1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
181 .next = NULL,
182 .priority = 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195
196 static const struct pci_error_handlers igb_err_handler = {
197 .error_detected = igb_io_error_detected,
198 .slot_reset = igb_io_slot_reset,
199 .resume = igb_io_resume,
200 };
201
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211
212 struct igb_reg_info {
213 u32 ofs;
214 char *name;
215 };
216
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218
219 /* General Registers */
220 {E1000_CTRL, "CTRL"},
221 {E1000_STATUS, "STATUS"},
222 {E1000_CTRL_EXT, "CTRL_EXT"},
223
224 /* Interrupt Registers */
225 {E1000_ICR, "ICR"},
226
227 /* RX Registers */
228 {E1000_RCTL, "RCTL"},
229 {E1000_RDLEN(0), "RDLEN"},
230 {E1000_RDH(0), "RDH"},
231 {E1000_RDT(0), "RDT"},
232 {E1000_RXDCTL(0), "RXDCTL"},
233 {E1000_RDBAL(0), "RDBAL"},
234 {E1000_RDBAH(0), "RDBAH"},
235
236 /* TX Registers */
237 {E1000_TCTL, "TCTL"},
238 {E1000_TDBAL(0), "TDBAL"},
239 {E1000_TDBAH(0), "TDBAH"},
240 {E1000_TDLEN(0), "TDLEN"},
241 {E1000_TDH(0), "TDH"},
242 {E1000_TDT(0), "TDT"},
243 {E1000_TXDCTL(0), "TXDCTL"},
244 {E1000_TDFH, "TDFH"},
245 {E1000_TDFT, "TDFT"},
246 {E1000_TDFHS, "TDFHS"},
247 {E1000_TDFPC, "TDFPC"},
248
249 /* List Terminator */
250 {}
251 };
252
253 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 int n = 0;
257 char rname[16];
258 u32 regs[8];
259
260 switch (reginfo->ofs) {
261 case E1000_RDLEN(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
264 break;
265 case E1000_RDH(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
268 break;
269 case E1000_RDT(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
272 break;
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
276 break;
277 case E1000_RDBAL(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
280 break;
281 case E1000_RDBAH(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
284 break;
285 case E1000_TDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAL(n));
288 break;
289 case E1000_TDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
292 break;
293 case E1000_TDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
296 break;
297 case E1000_TDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
300 break;
301 case E1000_TDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
304 break;
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
308 break;
309 default:
310 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 return;
312 }
313
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 regs[2], regs[3]);
317 }
318
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 struct net_device *netdev = adapter->netdev;
323 struct e1000_hw *hw = &adapter->hw;
324 struct igb_reg_info *reginfo;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { __le64 a; __le64 b; } *u0;
328 struct igb_ring *rx_ring;
329 union e1000_adv_rx_desc *rx_desc;
330 u32 staterr;
331 u16 i, n;
332
333 if (!netif_msg_hw(adapter))
334 return;
335
336 /* Print netdevice Info */
337 if (netdev) {
338 dev_info(&adapter->pdev->dev, "Net device Info\n");
339 pr_info("Device Name state trans_start\n");
340 pr_info("%-15s %016lX %016lX\n", netdev->name,
341 netdev->state, dev_trans_start(netdev));
342 }
343
344 /* Print Registers */
345 dev_info(&adapter->pdev->dev, "Register Dump\n");
346 pr_info(" Register Name Value\n");
347 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 reginfo->name; reginfo++) {
349 igb_regdump(hw, reginfo);
350 }
351
352 /* Print TX Ring Summary */
353 if (!netdev || !netif_running(netdev))
354 goto exit;
355
356 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
358 for (n = 0; n < adapter->num_tx_queues; n++) {
359 struct igb_tx_buffer *buffer_info;
360 tx_ring = adapter->tx_ring[n];
361 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 (u64)dma_unmap_addr(buffer_info, dma),
365 dma_unmap_len(buffer_info, len),
366 buffer_info->next_to_watch,
367 (u64)buffer_info->time_stamp);
368 }
369
370 /* Print TX Rings */
371 if (!netif_msg_tx_done(adapter))
372 goto rx_ring_summary;
373
374 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375
376 /* Transmit Descriptor Formats
377 *
378 * Advanced Transmit Descriptor
379 * +--------------------------------------------------------------+
380 * 0 | Buffer Address [63:0] |
381 * +--------------------------------------------------------------+
382 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
383 * +--------------------------------------------------------------+
384 * 63 46 45 40 39 38 36 35 32 31 24 15 0
385 */
386
387 for (n = 0; n < adapter->num_tx_queues; n++) {
388 tx_ring = adapter->tx_ring[n];
389 pr_info("------------------------------------\n");
390 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 pr_info("------------------------------------\n");
392 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
393
394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 const char *next_desc;
396 struct igb_tx_buffer *buffer_info;
397 tx_desc = IGB_TX_DESC(tx_ring, i);
398 buffer_info = &tx_ring->tx_buffer_info[i];
399 u0 = (struct my_u0 *)tx_desc;
400 if (i == tx_ring->next_to_use &&
401 i == tx_ring->next_to_clean)
402 next_desc = " NTC/U";
403 else if (i == tx_ring->next_to_use)
404 next_desc = " NTU";
405 else if (i == tx_ring->next_to_clean)
406 next_desc = " NTC";
407 else
408 next_desc = "";
409
410 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
411 i, le64_to_cpu(u0->a),
412 le64_to_cpu(u0->b),
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp,
417 buffer_info->skb, next_desc);
418
419 if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 print_hex_dump(KERN_INFO, "",
421 DUMP_PREFIX_ADDRESS,
422 16, 1, buffer_info->skb->data,
423 dma_unmap_len(buffer_info, len),
424 true);
425 }
426 }
427
428 /* Print RX Rings Summary */
429 rx_ring_summary:
430 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 pr_info("Queue [NTU] [NTC]\n");
432 for (n = 0; n < adapter->num_rx_queues; n++) {
433 rx_ring = adapter->rx_ring[n];
434 pr_info(" %5d %5X %5X\n",
435 n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 }
437
438 /* Print RX Rings */
439 if (!netif_msg_rx_status(adapter))
440 goto exit;
441
442 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443
444 /* Advanced Receive Descriptor (Read) Format
445 * 63 1 0
446 * +-----------------------------------------------------+
447 * 0 | Packet Buffer Address [63:1] |A0/NSE|
448 * +----------------------------------------------+------+
449 * 8 | Header Buffer Address [63:1] | DD |
450 * +-----------------------------------------------------+
451 *
452 *
453 * Advanced Receive Descriptor (Write-Back) Format
454 *
455 * 63 48 47 32 31 30 21 20 17 16 4 3 0
456 * +------------------------------------------------------+
457 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
458 * | Checksum Ident | | | | Type | Type |
459 * +------------------------------------------------------+
460 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 * +------------------------------------------------------+
462 * 63 48 47 32 31 20 19 0
463 */
464
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info("------------------------------------\n");
468 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 pr_info("------------------------------------\n");
470 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
471 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472
473 for (i = 0; i < rx_ring->count; i++) {
474 const char *next_desc;
475 dma_addr_t dma = (dma_addr_t)0;
476 struct igb_rx_buffer *buffer_info = NULL;
477 rx_desc = IGB_RX_DESC(rx_ring, i);
478 u0 = (struct my_u0 *)rx_desc;
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480
481 if (!rx_ring->xsk_pool) {
482 buffer_info = &rx_ring->rx_buffer_info[i];
483 dma = buffer_info->dma;
484 }
485
486 if (i == rx_ring->next_to_use)
487 next_desc = " NTU";
488 else if (i == rx_ring->next_to_clean)
489 next_desc = " NTC";
490 else
491 next_desc = "";
492
493 if (staterr & E1000_RXD_STAT_DD) {
494 /* Descriptor Done */
495 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
496 "RWB", i,
497 le64_to_cpu(u0->a),
498 le64_to_cpu(u0->b),
499 next_desc);
500 } else {
501 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
502 "R ", i,
503 le64_to_cpu(u0->a),
504 le64_to_cpu(u0->b),
505 (u64)dma,
506 next_desc);
507
508 if (netif_msg_pktdata(adapter) &&
509 buffer_info && dma && buffer_info->page) {
510 print_hex_dump(KERN_INFO, "",
511 DUMP_PREFIX_ADDRESS,
512 16, 1,
513 page_address(buffer_info->page) +
514 buffer_info->page_offset,
515 igb_rx_bufsz(rx_ring), true);
516 }
517 }
518 }
519 }
520
521 exit:
522 return;
523 }
524
525 /**
526 * igb_get_i2c_data - Reads the I2C SDA data bit
527 * @data: opaque pointer to adapter struct
528 *
529 * Returns the I2C data bit value
530 **/
igb_get_i2c_data(void * data)531 static int igb_get_i2c_data(void *data)
532 {
533 struct igb_adapter *adapter = (struct igb_adapter *)data;
534 struct e1000_hw *hw = &adapter->hw;
535 s32 i2cctl = rd32(E1000_I2CPARAMS);
536
537 return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539
540 /**
541 * igb_set_i2c_data - Sets the I2C data bit
542 * @data: pointer to hardware structure
543 * @state: I2C data value (0 or 1) to set
544 *
545 * Sets the I2C data bit
546 **/
igb_set_i2c_data(void * data,int state)547 static void igb_set_i2c_data(void *data, int state)
548 {
549 struct igb_adapter *adapter = (struct igb_adapter *)data;
550 struct e1000_hw *hw = &adapter->hw;
551 s32 i2cctl = rd32(E1000_I2CPARAMS);
552
553 if (state) {
554 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 } else {
556 i2cctl &= ~E1000_I2C_DATA_OE_N;
557 i2cctl &= ~E1000_I2C_DATA_OUT;
558 }
559
560 wr32(E1000_I2CPARAMS, i2cctl);
561 wrfl();
562 }
563
564 /**
565 * igb_set_i2c_clk - Sets the I2C SCL clock
566 * @data: pointer to hardware structure
567 * @state: state to set clock
568 *
569 * Sets the I2C clock line to state
570 **/
igb_set_i2c_clk(void * data,int state)571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 if (state) {
578 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 } else {
580 i2cctl &= ~E1000_I2C_CLK_OUT;
581 i2cctl &= ~E1000_I2C_CLK_OE_N;
582 }
583 wr32(E1000_I2CPARAMS, i2cctl);
584 wrfl();
585 }
586
587 /**
588 * igb_get_i2c_clk - Gets the I2C SCL clock state
589 * @data: pointer to hardware structure
590 *
591 * Gets the I2C clock state
592 **/
igb_get_i2c_clk(void * data)593 static int igb_get_i2c_clk(void *data)
594 {
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 .setsda = igb_set_i2c_data,
604 .setscl = igb_set_i2c_clk,
605 .getsda = igb_get_i2c_data,
606 .getscl = igb_get_i2c_clk,
607 .udelay = 5,
608 .timeout = 20,
609 };
610
611 /**
612 * igb_get_hw_dev - return device
613 * @hw: pointer to hardware structure
614 *
615 * used by hardware layer to print debugging information
616 **/
igb_get_hw_dev(struct e1000_hw * hw)617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 struct igb_adapter *adapter = hw->back;
620 return adapter->netdev;
621 }
622
623 static struct pci_driver igb_driver;
624
625 /**
626 * igb_init_module - Driver Registration Routine
627 *
628 * igb_init_module is the first routine called when the driver is
629 * loaded. All it does is register with the PCI subsystem.
630 **/
igb_init_module(void)631 static int __init igb_init_module(void)
632 {
633 int ret;
634
635 pr_info("%s\n", igb_driver_string);
636 pr_info("%s\n", igb_copyright);
637
638 #ifdef CONFIG_IGB_DCA
639 dca_register_notify(&dca_notifier);
640 #endif
641 ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 if (ret)
644 dca_unregister_notify(&dca_notifier);
645 #endif
646 return ret;
647 }
648
649 module_init(igb_init_module);
650
651 /**
652 * igb_exit_module - Driver Exit Cleanup Routine
653 *
654 * igb_exit_module is called just before the driver is removed
655 * from memory.
656 **/
igb_exit_module(void)657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 dca_unregister_notify(&dca_notifier);
661 #endif
662 pci_unregister_driver(&igb_driver);
663 }
664
665 module_exit(igb_exit_module);
666
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669 * igb_cache_ring_register - Descriptor ring to register mapping
670 * @adapter: board private structure to initialize
671 *
672 * Once we know the feature-set enabled for the device, we'll cache
673 * the register offset the descriptor ring is assigned to.
674 **/
igb_cache_ring_register(struct igb_adapter * adapter)675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 int i = 0, j = 0;
678 u32 rbase_offset = adapter->vfs_allocated_count;
679
680 switch (adapter->hw.mac.type) {
681 case e1000_82576:
682 /* The queues are allocated for virtualization such that VF 0
683 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 * In order to avoid collision we start at the first free queue
685 * and continue consuming queues in the same sequence
686 */
687 if (adapter->vfs_allocated_count) {
688 for (; i < adapter->rss_queues; i++)
689 adapter->rx_ring[i]->reg_idx = rbase_offset +
690 Q_IDX_82576(i);
691 }
692 fallthrough;
693 case e1000_82575:
694 case e1000_82580:
695 case e1000_i350:
696 case e1000_i354:
697 case e1000_i210:
698 case e1000_i211:
699 default:
700 for (; i < adapter->num_rx_queues; i++)
701 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 for (; j < adapter->num_tx_queues; j++)
703 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 break;
705 }
706 }
707
igb_rd32(struct e1000_hw * hw,u32 reg)708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 u32 value = 0;
713
714 if (E1000_REMOVED(hw_addr))
715 return ~value;
716
717 value = readl(&hw_addr[reg]);
718
719 /* reads should not return all F's */
720 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 struct net_device *netdev = igb->netdev;
722 hw->hw_addr = NULL;
723 netdev_err(netdev, "PCIe link lost\n");
724 WARN(pci_device_is_present(igb->pdev),
725 "igb: Failed to read reg 0x%x!\n", reg);
726 }
727
728 return value;
729 }
730
731 /**
732 * igb_write_ivar - configure ivar for given MSI-X vector
733 * @hw: pointer to the HW structure
734 * @msix_vector: vector number we are allocating to a given ring
735 * @index: row index of IVAR register to write within IVAR table
736 * @offset: column offset of in IVAR, should be multiple of 8
737 *
738 * This function is intended to handle the writing of the IVAR register
739 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
740 * each containing an cause allocation for an Rx and Tx ring, and a
741 * variable number of rows depending on the number of queues supported.
742 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 int index, int offset)
745 {
746 u32 ivar = array_rd32(E1000_IVAR0, index);
747
748 /* clear any bits that are currently set */
749 ivar &= ~((u32)0xFF << offset);
750
751 /* write vector and valid bit */
752 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753
754 array_wr32(E1000_IVAR0, index, ivar);
755 }
756
757 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 struct igb_adapter *adapter = q_vector->adapter;
761 struct e1000_hw *hw = &adapter->hw;
762 int rx_queue = IGB_N0_QUEUE;
763 int tx_queue = IGB_N0_QUEUE;
764 u32 msixbm = 0;
765
766 if (q_vector->rx.ring)
767 rx_queue = q_vector->rx.ring->reg_idx;
768 if (q_vector->tx.ring)
769 tx_queue = q_vector->tx.ring->reg_idx;
770
771 switch (hw->mac.type) {
772 case e1000_82575:
773 /* The 82575 assigns vectors using a bitmask, which matches the
774 * bitmask for the EICR/EIMS/EIMC registers. To assign one
775 * or more queues to a vector, we write the appropriate bits
776 * into the MSIXBM register for that vector.
777 */
778 if (rx_queue > IGB_N0_QUEUE)
779 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 if (tx_queue > IGB_N0_QUEUE)
781 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 msixbm |= E1000_EIMS_OTHER;
784 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 q_vector->eims_value = msixbm;
786 break;
787 case e1000_82576:
788 /* 82576 uses a table that essentially consists of 2 columns
789 * with 8 rows. The ordering is column-major so we use the
790 * lower 3 bits as the row index, and the 4th bit as the
791 * column offset.
792 */
793 if (rx_queue > IGB_N0_QUEUE)
794 igb_write_ivar(hw, msix_vector,
795 rx_queue & 0x7,
796 (rx_queue & 0x8) << 1);
797 if (tx_queue > IGB_N0_QUEUE)
798 igb_write_ivar(hw, msix_vector,
799 tx_queue & 0x7,
800 ((tx_queue & 0x8) << 1) + 8);
801 q_vector->eims_value = BIT(msix_vector);
802 break;
803 case e1000_82580:
804 case e1000_i350:
805 case e1000_i354:
806 case e1000_i210:
807 case e1000_i211:
808 /* On 82580 and newer adapters the scheme is similar to 82576
809 * however instead of ordering column-major we have things
810 * ordered row-major. So we traverse the table by using
811 * bit 0 as the column offset, and the remaining bits as the
812 * row index.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue >> 1,
817 (rx_queue & 0x1) << 4);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue >> 1,
821 ((tx_queue & 0x1) << 4) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 default:
825 BUG();
826 break;
827 }
828
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
831
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
834 }
835
836 /**
837 * igb_configure_msix - Configure MSI-X hardware
838 * @adapter: board private structure to initialize
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
igb_configure_msix(struct igb_adapter * adapter)843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
850
851 /* set vector for other causes, i.e. link changes */
852 switch (hw->mac.type) {
853 case e1000_82575:
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 adapter->eims_other = E1000_EIMS_OTHER;
867
868 break;
869
870 case e1000_82576:
871 case e1000_82580:
872 case e1000_i350:
873 case e1000_i354:
874 case e1000_i210:
875 case e1000_i211:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug.
878 */
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 E1000_GPIE_NSICR);
882
883 /* enable msix_other interrupt */
884 adapter->eims_other = BIT(vector);
885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
886
887 wr32(E1000_IVAR_MISC, tmp);
888 break;
889 default:
890 /* do nothing, since nothing else supports MSI-X */
891 break;
892 } /* switch (hw->mac.type) */
893
894 adapter->eims_enable_mask |= adapter->eims_other;
895
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
898
899 wrfl();
900 }
901
902 /**
903 * igb_request_msix - Initialize MSI-X interrupts
904 * @adapter: board private structure to initialize
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
igb_request_msix(struct igb_adapter * adapter)909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 unsigned int num_q_vectors = adapter->num_q_vectors;
912 struct net_device *netdev = adapter->netdev;
913 int i, err = 0, vector = 0, free_vector = 0;
914
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
917 if (err)
918 goto err_out;
919
920 if (num_q_vectors > MAX_Q_VECTORS) {
921 num_q_vectors = MAX_Q_VECTORS;
922 dev_warn(&adapter->pdev->dev,
923 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 adapter->num_q_vectors, MAX_Q_VECTORS);
925 }
926 for (i = 0; i < num_q_vectors; i++) {
927 struct igb_q_vector *q_vector = adapter->q_vector[i];
928
929 vector++;
930
931 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932
933 if (q_vector->rx.ring && q_vector->tx.ring)
934 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else if (q_vector->tx.ring)
937 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 q_vector->tx.ring->queue_index);
939 else if (q_vector->rx.ring)
940 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 q_vector->rx.ring->queue_index);
942 else
943 sprintf(q_vector->name, "%s-unused", netdev->name);
944
945 err = request_irq(adapter->msix_entries[vector].vector,
946 igb_msix_ring, 0, q_vector->name,
947 q_vector);
948 if (err)
949 goto err_free;
950 }
951
952 igb_configure_msix(adapter);
953 return 0;
954
955 err_free:
956 /* free already assigned IRQs */
957 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
958
959 vector--;
960 for (i = 0; i < vector; i++) {
961 free_irq(adapter->msix_entries[free_vector++].vector,
962 adapter->q_vector[i]);
963 }
964 err_out:
965 return err;
966 }
967
968 /**
969 * igb_free_q_vector - Free memory allocated for specific interrupt vector
970 * @adapter: board private structure to initialize
971 * @v_idx: Index of vector to be freed
972 *
973 * This function frees the memory allocated to the q_vector.
974 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)975 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
976 {
977 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
978
979 adapter->q_vector[v_idx] = NULL;
980
981 /* igb_get_stats64() might access the rings on this vector,
982 * we must wait a grace period before freeing it.
983 */
984 if (q_vector)
985 kfree_rcu(q_vector, rcu);
986 }
987
988 /**
989 * igb_reset_q_vector - Reset config for interrupt vector
990 * @adapter: board private structure to initialize
991 * @v_idx: Index of vector to be reset
992 *
993 * If NAPI is enabled it will delete any references to the
994 * NAPI struct. This is preparation for igb_free_q_vector.
995 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)996 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1001 * allocated. So, q_vector is NULL so we should stop here.
1002 */
1003 if (!q_vector)
1004 return;
1005
1006 if (q_vector->tx.ring)
1007 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1008
1009 if (q_vector->rx.ring)
1010 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1011
1012 netif_napi_del(&q_vector->napi);
1013
1014 }
1015
igb_reset_interrupt_capability(struct igb_adapter * adapter)1016 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1017 {
1018 int v_idx = adapter->num_q_vectors;
1019
1020 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1021 pci_disable_msix(adapter->pdev);
1022 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1023 pci_disable_msi(adapter->pdev);
1024
1025 while (v_idx--)
1026 igb_reset_q_vector(adapter, v_idx);
1027 }
1028
1029 /**
1030 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1031 * @adapter: board private structure to initialize
1032 *
1033 * This function frees the memory allocated to the q_vectors. In addition if
1034 * NAPI is enabled it will delete any references to the NAPI struct prior
1035 * to freeing the q_vector.
1036 **/
igb_free_q_vectors(struct igb_adapter * adapter)1037 static void igb_free_q_vectors(struct igb_adapter *adapter)
1038 {
1039 int v_idx = adapter->num_q_vectors;
1040
1041 adapter->num_tx_queues = 0;
1042 adapter->num_rx_queues = 0;
1043 adapter->num_q_vectors = 0;
1044
1045 while (v_idx--) {
1046 igb_reset_q_vector(adapter, v_idx);
1047 igb_free_q_vector(adapter, v_idx);
1048 }
1049 }
1050
1051 /**
1052 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1053 * @adapter: board private structure to initialize
1054 *
1055 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1056 * MSI-X interrupts allocated.
1057 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1058 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1059 {
1060 igb_free_q_vectors(adapter);
1061 igb_reset_interrupt_capability(adapter);
1062 }
1063
1064 /**
1065 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1066 * @adapter: board private structure to initialize
1067 * @msix: boolean value of MSIX capability
1068 *
1069 * Attempt to configure interrupts using the best available
1070 * capabilities of the hardware and kernel.
1071 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1072 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1073 {
1074 int err;
1075 int numvecs, i;
1076
1077 if (!msix)
1078 goto msi_only;
1079 adapter->flags |= IGB_FLAG_HAS_MSIX;
1080
1081 /* Number of supported queues. */
1082 adapter->num_rx_queues = adapter->rss_queues;
1083 if (adapter->vfs_allocated_count)
1084 adapter->num_tx_queues = 1;
1085 else
1086 adapter->num_tx_queues = adapter->rss_queues;
1087
1088 /* start with one vector for every Rx queue */
1089 numvecs = adapter->num_rx_queues;
1090
1091 /* if Tx handler is separate add 1 for every Tx queue */
1092 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1093 numvecs += adapter->num_tx_queues;
1094
1095 /* store the number of vectors reserved for queues */
1096 adapter->num_q_vectors = numvecs;
1097
1098 /* add 1 vector for link status interrupts */
1099 numvecs++;
1100 for (i = 0; i < numvecs; i++)
1101 adapter->msix_entries[i].entry = i;
1102
1103 err = pci_enable_msix_range(adapter->pdev,
1104 adapter->msix_entries,
1105 numvecs,
1106 numvecs);
1107 if (err > 0)
1108 return;
1109
1110 igb_reset_interrupt_capability(adapter);
1111
1112 /* If we can't do MSI-X, try MSI */
1113 msi_only:
1114 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1115 #ifdef CONFIG_PCI_IOV
1116 /* disable SR-IOV for non MSI-X configurations */
1117 if (adapter->vf_data) {
1118 struct e1000_hw *hw = &adapter->hw;
1119 /* disable iov and allow time for transactions to clear */
1120 pci_disable_sriov(adapter->pdev);
1121 msleep(500);
1122
1123 kfree(adapter->vf_mac_list);
1124 adapter->vf_mac_list = NULL;
1125 kfree(adapter->vf_data);
1126 adapter->vf_data = NULL;
1127 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1128 wrfl();
1129 msleep(100);
1130 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1131 }
1132 #endif
1133 adapter->vfs_allocated_count = 0;
1134 adapter->rss_queues = 1;
1135 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1136 adapter->num_rx_queues = 1;
1137 adapter->num_tx_queues = 1;
1138 adapter->num_q_vectors = 1;
1139 if (!pci_enable_msi(adapter->pdev))
1140 adapter->flags |= IGB_FLAG_HAS_MSI;
1141 }
1142
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1143 static void igb_add_ring(struct igb_ring *ring,
1144 struct igb_ring_container *head)
1145 {
1146 head->ring = ring;
1147 head->count++;
1148 }
1149
1150 /**
1151 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1152 * @adapter: board private structure to initialize
1153 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1154 * @v_idx: index of vector in adapter struct
1155 * @txr_count: total number of Tx rings to allocate
1156 * @txr_idx: index of first Tx ring to allocate
1157 * @rxr_count: total number of Rx rings to allocate
1158 * @rxr_idx: index of first Rx ring to allocate
1159 *
1160 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1161 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1162 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1163 int v_count, int v_idx,
1164 int txr_count, int txr_idx,
1165 int rxr_count, int rxr_idx)
1166 {
1167 struct igb_q_vector *q_vector;
1168 struct igb_ring *ring;
1169 int ring_count;
1170 size_t size;
1171
1172 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1173 if (txr_count > 1 || rxr_count > 1)
1174 return -ENOMEM;
1175
1176 ring_count = txr_count + rxr_count;
1177 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1178
1179 /* allocate q_vector and rings */
1180 q_vector = adapter->q_vector[v_idx];
1181 if (!q_vector) {
1182 q_vector = kzalloc(size, GFP_KERNEL);
1183 } else if (size > ksize(q_vector)) {
1184 struct igb_q_vector *new_q_vector;
1185
1186 new_q_vector = kzalloc(size, GFP_KERNEL);
1187 if (new_q_vector)
1188 kfree_rcu(q_vector, rcu);
1189 q_vector = new_q_vector;
1190 } else {
1191 memset(q_vector, 0, size);
1192 }
1193 if (!q_vector)
1194 return -ENOMEM;
1195
1196 /* initialize NAPI */
1197 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1198
1199 /* tie q_vector and adapter together */
1200 adapter->q_vector[v_idx] = q_vector;
1201 q_vector->adapter = adapter;
1202
1203 /* initialize work limits */
1204 q_vector->tx.work_limit = adapter->tx_work_limit;
1205
1206 /* initialize ITR configuration */
1207 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1208 q_vector->itr_val = IGB_START_ITR;
1209
1210 /* initialize pointer to rings */
1211 ring = q_vector->ring;
1212
1213 /* initialize ITR */
1214 if (rxr_count) {
1215 /* rx or rx/tx vector */
1216 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1217 q_vector->itr_val = adapter->rx_itr_setting;
1218 } else {
1219 /* tx only vector */
1220 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1221 q_vector->itr_val = adapter->tx_itr_setting;
1222 }
1223
1224 if (txr_count) {
1225 /* assign generic ring traits */
1226 ring->dev = &adapter->pdev->dev;
1227 ring->netdev = adapter->netdev;
1228
1229 /* configure backlink on ring */
1230 ring->q_vector = q_vector;
1231
1232 /* update q_vector Tx values */
1233 igb_add_ring(ring, &q_vector->tx);
1234
1235 /* For 82575, context index must be unique per ring. */
1236 if (adapter->hw.mac.type == e1000_82575)
1237 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1238
1239 /* apply Tx specific ring traits */
1240 ring->count = adapter->tx_ring_count;
1241 ring->queue_index = txr_idx;
1242
1243 ring->cbs_enable = false;
1244 ring->idleslope = 0;
1245 ring->sendslope = 0;
1246 ring->hicredit = 0;
1247 ring->locredit = 0;
1248
1249 u64_stats_init(&ring->tx_syncp);
1250 u64_stats_init(&ring->tx_syncp2);
1251
1252 /* assign ring to adapter */
1253 adapter->tx_ring[txr_idx] = ring;
1254
1255 /* push pointer to next ring */
1256 ring++;
1257 }
1258
1259 if (rxr_count) {
1260 /* assign generic ring traits */
1261 ring->dev = &adapter->pdev->dev;
1262 ring->netdev = adapter->netdev;
1263
1264 /* configure backlink on ring */
1265 ring->q_vector = q_vector;
1266
1267 /* update q_vector Rx values */
1268 igb_add_ring(ring, &q_vector->rx);
1269
1270 /* set flag indicating ring supports SCTP checksum offload */
1271 if (adapter->hw.mac.type >= e1000_82576)
1272 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1273
1274 /* On i350, i354, i210, and i211, loopback VLAN packets
1275 * have the tag byte-swapped.
1276 */
1277 if (adapter->hw.mac.type >= e1000_i350)
1278 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1279
1280 /* apply Rx specific ring traits */
1281 ring->count = adapter->rx_ring_count;
1282 ring->queue_index = rxr_idx;
1283
1284 u64_stats_init(&ring->rx_syncp);
1285
1286 /* assign ring to adapter */
1287 adapter->rx_ring[rxr_idx] = ring;
1288 }
1289
1290 return 0;
1291 }
1292
1293
1294 /**
1295 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1296 * @adapter: board private structure to initialize
1297 *
1298 * We allocate one q_vector per queue interrupt. If allocation fails we
1299 * return -ENOMEM.
1300 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1301 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1302 {
1303 int q_vectors = adapter->num_q_vectors;
1304 int rxr_remaining = adapter->num_rx_queues;
1305 int txr_remaining = adapter->num_tx_queues;
1306 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1307 int err;
1308
1309 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1310 for (; rxr_remaining; v_idx++) {
1311 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1312 0, 0, 1, rxr_idx);
1313
1314 if (err)
1315 goto err_out;
1316
1317 /* update counts and index */
1318 rxr_remaining--;
1319 rxr_idx++;
1320 }
1321 }
1322
1323 for (; v_idx < q_vectors; v_idx++) {
1324 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1325 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1326
1327 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1328 tqpv, txr_idx, rqpv, rxr_idx);
1329
1330 if (err)
1331 goto err_out;
1332
1333 /* update counts and index */
1334 rxr_remaining -= rqpv;
1335 txr_remaining -= tqpv;
1336 rxr_idx++;
1337 txr_idx++;
1338 }
1339
1340 return 0;
1341
1342 err_out:
1343 adapter->num_tx_queues = 0;
1344 adapter->num_rx_queues = 0;
1345 adapter->num_q_vectors = 0;
1346
1347 while (v_idx--)
1348 igb_free_q_vector(adapter, v_idx);
1349
1350 return -ENOMEM;
1351 }
1352
1353 /**
1354 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1355 * @adapter: board private structure to initialize
1356 * @msix: boolean value of MSIX capability
1357 *
1358 * This function initializes the interrupts and allocates all of the queues.
1359 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1360 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1361 {
1362 struct pci_dev *pdev = adapter->pdev;
1363 int err;
1364
1365 igb_set_interrupt_capability(adapter, msix);
1366
1367 err = igb_alloc_q_vectors(adapter);
1368 if (err) {
1369 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1370 goto err_alloc_q_vectors;
1371 }
1372
1373 igb_cache_ring_register(adapter);
1374
1375 return 0;
1376
1377 err_alloc_q_vectors:
1378 igb_reset_interrupt_capability(adapter);
1379 return err;
1380 }
1381
1382 /**
1383 * igb_request_irq - initialize interrupts
1384 * @adapter: board private structure to initialize
1385 *
1386 * Attempts to configure interrupts using the best available
1387 * capabilities of the hardware and kernel.
1388 **/
igb_request_irq(struct igb_adapter * adapter)1389 static int igb_request_irq(struct igb_adapter *adapter)
1390 {
1391 struct net_device *netdev = adapter->netdev;
1392 struct pci_dev *pdev = adapter->pdev;
1393 int err = 0;
1394
1395 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1396 err = igb_request_msix(adapter);
1397 if (!err)
1398 goto request_done;
1399 /* fall back to MSI */
1400 igb_free_all_tx_resources(adapter);
1401 igb_free_all_rx_resources(adapter);
1402
1403 igb_clear_interrupt_scheme(adapter);
1404 err = igb_init_interrupt_scheme(adapter, false);
1405 if (err)
1406 goto request_done;
1407
1408 igb_setup_all_tx_resources(adapter);
1409 igb_setup_all_rx_resources(adapter);
1410 igb_configure(adapter);
1411 }
1412
1413 igb_assign_vector(adapter->q_vector[0], 0);
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1416 err = request_irq(pdev->irq, igb_intr_msi, 0,
1417 netdev->name, adapter);
1418 if (!err)
1419 goto request_done;
1420
1421 /* fall back to legacy interrupts */
1422 igb_reset_interrupt_capability(adapter);
1423 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1424 }
1425
1426 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1427 netdev->name, adapter);
1428
1429 if (err)
1430 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1431 err);
1432
1433 request_done:
1434 return err;
1435 }
1436
igb_free_irq(struct igb_adapter * adapter)1437 static void igb_free_irq(struct igb_adapter *adapter)
1438 {
1439 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1440 int vector = 0, i;
1441
1442 free_irq(adapter->msix_entries[vector++].vector, adapter);
1443
1444 for (i = 0; i < adapter->num_q_vectors; i++)
1445 free_irq(adapter->msix_entries[vector++].vector,
1446 adapter->q_vector[i]);
1447 } else {
1448 free_irq(adapter->pdev->irq, adapter);
1449 }
1450 }
1451
1452 /**
1453 * igb_irq_disable - Mask off interrupt generation on the NIC
1454 * @adapter: board private structure
1455 **/
igb_irq_disable(struct igb_adapter * adapter)1456 static void igb_irq_disable(struct igb_adapter *adapter)
1457 {
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* we need to be careful when disabling interrupts. The VFs are also
1461 * mapped into these registers and so clearing the bits can cause
1462 * issues on the VF drivers so we only need to clear what we set
1463 */
1464 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1465 u32 regval = rd32(E1000_EIAM);
1466
1467 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1468 wr32(E1000_EIMC, adapter->eims_enable_mask);
1469 regval = rd32(E1000_EIAC);
1470 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1471 }
1472
1473 wr32(E1000_IAM, 0);
1474 wr32(E1000_IMC, ~0);
1475 wrfl();
1476 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477 int i;
1478
1479 for (i = 0; i < adapter->num_q_vectors; i++)
1480 synchronize_irq(adapter->msix_entries[i].vector);
1481 } else {
1482 synchronize_irq(adapter->pdev->irq);
1483 }
1484 }
1485
1486 /**
1487 * igb_irq_enable - Enable default interrupt generation settings
1488 * @adapter: board private structure
1489 **/
igb_irq_enable(struct igb_adapter * adapter)1490 static void igb_irq_enable(struct igb_adapter *adapter)
1491 {
1492 struct e1000_hw *hw = &adapter->hw;
1493
1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1496 u32 regval = rd32(E1000_EIAC);
1497
1498 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1499 regval = rd32(E1000_EIAM);
1500 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1501 wr32(E1000_EIMS, adapter->eims_enable_mask);
1502 if (adapter->vfs_allocated_count) {
1503 wr32(E1000_MBVFIMR, 0xFF);
1504 ims |= E1000_IMS_VMMB;
1505 }
1506 wr32(E1000_IMS, ims);
1507 } else {
1508 wr32(E1000_IMS, IMS_ENABLE_MASK |
1509 E1000_IMS_DRSTA);
1510 wr32(E1000_IAM, IMS_ENABLE_MASK |
1511 E1000_IMS_DRSTA);
1512 }
1513 }
1514
igb_update_mng_vlan(struct igb_adapter * adapter)1515 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1516 {
1517 struct e1000_hw *hw = &adapter->hw;
1518 u16 pf_id = adapter->vfs_allocated_count;
1519 u16 vid = adapter->hw.mng_cookie.vlan_id;
1520 u16 old_vid = adapter->mng_vlan_id;
1521
1522 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1523 /* add VID to filter table */
1524 igb_vfta_set(hw, vid, pf_id, true, true);
1525 adapter->mng_vlan_id = vid;
1526 } else {
1527 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1528 }
1529
1530 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1531 (vid != old_vid) &&
1532 !test_bit(old_vid, adapter->active_vlans)) {
1533 /* remove VID from filter table */
1534 igb_vfta_set(hw, vid, pf_id, false, true);
1535 }
1536 }
1537
1538 /**
1539 * igb_release_hw_control - release control of the h/w to f/w
1540 * @adapter: address of board private structure
1541 *
1542 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1543 * For ASF and Pass Through versions of f/w this means that the
1544 * driver is no longer loaded.
1545 **/
igb_release_hw_control(struct igb_adapter * adapter)1546 static void igb_release_hw_control(struct igb_adapter *adapter)
1547 {
1548 struct e1000_hw *hw = &adapter->hw;
1549 u32 ctrl_ext;
1550
1551 /* Let firmware take over control of h/w */
1552 ctrl_ext = rd32(E1000_CTRL_EXT);
1553 wr32(E1000_CTRL_EXT,
1554 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1555 }
1556
1557 /**
1558 * igb_get_hw_control - get control of the h/w from f/w
1559 * @adapter: address of board private structure
1560 *
1561 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1562 * For ASF and Pass Through versions of f/w this means that
1563 * the driver is loaded.
1564 **/
igb_get_hw_control(struct igb_adapter * adapter)1565 static void igb_get_hw_control(struct igb_adapter *adapter)
1566 {
1567 struct e1000_hw *hw = &adapter->hw;
1568 u32 ctrl_ext;
1569
1570 /* Let firmware know the driver has taken over */
1571 ctrl_ext = rd32(E1000_CTRL_EXT);
1572 wr32(E1000_CTRL_EXT,
1573 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575
enable_fqtss(struct igb_adapter * adapter,bool enable)1576 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1577 {
1578 struct net_device *netdev = adapter->netdev;
1579 struct e1000_hw *hw = &adapter->hw;
1580
1581 WARN_ON(hw->mac.type != e1000_i210);
1582
1583 if (enable)
1584 adapter->flags |= IGB_FLAG_FQTSS;
1585 else
1586 adapter->flags &= ~IGB_FLAG_FQTSS;
1587
1588 if (netif_running(netdev))
1589 schedule_work(&adapter->reset_task);
1590 }
1591
is_fqtss_enabled(struct igb_adapter * adapter)1592 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1593 {
1594 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1595 }
1596
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1597 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1598 enum tx_queue_prio prio)
1599 {
1600 u32 val;
1601
1602 WARN_ON(hw->mac.type != e1000_i210);
1603 WARN_ON(queue < 0 || queue > 4);
1604
1605 val = rd32(E1000_I210_TXDCTL(queue));
1606
1607 if (prio == TX_QUEUE_PRIO_HIGH)
1608 val |= E1000_TXDCTL_PRIORITY;
1609 else
1610 val &= ~E1000_TXDCTL_PRIORITY;
1611
1612 wr32(E1000_I210_TXDCTL(queue), val);
1613 }
1614
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1615 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1616 {
1617 u32 val;
1618
1619 WARN_ON(hw->mac.type != e1000_i210);
1620 WARN_ON(queue < 0 || queue > 1);
1621
1622 val = rd32(E1000_I210_TQAVCC(queue));
1623
1624 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1625 val |= E1000_TQAVCC_QUEUEMODE;
1626 else
1627 val &= ~E1000_TQAVCC_QUEUEMODE;
1628
1629 wr32(E1000_I210_TQAVCC(queue), val);
1630 }
1631
is_any_cbs_enabled(struct igb_adapter * adapter)1632 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1633 {
1634 int i;
1635
1636 for (i = 0; i < adapter->num_tx_queues; i++) {
1637 if (adapter->tx_ring[i]->cbs_enable)
1638 return true;
1639 }
1640
1641 return false;
1642 }
1643
is_any_txtime_enabled(struct igb_adapter * adapter)1644 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1645 {
1646 int i;
1647
1648 for (i = 0; i < adapter->num_tx_queues; i++) {
1649 if (adapter->tx_ring[i]->launchtime_enable)
1650 return true;
1651 }
1652
1653 return false;
1654 }
1655
1656 /**
1657 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1658 * @adapter: pointer to adapter struct
1659 * @queue: queue number
1660 *
1661 * Configure CBS and Launchtime for a given hardware queue.
1662 * Parameters are retrieved from the correct Tx ring, so
1663 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1664 * for setting those correctly prior to this function being called.
1665 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1666 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1667 {
1668 struct net_device *netdev = adapter->netdev;
1669 struct e1000_hw *hw = &adapter->hw;
1670 struct igb_ring *ring;
1671 u32 tqavcc, tqavctrl;
1672 u16 value;
1673
1674 WARN_ON(hw->mac.type != e1000_i210);
1675 WARN_ON(queue < 0 || queue > 1);
1676 ring = adapter->tx_ring[queue];
1677
1678 /* If any of the Qav features is enabled, configure queues as SR and
1679 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1680 * as SP.
1681 */
1682 if (ring->cbs_enable || ring->launchtime_enable) {
1683 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1684 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1685 } else {
1686 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1687 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1688 }
1689
1690 /* If CBS is enabled, set DataTranARB and config its parameters. */
1691 if (ring->cbs_enable || queue == 0) {
1692 /* i210 does not allow the queue 0 to be in the Strict
1693 * Priority mode while the Qav mode is enabled, so,
1694 * instead of disabling strict priority mode, we give
1695 * queue 0 the maximum of credits possible.
1696 *
1697 * See section 8.12.19 of the i210 datasheet, "Note:
1698 * Queue0 QueueMode must be set to 1b when
1699 * TransmitMode is set to Qav."
1700 */
1701 if (queue == 0 && !ring->cbs_enable) {
1702 /* max "linkspeed" idleslope in kbps */
1703 ring->idleslope = 1000000;
1704 ring->hicredit = ETH_FRAME_LEN;
1705 }
1706
1707 /* Always set data transfer arbitration to credit-based
1708 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1709 * the queues.
1710 */
1711 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1712 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1713 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1714
1715 /* According to i210 datasheet section 7.2.7.7, we should set
1716 * the 'idleSlope' field from TQAVCC register following the
1717 * equation:
1718 *
1719 * For 100 Mbps link speed:
1720 *
1721 * value = BW * 0x7735 * 0.2 (E1)
1722 *
1723 * For 1000Mbps link speed:
1724 *
1725 * value = BW * 0x7735 * 2 (E2)
1726 *
1727 * E1 and E2 can be merged into one equation as shown below.
1728 * Note that 'link-speed' is in Mbps.
1729 *
1730 * value = BW * 0x7735 * 2 * link-speed
1731 * -------------- (E3)
1732 * 1000
1733 *
1734 * 'BW' is the percentage bandwidth out of full link speed
1735 * which can be found with the following equation. Note that
1736 * idleSlope here is the parameter from this function which
1737 * is in kbps.
1738 *
1739 * BW = idleSlope
1740 * ----------------- (E4)
1741 * link-speed * 1000
1742 *
1743 * That said, we can come up with a generic equation to
1744 * calculate the value we should set it TQAVCC register by
1745 * replacing 'BW' in E3 by E4. The resulting equation is:
1746 *
1747 * value = idleSlope * 0x7735 * 2 * link-speed
1748 * ----------------- -------------- (E5)
1749 * link-speed * 1000 1000
1750 *
1751 * 'link-speed' is present in both sides of the fraction so
1752 * it is canceled out. The final equation is the following:
1753 *
1754 * value = idleSlope * 61034
1755 * ----------------- (E6)
1756 * 1000000
1757 *
1758 * NOTE: For i210, given the above, we can see that idleslope
1759 * is represented in 16.38431 kbps units by the value at
1760 * the TQAVCC register (1Gbps / 61034), which reduces
1761 * the granularity for idleslope increments.
1762 * For instance, if you want to configure a 2576kbps
1763 * idleslope, the value to be written on the register
1764 * would have to be 157.23. If rounded down, you end
1765 * up with less bandwidth available than originally
1766 * required (~2572 kbps). If rounded up, you end up
1767 * with a higher bandwidth (~2589 kbps). Below the
1768 * approach we take is to always round up the
1769 * calculated value, so the resulting bandwidth might
1770 * be slightly higher for some configurations.
1771 */
1772 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1773
1774 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1775 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1776 tqavcc |= value;
1777 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1778
1779 wr32(E1000_I210_TQAVHC(queue),
1780 0x80000000 + ring->hicredit * 0x7735);
1781 } else {
1782
1783 /* Set idleSlope to zero. */
1784 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1785 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1786 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1787
1788 /* Set hiCredit to zero. */
1789 wr32(E1000_I210_TQAVHC(queue), 0);
1790
1791 /* If CBS is not enabled for any queues anymore, then return to
1792 * the default state of Data Transmission Arbitration on
1793 * TQAVCTRL.
1794 */
1795 if (!is_any_cbs_enabled(adapter)) {
1796 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1797 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1798 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1799 }
1800 }
1801
1802 /* If LaunchTime is enabled, set DataTranTIM. */
1803 if (ring->launchtime_enable) {
1804 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1805 * for any of the SR queues, and configure fetchtime delta.
1806 * XXX NOTE:
1807 * - LaunchTime will be enabled for all SR queues.
1808 * - A fixed offset can be added relative to the launch
1809 * time of all packets if configured at reg LAUNCH_OS0.
1810 * We are keeping it as 0 for now (default value).
1811 */
1812 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1813 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1814 E1000_TQAVCTRL_FETCHTIME_DELTA;
1815 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1816 } else {
1817 /* If Launchtime is not enabled for any SR queues anymore,
1818 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1819 * effectively disabling Launchtime.
1820 */
1821 if (!is_any_txtime_enabled(adapter)) {
1822 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1823 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1824 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1825 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1826 }
1827 }
1828
1829 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1830 * CBS are not configurable by software so we don't do any 'controller
1831 * configuration' in respect to these parameters.
1832 */
1833
1834 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1835 ring->cbs_enable ? "enabled" : "disabled",
1836 ring->launchtime_enable ? "enabled" : "disabled",
1837 queue,
1838 ring->idleslope, ring->sendslope,
1839 ring->hicredit, ring->locredit);
1840 }
1841
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1842 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1843 bool enable)
1844 {
1845 struct igb_ring *ring;
1846
1847 if (queue < 0 || queue > adapter->num_tx_queues)
1848 return -EINVAL;
1849
1850 ring = adapter->tx_ring[queue];
1851 ring->launchtime_enable = enable;
1852
1853 return 0;
1854 }
1855
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1856 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1857 bool enable, int idleslope, int sendslope,
1858 int hicredit, int locredit)
1859 {
1860 struct igb_ring *ring;
1861
1862 if (queue < 0 || queue > adapter->num_tx_queues)
1863 return -EINVAL;
1864
1865 ring = adapter->tx_ring[queue];
1866
1867 ring->cbs_enable = enable;
1868 ring->idleslope = idleslope;
1869 ring->sendslope = sendslope;
1870 ring->hicredit = hicredit;
1871 ring->locredit = locredit;
1872
1873 return 0;
1874 }
1875
1876 /**
1877 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1878 * @adapter: pointer to adapter struct
1879 *
1880 * Configure TQAVCTRL register switching the controller's Tx mode
1881 * if FQTSS mode is enabled or disabled. Additionally, will issue
1882 * a call to igb_config_tx_modes() per queue so any previously saved
1883 * Tx parameters are applied.
1884 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1885 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1886 {
1887 struct net_device *netdev = adapter->netdev;
1888 struct e1000_hw *hw = &adapter->hw;
1889 u32 val;
1890
1891 /* Only i210 controller supports changing the transmission mode. */
1892 if (hw->mac.type != e1000_i210)
1893 return;
1894
1895 if (is_fqtss_enabled(adapter)) {
1896 int i, max_queue;
1897
1898 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1899 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1900 * so SP queues wait for SR ones.
1901 */
1902 val = rd32(E1000_I210_TQAVCTRL);
1903 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1904 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1905 wr32(E1000_I210_TQAVCTRL, val);
1906
1907 /* Configure Tx and Rx packet buffers sizes as described in
1908 * i210 datasheet section 7.2.7.7.
1909 */
1910 val = rd32(E1000_TXPBS);
1911 val &= ~I210_TXPBSIZE_MASK;
1912 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1913 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1914 wr32(E1000_TXPBS, val);
1915
1916 val = rd32(E1000_RXPBS);
1917 val &= ~I210_RXPBSIZE_MASK;
1918 val |= I210_RXPBSIZE_PB_30KB;
1919 wr32(E1000_RXPBS, val);
1920
1921 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1922 * register should not exceed the buffer size programmed in
1923 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1924 * so according to the datasheet we should set MAX_TPKT_SIZE to
1925 * 4kB / 64.
1926 *
1927 * However, when we do so, no frame from queue 2 and 3 are
1928 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1929 * or _equal_ to the buffer size programmed in TXPBS. For this
1930 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1931 */
1932 val = (4096 - 1) / 64;
1933 wr32(E1000_I210_DTXMXPKTSZ, val);
1934
1935 /* Since FQTSS mode is enabled, apply any CBS configuration
1936 * previously set. If no previous CBS configuration has been
1937 * done, then the initial configuration is applied, which means
1938 * CBS is disabled.
1939 */
1940 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1941 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1942
1943 for (i = 0; i < max_queue; i++) {
1944 igb_config_tx_modes(adapter, i);
1945 }
1946 } else {
1947 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1948 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1949 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1950
1951 val = rd32(E1000_I210_TQAVCTRL);
1952 /* According to Section 8.12.21, the other flags we've set when
1953 * enabling FQTSS are not relevant when disabling FQTSS so we
1954 * don't set they here.
1955 */
1956 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1957 wr32(E1000_I210_TQAVCTRL, val);
1958 }
1959
1960 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1961 "enabled" : "disabled");
1962 }
1963
1964 /**
1965 * igb_configure - configure the hardware for RX and TX
1966 * @adapter: private board structure
1967 **/
igb_configure(struct igb_adapter * adapter)1968 static void igb_configure(struct igb_adapter *adapter)
1969 {
1970 struct net_device *netdev = adapter->netdev;
1971 int i;
1972
1973 igb_get_hw_control(adapter);
1974 igb_set_rx_mode(netdev);
1975 igb_setup_tx_mode(adapter);
1976
1977 igb_restore_vlan(adapter);
1978
1979 igb_setup_tctl(adapter);
1980 igb_setup_mrqc(adapter);
1981 igb_setup_rctl(adapter);
1982
1983 igb_nfc_filter_restore(adapter);
1984 igb_configure_tx(adapter);
1985 igb_configure_rx(adapter);
1986
1987 igb_rx_fifo_flush_82575(&adapter->hw);
1988
1989 /* call igb_desc_unused which always leaves
1990 * at least 1 descriptor unused to make sure
1991 * next_to_use != next_to_clean
1992 */
1993 for (i = 0; i < adapter->num_rx_queues; i++) {
1994 struct igb_ring *ring = adapter->rx_ring[i];
1995 if (ring->xsk_pool)
1996 igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
1997 igb_desc_unused(ring));
1998 else
1999 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2000 }
2001 }
2002
2003 /**
2004 * igb_power_up_link - Power up the phy/serdes link
2005 * @adapter: address of board private structure
2006 **/
igb_power_up_link(struct igb_adapter * adapter)2007 void igb_power_up_link(struct igb_adapter *adapter)
2008 {
2009 igb_reset_phy(&adapter->hw);
2010
2011 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2012 igb_power_up_phy_copper(&adapter->hw);
2013 else
2014 igb_power_up_serdes_link_82575(&adapter->hw);
2015
2016 igb_setup_link(&adapter->hw);
2017 }
2018
2019 /**
2020 * igb_power_down_link - Power down the phy/serdes link
2021 * @adapter: address of board private structure
2022 */
igb_power_down_link(struct igb_adapter * adapter)2023 static void igb_power_down_link(struct igb_adapter *adapter)
2024 {
2025 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026 igb_power_down_phy_copper_82575(&adapter->hw);
2027 else
2028 igb_shutdown_serdes_link_82575(&adapter->hw);
2029 }
2030
2031 /**
2032 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2033 * @adapter: address of the board private structure
2034 **/
igb_check_swap_media(struct igb_adapter * adapter)2035 static void igb_check_swap_media(struct igb_adapter *adapter)
2036 {
2037 struct e1000_hw *hw = &adapter->hw;
2038 u32 ctrl_ext, connsw;
2039 bool swap_now = false;
2040
2041 ctrl_ext = rd32(E1000_CTRL_EXT);
2042 connsw = rd32(E1000_CONNSW);
2043
2044 /* need to live swap if current media is copper and we have fiber/serdes
2045 * to go to.
2046 */
2047
2048 if ((hw->phy.media_type == e1000_media_type_copper) &&
2049 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2050 swap_now = true;
2051 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2052 !(connsw & E1000_CONNSW_SERDESD)) {
2053 /* copper signal takes time to appear */
2054 if (adapter->copper_tries < 4) {
2055 adapter->copper_tries++;
2056 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2057 wr32(E1000_CONNSW, connsw);
2058 return;
2059 } else {
2060 adapter->copper_tries = 0;
2061 if ((connsw & E1000_CONNSW_PHYSD) &&
2062 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2063 swap_now = true;
2064 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2065 wr32(E1000_CONNSW, connsw);
2066 }
2067 }
2068 }
2069
2070 if (!swap_now)
2071 return;
2072
2073 switch (hw->phy.media_type) {
2074 case e1000_media_type_copper:
2075 netdev_info(adapter->netdev,
2076 "MAS: changing media to fiber/serdes\n");
2077 ctrl_ext |=
2078 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2079 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2080 adapter->copper_tries = 0;
2081 break;
2082 case e1000_media_type_internal_serdes:
2083 case e1000_media_type_fiber:
2084 netdev_info(adapter->netdev,
2085 "MAS: changing media to copper\n");
2086 ctrl_ext &=
2087 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2088 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2089 break;
2090 default:
2091 /* shouldn't get here during regular operation */
2092 netdev_err(adapter->netdev,
2093 "AMS: Invalid media type found, returning\n");
2094 break;
2095 }
2096 wr32(E1000_CTRL_EXT, ctrl_ext);
2097 }
2098
2099 /**
2100 * igb_up - Open the interface and prepare it to handle traffic
2101 * @adapter: board private structure
2102 **/
igb_up(struct igb_adapter * adapter)2103 int igb_up(struct igb_adapter *adapter)
2104 {
2105 struct e1000_hw *hw = &adapter->hw;
2106 int i;
2107
2108 /* hardware has been reset, we need to reload some things */
2109 igb_configure(adapter);
2110
2111 clear_bit(__IGB_DOWN, &adapter->state);
2112
2113 for (i = 0; i < adapter->num_q_vectors; i++)
2114 napi_enable(&(adapter->q_vector[i]->napi));
2115
2116 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2117 igb_configure_msix(adapter);
2118 else
2119 igb_assign_vector(adapter->q_vector[0], 0);
2120
2121 /* Clear any pending interrupts. */
2122 rd32(E1000_TSICR);
2123 rd32(E1000_ICR);
2124 igb_irq_enable(adapter);
2125
2126 /* notify VFs that reset has been completed */
2127 if (adapter->vfs_allocated_count) {
2128 u32 reg_data = rd32(E1000_CTRL_EXT);
2129
2130 reg_data |= E1000_CTRL_EXT_PFRSTD;
2131 wr32(E1000_CTRL_EXT, reg_data);
2132 }
2133
2134 netif_tx_start_all_queues(adapter->netdev);
2135
2136 /* start the watchdog. */
2137 hw->mac.get_link_status = 1;
2138 schedule_work(&adapter->watchdog_task);
2139
2140 if ((adapter->flags & IGB_FLAG_EEE) &&
2141 (!hw->dev_spec._82575.eee_disable))
2142 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2143
2144 return 0;
2145 }
2146
igb_down(struct igb_adapter * adapter)2147 void igb_down(struct igb_adapter *adapter)
2148 {
2149 struct net_device *netdev = adapter->netdev;
2150 struct e1000_hw *hw = &adapter->hw;
2151 u32 tctl, rctl;
2152 int i;
2153
2154 /* signal that we're down so the interrupt handler does not
2155 * reschedule our watchdog timer
2156 */
2157 set_bit(__IGB_DOWN, &adapter->state);
2158
2159 /* disable receives in the hardware */
2160 rctl = rd32(E1000_RCTL);
2161 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2162 /* flush and sleep below */
2163
2164 igb_nfc_filter_exit(adapter);
2165
2166 netif_carrier_off(netdev);
2167 netif_tx_stop_all_queues(netdev);
2168
2169 /* disable transmits in the hardware */
2170 tctl = rd32(E1000_TCTL);
2171 tctl &= ~E1000_TCTL_EN;
2172 wr32(E1000_TCTL, tctl);
2173 /* flush both disables and wait for them to finish */
2174 wrfl();
2175 usleep_range(10000, 11000);
2176
2177 igb_irq_disable(adapter);
2178
2179 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2180
2181 for (i = 0; i < adapter->num_q_vectors; i++) {
2182 if (adapter->q_vector[i]) {
2183 napi_synchronize(&adapter->q_vector[i]->napi);
2184 napi_disable(&adapter->q_vector[i]->napi);
2185 }
2186 }
2187
2188 del_timer_sync(&adapter->watchdog_timer);
2189 del_timer_sync(&adapter->phy_info_timer);
2190
2191 /* record the stats before reset*/
2192 spin_lock(&adapter->stats64_lock);
2193 igb_update_stats(adapter);
2194 spin_unlock(&adapter->stats64_lock);
2195
2196 adapter->link_speed = 0;
2197 adapter->link_duplex = 0;
2198
2199 if (!pci_channel_offline(adapter->pdev))
2200 igb_reset(adapter);
2201
2202 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2203 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2204
2205 igb_clean_all_tx_rings(adapter);
2206 igb_clean_all_rx_rings(adapter);
2207 #ifdef CONFIG_IGB_DCA
2208
2209 /* since we reset the hardware DCA settings were cleared */
2210 igb_setup_dca(adapter);
2211 #endif
2212 }
2213
igb_reinit_locked(struct igb_adapter * adapter)2214 void igb_reinit_locked(struct igb_adapter *adapter)
2215 {
2216 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2217 usleep_range(1000, 2000);
2218 igb_down(adapter);
2219 igb_up(adapter);
2220 clear_bit(__IGB_RESETTING, &adapter->state);
2221 }
2222
2223 /** igb_enable_mas - Media Autosense re-enable after swap
2224 *
2225 * @adapter: adapter struct
2226 **/
igb_enable_mas(struct igb_adapter * adapter)2227 static void igb_enable_mas(struct igb_adapter *adapter)
2228 {
2229 struct e1000_hw *hw = &adapter->hw;
2230 u32 connsw = rd32(E1000_CONNSW);
2231
2232 /* configure for SerDes media detect */
2233 if ((hw->phy.media_type == e1000_media_type_copper) &&
2234 (!(connsw & E1000_CONNSW_SERDESD))) {
2235 connsw |= E1000_CONNSW_ENRGSRC;
2236 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2237 wr32(E1000_CONNSW, connsw);
2238 wrfl();
2239 }
2240 }
2241
2242 #ifdef CONFIG_IGB_HWMON
2243 /**
2244 * igb_set_i2c_bb - Init I2C interface
2245 * @hw: pointer to hardware structure
2246 **/
igb_set_i2c_bb(struct e1000_hw * hw)2247 static void igb_set_i2c_bb(struct e1000_hw *hw)
2248 {
2249 u32 ctrl_ext;
2250 s32 i2cctl;
2251
2252 ctrl_ext = rd32(E1000_CTRL_EXT);
2253 ctrl_ext |= E1000_CTRL_I2C_ENA;
2254 wr32(E1000_CTRL_EXT, ctrl_ext);
2255 wrfl();
2256
2257 i2cctl = rd32(E1000_I2CPARAMS);
2258 i2cctl |= E1000_I2CBB_EN
2259 | E1000_I2C_CLK_OE_N
2260 | E1000_I2C_DATA_OE_N;
2261 wr32(E1000_I2CPARAMS, i2cctl);
2262 wrfl();
2263 }
2264 #endif
2265
igb_reset(struct igb_adapter * adapter)2266 void igb_reset(struct igb_adapter *adapter)
2267 {
2268 struct pci_dev *pdev = adapter->pdev;
2269 struct e1000_hw *hw = &adapter->hw;
2270 struct e1000_mac_info *mac = &hw->mac;
2271 struct e1000_fc_info *fc = &hw->fc;
2272 u32 pba, hwm;
2273
2274 /* Repartition Pba for greater than 9k mtu
2275 * To take effect CTRL.RST is required.
2276 */
2277 switch (mac->type) {
2278 case e1000_i350:
2279 case e1000_i354:
2280 case e1000_82580:
2281 pba = rd32(E1000_RXPBS);
2282 pba = igb_rxpbs_adjust_82580(pba);
2283 break;
2284 case e1000_82576:
2285 pba = rd32(E1000_RXPBS);
2286 pba &= E1000_RXPBS_SIZE_MASK_82576;
2287 break;
2288 case e1000_82575:
2289 case e1000_i210:
2290 case e1000_i211:
2291 default:
2292 pba = E1000_PBA_34K;
2293 break;
2294 }
2295
2296 if (mac->type == e1000_82575) {
2297 u32 min_rx_space, min_tx_space, needed_tx_space;
2298
2299 /* write Rx PBA so that hardware can report correct Tx PBA */
2300 wr32(E1000_PBA, pba);
2301
2302 /* To maintain wire speed transmits, the Tx FIFO should be
2303 * large enough to accommodate two full transmit packets,
2304 * rounded up to the next 1KB and expressed in KB. Likewise,
2305 * the Rx FIFO should be large enough to accommodate at least
2306 * one full receive packet and is similarly rounded up and
2307 * expressed in KB.
2308 */
2309 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2310
2311 /* The Tx FIFO also stores 16 bytes of information about the Tx
2312 * but don't include Ethernet FCS because hardware appends it.
2313 * We only need to round down to the nearest 512 byte block
2314 * count since the value we care about is 2 frames, not 1.
2315 */
2316 min_tx_space = adapter->max_frame_size;
2317 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2318 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2319
2320 /* upper 16 bits has Tx packet buffer allocation size in KB */
2321 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2322
2323 /* If current Tx allocation is less than the min Tx FIFO size,
2324 * and the min Tx FIFO size is less than the current Rx FIFO
2325 * allocation, take space away from current Rx allocation.
2326 */
2327 if (needed_tx_space < pba) {
2328 pba -= needed_tx_space;
2329
2330 /* if short on Rx space, Rx wins and must trump Tx
2331 * adjustment
2332 */
2333 if (pba < min_rx_space)
2334 pba = min_rx_space;
2335 }
2336
2337 /* adjust PBA for jumbo frames */
2338 wr32(E1000_PBA, pba);
2339 }
2340
2341 /* flow control settings
2342 * The high water mark must be low enough to fit one full frame
2343 * after transmitting the pause frame. As such we must have enough
2344 * space to allow for us to complete our current transmit and then
2345 * receive the frame that is in progress from the link partner.
2346 * Set it to:
2347 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2348 */
2349 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2350
2351 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2352 fc->low_water = fc->high_water - 16;
2353 fc->pause_time = 0xFFFF;
2354 fc->send_xon = 1;
2355 fc->current_mode = fc->requested_mode;
2356
2357 /* disable receive for all VFs and wait one second */
2358 if (adapter->vfs_allocated_count) {
2359 int i;
2360
2361 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2362 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2363
2364 /* ping all the active vfs to let them know we are going down */
2365 igb_ping_all_vfs(adapter);
2366
2367 /* disable transmits and receives */
2368 wr32(E1000_VFRE, 0);
2369 wr32(E1000_VFTE, 0);
2370 }
2371
2372 /* Allow time for pending master requests to run */
2373 hw->mac.ops.reset_hw(hw);
2374 wr32(E1000_WUC, 0);
2375
2376 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2377 /* need to resetup here after media swap */
2378 adapter->ei.get_invariants(hw);
2379 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2380 }
2381 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2382 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2383 igb_enable_mas(adapter);
2384 }
2385 if (hw->mac.ops.init_hw(hw))
2386 dev_err(&pdev->dev, "Hardware Error\n");
2387
2388 /* RAR registers were cleared during init_hw, clear mac table */
2389 igb_flush_mac_table(adapter);
2390 __dev_uc_unsync(adapter->netdev, NULL);
2391
2392 /* Recover default RAR entry */
2393 igb_set_default_mac_filter(adapter);
2394
2395 /* Flow control settings reset on hardware reset, so guarantee flow
2396 * control is off when forcing speed.
2397 */
2398 if (!hw->mac.autoneg)
2399 igb_force_mac_fc(hw);
2400
2401 igb_init_dmac(adapter, pba);
2402 #ifdef CONFIG_IGB_HWMON
2403 /* Re-initialize the thermal sensor on i350 devices. */
2404 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2405 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2406 /* If present, re-initialize the external thermal sensor
2407 * interface.
2408 */
2409 if (adapter->ets)
2410 igb_set_i2c_bb(hw);
2411 mac->ops.init_thermal_sensor_thresh(hw);
2412 }
2413 }
2414 #endif
2415 /* Re-establish EEE setting */
2416 if (hw->phy.media_type == e1000_media_type_copper) {
2417 switch (mac->type) {
2418 case e1000_i350:
2419 case e1000_i210:
2420 case e1000_i211:
2421 igb_set_eee_i350(hw, true, true);
2422 break;
2423 case e1000_i354:
2424 igb_set_eee_i354(hw, true, true);
2425 break;
2426 default:
2427 break;
2428 }
2429 }
2430 if (!netif_running(adapter->netdev))
2431 igb_power_down_link(adapter);
2432
2433 igb_update_mng_vlan(adapter);
2434
2435 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2436 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2437
2438 /* Re-enable PTP, where applicable. */
2439 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2440 igb_ptp_reset(adapter);
2441
2442 igb_get_phy_info(hw);
2443 }
2444
igb_fix_features(struct net_device * netdev,netdev_features_t features)2445 static netdev_features_t igb_fix_features(struct net_device *netdev,
2446 netdev_features_t features)
2447 {
2448 /* Since there is no support for separate Rx/Tx vlan accel
2449 * enable/disable make sure Tx flag is always in same state as Rx.
2450 */
2451 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2452 features |= NETIF_F_HW_VLAN_CTAG_TX;
2453 else
2454 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2455
2456 return features;
2457 }
2458
igb_set_features(struct net_device * netdev,netdev_features_t features)2459 static int igb_set_features(struct net_device *netdev,
2460 netdev_features_t features)
2461 {
2462 netdev_features_t changed = netdev->features ^ features;
2463 struct igb_adapter *adapter = netdev_priv(netdev);
2464
2465 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2466 igb_vlan_mode(netdev, features);
2467
2468 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2469 return 0;
2470
2471 if (!(features & NETIF_F_NTUPLE)) {
2472 struct hlist_node *node2;
2473 struct igb_nfc_filter *rule;
2474
2475 spin_lock(&adapter->nfc_lock);
2476 hlist_for_each_entry_safe(rule, node2,
2477 &adapter->nfc_filter_list, nfc_node) {
2478 igb_erase_filter(adapter, rule);
2479 hlist_del(&rule->nfc_node);
2480 kfree(rule);
2481 }
2482 spin_unlock(&adapter->nfc_lock);
2483 adapter->nfc_filter_count = 0;
2484 }
2485
2486 netdev->features = features;
2487
2488 if (netif_running(netdev))
2489 igb_reinit_locked(adapter);
2490 else
2491 igb_reset(adapter);
2492
2493 return 1;
2494 }
2495
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)2496 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2497 struct net_device *dev,
2498 const unsigned char *addr, u16 vid,
2499 u16 flags, bool *notified,
2500 struct netlink_ext_ack *extack)
2501 {
2502 /* guarantee we can provide a unique filter for the unicast address */
2503 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2504 struct igb_adapter *adapter = netdev_priv(dev);
2505 int vfn = adapter->vfs_allocated_count;
2506
2507 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2508 return -ENOMEM;
2509 }
2510
2511 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2512 }
2513
2514 #define IGB_MAX_MAC_HDR_LEN 127
2515 #define IGB_MAX_NETWORK_HDR_LEN 511
2516
2517 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2518 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2519 netdev_features_t features)
2520 {
2521 unsigned int network_hdr_len, mac_hdr_len;
2522
2523 /* Make certain the headers can be described by a context descriptor */
2524 mac_hdr_len = skb_network_offset(skb);
2525 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2526 return features & ~(NETIF_F_HW_CSUM |
2527 NETIF_F_SCTP_CRC |
2528 NETIF_F_GSO_UDP_L4 |
2529 NETIF_F_HW_VLAN_CTAG_TX |
2530 NETIF_F_TSO |
2531 NETIF_F_TSO6);
2532
2533 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2534 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2535 return features & ~(NETIF_F_HW_CSUM |
2536 NETIF_F_SCTP_CRC |
2537 NETIF_F_GSO_UDP_L4 |
2538 NETIF_F_TSO |
2539 NETIF_F_TSO6);
2540
2541 /* We can only support IPV4 TSO in tunnels if we can mangle the
2542 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2543 */
2544 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2545 features &= ~NETIF_F_TSO;
2546
2547 return features;
2548 }
2549
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2550 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2551 {
2552 if (!is_fqtss_enabled(adapter)) {
2553 enable_fqtss(adapter, true);
2554 return;
2555 }
2556
2557 igb_config_tx_modes(adapter, queue);
2558
2559 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2560 enable_fqtss(adapter, false);
2561 }
2562
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2563 static int igb_offload_cbs(struct igb_adapter *adapter,
2564 struct tc_cbs_qopt_offload *qopt)
2565 {
2566 struct e1000_hw *hw = &adapter->hw;
2567 int err;
2568
2569 /* CBS offloading is only supported by i210 controller. */
2570 if (hw->mac.type != e1000_i210)
2571 return -EOPNOTSUPP;
2572
2573 /* CBS offloading is only supported by queue 0 and queue 1. */
2574 if (qopt->queue < 0 || qopt->queue > 1)
2575 return -EINVAL;
2576
2577 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2578 qopt->idleslope, qopt->sendslope,
2579 qopt->hicredit, qopt->locredit);
2580 if (err)
2581 return err;
2582
2583 igb_offload_apply(adapter, qopt->queue);
2584
2585 return 0;
2586 }
2587
2588 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2589 #define VLAN_PRIO_FULL_MASK (0x07)
2590
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2591 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2592 struct flow_cls_offload *f,
2593 int traffic_class,
2594 struct igb_nfc_filter *input)
2595 {
2596 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2597 struct flow_dissector *dissector = rule->match.dissector;
2598 struct netlink_ext_ack *extack = f->common.extack;
2599
2600 if (dissector->used_keys &
2601 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2602 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2603 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2604 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2605 NL_SET_ERR_MSG_MOD(extack,
2606 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2607 return -EOPNOTSUPP;
2608 }
2609
2610 if (flow_rule_match_has_control_flags(rule, extack))
2611 return -EOPNOTSUPP;
2612
2613 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2614 struct flow_match_eth_addrs match;
2615
2616 flow_rule_match_eth_addrs(rule, &match);
2617 if (!is_zero_ether_addr(match.mask->dst)) {
2618 if (!is_broadcast_ether_addr(match.mask->dst)) {
2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2620 return -EINVAL;
2621 }
2622
2623 input->filter.match_flags |=
2624 IGB_FILTER_FLAG_DST_MAC_ADDR;
2625 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2626 }
2627
2628 if (!is_zero_ether_addr(match.mask->src)) {
2629 if (!is_broadcast_ether_addr(match.mask->src)) {
2630 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2631 return -EINVAL;
2632 }
2633
2634 input->filter.match_flags |=
2635 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2636 ether_addr_copy(input->filter.src_addr, match.key->src);
2637 }
2638 }
2639
2640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2641 struct flow_match_basic match;
2642
2643 flow_rule_match_basic(rule, &match);
2644 if (match.mask->n_proto) {
2645 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2646 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2647 return -EINVAL;
2648 }
2649
2650 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2651 input->filter.etype = match.key->n_proto;
2652 }
2653 }
2654
2655 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2656 struct flow_match_vlan match;
2657
2658 flow_rule_match_vlan(rule, &match);
2659 if (match.mask->vlan_priority) {
2660 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2662 return -EINVAL;
2663 }
2664
2665 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666 input->filter.vlan_tci =
2667 (__force __be16)match.key->vlan_priority;
2668 }
2669 }
2670
2671 input->action = traffic_class;
2672 input->cookie = f->cookie;
2673
2674 return 0;
2675 }
2676
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2677 static int igb_configure_clsflower(struct igb_adapter *adapter,
2678 struct flow_cls_offload *cls_flower)
2679 {
2680 struct netlink_ext_ack *extack = cls_flower->common.extack;
2681 struct igb_nfc_filter *filter, *f;
2682 int err, tc;
2683
2684 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2685 if (tc < 0) {
2686 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2687 return -EINVAL;
2688 }
2689
2690 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2691 if (!filter)
2692 return -ENOMEM;
2693
2694 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2695 if (err < 0)
2696 goto err_parse;
2697
2698 spin_lock(&adapter->nfc_lock);
2699
2700 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2701 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2702 err = -EEXIST;
2703 NL_SET_ERR_MSG_MOD(extack,
2704 "This filter is already set in ethtool");
2705 goto err_locked;
2706 }
2707 }
2708
2709 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2710 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2711 err = -EEXIST;
2712 NL_SET_ERR_MSG_MOD(extack,
2713 "This filter is already set in cls_flower");
2714 goto err_locked;
2715 }
2716 }
2717
2718 err = igb_add_filter(adapter, filter);
2719 if (err < 0) {
2720 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2721 goto err_locked;
2722 }
2723
2724 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2725
2726 spin_unlock(&adapter->nfc_lock);
2727
2728 return 0;
2729
2730 err_locked:
2731 spin_unlock(&adapter->nfc_lock);
2732
2733 err_parse:
2734 kfree(filter);
2735
2736 return err;
2737 }
2738
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2739 static int igb_delete_clsflower(struct igb_adapter *adapter,
2740 struct flow_cls_offload *cls_flower)
2741 {
2742 struct igb_nfc_filter *filter;
2743 int err;
2744
2745 spin_lock(&adapter->nfc_lock);
2746
2747 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2748 if (filter->cookie == cls_flower->cookie)
2749 break;
2750
2751 if (!filter) {
2752 err = -ENOENT;
2753 goto out;
2754 }
2755
2756 err = igb_erase_filter(adapter, filter);
2757 if (err < 0)
2758 goto out;
2759
2760 hlist_del(&filter->nfc_node);
2761 kfree(filter);
2762
2763 out:
2764 spin_unlock(&adapter->nfc_lock);
2765
2766 return err;
2767 }
2768
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2769 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2770 struct flow_cls_offload *cls_flower)
2771 {
2772 switch (cls_flower->command) {
2773 case FLOW_CLS_REPLACE:
2774 return igb_configure_clsflower(adapter, cls_flower);
2775 case FLOW_CLS_DESTROY:
2776 return igb_delete_clsflower(adapter, cls_flower);
2777 case FLOW_CLS_STATS:
2778 return -EOPNOTSUPP;
2779 default:
2780 return -EOPNOTSUPP;
2781 }
2782 }
2783
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2784 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2785 void *cb_priv)
2786 {
2787 struct igb_adapter *adapter = cb_priv;
2788
2789 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2790 return -EOPNOTSUPP;
2791
2792 switch (type) {
2793 case TC_SETUP_CLSFLOWER:
2794 return igb_setup_tc_cls_flower(adapter, type_data);
2795
2796 default:
2797 return -EOPNOTSUPP;
2798 }
2799 }
2800
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2801 static int igb_offload_txtime(struct igb_adapter *adapter,
2802 struct tc_etf_qopt_offload *qopt)
2803 {
2804 struct e1000_hw *hw = &adapter->hw;
2805 int err;
2806
2807 /* Launchtime offloading is only supported by i210 controller. */
2808 if (hw->mac.type != e1000_i210)
2809 return -EOPNOTSUPP;
2810
2811 /* Launchtime offloading is only supported by queues 0 and 1. */
2812 if (qopt->queue < 0 || qopt->queue > 1)
2813 return -EINVAL;
2814
2815 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2816 if (err)
2817 return err;
2818
2819 igb_offload_apply(adapter, qopt->queue);
2820
2821 return 0;
2822 }
2823
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2824 static int igb_tc_query_caps(struct igb_adapter *adapter,
2825 struct tc_query_caps_base *base)
2826 {
2827 switch (base->type) {
2828 case TC_SETUP_QDISC_TAPRIO: {
2829 struct tc_taprio_caps *caps = base->caps;
2830
2831 caps->broken_mqprio = true;
2832
2833 return 0;
2834 }
2835 default:
2836 return -EOPNOTSUPP;
2837 }
2838 }
2839
2840 static LIST_HEAD(igb_block_cb_list);
2841
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2843 void *type_data)
2844 {
2845 struct igb_adapter *adapter = netdev_priv(dev);
2846
2847 switch (type) {
2848 case TC_QUERY_CAPS:
2849 return igb_tc_query_caps(adapter, type_data);
2850 case TC_SETUP_QDISC_CBS:
2851 return igb_offload_cbs(adapter, type_data);
2852 case TC_SETUP_BLOCK:
2853 return flow_block_cb_setup_simple(type_data,
2854 &igb_block_cb_list,
2855 igb_setup_tc_block_cb,
2856 adapter, adapter, true);
2857
2858 case TC_SETUP_QDISC_ETF:
2859 return igb_offload_txtime(adapter, type_data);
2860
2861 default:
2862 return -EOPNOTSUPP;
2863 }
2864 }
2865
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2866 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2867 {
2868 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2869 struct igb_adapter *adapter = netdev_priv(dev);
2870 struct bpf_prog *prog = bpf->prog, *old_prog;
2871 bool running = netif_running(dev);
2872 bool need_reset;
2873
2874 /* verify igb ring attributes are sufficient for XDP */
2875 for (i = 0; i < adapter->num_rx_queues; i++) {
2876 struct igb_ring *ring = adapter->rx_ring[i];
2877
2878 if (frame_size > igb_rx_bufsz(ring)) {
2879 NL_SET_ERR_MSG_MOD(bpf->extack,
2880 "The RX buffer size is too small for the frame size");
2881 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2882 igb_rx_bufsz(ring), frame_size);
2883 return -EINVAL;
2884 }
2885 }
2886
2887 old_prog = xchg(&adapter->xdp_prog, prog);
2888 need_reset = (!!prog != !!old_prog);
2889
2890 /* device is up and bpf is added/removed, must setup the RX queues */
2891 if (need_reset && running) {
2892 igb_close(dev);
2893 } else {
2894 for (i = 0; i < adapter->num_rx_queues; i++)
2895 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2896 adapter->xdp_prog);
2897 }
2898
2899 if (old_prog)
2900 bpf_prog_put(old_prog);
2901
2902 /* bpf is just replaced, RXQ and MTU are already setup */
2903 if (!need_reset) {
2904 return 0;
2905 } else {
2906 if (prog)
2907 xdp_features_set_redirect_target(dev, true);
2908 else
2909 xdp_features_clear_redirect_target(dev);
2910 }
2911
2912 if (running)
2913 igb_open(dev);
2914
2915 return 0;
2916 }
2917
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2918 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2919 {
2920 struct igb_adapter *adapter = netdev_priv(dev);
2921
2922 switch (xdp->command) {
2923 case XDP_SETUP_PROG:
2924 return igb_xdp_setup(dev, xdp);
2925 case XDP_SETUP_XSK_POOL:
2926 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2927 xdp->xsk.queue_id);
2928 default:
2929 return -EINVAL;
2930 }
2931 }
2932
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2933 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2934 {
2935 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2936 int cpu = smp_processor_id();
2937 struct igb_ring *tx_ring;
2938 struct netdev_queue *nq;
2939 u32 ret;
2940
2941 if (unlikely(!xdpf))
2942 return IGB_XDP_CONSUMED;
2943
2944 /* During program transitions its possible adapter->xdp_prog is assigned
2945 * but ring has not been configured yet. In this case simply abort xmit.
2946 */
2947 tx_ring = igb_xdp_is_enabled(adapter) ?
2948 igb_xdp_tx_queue_mapping(adapter) : NULL;
2949 if (unlikely(!tx_ring))
2950 return IGB_XDP_CONSUMED;
2951
2952 nq = txring_txq(tx_ring);
2953 __netif_tx_lock(nq, cpu);
2954 /* Avoid transmit queue timeout since we share it with the slow path */
2955 txq_trans_cond_update(nq);
2956 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2957 __netif_tx_unlock(nq);
2958
2959 return ret;
2960 }
2961
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2962 static int igb_xdp_xmit(struct net_device *dev, int n,
2963 struct xdp_frame **frames, u32 flags)
2964 {
2965 struct igb_adapter *adapter = netdev_priv(dev);
2966 int cpu = smp_processor_id();
2967 struct igb_ring *tx_ring;
2968 struct netdev_queue *nq;
2969 int nxmit = 0;
2970 int i;
2971
2972 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2973 return -ENETDOWN;
2974
2975 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2976 return -EINVAL;
2977
2978 /* During program transitions its possible adapter->xdp_prog is assigned
2979 * but ring has not been configured yet. In this case simply abort xmit.
2980 */
2981 tx_ring = igb_xdp_is_enabled(adapter) ?
2982 igb_xdp_tx_queue_mapping(adapter) : NULL;
2983 if (unlikely(!tx_ring))
2984 return -ENXIO;
2985
2986 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
2987 return -ENXIO;
2988
2989 nq = txring_txq(tx_ring);
2990 __netif_tx_lock(nq, cpu);
2991
2992 /* Avoid transmit queue timeout since we share it with the slow path */
2993 txq_trans_cond_update(nq);
2994
2995 for (i = 0; i < n; i++) {
2996 struct xdp_frame *xdpf = frames[i];
2997 int err;
2998
2999 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3000 if (err != IGB_XDP_TX)
3001 break;
3002 nxmit++;
3003 }
3004
3005 if (unlikely(flags & XDP_XMIT_FLUSH))
3006 igb_xdp_ring_update_tail(tx_ring);
3007
3008 __netif_tx_unlock(nq);
3009
3010 return nxmit;
3011 }
3012
3013 static const struct net_device_ops igb_netdev_ops = {
3014 .ndo_open = igb_open,
3015 .ndo_stop = igb_close,
3016 .ndo_start_xmit = igb_xmit_frame,
3017 .ndo_get_stats64 = igb_get_stats64,
3018 .ndo_set_rx_mode = igb_set_rx_mode,
3019 .ndo_set_mac_address = igb_set_mac,
3020 .ndo_change_mtu = igb_change_mtu,
3021 .ndo_eth_ioctl = igb_ioctl,
3022 .ndo_tx_timeout = igb_tx_timeout,
3023 .ndo_validate_addr = eth_validate_addr,
3024 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3025 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3026 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3027 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3028 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3029 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3030 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3031 .ndo_get_vf_config = igb_ndo_get_vf_config,
3032 .ndo_fix_features = igb_fix_features,
3033 .ndo_set_features = igb_set_features,
3034 .ndo_fdb_add = igb_ndo_fdb_add,
3035 .ndo_features_check = igb_features_check,
3036 .ndo_setup_tc = igb_setup_tc,
3037 .ndo_bpf = igb_xdp,
3038 .ndo_xdp_xmit = igb_xdp_xmit,
3039 .ndo_xsk_wakeup = igb_xsk_wakeup,
3040 };
3041
3042 /**
3043 * igb_set_fw_version - Configure version string for ethtool
3044 * @adapter: adapter struct
3045 **/
igb_set_fw_version(struct igb_adapter * adapter)3046 void igb_set_fw_version(struct igb_adapter *adapter)
3047 {
3048 struct e1000_hw *hw = &adapter->hw;
3049 struct e1000_fw_version fw;
3050
3051 igb_get_fw_version(hw, &fw);
3052
3053 switch (hw->mac.type) {
3054 case e1000_i210:
3055 case e1000_i211:
3056 if (!(igb_get_flash_presence_i210(hw))) {
3057 snprintf(adapter->fw_version,
3058 sizeof(adapter->fw_version),
3059 "%2d.%2d-%d",
3060 fw.invm_major, fw.invm_minor,
3061 fw.invm_img_type);
3062 break;
3063 }
3064 fallthrough;
3065 default:
3066 /* if option rom is valid, display its version too */
3067 if (fw.or_valid) {
3068 snprintf(adapter->fw_version,
3069 sizeof(adapter->fw_version),
3070 "%d.%d, 0x%08x, %d.%d.%d",
3071 fw.eep_major, fw.eep_minor, fw.etrack_id,
3072 fw.or_major, fw.or_build, fw.or_patch);
3073 /* no option rom */
3074 } else if (fw.etrack_id != 0X0000) {
3075 snprintf(adapter->fw_version,
3076 sizeof(adapter->fw_version),
3077 "%d.%d, 0x%08x",
3078 fw.eep_major, fw.eep_minor, fw.etrack_id);
3079 } else {
3080 snprintf(adapter->fw_version,
3081 sizeof(adapter->fw_version),
3082 "%d.%d.%d",
3083 fw.eep_major, fw.eep_minor, fw.eep_build);
3084 }
3085 break;
3086 }
3087 }
3088
3089 /**
3090 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3091 *
3092 * @adapter: adapter struct
3093 **/
igb_init_mas(struct igb_adapter * adapter)3094 static void igb_init_mas(struct igb_adapter *adapter)
3095 {
3096 struct e1000_hw *hw = &adapter->hw;
3097 u16 eeprom_data;
3098
3099 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3100 switch (hw->bus.func) {
3101 case E1000_FUNC_0:
3102 if (eeprom_data & IGB_MAS_ENABLE_0) {
3103 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3104 netdev_info(adapter->netdev,
3105 "MAS: Enabling Media Autosense for port %d\n",
3106 hw->bus.func);
3107 }
3108 break;
3109 case E1000_FUNC_1:
3110 if (eeprom_data & IGB_MAS_ENABLE_1) {
3111 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3112 netdev_info(adapter->netdev,
3113 "MAS: Enabling Media Autosense for port %d\n",
3114 hw->bus.func);
3115 }
3116 break;
3117 case E1000_FUNC_2:
3118 if (eeprom_data & IGB_MAS_ENABLE_2) {
3119 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3120 netdev_info(adapter->netdev,
3121 "MAS: Enabling Media Autosense for port %d\n",
3122 hw->bus.func);
3123 }
3124 break;
3125 case E1000_FUNC_3:
3126 if (eeprom_data & IGB_MAS_ENABLE_3) {
3127 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3128 netdev_info(adapter->netdev,
3129 "MAS: Enabling Media Autosense for port %d\n",
3130 hw->bus.func);
3131 }
3132 break;
3133 default:
3134 /* Shouldn't get here */
3135 netdev_err(adapter->netdev,
3136 "MAS: Invalid port configuration, returning\n");
3137 break;
3138 }
3139 }
3140
3141 /**
3142 * igb_init_i2c - Init I2C interface
3143 * @adapter: pointer to adapter structure
3144 **/
igb_init_i2c(struct igb_adapter * adapter)3145 static s32 igb_init_i2c(struct igb_adapter *adapter)
3146 {
3147 s32 status = 0;
3148
3149 /* I2C interface supported on i350 devices */
3150 if (adapter->hw.mac.type != e1000_i350)
3151 return 0;
3152
3153 /* Initialize the i2c bus which is controlled by the registers.
3154 * This bus will use the i2c_algo_bit structure that implements
3155 * the protocol through toggling of the 4 bits in the register.
3156 */
3157 adapter->i2c_adap.owner = THIS_MODULE;
3158 adapter->i2c_algo = igb_i2c_algo;
3159 adapter->i2c_algo.data = adapter;
3160 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3161 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3162 strscpy(adapter->i2c_adap.name, "igb BB",
3163 sizeof(adapter->i2c_adap.name));
3164 status = i2c_bit_add_bus(&adapter->i2c_adap);
3165 return status;
3166 }
3167
3168 /**
3169 * igb_probe - Device Initialization Routine
3170 * @pdev: PCI device information struct
3171 * @ent: entry in igb_pci_tbl
3172 *
3173 * Returns 0 on success, negative on failure
3174 *
3175 * igb_probe initializes an adapter identified by a pci_dev structure.
3176 * The OS initialization, configuring of the adapter private structure,
3177 * and a hardware reset occur.
3178 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3179 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3180 {
3181 struct net_device *netdev;
3182 struct igb_adapter *adapter;
3183 struct e1000_hw *hw;
3184 u16 eeprom_data = 0;
3185 s32 ret_val;
3186 static int global_quad_port_a; /* global quad port a indication */
3187 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3188 u8 part_str[E1000_PBANUM_LENGTH];
3189 int err;
3190
3191 /* Catch broken hardware that put the wrong VF device ID in
3192 * the PCIe SR-IOV capability.
3193 */
3194 if (pdev->is_virtfn) {
3195 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3196 pci_name(pdev), pdev->vendor, pdev->device);
3197 return -EINVAL;
3198 }
3199
3200 err = pci_enable_device_mem(pdev);
3201 if (err)
3202 return err;
3203
3204 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3205 if (err) {
3206 dev_err(&pdev->dev,
3207 "No usable DMA configuration, aborting\n");
3208 goto err_dma;
3209 }
3210
3211 err = pci_request_mem_regions(pdev, igb_driver_name);
3212 if (err)
3213 goto err_pci_reg;
3214
3215 pci_set_master(pdev);
3216 pci_save_state(pdev);
3217
3218 err = -ENOMEM;
3219 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3220 IGB_MAX_TX_QUEUES);
3221 if (!netdev)
3222 goto err_alloc_etherdev;
3223
3224 SET_NETDEV_DEV(netdev, &pdev->dev);
3225
3226 pci_set_drvdata(pdev, netdev);
3227 adapter = netdev_priv(netdev);
3228 adapter->netdev = netdev;
3229 adapter->pdev = pdev;
3230 hw = &adapter->hw;
3231 hw->back = adapter;
3232 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3233
3234 err = -EIO;
3235 adapter->io_addr = pci_iomap(pdev, 0, 0);
3236 if (!adapter->io_addr)
3237 goto err_ioremap;
3238 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3239 hw->hw_addr = adapter->io_addr;
3240
3241 netdev->netdev_ops = &igb_netdev_ops;
3242 igb_set_ethtool_ops(netdev);
3243 netdev->watchdog_timeo = 5 * HZ;
3244
3245 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3246
3247 netdev->mem_start = pci_resource_start(pdev, 0);
3248 netdev->mem_end = pci_resource_end(pdev, 0);
3249
3250 /* PCI config space info */
3251 hw->vendor_id = pdev->vendor;
3252 hw->device_id = pdev->device;
3253 hw->revision_id = pdev->revision;
3254 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3255 hw->subsystem_device_id = pdev->subsystem_device;
3256
3257 /* Copy the default MAC, PHY and NVM function pointers */
3258 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3259 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3260 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3261 /* Initialize skew-specific constants */
3262 err = ei->get_invariants(hw);
3263 if (err)
3264 goto err_sw_init;
3265
3266 /* setup the private structure */
3267 err = igb_sw_init(adapter);
3268 if (err)
3269 goto err_sw_init;
3270
3271 igb_get_bus_info_pcie(hw);
3272
3273 hw->phy.autoneg_wait_to_complete = false;
3274
3275 /* Copper options */
3276 if (hw->phy.media_type == e1000_media_type_copper) {
3277 hw->phy.mdix = AUTO_ALL_MODES;
3278 hw->phy.disable_polarity_correction = false;
3279 hw->phy.ms_type = e1000_ms_hw_default;
3280 }
3281
3282 if (igb_check_reset_block(hw))
3283 dev_info(&pdev->dev,
3284 "PHY reset is blocked due to SOL/IDER session.\n");
3285
3286 /* features is initialized to 0 in allocation, it might have bits
3287 * set by igb_sw_init so we should use an or instead of an
3288 * assignment.
3289 */
3290 netdev->features |= NETIF_F_SG |
3291 NETIF_F_TSO |
3292 NETIF_F_TSO6 |
3293 NETIF_F_RXHASH |
3294 NETIF_F_RXCSUM |
3295 NETIF_F_HW_CSUM;
3296
3297 if (hw->mac.type >= e1000_82576)
3298 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3299
3300 if (hw->mac.type >= e1000_i350)
3301 netdev->features |= NETIF_F_HW_TC;
3302
3303 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3304 NETIF_F_GSO_GRE_CSUM | \
3305 NETIF_F_GSO_IPXIP4 | \
3306 NETIF_F_GSO_IPXIP6 | \
3307 NETIF_F_GSO_UDP_TUNNEL | \
3308 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3309
3310 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3311 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3312
3313 /* copy netdev features into list of user selectable features */
3314 netdev->hw_features |= netdev->features |
3315 NETIF_F_HW_VLAN_CTAG_RX |
3316 NETIF_F_HW_VLAN_CTAG_TX |
3317 NETIF_F_RXALL;
3318
3319 if (hw->mac.type >= e1000_i350)
3320 netdev->hw_features |= NETIF_F_NTUPLE;
3321
3322 netdev->features |= NETIF_F_HIGHDMA;
3323
3324 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3325 netdev->mpls_features |= NETIF_F_HW_CSUM;
3326 netdev->hw_enc_features |= netdev->vlan_features;
3327
3328 /* set this bit last since it cannot be part of vlan_features */
3329 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3330 NETIF_F_HW_VLAN_CTAG_RX |
3331 NETIF_F_HW_VLAN_CTAG_TX;
3332
3333 netdev->priv_flags |= IFF_SUPP_NOFCS;
3334
3335 netdev->priv_flags |= IFF_UNICAST_FLT;
3336 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3337 NETDEV_XDP_ACT_XSK_ZEROCOPY;
3338
3339 /* MTU range: 68 - 9216 */
3340 netdev->min_mtu = ETH_MIN_MTU;
3341 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3342
3343 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3344
3345 /* before reading the NVM, reset the controller to put the device in a
3346 * known good starting state
3347 */
3348 hw->mac.ops.reset_hw(hw);
3349
3350 /* make sure the NVM is good , i211/i210 parts can have special NVM
3351 * that doesn't contain a checksum
3352 */
3353 switch (hw->mac.type) {
3354 case e1000_i210:
3355 case e1000_i211:
3356 if (igb_get_flash_presence_i210(hw)) {
3357 if (hw->nvm.ops.validate(hw) < 0) {
3358 dev_err(&pdev->dev,
3359 "The NVM Checksum Is Not Valid\n");
3360 err = -EIO;
3361 goto err_eeprom;
3362 }
3363 }
3364 break;
3365 default:
3366 if (hw->nvm.ops.validate(hw) < 0) {
3367 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3368 err = -EIO;
3369 goto err_eeprom;
3370 }
3371 break;
3372 }
3373
3374 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3375 /* copy the MAC address out of the NVM */
3376 if (hw->mac.ops.read_mac_addr(hw))
3377 dev_err(&pdev->dev, "NVM Read Error\n");
3378 }
3379
3380 eth_hw_addr_set(netdev, hw->mac.addr);
3381
3382 if (!is_valid_ether_addr(netdev->dev_addr)) {
3383 dev_err(&pdev->dev, "Invalid MAC Address\n");
3384 err = -EIO;
3385 goto err_eeprom;
3386 }
3387
3388 igb_set_default_mac_filter(adapter);
3389
3390 /* get firmware version for ethtool -i */
3391 igb_set_fw_version(adapter);
3392
3393 /* configure RXPBSIZE and TXPBSIZE */
3394 if (hw->mac.type == e1000_i210) {
3395 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3396 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3397 }
3398
3399 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3400 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3401
3402 INIT_WORK(&adapter->reset_task, igb_reset_task);
3403 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3404
3405 /* Initialize link properties that are user-changeable */
3406 adapter->fc_autoneg = true;
3407 hw->mac.autoneg = true;
3408 hw->phy.autoneg_advertised = 0x2f;
3409
3410 hw->fc.requested_mode = e1000_fc_default;
3411 hw->fc.current_mode = e1000_fc_default;
3412
3413 igb_validate_mdi_setting(hw);
3414
3415 /* By default, support wake on port A */
3416 if (hw->bus.func == 0)
3417 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3418
3419 /* Check the NVM for wake support on non-port A ports */
3420 if (hw->mac.type >= e1000_82580)
3421 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3422 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3423 &eeprom_data);
3424 else if (hw->bus.func == 1)
3425 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3426
3427 if (eeprom_data & IGB_EEPROM_APME)
3428 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3429
3430 /* now that we have the eeprom settings, apply the special cases where
3431 * the eeprom may be wrong or the board simply won't support wake on
3432 * lan on a particular port
3433 */
3434 switch (pdev->device) {
3435 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3436 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3437 break;
3438 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3439 case E1000_DEV_ID_82576_FIBER:
3440 case E1000_DEV_ID_82576_SERDES:
3441 /* Wake events only supported on port A for dual fiber
3442 * regardless of eeprom setting
3443 */
3444 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3445 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 break;
3447 case E1000_DEV_ID_82576_QUAD_COPPER:
3448 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3449 /* if quad port adapter, disable WoL on all but port A */
3450 if (global_quad_port_a != 0)
3451 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3452 else
3453 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3454 /* Reset for multiple quad port adapters */
3455 if (++global_quad_port_a == 4)
3456 global_quad_port_a = 0;
3457 break;
3458 default:
3459 /* If the device can't wake, don't set software support */
3460 if (!device_can_wakeup(&adapter->pdev->dev))
3461 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462 }
3463
3464 /* initialize the wol settings based on the eeprom settings */
3465 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3466 adapter->wol |= E1000_WUFC_MAG;
3467
3468 /* Some vendors want WoL disabled by default, but still supported */
3469 if ((hw->mac.type == e1000_i350) &&
3470 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472 adapter->wol = 0;
3473 }
3474
3475 /* Some vendors want the ability to Use the EEPROM setting as
3476 * enable/disable only, and not for capability
3477 */
3478 if (((hw->mac.type == e1000_i350) ||
3479 (hw->mac.type == e1000_i354)) &&
3480 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3481 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3482 adapter->wol = 0;
3483 }
3484 if (hw->mac.type == e1000_i350) {
3485 if (((pdev->subsystem_device == 0x5001) ||
3486 (pdev->subsystem_device == 0x5002)) &&
3487 (hw->bus.func == 0)) {
3488 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3489 adapter->wol = 0;
3490 }
3491 if (pdev->subsystem_device == 0x1F52)
3492 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 }
3494
3495 device_set_wakeup_enable(&adapter->pdev->dev,
3496 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3497
3498 /* reset the hardware with the new settings */
3499 igb_reset(adapter);
3500
3501 /* Init the I2C interface */
3502 err = igb_init_i2c(adapter);
3503 if (err) {
3504 dev_err(&pdev->dev, "failed to init i2c interface\n");
3505 goto err_eeprom;
3506 }
3507
3508 /* let the f/w know that the h/w is now under the control of the
3509 * driver.
3510 */
3511 igb_get_hw_control(adapter);
3512
3513 strcpy(netdev->name, "eth%d");
3514 err = register_netdev(netdev);
3515 if (err)
3516 goto err_register;
3517
3518 /* carrier off reporting is important to ethtool even BEFORE open */
3519 netif_carrier_off(netdev);
3520
3521 #ifdef CONFIG_IGB_DCA
3522 if (dca_add_requester(&pdev->dev) == 0) {
3523 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3524 dev_info(&pdev->dev, "DCA enabled\n");
3525 igb_setup_dca(adapter);
3526 }
3527
3528 #endif
3529 #ifdef CONFIG_IGB_HWMON
3530 /* Initialize the thermal sensor on i350 devices. */
3531 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3532 u16 ets_word;
3533
3534 /* Read the NVM to determine if this i350 device supports an
3535 * external thermal sensor.
3536 */
3537 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3538 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3539 adapter->ets = true;
3540 else
3541 adapter->ets = false;
3542 /* Only enable I2C bit banging if an external thermal
3543 * sensor is supported.
3544 */
3545 if (adapter->ets)
3546 igb_set_i2c_bb(hw);
3547 hw->mac.ops.init_thermal_sensor_thresh(hw);
3548 if (igb_sysfs_init(adapter))
3549 dev_err(&pdev->dev,
3550 "failed to allocate sysfs resources\n");
3551 } else {
3552 adapter->ets = false;
3553 }
3554 #endif
3555 /* Check if Media Autosense is enabled */
3556 adapter->ei = *ei;
3557 if (hw->dev_spec._82575.mas_capable)
3558 igb_init_mas(adapter);
3559
3560 /* do hw tstamp init after resetting */
3561 igb_ptp_init(adapter);
3562
3563 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3564 /* print bus type/speed/width info, not applicable to i354 */
3565 if (hw->mac.type != e1000_i354) {
3566 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3567 netdev->name,
3568 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3569 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3570 "unknown"),
3571 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3572 "Width x4" :
3573 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3574 "Width x2" :
3575 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3576 "Width x1" : "unknown"), netdev->dev_addr);
3577 }
3578
3579 if ((hw->mac.type == e1000_82576 &&
3580 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3581 (hw->mac.type >= e1000_i210 ||
3582 igb_get_flash_presence_i210(hw))) {
3583 ret_val = igb_read_part_string(hw, part_str,
3584 E1000_PBANUM_LENGTH);
3585 } else {
3586 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3587 }
3588
3589 if (ret_val)
3590 strcpy(part_str, "Unknown");
3591 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3592 dev_info(&pdev->dev,
3593 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3594 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3595 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3596 adapter->num_rx_queues, adapter->num_tx_queues);
3597 if (hw->phy.media_type == e1000_media_type_copper) {
3598 switch (hw->mac.type) {
3599 case e1000_i350:
3600 case e1000_i210:
3601 case e1000_i211:
3602 /* Enable EEE for internal copper PHY devices */
3603 err = igb_set_eee_i350(hw, true, true);
3604 if ((!err) &&
3605 (!hw->dev_spec._82575.eee_disable)) {
3606 adapter->eee_advert =
3607 MDIO_EEE_100TX | MDIO_EEE_1000T;
3608 adapter->flags |= IGB_FLAG_EEE;
3609 }
3610 break;
3611 case e1000_i354:
3612 if ((rd32(E1000_CTRL_EXT) &
3613 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3614 err = igb_set_eee_i354(hw, true, true);
3615 if ((!err) &&
3616 (!hw->dev_spec._82575.eee_disable)) {
3617 adapter->eee_advert =
3618 MDIO_EEE_100TX | MDIO_EEE_1000T;
3619 adapter->flags |= IGB_FLAG_EEE;
3620 }
3621 }
3622 break;
3623 default:
3624 break;
3625 }
3626 }
3627
3628 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3629
3630 pm_runtime_put_noidle(&pdev->dev);
3631 return 0;
3632
3633 err_register:
3634 igb_release_hw_control(adapter);
3635 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3636 err_eeprom:
3637 if (!igb_check_reset_block(hw))
3638 igb_reset_phy(hw);
3639
3640 if (hw->flash_address)
3641 iounmap(hw->flash_address);
3642 err_sw_init:
3643 kfree(adapter->mac_table);
3644 kfree(adapter->shadow_vfta);
3645 igb_clear_interrupt_scheme(adapter);
3646 #ifdef CONFIG_PCI_IOV
3647 igb_disable_sriov(pdev, false);
3648 #endif
3649 pci_iounmap(pdev, adapter->io_addr);
3650 err_ioremap:
3651 free_netdev(netdev);
3652 err_alloc_etherdev:
3653 pci_release_mem_regions(pdev);
3654 err_pci_reg:
3655 err_dma:
3656 pci_disable_device(pdev);
3657 return err;
3658 }
3659
3660 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3661 static int igb_sriov_reinit(struct pci_dev *dev)
3662 {
3663 struct net_device *netdev = pci_get_drvdata(dev);
3664 struct igb_adapter *adapter = netdev_priv(netdev);
3665 struct pci_dev *pdev = adapter->pdev;
3666
3667 rtnl_lock();
3668
3669 if (netif_running(netdev))
3670 igb_close(netdev);
3671 else
3672 igb_reset(adapter);
3673
3674 igb_clear_interrupt_scheme(adapter);
3675
3676 igb_init_queue_configuration(adapter);
3677
3678 if (igb_init_interrupt_scheme(adapter, true)) {
3679 rtnl_unlock();
3680 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3681 return -ENOMEM;
3682 }
3683
3684 if (netif_running(netdev))
3685 igb_open(netdev);
3686
3687 rtnl_unlock();
3688
3689 return 0;
3690 }
3691
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3692 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3693 {
3694 struct net_device *netdev = pci_get_drvdata(pdev);
3695 struct igb_adapter *adapter = netdev_priv(netdev);
3696 struct e1000_hw *hw = &adapter->hw;
3697 unsigned long flags;
3698
3699 /* reclaim resources allocated to VFs */
3700 if (adapter->vf_data) {
3701 /* disable iov and allow time for transactions to clear */
3702 if (pci_vfs_assigned(pdev)) {
3703 dev_warn(&pdev->dev,
3704 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3705 return -EPERM;
3706 } else {
3707 pci_disable_sriov(pdev);
3708 msleep(500);
3709 }
3710 spin_lock_irqsave(&adapter->vfs_lock, flags);
3711 kfree(adapter->vf_mac_list);
3712 adapter->vf_mac_list = NULL;
3713 kfree(adapter->vf_data);
3714 adapter->vf_data = NULL;
3715 adapter->vfs_allocated_count = 0;
3716 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3717 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3718 wrfl();
3719 msleep(100);
3720 dev_info(&pdev->dev, "IOV Disabled\n");
3721
3722 /* Re-enable DMA Coalescing flag since IOV is turned off */
3723 adapter->flags |= IGB_FLAG_DMAC;
3724 }
3725
3726 return reinit ? igb_sriov_reinit(pdev) : 0;
3727 }
3728
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3729 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3730 {
3731 struct net_device *netdev = pci_get_drvdata(pdev);
3732 struct igb_adapter *adapter = netdev_priv(netdev);
3733 int old_vfs = pci_num_vf(pdev);
3734 struct vf_mac_filter *mac_list;
3735 int err = 0;
3736 int num_vf_mac_filters, i;
3737
3738 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3739 err = -EPERM;
3740 goto out;
3741 }
3742 if (!num_vfs)
3743 goto out;
3744
3745 if (old_vfs) {
3746 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3747 old_vfs, max_vfs);
3748 adapter->vfs_allocated_count = old_vfs;
3749 } else
3750 adapter->vfs_allocated_count = num_vfs;
3751
3752 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3753 sizeof(struct vf_data_storage), GFP_KERNEL);
3754
3755 /* if allocation failed then we do not support SR-IOV */
3756 if (!adapter->vf_data) {
3757 adapter->vfs_allocated_count = 0;
3758 err = -ENOMEM;
3759 goto out;
3760 }
3761
3762 /* Due to the limited number of RAR entries calculate potential
3763 * number of MAC filters available for the VFs. Reserve entries
3764 * for PF default MAC, PF MAC filters and at least one RAR entry
3765 * for each VF for VF MAC.
3766 */
3767 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3768 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3769 adapter->vfs_allocated_count);
3770
3771 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3772 sizeof(struct vf_mac_filter),
3773 GFP_KERNEL);
3774
3775 mac_list = adapter->vf_mac_list;
3776 INIT_LIST_HEAD(&adapter->vf_macs.l);
3777
3778 if (adapter->vf_mac_list) {
3779 /* Initialize list of VF MAC filters */
3780 for (i = 0; i < num_vf_mac_filters; i++) {
3781 mac_list->vf = -1;
3782 mac_list->free = true;
3783 list_add(&mac_list->l, &adapter->vf_macs.l);
3784 mac_list++;
3785 }
3786 } else {
3787 /* If we could not allocate memory for the VF MAC filters
3788 * we can continue without this feature but warn user.
3789 */
3790 dev_err(&pdev->dev,
3791 "Unable to allocate memory for VF MAC filter list\n");
3792 }
3793
3794 dev_info(&pdev->dev, "%d VFs allocated\n",
3795 adapter->vfs_allocated_count);
3796 for (i = 0; i < adapter->vfs_allocated_count; i++)
3797 igb_vf_configure(adapter, i);
3798
3799 /* DMA Coalescing is not supported in IOV mode. */
3800 adapter->flags &= ~IGB_FLAG_DMAC;
3801
3802 if (reinit) {
3803 err = igb_sriov_reinit(pdev);
3804 if (err)
3805 goto err_out;
3806 }
3807
3808 /* only call pci_enable_sriov() if no VFs are allocated already */
3809 if (!old_vfs) {
3810 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3811 if (err)
3812 goto err_out;
3813 }
3814
3815 goto out;
3816
3817 err_out:
3818 kfree(adapter->vf_mac_list);
3819 adapter->vf_mac_list = NULL;
3820 kfree(adapter->vf_data);
3821 adapter->vf_data = NULL;
3822 adapter->vfs_allocated_count = 0;
3823 out:
3824 return err;
3825 }
3826
3827 #endif
3828 /**
3829 * igb_remove_i2c - Cleanup I2C interface
3830 * @adapter: pointer to adapter structure
3831 **/
igb_remove_i2c(struct igb_adapter * adapter)3832 static void igb_remove_i2c(struct igb_adapter *adapter)
3833 {
3834 /* free the adapter bus structure */
3835 i2c_del_adapter(&adapter->i2c_adap);
3836 }
3837
3838 /**
3839 * igb_remove - Device Removal Routine
3840 * @pdev: PCI device information struct
3841 *
3842 * igb_remove is called by the PCI subsystem to alert the driver
3843 * that it should release a PCI device. The could be caused by a
3844 * Hot-Plug event, or because the driver is going to be removed from
3845 * memory.
3846 **/
igb_remove(struct pci_dev * pdev)3847 static void igb_remove(struct pci_dev *pdev)
3848 {
3849 struct net_device *netdev = pci_get_drvdata(pdev);
3850 struct igb_adapter *adapter = netdev_priv(netdev);
3851 struct e1000_hw *hw = &adapter->hw;
3852
3853 pm_runtime_get_noresume(&pdev->dev);
3854 #ifdef CONFIG_IGB_HWMON
3855 igb_sysfs_exit(adapter);
3856 #endif
3857 igb_remove_i2c(adapter);
3858 igb_ptp_stop(adapter);
3859 /* The watchdog timer may be rescheduled, so explicitly
3860 * disable watchdog from being rescheduled.
3861 */
3862 set_bit(__IGB_DOWN, &adapter->state);
3863 del_timer_sync(&adapter->watchdog_timer);
3864 del_timer_sync(&adapter->phy_info_timer);
3865
3866 cancel_work_sync(&adapter->reset_task);
3867 cancel_work_sync(&adapter->watchdog_task);
3868
3869 #ifdef CONFIG_IGB_DCA
3870 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3871 dev_info(&pdev->dev, "DCA disabled\n");
3872 dca_remove_requester(&pdev->dev);
3873 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3874 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3875 }
3876 #endif
3877
3878 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3879 * would have already happened in close and is redundant.
3880 */
3881 igb_release_hw_control(adapter);
3882
3883 #ifdef CONFIG_PCI_IOV
3884 igb_disable_sriov(pdev, false);
3885 #endif
3886
3887 unregister_netdev(netdev);
3888
3889 igb_clear_interrupt_scheme(adapter);
3890
3891 pci_iounmap(pdev, adapter->io_addr);
3892 if (hw->flash_address)
3893 iounmap(hw->flash_address);
3894 pci_release_mem_regions(pdev);
3895
3896 kfree(adapter->mac_table);
3897 kfree(adapter->shadow_vfta);
3898 free_netdev(netdev);
3899
3900 pci_disable_device(pdev);
3901 }
3902
3903 /**
3904 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3905 * @adapter: board private structure to initialize
3906 *
3907 * This function initializes the vf specific data storage and then attempts to
3908 * allocate the VFs. The reason for ordering it this way is because it is much
3909 * more expensive time wise to disable SR-IOV than it is to allocate and free
3910 * the memory for the VFs.
3911 **/
igb_probe_vfs(struct igb_adapter * adapter)3912 static void igb_probe_vfs(struct igb_adapter *adapter)
3913 {
3914 #ifdef CONFIG_PCI_IOV
3915 struct pci_dev *pdev = adapter->pdev;
3916 struct e1000_hw *hw = &adapter->hw;
3917
3918 /* Virtualization features not supported on i210 and 82580 family. */
3919 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3920 (hw->mac.type == e1000_82580))
3921 return;
3922
3923 /* Of the below we really only want the effect of getting
3924 * IGB_FLAG_HAS_MSIX set (if available), without which
3925 * igb_enable_sriov() has no effect.
3926 */
3927 igb_set_interrupt_capability(adapter, true);
3928 igb_reset_interrupt_capability(adapter);
3929
3930 pci_sriov_set_totalvfs(pdev, 7);
3931 igb_enable_sriov(pdev, max_vfs, false);
3932
3933 #endif /* CONFIG_PCI_IOV */
3934 }
3935
igb_get_max_rss_queues(struct igb_adapter * adapter)3936 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3937 {
3938 struct e1000_hw *hw = &adapter->hw;
3939 unsigned int max_rss_queues;
3940
3941 /* Determine the maximum number of RSS queues supported. */
3942 switch (hw->mac.type) {
3943 case e1000_i211:
3944 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3945 break;
3946 case e1000_82575:
3947 case e1000_i210:
3948 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3949 break;
3950 case e1000_i350:
3951 /* I350 cannot do RSS and SR-IOV at the same time */
3952 if (!!adapter->vfs_allocated_count) {
3953 max_rss_queues = 1;
3954 break;
3955 }
3956 fallthrough;
3957 case e1000_82576:
3958 if (!!adapter->vfs_allocated_count) {
3959 max_rss_queues = 2;
3960 break;
3961 }
3962 fallthrough;
3963 case e1000_82580:
3964 case e1000_i354:
3965 default:
3966 max_rss_queues = IGB_MAX_RX_QUEUES;
3967 break;
3968 }
3969
3970 return max_rss_queues;
3971 }
3972
igb_init_queue_configuration(struct igb_adapter * adapter)3973 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3974 {
3975 u32 max_rss_queues;
3976
3977 max_rss_queues = igb_get_max_rss_queues(adapter);
3978 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3979
3980 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3981 }
3982
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3983 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3984 const u32 max_rss_queues)
3985 {
3986 struct e1000_hw *hw = &adapter->hw;
3987
3988 /* Determine if we need to pair queues. */
3989 switch (hw->mac.type) {
3990 case e1000_82575:
3991 case e1000_i211:
3992 /* Device supports enough interrupts without queue pairing. */
3993 break;
3994 case e1000_82576:
3995 case e1000_82580:
3996 case e1000_i350:
3997 case e1000_i354:
3998 case e1000_i210:
3999 default:
4000 /* If rss_queues > half of max_rss_queues, pair the queues in
4001 * order to conserve interrupts due to limited supply.
4002 */
4003 if (adapter->rss_queues > (max_rss_queues / 2))
4004 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4005 else
4006 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4007 break;
4008 }
4009 }
4010
4011 /**
4012 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4013 * @adapter: board private structure to initialize
4014 *
4015 * igb_sw_init initializes the Adapter private data structure.
4016 * Fields are initialized based on PCI device information and
4017 * OS network device settings (MTU size).
4018 **/
igb_sw_init(struct igb_adapter * adapter)4019 static int igb_sw_init(struct igb_adapter *adapter)
4020 {
4021 struct e1000_hw *hw = &adapter->hw;
4022 struct net_device *netdev = adapter->netdev;
4023 struct pci_dev *pdev = adapter->pdev;
4024
4025 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4026
4027 /* set default ring sizes */
4028 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4029 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4030
4031 /* set default ITR values */
4032 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4033 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4034
4035 /* set default work limits */
4036 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4037
4038 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4039 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4040
4041 spin_lock_init(&adapter->nfc_lock);
4042 spin_lock_init(&adapter->stats64_lock);
4043
4044 /* init spinlock to avoid concurrency of VF resources */
4045 spin_lock_init(&adapter->vfs_lock);
4046 #ifdef CONFIG_PCI_IOV
4047 switch (hw->mac.type) {
4048 case e1000_82576:
4049 case e1000_i350:
4050 if (max_vfs > 7) {
4051 dev_warn(&pdev->dev,
4052 "Maximum of 7 VFs per PF, using max\n");
4053 max_vfs = adapter->vfs_allocated_count = 7;
4054 } else
4055 adapter->vfs_allocated_count = max_vfs;
4056 if (adapter->vfs_allocated_count)
4057 dev_warn(&pdev->dev,
4058 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4059 break;
4060 default:
4061 break;
4062 }
4063 #endif /* CONFIG_PCI_IOV */
4064
4065 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4066 adapter->flags |= IGB_FLAG_HAS_MSIX;
4067
4068 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4069 sizeof(struct igb_mac_addr),
4070 GFP_KERNEL);
4071 if (!adapter->mac_table)
4072 return -ENOMEM;
4073
4074 igb_probe_vfs(adapter);
4075
4076 igb_init_queue_configuration(adapter);
4077
4078 /* Setup and initialize a copy of the hw vlan table array */
4079 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4080 GFP_KERNEL);
4081 if (!adapter->shadow_vfta)
4082 return -ENOMEM;
4083
4084 /* This call may decrease the number of queues */
4085 if (igb_init_interrupt_scheme(adapter, true)) {
4086 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4087 return -ENOMEM;
4088 }
4089
4090 /* Explicitly disable IRQ since the NIC can be in any state. */
4091 igb_irq_disable(adapter);
4092
4093 if (hw->mac.type >= e1000_i350)
4094 adapter->flags &= ~IGB_FLAG_DMAC;
4095
4096 set_bit(__IGB_DOWN, &adapter->state);
4097 return 0;
4098 }
4099
4100 /**
4101 * __igb_open - Called when a network interface is made active
4102 * @netdev: network interface device structure
4103 * @resuming: indicates whether we are in a resume call
4104 *
4105 * Returns 0 on success, negative value on failure
4106 *
4107 * The open entry point is called when a network interface is made
4108 * active by the system (IFF_UP). At this point all resources needed
4109 * for transmit and receive operations are allocated, the interrupt
4110 * handler is registered with the OS, the watchdog timer is started,
4111 * and the stack is notified that the interface is ready.
4112 **/
__igb_open(struct net_device * netdev,bool resuming)4113 static int __igb_open(struct net_device *netdev, bool resuming)
4114 {
4115 struct igb_adapter *adapter = netdev_priv(netdev);
4116 struct e1000_hw *hw = &adapter->hw;
4117 struct pci_dev *pdev = adapter->pdev;
4118 int err;
4119 int i;
4120
4121 /* disallow open during test */
4122 if (test_bit(__IGB_TESTING, &adapter->state)) {
4123 WARN_ON(resuming);
4124 return -EBUSY;
4125 }
4126
4127 if (!resuming)
4128 pm_runtime_get_sync(&pdev->dev);
4129
4130 netif_carrier_off(netdev);
4131
4132 /* allocate transmit descriptors */
4133 err = igb_setup_all_tx_resources(adapter);
4134 if (err)
4135 goto err_setup_tx;
4136
4137 /* allocate receive descriptors */
4138 err = igb_setup_all_rx_resources(adapter);
4139 if (err)
4140 goto err_setup_rx;
4141
4142 igb_power_up_link(adapter);
4143
4144 /* before we allocate an interrupt, we must be ready to handle it.
4145 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4146 * as soon as we call pci_request_irq, so we have to setup our
4147 * clean_rx handler before we do so.
4148 */
4149 igb_configure(adapter);
4150
4151 err = igb_request_irq(adapter);
4152 if (err)
4153 goto err_req_irq;
4154
4155 /* Notify the stack of the actual queue counts. */
4156 err = netif_set_real_num_tx_queues(adapter->netdev,
4157 adapter->num_tx_queues);
4158 if (err)
4159 goto err_set_queues;
4160
4161 err = netif_set_real_num_rx_queues(adapter->netdev,
4162 adapter->num_rx_queues);
4163 if (err)
4164 goto err_set_queues;
4165
4166 /* From here on the code is the same as igb_up() */
4167 clear_bit(__IGB_DOWN, &adapter->state);
4168
4169 for (i = 0; i < adapter->num_q_vectors; i++)
4170 napi_enable(&(adapter->q_vector[i]->napi));
4171
4172 /* Clear any pending interrupts. */
4173 rd32(E1000_TSICR);
4174 rd32(E1000_ICR);
4175
4176 igb_irq_enable(adapter);
4177
4178 /* notify VFs that reset has been completed */
4179 if (adapter->vfs_allocated_count) {
4180 u32 reg_data = rd32(E1000_CTRL_EXT);
4181
4182 reg_data |= E1000_CTRL_EXT_PFRSTD;
4183 wr32(E1000_CTRL_EXT, reg_data);
4184 }
4185
4186 netif_tx_start_all_queues(netdev);
4187
4188 if (!resuming)
4189 pm_runtime_put(&pdev->dev);
4190
4191 /* start the watchdog. */
4192 hw->mac.get_link_status = 1;
4193 schedule_work(&adapter->watchdog_task);
4194
4195 return 0;
4196
4197 err_set_queues:
4198 igb_free_irq(adapter);
4199 err_req_irq:
4200 igb_release_hw_control(adapter);
4201 igb_power_down_link(adapter);
4202 igb_free_all_rx_resources(adapter);
4203 err_setup_rx:
4204 igb_free_all_tx_resources(adapter);
4205 err_setup_tx:
4206 igb_reset(adapter);
4207 if (!resuming)
4208 pm_runtime_put(&pdev->dev);
4209
4210 return err;
4211 }
4212
igb_open(struct net_device * netdev)4213 int igb_open(struct net_device *netdev)
4214 {
4215 return __igb_open(netdev, false);
4216 }
4217
4218 /**
4219 * __igb_close - Disables a network interface
4220 * @netdev: network interface device structure
4221 * @suspending: indicates we are in a suspend call
4222 *
4223 * Returns 0, this is not allowed to fail
4224 *
4225 * The close entry point is called when an interface is de-activated
4226 * by the OS. The hardware is still under the driver's control, but
4227 * needs to be disabled. A global MAC reset is issued to stop the
4228 * hardware, and all transmit and receive resources are freed.
4229 **/
__igb_close(struct net_device * netdev,bool suspending)4230 static int __igb_close(struct net_device *netdev, bool suspending)
4231 {
4232 struct igb_adapter *adapter = netdev_priv(netdev);
4233 struct pci_dev *pdev = adapter->pdev;
4234
4235 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4236
4237 if (!suspending)
4238 pm_runtime_get_sync(&pdev->dev);
4239
4240 igb_down(adapter);
4241 igb_free_irq(adapter);
4242
4243 igb_free_all_tx_resources(adapter);
4244 igb_free_all_rx_resources(adapter);
4245
4246 if (!suspending)
4247 pm_runtime_put_sync(&pdev->dev);
4248 return 0;
4249 }
4250
igb_close(struct net_device * netdev)4251 int igb_close(struct net_device *netdev)
4252 {
4253 if (netif_device_present(netdev) || netdev->dismantle)
4254 return __igb_close(netdev, false);
4255 return 0;
4256 }
4257
4258 /**
4259 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4260 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4261 *
4262 * Return 0 on success, negative on failure
4263 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4265 {
4266 struct device *dev = tx_ring->dev;
4267 int size;
4268
4269 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4270
4271 tx_ring->tx_buffer_info = vmalloc(size);
4272 if (!tx_ring->tx_buffer_info)
4273 goto err;
4274
4275 /* round up to nearest 4K */
4276 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4277 tx_ring->size = ALIGN(tx_ring->size, 4096);
4278
4279 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4280 &tx_ring->dma, GFP_KERNEL);
4281 if (!tx_ring->desc)
4282 goto err;
4283
4284 tx_ring->next_to_use = 0;
4285 tx_ring->next_to_clean = 0;
4286
4287 return 0;
4288
4289 err:
4290 vfree(tx_ring->tx_buffer_info);
4291 tx_ring->tx_buffer_info = NULL;
4292 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4293 return -ENOMEM;
4294 }
4295
4296 /**
4297 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4298 * (Descriptors) for all queues
4299 * @adapter: board private structure
4300 *
4301 * Return 0 on success, negative on failure
4302 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4304 {
4305 struct pci_dev *pdev = adapter->pdev;
4306 int i, err = 0;
4307
4308 for (i = 0; i < adapter->num_tx_queues; i++) {
4309 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4310 if (err) {
4311 dev_err(&pdev->dev,
4312 "Allocation for Tx Queue %u failed\n", i);
4313 for (i--; i >= 0; i--)
4314 igb_free_tx_resources(adapter->tx_ring[i]);
4315 break;
4316 }
4317 }
4318
4319 return err;
4320 }
4321
4322 /**
4323 * igb_setup_tctl - configure the transmit control registers
4324 * @adapter: Board private structure
4325 **/
igb_setup_tctl(struct igb_adapter * adapter)4326 void igb_setup_tctl(struct igb_adapter *adapter)
4327 {
4328 struct e1000_hw *hw = &adapter->hw;
4329 u32 tctl;
4330
4331 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4332 wr32(E1000_TXDCTL(0), 0);
4333
4334 /* Program the Transmit Control Register */
4335 tctl = rd32(E1000_TCTL);
4336 tctl &= ~E1000_TCTL_CT;
4337 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4338 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4339
4340 igb_config_collision_dist(hw);
4341
4342 /* Enable transmits */
4343 tctl |= E1000_TCTL_EN;
4344
4345 wr32(E1000_TCTL, tctl);
4346 }
4347
4348 /**
4349 * igb_configure_tx_ring - Configure transmit ring after Reset
4350 * @adapter: board private structure
4351 * @ring: tx ring to configure
4352 *
4353 * Configure a transmit ring after a reset.
4354 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4355 void igb_configure_tx_ring(struct igb_adapter *adapter,
4356 struct igb_ring *ring)
4357 {
4358 struct e1000_hw *hw = &adapter->hw;
4359 u32 txdctl = 0;
4360 u64 tdba = ring->dma;
4361 int reg_idx = ring->reg_idx;
4362
4363 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4364
4365 wr32(E1000_TDLEN(reg_idx),
4366 ring->count * sizeof(union e1000_adv_tx_desc));
4367 wr32(E1000_TDBAL(reg_idx),
4368 tdba & 0x00000000ffffffffULL);
4369 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4370
4371 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4372 wr32(E1000_TDH(reg_idx), 0);
4373 writel(0, ring->tail);
4374
4375 txdctl |= IGB_TX_PTHRESH;
4376 txdctl |= IGB_TX_HTHRESH << 8;
4377 txdctl |= IGB_TX_WTHRESH << 16;
4378
4379 /* reinitialize tx_buffer_info */
4380 memset(ring->tx_buffer_info, 0,
4381 sizeof(struct igb_tx_buffer) * ring->count);
4382
4383 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4384 wr32(E1000_TXDCTL(reg_idx), txdctl);
4385 }
4386
4387 /**
4388 * igb_configure_tx - Configure transmit Unit after Reset
4389 * @adapter: board private structure
4390 *
4391 * Configure the Tx unit of the MAC after a reset.
4392 **/
igb_configure_tx(struct igb_adapter * adapter)4393 static void igb_configure_tx(struct igb_adapter *adapter)
4394 {
4395 struct e1000_hw *hw = &adapter->hw;
4396 int i;
4397
4398 /* disable the queues */
4399 for (i = 0; i < adapter->num_tx_queues; i++)
4400 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4401
4402 wrfl();
4403 usleep_range(10000, 20000);
4404
4405 for (i = 0; i < adapter->num_tx_queues; i++)
4406 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4407 }
4408
4409 /**
4410 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4411 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4412 *
4413 * Returns 0 on success, negative on failure
4414 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4415 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4416 {
4417 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4418 struct device *dev = rx_ring->dev;
4419 int size, res;
4420
4421 /* XDP RX-queue info */
4422 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4423 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4424 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4425 rx_ring->queue_index,
4426 rx_ring->q_vector->napi.napi_id);
4427 if (res < 0) {
4428 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4429 rx_ring->queue_index);
4430 return res;
4431 }
4432
4433 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4434
4435 rx_ring->rx_buffer_info = vmalloc(size);
4436 if (!rx_ring->rx_buffer_info)
4437 goto err;
4438
4439 /* Round up to nearest 4K */
4440 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4441 rx_ring->size = ALIGN(rx_ring->size, 4096);
4442
4443 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4444 &rx_ring->dma, GFP_KERNEL);
4445 if (!rx_ring->desc)
4446 goto err;
4447
4448 rx_ring->next_to_alloc = 0;
4449 rx_ring->next_to_clean = 0;
4450 rx_ring->next_to_use = 0;
4451
4452 rx_ring->xdp_prog = adapter->xdp_prog;
4453
4454 return 0;
4455
4456 err:
4457 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4458 vfree(rx_ring->rx_buffer_info);
4459 rx_ring->rx_buffer_info = NULL;
4460 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4461 return -ENOMEM;
4462 }
4463
4464 /**
4465 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4466 * (Descriptors) for all queues
4467 * @adapter: board private structure
4468 *
4469 * Return 0 on success, negative on failure
4470 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4471 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4472 {
4473 struct pci_dev *pdev = adapter->pdev;
4474 int i, err = 0;
4475
4476 for (i = 0; i < adapter->num_rx_queues; i++) {
4477 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4478 if (err) {
4479 dev_err(&pdev->dev,
4480 "Allocation for Rx Queue %u failed\n", i);
4481 for (i--; i >= 0; i--)
4482 igb_free_rx_resources(adapter->rx_ring[i]);
4483 break;
4484 }
4485 }
4486
4487 return err;
4488 }
4489
4490 /**
4491 * igb_setup_mrqc - configure the multiple receive queue control registers
4492 * @adapter: Board private structure
4493 **/
igb_setup_mrqc(struct igb_adapter * adapter)4494 static void igb_setup_mrqc(struct igb_adapter *adapter)
4495 {
4496 struct e1000_hw *hw = &adapter->hw;
4497 u32 mrqc, rxcsum;
4498 u32 j, num_rx_queues;
4499 u32 rss_key[10];
4500
4501 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4502 for (j = 0; j < 10; j++)
4503 wr32(E1000_RSSRK(j), rss_key[j]);
4504
4505 num_rx_queues = adapter->rss_queues;
4506
4507 switch (hw->mac.type) {
4508 case e1000_82576:
4509 /* 82576 supports 2 RSS queues for SR-IOV */
4510 if (adapter->vfs_allocated_count)
4511 num_rx_queues = 2;
4512 break;
4513 default:
4514 break;
4515 }
4516
4517 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4518 for (j = 0; j < IGB_RETA_SIZE; j++)
4519 adapter->rss_indir_tbl[j] =
4520 (j * num_rx_queues) / IGB_RETA_SIZE;
4521 adapter->rss_indir_tbl_init = num_rx_queues;
4522 }
4523 igb_write_rss_indir_tbl(adapter);
4524
4525 /* Disable raw packet checksumming so that RSS hash is placed in
4526 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4527 * offloads as they are enabled by default
4528 */
4529 rxcsum = rd32(E1000_RXCSUM);
4530 rxcsum |= E1000_RXCSUM_PCSD;
4531
4532 if (adapter->hw.mac.type >= e1000_82576)
4533 /* Enable Receive Checksum Offload for SCTP */
4534 rxcsum |= E1000_RXCSUM_CRCOFL;
4535
4536 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4537 wr32(E1000_RXCSUM, rxcsum);
4538
4539 /* Generate RSS hash based on packet types, TCP/UDP
4540 * port numbers and/or IPv4/v6 src and dst addresses
4541 */
4542 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4543 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4544 E1000_MRQC_RSS_FIELD_IPV6 |
4545 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4546 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4547
4548 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4549 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4550 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4551 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4552
4553 /* If VMDq is enabled then we set the appropriate mode for that, else
4554 * we default to RSS so that an RSS hash is calculated per packet even
4555 * if we are only using one queue
4556 */
4557 if (adapter->vfs_allocated_count) {
4558 if (hw->mac.type > e1000_82575) {
4559 /* Set the default pool for the PF's first queue */
4560 u32 vtctl = rd32(E1000_VT_CTL);
4561
4562 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4563 E1000_VT_CTL_DISABLE_DEF_POOL);
4564 vtctl |= adapter->vfs_allocated_count <<
4565 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4566 wr32(E1000_VT_CTL, vtctl);
4567 }
4568 if (adapter->rss_queues > 1)
4569 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4570 else
4571 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4572 } else {
4573 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4574 }
4575 igb_vmm_control(adapter);
4576
4577 wr32(E1000_MRQC, mrqc);
4578 }
4579
4580 /**
4581 * igb_setup_rctl - configure the receive control registers
4582 * @adapter: Board private structure
4583 **/
igb_setup_rctl(struct igb_adapter * adapter)4584 void igb_setup_rctl(struct igb_adapter *adapter)
4585 {
4586 struct e1000_hw *hw = &adapter->hw;
4587 u32 rctl;
4588
4589 rctl = rd32(E1000_RCTL);
4590
4591 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4592 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4593
4594 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4595 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4596
4597 /* enable stripping of CRC. It's unlikely this will break BMC
4598 * redirection as it did with e1000. Newer features require
4599 * that the HW strips the CRC.
4600 */
4601 rctl |= E1000_RCTL_SECRC;
4602
4603 /* disable store bad packets and clear size bits. */
4604 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4605
4606 /* enable LPE to allow for reception of jumbo frames */
4607 rctl |= E1000_RCTL_LPE;
4608
4609 /* disable queue 0 to prevent tail write w/o re-config */
4610 wr32(E1000_RXDCTL(0), 0);
4611
4612 /* Attention!!! For SR-IOV PF driver operations you must enable
4613 * queue drop for all VF and PF queues to prevent head of line blocking
4614 * if an un-trusted VF does not provide descriptors to hardware.
4615 */
4616 if (adapter->vfs_allocated_count) {
4617 /* set all queue drop enable bits */
4618 wr32(E1000_QDE, ALL_QUEUES);
4619 }
4620
4621 /* This is useful for sniffing bad packets. */
4622 if (adapter->netdev->features & NETIF_F_RXALL) {
4623 /* UPE and MPE will be handled by normal PROMISC logic
4624 * in e1000e_set_rx_mode
4625 */
4626 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4627 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4628 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4629
4630 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4631 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4632 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4633 * and that breaks VLANs.
4634 */
4635 }
4636
4637 wr32(E1000_RCTL, rctl);
4638 }
4639
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4640 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4641 int vfn)
4642 {
4643 struct e1000_hw *hw = &adapter->hw;
4644 u32 vmolr;
4645
4646 if (size > MAX_JUMBO_FRAME_SIZE)
4647 size = MAX_JUMBO_FRAME_SIZE;
4648
4649 vmolr = rd32(E1000_VMOLR(vfn));
4650 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4651 vmolr |= size | E1000_VMOLR_LPE;
4652 wr32(E1000_VMOLR(vfn), vmolr);
4653
4654 return 0;
4655 }
4656
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4657 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4658 int vfn, bool enable)
4659 {
4660 struct e1000_hw *hw = &adapter->hw;
4661 u32 val, reg;
4662
4663 if (hw->mac.type < e1000_82576)
4664 return;
4665
4666 if (hw->mac.type == e1000_i350)
4667 reg = E1000_DVMOLR(vfn);
4668 else
4669 reg = E1000_VMOLR(vfn);
4670
4671 val = rd32(reg);
4672 if (enable)
4673 val |= E1000_VMOLR_STRVLAN;
4674 else
4675 val &= ~(E1000_VMOLR_STRVLAN);
4676 wr32(reg, val);
4677 }
4678
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4679 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4680 int vfn, bool aupe)
4681 {
4682 struct e1000_hw *hw = &adapter->hw;
4683 u32 vmolr;
4684
4685 /* This register exists only on 82576 and newer so if we are older then
4686 * we should exit and do nothing
4687 */
4688 if (hw->mac.type < e1000_82576)
4689 return;
4690
4691 vmolr = rd32(E1000_VMOLR(vfn));
4692 if (aupe)
4693 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4694 else
4695 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4696
4697 /* clear all bits that might not be set */
4698 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4699
4700 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4701 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4702 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4703 * multicast packets
4704 */
4705 if (vfn <= adapter->vfs_allocated_count)
4706 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4707
4708 wr32(E1000_VMOLR(vfn), vmolr);
4709 }
4710
4711 /**
4712 * igb_setup_srrctl - configure the split and replication receive control
4713 * registers
4714 * @adapter: Board private structure
4715 * @ring: receive ring to be configured
4716 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4717 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4718 {
4719 struct e1000_hw *hw = &adapter->hw;
4720 int reg_idx = ring->reg_idx;
4721 u32 srrctl = 0;
4722 u32 buf_size;
4723
4724 if (ring->xsk_pool)
4725 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4726 else if (ring_uses_large_buffer(ring))
4727 buf_size = IGB_RXBUFFER_3072;
4728 else
4729 buf_size = IGB_RXBUFFER_2048;
4730
4731 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4732 srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4733 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4734 if (hw->mac.type >= e1000_82580)
4735 srrctl |= E1000_SRRCTL_TIMESTAMP;
4736 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4737 * queues and rx flow control is disabled
4738 */
4739 if (adapter->vfs_allocated_count ||
4740 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4741 adapter->num_rx_queues > 1))
4742 srrctl |= E1000_SRRCTL_DROP_EN;
4743
4744 wr32(E1000_SRRCTL(reg_idx), srrctl);
4745 }
4746
4747 /**
4748 * igb_configure_rx_ring - Configure a receive ring after Reset
4749 * @adapter: board private structure
4750 * @ring: receive ring to be configured
4751 *
4752 * Configure the Rx unit of the MAC after a reset.
4753 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4754 void igb_configure_rx_ring(struct igb_adapter *adapter,
4755 struct igb_ring *ring)
4756 {
4757 struct e1000_hw *hw = &adapter->hw;
4758 union e1000_adv_rx_desc *rx_desc;
4759 u64 rdba = ring->dma;
4760 int reg_idx = ring->reg_idx;
4761 u32 rxdctl = 0;
4762
4763 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4764 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4765 if (ring->xsk_pool) {
4766 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4767 MEM_TYPE_XSK_BUFF_POOL,
4768 NULL));
4769 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4770 } else {
4771 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4772 MEM_TYPE_PAGE_SHARED,
4773 NULL));
4774 }
4775
4776 /* disable the queue */
4777 wr32(E1000_RXDCTL(reg_idx), 0);
4778
4779 /* Set DMA base address registers */
4780 wr32(E1000_RDBAL(reg_idx),
4781 rdba & 0x00000000ffffffffULL);
4782 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4783 wr32(E1000_RDLEN(reg_idx),
4784 ring->count * sizeof(union e1000_adv_rx_desc));
4785
4786 /* initialize head and tail */
4787 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4788 wr32(E1000_RDH(reg_idx), 0);
4789 writel(0, ring->tail);
4790
4791 /* set descriptor configuration */
4792 igb_setup_srrctl(adapter, ring);
4793
4794 /* set filtering for VMDQ pools */
4795 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4796
4797 rxdctl |= IGB_RX_PTHRESH;
4798 rxdctl |= IGB_RX_HTHRESH << 8;
4799 rxdctl |= IGB_RX_WTHRESH << 16;
4800
4801 if (ring->xsk_pool)
4802 memset(ring->rx_buffer_info_zc, 0,
4803 sizeof(*ring->rx_buffer_info_zc) * ring->count);
4804 else
4805 memset(ring->rx_buffer_info, 0,
4806 sizeof(*ring->rx_buffer_info) * ring->count);
4807
4808 /* initialize Rx descriptor 0 */
4809 rx_desc = IGB_RX_DESC(ring, 0);
4810 rx_desc->wb.upper.length = 0;
4811
4812 /* enable receive descriptor fetching */
4813 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4814 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4815 }
4816
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4817 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4818 struct igb_ring *rx_ring)
4819 {
4820 #if (PAGE_SIZE < 8192)
4821 struct e1000_hw *hw = &adapter->hw;
4822 #endif
4823
4824 /* set build_skb and buffer size flags */
4825 clear_ring_build_skb_enabled(rx_ring);
4826 clear_ring_uses_large_buffer(rx_ring);
4827
4828 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4829 return;
4830
4831 set_ring_build_skb_enabled(rx_ring);
4832
4833 #if (PAGE_SIZE < 8192)
4834 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4835 IGB_2K_TOO_SMALL_WITH_PADDING ||
4836 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4837 set_ring_uses_large_buffer(rx_ring);
4838 #endif
4839 }
4840
4841 /**
4842 * igb_configure_rx - Configure receive Unit after Reset
4843 * @adapter: board private structure
4844 *
4845 * Configure the Rx unit of the MAC after a reset.
4846 **/
igb_configure_rx(struct igb_adapter * adapter)4847 static void igb_configure_rx(struct igb_adapter *adapter)
4848 {
4849 int i;
4850
4851 /* set the correct pool for the PF default MAC address in entry 0 */
4852 igb_set_default_mac_filter(adapter);
4853
4854 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4855 * the Base and Length of the Rx Descriptor Ring
4856 */
4857 for (i = 0; i < adapter->num_rx_queues; i++) {
4858 struct igb_ring *rx_ring = adapter->rx_ring[i];
4859
4860 igb_set_rx_buffer_len(adapter, rx_ring);
4861 igb_configure_rx_ring(adapter, rx_ring);
4862 }
4863 }
4864
4865 /**
4866 * igb_free_tx_resources - Free Tx Resources per Queue
4867 * @tx_ring: Tx descriptor ring for a specific queue
4868 *
4869 * Free all transmit software resources
4870 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4871 void igb_free_tx_resources(struct igb_ring *tx_ring)
4872 {
4873 igb_clean_tx_ring(tx_ring);
4874
4875 vfree(tx_ring->tx_buffer_info);
4876 tx_ring->tx_buffer_info = NULL;
4877
4878 /* if not set, then don't free */
4879 if (!tx_ring->desc)
4880 return;
4881
4882 dma_free_coherent(tx_ring->dev, tx_ring->size,
4883 tx_ring->desc, tx_ring->dma);
4884
4885 tx_ring->desc = NULL;
4886 }
4887
4888 /**
4889 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4890 * @adapter: board private structure
4891 *
4892 * Free all transmit software resources
4893 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4894 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4895 {
4896 int i;
4897
4898 for (i = 0; i < adapter->num_tx_queues; i++)
4899 if (adapter->tx_ring[i])
4900 igb_free_tx_resources(adapter->tx_ring[i]);
4901 }
4902
4903 /**
4904 * igb_clean_tx_ring - Free Tx Buffers
4905 * @tx_ring: ring to be cleaned
4906 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4907 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4908 {
4909 u16 i = tx_ring->next_to_clean;
4910 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4911 u32 xsk_frames = 0;
4912
4913 while (i != tx_ring->next_to_use) {
4914 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4915
4916 /* Free all the Tx ring sk_buffs or xdp frames */
4917 if (tx_buffer->type == IGB_TYPE_SKB) {
4918 dev_kfree_skb_any(tx_buffer->skb);
4919 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4920 xdp_return_frame(tx_buffer->xdpf);
4921 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4922 xsk_frames++;
4923 goto skip_for_xsk;
4924 }
4925
4926 /* unmap skb header data */
4927 dma_unmap_single(tx_ring->dev,
4928 dma_unmap_addr(tx_buffer, dma),
4929 dma_unmap_len(tx_buffer, len),
4930 DMA_TO_DEVICE);
4931
4932 /* check for eop_desc to determine the end of the packet */
4933 eop_desc = tx_buffer->next_to_watch;
4934 tx_desc = IGB_TX_DESC(tx_ring, i);
4935
4936 /* unmap remaining buffers */
4937 while (tx_desc != eop_desc) {
4938 tx_buffer++;
4939 tx_desc++;
4940 i++;
4941 if (unlikely(i == tx_ring->count)) {
4942 i = 0;
4943 tx_buffer = tx_ring->tx_buffer_info;
4944 tx_desc = IGB_TX_DESC(tx_ring, 0);
4945 }
4946
4947 /* unmap any remaining paged data */
4948 if (dma_unmap_len(tx_buffer, len))
4949 dma_unmap_page(tx_ring->dev,
4950 dma_unmap_addr(tx_buffer, dma),
4951 dma_unmap_len(tx_buffer, len),
4952 DMA_TO_DEVICE);
4953 }
4954
4955 skip_for_xsk:
4956 tx_buffer->next_to_watch = NULL;
4957
4958 /* move us one more past the eop_desc for start of next pkt */
4959 tx_buffer++;
4960 i++;
4961 if (unlikely(i == tx_ring->count)) {
4962 i = 0;
4963 tx_buffer = tx_ring->tx_buffer_info;
4964 }
4965 }
4966
4967 /* reset BQL for queue */
4968 netdev_tx_reset_queue(txring_txq(tx_ring));
4969
4970 if (tx_ring->xsk_pool && xsk_frames)
4971 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
4972
4973 /* reset next_to_use and next_to_clean */
4974 tx_ring->next_to_use = 0;
4975 tx_ring->next_to_clean = 0;
4976 }
4977
4978 /**
4979 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4980 * @adapter: board private structure
4981 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4982 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4983 {
4984 int i;
4985
4986 for (i = 0; i < adapter->num_tx_queues; i++)
4987 if (adapter->tx_ring[i])
4988 igb_clean_tx_ring(adapter->tx_ring[i]);
4989 }
4990
4991 /**
4992 * igb_free_rx_resources - Free Rx Resources
4993 * @rx_ring: ring to clean the resources from
4994 *
4995 * Free all receive software resources
4996 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4997 void igb_free_rx_resources(struct igb_ring *rx_ring)
4998 {
4999 igb_clean_rx_ring(rx_ring);
5000
5001 rx_ring->xdp_prog = NULL;
5002 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5003 if (rx_ring->xsk_pool) {
5004 vfree(rx_ring->rx_buffer_info_zc);
5005 rx_ring->rx_buffer_info_zc = NULL;
5006 } else {
5007 vfree(rx_ring->rx_buffer_info);
5008 rx_ring->rx_buffer_info = NULL;
5009 }
5010
5011 /* if not set, then don't free */
5012 if (!rx_ring->desc)
5013 return;
5014
5015 dma_free_coherent(rx_ring->dev, rx_ring->size,
5016 rx_ring->desc, rx_ring->dma);
5017
5018 rx_ring->desc = NULL;
5019 }
5020
5021 /**
5022 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5023 * @adapter: board private structure
5024 *
5025 * Free all receive software resources
5026 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5027 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5028 {
5029 int i;
5030
5031 for (i = 0; i < adapter->num_rx_queues; i++)
5032 if (adapter->rx_ring[i])
5033 igb_free_rx_resources(adapter->rx_ring[i]);
5034 }
5035
5036 /**
5037 * igb_clean_rx_ring - Free Rx Buffers per Queue
5038 * @rx_ring: ring to free buffers from
5039 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5040 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5041 {
5042 u16 i = rx_ring->next_to_clean;
5043
5044 dev_kfree_skb(rx_ring->skb);
5045 rx_ring->skb = NULL;
5046
5047 if (rx_ring->xsk_pool) {
5048 igb_clean_rx_ring_zc(rx_ring);
5049 goto skip_for_xsk;
5050 }
5051
5052 /* Free all the Rx ring sk_buffs */
5053 while (i != rx_ring->next_to_alloc) {
5054 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5055
5056 /* Invalidate cache lines that may have been written to by
5057 * device so that we avoid corrupting memory.
5058 */
5059 dma_sync_single_range_for_cpu(rx_ring->dev,
5060 buffer_info->dma,
5061 buffer_info->page_offset,
5062 igb_rx_bufsz(rx_ring),
5063 DMA_FROM_DEVICE);
5064
5065 /* free resources associated with mapping */
5066 dma_unmap_page_attrs(rx_ring->dev,
5067 buffer_info->dma,
5068 igb_rx_pg_size(rx_ring),
5069 DMA_FROM_DEVICE,
5070 IGB_RX_DMA_ATTR);
5071 __page_frag_cache_drain(buffer_info->page,
5072 buffer_info->pagecnt_bias);
5073
5074 i++;
5075 if (i == rx_ring->count)
5076 i = 0;
5077 }
5078
5079 skip_for_xsk:
5080 rx_ring->next_to_alloc = 0;
5081 rx_ring->next_to_clean = 0;
5082 rx_ring->next_to_use = 0;
5083 }
5084
5085 /**
5086 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5087 * @adapter: board private structure
5088 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5089 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5090 {
5091 int i;
5092
5093 for (i = 0; i < adapter->num_rx_queues; i++)
5094 if (adapter->rx_ring[i])
5095 igb_clean_rx_ring(adapter->rx_ring[i]);
5096 }
5097
5098 /**
5099 * igb_set_mac - Change the Ethernet Address of the NIC
5100 * @netdev: network interface device structure
5101 * @p: pointer to an address structure
5102 *
5103 * Returns 0 on success, negative on failure
5104 **/
igb_set_mac(struct net_device * netdev,void * p)5105 static int igb_set_mac(struct net_device *netdev, void *p)
5106 {
5107 struct igb_adapter *adapter = netdev_priv(netdev);
5108 struct e1000_hw *hw = &adapter->hw;
5109 struct sockaddr *addr = p;
5110
5111 if (!is_valid_ether_addr(addr->sa_data))
5112 return -EADDRNOTAVAIL;
5113
5114 eth_hw_addr_set(netdev, addr->sa_data);
5115 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5116
5117 /* set the correct pool for the new PF MAC address in entry 0 */
5118 igb_set_default_mac_filter(adapter);
5119
5120 return 0;
5121 }
5122
5123 /**
5124 * igb_write_mc_addr_list - write multicast addresses to MTA
5125 * @netdev: network interface device structure
5126 *
5127 * Writes multicast address list to the MTA hash table.
5128 * Returns: -ENOMEM on failure
5129 * 0 on no addresses written
5130 * X on writing X addresses to MTA
5131 **/
igb_write_mc_addr_list(struct net_device * netdev)5132 static int igb_write_mc_addr_list(struct net_device *netdev)
5133 {
5134 struct igb_adapter *adapter = netdev_priv(netdev);
5135 struct e1000_hw *hw = &adapter->hw;
5136 struct netdev_hw_addr *ha;
5137 u8 *mta_list;
5138 int i;
5139
5140 if (netdev_mc_empty(netdev)) {
5141 /* nothing to program, so clear mc list */
5142 igb_update_mc_addr_list(hw, NULL, 0);
5143 igb_restore_vf_multicasts(adapter);
5144 return 0;
5145 }
5146
5147 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5148 if (!mta_list)
5149 return -ENOMEM;
5150
5151 /* The shared function expects a packed array of only addresses. */
5152 i = 0;
5153 netdev_for_each_mc_addr(ha, netdev)
5154 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5155
5156 igb_update_mc_addr_list(hw, mta_list, i);
5157 kfree(mta_list);
5158
5159 return netdev_mc_count(netdev);
5160 }
5161
igb_vlan_promisc_enable(struct igb_adapter * adapter)5162 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5163 {
5164 struct e1000_hw *hw = &adapter->hw;
5165 u32 i, pf_id;
5166
5167 switch (hw->mac.type) {
5168 case e1000_i210:
5169 case e1000_i211:
5170 case e1000_i350:
5171 /* VLAN filtering needed for VLAN prio filter */
5172 if (adapter->netdev->features & NETIF_F_NTUPLE)
5173 break;
5174 fallthrough;
5175 case e1000_82576:
5176 case e1000_82580:
5177 case e1000_i354:
5178 /* VLAN filtering needed for pool filtering */
5179 if (adapter->vfs_allocated_count)
5180 break;
5181 fallthrough;
5182 default:
5183 return 1;
5184 }
5185
5186 /* We are already in VLAN promisc, nothing to do */
5187 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5188 return 0;
5189
5190 if (!adapter->vfs_allocated_count)
5191 goto set_vfta;
5192
5193 /* Add PF to all active pools */
5194 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5195
5196 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5197 u32 vlvf = rd32(E1000_VLVF(i));
5198
5199 vlvf |= BIT(pf_id);
5200 wr32(E1000_VLVF(i), vlvf);
5201 }
5202
5203 set_vfta:
5204 /* Set all bits in the VLAN filter table array */
5205 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5206 hw->mac.ops.write_vfta(hw, i, ~0U);
5207
5208 /* Set flag so we don't redo unnecessary work */
5209 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5210
5211 return 0;
5212 }
5213
5214 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5215 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5216 {
5217 struct e1000_hw *hw = &adapter->hw;
5218 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5219 u32 vid_start = vfta_offset * 32;
5220 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5221 u32 i, vid, word, bits, pf_id;
5222
5223 /* guarantee that we don't scrub out management VLAN */
5224 vid = adapter->mng_vlan_id;
5225 if (vid >= vid_start && vid < vid_end)
5226 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5227
5228 if (!adapter->vfs_allocated_count)
5229 goto set_vfta;
5230
5231 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5232
5233 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5234 u32 vlvf = rd32(E1000_VLVF(i));
5235
5236 /* pull VLAN ID from VLVF */
5237 vid = vlvf & VLAN_VID_MASK;
5238
5239 /* only concern ourselves with a certain range */
5240 if (vid < vid_start || vid >= vid_end)
5241 continue;
5242
5243 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5244 /* record VLAN ID in VFTA */
5245 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5246
5247 /* if PF is part of this then continue */
5248 if (test_bit(vid, adapter->active_vlans))
5249 continue;
5250 }
5251
5252 /* remove PF from the pool */
5253 bits = ~BIT(pf_id);
5254 bits &= rd32(E1000_VLVF(i));
5255 wr32(E1000_VLVF(i), bits);
5256 }
5257
5258 set_vfta:
5259 /* extract values from active_vlans and write back to VFTA */
5260 for (i = VFTA_BLOCK_SIZE; i--;) {
5261 vid = (vfta_offset + i) * 32;
5262 word = vid / BITS_PER_LONG;
5263 bits = vid % BITS_PER_LONG;
5264
5265 vfta[i] |= adapter->active_vlans[word] >> bits;
5266
5267 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5268 }
5269 }
5270
igb_vlan_promisc_disable(struct igb_adapter * adapter)5271 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5272 {
5273 u32 i;
5274
5275 /* We are not in VLAN promisc, nothing to do */
5276 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5277 return;
5278
5279 /* Set flag so we don't redo unnecessary work */
5280 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5281
5282 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5283 igb_scrub_vfta(adapter, i);
5284 }
5285
5286 /**
5287 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5288 * @netdev: network interface device structure
5289 *
5290 * The set_rx_mode entry point is called whenever the unicast or multicast
5291 * address lists or the network interface flags are updated. This routine is
5292 * responsible for configuring the hardware for proper unicast, multicast,
5293 * promiscuous mode, and all-multi behavior.
5294 **/
igb_set_rx_mode(struct net_device * netdev)5295 static void igb_set_rx_mode(struct net_device *netdev)
5296 {
5297 struct igb_adapter *adapter = netdev_priv(netdev);
5298 struct e1000_hw *hw = &adapter->hw;
5299 unsigned int vfn = adapter->vfs_allocated_count;
5300 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5301 int count;
5302
5303 /* Check for Promiscuous and All Multicast modes */
5304 if (netdev->flags & IFF_PROMISC) {
5305 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5306 vmolr |= E1000_VMOLR_MPME;
5307
5308 /* enable use of UTA filter to force packets to default pool */
5309 if (hw->mac.type == e1000_82576)
5310 vmolr |= E1000_VMOLR_ROPE;
5311 } else {
5312 if (netdev->flags & IFF_ALLMULTI) {
5313 rctl |= E1000_RCTL_MPE;
5314 vmolr |= E1000_VMOLR_MPME;
5315 } else {
5316 /* Write addresses to the MTA, if the attempt fails
5317 * then we should just turn on promiscuous mode so
5318 * that we can at least receive multicast traffic
5319 */
5320 count = igb_write_mc_addr_list(netdev);
5321 if (count < 0) {
5322 rctl |= E1000_RCTL_MPE;
5323 vmolr |= E1000_VMOLR_MPME;
5324 } else if (count) {
5325 vmolr |= E1000_VMOLR_ROMPE;
5326 }
5327 }
5328 }
5329
5330 /* Write addresses to available RAR registers, if there is not
5331 * sufficient space to store all the addresses then enable
5332 * unicast promiscuous mode
5333 */
5334 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5335 rctl |= E1000_RCTL_UPE;
5336 vmolr |= E1000_VMOLR_ROPE;
5337 }
5338
5339 /* enable VLAN filtering by default */
5340 rctl |= E1000_RCTL_VFE;
5341
5342 /* disable VLAN filtering for modes that require it */
5343 if ((netdev->flags & IFF_PROMISC) ||
5344 (netdev->features & NETIF_F_RXALL)) {
5345 /* if we fail to set all rules then just clear VFE */
5346 if (igb_vlan_promisc_enable(adapter))
5347 rctl &= ~E1000_RCTL_VFE;
5348 } else {
5349 igb_vlan_promisc_disable(adapter);
5350 }
5351
5352 /* update state of unicast, multicast, and VLAN filtering modes */
5353 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5354 E1000_RCTL_VFE);
5355 wr32(E1000_RCTL, rctl);
5356
5357 #if (PAGE_SIZE < 8192)
5358 if (!adapter->vfs_allocated_count) {
5359 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5360 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5361 }
5362 #endif
5363 wr32(E1000_RLPML, rlpml);
5364
5365 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5366 * the VMOLR to enable the appropriate modes. Without this workaround
5367 * we will have issues with VLAN tag stripping not being done for frames
5368 * that are only arriving because we are the default pool
5369 */
5370 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5371 return;
5372
5373 /* set UTA to appropriate mode */
5374 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5375
5376 vmolr |= rd32(E1000_VMOLR(vfn)) &
5377 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5378
5379 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5380 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5381 #if (PAGE_SIZE < 8192)
5382 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5383 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5384 else
5385 #endif
5386 vmolr |= MAX_JUMBO_FRAME_SIZE;
5387 vmolr |= E1000_VMOLR_LPE;
5388
5389 wr32(E1000_VMOLR(vfn), vmolr);
5390
5391 igb_restore_vf_multicasts(adapter);
5392 }
5393
igb_check_wvbr(struct igb_adapter * adapter)5394 static void igb_check_wvbr(struct igb_adapter *adapter)
5395 {
5396 struct e1000_hw *hw = &adapter->hw;
5397 u32 wvbr = 0;
5398
5399 switch (hw->mac.type) {
5400 case e1000_82576:
5401 case e1000_i350:
5402 wvbr = rd32(E1000_WVBR);
5403 if (!wvbr)
5404 return;
5405 break;
5406 default:
5407 break;
5408 }
5409
5410 adapter->wvbr |= wvbr;
5411 }
5412
5413 #define IGB_STAGGERED_QUEUE_OFFSET 8
5414
igb_spoof_check(struct igb_adapter * adapter)5415 static void igb_spoof_check(struct igb_adapter *adapter)
5416 {
5417 int j;
5418
5419 if (!adapter->wvbr)
5420 return;
5421
5422 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5423 if (adapter->wvbr & BIT(j) ||
5424 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5425 dev_warn(&adapter->pdev->dev,
5426 "Spoof event(s) detected on VF %d\n", j);
5427 adapter->wvbr &=
5428 ~(BIT(j) |
5429 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5430 }
5431 }
5432 }
5433
5434 /* Need to wait a few seconds after link up to get diagnostic information from
5435 * the phy
5436 */
igb_update_phy_info(struct timer_list * t)5437 static void igb_update_phy_info(struct timer_list *t)
5438 {
5439 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5440 igb_get_phy_info(&adapter->hw);
5441 }
5442
5443 /**
5444 * igb_has_link - check shared code for link and determine up/down
5445 * @adapter: pointer to driver private info
5446 **/
igb_has_link(struct igb_adapter * adapter)5447 bool igb_has_link(struct igb_adapter *adapter)
5448 {
5449 struct e1000_hw *hw = &adapter->hw;
5450 bool link_active = false;
5451
5452 /* get_link_status is set on LSC (link status) interrupt or
5453 * rx sequence error interrupt. get_link_status will stay
5454 * false until the e1000_check_for_link establishes link
5455 * for copper adapters ONLY
5456 */
5457 switch (hw->phy.media_type) {
5458 case e1000_media_type_copper:
5459 if (!hw->mac.get_link_status)
5460 return true;
5461 fallthrough;
5462 case e1000_media_type_internal_serdes:
5463 hw->mac.ops.check_for_link(hw);
5464 link_active = !hw->mac.get_link_status;
5465 break;
5466 default:
5467 case e1000_media_type_unknown:
5468 break;
5469 }
5470
5471 if (((hw->mac.type == e1000_i210) ||
5472 (hw->mac.type == e1000_i211)) &&
5473 (hw->phy.id == I210_I_PHY_ID)) {
5474 if (!netif_carrier_ok(adapter->netdev)) {
5475 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5476 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5477 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5478 adapter->link_check_timeout = jiffies;
5479 }
5480 }
5481
5482 return link_active;
5483 }
5484
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5485 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5486 {
5487 bool ret = false;
5488 u32 ctrl_ext, thstat;
5489
5490 /* check for thermal sensor event on i350 copper only */
5491 if (hw->mac.type == e1000_i350) {
5492 thstat = rd32(E1000_THSTAT);
5493 ctrl_ext = rd32(E1000_CTRL_EXT);
5494
5495 if ((hw->phy.media_type == e1000_media_type_copper) &&
5496 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5497 ret = !!(thstat & event);
5498 }
5499
5500 return ret;
5501 }
5502
5503 /**
5504 * igb_check_lvmmc - check for malformed packets received
5505 * and indicated in LVMMC register
5506 * @adapter: pointer to adapter
5507 **/
igb_check_lvmmc(struct igb_adapter * adapter)5508 static void igb_check_lvmmc(struct igb_adapter *adapter)
5509 {
5510 struct e1000_hw *hw = &adapter->hw;
5511 u32 lvmmc;
5512
5513 lvmmc = rd32(E1000_LVMMC);
5514 if (lvmmc) {
5515 if (unlikely(net_ratelimit())) {
5516 netdev_warn(adapter->netdev,
5517 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5518 lvmmc);
5519 }
5520 }
5521 }
5522
5523 /**
5524 * igb_watchdog - Timer Call-back
5525 * @t: pointer to timer_list containing our private info pointer
5526 **/
igb_watchdog(struct timer_list * t)5527 static void igb_watchdog(struct timer_list *t)
5528 {
5529 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5530 /* Do the rest outside of interrupt context */
5531 schedule_work(&adapter->watchdog_task);
5532 }
5533
igb_watchdog_task(struct work_struct * work)5534 static void igb_watchdog_task(struct work_struct *work)
5535 {
5536 struct igb_adapter *adapter = container_of(work,
5537 struct igb_adapter,
5538 watchdog_task);
5539 struct e1000_hw *hw = &adapter->hw;
5540 struct e1000_phy_info *phy = &hw->phy;
5541 struct net_device *netdev = adapter->netdev;
5542 u32 link;
5543 int i;
5544 u32 connsw;
5545 u16 phy_data, retry_count = 20;
5546
5547 link = igb_has_link(adapter);
5548
5549 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5550 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5551 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5552 else
5553 link = false;
5554 }
5555
5556 /* Force link down if we have fiber to swap to */
5557 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5558 if (hw->phy.media_type == e1000_media_type_copper) {
5559 connsw = rd32(E1000_CONNSW);
5560 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5561 link = 0;
5562 }
5563 }
5564 if (link) {
5565 /* Perform a reset if the media type changed. */
5566 if (hw->dev_spec._82575.media_changed) {
5567 hw->dev_spec._82575.media_changed = false;
5568 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5569 igb_reset(adapter);
5570 }
5571 /* Cancel scheduled suspend requests. */
5572 pm_runtime_resume(netdev->dev.parent);
5573
5574 if (!netif_carrier_ok(netdev)) {
5575 u32 ctrl;
5576
5577 hw->mac.ops.get_speed_and_duplex(hw,
5578 &adapter->link_speed,
5579 &adapter->link_duplex);
5580
5581 ctrl = rd32(E1000_CTRL);
5582 /* Links status message must follow this format */
5583 netdev_info(netdev,
5584 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5585 netdev->name,
5586 adapter->link_speed,
5587 adapter->link_duplex == FULL_DUPLEX ?
5588 "Full" : "Half",
5589 (ctrl & E1000_CTRL_TFCE) &&
5590 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5591 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5592 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5593
5594 /* disable EEE if enabled */
5595 if ((adapter->flags & IGB_FLAG_EEE) &&
5596 (adapter->link_duplex == HALF_DUPLEX)) {
5597 dev_info(&adapter->pdev->dev,
5598 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5599 adapter->hw.dev_spec._82575.eee_disable = true;
5600 adapter->flags &= ~IGB_FLAG_EEE;
5601 }
5602
5603 /* check if SmartSpeed worked */
5604 igb_check_downshift(hw);
5605 if (phy->speed_downgraded)
5606 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5607
5608 /* check for thermal sensor event */
5609 if (igb_thermal_sensor_event(hw,
5610 E1000_THSTAT_LINK_THROTTLE))
5611 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5612
5613 /* adjust timeout factor according to speed/duplex */
5614 adapter->tx_timeout_factor = 1;
5615 switch (adapter->link_speed) {
5616 case SPEED_10:
5617 adapter->tx_timeout_factor = 14;
5618 break;
5619 case SPEED_100:
5620 /* maybe add some timeout factor ? */
5621 break;
5622 }
5623
5624 if (adapter->link_speed != SPEED_1000 ||
5625 !hw->phy.ops.read_reg)
5626 goto no_wait;
5627
5628 /* wait for Remote receiver status OK */
5629 retry_read_status:
5630 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5631 &phy_data)) {
5632 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5633 retry_count) {
5634 msleep(100);
5635 retry_count--;
5636 goto retry_read_status;
5637 } else if (!retry_count) {
5638 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5639 }
5640 } else {
5641 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5642 }
5643 no_wait:
5644 netif_carrier_on(netdev);
5645
5646 igb_ping_all_vfs(adapter);
5647 igb_check_vf_rate_limit(adapter);
5648
5649 /* link state has changed, schedule phy info update */
5650 if (!test_bit(__IGB_DOWN, &adapter->state))
5651 mod_timer(&adapter->phy_info_timer,
5652 round_jiffies(jiffies + 2 * HZ));
5653 }
5654 } else {
5655 if (netif_carrier_ok(netdev)) {
5656 adapter->link_speed = 0;
5657 adapter->link_duplex = 0;
5658
5659 /* check for thermal sensor event */
5660 if (igb_thermal_sensor_event(hw,
5661 E1000_THSTAT_PWR_DOWN)) {
5662 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5663 }
5664
5665 /* Links status message must follow this format */
5666 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5667 netdev->name);
5668 netif_carrier_off(netdev);
5669
5670 igb_ping_all_vfs(adapter);
5671
5672 /* link state has changed, schedule phy info update */
5673 if (!test_bit(__IGB_DOWN, &adapter->state))
5674 mod_timer(&adapter->phy_info_timer,
5675 round_jiffies(jiffies + 2 * HZ));
5676
5677 /* link is down, time to check for alternate media */
5678 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5679 igb_check_swap_media(adapter);
5680 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5681 schedule_work(&adapter->reset_task);
5682 /* return immediately */
5683 return;
5684 }
5685 }
5686 pm_schedule_suspend(netdev->dev.parent,
5687 MSEC_PER_SEC * 5);
5688
5689 /* also check for alternate media here */
5690 } else if (!netif_carrier_ok(netdev) &&
5691 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5692 igb_check_swap_media(adapter);
5693 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5694 schedule_work(&adapter->reset_task);
5695 /* return immediately */
5696 return;
5697 }
5698 }
5699 }
5700
5701 spin_lock(&adapter->stats64_lock);
5702 igb_update_stats(adapter);
5703 spin_unlock(&adapter->stats64_lock);
5704
5705 for (i = 0; i < adapter->num_tx_queues; i++) {
5706 struct igb_ring *tx_ring = adapter->tx_ring[i];
5707 if (!netif_carrier_ok(netdev)) {
5708 /* We've lost link, so the controller stops DMA,
5709 * but we've got queued Tx work that's never going
5710 * to get done, so reset controller to flush Tx.
5711 * (Do the reset outside of interrupt context).
5712 */
5713 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5714 adapter->tx_timeout_count++;
5715 schedule_work(&adapter->reset_task);
5716 /* return immediately since reset is imminent */
5717 return;
5718 }
5719 }
5720
5721 /* Force detection of hung controller every watchdog period */
5722 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5723 }
5724
5725 /* Cause software interrupt to ensure Rx ring is cleaned */
5726 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5727 u32 eics = 0;
5728
5729 for (i = 0; i < adapter->num_q_vectors; i++)
5730 eics |= adapter->q_vector[i]->eims_value;
5731 wr32(E1000_EICS, eics);
5732 } else {
5733 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5734 }
5735
5736 igb_spoof_check(adapter);
5737 igb_ptp_rx_hang(adapter);
5738 igb_ptp_tx_hang(adapter);
5739
5740 /* Check LVMMC register on i350/i354 only */
5741 if ((adapter->hw.mac.type == e1000_i350) ||
5742 (adapter->hw.mac.type == e1000_i354))
5743 igb_check_lvmmc(adapter);
5744
5745 /* Reset the timer */
5746 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5747 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5748 mod_timer(&adapter->watchdog_timer,
5749 round_jiffies(jiffies + HZ));
5750 else
5751 mod_timer(&adapter->watchdog_timer,
5752 round_jiffies(jiffies + 2 * HZ));
5753 }
5754 }
5755
5756 enum latency_range {
5757 lowest_latency = 0,
5758 low_latency = 1,
5759 bulk_latency = 2,
5760 latency_invalid = 255
5761 };
5762
5763 /**
5764 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5765 * @q_vector: pointer to q_vector
5766 *
5767 * Stores a new ITR value based on strictly on packet size. This
5768 * algorithm is less sophisticated than that used in igb_update_itr,
5769 * due to the difficulty of synchronizing statistics across multiple
5770 * receive rings. The divisors and thresholds used by this function
5771 * were determined based on theoretical maximum wire speed and testing
5772 * data, in order to minimize response time while increasing bulk
5773 * throughput.
5774 * This functionality is controlled by ethtool's coalescing settings.
5775 * NOTE: This function is called only when operating in a multiqueue
5776 * receive environment.
5777 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5778 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5779 {
5780 int new_val = q_vector->itr_val;
5781 int avg_wire_size = 0;
5782 struct igb_adapter *adapter = q_vector->adapter;
5783 unsigned int packets;
5784
5785 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5786 * ints/sec - ITR timer value of 120 ticks.
5787 */
5788 if (adapter->link_speed != SPEED_1000) {
5789 new_val = IGB_4K_ITR;
5790 goto set_itr_val;
5791 }
5792
5793 packets = q_vector->rx.total_packets;
5794 if (packets)
5795 avg_wire_size = q_vector->rx.total_bytes / packets;
5796
5797 packets = q_vector->tx.total_packets;
5798 if (packets)
5799 avg_wire_size = max_t(u32, avg_wire_size,
5800 q_vector->tx.total_bytes / packets);
5801
5802 /* if avg_wire_size isn't set no work was done */
5803 if (!avg_wire_size)
5804 goto clear_counts;
5805
5806 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5807 avg_wire_size += 24;
5808
5809 /* Don't starve jumbo frames */
5810 avg_wire_size = min(avg_wire_size, 3000);
5811
5812 /* Give a little boost to mid-size frames */
5813 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5814 new_val = avg_wire_size / 3;
5815 else
5816 new_val = avg_wire_size / 2;
5817
5818 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5819 if (new_val < IGB_20K_ITR &&
5820 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5821 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5822 new_val = IGB_20K_ITR;
5823
5824 set_itr_val:
5825 if (new_val != q_vector->itr_val) {
5826 q_vector->itr_val = new_val;
5827 q_vector->set_itr = 1;
5828 }
5829 clear_counts:
5830 q_vector->rx.total_bytes = 0;
5831 q_vector->rx.total_packets = 0;
5832 q_vector->tx.total_bytes = 0;
5833 q_vector->tx.total_packets = 0;
5834 }
5835
5836 /**
5837 * igb_update_itr - update the dynamic ITR value based on statistics
5838 * @q_vector: pointer to q_vector
5839 * @ring_container: ring info to update the itr for
5840 *
5841 * Stores a new ITR value based on packets and byte
5842 * counts during the last interrupt. The advantage of per interrupt
5843 * computation is faster updates and more accurate ITR for the current
5844 * traffic pattern. Constants in this function were computed
5845 * based on theoretical maximum wire speed and thresholds were set based
5846 * on testing data as well as attempting to minimize response time
5847 * while increasing bulk throughput.
5848 * This functionality is controlled by ethtool's coalescing settings.
5849 * NOTE: These calculations are only valid when operating in a single-
5850 * queue environment.
5851 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5852 static void igb_update_itr(struct igb_q_vector *q_vector,
5853 struct igb_ring_container *ring_container)
5854 {
5855 unsigned int packets = ring_container->total_packets;
5856 unsigned int bytes = ring_container->total_bytes;
5857 u8 itrval = ring_container->itr;
5858
5859 /* no packets, exit with status unchanged */
5860 if (packets == 0)
5861 return;
5862
5863 switch (itrval) {
5864 case lowest_latency:
5865 /* handle TSO and jumbo frames */
5866 if (bytes/packets > 8000)
5867 itrval = bulk_latency;
5868 else if ((packets < 5) && (bytes > 512))
5869 itrval = low_latency;
5870 break;
5871 case low_latency: /* 50 usec aka 20000 ints/s */
5872 if (bytes > 10000) {
5873 /* this if handles the TSO accounting */
5874 if (bytes/packets > 8000)
5875 itrval = bulk_latency;
5876 else if ((packets < 10) || ((bytes/packets) > 1200))
5877 itrval = bulk_latency;
5878 else if ((packets > 35))
5879 itrval = lowest_latency;
5880 } else if (bytes/packets > 2000) {
5881 itrval = bulk_latency;
5882 } else if (packets <= 2 && bytes < 512) {
5883 itrval = lowest_latency;
5884 }
5885 break;
5886 case bulk_latency: /* 250 usec aka 4000 ints/s */
5887 if (bytes > 25000) {
5888 if (packets > 35)
5889 itrval = low_latency;
5890 } else if (bytes < 1500) {
5891 itrval = low_latency;
5892 }
5893 break;
5894 }
5895
5896 /* clear work counters since we have the values we need */
5897 ring_container->total_bytes = 0;
5898 ring_container->total_packets = 0;
5899
5900 /* write updated itr to ring container */
5901 ring_container->itr = itrval;
5902 }
5903
igb_set_itr(struct igb_q_vector * q_vector)5904 static void igb_set_itr(struct igb_q_vector *q_vector)
5905 {
5906 struct igb_adapter *adapter = q_vector->adapter;
5907 u32 new_itr = q_vector->itr_val;
5908 u8 current_itr = 0;
5909
5910 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5911 if (adapter->link_speed != SPEED_1000) {
5912 current_itr = 0;
5913 new_itr = IGB_4K_ITR;
5914 goto set_itr_now;
5915 }
5916
5917 igb_update_itr(q_vector, &q_vector->tx);
5918 igb_update_itr(q_vector, &q_vector->rx);
5919
5920 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5921
5922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5923 if (current_itr == lowest_latency &&
5924 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5925 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5926 current_itr = low_latency;
5927
5928 switch (current_itr) {
5929 /* counts and packets in update_itr are dependent on these numbers */
5930 case lowest_latency:
5931 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5932 break;
5933 case low_latency:
5934 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5935 break;
5936 case bulk_latency:
5937 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5938 break;
5939 default:
5940 break;
5941 }
5942
5943 set_itr_now:
5944 if (new_itr != q_vector->itr_val) {
5945 /* this attempts to bias the interrupt rate towards Bulk
5946 * by adding intermediate steps when interrupt rate is
5947 * increasing
5948 */
5949 new_itr = new_itr > q_vector->itr_val ?
5950 max((new_itr * q_vector->itr_val) /
5951 (new_itr + (q_vector->itr_val >> 2)),
5952 new_itr) : new_itr;
5953 /* Don't write the value here; it resets the adapter's
5954 * internal timer, and causes us to delay far longer than
5955 * we should between interrupts. Instead, we write the ITR
5956 * value at the beginning of the next interrupt so the timing
5957 * ends up being correct.
5958 */
5959 q_vector->itr_val = new_itr;
5960 q_vector->set_itr = 1;
5961 }
5962 }
5963
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5964 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5965 struct igb_tx_buffer *first,
5966 u32 vlan_macip_lens, u32 type_tucmd,
5967 u32 mss_l4len_idx)
5968 {
5969 struct e1000_adv_tx_context_desc *context_desc;
5970 u16 i = tx_ring->next_to_use;
5971 struct timespec64 ts;
5972
5973 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5974
5975 i++;
5976 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5977
5978 /* set bits to identify this as an advanced context descriptor */
5979 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5980
5981 /* For 82575, context index must be unique per ring. */
5982 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5983 mss_l4len_idx |= tx_ring->reg_idx << 4;
5984
5985 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5986 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5987 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5988
5989 /* We assume there is always a valid tx time available. Invalid times
5990 * should have been handled by the upper layers.
5991 */
5992 if (tx_ring->launchtime_enable) {
5993 ts = ktime_to_timespec64(first->skb->tstamp);
5994 skb_txtime_consumed(first->skb);
5995 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5996 } else {
5997 context_desc->seqnum_seed = 0;
5998 }
5999 }
6000
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)6001 static int igb_tso(struct igb_ring *tx_ring,
6002 struct igb_tx_buffer *first,
6003 u8 *hdr_len)
6004 {
6005 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6006 struct sk_buff *skb = first->skb;
6007 union {
6008 struct iphdr *v4;
6009 struct ipv6hdr *v6;
6010 unsigned char *hdr;
6011 } ip;
6012 union {
6013 struct tcphdr *tcp;
6014 struct udphdr *udp;
6015 unsigned char *hdr;
6016 } l4;
6017 u32 paylen, l4_offset;
6018 int err;
6019
6020 if (skb->ip_summed != CHECKSUM_PARTIAL)
6021 return 0;
6022
6023 if (!skb_is_gso(skb))
6024 return 0;
6025
6026 err = skb_cow_head(skb, 0);
6027 if (err < 0)
6028 return err;
6029
6030 ip.hdr = skb_network_header(skb);
6031 l4.hdr = skb_checksum_start(skb);
6032
6033 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6034 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6035 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6036
6037 /* initialize outer IP header fields */
6038 if (ip.v4->version == 4) {
6039 unsigned char *csum_start = skb_checksum_start(skb);
6040 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6041
6042 /* IP header will have to cancel out any data that
6043 * is not a part of the outer IP header
6044 */
6045 ip.v4->check = csum_fold(csum_partial(trans_start,
6046 csum_start - trans_start,
6047 0));
6048 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6049
6050 ip.v4->tot_len = 0;
6051 first->tx_flags |= IGB_TX_FLAGS_TSO |
6052 IGB_TX_FLAGS_CSUM |
6053 IGB_TX_FLAGS_IPV4;
6054 } else {
6055 ip.v6->payload_len = 0;
6056 first->tx_flags |= IGB_TX_FLAGS_TSO |
6057 IGB_TX_FLAGS_CSUM;
6058 }
6059
6060 /* determine offset of inner transport header */
6061 l4_offset = l4.hdr - skb->data;
6062
6063 /* remove payload length from inner checksum */
6064 paylen = skb->len - l4_offset;
6065 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6066 /* compute length of segmentation header */
6067 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6068 csum_replace_by_diff(&l4.tcp->check,
6069 (__force __wsum)htonl(paylen));
6070 } else {
6071 /* compute length of segmentation header */
6072 *hdr_len = sizeof(*l4.udp) + l4_offset;
6073 csum_replace_by_diff(&l4.udp->check,
6074 (__force __wsum)htonl(paylen));
6075 }
6076
6077 /* update gso size and bytecount with header size */
6078 first->gso_segs = skb_shinfo(skb)->gso_segs;
6079 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6080
6081 /* MSS L4LEN IDX */
6082 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6083 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6084
6085 /* VLAN MACLEN IPLEN */
6086 vlan_macip_lens = l4.hdr - ip.hdr;
6087 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6088 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6089
6090 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6091 type_tucmd, mss_l4len_idx);
6092
6093 return 1;
6094 }
6095
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6096 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6097 {
6098 struct sk_buff *skb = first->skb;
6099 u32 vlan_macip_lens = 0;
6100 u32 type_tucmd = 0;
6101
6102 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6103 csum_failed:
6104 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6105 !tx_ring->launchtime_enable)
6106 return;
6107 goto no_csum;
6108 }
6109
6110 switch (skb->csum_offset) {
6111 case offsetof(struct tcphdr, check):
6112 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6113 fallthrough;
6114 case offsetof(struct udphdr, check):
6115 break;
6116 case offsetof(struct sctphdr, checksum):
6117 /* validate that this is actually an SCTP request */
6118 if (skb_csum_is_sctp(skb)) {
6119 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6120 break;
6121 }
6122 fallthrough;
6123 default:
6124 skb_checksum_help(skb);
6125 goto csum_failed;
6126 }
6127
6128 /* update TX checksum flag */
6129 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6130 vlan_macip_lens = skb_checksum_start_offset(skb) -
6131 skb_network_offset(skb);
6132 no_csum:
6133 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6134 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6135
6136 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6137 }
6138
6139 #define IGB_SET_FLAG(_input, _flag, _result) \
6140 ((_flag <= _result) ? \
6141 ((u32)(_input & _flag) * (_result / _flag)) : \
6142 ((u32)(_input & _flag) / (_flag / _result)))
6143
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6144 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6145 {
6146 /* set type for advanced descriptor with frame checksum insertion */
6147 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6148 E1000_ADVTXD_DCMD_DEXT |
6149 E1000_ADVTXD_DCMD_IFCS;
6150
6151 /* set HW vlan bit if vlan is present */
6152 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6153 (E1000_ADVTXD_DCMD_VLE));
6154
6155 /* set segmentation bits for TSO */
6156 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6157 (E1000_ADVTXD_DCMD_TSE));
6158
6159 /* set timestamp bit if present */
6160 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6161 (E1000_ADVTXD_MAC_TSTAMP));
6162
6163 /* insert frame checksum */
6164 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6165
6166 return cmd_type;
6167 }
6168
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6169 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6170 union e1000_adv_tx_desc *tx_desc,
6171 u32 tx_flags, unsigned int paylen)
6172 {
6173 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6174
6175 /* 82575 requires a unique index per ring */
6176 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6177 olinfo_status |= tx_ring->reg_idx << 4;
6178
6179 /* insert L4 checksum */
6180 olinfo_status |= IGB_SET_FLAG(tx_flags,
6181 IGB_TX_FLAGS_CSUM,
6182 (E1000_TXD_POPTS_TXSM << 8));
6183
6184 /* insert IPv4 checksum */
6185 olinfo_status |= IGB_SET_FLAG(tx_flags,
6186 IGB_TX_FLAGS_IPV4,
6187 (E1000_TXD_POPTS_IXSM << 8));
6188
6189 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6190 }
6191
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6192 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6193 {
6194 struct net_device *netdev = tx_ring->netdev;
6195
6196 netif_stop_subqueue(netdev, tx_ring->queue_index);
6197
6198 /* Herbert's original patch had:
6199 * smp_mb__after_netif_stop_queue();
6200 * but since that doesn't exist yet, just open code it.
6201 */
6202 smp_mb();
6203
6204 /* We need to check again in a case another CPU has just
6205 * made room available.
6206 */
6207 if (igb_desc_unused(tx_ring) < size)
6208 return -EBUSY;
6209
6210 /* A reprieve! */
6211 netif_wake_subqueue(netdev, tx_ring->queue_index);
6212
6213 u64_stats_update_begin(&tx_ring->tx_syncp2);
6214 tx_ring->tx_stats.restart_queue2++;
6215 u64_stats_update_end(&tx_ring->tx_syncp2);
6216
6217 return 0;
6218 }
6219
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6220 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6221 {
6222 if (igb_desc_unused(tx_ring) >= size)
6223 return 0;
6224 return __igb_maybe_stop_tx(tx_ring, size);
6225 }
6226
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6227 static int igb_tx_map(struct igb_ring *tx_ring,
6228 struct igb_tx_buffer *first,
6229 const u8 hdr_len)
6230 {
6231 struct sk_buff *skb = first->skb;
6232 struct igb_tx_buffer *tx_buffer;
6233 union e1000_adv_tx_desc *tx_desc;
6234 skb_frag_t *frag;
6235 dma_addr_t dma;
6236 unsigned int data_len, size;
6237 u32 tx_flags = first->tx_flags;
6238 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6239 u16 i = tx_ring->next_to_use;
6240
6241 tx_desc = IGB_TX_DESC(tx_ring, i);
6242
6243 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6244
6245 size = skb_headlen(skb);
6246 data_len = skb->data_len;
6247
6248 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6249
6250 tx_buffer = first;
6251
6252 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6253 if (dma_mapping_error(tx_ring->dev, dma))
6254 goto dma_error;
6255
6256 /* record length, and DMA address */
6257 dma_unmap_len_set(tx_buffer, len, size);
6258 dma_unmap_addr_set(tx_buffer, dma, dma);
6259
6260 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6261
6262 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6263 tx_desc->read.cmd_type_len =
6264 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6265
6266 i++;
6267 tx_desc++;
6268 if (i == tx_ring->count) {
6269 tx_desc = IGB_TX_DESC(tx_ring, 0);
6270 i = 0;
6271 }
6272 tx_desc->read.olinfo_status = 0;
6273
6274 dma += IGB_MAX_DATA_PER_TXD;
6275 size -= IGB_MAX_DATA_PER_TXD;
6276
6277 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6278 }
6279
6280 if (likely(!data_len))
6281 break;
6282
6283 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6284
6285 i++;
6286 tx_desc++;
6287 if (i == tx_ring->count) {
6288 tx_desc = IGB_TX_DESC(tx_ring, 0);
6289 i = 0;
6290 }
6291 tx_desc->read.olinfo_status = 0;
6292
6293 size = skb_frag_size(frag);
6294 data_len -= size;
6295
6296 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6297 size, DMA_TO_DEVICE);
6298
6299 tx_buffer = &tx_ring->tx_buffer_info[i];
6300 }
6301
6302 /* write last descriptor with RS and EOP bits */
6303 cmd_type |= size | IGB_TXD_DCMD;
6304 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6305
6306 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6307
6308 /* set the timestamp */
6309 first->time_stamp = jiffies;
6310
6311 skb_tx_timestamp(skb);
6312
6313 /* Force memory writes to complete before letting h/w know there
6314 * are new descriptors to fetch. (Only applicable for weak-ordered
6315 * memory model archs, such as IA-64).
6316 *
6317 * We also need this memory barrier to make certain all of the
6318 * status bits have been updated before next_to_watch is written.
6319 */
6320 dma_wmb();
6321
6322 /* set next_to_watch value indicating a packet is present */
6323 first->next_to_watch = tx_desc;
6324
6325 i++;
6326 if (i == tx_ring->count)
6327 i = 0;
6328
6329 tx_ring->next_to_use = i;
6330
6331 /* Make sure there is space in the ring for the next send. */
6332 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6333
6334 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6335 writel(i, tx_ring->tail);
6336 }
6337 return 0;
6338
6339 dma_error:
6340 dev_err(tx_ring->dev, "TX DMA map failed\n");
6341 tx_buffer = &tx_ring->tx_buffer_info[i];
6342
6343 /* clear dma mappings for failed tx_buffer_info map */
6344 while (tx_buffer != first) {
6345 if (dma_unmap_len(tx_buffer, len))
6346 dma_unmap_page(tx_ring->dev,
6347 dma_unmap_addr(tx_buffer, dma),
6348 dma_unmap_len(tx_buffer, len),
6349 DMA_TO_DEVICE);
6350 dma_unmap_len_set(tx_buffer, len, 0);
6351
6352 if (i-- == 0)
6353 i += tx_ring->count;
6354 tx_buffer = &tx_ring->tx_buffer_info[i];
6355 }
6356
6357 if (dma_unmap_len(tx_buffer, len))
6358 dma_unmap_single(tx_ring->dev,
6359 dma_unmap_addr(tx_buffer, dma),
6360 dma_unmap_len(tx_buffer, len),
6361 DMA_TO_DEVICE);
6362 dma_unmap_len_set(tx_buffer, len, 0);
6363
6364 dev_kfree_skb_any(tx_buffer->skb);
6365 tx_buffer->skb = NULL;
6366
6367 tx_ring->next_to_use = i;
6368
6369 return -1;
6370 }
6371
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6372 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6373 struct igb_ring *tx_ring,
6374 struct xdp_frame *xdpf)
6375 {
6376 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6377 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6378 u16 count, i, index = tx_ring->next_to_use;
6379 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6380 struct igb_tx_buffer *tx_buffer = tx_head;
6381 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6382 u32 len = xdpf->len, cmd_type, olinfo_status;
6383 void *data = xdpf->data;
6384
6385 count = TXD_USE_COUNT(len);
6386 for (i = 0; i < nr_frags; i++)
6387 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6388
6389 if (igb_maybe_stop_tx(tx_ring, count + 3))
6390 return IGB_XDP_CONSUMED;
6391
6392 i = 0;
6393 /* record the location of the first descriptor for this packet */
6394 tx_head->bytecount = xdp_get_frame_len(xdpf);
6395 tx_head->type = IGB_TYPE_XDP;
6396 tx_head->gso_segs = 1;
6397 tx_head->xdpf = xdpf;
6398
6399 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6400 /* 82575 requires a unique index per ring */
6401 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6402 olinfo_status |= tx_ring->reg_idx << 4;
6403 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6404
6405 for (;;) {
6406 dma_addr_t dma;
6407
6408 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6409 if (dma_mapping_error(tx_ring->dev, dma))
6410 goto unmap;
6411
6412 /* record length, and DMA address */
6413 dma_unmap_len_set(tx_buffer, len, len);
6414 dma_unmap_addr_set(tx_buffer, dma, dma);
6415
6416 /* put descriptor type bits */
6417 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6418 E1000_ADVTXD_DCMD_IFCS | len;
6419
6420 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6421 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6422
6423 tx_buffer->protocol = 0;
6424
6425 if (++index == tx_ring->count)
6426 index = 0;
6427
6428 if (i == nr_frags)
6429 break;
6430
6431 tx_buffer = &tx_ring->tx_buffer_info[index];
6432 tx_desc = IGB_TX_DESC(tx_ring, index);
6433 tx_desc->read.olinfo_status = 0;
6434
6435 data = skb_frag_address(&sinfo->frags[i]);
6436 len = skb_frag_size(&sinfo->frags[i]);
6437 i++;
6438 }
6439 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6440
6441 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6442 /* set the timestamp */
6443 tx_head->time_stamp = jiffies;
6444
6445 /* Avoid any potential race with xdp_xmit and cleanup */
6446 smp_wmb();
6447
6448 /* set next_to_watch value indicating a packet is present */
6449 tx_head->next_to_watch = tx_desc;
6450 tx_ring->next_to_use = index;
6451
6452 /* Make sure there is space in the ring for the next send. */
6453 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6454
6455 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6456 writel(index, tx_ring->tail);
6457
6458 return IGB_XDP_TX;
6459
6460 unmap:
6461 for (;;) {
6462 tx_buffer = &tx_ring->tx_buffer_info[index];
6463 if (dma_unmap_len(tx_buffer, len))
6464 dma_unmap_page(tx_ring->dev,
6465 dma_unmap_addr(tx_buffer, dma),
6466 dma_unmap_len(tx_buffer, len),
6467 DMA_TO_DEVICE);
6468 dma_unmap_len_set(tx_buffer, len, 0);
6469 if (tx_buffer == tx_head)
6470 break;
6471
6472 if (!index)
6473 index += tx_ring->count;
6474 index--;
6475 }
6476
6477 return IGB_XDP_CONSUMED;
6478 }
6479
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6480 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6481 struct igb_ring *tx_ring)
6482 {
6483 struct igb_tx_buffer *first;
6484 int tso;
6485 u32 tx_flags = 0;
6486 unsigned short f;
6487 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6488 __be16 protocol = vlan_get_protocol(skb);
6489 u8 hdr_len = 0;
6490
6491 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6492 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6493 * + 2 desc gap to keep tail from touching head,
6494 * + 1 desc for context descriptor,
6495 * otherwise try next time
6496 */
6497 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6498 count += TXD_USE_COUNT(skb_frag_size(
6499 &skb_shinfo(skb)->frags[f]));
6500
6501 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6502 /* this is a hard error */
6503 return NETDEV_TX_BUSY;
6504 }
6505
6506 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6507 return NETDEV_TX_BUSY;
6508
6509 /* record the location of the first descriptor for this packet */
6510 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6511 first->type = IGB_TYPE_SKB;
6512 first->skb = skb;
6513 first->bytecount = skb->len;
6514 first->gso_segs = 1;
6515
6516 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6517 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6518
6519 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6520 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6521 &adapter->state)) {
6522 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6523 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6524
6525 adapter->ptp_tx_skb = skb_get(skb);
6526 adapter->ptp_tx_start = jiffies;
6527 if (adapter->hw.mac.type == e1000_82576)
6528 schedule_work(&adapter->ptp_tx_work);
6529 } else {
6530 adapter->tx_hwtstamp_skipped++;
6531 }
6532 }
6533
6534 if (skb_vlan_tag_present(skb)) {
6535 tx_flags |= IGB_TX_FLAGS_VLAN;
6536 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6537 }
6538
6539 /* record initial flags and protocol */
6540 first->tx_flags = tx_flags;
6541 first->protocol = protocol;
6542
6543 tso = igb_tso(tx_ring, first, &hdr_len);
6544 if (tso < 0)
6545 goto out_drop;
6546 else if (!tso)
6547 igb_tx_csum(tx_ring, first);
6548
6549 if (igb_tx_map(tx_ring, first, hdr_len))
6550 goto cleanup_tx_tstamp;
6551
6552 return NETDEV_TX_OK;
6553
6554 out_drop:
6555 dev_kfree_skb_any(first->skb);
6556 first->skb = NULL;
6557 cleanup_tx_tstamp:
6558 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6559 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6560
6561 dev_kfree_skb_any(adapter->ptp_tx_skb);
6562 adapter->ptp_tx_skb = NULL;
6563 if (adapter->hw.mac.type == e1000_82576)
6564 cancel_work_sync(&adapter->ptp_tx_work);
6565 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6566 }
6567
6568 return NETDEV_TX_OK;
6569 }
6570
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6571 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6572 struct sk_buff *skb)
6573 {
6574 unsigned int r_idx = skb->queue_mapping;
6575
6576 if (r_idx >= adapter->num_tx_queues)
6577 r_idx = r_idx % adapter->num_tx_queues;
6578
6579 return adapter->tx_ring[r_idx];
6580 }
6581
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6582 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6583 struct net_device *netdev)
6584 {
6585 struct igb_adapter *adapter = netdev_priv(netdev);
6586
6587 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6588 * in order to meet this minimum size requirement.
6589 */
6590 if (skb_put_padto(skb, 17))
6591 return NETDEV_TX_OK;
6592
6593 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6594 }
6595
6596 /**
6597 * igb_tx_timeout - Respond to a Tx Hang
6598 * @netdev: network interface device structure
6599 * @txqueue: number of the Tx queue that hung (unused)
6600 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6601 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6602 {
6603 struct igb_adapter *adapter = netdev_priv(netdev);
6604 struct e1000_hw *hw = &adapter->hw;
6605
6606 /* Do the reset outside of interrupt context */
6607 adapter->tx_timeout_count++;
6608
6609 if (hw->mac.type >= e1000_82580)
6610 hw->dev_spec._82575.global_device_reset = true;
6611
6612 schedule_work(&adapter->reset_task);
6613 wr32(E1000_EICS,
6614 (adapter->eims_enable_mask & ~adapter->eims_other));
6615 }
6616
igb_reset_task(struct work_struct * work)6617 static void igb_reset_task(struct work_struct *work)
6618 {
6619 struct igb_adapter *adapter;
6620 adapter = container_of(work, struct igb_adapter, reset_task);
6621
6622 rtnl_lock();
6623 /* If we're already down or resetting, just bail */
6624 if (test_bit(__IGB_DOWN, &adapter->state) ||
6625 test_bit(__IGB_RESETTING, &adapter->state)) {
6626 rtnl_unlock();
6627 return;
6628 }
6629
6630 igb_dump(adapter);
6631 netdev_err(adapter->netdev, "Reset adapter\n");
6632 igb_reinit_locked(adapter);
6633 rtnl_unlock();
6634 }
6635
6636 /**
6637 * igb_get_stats64 - Get System Network Statistics
6638 * @netdev: network interface device structure
6639 * @stats: rtnl_link_stats64 pointer
6640 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6641 static void igb_get_stats64(struct net_device *netdev,
6642 struct rtnl_link_stats64 *stats)
6643 {
6644 struct igb_adapter *adapter = netdev_priv(netdev);
6645
6646 spin_lock(&adapter->stats64_lock);
6647 igb_update_stats(adapter);
6648 memcpy(stats, &adapter->stats64, sizeof(*stats));
6649 spin_unlock(&adapter->stats64_lock);
6650 }
6651
6652 /**
6653 * igb_change_mtu - Change the Maximum Transfer Unit
6654 * @netdev: network interface device structure
6655 * @new_mtu: new value for maximum frame size
6656 *
6657 * Returns 0 on success, negative on failure
6658 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6659 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6660 {
6661 struct igb_adapter *adapter = netdev_priv(netdev);
6662 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6663
6664 if (igb_xdp_is_enabled(adapter)) {
6665 int i;
6666
6667 for (i = 0; i < adapter->num_rx_queues; i++) {
6668 struct igb_ring *ring = adapter->rx_ring[i];
6669
6670 if (max_frame > igb_rx_bufsz(ring)) {
6671 netdev_warn(adapter->netdev,
6672 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6673 max_frame);
6674 return -EINVAL;
6675 }
6676 }
6677 }
6678
6679 /* adjust max frame to be at least the size of a standard frame */
6680 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6681 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6682
6683 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6684 usleep_range(1000, 2000);
6685
6686 /* igb_down has a dependency on max_frame_size */
6687 adapter->max_frame_size = max_frame;
6688
6689 if (netif_running(netdev))
6690 igb_down(adapter);
6691
6692 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6693 netdev->mtu, new_mtu);
6694 WRITE_ONCE(netdev->mtu, new_mtu);
6695
6696 if (netif_running(netdev))
6697 igb_up(adapter);
6698 else
6699 igb_reset(adapter);
6700
6701 clear_bit(__IGB_RESETTING, &adapter->state);
6702
6703 return 0;
6704 }
6705
6706 /**
6707 * igb_update_stats - Update the board statistics counters
6708 * @adapter: board private structure
6709 **/
igb_update_stats(struct igb_adapter * adapter)6710 void igb_update_stats(struct igb_adapter *adapter)
6711 {
6712 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6713 struct e1000_hw *hw = &adapter->hw;
6714 struct pci_dev *pdev = adapter->pdev;
6715 u32 reg, mpc;
6716 int i;
6717 u64 bytes, packets;
6718 unsigned int start;
6719 u64 _bytes, _packets;
6720
6721 /* Prevent stats update while adapter is being reset, or if the pci
6722 * connection is down.
6723 */
6724 if (adapter->link_speed == 0)
6725 return;
6726 if (pci_channel_offline(pdev))
6727 return;
6728
6729 bytes = 0;
6730 packets = 0;
6731
6732 rcu_read_lock();
6733 for (i = 0; i < adapter->num_rx_queues; i++) {
6734 struct igb_ring *ring = adapter->rx_ring[i];
6735 u32 rqdpc = rd32(E1000_RQDPC(i));
6736 if (hw->mac.type >= e1000_i210)
6737 wr32(E1000_RQDPC(i), 0);
6738
6739 if (rqdpc) {
6740 ring->rx_stats.drops += rqdpc;
6741 net_stats->rx_fifo_errors += rqdpc;
6742 }
6743
6744 do {
6745 start = u64_stats_fetch_begin(&ring->rx_syncp);
6746 _bytes = ring->rx_stats.bytes;
6747 _packets = ring->rx_stats.packets;
6748 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6749 bytes += _bytes;
6750 packets += _packets;
6751 }
6752
6753 net_stats->rx_bytes = bytes;
6754 net_stats->rx_packets = packets;
6755
6756 bytes = 0;
6757 packets = 0;
6758 for (i = 0; i < adapter->num_tx_queues; i++) {
6759 struct igb_ring *ring = adapter->tx_ring[i];
6760 do {
6761 start = u64_stats_fetch_begin(&ring->tx_syncp);
6762 _bytes = ring->tx_stats.bytes;
6763 _packets = ring->tx_stats.packets;
6764 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6765 bytes += _bytes;
6766 packets += _packets;
6767 }
6768 net_stats->tx_bytes = bytes;
6769 net_stats->tx_packets = packets;
6770 rcu_read_unlock();
6771
6772 /* read stats registers */
6773 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6774 adapter->stats.gprc += rd32(E1000_GPRC);
6775 adapter->stats.gorc += rd32(E1000_GORCL);
6776 rd32(E1000_GORCH); /* clear GORCL */
6777 adapter->stats.bprc += rd32(E1000_BPRC);
6778 adapter->stats.mprc += rd32(E1000_MPRC);
6779 adapter->stats.roc += rd32(E1000_ROC);
6780
6781 adapter->stats.prc64 += rd32(E1000_PRC64);
6782 adapter->stats.prc127 += rd32(E1000_PRC127);
6783 adapter->stats.prc255 += rd32(E1000_PRC255);
6784 adapter->stats.prc511 += rd32(E1000_PRC511);
6785 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6786 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6787 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6788 adapter->stats.sec += rd32(E1000_SEC);
6789
6790 mpc = rd32(E1000_MPC);
6791 adapter->stats.mpc += mpc;
6792 net_stats->rx_fifo_errors += mpc;
6793 adapter->stats.scc += rd32(E1000_SCC);
6794 adapter->stats.ecol += rd32(E1000_ECOL);
6795 adapter->stats.mcc += rd32(E1000_MCC);
6796 adapter->stats.latecol += rd32(E1000_LATECOL);
6797 adapter->stats.dc += rd32(E1000_DC);
6798 adapter->stats.rlec += rd32(E1000_RLEC);
6799 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6800 adapter->stats.xontxc += rd32(E1000_XONTXC);
6801 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6802 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6803 adapter->stats.fcruc += rd32(E1000_FCRUC);
6804 adapter->stats.gptc += rd32(E1000_GPTC);
6805 adapter->stats.gotc += rd32(E1000_GOTCL);
6806 rd32(E1000_GOTCH); /* clear GOTCL */
6807 adapter->stats.rnbc += rd32(E1000_RNBC);
6808 adapter->stats.ruc += rd32(E1000_RUC);
6809 adapter->stats.rfc += rd32(E1000_RFC);
6810 adapter->stats.rjc += rd32(E1000_RJC);
6811 adapter->stats.tor += rd32(E1000_TORH);
6812 adapter->stats.tot += rd32(E1000_TOTH);
6813 adapter->stats.tpr += rd32(E1000_TPR);
6814
6815 adapter->stats.ptc64 += rd32(E1000_PTC64);
6816 adapter->stats.ptc127 += rd32(E1000_PTC127);
6817 adapter->stats.ptc255 += rd32(E1000_PTC255);
6818 adapter->stats.ptc511 += rd32(E1000_PTC511);
6819 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6820 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6821
6822 adapter->stats.mptc += rd32(E1000_MPTC);
6823 adapter->stats.bptc += rd32(E1000_BPTC);
6824
6825 adapter->stats.tpt += rd32(E1000_TPT);
6826 adapter->stats.colc += rd32(E1000_COLC);
6827
6828 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6829 /* read internal phy specific stats */
6830 reg = rd32(E1000_CTRL_EXT);
6831 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6832 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6833
6834 /* this stat has invalid values on i210/i211 */
6835 if ((hw->mac.type != e1000_i210) &&
6836 (hw->mac.type != e1000_i211))
6837 adapter->stats.tncrs += rd32(E1000_TNCRS);
6838 }
6839
6840 adapter->stats.tsctc += rd32(E1000_TSCTC);
6841 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6842
6843 adapter->stats.iac += rd32(E1000_IAC);
6844 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6845 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6846 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6847 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6848 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6849 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6850 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6851 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6852
6853 /* Fill out the OS statistics structure */
6854 net_stats->multicast = adapter->stats.mprc;
6855 net_stats->collisions = adapter->stats.colc;
6856
6857 /* Rx Errors */
6858
6859 /* RLEC on some newer hardware can be incorrect so build
6860 * our own version based on RUC and ROC
6861 */
6862 net_stats->rx_errors = adapter->stats.rxerrc +
6863 adapter->stats.crcerrs + adapter->stats.algnerrc +
6864 adapter->stats.ruc + adapter->stats.roc +
6865 adapter->stats.cexterr;
6866 net_stats->rx_length_errors = adapter->stats.ruc +
6867 adapter->stats.roc;
6868 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6869 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6870 net_stats->rx_missed_errors = adapter->stats.mpc;
6871
6872 /* Tx Errors */
6873 net_stats->tx_errors = adapter->stats.ecol +
6874 adapter->stats.latecol;
6875 net_stats->tx_aborted_errors = adapter->stats.ecol;
6876 net_stats->tx_window_errors = adapter->stats.latecol;
6877 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6878
6879 /* Tx Dropped needs to be maintained elsewhere */
6880
6881 /* Management Stats */
6882 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6883 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6884 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6885
6886 /* OS2BMC Stats */
6887 reg = rd32(E1000_MANC);
6888 if (reg & E1000_MANC_EN_BMC2OS) {
6889 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6890 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6891 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6892 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6893 }
6894 }
6895
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6896 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6897 {
6898 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6899 struct e1000_hw *hw = &adapter->hw;
6900 struct timespec64 ts;
6901 u32 tsauxc;
6902
6903 if (pin < 0 || pin >= IGB_N_SDP)
6904 return;
6905
6906 spin_lock(&adapter->tmreg_lock);
6907
6908 if (hw->mac.type == e1000_82580 ||
6909 hw->mac.type == e1000_i354 ||
6910 hw->mac.type == e1000_i350) {
6911 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6912 u32 systiml, systimh, level_mask, level, rem;
6913 u64 systim, now;
6914
6915 /* read systim registers in sequence */
6916 rd32(E1000_SYSTIMR);
6917 systiml = rd32(E1000_SYSTIML);
6918 systimh = rd32(E1000_SYSTIMH);
6919 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6920 now = timecounter_cyc2time(&adapter->tc, systim);
6921
6922 if (pin < 2) {
6923 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6924 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6925 } else {
6926 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6927 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6928 }
6929
6930 div_u64_rem(now, ns, &rem);
6931 systim = systim + (ns - rem);
6932
6933 /* synchronize pin level with rising/falling edges */
6934 div_u64_rem(now, ns << 1, &rem);
6935 if (rem < ns) {
6936 /* first half of period */
6937 if (level == 0) {
6938 /* output is already low, skip this period */
6939 systim += ns;
6940 pr_notice("igb: periodic output on %s missed falling edge\n",
6941 adapter->sdp_config[pin].name);
6942 }
6943 } else {
6944 /* second half of period */
6945 if (level == 1) {
6946 /* output is already high, skip this period */
6947 systim += ns;
6948 pr_notice("igb: periodic output on %s missed rising edge\n",
6949 adapter->sdp_config[pin].name);
6950 }
6951 }
6952
6953 /* for this chip family tv_sec is the upper part of the binary value,
6954 * so not seconds
6955 */
6956 ts.tv_nsec = (u32)systim;
6957 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6958 } else {
6959 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6960 adapter->perout[tsintr_tt].period);
6961 }
6962
6963 /* u32 conversion of tv_sec is safe until y2106 */
6964 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6965 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6966 tsauxc = rd32(E1000_TSAUXC);
6967 tsauxc |= TSAUXC_EN_TT0;
6968 wr32(E1000_TSAUXC, tsauxc);
6969 adapter->perout[tsintr_tt].start = ts;
6970
6971 spin_unlock(&adapter->tmreg_lock);
6972 }
6973
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6974 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6975 {
6976 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6977 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6978 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6979 struct e1000_hw *hw = &adapter->hw;
6980 struct ptp_clock_event event;
6981 struct timespec64 ts;
6982 unsigned long flags;
6983
6984 if (pin < 0 || pin >= IGB_N_SDP)
6985 return;
6986
6987 if (hw->mac.type == e1000_82580 ||
6988 hw->mac.type == e1000_i354 ||
6989 hw->mac.type == e1000_i350) {
6990 u64 ns = rd32(auxstmpl);
6991
6992 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6993 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6994 ns = timecounter_cyc2time(&adapter->tc, ns);
6995 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6996 ts = ns_to_timespec64(ns);
6997 } else {
6998 ts.tv_nsec = rd32(auxstmpl);
6999 ts.tv_sec = rd32(auxstmph);
7000 }
7001
7002 event.type = PTP_CLOCK_EXTTS;
7003 event.index = tsintr_tt;
7004 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7005 ptp_clock_event(adapter->ptp_clock, &event);
7006 }
7007
igb_tsync_interrupt(struct igb_adapter * adapter)7008 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7009 {
7010 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7011 TSINTR_TT0 | TSINTR_TT1 |
7012 TSINTR_AUTT0 | TSINTR_AUTT1);
7013 struct e1000_hw *hw = &adapter->hw;
7014 u32 tsicr = rd32(E1000_TSICR);
7015 struct ptp_clock_event event;
7016
7017 if (hw->mac.type == e1000_82580) {
7018 /* 82580 has a hardware bug that requires an explicit
7019 * write to clear the TimeSync interrupt cause.
7020 */
7021 wr32(E1000_TSICR, tsicr & mask);
7022 }
7023
7024 if (tsicr & TSINTR_SYS_WRAP) {
7025 event.type = PTP_CLOCK_PPS;
7026 if (adapter->ptp_caps.pps)
7027 ptp_clock_event(adapter->ptp_clock, &event);
7028 }
7029
7030 if (tsicr & E1000_TSICR_TXTS) {
7031 /* retrieve hardware timestamp */
7032 schedule_work(&adapter->ptp_tx_work);
7033 }
7034
7035 if (tsicr & TSINTR_TT0)
7036 igb_perout(adapter, 0);
7037
7038 if (tsicr & TSINTR_TT1)
7039 igb_perout(adapter, 1);
7040
7041 if (tsicr & TSINTR_AUTT0)
7042 igb_extts(adapter, 0);
7043
7044 if (tsicr & TSINTR_AUTT1)
7045 igb_extts(adapter, 1);
7046 }
7047
igb_msix_other(int irq,void * data)7048 static irqreturn_t igb_msix_other(int irq, void *data)
7049 {
7050 struct igb_adapter *adapter = data;
7051 struct e1000_hw *hw = &adapter->hw;
7052 u32 icr = rd32(E1000_ICR);
7053 /* reading ICR causes bit 31 of EICR to be cleared */
7054
7055 if (icr & E1000_ICR_DRSTA)
7056 schedule_work(&adapter->reset_task);
7057
7058 if (icr & E1000_ICR_DOUTSYNC) {
7059 /* HW is reporting DMA is out of sync */
7060 adapter->stats.doosync++;
7061 /* The DMA Out of Sync is also indication of a spoof event
7062 * in IOV mode. Check the Wrong VM Behavior register to
7063 * see if it is really a spoof event.
7064 */
7065 igb_check_wvbr(adapter);
7066 }
7067
7068 /* Check for a mailbox event */
7069 if (icr & E1000_ICR_VMMB)
7070 igb_msg_task(adapter);
7071
7072 if (icr & E1000_ICR_LSC) {
7073 hw->mac.get_link_status = 1;
7074 /* guard against interrupt when we're going down */
7075 if (!test_bit(__IGB_DOWN, &adapter->state))
7076 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7077 }
7078
7079 if (icr & E1000_ICR_TS)
7080 igb_tsync_interrupt(adapter);
7081
7082 wr32(E1000_EIMS, adapter->eims_other);
7083
7084 return IRQ_HANDLED;
7085 }
7086
igb_write_itr(struct igb_q_vector * q_vector)7087 static void igb_write_itr(struct igb_q_vector *q_vector)
7088 {
7089 struct igb_adapter *adapter = q_vector->adapter;
7090 u32 itr_val = q_vector->itr_val & 0x7FFC;
7091
7092 if (!q_vector->set_itr)
7093 return;
7094
7095 if (!itr_val)
7096 itr_val = 0x4;
7097
7098 if (adapter->hw.mac.type == e1000_82575)
7099 itr_val |= itr_val << 16;
7100 else
7101 itr_val |= E1000_EITR_CNT_IGNR;
7102
7103 writel(itr_val, q_vector->itr_register);
7104 q_vector->set_itr = 0;
7105 }
7106
igb_msix_ring(int irq,void * data)7107 static irqreturn_t igb_msix_ring(int irq, void *data)
7108 {
7109 struct igb_q_vector *q_vector = data;
7110
7111 /* Write the ITR value calculated from the previous interrupt. */
7112 igb_write_itr(q_vector);
7113
7114 napi_schedule(&q_vector->napi);
7115
7116 return IRQ_HANDLED;
7117 }
7118
7119 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7120 static void igb_update_tx_dca(struct igb_adapter *adapter,
7121 struct igb_ring *tx_ring,
7122 int cpu)
7123 {
7124 struct e1000_hw *hw = &adapter->hw;
7125 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7126
7127 if (hw->mac.type != e1000_82575)
7128 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7129
7130 /* We can enable relaxed ordering for reads, but not writes when
7131 * DCA is enabled. This is due to a known issue in some chipsets
7132 * which will cause the DCA tag to be cleared.
7133 */
7134 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7135 E1000_DCA_TXCTRL_DATA_RRO_EN |
7136 E1000_DCA_TXCTRL_DESC_DCA_EN;
7137
7138 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7139 }
7140
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7141 static void igb_update_rx_dca(struct igb_adapter *adapter,
7142 struct igb_ring *rx_ring,
7143 int cpu)
7144 {
7145 struct e1000_hw *hw = &adapter->hw;
7146 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7147
7148 if (hw->mac.type != e1000_82575)
7149 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7150
7151 /* We can enable relaxed ordering for reads, but not writes when
7152 * DCA is enabled. This is due to a known issue in some chipsets
7153 * which will cause the DCA tag to be cleared.
7154 */
7155 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7156 E1000_DCA_RXCTRL_DESC_DCA_EN;
7157
7158 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7159 }
7160
igb_update_dca(struct igb_q_vector * q_vector)7161 static void igb_update_dca(struct igb_q_vector *q_vector)
7162 {
7163 struct igb_adapter *adapter = q_vector->adapter;
7164 int cpu = get_cpu();
7165
7166 if (q_vector->cpu == cpu)
7167 goto out_no_update;
7168
7169 if (q_vector->tx.ring)
7170 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7171
7172 if (q_vector->rx.ring)
7173 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7174
7175 q_vector->cpu = cpu;
7176 out_no_update:
7177 put_cpu();
7178 }
7179
igb_setup_dca(struct igb_adapter * adapter)7180 static void igb_setup_dca(struct igb_adapter *adapter)
7181 {
7182 struct e1000_hw *hw = &adapter->hw;
7183 int i;
7184
7185 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7186 return;
7187
7188 /* Always use CB2 mode, difference is masked in the CB driver. */
7189 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7190
7191 for (i = 0; i < adapter->num_q_vectors; i++) {
7192 adapter->q_vector[i]->cpu = -1;
7193 igb_update_dca(adapter->q_vector[i]);
7194 }
7195 }
7196
__igb_notify_dca(struct device * dev,void * data)7197 static int __igb_notify_dca(struct device *dev, void *data)
7198 {
7199 struct net_device *netdev = dev_get_drvdata(dev);
7200 struct igb_adapter *adapter = netdev_priv(netdev);
7201 struct pci_dev *pdev = adapter->pdev;
7202 struct e1000_hw *hw = &adapter->hw;
7203 unsigned long event = *(unsigned long *)data;
7204
7205 switch (event) {
7206 case DCA_PROVIDER_ADD:
7207 /* if already enabled, don't do it again */
7208 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7209 break;
7210 if (dca_add_requester(dev) == 0) {
7211 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7212 dev_info(&pdev->dev, "DCA enabled\n");
7213 igb_setup_dca(adapter);
7214 break;
7215 }
7216 fallthrough; /* since DCA is disabled. */
7217 case DCA_PROVIDER_REMOVE:
7218 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7219 /* without this a class_device is left
7220 * hanging around in the sysfs model
7221 */
7222 dca_remove_requester(dev);
7223 dev_info(&pdev->dev, "DCA disabled\n");
7224 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7225 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7226 }
7227 break;
7228 }
7229
7230 return 0;
7231 }
7232
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7233 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7234 void *p)
7235 {
7236 int ret_val;
7237
7238 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7239 __igb_notify_dca);
7240
7241 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7242 }
7243 #endif /* CONFIG_IGB_DCA */
7244
7245 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7246 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7247 {
7248 unsigned char mac_addr[ETH_ALEN];
7249
7250 eth_zero_addr(mac_addr);
7251 igb_set_vf_mac(adapter, vf, mac_addr);
7252
7253 /* By default spoof check is enabled for all VFs */
7254 adapter->vf_data[vf].spoofchk_enabled = true;
7255
7256 /* By default VFs are not trusted */
7257 adapter->vf_data[vf].trusted = false;
7258
7259 return 0;
7260 }
7261
7262 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7263 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7264 {
7265 struct e1000_hw *hw = &adapter->hw;
7266 u32 ping;
7267 int i;
7268
7269 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7270 ping = E1000_PF_CONTROL_MSG;
7271 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7272 ping |= E1000_VT_MSGTYPE_CTS;
7273 igb_write_mbx(hw, &ping, 1, i);
7274 }
7275 }
7276
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7277 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7278 {
7279 struct e1000_hw *hw = &adapter->hw;
7280 u32 vmolr = rd32(E1000_VMOLR(vf));
7281 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7282
7283 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7284 IGB_VF_FLAG_MULTI_PROMISC);
7285 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7286
7287 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7288 vmolr |= E1000_VMOLR_MPME;
7289 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7290 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7291 } else {
7292 /* if we have hashes and we are clearing a multicast promisc
7293 * flag we need to write the hashes to the MTA as this step
7294 * was previously skipped
7295 */
7296 if (vf_data->num_vf_mc_hashes > 30) {
7297 vmolr |= E1000_VMOLR_MPME;
7298 } else if (vf_data->num_vf_mc_hashes) {
7299 int j;
7300
7301 vmolr |= E1000_VMOLR_ROMPE;
7302 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7303 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7304 }
7305 }
7306
7307 wr32(E1000_VMOLR(vf), vmolr);
7308
7309 /* there are flags left unprocessed, likely not supported */
7310 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7311 return -EINVAL;
7312
7313 return 0;
7314 }
7315
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7316 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7317 u32 *msgbuf, u32 vf)
7318 {
7319 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7320 u16 *hash_list = (u16 *)&msgbuf[1];
7321 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7322 int i;
7323
7324 /* salt away the number of multicast addresses assigned
7325 * to this VF for later use to restore when the PF multi cast
7326 * list changes
7327 */
7328 vf_data->num_vf_mc_hashes = n;
7329
7330 /* only up to 30 hash values supported */
7331 if (n > 30)
7332 n = 30;
7333
7334 /* store the hashes for later use */
7335 for (i = 0; i < n; i++)
7336 vf_data->vf_mc_hashes[i] = hash_list[i];
7337
7338 /* Flush and reset the mta with the new values */
7339 igb_set_rx_mode(adapter->netdev);
7340
7341 return 0;
7342 }
7343
igb_restore_vf_multicasts(struct igb_adapter * adapter)7344 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7345 {
7346 struct e1000_hw *hw = &adapter->hw;
7347 struct vf_data_storage *vf_data;
7348 int i, j;
7349
7350 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7351 u32 vmolr = rd32(E1000_VMOLR(i));
7352
7353 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7354
7355 vf_data = &adapter->vf_data[i];
7356
7357 if ((vf_data->num_vf_mc_hashes > 30) ||
7358 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7359 vmolr |= E1000_VMOLR_MPME;
7360 } else if (vf_data->num_vf_mc_hashes) {
7361 vmolr |= E1000_VMOLR_ROMPE;
7362 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7363 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7364 }
7365 wr32(E1000_VMOLR(i), vmolr);
7366 }
7367 }
7368
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7369 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7370 {
7371 struct e1000_hw *hw = &adapter->hw;
7372 u32 pool_mask, vlvf_mask, i;
7373
7374 /* create mask for VF and other pools */
7375 pool_mask = E1000_VLVF_POOLSEL_MASK;
7376 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7377
7378 /* drop PF from pool bits */
7379 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7380 adapter->vfs_allocated_count);
7381
7382 /* Find the vlan filter for this id */
7383 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7384 u32 vlvf = rd32(E1000_VLVF(i));
7385 u32 vfta_mask, vid, vfta;
7386
7387 /* remove the vf from the pool */
7388 if (!(vlvf & vlvf_mask))
7389 continue;
7390
7391 /* clear out bit from VLVF */
7392 vlvf ^= vlvf_mask;
7393
7394 /* if other pools are present, just remove ourselves */
7395 if (vlvf & pool_mask)
7396 goto update_vlvfb;
7397
7398 /* if PF is present, leave VFTA */
7399 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7400 goto update_vlvf;
7401
7402 vid = vlvf & E1000_VLVF_VLANID_MASK;
7403 vfta_mask = BIT(vid % 32);
7404
7405 /* clear bit from VFTA */
7406 vfta = adapter->shadow_vfta[vid / 32];
7407 if (vfta & vfta_mask)
7408 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7409 update_vlvf:
7410 /* clear pool selection enable */
7411 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7412 vlvf &= E1000_VLVF_POOLSEL_MASK;
7413 else
7414 vlvf = 0;
7415 update_vlvfb:
7416 /* clear pool bits */
7417 wr32(E1000_VLVF(i), vlvf);
7418 }
7419 }
7420
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7421 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7422 {
7423 u32 vlvf;
7424 int idx;
7425
7426 /* short cut the special case */
7427 if (vlan == 0)
7428 return 0;
7429
7430 /* Search for the VLAN id in the VLVF entries */
7431 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7432 vlvf = rd32(E1000_VLVF(idx));
7433 if ((vlvf & VLAN_VID_MASK) == vlan)
7434 break;
7435 }
7436
7437 return idx;
7438 }
7439
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7440 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7441 {
7442 struct e1000_hw *hw = &adapter->hw;
7443 u32 bits, pf_id;
7444 int idx;
7445
7446 idx = igb_find_vlvf_entry(hw, vid);
7447 if (!idx)
7448 return;
7449
7450 /* See if any other pools are set for this VLAN filter
7451 * entry other than the PF.
7452 */
7453 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7454 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7455 bits &= rd32(E1000_VLVF(idx));
7456
7457 /* Disable the filter so this falls into the default pool. */
7458 if (!bits) {
7459 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7460 wr32(E1000_VLVF(idx), BIT(pf_id));
7461 else
7462 wr32(E1000_VLVF(idx), 0);
7463 }
7464 }
7465
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7466 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7467 bool add, u32 vf)
7468 {
7469 int pf_id = adapter->vfs_allocated_count;
7470 struct e1000_hw *hw = &adapter->hw;
7471 int err;
7472
7473 /* If VLAN overlaps with one the PF is currently monitoring make
7474 * sure that we are able to allocate a VLVF entry. This may be
7475 * redundant but it guarantees PF will maintain visibility to
7476 * the VLAN.
7477 */
7478 if (add && test_bit(vid, adapter->active_vlans)) {
7479 err = igb_vfta_set(hw, vid, pf_id, true, false);
7480 if (err)
7481 return err;
7482 }
7483
7484 err = igb_vfta_set(hw, vid, vf, add, false);
7485
7486 if (add && !err)
7487 return err;
7488
7489 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7490 * we may need to drop the PF pool bit in order to allow us to free
7491 * up the VLVF resources.
7492 */
7493 if (test_bit(vid, adapter->active_vlans) ||
7494 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7495 igb_update_pf_vlvf(adapter, vid);
7496
7497 return err;
7498 }
7499
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7500 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7501 {
7502 struct e1000_hw *hw = &adapter->hw;
7503
7504 if (vid)
7505 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7506 else
7507 wr32(E1000_VMVIR(vf), 0);
7508 }
7509
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7510 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7511 u16 vlan, u8 qos)
7512 {
7513 int err;
7514
7515 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7516 if (err)
7517 return err;
7518
7519 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7520 igb_set_vmolr(adapter, vf, !vlan);
7521
7522 /* revoke access to previous VLAN */
7523 if (vlan != adapter->vf_data[vf].pf_vlan)
7524 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7525 false, vf);
7526
7527 adapter->vf_data[vf].pf_vlan = vlan;
7528 adapter->vf_data[vf].pf_qos = qos;
7529 igb_set_vf_vlan_strip(adapter, vf, true);
7530 dev_info(&adapter->pdev->dev,
7531 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7532 if (test_bit(__IGB_DOWN, &adapter->state)) {
7533 dev_warn(&adapter->pdev->dev,
7534 "The VF VLAN has been set, but the PF device is not up.\n");
7535 dev_warn(&adapter->pdev->dev,
7536 "Bring the PF device up before attempting to use the VF device.\n");
7537 }
7538
7539 return err;
7540 }
7541
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7542 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7543 {
7544 /* Restore tagless access via VLAN 0 */
7545 igb_set_vf_vlan(adapter, 0, true, vf);
7546
7547 igb_set_vmvir(adapter, 0, vf);
7548 igb_set_vmolr(adapter, vf, true);
7549
7550 /* Remove any PF assigned VLAN */
7551 if (adapter->vf_data[vf].pf_vlan)
7552 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7553 false, vf);
7554
7555 adapter->vf_data[vf].pf_vlan = 0;
7556 adapter->vf_data[vf].pf_qos = 0;
7557 igb_set_vf_vlan_strip(adapter, vf, false);
7558
7559 return 0;
7560 }
7561
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7562 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7563 u16 vlan, u8 qos, __be16 vlan_proto)
7564 {
7565 struct igb_adapter *adapter = netdev_priv(netdev);
7566
7567 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7568 return -EINVAL;
7569
7570 if (vlan_proto != htons(ETH_P_8021Q))
7571 return -EPROTONOSUPPORT;
7572
7573 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7574 igb_disable_port_vlan(adapter, vf);
7575 }
7576
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7577 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7578 {
7579 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7580 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7581 int ret;
7582
7583 if (adapter->vf_data[vf].pf_vlan)
7584 return -1;
7585
7586 /* VLAN 0 is a special case, don't allow it to be removed */
7587 if (!vid && !add)
7588 return 0;
7589
7590 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7591 if (!ret)
7592 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7593 return ret;
7594 }
7595
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7596 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7597 {
7598 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7599
7600 /* clear flags - except flag that indicates PF has set the MAC */
7601 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7602 vf_data->last_nack = jiffies;
7603
7604 /* reset vlans for device */
7605 igb_clear_vf_vfta(adapter, vf);
7606 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7607 igb_set_vmvir(adapter, vf_data->pf_vlan |
7608 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7609 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7610 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7611
7612 /* reset multicast table array for vf */
7613 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7614
7615 /* Flush and reset the mta with the new values */
7616 igb_set_rx_mode(adapter->netdev);
7617 }
7618
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7619 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7620 {
7621 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7622
7623 /* clear mac address as we were hotplug removed/added */
7624 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7625 eth_zero_addr(vf_mac);
7626
7627 /* process remaining reset events */
7628 igb_vf_reset(adapter, vf);
7629 }
7630
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7631 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7632 {
7633 struct e1000_hw *hw = &adapter->hw;
7634 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7635 u32 reg, msgbuf[3] = {};
7636 u8 *addr = (u8 *)(&msgbuf[1]);
7637
7638 /* process all the same items cleared in a function level reset */
7639 igb_vf_reset(adapter, vf);
7640
7641 /* set vf mac address */
7642 igb_set_vf_mac(adapter, vf, vf_mac);
7643
7644 /* enable transmit and receive for vf */
7645 reg = rd32(E1000_VFTE);
7646 wr32(E1000_VFTE, reg | BIT(vf));
7647 reg = rd32(E1000_VFRE);
7648 wr32(E1000_VFRE, reg | BIT(vf));
7649
7650 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7651
7652 /* reply to reset with ack and vf mac address */
7653 if (!is_zero_ether_addr(vf_mac)) {
7654 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7655 memcpy(addr, vf_mac, ETH_ALEN);
7656 } else {
7657 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7658 }
7659 igb_write_mbx(hw, msgbuf, 3, vf);
7660 }
7661
igb_flush_mac_table(struct igb_adapter * adapter)7662 static void igb_flush_mac_table(struct igb_adapter *adapter)
7663 {
7664 struct e1000_hw *hw = &adapter->hw;
7665 int i;
7666
7667 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7668 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7669 eth_zero_addr(adapter->mac_table[i].addr);
7670 adapter->mac_table[i].queue = 0;
7671 igb_rar_set_index(adapter, i);
7672 }
7673 }
7674
igb_available_rars(struct igb_adapter * adapter,u8 queue)7675 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7676 {
7677 struct e1000_hw *hw = &adapter->hw;
7678 /* do not count rar entries reserved for VFs MAC addresses */
7679 int rar_entries = hw->mac.rar_entry_count -
7680 adapter->vfs_allocated_count;
7681 int i, count = 0;
7682
7683 for (i = 0; i < rar_entries; i++) {
7684 /* do not count default entries */
7685 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7686 continue;
7687
7688 /* do not count "in use" entries for different queues */
7689 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7690 (adapter->mac_table[i].queue != queue))
7691 continue;
7692
7693 count++;
7694 }
7695
7696 return count;
7697 }
7698
7699 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7700 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7701 {
7702 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7703
7704 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7705 mac_table->queue = adapter->vfs_allocated_count;
7706 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7707
7708 igb_rar_set_index(adapter, 0);
7709 }
7710
7711 /* If the filter to be added and an already existing filter express
7712 * the same address and address type, it should be possible to only
7713 * override the other configurations, for example the queue to steer
7714 * traffic.
7715 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7716 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7717 const u8 *addr, const u8 flags)
7718 {
7719 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7720 return true;
7721
7722 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7723 (flags & IGB_MAC_STATE_SRC_ADDR))
7724 return false;
7725
7726 if (!ether_addr_equal(addr, entry->addr))
7727 return false;
7728
7729 return true;
7730 }
7731
7732 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7733 * 'flags' is used to indicate what kind of match is made, match is by
7734 * default for the destination address, if matching by source address
7735 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7736 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7737 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7738 const u8 *addr, const u8 queue,
7739 const u8 flags)
7740 {
7741 struct e1000_hw *hw = &adapter->hw;
7742 int rar_entries = hw->mac.rar_entry_count -
7743 adapter->vfs_allocated_count;
7744 int i;
7745
7746 if (is_zero_ether_addr(addr))
7747 return -EINVAL;
7748
7749 /* Search for the first empty entry in the MAC table.
7750 * Do not touch entries at the end of the table reserved for the VF MAC
7751 * addresses.
7752 */
7753 for (i = 0; i < rar_entries; i++) {
7754 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7755 addr, flags))
7756 continue;
7757
7758 ether_addr_copy(adapter->mac_table[i].addr, addr);
7759 adapter->mac_table[i].queue = queue;
7760 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7761
7762 igb_rar_set_index(adapter, i);
7763 return i;
7764 }
7765
7766 return -ENOSPC;
7767 }
7768
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7769 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7770 const u8 queue)
7771 {
7772 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7773 }
7774
7775 /* Remove a MAC filter for 'addr' directing matching traffic to
7776 * 'queue', 'flags' is used to indicate what kind of match need to be
7777 * removed, match is by default for the destination address, if
7778 * matching by source address is to be removed the flag
7779 * IGB_MAC_STATE_SRC_ADDR can be used.
7780 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7781 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7782 const u8 *addr, const u8 queue,
7783 const u8 flags)
7784 {
7785 struct e1000_hw *hw = &adapter->hw;
7786 int rar_entries = hw->mac.rar_entry_count -
7787 adapter->vfs_allocated_count;
7788 int i;
7789
7790 if (is_zero_ether_addr(addr))
7791 return -EINVAL;
7792
7793 /* Search for matching entry in the MAC table based on given address
7794 * and queue. Do not touch entries at the end of the table reserved
7795 * for the VF MAC addresses.
7796 */
7797 for (i = 0; i < rar_entries; i++) {
7798 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7799 continue;
7800 if ((adapter->mac_table[i].state & flags) != flags)
7801 continue;
7802 if (adapter->mac_table[i].queue != queue)
7803 continue;
7804 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7805 continue;
7806
7807 /* When a filter for the default address is "deleted",
7808 * we return it to its initial configuration
7809 */
7810 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7811 adapter->mac_table[i].state =
7812 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7813 adapter->mac_table[i].queue =
7814 adapter->vfs_allocated_count;
7815 } else {
7816 adapter->mac_table[i].state = 0;
7817 adapter->mac_table[i].queue = 0;
7818 eth_zero_addr(adapter->mac_table[i].addr);
7819 }
7820
7821 igb_rar_set_index(adapter, i);
7822 return 0;
7823 }
7824
7825 return -ENOENT;
7826 }
7827
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7828 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7829 const u8 queue)
7830 {
7831 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7832 }
7833
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7834 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7835 const u8 *addr, u8 queue, u8 flags)
7836 {
7837 struct e1000_hw *hw = &adapter->hw;
7838
7839 /* In theory, this should be supported on 82575 as well, but
7840 * that part wasn't easily accessible during development.
7841 */
7842 if (hw->mac.type != e1000_i210)
7843 return -EOPNOTSUPP;
7844
7845 return igb_add_mac_filter_flags(adapter, addr, queue,
7846 IGB_MAC_STATE_QUEUE_STEERING | flags);
7847 }
7848
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7849 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7850 const u8 *addr, u8 queue, u8 flags)
7851 {
7852 return igb_del_mac_filter_flags(adapter, addr, queue,
7853 IGB_MAC_STATE_QUEUE_STEERING | flags);
7854 }
7855
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7856 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7857 {
7858 struct igb_adapter *adapter = netdev_priv(netdev);
7859 int ret;
7860
7861 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7862
7863 return min_t(int, ret, 0);
7864 }
7865
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7866 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7867 {
7868 struct igb_adapter *adapter = netdev_priv(netdev);
7869
7870 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7871
7872 return 0;
7873 }
7874
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7875 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7876 const u32 info, const u8 *addr)
7877 {
7878 struct pci_dev *pdev = adapter->pdev;
7879 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7880 struct vf_mac_filter *entry;
7881 bool found = false;
7882 int ret = 0;
7883
7884 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7885 !vf_data->trusted) {
7886 dev_warn(&pdev->dev,
7887 "VF %d requested MAC filter but is administratively denied\n",
7888 vf);
7889 return -EINVAL;
7890 }
7891 if (!is_valid_ether_addr(addr)) {
7892 dev_warn(&pdev->dev,
7893 "VF %d attempted to set invalid MAC filter\n",
7894 vf);
7895 return -EINVAL;
7896 }
7897
7898 switch (info) {
7899 case E1000_VF_MAC_FILTER_CLR:
7900 /* remove all unicast MAC filters related to the current VF */
7901 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7902 if (entry->vf == vf) {
7903 entry->vf = -1;
7904 entry->free = true;
7905 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7906 }
7907 }
7908 break;
7909 case E1000_VF_MAC_FILTER_ADD:
7910 /* try to find empty slot in the list */
7911 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7912 if (entry->free) {
7913 found = true;
7914 break;
7915 }
7916 }
7917
7918 if (found) {
7919 entry->free = false;
7920 entry->vf = vf;
7921 ether_addr_copy(entry->vf_mac, addr);
7922
7923 ret = igb_add_mac_filter(adapter, addr, vf);
7924 ret = min_t(int, ret, 0);
7925 } else {
7926 ret = -ENOSPC;
7927 }
7928
7929 if (ret == -ENOSPC)
7930 dev_warn(&pdev->dev,
7931 "VF %d has requested MAC filter but there is no space for it\n",
7932 vf);
7933 break;
7934 default:
7935 ret = -EINVAL;
7936 break;
7937 }
7938
7939 return ret;
7940 }
7941
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7942 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7943 {
7944 struct pci_dev *pdev = adapter->pdev;
7945 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7946 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7947
7948 /* The VF MAC Address is stored in a packed array of bytes
7949 * starting at the second 32 bit word of the msg array
7950 */
7951 unsigned char *addr = (unsigned char *)&msg[1];
7952 int ret = 0;
7953
7954 if (!info) {
7955 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7956 !vf_data->trusted) {
7957 dev_warn(&pdev->dev,
7958 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7959 vf);
7960 return -EINVAL;
7961 }
7962
7963 if (!is_valid_ether_addr(addr)) {
7964 dev_warn(&pdev->dev,
7965 "VF %d attempted to set invalid MAC\n",
7966 vf);
7967 return -EINVAL;
7968 }
7969
7970 ret = igb_set_vf_mac(adapter, vf, addr);
7971 } else {
7972 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7973 }
7974
7975 return ret;
7976 }
7977
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7978 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7979 {
7980 struct e1000_hw *hw = &adapter->hw;
7981 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7982 u32 msg = E1000_VT_MSGTYPE_NACK;
7983
7984 /* if device isn't clear to send it shouldn't be reading either */
7985 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7986 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7987 igb_write_mbx(hw, &msg, 1, vf);
7988 vf_data->last_nack = jiffies;
7989 }
7990 }
7991
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7992 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7993 {
7994 struct pci_dev *pdev = adapter->pdev;
7995 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7996 struct e1000_hw *hw = &adapter->hw;
7997 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7998 s32 retval;
7999
8000 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8001
8002 if (retval) {
8003 /* if receive failed revoke VF CTS stats and restart init */
8004 dev_err(&pdev->dev, "Error receiving message from VF\n");
8005 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8006 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8007 goto unlock;
8008 goto out;
8009 }
8010
8011 /* this is a message we already processed, do nothing */
8012 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8013 goto unlock;
8014
8015 /* until the vf completes a reset it should not be
8016 * allowed to start any configuration.
8017 */
8018 if (msgbuf[0] == E1000_VF_RESET) {
8019 /* unlocks mailbox */
8020 igb_vf_reset_msg(adapter, vf);
8021 return;
8022 }
8023
8024 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8025 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8026 goto unlock;
8027 retval = -1;
8028 goto out;
8029 }
8030
8031 switch ((msgbuf[0] & 0xFFFF)) {
8032 case E1000_VF_SET_MAC_ADDR:
8033 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8034 break;
8035 case E1000_VF_SET_PROMISC:
8036 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8037 break;
8038 case E1000_VF_SET_MULTICAST:
8039 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8040 break;
8041 case E1000_VF_SET_LPE:
8042 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8043 break;
8044 case E1000_VF_SET_VLAN:
8045 retval = -1;
8046 if (vf_data->pf_vlan)
8047 dev_warn(&pdev->dev,
8048 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8049 vf);
8050 else
8051 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8052 break;
8053 default:
8054 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8055 retval = -1;
8056 break;
8057 }
8058
8059 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8060 out:
8061 /* notify the VF of the results of what it sent us */
8062 if (retval)
8063 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8064 else
8065 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8066
8067 /* unlocks mailbox */
8068 igb_write_mbx(hw, msgbuf, 1, vf);
8069 return;
8070
8071 unlock:
8072 igb_unlock_mbx(hw, vf);
8073 }
8074
igb_msg_task(struct igb_adapter * adapter)8075 static void igb_msg_task(struct igb_adapter *adapter)
8076 {
8077 struct e1000_hw *hw = &adapter->hw;
8078 unsigned long flags;
8079 u32 vf;
8080
8081 spin_lock_irqsave(&adapter->vfs_lock, flags);
8082 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8083 /* process any reset requests */
8084 if (!igb_check_for_rst(hw, vf))
8085 igb_vf_reset_event(adapter, vf);
8086
8087 /* process any messages pending */
8088 if (!igb_check_for_msg(hw, vf))
8089 igb_rcv_msg_from_vf(adapter, vf);
8090
8091 /* process any acks */
8092 if (!igb_check_for_ack(hw, vf))
8093 igb_rcv_ack_from_vf(adapter, vf);
8094 }
8095 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8096 }
8097
8098 /**
8099 * igb_set_uta - Set unicast filter table address
8100 * @adapter: board private structure
8101 * @set: boolean indicating if we are setting or clearing bits
8102 *
8103 * The unicast table address is a register array of 32-bit registers.
8104 * The table is meant to be used in a way similar to how the MTA is used
8105 * however due to certain limitations in the hardware it is necessary to
8106 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8107 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8108 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8109 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8110 {
8111 struct e1000_hw *hw = &adapter->hw;
8112 u32 uta = set ? ~0 : 0;
8113 int i;
8114
8115 /* we only need to do this if VMDq is enabled */
8116 if (!adapter->vfs_allocated_count)
8117 return;
8118
8119 for (i = hw->mac.uta_reg_count; i--;)
8120 array_wr32(E1000_UTA, i, uta);
8121 }
8122
8123 /**
8124 * igb_intr_msi - Interrupt Handler
8125 * @irq: interrupt number
8126 * @data: pointer to a network interface device structure
8127 **/
igb_intr_msi(int irq,void * data)8128 static irqreturn_t igb_intr_msi(int irq, void *data)
8129 {
8130 struct igb_adapter *adapter = data;
8131 struct igb_q_vector *q_vector = adapter->q_vector[0];
8132 struct e1000_hw *hw = &adapter->hw;
8133 /* read ICR disables interrupts using IAM */
8134 u32 icr = rd32(E1000_ICR);
8135
8136 igb_write_itr(q_vector);
8137
8138 if (icr & E1000_ICR_DRSTA)
8139 schedule_work(&adapter->reset_task);
8140
8141 if (icr & E1000_ICR_DOUTSYNC) {
8142 /* HW is reporting DMA is out of sync */
8143 adapter->stats.doosync++;
8144 }
8145
8146 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8147 hw->mac.get_link_status = 1;
8148 if (!test_bit(__IGB_DOWN, &adapter->state))
8149 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8150 }
8151
8152 if (icr & E1000_ICR_TS)
8153 igb_tsync_interrupt(adapter);
8154
8155 napi_schedule(&q_vector->napi);
8156
8157 return IRQ_HANDLED;
8158 }
8159
8160 /**
8161 * igb_intr - Legacy Interrupt Handler
8162 * @irq: interrupt number
8163 * @data: pointer to a network interface device structure
8164 **/
igb_intr(int irq,void * data)8165 static irqreturn_t igb_intr(int irq, void *data)
8166 {
8167 struct igb_adapter *adapter = data;
8168 struct igb_q_vector *q_vector = adapter->q_vector[0];
8169 struct e1000_hw *hw = &adapter->hw;
8170 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8171 * need for the IMC write
8172 */
8173 u32 icr = rd32(E1000_ICR);
8174
8175 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8176 * not set, then the adapter didn't send an interrupt
8177 */
8178 if (!(icr & E1000_ICR_INT_ASSERTED))
8179 return IRQ_NONE;
8180
8181 igb_write_itr(q_vector);
8182
8183 if (icr & E1000_ICR_DRSTA)
8184 schedule_work(&adapter->reset_task);
8185
8186 if (icr & E1000_ICR_DOUTSYNC) {
8187 /* HW is reporting DMA is out of sync */
8188 adapter->stats.doosync++;
8189 }
8190
8191 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8192 hw->mac.get_link_status = 1;
8193 /* guard against interrupt when we're going down */
8194 if (!test_bit(__IGB_DOWN, &adapter->state))
8195 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8196 }
8197
8198 if (icr & E1000_ICR_TS)
8199 igb_tsync_interrupt(adapter);
8200
8201 napi_schedule(&q_vector->napi);
8202
8203 return IRQ_HANDLED;
8204 }
8205
igb_ring_irq_enable(struct igb_q_vector * q_vector)8206 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8207 {
8208 struct igb_adapter *adapter = q_vector->adapter;
8209 struct e1000_hw *hw = &adapter->hw;
8210
8211 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8212 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8213 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8214 igb_set_itr(q_vector);
8215 else
8216 igb_update_ring_itr(q_vector);
8217 }
8218
8219 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8220 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8221 wr32(E1000_EIMS, q_vector->eims_value);
8222 else
8223 igb_irq_enable(adapter);
8224 }
8225 }
8226
8227 /**
8228 * igb_poll - NAPI Rx polling callback
8229 * @napi: napi polling structure
8230 * @budget: count of how many packets we should handle
8231 **/
igb_poll(struct napi_struct * napi,int budget)8232 static int igb_poll(struct napi_struct *napi, int budget)
8233 {
8234 struct igb_q_vector *q_vector = container_of(napi,
8235 struct igb_q_vector,
8236 napi);
8237 struct xsk_buff_pool *xsk_pool;
8238 bool clean_complete = true;
8239 int work_done = 0;
8240
8241 #ifdef CONFIG_IGB_DCA
8242 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8243 igb_update_dca(q_vector);
8244 #endif
8245 if (q_vector->tx.ring)
8246 clean_complete = igb_clean_tx_irq(q_vector, budget);
8247
8248 if (q_vector->rx.ring) {
8249 int cleaned;
8250
8251 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8252 cleaned = xsk_pool ?
8253 igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8254 igb_clean_rx_irq(q_vector, budget);
8255
8256 work_done += cleaned;
8257 if (cleaned >= budget)
8258 clean_complete = false;
8259 }
8260
8261 /* If all work not completed, return budget and keep polling */
8262 if (!clean_complete)
8263 return budget;
8264
8265 /* Exit the polling mode, but don't re-enable interrupts if stack might
8266 * poll us due to busy-polling
8267 */
8268 if (likely(napi_complete_done(napi, work_done)))
8269 igb_ring_irq_enable(q_vector);
8270
8271 return work_done;
8272 }
8273
8274 /**
8275 * igb_clean_tx_irq - Reclaim resources after transmit completes
8276 * @q_vector: pointer to q_vector containing needed info
8277 * @napi_budget: Used to determine if we are in netpoll
8278 *
8279 * returns true if ring is completely cleaned
8280 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8281 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8282 {
8283 unsigned int total_bytes = 0, total_packets = 0;
8284 struct igb_adapter *adapter = q_vector->adapter;
8285 unsigned int budget = q_vector->tx.work_limit;
8286 struct igb_ring *tx_ring = q_vector->tx.ring;
8287 unsigned int i = tx_ring->next_to_clean;
8288 union e1000_adv_tx_desc *tx_desc;
8289 struct igb_tx_buffer *tx_buffer;
8290 struct xsk_buff_pool *xsk_pool;
8291 int cpu = smp_processor_id();
8292 bool xsk_xmit_done = true;
8293 struct netdev_queue *nq;
8294 u32 xsk_frames = 0;
8295
8296 if (test_bit(__IGB_DOWN, &adapter->state))
8297 return true;
8298
8299 tx_buffer = &tx_ring->tx_buffer_info[i];
8300 tx_desc = IGB_TX_DESC(tx_ring, i);
8301 i -= tx_ring->count;
8302
8303 do {
8304 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8305
8306 /* if next_to_watch is not set then there is no work pending */
8307 if (!eop_desc)
8308 break;
8309
8310 /* prevent any other reads prior to eop_desc */
8311 smp_rmb();
8312
8313 /* if DD is not set pending work has not been completed */
8314 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8315 break;
8316
8317 /* clear next_to_watch to prevent false hangs */
8318 tx_buffer->next_to_watch = NULL;
8319
8320 /* update the statistics for this packet */
8321 total_bytes += tx_buffer->bytecount;
8322 total_packets += tx_buffer->gso_segs;
8323
8324 /* free the skb */
8325 if (tx_buffer->type == IGB_TYPE_SKB) {
8326 napi_consume_skb(tx_buffer->skb, napi_budget);
8327 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8328 xdp_return_frame(tx_buffer->xdpf);
8329 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8330 xsk_frames++;
8331 goto skip_for_xsk;
8332 }
8333
8334 /* unmap skb header data */
8335 dma_unmap_single(tx_ring->dev,
8336 dma_unmap_addr(tx_buffer, dma),
8337 dma_unmap_len(tx_buffer, len),
8338 DMA_TO_DEVICE);
8339
8340 /* clear tx_buffer data */
8341 dma_unmap_len_set(tx_buffer, len, 0);
8342
8343 /* clear last DMA location and unmap remaining buffers */
8344 while (tx_desc != eop_desc) {
8345 tx_buffer++;
8346 tx_desc++;
8347 i++;
8348 if (unlikely(!i)) {
8349 i -= tx_ring->count;
8350 tx_buffer = tx_ring->tx_buffer_info;
8351 tx_desc = IGB_TX_DESC(tx_ring, 0);
8352 }
8353
8354 /* unmap any remaining paged data */
8355 if (dma_unmap_len(tx_buffer, len)) {
8356 dma_unmap_page(tx_ring->dev,
8357 dma_unmap_addr(tx_buffer, dma),
8358 dma_unmap_len(tx_buffer, len),
8359 DMA_TO_DEVICE);
8360 dma_unmap_len_set(tx_buffer, len, 0);
8361 }
8362 }
8363
8364 skip_for_xsk:
8365 /* move us one more past the eop_desc for start of next pkt */
8366 tx_buffer++;
8367 tx_desc++;
8368 i++;
8369 if (unlikely(!i)) {
8370 i -= tx_ring->count;
8371 tx_buffer = tx_ring->tx_buffer_info;
8372 tx_desc = IGB_TX_DESC(tx_ring, 0);
8373 }
8374
8375 /* issue prefetch for next Tx descriptor */
8376 prefetch(tx_desc);
8377
8378 /* update budget accounting */
8379 budget--;
8380 } while (likely(budget));
8381
8382 netdev_tx_completed_queue(txring_txq(tx_ring),
8383 total_packets, total_bytes);
8384 i += tx_ring->count;
8385 tx_ring->next_to_clean = i;
8386 u64_stats_update_begin(&tx_ring->tx_syncp);
8387 tx_ring->tx_stats.bytes += total_bytes;
8388 tx_ring->tx_stats.packets += total_packets;
8389 u64_stats_update_end(&tx_ring->tx_syncp);
8390 q_vector->tx.total_bytes += total_bytes;
8391 q_vector->tx.total_packets += total_packets;
8392
8393 xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8394 if (xsk_pool) {
8395 if (xsk_frames)
8396 xsk_tx_completed(xsk_pool, xsk_frames);
8397 if (xsk_uses_need_wakeup(xsk_pool))
8398 xsk_set_tx_need_wakeup(xsk_pool);
8399
8400 nq = txring_txq(tx_ring);
8401 __netif_tx_lock(nq, cpu);
8402 /* Avoid transmit queue timeout since we share it with the slow path */
8403 txq_trans_cond_update(nq);
8404 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8405 __netif_tx_unlock(nq);
8406 }
8407
8408 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8409 struct e1000_hw *hw = &adapter->hw;
8410
8411 /* Detect a transmit hang in hardware, this serializes the
8412 * check with the clearing of time_stamp and movement of i
8413 */
8414 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8415 if (tx_buffer->next_to_watch &&
8416 time_after(jiffies, tx_buffer->time_stamp +
8417 (adapter->tx_timeout_factor * HZ)) &&
8418 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8419
8420 /* detected Tx unit hang */
8421 dev_err(tx_ring->dev,
8422 "Detected Tx Unit Hang\n"
8423 " Tx Queue <%d>\n"
8424 " TDH <%x>\n"
8425 " TDT <%x>\n"
8426 " next_to_use <%x>\n"
8427 " next_to_clean <%x>\n"
8428 "buffer_info[next_to_clean]\n"
8429 " time_stamp <%lx>\n"
8430 " next_to_watch <%p>\n"
8431 " jiffies <%lx>\n"
8432 " desc.status <%x>\n",
8433 tx_ring->queue_index,
8434 rd32(E1000_TDH(tx_ring->reg_idx)),
8435 readl(tx_ring->tail),
8436 tx_ring->next_to_use,
8437 tx_ring->next_to_clean,
8438 tx_buffer->time_stamp,
8439 tx_buffer->next_to_watch,
8440 jiffies,
8441 tx_buffer->next_to_watch->wb.status);
8442 netif_stop_subqueue(tx_ring->netdev,
8443 tx_ring->queue_index);
8444
8445 /* we are about to reset, no point in enabling stuff */
8446 return true;
8447 }
8448 }
8449
8450 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8451 if (unlikely(total_packets &&
8452 netif_carrier_ok(tx_ring->netdev) &&
8453 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8454 /* Make sure that anybody stopping the queue after this
8455 * sees the new next_to_clean.
8456 */
8457 smp_mb();
8458 if (__netif_subqueue_stopped(tx_ring->netdev,
8459 tx_ring->queue_index) &&
8460 !(test_bit(__IGB_DOWN, &adapter->state))) {
8461 netif_wake_subqueue(tx_ring->netdev,
8462 tx_ring->queue_index);
8463
8464 u64_stats_update_begin(&tx_ring->tx_syncp);
8465 tx_ring->tx_stats.restart_queue++;
8466 u64_stats_update_end(&tx_ring->tx_syncp);
8467 }
8468 }
8469
8470 return !!budget && xsk_xmit_done;
8471 }
8472
8473 /**
8474 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8475 * @rx_ring: rx descriptor ring to store buffers on
8476 * @old_buff: donor buffer to have page reused
8477 *
8478 * Synchronizes page for reuse by the adapter
8479 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8480 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8481 struct igb_rx_buffer *old_buff)
8482 {
8483 struct igb_rx_buffer *new_buff;
8484 u16 nta = rx_ring->next_to_alloc;
8485
8486 new_buff = &rx_ring->rx_buffer_info[nta];
8487
8488 /* update, and store next to alloc */
8489 nta++;
8490 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8491
8492 /* Transfer page from old buffer to new buffer.
8493 * Move each member individually to avoid possible store
8494 * forwarding stalls.
8495 */
8496 new_buff->dma = old_buff->dma;
8497 new_buff->page = old_buff->page;
8498 new_buff->page_offset = old_buff->page_offset;
8499 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8500 }
8501
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8502 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8503 int rx_buf_pgcnt)
8504 {
8505 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8506 struct page *page = rx_buffer->page;
8507
8508 /* avoid re-using remote and pfmemalloc pages */
8509 if (!dev_page_is_reusable(page))
8510 return false;
8511
8512 #if (PAGE_SIZE < 8192)
8513 /* if we are only owner of page we can reuse it */
8514 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8515 return false;
8516 #else
8517 #define IGB_LAST_OFFSET \
8518 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8519
8520 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8521 return false;
8522 #endif
8523
8524 /* If we have drained the page fragment pool we need to update
8525 * the pagecnt_bias and page count so that we fully restock the
8526 * number of references the driver holds.
8527 */
8528 if (unlikely(pagecnt_bias == 1)) {
8529 page_ref_add(page, USHRT_MAX - 1);
8530 rx_buffer->pagecnt_bias = USHRT_MAX;
8531 }
8532
8533 return true;
8534 }
8535
8536 /**
8537 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8538 * @rx_ring: rx descriptor ring to transact packets on
8539 * @rx_buffer: buffer containing page to add
8540 * @skb: sk_buff to place the data into
8541 * @size: size of buffer to be added
8542 *
8543 * This function will add the data contained in rx_buffer->page to the skb.
8544 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8545 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8546 struct igb_rx_buffer *rx_buffer,
8547 struct sk_buff *skb,
8548 unsigned int size)
8549 {
8550 #if (PAGE_SIZE < 8192)
8551 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8552 #else
8553 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8554 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8555 SKB_DATA_ALIGN(size);
8556 #endif
8557 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8558 rx_buffer->page_offset, size, truesize);
8559 #if (PAGE_SIZE < 8192)
8560 rx_buffer->page_offset ^= truesize;
8561 #else
8562 rx_buffer->page_offset += truesize;
8563 #endif
8564 }
8565
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8566 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8567 struct igb_rx_buffer *rx_buffer,
8568 struct xdp_buff *xdp,
8569 ktime_t timestamp)
8570 {
8571 #if (PAGE_SIZE < 8192)
8572 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8573 #else
8574 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8575 xdp->data_hard_start);
8576 #endif
8577 unsigned int size = xdp->data_end - xdp->data;
8578 unsigned int headlen;
8579 struct sk_buff *skb;
8580
8581 /* prefetch first cache line of first page */
8582 net_prefetch(xdp->data);
8583
8584 /* allocate a skb to store the frags */
8585 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8586 if (unlikely(!skb))
8587 return NULL;
8588
8589 if (timestamp)
8590 skb_hwtstamps(skb)->hwtstamp = timestamp;
8591
8592 /* Determine available headroom for copy */
8593 headlen = size;
8594 if (headlen > IGB_RX_HDR_LEN)
8595 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8596
8597 /* align pull length to size of long to optimize memcpy performance */
8598 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8599
8600 /* update all of the pointers */
8601 size -= headlen;
8602 if (size) {
8603 skb_add_rx_frag(skb, 0, rx_buffer->page,
8604 (xdp->data + headlen) - page_address(rx_buffer->page),
8605 size, truesize);
8606 #if (PAGE_SIZE < 8192)
8607 rx_buffer->page_offset ^= truesize;
8608 #else
8609 rx_buffer->page_offset += truesize;
8610 #endif
8611 } else {
8612 rx_buffer->pagecnt_bias++;
8613 }
8614
8615 return skb;
8616 }
8617
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8618 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8619 struct igb_rx_buffer *rx_buffer,
8620 struct xdp_buff *xdp,
8621 ktime_t timestamp)
8622 {
8623 #if (PAGE_SIZE < 8192)
8624 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8625 #else
8626 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8627 SKB_DATA_ALIGN(xdp->data_end -
8628 xdp->data_hard_start);
8629 #endif
8630 unsigned int metasize = xdp->data - xdp->data_meta;
8631 struct sk_buff *skb;
8632
8633 /* prefetch first cache line of first page */
8634 net_prefetch(xdp->data_meta);
8635
8636 /* build an skb around the page buffer */
8637 skb = napi_build_skb(xdp->data_hard_start, truesize);
8638 if (unlikely(!skb))
8639 return NULL;
8640
8641 /* update pointers within the skb to store the data */
8642 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8643 __skb_put(skb, xdp->data_end - xdp->data);
8644
8645 if (metasize)
8646 skb_metadata_set(skb, metasize);
8647
8648 if (timestamp)
8649 skb_hwtstamps(skb)->hwtstamp = timestamp;
8650
8651 /* update buffer offset */
8652 #if (PAGE_SIZE < 8192)
8653 rx_buffer->page_offset ^= truesize;
8654 #else
8655 rx_buffer->page_offset += truesize;
8656 #endif
8657
8658 return skb;
8659 }
8660
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8661 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8662 struct xdp_buff *xdp)
8663 {
8664 int err, result = IGB_XDP_PASS;
8665 struct bpf_prog *xdp_prog;
8666 u32 act;
8667
8668 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8669
8670 if (!xdp_prog)
8671 goto xdp_out;
8672
8673 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8674
8675 act = bpf_prog_run_xdp(xdp_prog, xdp);
8676 switch (act) {
8677 case XDP_PASS:
8678 break;
8679 case XDP_TX:
8680 result = igb_xdp_xmit_back(adapter, xdp);
8681 if (result == IGB_XDP_CONSUMED)
8682 goto out_failure;
8683 break;
8684 case XDP_REDIRECT:
8685 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8686 if (err)
8687 goto out_failure;
8688 result = IGB_XDP_REDIR;
8689 break;
8690 default:
8691 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8692 fallthrough;
8693 case XDP_ABORTED:
8694 out_failure:
8695 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8696 fallthrough;
8697 case XDP_DROP:
8698 result = IGB_XDP_CONSUMED;
8699 break;
8700 }
8701 xdp_out:
8702 return result;
8703 }
8704
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8705 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8706 unsigned int size)
8707 {
8708 unsigned int truesize;
8709
8710 #if (PAGE_SIZE < 8192)
8711 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8712 #else
8713 truesize = ring_uses_build_skb(rx_ring) ?
8714 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8715 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8716 SKB_DATA_ALIGN(size);
8717 #endif
8718 return truesize;
8719 }
8720
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8721 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8722 struct igb_rx_buffer *rx_buffer,
8723 unsigned int size)
8724 {
8725 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8726 #if (PAGE_SIZE < 8192)
8727 rx_buffer->page_offset ^= truesize;
8728 #else
8729 rx_buffer->page_offset += truesize;
8730 #endif
8731 }
8732
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8733 static inline void igb_rx_checksum(struct igb_ring *ring,
8734 union e1000_adv_rx_desc *rx_desc,
8735 struct sk_buff *skb)
8736 {
8737 skb_checksum_none_assert(skb);
8738
8739 /* Ignore Checksum bit is set */
8740 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8741 return;
8742
8743 /* Rx checksum disabled via ethtool */
8744 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8745 return;
8746
8747 /* TCP/UDP checksum error bit is set */
8748 if (igb_test_staterr(rx_desc,
8749 E1000_RXDEXT_STATERR_TCPE |
8750 E1000_RXDEXT_STATERR_IPE)) {
8751 /* work around errata with sctp packets where the TCPE aka
8752 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8753 * packets, (aka let the stack check the crc32c)
8754 */
8755 if (!((skb->len == 60) &&
8756 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8757 u64_stats_update_begin(&ring->rx_syncp);
8758 ring->rx_stats.csum_err++;
8759 u64_stats_update_end(&ring->rx_syncp);
8760 }
8761 /* let the stack verify checksum errors */
8762 return;
8763 }
8764 /* It must be a TCP or UDP packet with a valid checksum */
8765 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8766 E1000_RXD_STAT_UDPCS))
8767 skb->ip_summed = CHECKSUM_UNNECESSARY;
8768
8769 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8770 le32_to_cpu(rx_desc->wb.upper.status_error));
8771 }
8772
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8773 static inline void igb_rx_hash(struct igb_ring *ring,
8774 union e1000_adv_rx_desc *rx_desc,
8775 struct sk_buff *skb)
8776 {
8777 if (ring->netdev->features & NETIF_F_RXHASH)
8778 skb_set_hash(skb,
8779 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8780 PKT_HASH_TYPE_L3);
8781 }
8782
8783 /**
8784 * igb_is_non_eop - process handling of non-EOP buffers
8785 * @rx_ring: Rx ring being processed
8786 * @rx_desc: Rx descriptor for current buffer
8787 *
8788 * This function updates next to clean. If the buffer is an EOP buffer
8789 * this function exits returning false, otherwise it will place the
8790 * sk_buff in the next buffer to be chained and return true indicating
8791 * that this is in fact a non-EOP buffer.
8792 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8793 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8794 union e1000_adv_rx_desc *rx_desc)
8795 {
8796 u32 ntc = rx_ring->next_to_clean + 1;
8797
8798 /* fetch, update, and store next to clean */
8799 ntc = (ntc < rx_ring->count) ? ntc : 0;
8800 rx_ring->next_to_clean = ntc;
8801
8802 prefetch(IGB_RX_DESC(rx_ring, ntc));
8803
8804 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8805 return false;
8806
8807 return true;
8808 }
8809
8810 /**
8811 * igb_cleanup_headers - Correct corrupted or empty headers
8812 * @rx_ring: rx descriptor ring packet is being transacted on
8813 * @rx_desc: pointer to the EOP Rx descriptor
8814 * @skb: pointer to current skb being fixed
8815 *
8816 * Address the case where we are pulling data in on pages only
8817 * and as such no data is present in the skb header.
8818 *
8819 * In addition if skb is not at least 60 bytes we need to pad it so that
8820 * it is large enough to qualify as a valid Ethernet frame.
8821 *
8822 * Returns true if an error was encountered and skb was freed.
8823 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8824 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8825 union e1000_adv_rx_desc *rx_desc,
8826 struct sk_buff *skb)
8827 {
8828 if (unlikely((igb_test_staterr(rx_desc,
8829 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8830 struct net_device *netdev = rx_ring->netdev;
8831 if (!(netdev->features & NETIF_F_RXALL)) {
8832 dev_kfree_skb_any(skb);
8833 return true;
8834 }
8835 }
8836
8837 /* if eth_skb_pad returns an error the skb was freed */
8838 if (eth_skb_pad(skb))
8839 return true;
8840
8841 return false;
8842 }
8843
8844 /**
8845 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8846 * @rx_ring: rx descriptor ring packet is being transacted on
8847 * @rx_desc: pointer to the EOP Rx descriptor
8848 * @skb: pointer to current skb being populated
8849 *
8850 * This function checks the ring, descriptor, and packet information in
8851 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8852 * other fields within the skb.
8853 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8854 void igb_process_skb_fields(struct igb_ring *rx_ring,
8855 union e1000_adv_rx_desc *rx_desc,
8856 struct sk_buff *skb)
8857 {
8858 struct net_device *dev = rx_ring->netdev;
8859
8860 igb_rx_hash(rx_ring, rx_desc, skb);
8861
8862 igb_rx_checksum(rx_ring, rx_desc, skb);
8863
8864 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8865 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8866 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8867
8868 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8869 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8870 u16 vid;
8871
8872 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8873 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8874 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8875 else
8876 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8877
8878 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8879 }
8880
8881 skb_record_rx_queue(skb, rx_ring->queue_index);
8882
8883 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8884 }
8885
igb_rx_offset(struct igb_ring * rx_ring)8886 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8887 {
8888 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8889 }
8890
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8891 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8892 const unsigned int size, int *rx_buf_pgcnt)
8893 {
8894 struct igb_rx_buffer *rx_buffer;
8895
8896 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8897 *rx_buf_pgcnt =
8898 #if (PAGE_SIZE < 8192)
8899 page_count(rx_buffer->page);
8900 #else
8901 0;
8902 #endif
8903 prefetchw(rx_buffer->page);
8904
8905 /* we are reusing so sync this buffer for CPU use */
8906 dma_sync_single_range_for_cpu(rx_ring->dev,
8907 rx_buffer->dma,
8908 rx_buffer->page_offset,
8909 size,
8910 DMA_FROM_DEVICE);
8911
8912 rx_buffer->pagecnt_bias--;
8913
8914 return rx_buffer;
8915 }
8916
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8917 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8918 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8919 {
8920 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8921 /* hand second half of page back to the ring */
8922 igb_reuse_rx_page(rx_ring, rx_buffer);
8923 } else {
8924 /* We are not reusing the buffer so unmap it and free
8925 * any references we are holding to it
8926 */
8927 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8928 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8929 IGB_RX_DMA_ATTR);
8930 __page_frag_cache_drain(rx_buffer->page,
8931 rx_buffer->pagecnt_bias);
8932 }
8933
8934 /* clear contents of rx_buffer */
8935 rx_buffer->page = NULL;
8936 }
8937
igb_finalize_xdp(struct igb_adapter * adapter,unsigned int status)8938 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8939 {
8940 int cpu = smp_processor_id();
8941 struct netdev_queue *nq;
8942
8943 if (status & IGB_XDP_REDIR)
8944 xdp_do_flush();
8945
8946 if (status & IGB_XDP_TX) {
8947 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8948
8949 nq = txring_txq(tx_ring);
8950 __netif_tx_lock(nq, cpu);
8951 igb_xdp_ring_update_tail(tx_ring);
8952 __netif_tx_unlock(nq);
8953 }
8954 }
8955
igb_update_rx_stats(struct igb_q_vector * q_vector,unsigned int packets,unsigned int bytes)8956 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
8957 unsigned int bytes)
8958 {
8959 struct igb_ring *ring = q_vector->rx.ring;
8960
8961 u64_stats_update_begin(&ring->rx_syncp);
8962 ring->rx_stats.packets += packets;
8963 ring->rx_stats.bytes += bytes;
8964 u64_stats_update_end(&ring->rx_syncp);
8965
8966 q_vector->rx.total_packets += packets;
8967 q_vector->rx.total_bytes += bytes;
8968 }
8969
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8970 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8971 {
8972 unsigned int total_bytes = 0, total_packets = 0;
8973 struct igb_adapter *adapter = q_vector->adapter;
8974 struct igb_ring *rx_ring = q_vector->rx.ring;
8975 u16 cleaned_count = igb_desc_unused(rx_ring);
8976 struct sk_buff *skb = rx_ring->skb;
8977 unsigned int xdp_xmit = 0;
8978 struct xdp_buff xdp;
8979 u32 frame_sz = 0;
8980 int rx_buf_pgcnt;
8981 int xdp_res = 0;
8982
8983 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8984 #if (PAGE_SIZE < 8192)
8985 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8986 #endif
8987 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8988
8989 while (likely(total_packets < budget)) {
8990 union e1000_adv_rx_desc *rx_desc;
8991 struct igb_rx_buffer *rx_buffer;
8992 ktime_t timestamp = 0;
8993 int pkt_offset = 0;
8994 unsigned int size;
8995 void *pktbuf;
8996
8997 /* return some buffers to hardware, one at a time is too slow */
8998 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8999 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9000 cleaned_count = 0;
9001 }
9002
9003 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9004 size = le16_to_cpu(rx_desc->wb.upper.length);
9005 if (!size)
9006 break;
9007
9008 /* This memory barrier is needed to keep us from reading
9009 * any other fields out of the rx_desc until we know the
9010 * descriptor has been written back
9011 */
9012 dma_rmb();
9013
9014 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9015 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9016
9017 /* pull rx packet timestamp if available and valid */
9018 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9019 int ts_hdr_len;
9020
9021 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9022 pktbuf, ×tamp);
9023
9024 pkt_offset += ts_hdr_len;
9025 size -= ts_hdr_len;
9026 }
9027
9028 /* retrieve a buffer from the ring */
9029 if (!skb) {
9030 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9031 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9032
9033 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9034 xdp_buff_clear_frags_flag(&xdp);
9035 #if (PAGE_SIZE > 4096)
9036 /* At larger PAGE_SIZE, frame_sz depend on len size */
9037 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9038 #endif
9039 xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9040 }
9041
9042 if (xdp_res) {
9043 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9044 xdp_xmit |= xdp_res;
9045 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9046 } else {
9047 rx_buffer->pagecnt_bias++;
9048 }
9049 total_packets++;
9050 total_bytes += size;
9051 } else if (skb)
9052 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9053 else if (ring_uses_build_skb(rx_ring))
9054 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9055 timestamp);
9056 else
9057 skb = igb_construct_skb(rx_ring, rx_buffer,
9058 &xdp, timestamp);
9059
9060 /* exit if we failed to retrieve a buffer */
9061 if (!xdp_res && !skb) {
9062 rx_ring->rx_stats.alloc_failed++;
9063 rx_buffer->pagecnt_bias++;
9064 break;
9065 }
9066
9067 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9068 cleaned_count++;
9069
9070 /* fetch next buffer in frame if non-eop */
9071 if (igb_is_non_eop(rx_ring, rx_desc))
9072 continue;
9073
9074 /* verify the packet layout is correct */
9075 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9076 skb = NULL;
9077 continue;
9078 }
9079
9080 /* probably a little skewed due to removing CRC */
9081 total_bytes += skb->len;
9082
9083 /* populate checksum, timestamp, VLAN, and protocol */
9084 igb_process_skb_fields(rx_ring, rx_desc, skb);
9085
9086 napi_gro_receive(&q_vector->napi, skb);
9087
9088 /* reset skb pointer */
9089 skb = NULL;
9090
9091 /* update budget accounting */
9092 total_packets++;
9093 }
9094
9095 /* place incomplete frames back on ring for completion */
9096 rx_ring->skb = skb;
9097
9098 if (xdp_xmit)
9099 igb_finalize_xdp(adapter, xdp_xmit);
9100
9101 igb_update_rx_stats(q_vector, total_packets, total_bytes);
9102
9103 if (cleaned_count)
9104 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9105
9106 return total_packets;
9107 }
9108
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9109 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9110 struct igb_rx_buffer *bi)
9111 {
9112 struct page *page = bi->page;
9113 dma_addr_t dma;
9114
9115 /* since we are recycling buffers we should seldom need to alloc */
9116 if (likely(page))
9117 return true;
9118
9119 /* alloc new page for storage */
9120 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9121 if (unlikely(!page)) {
9122 rx_ring->rx_stats.alloc_failed++;
9123 return false;
9124 }
9125
9126 /* map page for use */
9127 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9128 igb_rx_pg_size(rx_ring),
9129 DMA_FROM_DEVICE,
9130 IGB_RX_DMA_ATTR);
9131
9132 /* if mapping failed free memory back to system since
9133 * there isn't much point in holding memory we can't use
9134 */
9135 if (dma_mapping_error(rx_ring->dev, dma)) {
9136 __free_pages(page, igb_rx_pg_order(rx_ring));
9137
9138 rx_ring->rx_stats.alloc_failed++;
9139 return false;
9140 }
9141
9142 bi->dma = dma;
9143 bi->page = page;
9144 bi->page_offset = igb_rx_offset(rx_ring);
9145 page_ref_add(page, USHRT_MAX - 1);
9146 bi->pagecnt_bias = USHRT_MAX;
9147
9148 return true;
9149 }
9150
9151 /**
9152 * igb_alloc_rx_buffers - Replace used receive buffers
9153 * @rx_ring: rx descriptor ring to allocate new receive buffers
9154 * @cleaned_count: count of buffers to allocate
9155 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9156 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9157 {
9158 union e1000_adv_rx_desc *rx_desc;
9159 struct igb_rx_buffer *bi;
9160 u16 i = rx_ring->next_to_use;
9161 u16 bufsz;
9162
9163 /* nothing to do */
9164 if (!cleaned_count)
9165 return;
9166
9167 rx_desc = IGB_RX_DESC(rx_ring, i);
9168 bi = &rx_ring->rx_buffer_info[i];
9169 i -= rx_ring->count;
9170
9171 bufsz = igb_rx_bufsz(rx_ring);
9172
9173 do {
9174 if (!igb_alloc_mapped_page(rx_ring, bi))
9175 break;
9176
9177 /* sync the buffer for use by the device */
9178 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9179 bi->page_offset, bufsz,
9180 DMA_FROM_DEVICE);
9181
9182 /* Refresh the desc even if buffer_addrs didn't change
9183 * because each write-back erases this info.
9184 */
9185 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9186
9187 rx_desc++;
9188 bi++;
9189 i++;
9190 if (unlikely(!i)) {
9191 rx_desc = IGB_RX_DESC(rx_ring, 0);
9192 bi = rx_ring->rx_buffer_info;
9193 i -= rx_ring->count;
9194 }
9195
9196 /* clear the length for the next_to_use descriptor */
9197 rx_desc->wb.upper.length = 0;
9198
9199 cleaned_count--;
9200 } while (cleaned_count);
9201
9202 i += rx_ring->count;
9203
9204 if (rx_ring->next_to_use != i) {
9205 /* record the next descriptor to use */
9206 rx_ring->next_to_use = i;
9207
9208 /* update next to alloc since we have filled the ring */
9209 rx_ring->next_to_alloc = i;
9210
9211 /* Force memory writes to complete before letting h/w
9212 * know there are new descriptors to fetch. (Only
9213 * applicable for weak-ordered memory model archs,
9214 * such as IA-64).
9215 */
9216 dma_wmb();
9217 writel(i, rx_ring->tail);
9218 }
9219 }
9220
9221 /**
9222 * igb_mii_ioctl -
9223 * @netdev: pointer to netdev struct
9224 * @ifr: interface structure
9225 * @cmd: ioctl command to execute
9226 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9227 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9228 {
9229 struct igb_adapter *adapter = netdev_priv(netdev);
9230 struct mii_ioctl_data *data = if_mii(ifr);
9231
9232 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9233 return -EOPNOTSUPP;
9234
9235 switch (cmd) {
9236 case SIOCGMIIPHY:
9237 data->phy_id = adapter->hw.phy.addr;
9238 break;
9239 case SIOCGMIIREG:
9240 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9241 &data->val_out))
9242 return -EIO;
9243 break;
9244 case SIOCSMIIREG:
9245 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9246 data->val_in))
9247 return -EIO;
9248 break;
9249 default:
9250 return -EOPNOTSUPP;
9251 }
9252 return 0;
9253 }
9254
9255 /**
9256 * igb_ioctl -
9257 * @netdev: pointer to netdev struct
9258 * @ifr: interface structure
9259 * @cmd: ioctl command to execute
9260 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9261 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9262 {
9263 switch (cmd) {
9264 case SIOCGMIIPHY:
9265 case SIOCGMIIREG:
9266 case SIOCSMIIREG:
9267 return igb_mii_ioctl(netdev, ifr, cmd);
9268 case SIOCGHWTSTAMP:
9269 return igb_ptp_get_ts_config(netdev, ifr);
9270 case SIOCSHWTSTAMP:
9271 return igb_ptp_set_ts_config(netdev, ifr);
9272 default:
9273 return -EOPNOTSUPP;
9274 }
9275 }
9276
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9277 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9278 {
9279 struct igb_adapter *adapter = hw->back;
9280
9281 pci_read_config_word(adapter->pdev, reg, value);
9282 }
9283
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9284 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9285 {
9286 struct igb_adapter *adapter = hw->back;
9287
9288 pci_write_config_word(adapter->pdev, reg, *value);
9289 }
9290
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9291 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9292 {
9293 struct igb_adapter *adapter = hw->back;
9294
9295 if (pcie_capability_read_word(adapter->pdev, reg, value))
9296 return -E1000_ERR_CONFIG;
9297
9298 return 0;
9299 }
9300
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9301 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9302 {
9303 struct igb_adapter *adapter = hw->back;
9304
9305 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9306 return -E1000_ERR_CONFIG;
9307
9308 return 0;
9309 }
9310
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9311 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9312 {
9313 struct igb_adapter *adapter = netdev_priv(netdev);
9314 struct e1000_hw *hw = &adapter->hw;
9315 u32 ctrl, rctl;
9316 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9317
9318 if (enable) {
9319 /* enable VLAN tag insert/strip */
9320 ctrl = rd32(E1000_CTRL);
9321 ctrl |= E1000_CTRL_VME;
9322 wr32(E1000_CTRL, ctrl);
9323
9324 /* Disable CFI check */
9325 rctl = rd32(E1000_RCTL);
9326 rctl &= ~E1000_RCTL_CFIEN;
9327 wr32(E1000_RCTL, rctl);
9328 } else {
9329 /* disable VLAN tag insert/strip */
9330 ctrl = rd32(E1000_CTRL);
9331 ctrl &= ~E1000_CTRL_VME;
9332 wr32(E1000_CTRL, ctrl);
9333 }
9334
9335 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9336 }
9337
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9338 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9339 __be16 proto, u16 vid)
9340 {
9341 struct igb_adapter *adapter = netdev_priv(netdev);
9342 struct e1000_hw *hw = &adapter->hw;
9343 int pf_id = adapter->vfs_allocated_count;
9344
9345 /* add the filter since PF can receive vlans w/o entry in vlvf */
9346 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9347 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9348
9349 set_bit(vid, adapter->active_vlans);
9350
9351 return 0;
9352 }
9353
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9354 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9355 __be16 proto, u16 vid)
9356 {
9357 struct igb_adapter *adapter = netdev_priv(netdev);
9358 int pf_id = adapter->vfs_allocated_count;
9359 struct e1000_hw *hw = &adapter->hw;
9360
9361 /* remove VID from filter table */
9362 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9363 igb_vfta_set(hw, vid, pf_id, false, true);
9364
9365 clear_bit(vid, adapter->active_vlans);
9366
9367 return 0;
9368 }
9369
igb_restore_vlan(struct igb_adapter * adapter)9370 static void igb_restore_vlan(struct igb_adapter *adapter)
9371 {
9372 u16 vid = 1;
9373
9374 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9375 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9376
9377 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9378 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9379 }
9380
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9381 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9382 {
9383 struct pci_dev *pdev = adapter->pdev;
9384 struct e1000_mac_info *mac = &adapter->hw.mac;
9385
9386 mac->autoneg = 0;
9387
9388 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9389 * for the switch() below to work
9390 */
9391 if ((spd & 1) || (dplx & ~1))
9392 goto err_inval;
9393
9394 /* Fiber NIC's only allow 1000 gbps Full duplex
9395 * and 100Mbps Full duplex for 100baseFx sfp
9396 */
9397 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9398 switch (spd + dplx) {
9399 case SPEED_10 + DUPLEX_HALF:
9400 case SPEED_10 + DUPLEX_FULL:
9401 case SPEED_100 + DUPLEX_HALF:
9402 goto err_inval;
9403 default:
9404 break;
9405 }
9406 }
9407
9408 switch (spd + dplx) {
9409 case SPEED_10 + DUPLEX_HALF:
9410 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9411 break;
9412 case SPEED_10 + DUPLEX_FULL:
9413 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9414 break;
9415 case SPEED_100 + DUPLEX_HALF:
9416 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9417 break;
9418 case SPEED_100 + DUPLEX_FULL:
9419 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9420 break;
9421 case SPEED_1000 + DUPLEX_FULL:
9422 mac->autoneg = 1;
9423 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9424 break;
9425 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9426 default:
9427 goto err_inval;
9428 }
9429
9430 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9431 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9432
9433 return 0;
9434
9435 err_inval:
9436 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9437 return -EINVAL;
9438 }
9439
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9440 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9441 bool runtime)
9442 {
9443 struct net_device *netdev = pci_get_drvdata(pdev);
9444 struct igb_adapter *adapter = netdev_priv(netdev);
9445 struct e1000_hw *hw = &adapter->hw;
9446 u32 ctrl, rctl, status;
9447 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9448 bool wake;
9449
9450 rtnl_lock();
9451 netif_device_detach(netdev);
9452
9453 if (netif_running(netdev))
9454 __igb_close(netdev, true);
9455
9456 igb_ptp_suspend(adapter);
9457
9458 igb_clear_interrupt_scheme(adapter);
9459 rtnl_unlock();
9460
9461 status = rd32(E1000_STATUS);
9462 if (status & E1000_STATUS_LU)
9463 wufc &= ~E1000_WUFC_LNKC;
9464
9465 if (wufc) {
9466 igb_setup_rctl(adapter);
9467 igb_set_rx_mode(netdev);
9468
9469 /* turn on all-multi mode if wake on multicast is enabled */
9470 if (wufc & E1000_WUFC_MC) {
9471 rctl = rd32(E1000_RCTL);
9472 rctl |= E1000_RCTL_MPE;
9473 wr32(E1000_RCTL, rctl);
9474 }
9475
9476 ctrl = rd32(E1000_CTRL);
9477 ctrl |= E1000_CTRL_ADVD3WUC;
9478 wr32(E1000_CTRL, ctrl);
9479
9480 /* Allow time for pending master requests to run */
9481 igb_disable_pcie_master(hw);
9482
9483 wr32(E1000_WUC, E1000_WUC_PME_EN);
9484 wr32(E1000_WUFC, wufc);
9485 } else {
9486 wr32(E1000_WUC, 0);
9487 wr32(E1000_WUFC, 0);
9488 }
9489
9490 wake = wufc || adapter->en_mng_pt;
9491 if (!wake)
9492 igb_power_down_link(adapter);
9493 else
9494 igb_power_up_link(adapter);
9495
9496 if (enable_wake)
9497 *enable_wake = wake;
9498
9499 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9500 * would have already happened in close and is redundant.
9501 */
9502 igb_release_hw_control(adapter);
9503
9504 pci_disable_device(pdev);
9505
9506 return 0;
9507 }
9508
igb_deliver_wake_packet(struct net_device * netdev)9509 static void igb_deliver_wake_packet(struct net_device *netdev)
9510 {
9511 struct igb_adapter *adapter = netdev_priv(netdev);
9512 struct e1000_hw *hw = &adapter->hw;
9513 struct sk_buff *skb;
9514 u32 wupl;
9515
9516 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9517
9518 /* WUPM stores only the first 128 bytes of the wake packet.
9519 * Read the packet only if we have the whole thing.
9520 */
9521 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9522 return;
9523
9524 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9525 if (!skb)
9526 return;
9527
9528 skb_put(skb, wupl);
9529
9530 /* Ensure reads are 32-bit aligned */
9531 wupl = roundup(wupl, 4);
9532
9533 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9534
9535 skb->protocol = eth_type_trans(skb, netdev);
9536 netif_rx(skb);
9537 }
9538
igb_suspend(struct device * dev)9539 static int igb_suspend(struct device *dev)
9540 {
9541 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9542 }
9543
__igb_resume(struct device * dev,bool rpm)9544 static int __igb_resume(struct device *dev, bool rpm)
9545 {
9546 struct pci_dev *pdev = to_pci_dev(dev);
9547 struct net_device *netdev = pci_get_drvdata(pdev);
9548 struct igb_adapter *adapter = netdev_priv(netdev);
9549 struct e1000_hw *hw = &adapter->hw;
9550 u32 err, val;
9551
9552 pci_set_power_state(pdev, PCI_D0);
9553 pci_restore_state(pdev);
9554 pci_save_state(pdev);
9555
9556 if (!pci_device_is_present(pdev))
9557 return -ENODEV;
9558 err = pci_enable_device_mem(pdev);
9559 if (err) {
9560 dev_err(&pdev->dev,
9561 "igb: Cannot enable PCI device from suspend\n");
9562 return err;
9563 }
9564 pci_set_master(pdev);
9565
9566 pci_enable_wake(pdev, PCI_D3hot, 0);
9567 pci_enable_wake(pdev, PCI_D3cold, 0);
9568
9569 if (igb_init_interrupt_scheme(adapter, true)) {
9570 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9571 return -ENOMEM;
9572 }
9573
9574 igb_reset(adapter);
9575
9576 /* let the f/w know that the h/w is now under the control of the
9577 * driver.
9578 */
9579 igb_get_hw_control(adapter);
9580
9581 val = rd32(E1000_WUS);
9582 if (val & WAKE_PKT_WUS)
9583 igb_deliver_wake_packet(netdev);
9584
9585 wr32(E1000_WUS, ~0);
9586
9587 if (!rpm)
9588 rtnl_lock();
9589 if (!err && netif_running(netdev))
9590 err = __igb_open(netdev, true);
9591
9592 if (!err)
9593 netif_device_attach(netdev);
9594 if (!rpm)
9595 rtnl_unlock();
9596
9597 return err;
9598 }
9599
igb_resume(struct device * dev)9600 static int igb_resume(struct device *dev)
9601 {
9602 return __igb_resume(dev, false);
9603 }
9604
igb_runtime_idle(struct device * dev)9605 static int igb_runtime_idle(struct device *dev)
9606 {
9607 struct net_device *netdev = dev_get_drvdata(dev);
9608 struct igb_adapter *adapter = netdev_priv(netdev);
9609
9610 if (!igb_has_link(adapter))
9611 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9612
9613 return -EBUSY;
9614 }
9615
igb_runtime_suspend(struct device * dev)9616 static int igb_runtime_suspend(struct device *dev)
9617 {
9618 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9619 }
9620
igb_runtime_resume(struct device * dev)9621 static int igb_runtime_resume(struct device *dev)
9622 {
9623 return __igb_resume(dev, true);
9624 }
9625
igb_shutdown(struct pci_dev * pdev)9626 static void igb_shutdown(struct pci_dev *pdev)
9627 {
9628 bool wake;
9629
9630 __igb_shutdown(pdev, &wake, 0);
9631
9632 if (system_state == SYSTEM_POWER_OFF) {
9633 pci_wake_from_d3(pdev, wake);
9634 pci_set_power_state(pdev, PCI_D3hot);
9635 }
9636 }
9637
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9638 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9639 {
9640 #ifdef CONFIG_PCI_IOV
9641 int err;
9642
9643 if (num_vfs == 0) {
9644 return igb_disable_sriov(dev, true);
9645 } else {
9646 err = igb_enable_sriov(dev, num_vfs, true);
9647 return err ? err : num_vfs;
9648 }
9649 #endif
9650 return 0;
9651 }
9652
9653 /**
9654 * igb_io_error_detected - called when PCI error is detected
9655 * @pdev: Pointer to PCI device
9656 * @state: The current pci connection state
9657 *
9658 * This function is called after a PCI bus error affecting
9659 * this device has been detected.
9660 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9661 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9662 pci_channel_state_t state)
9663 {
9664 struct net_device *netdev = pci_get_drvdata(pdev);
9665 struct igb_adapter *adapter = netdev_priv(netdev);
9666
9667 if (state == pci_channel_io_normal) {
9668 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9669 return PCI_ERS_RESULT_CAN_RECOVER;
9670 }
9671
9672 netif_device_detach(netdev);
9673
9674 if (state == pci_channel_io_perm_failure)
9675 return PCI_ERS_RESULT_DISCONNECT;
9676
9677 if (netif_running(netdev))
9678 igb_down(adapter);
9679 pci_disable_device(pdev);
9680
9681 /* Request a slot reset. */
9682 return PCI_ERS_RESULT_NEED_RESET;
9683 }
9684
9685 /**
9686 * igb_io_slot_reset - called after the pci bus has been reset.
9687 * @pdev: Pointer to PCI device
9688 *
9689 * Restart the card from scratch, as if from a cold-boot. Implementation
9690 * resembles the first-half of the __igb_resume routine.
9691 **/
igb_io_slot_reset(struct pci_dev * pdev)9692 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9693 {
9694 struct net_device *netdev = pci_get_drvdata(pdev);
9695 struct igb_adapter *adapter = netdev_priv(netdev);
9696 struct e1000_hw *hw = &adapter->hw;
9697 pci_ers_result_t result;
9698
9699 if (pci_enable_device_mem(pdev)) {
9700 dev_err(&pdev->dev,
9701 "Cannot re-enable PCI device after reset.\n");
9702 result = PCI_ERS_RESULT_DISCONNECT;
9703 } else {
9704 pci_set_master(pdev);
9705 pci_restore_state(pdev);
9706 pci_save_state(pdev);
9707
9708 pci_enable_wake(pdev, PCI_D3hot, 0);
9709 pci_enable_wake(pdev, PCI_D3cold, 0);
9710
9711 /* In case of PCI error, adapter lose its HW address
9712 * so we should re-assign it here.
9713 */
9714 hw->hw_addr = adapter->io_addr;
9715
9716 igb_reset(adapter);
9717 wr32(E1000_WUS, ~0);
9718 result = PCI_ERS_RESULT_RECOVERED;
9719 }
9720
9721 return result;
9722 }
9723
9724 /**
9725 * igb_io_resume - called when traffic can start flowing again.
9726 * @pdev: Pointer to PCI device
9727 *
9728 * This callback is called when the error recovery driver tells us that
9729 * its OK to resume normal operation. Implementation resembles the
9730 * second-half of the __igb_resume routine.
9731 */
igb_io_resume(struct pci_dev * pdev)9732 static void igb_io_resume(struct pci_dev *pdev)
9733 {
9734 struct net_device *netdev = pci_get_drvdata(pdev);
9735 struct igb_adapter *adapter = netdev_priv(netdev);
9736
9737 if (netif_running(netdev)) {
9738 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9739 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9740 return;
9741 }
9742 if (igb_up(adapter)) {
9743 dev_err(&pdev->dev, "igb_up failed after reset\n");
9744 return;
9745 }
9746 }
9747
9748 netif_device_attach(netdev);
9749
9750 /* let the f/w know that the h/w is now under the control of the
9751 * driver.
9752 */
9753 igb_get_hw_control(adapter);
9754 }
9755
9756 /**
9757 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9758 * @adapter: Pointer to adapter structure
9759 * @index: Index of the RAR entry which need to be synced with MAC table
9760 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9761 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9762 {
9763 struct e1000_hw *hw = &adapter->hw;
9764 u32 rar_low, rar_high;
9765 u8 *addr = adapter->mac_table[index].addr;
9766
9767 /* HW expects these to be in network order when they are plugged
9768 * into the registers which are little endian. In order to guarantee
9769 * that ordering we need to do an leXX_to_cpup here in order to be
9770 * ready for the byteswap that occurs with writel
9771 */
9772 rar_low = le32_to_cpup((__le32 *)(addr));
9773 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9774
9775 /* Indicate to hardware the Address is Valid. */
9776 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9777 if (is_valid_ether_addr(addr))
9778 rar_high |= E1000_RAH_AV;
9779
9780 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9781 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9782
9783 switch (hw->mac.type) {
9784 case e1000_82575:
9785 case e1000_i210:
9786 if (adapter->mac_table[index].state &
9787 IGB_MAC_STATE_QUEUE_STEERING)
9788 rar_high |= E1000_RAH_QSEL_ENABLE;
9789
9790 rar_high |= E1000_RAH_POOL_1 *
9791 adapter->mac_table[index].queue;
9792 break;
9793 default:
9794 rar_high |= E1000_RAH_POOL_1 <<
9795 adapter->mac_table[index].queue;
9796 break;
9797 }
9798 }
9799
9800 wr32(E1000_RAL(index), rar_low);
9801 wrfl();
9802 wr32(E1000_RAH(index), rar_high);
9803 wrfl();
9804 }
9805
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9806 static int igb_set_vf_mac(struct igb_adapter *adapter,
9807 int vf, unsigned char *mac_addr)
9808 {
9809 struct e1000_hw *hw = &adapter->hw;
9810 /* VF MAC addresses start at end of receive addresses and moves
9811 * towards the first, as a result a collision should not be possible
9812 */
9813 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9814 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9815
9816 ether_addr_copy(vf_mac_addr, mac_addr);
9817 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9818 adapter->mac_table[rar_entry].queue = vf;
9819 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9820 igb_rar_set_index(adapter, rar_entry);
9821
9822 return 0;
9823 }
9824
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9825 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9826 {
9827 struct igb_adapter *adapter = netdev_priv(netdev);
9828
9829 if (vf >= adapter->vfs_allocated_count)
9830 return -EINVAL;
9831
9832 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9833 * flag and allows to overwrite the MAC via VF netdev. This
9834 * is necessary to allow libvirt a way to restore the original
9835 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9836 * down a VM.
9837 */
9838 if (is_zero_ether_addr(mac)) {
9839 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9840 dev_info(&adapter->pdev->dev,
9841 "remove administratively set MAC on VF %d\n",
9842 vf);
9843 } else if (is_valid_ether_addr(mac)) {
9844 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9845 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9846 mac, vf);
9847 dev_info(&adapter->pdev->dev,
9848 "Reload the VF driver to make this change effective.");
9849 /* Generate additional warning if PF is down */
9850 if (test_bit(__IGB_DOWN, &adapter->state)) {
9851 dev_warn(&adapter->pdev->dev,
9852 "The VF MAC address has been set, but the PF device is not up.\n");
9853 dev_warn(&adapter->pdev->dev,
9854 "Bring the PF device up before attempting to use the VF device.\n");
9855 }
9856 } else {
9857 return -EINVAL;
9858 }
9859 return igb_set_vf_mac(adapter, vf, mac);
9860 }
9861
igb_link_mbps(int internal_link_speed)9862 static int igb_link_mbps(int internal_link_speed)
9863 {
9864 switch (internal_link_speed) {
9865 case SPEED_100:
9866 return 100;
9867 case SPEED_1000:
9868 return 1000;
9869 default:
9870 return 0;
9871 }
9872 }
9873
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9874 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9875 int link_speed)
9876 {
9877 int rf_dec, rf_int;
9878 u32 bcnrc_val;
9879
9880 if (tx_rate != 0) {
9881 /* Calculate the rate factor values to set */
9882 rf_int = link_speed / tx_rate;
9883 rf_dec = (link_speed - (rf_int * tx_rate));
9884 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9885 tx_rate;
9886
9887 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9888 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9889 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9890 } else {
9891 bcnrc_val = 0;
9892 }
9893
9894 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9895 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9896 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9897 */
9898 wr32(E1000_RTTBCNRM, 0x14);
9899 wr32(E1000_RTTBCNRC, bcnrc_val);
9900 }
9901
igb_check_vf_rate_limit(struct igb_adapter * adapter)9902 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9903 {
9904 int actual_link_speed, i;
9905 bool reset_rate = false;
9906
9907 /* VF TX rate limit was not set or not supported */
9908 if ((adapter->vf_rate_link_speed == 0) ||
9909 (adapter->hw.mac.type != e1000_82576))
9910 return;
9911
9912 actual_link_speed = igb_link_mbps(adapter->link_speed);
9913 if (actual_link_speed != adapter->vf_rate_link_speed) {
9914 reset_rate = true;
9915 adapter->vf_rate_link_speed = 0;
9916 dev_info(&adapter->pdev->dev,
9917 "Link speed has been changed. VF Transmit rate is disabled\n");
9918 }
9919
9920 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9921 if (reset_rate)
9922 adapter->vf_data[i].tx_rate = 0;
9923
9924 igb_set_vf_rate_limit(&adapter->hw, i,
9925 adapter->vf_data[i].tx_rate,
9926 actual_link_speed);
9927 }
9928 }
9929
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9930 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9931 int min_tx_rate, int max_tx_rate)
9932 {
9933 struct igb_adapter *adapter = netdev_priv(netdev);
9934 struct e1000_hw *hw = &adapter->hw;
9935 int actual_link_speed;
9936
9937 if (hw->mac.type != e1000_82576)
9938 return -EOPNOTSUPP;
9939
9940 if (min_tx_rate)
9941 return -EINVAL;
9942
9943 actual_link_speed = igb_link_mbps(adapter->link_speed);
9944 if ((vf >= adapter->vfs_allocated_count) ||
9945 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9946 (max_tx_rate < 0) ||
9947 (max_tx_rate > actual_link_speed))
9948 return -EINVAL;
9949
9950 adapter->vf_rate_link_speed = actual_link_speed;
9951 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9952 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9953
9954 return 0;
9955 }
9956
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9957 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9958 bool setting)
9959 {
9960 struct igb_adapter *adapter = netdev_priv(netdev);
9961 struct e1000_hw *hw = &adapter->hw;
9962 u32 reg_val, reg_offset;
9963
9964 if (!adapter->vfs_allocated_count)
9965 return -EOPNOTSUPP;
9966
9967 if (vf >= adapter->vfs_allocated_count)
9968 return -EINVAL;
9969
9970 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9971 reg_val = rd32(reg_offset);
9972 if (setting)
9973 reg_val |= (BIT(vf) |
9974 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9975 else
9976 reg_val &= ~(BIT(vf) |
9977 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9978 wr32(reg_offset, reg_val);
9979
9980 adapter->vf_data[vf].spoofchk_enabled = setting;
9981 return 0;
9982 }
9983
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9984 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9985 {
9986 struct igb_adapter *adapter = netdev_priv(netdev);
9987
9988 if (vf >= adapter->vfs_allocated_count)
9989 return -EINVAL;
9990 if (adapter->vf_data[vf].trusted == setting)
9991 return 0;
9992
9993 adapter->vf_data[vf].trusted = setting;
9994
9995 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9996 vf, setting ? "" : "not ");
9997 return 0;
9998 }
9999
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)10000 static int igb_ndo_get_vf_config(struct net_device *netdev,
10001 int vf, struct ifla_vf_info *ivi)
10002 {
10003 struct igb_adapter *adapter = netdev_priv(netdev);
10004 if (vf >= adapter->vfs_allocated_count)
10005 return -EINVAL;
10006 ivi->vf = vf;
10007 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10008 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10009 ivi->min_tx_rate = 0;
10010 ivi->vlan = adapter->vf_data[vf].pf_vlan;
10011 ivi->qos = adapter->vf_data[vf].pf_qos;
10012 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10013 ivi->trusted = adapter->vf_data[vf].trusted;
10014 return 0;
10015 }
10016
igb_vmm_control(struct igb_adapter * adapter)10017 static void igb_vmm_control(struct igb_adapter *adapter)
10018 {
10019 struct e1000_hw *hw = &adapter->hw;
10020 u32 reg;
10021
10022 switch (hw->mac.type) {
10023 case e1000_82575:
10024 case e1000_i210:
10025 case e1000_i211:
10026 case e1000_i354:
10027 default:
10028 /* replication is not supported for 82575 */
10029 return;
10030 case e1000_82576:
10031 /* notify HW that the MAC is adding vlan tags */
10032 reg = rd32(E1000_DTXCTL);
10033 reg |= E1000_DTXCTL_VLAN_ADDED;
10034 wr32(E1000_DTXCTL, reg);
10035 fallthrough;
10036 case e1000_82580:
10037 /* enable replication vlan tag stripping */
10038 reg = rd32(E1000_RPLOLR);
10039 reg |= E1000_RPLOLR_STRVLAN;
10040 wr32(E1000_RPLOLR, reg);
10041 fallthrough;
10042 case e1000_i350:
10043 /* none of the above registers are supported by i350 */
10044 break;
10045 }
10046
10047 if (adapter->vfs_allocated_count) {
10048 igb_vmdq_set_loopback_pf(hw, true);
10049 igb_vmdq_set_replication_pf(hw, true);
10050 igb_vmdq_set_anti_spoofing_pf(hw, true,
10051 adapter->vfs_allocated_count);
10052 } else {
10053 igb_vmdq_set_loopback_pf(hw, false);
10054 igb_vmdq_set_replication_pf(hw, false);
10055 }
10056 }
10057
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10058 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10059 {
10060 struct e1000_hw *hw = &adapter->hw;
10061 u32 dmac_thr;
10062 u16 hwm;
10063 u32 reg;
10064
10065 if (hw->mac.type > e1000_82580) {
10066 if (adapter->flags & IGB_FLAG_DMAC) {
10067 /* force threshold to 0. */
10068 wr32(E1000_DMCTXTH, 0);
10069
10070 /* DMA Coalescing high water mark needs to be greater
10071 * than the Rx threshold. Set hwm to PBA - max frame
10072 * size in 16B units, capping it at PBA - 6KB.
10073 */
10074 hwm = 64 * (pba - 6);
10075 reg = rd32(E1000_FCRTC);
10076 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10077 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10078 wr32(E1000_FCRTC, reg);
10079
10080 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10081 * frame size, capping it at PBA - 10KB.
10082 */
10083 dmac_thr = pba - 10;
10084 reg = rd32(E1000_DMACR);
10085 reg &= ~E1000_DMACR_DMACTHR_MASK;
10086 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10087
10088 /* transition to L0x or L1 if available..*/
10089 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10090
10091 /* watchdog timer= +-1000 usec in 32usec intervals */
10092 reg |= (1000 >> 5);
10093
10094 /* Disable BMC-to-OS Watchdog Enable */
10095 if (hw->mac.type != e1000_i354)
10096 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10097 wr32(E1000_DMACR, reg);
10098
10099 /* no lower threshold to disable
10100 * coalescing(smart fifb)-UTRESH=0
10101 */
10102 wr32(E1000_DMCRTRH, 0);
10103
10104 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10105
10106 wr32(E1000_DMCTLX, reg);
10107
10108 /* free space in tx packet buffer to wake from
10109 * DMA coal
10110 */
10111 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10112 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10113 }
10114
10115 if (hw->mac.type >= e1000_i210 ||
10116 (adapter->flags & IGB_FLAG_DMAC)) {
10117 reg = rd32(E1000_PCIEMISC);
10118 reg |= E1000_PCIEMISC_LX_DECISION;
10119 wr32(E1000_PCIEMISC, reg);
10120 } /* endif adapter->dmac is not disabled */
10121 } else if (hw->mac.type == e1000_82580) {
10122 u32 reg = rd32(E1000_PCIEMISC);
10123
10124 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10125 wr32(E1000_DMACR, 0);
10126 }
10127 }
10128
10129 /**
10130 * igb_read_i2c_byte - Reads 8 bit word over I2C
10131 * @hw: pointer to hardware structure
10132 * @byte_offset: byte offset to read
10133 * @dev_addr: device address
10134 * @data: value read
10135 *
10136 * Performs byte read operation over I2C interface at
10137 * a specified device address.
10138 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10139 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10140 u8 dev_addr, u8 *data)
10141 {
10142 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10143 struct i2c_client *this_client = adapter->i2c_client;
10144 s32 status;
10145 u16 swfw_mask = 0;
10146
10147 if (!this_client)
10148 return E1000_ERR_I2C;
10149
10150 swfw_mask = E1000_SWFW_PHY0_SM;
10151
10152 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10153 return E1000_ERR_SWFW_SYNC;
10154
10155 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10156 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10157
10158 if (status < 0)
10159 return E1000_ERR_I2C;
10160 else {
10161 *data = status;
10162 return 0;
10163 }
10164 }
10165
10166 /**
10167 * igb_write_i2c_byte - Writes 8 bit word over I2C
10168 * @hw: pointer to hardware structure
10169 * @byte_offset: byte offset to write
10170 * @dev_addr: device address
10171 * @data: value to write
10172 *
10173 * Performs byte write operation over I2C interface at
10174 * a specified device address.
10175 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10176 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10177 u8 dev_addr, u8 data)
10178 {
10179 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10180 struct i2c_client *this_client = adapter->i2c_client;
10181 s32 status;
10182 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10183
10184 if (!this_client)
10185 return E1000_ERR_I2C;
10186
10187 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10188 return E1000_ERR_SWFW_SYNC;
10189 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10190 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10191
10192 if (status)
10193 return E1000_ERR_I2C;
10194 else
10195 return 0;
10196
10197 }
10198
igb_reinit_queues(struct igb_adapter * adapter)10199 int igb_reinit_queues(struct igb_adapter *adapter)
10200 {
10201 struct net_device *netdev = adapter->netdev;
10202 struct pci_dev *pdev = adapter->pdev;
10203 int err = 0;
10204
10205 if (netif_running(netdev))
10206 igb_close(netdev);
10207
10208 igb_reset_interrupt_capability(adapter);
10209
10210 if (igb_init_interrupt_scheme(adapter, true)) {
10211 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10212 return -ENOMEM;
10213 }
10214
10215 if (netif_running(netdev))
10216 err = igb_open(netdev);
10217
10218 return err;
10219 }
10220
igb_nfc_filter_exit(struct igb_adapter * adapter)10221 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10222 {
10223 struct igb_nfc_filter *rule;
10224
10225 spin_lock(&adapter->nfc_lock);
10226
10227 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10228 igb_erase_filter(adapter, rule);
10229
10230 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10231 igb_erase_filter(adapter, rule);
10232
10233 spin_unlock(&adapter->nfc_lock);
10234 }
10235
igb_nfc_filter_restore(struct igb_adapter * adapter)10236 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10237 {
10238 struct igb_nfc_filter *rule;
10239
10240 spin_lock(&adapter->nfc_lock);
10241
10242 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10243 igb_add_filter(adapter, rule);
10244
10245 spin_unlock(&adapter->nfc_lock);
10246 }
10247
10248 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10249 igb_runtime_suspend, igb_runtime_resume,
10250 igb_runtime_idle);
10251
10252 static struct pci_driver igb_driver = {
10253 .name = igb_driver_name,
10254 .id_table = igb_pci_tbl,
10255 .probe = igb_probe,
10256 .remove = igb_remove,
10257 .driver.pm = pm_ptr(&igb_pm_ops),
10258 .shutdown = igb_shutdown,
10259 .sriov_configure = igb_pci_sriov_configure,
10260 .err_handler = &igb_err_handler
10261 };
10262
10263 /* igb_main.c */
10264