC) {
8193 /* HW is reporting DMA is out of sync */
8194 adapter->stats.doosync++;
8195 }
8196
8197 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8198 hw->mac.get_link_status = 1;
8199 if (!test_bit(__IGB_DOWN, &adapter->state))
8200 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8201 }
8202
8203 if (icr & E1000_ICR_TS)
8204 igb_tsync_interrupt(adapter);
8205
8206 napi_schedule(&q_vector->napi);
8207
8208 return IRQ_HANDLED;
8209 }
8210
8211 /**
8212 * igb_intr - Legacy Interrupt Handler
8213 * @irq: interrupt number
8214 * @data: pointer to a network interface device structure
8215 **/
igb_intr(int irq,void * data)8216 static irqreturn_t igb_intr(int irq, void *data)
8217 {
8218 struct igb_adapter *adapter = data;
8219 struct igb_q_vector *q_vector = adapter->q_vector[0];
8220 struct e1000_hw *hw = &adapter->hw;
8221 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8222 * need for the IMC write
8223 */
8224 u32 icr = rd32(E1000_ICR);
8225
8226 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8227 * not set, then the adapter didn't send an interrupt
8228 */
8229 if (!(icr & E1000_ICR_INT_ASSERTED))
8230 return IRQ_NONE;
8231
8232 igb_write_itr(q_vector);
8233
8234 if (icr & E1000_ICR_DRSTA)
8235 schedule_work(&adapter->reset_task);
8236
8237 if (icr & E1000_ICR_DOUTSYNC) {
8238 /* HW is reporting DMA is out of sync */
8239 adapter->stats.doosync++;
8240 }
8241
8242 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8243 hw->mac.get_link_status = 1;
8244 /* guard against interrupt when we're going down */
8245 if (!test_bit(__IGB_DOWN, &adapter->state))
8246 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8247 }
8248
8249 if (icr & E1000_ICR_TS)
8250 igb_tsync_interrupt(adapter);
8251
8252 napi_schedule(&q_vector->napi);
8253
8254 return IRQ_HANDLED;
8255 }
8256
igb_ring_irq_enable(struct igb_q_vector * q_vector)8257 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8258 {
8259 struct igb_adapter *adapter = q_vector->adapter;
8260 struct e1000_hw *hw = &adapter->hw;
8261
8262 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8263 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8264 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8265 igb_set_itr(q_vector);
8266 else
8267 igb_update_ring_itr(q_vector);
8268 }
8269
8270 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8271 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8272 wr32(E1000_EIMS, q_vector->eims_value);
8273 else
8274 igb_irq_enable(adapter);
8275 }
8276 }
8277
8278 /**
8279 * igb_poll - NAPI Rx polling callback
8280 * @napi: napi polling structure
8281 * @budget: count of how many packets we should handle
8282 **/
igb_poll(struct napi_struct * napi,int budget)8283 static int igb_poll(struct napi_struct *napi, int budget)
8284 {
8285 struct igb_q_vector *q_vector = container_of(napi,
8286 struct igb_q_vector,
8287 napi);
8288 struct xsk_buff_pool *xsk_pool;
8289 bool clean_complete = true;
8290 int work_done = 0;
8291
8292 #ifdef CONFIG_IGB_DCA
8293 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8294 igb_update_dca(q_vector);
8295 #endif
8296 if (q_vector->tx.ring)
8297 clean_complete = igb_clean_tx_irq(q_vector, budget);
8298
8299 if (q_vector->rx.ring) {
8300 int cleaned;
8301
8302 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8303 cleaned = xsk_pool ?
8304 igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8305 igb_clean_rx_irq(q_vector, budget);
8306
8307 work_done += cleaned;
8308 if (cleaned >= budget)
8309 clean_complete = false;
8310 }
8311
8312 /* If all work not completed, return budget and keep polling */
8313 if (!clean_complete)
8314 return budget;
8315
8316 /* Exit the polling mode, but don't re-enable interrupts if stack might
8317 * poll us due to busy-polling
8318 */
8319 if (likely(napi_complete_done(napi, work_done)))
8320 igb_ring_irq_enable(q_vector);
8321
8322 return work_done;
8323 }
8324
8325 /**
8326 * igb_clean_tx_irq - Reclaim resources after transmit completes
8327 * @q_vector: pointer to q_vector containing needed info
8328 * @napi_budget: Used to determine if we are in netpoll
8329 *
8330 * returns true if ring is completely cleaned
8331 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8332 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8333 {
8334 unsigned int total_bytes = 0, total_packets = 0;
8335 struct igb_adapter *adapter = q_vector->adapter;
8336 unsigned int budget = q_vector->tx.work_limit;
8337 struct igb_ring *tx_ring = q_vector->tx.ring;
8338 unsigned int i = tx_ring->next_to_clean;
8339 union e1000_adv_tx_desc *tx_desc;
8340 struct igb_tx_buffer *tx_buffer;
8341 struct xsk_buff_pool *xsk_pool;
8342 int cpu = smp_processor_id();
8343 bool xsk_xmit_done = true;
8344 struct netdev_queue *nq;
8345 u32 xsk_frames = 0;
8346
8347 if (test_bit(__IGB_DOWN, &adapter->state))
8348 return true;
8349
8350 tx_buffer = &tx_ring->tx_buffer_info[i];
8351 tx_desc = IGB_TX_DESC(tx_ring, i);
8352 i -= tx_ring->count;
8353
8354 do {
8355 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8356
8357 /* if next_to_watch is not set then there is no work pending */
8358 if (!eop_desc)
8359 break;
8360
8361 /* prevent any other reads prior to eop_desc */
8362 smp_rmb();
8363
8364 /* if DD is not set pending work has not been completed */
8365 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8366 break;
8367
8368 /* clear next_to_watch to prevent false hangs */
8369 tx_buffer->next_to_watch = NULL;
8370
8371 /* update the statistics for this packet */
8372 total_bytes += tx_buffer->bytecount;
8373 total_packets += tx_buffer->gso_segs;
8374
8375 /* free the skb */
8376 if (tx_buffer->type == IGB_TYPE_SKB) {
8377 napi_consume_skb(tx_buffer->skb, napi_budget);
8378 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8379 xdp_return_frame(tx_buffer->xdpf);
8380 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8381 xsk_frames++;
8382 goto skip_for_xsk;
8383 }
8384
8385 /* unmap skb header data */
8386 dma_unmap_single(tx_ring->dev,
8387 dma_unmap_addr(tx_buffer, dma),
8388 dma_unmap_len(tx_buffer, len),
8389 DMA_TO_DEVICE);
8390
8391 /* clear tx_buffer data */
8392 dma_unmap_len_set(tx_buffer, len, 0);
8393
8394 /* clear last DMA location and unmap remaining buffers */
8395 while (tx_desc != eop_desc) {
8396 tx_buffer++;
8397 tx_desc++;
8398 i++;
8399 if (unlikely(!i)) {
8400 i -= tx_ring->count;
8401 tx_buffer = tx_ring->tx_buffer_info;
8402 tx_desc = IGB_TX_DESC(tx_ring, 0);
8403 }
8404
8405 /* unmap any remaining paged data */
8406 if (dma_unmap_len(tx_buffer, len)) {
8407 dma_unmap_page(tx_ring->dev,
8408 dma_unmap_addr(tx_buffer, dma),
8409 dma_unmap_len(tx_buffer, len),
8410 DMA_TO_DEVICE);
8411 dma_unmap_len_set(tx_buffer, len, 0);
8412 }
8413 }
8414
8415 skip_for_xsk:
8416 /* move us one more past the eop_desc for start of next pkt */
8417 tx_buffer++;
8418 tx_desc++;
8419 i++;
8420 if (unlikely(!i)) {
8421 i -= tx_ring->count;
8422 tx_buffer = tx_ring->tx_buffer_info;
8423 tx_desc = IGB_TX_DESC(tx_ring, 0);
8424 }
8425
8426 /* issue prefetch for next Tx descriptor */
8427 prefetch(tx_desc);
8428
8429 /* update budget accounting */
8430 budget--;
8431 } while (likely(budget));
8432
8433 netdev_tx_completed_queue(txring_txq(tx_ring),
8434 total_packets, total_bytes);
8435 i += tx_ring->count;
8436 tx_ring->next_to_clean = i;
8437 u64_stats_update_begin(&tx_ring->tx_syncp);
8438 tx_ring->tx_stats.bytes += total_bytes;
8439 tx_ring->tx_stats.packets += total_packets;
8440 u64_stats_update_end(&tx_ring->tx_syncp);
8441 q_vector->tx.total_bytes += total_bytes;
8442 q_vector->tx.total_packets += total_packets;
8443
8444 xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8445 if (xsk_pool) {
8446 if (xsk_frames)
8447 xsk_tx_completed(xsk_pool, xsk_frames);
8448 if (xsk_uses_need_wakeup(xsk_pool))
8449 xsk_set_tx_need_wakeup(xsk_pool);
8450
8451 nq = txring_txq(tx_ring);
8452 __netif_tx_lock(nq, cpu);
8453 /* Avoid transmit queue timeout since we share it with the slow path */
8454 txq_trans_cond_update(nq);
8455 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8456 __netif_tx_unlock(nq);
8457 }
8458
8459 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8460 struct e1000_hw *hw = &adapter->hw;
8461
8462 /* Detect a transmit hang in hardware, this serializes the
8463 * check with the clearing of time_stamp and movement of i
8464 */
8465 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8466 if (tx_buffer->next_to_watch &&
8467 time_after(jiffies, tx_buffer->time_stamp +
8468 (adapter->tx_timeout_factor * HZ)) &&
8469 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8470
8471 /* detected Tx unit hang */
8472 dev_err(tx_ring->dev,
8473 "Detected Tx Unit Hang\n"
8474 " Tx Queue <%d>\n"
8475 " TDH <%x>\n"
8476 " TDT <%x>\n"
8477 " next_to_use <%x>\n"
8478 " next_to_clean <%x>\n"
8479 "buffer_info[next_to_clean]\n"
8480 " time_stamp <%lx>\n"
8481 " next_to_watch <%p>\n"
8482 " jiffies <%lx>\n"
8483 " desc.status <%x>\n",
8484 tx_ring->queue_index,
8485 rd32(E1000_TDH(tx_ring->reg_idx)),
8486 readl(tx_ring->tail),
8487 tx_ring->next_to_use,
8488 tx_ring->next_to_clean,
8489 tx_buffer->time_stamp,
8490 tx_buffer->next_to_watch,
8491 jiffies,
8492 tx_buffer->next_to_watch->wb.status);
8493 netif_stop_subqueue(tx_ring->netdev,
8494 tx_ring->queue_index);
8495
8496 /* we are about to reset, no point in enabling stuff */
8497 return true;
8498 }
8499 }
8500
8501 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8502 if (unlikely(total_packets &&
8503 netif_carrier_ok(tx_ring->netdev) &&
8504 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8505 /* Make sure that anybody stopping the queue after this
8506 * sees the new next_to_clean.
8507 */
8508 smp_mb();
8509 if (__netif_subqueue_stopped(tx_ring->netdev,
8510 tx_ring->queue_index) &&
8511 !(test_bit(__IGB_DOWN, &adapter->state))) {
8512 netif_wake_subqueue(tx_ring->netdev,
8513 tx_ring->queue_index);
8514
8515 u64_stats_update_begin(&tx_ring->tx_syncp);
8516 tx_ring->tx_stats.restart_queue++;
8517 u64_stats_update_end(&tx_ring->tx_syncp);
8518 }
8519 }
8520
8521 return !!budget && xsk_xmit_done;
8522 }
8523
8524 /**
8525 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8526 * @rx_ring: rx descriptor ring to store buffers on
8527 * @old_buff: donor buffer to have page reused
8528 *
8529 * Synchronizes page for reuse by the adapter
8530 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8531 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8532 struct igb_rx_buffer *old_buff)
8533 {
8534 struct igb_rx_buffer *new_buff;
8535 u16 nta = rx_ring->next_to_alloc;
8536
8537 new_buff = &rx_ring->rx_buffer_info[nta];
8538
8539 /* update, and store next to alloc */
8540 nta++;
8541 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8542
8543 /* Transfer page from old buffer to new buffer.
8544 * Move each member individually to avoid possible store
8545 * forwarding stalls.
8546 */
8547 new_buff->dma = old_buff->dma;
8548 new_buff->page = old_buff->page;
8549 new_buff->page_offset = old_buff->page_offset;
8550 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8551 }
8552
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8553 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8554 int rx_buf_pgcnt)
8555 {
8556 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8557 struct page *page = rx_buffer->page;
8558
8559 /* avoid re-using remote and pfmemalloc pages */
8560 if (!dev_page_is_reusable(page))
8561 return false;
8562
8563 #if (PAGE_SIZE < 8192)
8564 /* if we are only owner of page we can reuse it */
8565 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8566 return false;
8567 #else
8568 #define IGB_LAST_OFFSET \
8569 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8570
8571 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8572 return false;
8573 #endif
8574
8575 /* If we have drained the page fragment pool we need to update
8576 * the pagecnt_bias and page count so that we fully restock the
8577 * number of references the driver holds.
8578 */
8579 if (unlikely(pagecnt_bias == 1)) {
8580 page_ref_add(page, USHRT_MAX - 1);
8581 rx_buffer->pagecnt_bias = USHRT_MAX;
8582 }
8583
8584 return true;
8585 }
8586
8587 /**
8588 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8589 * @rx_ring: rx descriptor ring to transact packets on
8590 * @rx_buffer: buffer containing page to add
8591 * @skb: sk_buff to place the data into
8592 * @size: size of buffer to be added
8593 *
8594 * This function will add the data contained in rx_buffer->page to the skb.
8595 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8596 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8597 struct igb_rx_buffer *rx_buffer,
8598 struct sk_buff *skb,
8599 unsigned int size)
8600 {
8601 #if (PAGE_SIZE < 8192)
8602 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8603 #else
8604 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8605 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8606 SKB_DATA_ALIGN(size);
8607 #endif
8608 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8609 rx_buffer->page_offset, size, truesize);
8610 #if (PAGE_SIZE < 8192)
8611 rx_buffer->page_offset ^= truesize;
8612 #else
8613 rx_buffer->page_offset += truesize;
8614 #endif
8615 }
8616
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8617 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8618 struct igb_rx_buffer *rx_buffer,
8619 struct xdp_buff *xdp,
8620 ktime_t timestamp)
8621 {
8622 #if (PAGE_SIZE < 8192)
8623 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8624 #else
8625 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8626 xdp->data_hard_start);
8627 #endif
8628 unsigned int size = xdp->data_end - xdp->data;
8629 unsigned int headlen;
8630 struct sk_buff *skb;
8631
8632 /* prefetch first cache line of first page */
8633 net_prefetch(xdp->data);
8634
8635 /* allocate a skb to store the frags */
8636 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8637 if (unlikely(!skb))
8638 return NULL;
8639
8640 if (timestamp)
8641 skb_hwtstamps(skb)->hwtstamp = timestamp;
8642
8643 /* Determine available headroom for copy */
8644 headlen = size;
8645 if (headlen > IGB_RX_HDR_LEN)
8646 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8647
8648 /* align pull length to size of long to optimize memcpy performance */
8649 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8650
8651 /* update all of the pointers */
8652 size -= headlen;
8653 if (size) {
8654 skb_add_rx_frag(skb, 0, rx_buffer->page,
8655 (xdp->data + headlen) - page_address(rx_buffer->page),
8656 size, truesize);
8657 #if (PAGE_SIZE < 8192)
8658 rx_buffer->page_offset ^= truesize;
8659 #else
8660 rx_buffer->page_offset += truesize;
8661 #endif
8662 } else {
8663 rx_buffer->pagecnt_bias++;
8664 }
8665
8666 return skb;
8667 }
8668
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8669 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8670 struct igb_rx_buffer *rx_buffer,
8671 struct xdp_buff *xdp,
8672 ktime_t timestamp)
8673 {
8674 #if (PAGE_SIZE < 8192)
8675 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8676 #else
8677 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8678 SKB_DATA_ALIGN(xdp->data_end -
8679 xdp->data_hard_start);
8680 #endif
8681 unsigned int metasize = xdp->data - xdp->data_meta;
8682 struct sk_buff *skb;
8683
8684 /* prefetch first cache line of first page */
8685 net_prefetch(xdp->data_meta);
8686
8687 /* build an skb around the page buffer */
8688 skb = napi_build_skb(xdp->data_hard_start, truesize);
8689 if (unlikely(!skb))
8690 return NULL;
8691
8692 /* update pointers within the skb to store the data */
8693 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8694 __skb_put(skb, xdp->data_end - xdp->data);
8695
8696 if (metasize)
8697 skb_metadata_set(skb, metasize);
8698
8699 if (timestamp)
8700 skb_hwtstamps(skb)->hwtstamp = timestamp;
8701
8702 /* update buffer offset */
8703 #if (PAGE_SIZE < 8192)
8704 rx_buffer->page_offset ^= truesize;
8705 #else
8706 rx_buffer->page_offset += truesize;
8707 #endif
8708
8709 return skb;
8710 }
8711
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8712 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8713 struct xdp_buff *xdp)
8714 {
8715 int err, result = IGB_XDP_PASS;
8716 struct bpf_prog *xdp_prog;
8717 u32 act;
8718
8719 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8720
8721 if (!xdp_prog)
8722 goto xdp_out;
8723
8724 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8725
8726 act = bpf_prog_run_xdp(xdp_prog, xdp);
8727 switch (act) {
8728 case XDP_PASS:
8729 break;
8730 case XDP_TX:
8731 result = igb_xdp_xmit_back(adapter, xdp);
8732 if (result == IGB_XDP_CONSUMED)
8733 goto out_failure;
8734 break;
8735 case XDP_REDIRECT:
8736 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8737 if (err)
8738 goto out_failure;
8739 result = IGB_XDP_REDIR;
8740 break;
8741 default:
8742 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8743 fallthrough;
8744 case XDP_ABORTED:
8745 out_failure:
8746 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8747 fallthrough;
8748 case XDP_DROP:
8749 result = IGB_XDP_CONSUMED;
8750 break;
8751 }
8752 xdp_out:
8753 return result;
8754 }
8755
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8756 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8757 unsigned int size)
8758 {
8759 unsigned int truesize;
8760
8761 #if (PAGE_SIZE < 8192)
8762 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8763 #else
8764 truesize = ring_uses_build_skb(rx_ring) ?
8765 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8766 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8767 SKB_DATA_ALIGN(size);
8768 #endif
8769 return truesize;
8770 }
8771
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8772 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8773 struct igb_rx_buffer *rx_buffer,
8774 unsigned int size)
8775 {
8776 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8777 #if (PAGE_SIZE < 8192)
8778 rx_buffer->page_offset ^= truesize;
8779 #else
8780 rx_buffer->page_offset += truesize;
8781 #endif
8782 }
8783
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8784 static inline void igb_rx_checksum(struct igb_ring *ring,
8785 union e1000_adv_rx_desc *rx_desc,
8786 struct sk_buff *skb)
8787 {
8788 skb_checksum_none_assert(skb);
8789
8790 /* Ignore Checksum bit is set */
8791 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8792 return;
8793
8794 /* Rx checksum disabled via ethtool */
8795 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8796 return;
8797
8798 /* TCP/UDP checksum error bit is set */
8799 if (igb_test_staterr(rx_desc,
8800 E1000_RXDEXT_STATERR_TCPE |
8801 E1000_RXDEXT_STATERR_IPE)) {
8802 /* work around errata with sctp packets where the TCPE aka
8803 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8804 * packets, (aka let the stack check the crc32c)
8805 */
8806 if (!((skb->len == 60) &&
8807 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8808 u64_stats_update_begin(&ring->rx_syncp);
8809 ring->rx_stats.csum_err++;
8810 u64_stats_update_end(&ring->rx_syncp);
8811 }
8812 /* let the stack verify checksum errors */
8813 return;
8814 }
8815 /* It must be a TCP or UDP packet with a valid checksum */
8816 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8817 E1000_RXD_STAT_UDPCS))
8818 skb->ip_summed = CHECKSUM_UNNECESSARY;
8819
8820 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8821 le32_to_cpu(rx_desc->wb.upper.status_error));
8822 }
8823
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8824 static inline void igb_rx_hash(struct igb_ring *ring,
8825 union e1000_adv_rx_desc *rx_desc,
8826 struct sk_buff *skb)
8827 {
8828 if (ring->netdev->features & NETIF_F_RXHASH)
8829 skb_set_hash(skb,
8830 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8831 PKT_HASH_TYPE_L3);
8832 }
8833
8834 /**
8835 * igb_is_non_eop - process handling of non-EOP buffers
8836 * @rx_ring: Rx ring being processed
8837 * @rx_desc: Rx descriptor for current buffer
8838 *
8839 * This function updates next to clean. If the buffer is an EOP buffer
8840 * this function exits returning false, otherwise it will place the
8841 * sk_buff in the next buffer to be chained and return true indicating
8842 * that this is in fact a non-EOP buffer.
8843 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8844 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8845 union e1000_adv_rx_desc *rx_desc)
8846 {
8847 u32 ntc = rx_ring->next_to_clean + 1;
8848
8849 /* fetch, update, and store next to clean */
8850 ntc = (ntc < rx_ring->count) ? ntc : 0;
8851 rx_ring->next_to_clean = ntc;
8852
8853 prefetch(IGB_RX_DESC(rx_ring, ntc));
8854
8855 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8856 return false;
8857
8858 return true;
8859 }
8860
8861 /**
8862 * igb_cleanup_headers - Correct corrupted or empty headers
8863 * @rx_ring: rx descriptor ring packet is being transacted on
8864 * @rx_desc: pointer to the EOP Rx descriptor
8865 * @skb: pointer to current skb being fixed
8866 *
8867 * Address the case where we are pulling data in on pages only
8868 * and as such no data is present in the skb header.
8869 *
8870 * In addition if skb is not at least 60 bytes we need to pad it so that
8871 * it is large enough to qualify as a valid Ethernet frame.
8872 *
8873 * Returns true if an error was encountered and skb was freed.
8874 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8875 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8876 union e1000_adv_rx_desc *rx_desc,
8877 struct sk_buff *skb)
8878 {
8879 if (unlikely((igb_test_staterr(rx_desc,
8880 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8881 struct net_device *netdev = rx_ring->netdev;
8882 if (!(netdev->features & NETIF_F_RXALL)) {
8883 dev_kfree_skb_any(skb);
8884 return true;
8885 }
8886 }
8887
8888 /* if eth_skb_pad returns an error the skb was freed */
8889 if (eth_skb_pad(skb))
8890 return true;
8891
8892 return false;
8893 }
8894
8895 /**
8896 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8897 * @rx_ring: rx descriptor ring packet is being transacted on
8898 * @rx_desc: pointer to the EOP Rx descriptor
8899 * @skb: pointer to current skb being populated
8900 *
8901 * This function checks the ring, descriptor, and packet information in
8902 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8903 * other fields within the skb.
8904 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8905 void igb_process_skb_fields(struct igb_ring *rx_ring,
8906 union e1000_adv_rx_desc *rx_desc,
8907 struct sk_buff *skb)
8908 {
8909 struct net_device *dev = rx_ring->netdev;
8910
8911 igb_rx_hash(rx_ring, rx_desc, skb);
8912
8913 igb_rx_checksum(rx_ring, rx_desc, skb);
8914
8915 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8916 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8917 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8918
8919 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8920 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8921 u16 vid;
8922
8923 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8924 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8925 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8926 else
8927 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8928
8929 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8930 }
8931
8932 skb_record_rx_queue(skb, rx_ring->queue_index);
8933
8934 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8935 }
8936
igb_rx_offset(struct igb_ring * rx_ring)8937 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8938 {
8939 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8940 }
8941
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8942 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8943 const unsigned int size, int *rx_buf_pgcnt)
8944 {
8945 struct igb_rx_buffer *rx_buffer;
8946
8947 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8948 *rx_buf_pgcnt =
8949 #if (PAGE_SIZE < 8192)
8950 page_count(rx_buffer->page);
8951 #else
8952 0;
8953 #endif
8954 prefetchw(rx_buffer->page);
8955
8956 /* we are reusing so sync this buffer for CPU use */
8957 dma_sync_single_range_for_cpu(rx_ring->dev,
8958 rx_buffer->dma,
8959 rx_buffer->page_offset,
8960 size,
8961 DMA_FROM_DEVICE);
8962
8963 rx_buffer->pagecnt_bias--;
8964
8965 return rx_buffer;
8966 }
8967
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8968 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8969 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8970 {
8971 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8972 /* hand second half of page back to the ring */
8973 igb_reuse_rx_page(rx_ring, rx_buffer);
8974 } else {
8975 /* We are not reusing the buffer so unmap it and free
8976 * any references we are holding to it
8977 */
8978 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8979 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8980 IGB_RX_DMA_ATTR);
8981 __page_frag_cache_drain(rx_buffer->page,
8982 rx_buffer->pagecnt_bias);
8983 }
8984
8985 /* clear contents of rx_buffer */
8986 rx_buffer->page = NULL;
8987 }
8988
igb_finalize_xdp(struct igb_adapter * adapter,unsigned int status)8989 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8990 {
8991 int cpu = smp_processor_id();
8992 struct netdev_queue *nq;
8993
8994 if (status & IGB_XDP_REDIR)
8995 xdp_do_flush();
8996
8997 if (status & IGB_XDP_TX) {
8998 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8999
9000 nq = txring_txq(tx_ring);
9001 __netif_tx_lock(nq, cpu);
9002 igb_xdp_ring_update_tail(tx_ring);
9003 __netif_tx_unlock(nq);
9004 }
9005 }
9006
igb_update_rx_stats(struct igb_q_vector * q_vector,unsigned int packets,unsigned int bytes)9007 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9008 unsigned int bytes)
9009 {
9010 struct igb_ring *ring = q_vector->rx.ring;
9011
9012 u64_stats_update_begin(&ring->rx_syncp);
9013 ring->rx_stats.packets += packets;
9014 ring->rx_stats.bytes += bytes;
9015 u64_stats_update_end(&ring->rx_syncp);
9016
9017 q_vector->rx.total_packets += packets;
9018 q_vector->rx.total_bytes += bytes;
9019 }
9020
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)9021 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9022 {
9023 unsigned int total_bytes = 0, total_packets = 0;
9024 struct igb_adapter *adapter = q_vector->adapter;
9025 struct igb_ring *rx_ring = q_vector->rx.ring;
9026 u16 cleaned_count = igb_desc_unused(rx_ring);
9027 struct sk_buff *skb = rx_ring->skb;
9028 unsigned int xdp_xmit = 0;
9029 struct xdp_buff xdp;
9030 u32 frame_sz = 0;
9031 int rx_buf_pgcnt;
9032 int xdp_res = 0;
9033
9034 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9035 #if (PAGE_SIZE < 8192)
9036 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9037 #endif
9038 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9039
9040 while (likely(total_packets < budget)) {
9041 union e1000_adv_rx_desc *rx_desc;
9042 struct igb_rx_buffer *rx_buffer;
9043 ktime_t timestamp = 0;
9044 int pkt_offset = 0;
9045 unsigned int size;
9046 void *pktbuf;
9047
9048 /* return some buffers to hardware, one at a time is too slow */
9049 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9050 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9051 cleaned_count = 0;
9052 }
9053
9054 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9055 size = le16_to_cpu(rx_desc->wb.upper.length);
9056 if (!size)
9057 break;
9058
9059 /* This memory barrier is needed to keep us from reading
9060 * any other fields out of the rx_desc until we know the
9061 * descriptor has been written back
9062 */
9063 dma_rmb();
9064
9065 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9066 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9067
9068 /* pull rx packet timestamp if available and valid */
9069 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9070 int ts_hdr_len;
9071
9072 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9073 pktbuf, ×tamp);
9074
9075 pkt_offset += ts_hdr_len;
9076 size -= ts_hdr_len;
9077 }
9078
9079 /* retrieve a buffer from the ring */
9080 if (!skb) {
9081 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9082 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9083
9084 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9085 xdp_buff_clear_frags_flag(&xdp);
9086 #if (PAGE_SIZE > 4096)
9087 /* At larger PAGE_SIZE, frame_sz depend on len size */
9088 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9089 #endif
9090 xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9091 }
9092
9093 if (xdp_res) {
9094 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9095 xdp_xmit |= xdp_res;
9096 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9097 } else {
9098 rx_buffer->pagecnt_bias++;
9099 }
9100 total_packets++;
9101 total_bytes += size;
9102 } else if (skb)
9103 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9104 else if (ring_uses_build_skb(rx_ring))
9105 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9106 timestamp);
9107 else
9108 skb = igb_construct_skb(rx_ring, rx_buffer,
9109 &xdp, timestamp);
9110
9111 /* exit if we failed to retrieve a buffer */
9112 if (!xdp_res && !skb) {
9113 rx_ring->rx_stats.alloc_failed++;
9114 rx_buffer->pagecnt_bias++;
9115 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9116 break;
9117 }
9118
9119 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9120 cleaned_count++;
9121
9122 /* fetch next buffer in frame if non-eop */
9123 if (igb_is_non_eop(rx_ring, rx_desc))
9124 continue;
9125
9126 /* verify the packet layout is correct */
9127 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9128 skb = NULL;
9129 continue;
9130 }
9131
9132 /* probably a little skewed due to removing CRC */
9133 total_bytes += skb->len;
9134
9135 /* populate checksum, timestamp, VLAN, and protocol */
9136 igb_process_skb_fields(rx_ring, rx_desc, skb);
9137
9138 napi_gro_receive(&q_vector->napi, skb);
9139
9140 /* reset skb pointer */
9141 skb = NULL;
9142
9143 /* update budget accounting */
9144 total_packets++;
9145 }
9146
9147 /* place incomplete frames back on ring for completion */
9148 rx_ring->skb = skb;
9149
9150 if (xdp_xmit)
9151 igb_finalize_xdp(adapter, xdp_xmit);
9152
9153 igb_update_rx_stats(q_vector, total_packets, total_bytes);
9154
9155 if (cleaned_count)
9156 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9157
9158 return total_packets;
9159 }
9160
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9161 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9162 struct igb_rx_buffer *bi)
9163 {
9164 struct page *page = bi->page;
9165 dma_addr_t dma;
9166
9167 /* since we are recycling buffers we should seldom need to alloc */
9168 if (likely(page))
9169 return true;
9170
9171 /* alloc new page for storage */
9172 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9173 if (unlikely(!page)) {
9174 rx_ring->rx_stats.alloc_failed++;
9175 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9176 return false;
9177 }
9178
9179 /* map page for use */
9180 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9181 igb_rx_pg_size(rx_ring),
9182 DMA_FROM_DEVICE,
9183 IGB_RX_DMA_ATTR);
9184
9185 /* if mapping failed free memory back to system since
9186 * there isn't much point in holding memory we can't use
9187 */
9188 if (dma_mapping_error(rx_ring->dev, dma)) {
9189 __free_pages(page, igb_rx_pg_order(rx_ring));
9190
9191 rx_ring->rx_stats.alloc_failed++;
9192 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9193 return false;
9194 }
9195
9196 bi->dma = dma;
9197 bi->page = page;
9198 bi->page_offset = igb_rx_offset(rx_ring);
9199 page_ref_add(page, USHRT_MAX - 1);
9200 bi->pagecnt_bias = USHRT_MAX;
9201
9202 return true;
9203 }
9204
9205 /**
9206 * igb_alloc_rx_buffers - Replace used receive buffers
9207 * @rx_ring: rx descriptor ring to allocate new receive buffers
9208 * @cleaned_count: count of buffers to allocate
9209 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9210 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9211 {
9212 union e1000_adv_rx_desc *rx_desc;
9213 struct igb_rx_buffer *bi;
9214 u16 i = rx_ring->next_to_use;
9215 u16 bufsz;
9216
9217 /* nothing to do */
9218 if (!cleaned_count)
9219 return;
9220
9221 rx_desc = IGB_RX_DESC(rx_ring, i);
9222 bi = &rx_ring->rx_buffer_info[i];
9223 i -= rx_ring->count;
9224
9225 bufsz = igb_rx_bufsz(rx_ring);
9226
9227 do {
9228 if (!igb_alloc_mapped_page(rx_ring, bi))
9229 break;
9230
9231 /* sync the buffer for use by the device */
9232 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9233 bi->page_offset, bufsz,
9234 DMA_FROM_DEVICE);
9235
9236 /* Refresh the desc even if buffer_addrs didn't change
9237 * because each write-back erases this info.
9238 */
9239 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9240
9241 rx_desc++;
9242 bi++;
9243 i++;
9244 if (unlikely(!i)) {
9245 rx_desc = IGB_RX_DESC(rx_ring, 0);
9246 bi = rx_ring->rx_buffer_info;
9247 i -= rx_ring->count;
9248 }
9249
9250 /* clear the length for the next_to_use descriptor */
9251 rx_desc->wb.upper.length = 0;
9252
9253 cleaned_count--;
9254 } while (cleaned_count);
9255
9256 i += rx_ring->count;
9257
9258 if (rx_ring->next_to_use != i) {
9259 /* record the next descriptor to use */
9260 rx_ring->next_to_use = i;
9261
9262 /* update next to alloc since we have filled the ring */
9263 rx_ring->next_to_alloc = i;
9264
9265 /* Force memory writes to complete before letting h/w
9266 * know there are new descriptors to fetch. (Only
9267 * applicable for weak-ordered memory model archs,
9268 * such as IA-64).
9269 */
9270 dma_wmb();
9271 writel(i, rx_ring->tail);
9272 }
9273 }
9274
9275 /**
9276 * igb_mii_ioctl -
9277 * @netdev: pointer to netdev struct
9278 * @ifr: interface structure
9279 * @cmd: ioctl command to execute
9280 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9281 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9282 {
9283 struct igb_adapter *adapter = netdev_priv(netdev);
9284 struct mii_ioctl_data *data = if_mii(ifr);
9285
9286 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9287 return -EOPNOTSUPP;
9288
9289 switch (cmd) {
9290 case SIOCGMIIPHY:
9291 data->phy_id = adapter->hw.phy.addr;
9292 break;
9293 case SIOCGMIIREG:
9294 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9295 &data->val_out))
9296 return -EIO;
9297 break;
9298 case SIOCSMIIREG:
9299 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9300 data->val_in))
9301 return -EIO;
9302 break;
9303 default:
9304 return -EOPNOTSUPP;
9305 }
9306 return 0;
9307 }
9308
9309 /**
9310 * igb_ioctl -
9311 * @netdev: pointer to netdev struct
9312 * @ifr: interface structure
9313 * @cmd: ioctl command to execute
9314 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9315 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9316 {
9317 switch (cmd) {
9318 case SIOCGMIIPHY:
9319 case SIOCGMIIREG:
9320 case SIOCSMIIREG:
9321 return igb_mii_ioctl(netdev, ifr, cmd);
9322 default:
9323 return -EOPNOTSUPP;
9324 }
9325 }
9326
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9327 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9328 {
9329 struct igb_adapter *adapter = hw->back;
9330
9331 pci_read_config_word(adapter->pdev, reg, value);
9332 }
9333
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9334 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9335 {
9336 struct igb_adapter *adapter = hw->back;
9337
9338 pci_write_config_word(adapter->pdev, reg, *value);
9339 }
9340
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9341 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9342 {
9343 struct igb_adapter *adapter = hw->back;
9344
9345 if (pcie_capability_read_word(adapter->pdev, reg, value))
9346 return -E1000_ERR_CONFIG;
9347
9348 return 0;
9349 }
9350
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9351 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9352 {
9353 struct igb_adapter *adapter = hw->back;
9354
9355 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9356 return -E1000_ERR_CONFIG;
9357
9358 return 0;
9359 }
9360
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9361 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9362 {
9363 struct igb_adapter *adapter = netdev_priv(netdev);
9364 struct e1000_hw *hw = &adapter->hw;
9365 u32 ctrl, rctl;
9366 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9367
9368 if (enable) {
9369 /* enable VLAN tag insert/strip */
9370 ctrl = rd32(E1000_CTRL);
9371 ctrl |= E1000_CTRL_VME;
9372 wr32(E1000_CTRL, ctrl);
9373
9374 /* Disable CFI check */
9375 rctl = rd32(E1000_RCTL);
9376 rctl &= ~E1000_RCTL_CFIEN;
9377 wr32(E1000_RCTL, rctl);
9378 } else {
9379 /* disable VLAN tag insert/strip */
9380 ctrl = rd32(E1000_CTRL);
9381 ctrl &= ~E1000_CTRL_VME;
9382 wr32(E1000_CTRL, ctrl);
9383 }
9384
9385 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9386 }
9387
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9388 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9389 __be16 proto, u16 vid)
9390 {
9391 struct igb_adapter *adapter = netdev_priv(netdev);
9392 struct e1000_hw *hw = &adapter->hw;
9393 int pf_id = adapter->vfs_allocated_count;
9394
9395 /* add the filter since PF can receive vlans w/o entry in vlvf */
9396 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9397 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9398
9399 set_bit(vid, adapter->active_vlans);
9400
9401 return 0;
9402 }
9403
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9404 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9405 __be16 proto, u16 vid)
9406 {
9407 struct igb_adapter *adapter = netdev_priv(netdev);
9408 int pf_id = adapter->vfs_allocated_count;
9409 struct e1000_hw *hw = &adapter->hw;
9410
9411 /* remove VID from filter table */
9412 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9413 igb_vfta_set(hw, vid, pf_id, false, true);
9414
9415 clear_bit(vid, adapter->active_vlans);
9416
9417 return 0;
9418 }
9419
igb_restore_vlan(struct igb_adapter * adapter)9420 static void igb_restore_vlan(struct igb_adapter *adapter)
9421 {
9422 u16 vid = 1;
9423
9424 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9425 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9426
9427 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9428 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9429 }
9430
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9431 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9432 {
9433 struct pci_dev *pdev = adapter->pdev;
9434 struct e1000_mac_info *mac = &adapter->hw.mac;
9435
9436 mac->autoneg = 0;
9437
9438 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9439 * for the switch() below to work
9440 */
9441 if ((spd & 1) || (dplx & ~1))
9442 goto err_inval;
9443
9444 /* Fiber NIC's only allow 1000 gbps Full duplex
9445 * and 100Mbps Full duplex for 100baseFx sfp
9446 */
9447 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9448 switch (spd + dplx) {
9449 case SPEED_10 + DUPLEX_HALF:
9450 case SPEED_10 + DUPLEX_FULL:
9451 case SPEED_100 + DUPLEX_HALF:
9452 goto err_inval;
9453 default:
9454 break;
9455 }
9456 }
9457
9458 switch (spd + dplx) {
9459 case SPEED_10 + DUPLEX_HALF:
9460 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9461 break;
9462 case SPEED_10 + DUPLEX_FULL:
9463 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9464 break;
9465 case SPEED_100 + DUPLEX_HALF:
9466 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9467 break;
9468 case SPEED_100 + DUPLEX_FULL:
9469 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9470 break;
9471 case SPEED_1000 + DUPLEX_FULL:
9472 mac->autoneg = 1;
9473 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9474 break;
9475 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9476 default:
9477 goto err_inval;
9478 }
9479
9480 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9481 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9482
9483 return 0;
9484
9485 err_inval:
9486 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9487 return -EINVAL;
9488 }
9489
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9490 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9491 bool runtime)
9492 {
9493 struct net_device *netdev = pci_get_drvdata(pdev);
9494 struct igb_adapter *adapter = netdev_priv(netdev);
9495 struct e1000_hw *hw = &adapter->hw;
9496 u32 ctrl, rctl, status;
9497 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9498 bool wake;
9499
9500 rtnl_lock();
9501 netif_device_detach(netdev);
9502
9503 if (netif_running(netdev))
9504 __igb_close(netdev, true);
9505
9506 igb_ptp_suspend(adapter);
9507
9508 igb_clear_interrupt_scheme(adapter);
9509 rtnl_unlock();
9510
9511 status = rd32(E1000_STATUS);
9512 if (status & E1000_STATUS_LU)
9513 wufc &= ~E1000_WUFC_LNKC;
9514
9515 if (wufc) {
9516 igb_setup_rctl(adapter);
9517 igb_set_rx_mode(netdev);
9518
9519 /* turn on all-multi mode if wake on multicast is enabled */
9520 if (wufc & E1000_WUFC_MC) {
9521 rctl = rd32(E1000_RCTL);
9522 rctl |= E1000_RCTL_MPE;
9523 wr32(E1000_RCTL, rctl);
9524 }
9525
9526 ctrl = rd32(E1000_CTRL);
9527 ctrl |= E1000_CTRL_ADVD3WUC;
9528 wr32(E1000_CTRL, ctrl);
9529
9530 /* Allow time for pending master requests to run */
9531 igb_disable_pcie_master(hw);
9532
9533 wr32(E1000_WUC, E1000_WUC_PME_EN);
9534 wr32(E1000_WUFC, wufc);
9535 } else {
9536 wr32(E1000_WUC, 0);
9537 wr32(E1000_WUFC, 0);
9538 }
9539
9540 wake = wufc || adapter->en_mng_pt;
9541 if (!wake)
9542 igb_power_down_link(adapter);
9543 else
9544 igb_power_up_link(adapter);
9545
9546 if (enable_wake)
9547 *enable_wake = wake;
9548
9549 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9550 * would have already happened in close and is redundant.
9551 */
9552 igb_release_hw_control(adapter);
9553
9554 pci_disable_device(pdev);
9555
9556 return 0;
9557 }
9558
igb_deliver_wake_packet(struct net_device * netdev)9559 static void igb_deliver_wake_packet(struct net_device *netdev)
9560 {
9561 struct igb_adapter *adapter = netdev_priv(netdev);
9562 struct e1000_hw *hw = &adapter->hw;
9563 struct sk_buff *skb;
9564 u32 wupl;
9565
9566 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9567
9568 /* WUPM stores only the first 128 bytes of the wake packet.
9569 * Read the packet only if we have the whole thing.
9570 */
9571 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9572 return;
9573
9574 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9575 if (!skb)
9576 return;
9577
9578 skb_put(skb, wupl);
9579
9580 /* Ensure reads are 32-bit aligned */
9581 wupl = roundup(wupl, 4);
9582
9583 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9584
9585 skb->protocol = eth_type_trans(skb, netdev);
9586 netif_rx(skb);
9587 }
9588
igb_suspend(struct device * dev)9589 static int igb_suspend(struct device *dev)
9590 {
9591 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9592 }
9593
__igb_resume(struct device * dev,bool rpm)9594 static int __igb_resume(struct device *dev, bool rpm)
9595 {
9596 struct pci_dev *pdev = to_pci_dev(dev);
9597 struct net_device *netdev = pci_get_drvdata(pdev);
9598 struct igb_adapter *adapter = netdev_priv(netdev);
9599 struct e1000_hw *hw = &adapter->hw;
9600 u32 err, val;
9601
9602 pci_set_power_state(pdev, PCI_D0);
9603 pci_restore_state(pdev);
9604 pci_save_state(pdev);
9605
9606 if (!pci_device_is_present(pdev))
9607 return -ENODEV;
9608 err = pci_enable_device_mem(pdev);
9609 if (err) {
9610 dev_err(&pdev->dev,
9611 "igb: Cannot enable PCI device from suspend\n");
9612 return err;
9613 }
9614 pci_set_master(pdev);
9615
9616 pci_enable_wake(pdev, PCI_D3hot, 0);
9617 pci_enable_wake(pdev, PCI_D3cold, 0);
9618
9619 if (igb_init_interrupt_scheme(adapter, true)) {
9620 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9621 return -ENOMEM;
9622 }
9623
9624 igb_reset(adapter);
9625
9626 /* let the f/w know that the h/w is now under the control of the
9627 * driver.
9628 */
9629 igb_get_hw_control(adapter);
9630
9631 val = rd32(E1000_WUS);
9632 if (val & WAKE_PKT_WUS)
9633 igb_deliver_wake_packet(netdev);
9634
9635 wr32(E1000_WUS, ~0);
9636
9637 if (!rpm)
9638 rtnl_lock();
9639 if (!err && netif_running(netdev))
9640 err = __igb_open(netdev, true);
9641
9642 if (!err)
9643 netif_device_attach(netdev);
9644 if (!rpm)
9645 rtnl_unlock();
9646
9647 return err;
9648 }
9649
igb_resume(struct device * dev)9650 static int igb_resume(struct device *dev)
9651 {
9652 return __igb_resume(dev, false);
9653 }
9654
igb_runtime_idle(struct device * dev)9655 static int igb_runtime_idle(struct device *dev)
9656 {
9657 struct net_device *netdev = dev_get_drvdata(dev);
9658 struct igb_adapter *adapter = netdev_priv(netdev);
9659
9660 if (!igb_has_link(adapter))
9661 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9662
9663 return -EBUSY;
9664 }
9665
igb_runtime_suspend(struct device * dev)9666 static int igb_runtime_suspend(struct device *dev)
9667 {
9668 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9669 }
9670
igb_runtime_resume(struct device * dev)9671 static int igb_runtime_resume(struct device *dev)
9672 {
9673 return __igb_resume(dev, true);
9674 }
9675
igb_shutdown(struct pci_dev * pdev)9676 static void igb_shutdown(struct pci_dev *pdev)
9677 {
9678 bool wake;
9679
9680 __igb_shutdown(pdev, &wake, 0);
9681
9682 if (system_state == SYSTEM_POWER_OFF) {
9683 pci_wake_from_d3(pdev, wake);
9684 pci_set_power_state(pdev, PCI_D3hot);
9685 }
9686 }
9687
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9688 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9689 {
9690 #ifdef CONFIG_PCI_IOV
9691 int err;
9692
9693 if (num_vfs == 0) {
9694 return igb_disable_sriov(dev, true);
9695 } else {
9696 err = igb_enable_sriov(dev, num_vfs, true);
9697 return err ? err : num_vfs;
9698 }
9699 #endif
9700 return 0;
9701 }
9702
9703 /**
9704 * igb_io_error_detected - called when PCI error is detected
9705 * @pdev: Pointer to PCI device
9706 * @state: The current pci connection state
9707 *
9708 * This function is called after a PCI bus error affecting
9709 * this device has been detected.
9710 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9711 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9712 pci_channel_state_t state)
9713 {
9714 struct net_device *netdev = pci_get_drvdata(pdev);
9715 struct igb_adapter *adapter = netdev_priv(netdev);
9716
9717 if (state == pci_channel_io_normal) {
9718 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9719 return PCI_ERS_RESULT_CAN_RECOVER;
9720 }
9721
9722 netif_device_detach(netdev);
9723
9724 if (state == pci_channel_io_perm_failure)
9725 return PCI_ERS_RESULT_DISCONNECT;
9726
9727 rtnl_lock();
9728 if (netif_running(netdev))
9729 igb_down(adapter);
9730 rtnl_unlock();
9731
9732 pci_disable_device(pdev);
9733
9734 /* Request a slot reset. */
9735 return PCI_ERS_RESULT_NEED_RESET;
9736 }
9737
9738 /**
9739 * igb_io_slot_reset - called after the pci bus has been reset.
9740 * @pdev: Pointer to PCI device
9741 *
9742 * Restart the card from scratch, as if from a cold-boot. Implementation
9743 * resembles the first-half of the __igb_resume routine.
9744 **/
igb_io_slot_reset(struct pci_dev * pdev)9745 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9746 {
9747 struct net_device *netdev = pci_get_drvdata(pdev);
9748 struct igb_adapter *adapter = netdev_priv(netdev);
9749 struct e1000_hw *hw = &adapter->hw;
9750 pci_ers_result_t result;
9751
9752 if (pci_enable_device_mem(pdev)) {
9753 dev_err(&pdev->dev,
9754 "Cannot re-enable PCI device after reset.\n");
9755 result = PCI_ERS_RESULT_DISCONNECT;
9756 } else {
9757 pci_set_master(pdev);
9758 pci_restore_state(pdev);
9759 pci_save_state(pdev);
9760
9761 pci_enable_wake(pdev, PCI_D3hot, 0);
9762 pci_enable_wake(pdev, PCI_D3cold, 0);
9763
9764 /* In case of PCI error, adapter lose its HW address
9765 * so we should re-assign it here.
9766 */
9767 hw->hw_addr = adapter->io_addr;
9768
9769 igb_reset(adapter);
9770 wr32(E1000_WUS, ~0);
9771 result = PCI_ERS_RESULT_RECOVERED;
9772 }
9773
9774 return result;
9775 }
9776
9777 /**
9778 * igb_io_resume - called when traffic can start flowing again.
9779 * @pdev: Pointer to PCI device
9780 *
9781 * This callback is called when the error recovery driver tells us that
9782 * its OK to resume normal operation. Implementation resembles the
9783 * second-half of the __igb_resume routine.
9784 */
igb_io_resume(struct pci_dev * pdev)9785 static void igb_io_resume(struct pci_dev *pdev)
9786 {
9787 struct net_device *netdev = pci_get_drvdata(pdev);
9788 struct igb_adapter *adapter = netdev_priv(netdev);
9789
9790 rtnl_lock();
9791 if (netif_running(netdev)) {
9792 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9793 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9794 rtnl_unlock();
9795 return;
9796 }
9797
9798 if (igb_up(adapter)) {
9799 dev_err(&pdev->dev, "igb_up failed after reset\n");
9800 rtnl_unlock();
9801 return;
9802 }
9803 }
9804 rtnl_unlock();
9805
9806 netif_device_attach(netdev);
9807
9808 /* let the f/w know that the h/w is now under the control of the
9809 * driver.
9810 */
9811 igb_get_hw_control(adapter);
9812 }
9813
9814 /**
9815 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9816 * @adapter: Pointer to adapter structure
9817 * @index: Index of the RAR entry which need to be synced with MAC table
9818 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9819 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9820 {
9821 struct e1000_hw *hw = &adapter->hw;
9822 u32 rar_low, rar_high;
9823 u8 *addr = adapter->mac_table[index].addr;
9824
9825 /* HW expects these to be in network order when they are plugged
9826 * into the registers which are little endian. In order to guarantee
9827 * that ordering we need to do an leXX_to_cpup here in order to be
9828 * ready for the byteswap that occurs with writel
9829 */
9830 rar_low = le32_to_cpup((__le32 *)(addr));
9831 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9832
9833 /* Indicate to hardware the Address is Valid. */
9834 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9835 if (is_valid_ether_addr(addr))
9836 rar_high |= E1000_RAH_AV;
9837
9838 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9839 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9840
9841 switch (hw->mac.type) {
9842 case e1000_82575:
9843 case e1000_i210:
9844 if (adapter->mac_table[index].state &
9845 IGB_MAC_STATE_QUEUE_STEERING)
9846 rar_high |= E1000_RAH_QSEL_ENABLE;
9847
9848 rar_high |= E1000_RAH_POOL_1 *
9849 adapter->mac_table[index].queue;
9850 break;
9851 default:
9852 rar_high |= E1000_RAH_POOL_1 <<
9853 adapter->mac_table[index].queue;
9854 break;
9855 }
9856 }
9857
9858 wr32(E1000_RAL(index), rar_low);
9859 wrfl();
9860 wr32(E1000_RAH(index), rar_high);
9861 wrfl();
9862 }
9863
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9864 static int igb_set_vf_mac(struct igb_adapter *adapter,
9865 int vf, unsigned char *mac_addr)
9866 {
9867 struct e1000_hw *hw = &adapter->hw;
9868 /* VF MAC addresses start at end of receive addresses and moves
9869 * towards the first, as a result a collision should not be possible
9870 */
9871 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9872 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9873
9874 ether_addr_copy(vf_mac_addr, mac_addr);
9875 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9876 adapter->mac_table[rar_entry].queue = vf;
9877 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9878 igb_rar_set_index(adapter, rar_entry);
9879
9880 return 0;
9881 }
9882
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9883 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9884 {
9885 struct igb_adapter *adapter = netdev_priv(netdev);
9886
9887 if (vf >= adapter->vfs_allocated_count)
9888 return -EINVAL;
9889
9890 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9891 * flag and allows to overwrite the MAC via VF netdev. This
9892 * is necessary to allow libvirt a way to restore the original
9893 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9894 * down a VM.
9895 */
9896 if (is_zero_ether_addr(mac)) {
9897 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9898 dev_info(&adapter->pdev->dev,
9899 "remove administratively set MAC on VF %d\n",
9900 vf);
9901 } else if (is_valid_ether_addr(mac)) {
9902 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9903 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9904 mac, vf);
9905 dev_info(&adapter->pdev->dev,
9906 "Reload the VF driver to make this change effective.");
9907 /* Generate additional warning if PF is down */
9908 if (test_bit(__IGB_DOWN, &adapter->state)) {
9909 dev_warn(&adapter->pdev->dev,
9910 "The VF MAC address has been set, but the PF device is not up.\n");
9911 dev_warn(&adapter->pdev->dev,
9912 "Bring the PF device up before attempting to use the VF device.\n");
9913 }
9914 } else {
9915 return -EINVAL;
9916 }
9917 return igb_set_vf_mac(adapter, vf, mac);
9918 }
9919
igb_link_mbps(int internal_link_speed)9920 static int igb_link_mbps(int internal_link_speed)
9921 {
9922 switch (internal_link_speed) {
9923 case SPEED_100:
9924 return 100;
9925 case SPEED_1000:
9926 return 1000;
9927 default:
9928 return 0;
9929 }
9930 }
9931
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9932 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9933 int link_speed)
9934 {
9935 int rf_dec, rf_int;
9936 u32 bcnrc_val;
9937
9938 if (tx_rate != 0) {
9939 /* Calculate the rate factor values to set */
9940 rf_int = link_speed / tx_rate;
9941 rf_dec = (link_speed - (rf_int * tx_rate));
9942 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9943 tx_rate;
9944
9945 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9946 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9947 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9948 } else {
9949 bcnrc_val = 0;
9950 }
9951
9952 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9953 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9954 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9955 */
9956 wr32(E1000_RTTBCNRM, 0x14);
9957 wr32(E1000_RTTBCNRC, bcnrc_val);
9958 }
9959
igb_check_vf_rate_limit(struct igb_adapter * adapter)9960 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9961 {
9962 int actual_link_speed, i;
9963 bool reset_rate = false;
9964
9965 /* VF TX rate limit was not set or not supported */
9966 if ((adapter->vf_rate_link_speed == 0) ||
9967 (adapter->hw.mac.type != e1000_82576))
9968 return;
9969
9970 actual_link_speed = igb_link_mbps(adapter->link_speed);
9971 if (actual_link_speed != adapter->vf_rate_link_speed) {
9972 reset_rate = true;
9973 adapter->vf_rate_link_speed = 0;
9974 dev_info(&adapter->pdev->dev,
9975 "Link speed has been changed. VF Transmit rate is disabled\n");
9976 }
9977
9978 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9979 if (reset_rate)
9980 adapter->vf_data[i].tx_rate = 0;
9981
9982 igb_set_vf_rate_limit(&adapter->hw, i,
9983 adapter->vf_data[i].tx_rate,
9984 actual_link_speed);
9985 }
9986 }
9987
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9988 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9989 int min_tx_rate, int max_tx_rate)
9990 {
9991 struct igb_adapter *adapter = netdev_priv(netdev);
9992 struct e1000_hw *hw = &adapter->hw;
9993 int actual_link_speed;
9994
9995 if (hw->mac.type != e1000_82576)
9996 return -EOPNOTSUPP;
9997
9998 if (min_tx_rate)
9999 return -EINVAL;
10000
10001 actual_link_speed = igb_link_mbps(adapter->link_speed);
10002 if ((vf >= adapter->vfs_allocated_count) ||
10003 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10004 (max_tx_rate < 0) ||
10005 (max_tx_rate > actual_link_speed))
10006 return -EINVAL;
10007
10008 adapter->vf_rate_link_speed = actual_link_speed;
10009 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10010 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10011
10012 return 0;
10013 }
10014
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)10015 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10016 bool setting)
10017 {
10018 struct igb_adapter *adapter = netdev_priv(netdev);
10019 struct e1000_hw *hw = &adapter->hw;
10020 u32 reg_val, reg_offset;
10021
10022 if (!adapter->vfs_allocated_count)
10023 return -EOPNOTSUPP;
10024
10025 if (vf >= adapter->vfs_allocated_count)
10026 return -EINVAL;
10027
10028 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10029 reg_val = rd32(reg_offset);
10030 if (setting)
10031 reg_val |= (BIT(vf) |
10032 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10033 else
10034 reg_val &= ~(BIT(vf) |
10035 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10036 wr32(reg_offset, reg_val);
10037
10038 adapter->vf_data[vf].spoofchk_enabled = setting;
10039 return 0;
10040 }
10041
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)10042 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10043 {
10044 struct igb_adapter *adapter = netdev_priv(netdev);
10045
10046 if (vf >= adapter->vfs_allocated_count)
10047 return -EINVAL;
10048 if (adapter->vf_data[vf].trusted == setting)
10049 return 0;
10050
10051 adapter->vf_data[vf].trusted = setting;
10052
10053 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10054 vf, setting ? "" : "not ");
10055 return 0;
10056 }
10057
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)10058 static int igb_ndo_get_vf_config(struct net_device *netdev,
10059 int vf, struct ifla_vf_info *ivi)
10060 {
10061 struct igb_adapter *adapter = netdev_priv(netdev);
10062 if (vf >= adapter->vfs_allocated_count)
10063 return -EINVAL;
10064 ivi->vf = vf;
10065 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10066 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10067 ivi->min_tx_rate = 0;
10068 ivi->vlan = adapter->vf_data[vf].pf_vlan;
10069 ivi->qos = adapter->vf_data[vf].pf_qos;
10070 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10071 ivi->trusted = adapter->vf_data[vf].trusted;
10072 return 0;
10073 }
10074
igb_vmm_control(struct igb_adapter * adapter)10075 static void igb_vmm_control(struct igb_adapter *adapter)
10076 {
10077 struct e1000_hw *hw = &adapter->hw;
10078 u32 reg;
10079
10080 switch (hw->mac.type) {
10081 case e1000_82575:
10082 case e1000_i210:
10083 case e1000_i211:
10084 case e1000_i354:
10085 default:
10086 /* replication is not supported for 82575 */
10087 return;
10088 case e1000_82576:
10089 /* notify HW that the MAC is adding vlan tags */
10090 reg = rd32(E1000_DTXCTL);
10091 reg |= E1000_DTXCTL_VLAN_ADDED;
10092 wr32(E1000_DTXCTL, reg);
10093 fallthrough;
10094 case e1000_82580:
10095 /* enable replication vlan tag stripping */
10096 reg = rd32(E1000_RPLOLR);
10097 reg |= E1000_RPLOLR_STRVLAN;
10098 wr32(E1000_RPLOLR, reg);
10099 fallthrough;
10100 case e1000_i350:
10101 /* none of the above registers are supported by i350 */
10102 break;
10103 }
10104
10105 if (adapter->vfs_allocated_count) {
10106 igb_vmdq_set_loopback_pf(hw, true);
10107 igb_vmdq_set_replication_pf(hw, true);
10108 igb_vmdq_set_anti_spoofing_pf(hw, true,
10109 adapter->vfs_allocated_count);
10110 } else {
10111 igb_vmdq_set_loopback_pf(hw, false);
10112 igb_vmdq_set_replication_pf(hw, false);
10113 }
10114 }
10115
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10116 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10117 {
10118 struct e1000_hw *hw = &adapter->hw;
10119 u32 dmac_thr;
10120 u16 hwm;
10121 u32 reg;
10122
10123 if (hw->mac.type > e1000_82580) {
10124 if (adapter->flags & IGB_FLAG_DMAC) {
10125 /* force threshold to 0. */
10126 wr32(E1000_DMCTXTH, 0);
10127
10128 /* DMA Coalescing high water mark needs to be greater
10129 * than the Rx threshold. Set hwm to PBA - max frame
10130 * size in 16B units, capping it at PBA - 6KB.
10131 */
10132 hwm = 64 * (pba - 6);
10133 reg = rd32(E1000_FCRTC);
10134 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10135 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10136 wr32(E1000_FCRTC, reg);
10137
10138 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10139 * frame size, capping it at PBA - 10KB.
10140 */
10141 dmac_thr = pba - 10;
10142 reg = rd32(E1000_DMACR);
10143 reg &= ~E1000_DMACR_DMACTHR_MASK;
10144 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10145
10146 /* transition to L0x or L1 if available..*/
10147 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10148
10149 /* watchdog timer= +-1000 usec in 32usec intervals */
10150 reg |= (1000 >> 5);
10151
10152 /* Disable BMC-to-OS Watchdog Enable */
10153 if (hw->mac.type != e1000_i354)
10154 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10155 wr32(E1000_DMACR, reg);
10156
10157 /* no lower threshold to disable
10158 * coalescing(smart fifb)-UTRESH=0
10159 */
10160 wr32(E1000_DMCRTRH, 0);
10161
10162 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10163
10164 wr32(E1000_DMCTLX, reg);
10165
10166 /* free space in tx packet buffer to wake from
10167 * DMA coal
10168 */
10169 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10170 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10171 }
10172
10173 if (hw->mac.type >= e1000_i210 ||
10174 (adapter->flags & IGB_FLAG_DMAC)) {
10175 reg = rd32(E1000_PCIEMISC);
10176 reg |= E1000_PCIEMISC_LX_DECISION;
10177 wr32(E1000_PCIEMISC, reg);
10178 } /* endif adapter->dmac is not disabled */
10179 } else if (hw->mac.type == e1000_82580) {
10180 u32 reg = rd32(E1000_PCIEMISC);
10181
10182 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10183 wr32(E1000_DMACR, 0);
10184 }
10185 }
10186
10187 /**
10188 * igb_read_i2c_byte - Reads 8 bit word over I2C
10189 * @hw: pointer to hardware structure
10190 * @byte_offset: byte offset to read
10191 * @dev_addr: device address
10192 * @data: value read
10193 *
10194 * Performs byte read operation over I2C interface at
10195 * a specified device address.
10196 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10197 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10198 u8 dev_addr, u8 *data)
10199 {
10200 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10201 struct i2c_client *this_client = adapter->i2c_client;
10202 s32 status;
10203 u16 swfw_mask = 0;
10204
10205 if (!this_client)
10206 return E1000_ERR_I2C;
10207
10208 swfw_mask = E1000_SWFW_PHY0_SM;
10209
10210 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10211 return E1000_ERR_SWFW_SYNC;
10212
10213 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10214 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10215
10216 if (status < 0)
10217 return E1000_ERR_I2C;
10218 else {
10219 *data = status;
10220 return 0;
10221 }
10222 }
10223
10224 /**
10225 * igb_write_i2c_byte - Writes 8 bit word over I2C
10226 * @hw: pointer to hardware structure
10227 * @byte_offset: byte offset to write
10228 * @dev_addr: device address
10229 * @data: value to write
10230 *
10231 * Performs byte write operation over I2C interface at
10232 * a specified device address.
10233 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10234 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10235 u8 dev_addr, u8 data)
10236 {
10237 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10238 struct i2c_client *this_client = adapter->i2c_client;
10239 s32 status;
10240 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10241
10242 if (!this_client)
10243 return E1000_ERR_I2C;
10244
10245 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10246 return E1000_ERR_SWFW_SYNC;
10247 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10248 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10249
10250 if (status)
10251 return E1000_ERR_I2C;
10252 else
10253 return 0;
10254
10255 }
10256
igb_reinit_queues(struct igb_adapter * adapter)10257 int igb_reinit_queues(struct igb_adapter *adapter)
10258 {
10259 struct net_device *netdev = adapter->netdev;
10260 struct pci_dev *pdev = adapter->pdev;
10261 int err = 0;
10262
10263 if (netif_running(netdev))
10264 igb_close(netdev);
10265
10266 igb_reset_interrupt_capability(adapter);
10267
10268 if (igb_init_interrupt_scheme(adapter, true)) {
10269 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10270 return -ENOMEM;
10271 }
10272
10273 if (netif_running(netdev))
10274 err = igb_open(netdev);
10275
10276 return err;
10277 }
10278
igb_nfc_filter_exit(struct igb_adapter * adapter)10279 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10280 {
10281 struct igb_nfc_filter *rule;
10282
10283 spin_lock(&adapter->nfc_lock);
10284
10285 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10286 igb_erase_filter(adapter, rule);
10287
10288 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10289 igb_erase_filter(adapter, rule);
10290
10291 spin_unlock(&adapter->nfc_lock);
10292 }
10293
igb_nfc_filter_restore(struct igb_adapter * adapter)10294 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10295 {
10296 struct igb_nfc_filter *rule;
10297
10298 spin_lock(&adapter->nfc_lock);
10299
10300 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10301 igb_add_filter(adapter, rule);
10302
10303 spin_unlock(&adapter->nfc_lock);
10304 }
10305
10306 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10307 igb_runtime_suspend, igb_runtime_resume,
10308 igb_runtime_idle);
10309
10310 static struct pci_driver igb_driver = {
10311 .name = igb_driver_name,
10312 .id_table = igb_pci_tbl,
10313 .probe = igb_probe,
10314 .remove = igb_remove,
10315 .driver.pm = pm_ptr(&igb_pm_ops),
10316 .shutdown = igb_shutdown,
10317 .sriov_configure = igb_pci_sriov_configure,
10318 .err_handler = &igb_err_handler
10319 };
10320
10321 /* igb_main.c */
10322