1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include <linux/export.h>
5 #include <net/libeth/rx.h>
6
7 #include "idpf.h"
8 #include "idpf_virtchnl.h"
9 #include "idpf_ptp.h"
10
11 /**
12 * struct idpf_vc_xn_manager - Manager for tracking transactions
13 * @ring: backing and lookup for transactions
14 * @free_xn_bm: bitmap for free transactions
15 * @xn_bm_lock: make bitmap access synchronous where necessary
16 * @salt: used to make cookie unique every message
17 */
18 struct idpf_vc_xn_manager {
19 struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
20 DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
21 spinlock_t xn_bm_lock;
22 u8 salt;
23 };
24
25 /**
26 * idpf_vid_to_vport - Translate vport id to vport pointer
27 * @adapter: private data struct
28 * @v_id: vport id to translate
29 *
30 * Returns vport matching v_id, NULL if not found.
31 */
32 static
idpf_vid_to_vport(struct idpf_adapter * adapter,u32 v_id)33 struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
34 {
35 u16 num_max_vports = idpf_get_max_vports(adapter);
36 int i;
37
38 for (i = 0; i < num_max_vports; i++)
39 if (adapter->vport_ids[i] == v_id)
40 return adapter->vports[i];
41
42 return NULL;
43 }
44
45 /**
46 * idpf_handle_event_link - Handle link event message
47 * @adapter: private data struct
48 * @v2e: virtchnl event message
49 */
idpf_handle_event_link(struct idpf_adapter * adapter,const struct virtchnl2_event * v2e)50 static void idpf_handle_event_link(struct idpf_adapter *adapter,
51 const struct virtchnl2_event *v2e)
52 {
53 struct idpf_netdev_priv *np;
54 struct idpf_vport *vport;
55
56 vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
57 if (!vport) {
58 dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
59 v2e->vport_id);
60 return;
61 }
62 np = netdev_priv(vport->netdev);
63
64 np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
65
66 if (vport->link_up == v2e->link_status)
67 return;
68
69 vport->link_up = v2e->link_status;
70
71 if (np->state != __IDPF_VPORT_UP)
72 return;
73
74 if (vport->link_up) {
75 netif_tx_start_all_queues(vport->netdev);
76 netif_carrier_on(vport->netdev);
77 } else {
78 netif_tx_stop_all_queues(vport->netdev);
79 netif_carrier_off(vport->netdev);
80 }
81 }
82
83 /**
84 * idpf_recv_event_msg - Receive virtchnl event message
85 * @adapter: Driver specific private structure
86 * @ctlq_msg: message to copy from
87 *
88 * Receive virtchnl event message
89 */
idpf_recv_event_msg(struct idpf_adapter * adapter,struct idpf_ctlq_msg * ctlq_msg)90 static void idpf_recv_event_msg(struct idpf_adapter *adapter,
91 struct idpf_ctlq_msg *ctlq_msg)
92 {
93 int payload_size = ctlq_msg->ctx.indirect.payload->size;
94 struct virtchnl2_event *v2e;
95 u32 event;
96
97 if (payload_size < sizeof(*v2e)) {
98 dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
99 ctlq_msg->cookie.mbx.chnl_opcode,
100 payload_size);
101 return;
102 }
103
104 v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
105 event = le32_to_cpu(v2e->event);
106
107 switch (event) {
108 case VIRTCHNL2_EVENT_LINK_CHANGE:
109 idpf_handle_event_link(adapter, v2e);
110 return;
111 default:
112 dev_err(&adapter->pdev->dev,
113 "Unknown event %d from PF\n", event);
114 break;
115 }
116 }
117
118 /**
119 * idpf_mb_clean - Reclaim the send mailbox queue entries
120 * @adapter: Driver specific private structure
121 *
122 * Reclaim the send mailbox queue entries to be used to send further messages
123 *
124 * Returns 0 on success, negative on failure
125 */
idpf_mb_clean(struct idpf_adapter * adapter)126 static int idpf_mb_clean(struct idpf_adapter *adapter)
127 {
128 u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
129 struct idpf_ctlq_msg **q_msg;
130 struct idpf_dma_mem *dma_mem;
131 int err;
132
133 q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
134 if (!q_msg)
135 return -ENOMEM;
136
137 err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
138 if (err)
139 goto err_kfree;
140
141 for (i = 0; i < num_q_msg; i++) {
142 if (!q_msg[i])
143 continue;
144 dma_mem = q_msg[i]->ctx.indirect.payload;
145 if (dma_mem)
146 dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
147 dma_mem->va, dma_mem->pa);
148 kfree(q_msg[i]);
149 kfree(dma_mem);
150 }
151
152 err_kfree:
153 kfree(q_msg);
154
155 return err;
156 }
157
158 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
159 /**
160 * idpf_ptp_is_mb_msg - Check if the message is PTP-related
161 * @op: virtchnl opcode
162 *
163 * Return: true if msg is PTP-related, false otherwise.
164 */
idpf_ptp_is_mb_msg(u32 op)165 static bool idpf_ptp_is_mb_msg(u32 op)
166 {
167 switch (op) {
168 case VIRTCHNL2_OP_PTP_GET_DEV_CLK_TIME:
169 case VIRTCHNL2_OP_PTP_GET_CROSS_TIME:
170 case VIRTCHNL2_OP_PTP_SET_DEV_CLK_TIME:
171 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_FINE:
172 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_TIME:
173 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP_CAPS:
174 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP:
175 return true;
176 default:
177 return false;
178 }
179 }
180
181 /**
182 * idpf_prepare_ptp_mb_msg - Prepare PTP related message
183 *
184 * @adapter: Driver specific private structure
185 * @op: virtchnl opcode
186 * @ctlq_msg: Corresponding control queue message
187 */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)188 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
189 struct idpf_ctlq_msg *ctlq_msg)
190 {
191 /* If the message is PTP-related and the secondary mailbox is available,
192 * send the message through the secondary mailbox.
193 */
194 if (!idpf_ptp_is_mb_msg(op) || !adapter->ptp->secondary_mbx.valid)
195 return;
196
197 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_peer_drv;
198 ctlq_msg->func_id = adapter->ptp->secondary_mbx.peer_mbx_q_id;
199 ctlq_msg->host_id = adapter->ptp->secondary_mbx.peer_id;
200 }
201 #else /* !CONFIG_PTP_1588_CLOCK */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)202 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
203 struct idpf_ctlq_msg *ctlq_msg)
204 { }
205 #endif /* CONFIG_PTP_1588_CLOCK */
206
207 /**
208 * idpf_send_mb_msg - Send message over mailbox
209 * @adapter: Driver specific private structure
210 * @op: virtchnl opcode
211 * @msg_size: size of the payload
212 * @msg: pointer to buffer holding the payload
213 * @cookie: unique SW generated cookie per message
214 *
215 * Will prepare the control queue message and initiates the send api
216 *
217 * Returns 0 on success, negative on failure
218 */
idpf_send_mb_msg(struct idpf_adapter * adapter,u32 op,u16 msg_size,u8 * msg,u16 cookie)219 int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
220 u16 msg_size, u8 *msg, u16 cookie)
221 {
222 struct idpf_ctlq_msg *ctlq_msg;
223 struct idpf_dma_mem *dma_mem;
224 int err;
225
226 /* If we are here and a reset is detected nothing much can be
227 * done. This thread should silently abort and expected to
228 * be corrected with a new run either by user or driver
229 * flows after reset
230 */
231 if (idpf_is_reset_detected(adapter))
232 return 0;
233
234 err = idpf_mb_clean(adapter);
235 if (err)
236 return err;
237
238 ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
239 if (!ctlq_msg)
240 return -ENOMEM;
241
242 dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
243 if (!dma_mem) {
244 err = -ENOMEM;
245 goto dma_mem_error;
246 }
247
248 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
249 ctlq_msg->func_id = 0;
250
251 idpf_prepare_ptp_mb_msg(adapter, op, ctlq_msg);
252
253 ctlq_msg->data_len = msg_size;
254 ctlq_msg->cookie.mbx.chnl_opcode = op;
255 ctlq_msg->cookie.mbx.chnl_retval = 0;
256 dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
257 dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
258 &dma_mem->pa, GFP_ATOMIC);
259 if (!dma_mem->va) {
260 err = -ENOMEM;
261 goto dma_alloc_error;
262 }
263
264 /* It's possible we're just sending an opcode but no buffer */
265 if (msg && msg_size)
266 memcpy(dma_mem->va, msg, msg_size);
267 ctlq_msg->ctx.indirect.payload = dma_mem;
268 ctlq_msg->ctx.sw_cookie.data = cookie;
269
270 err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
271 if (err)
272 goto send_error;
273
274 return 0;
275
276 send_error:
277 dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
278 dma_mem->pa);
279 dma_alloc_error:
280 kfree(dma_mem);
281 dma_mem_error:
282 kfree(ctlq_msg);
283
284 return err;
285 }
286
287 /* API for virtchnl "transaction" support ("xn" for short).
288 *
289 * We are reusing the completion lock to serialize the accesses to the
290 * transaction state for simplicity, but it could be its own separate synchro
291 * as well. For now, this API is only used from within a workqueue context;
292 * raw_spin_lock() is enough.
293 */
294 /**
295 * idpf_vc_xn_lock - Request exclusive access to vc transaction
296 * @xn: struct idpf_vc_xn* to access
297 */
298 #define idpf_vc_xn_lock(xn) \
299 raw_spin_lock(&(xn)->completed.wait.lock)
300
301 /**
302 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
303 * @xn: struct idpf_vc_xn* to access
304 */
305 #define idpf_vc_xn_unlock(xn) \
306 raw_spin_unlock(&(xn)->completed.wait.lock)
307
308 /**
309 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
310 * reset the transaction state.
311 * @xn: struct idpf_vc_xn to update
312 */
idpf_vc_xn_release_bufs(struct idpf_vc_xn * xn)313 static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
314 {
315 xn->reply.iov_base = NULL;
316 xn->reply.iov_len = 0;
317
318 if (xn->state != IDPF_VC_XN_SHUTDOWN)
319 xn->state = IDPF_VC_XN_IDLE;
320 }
321
322 /**
323 * idpf_vc_xn_init - Initialize virtchnl transaction object
324 * @vcxn_mngr: pointer to vc transaction manager struct
325 */
idpf_vc_xn_init(struct idpf_vc_xn_manager * vcxn_mngr)326 static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
327 {
328 int i;
329
330 spin_lock_init(&vcxn_mngr->xn_bm_lock);
331
332 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
333 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
334
335 xn->state = IDPF_VC_XN_IDLE;
336 xn->idx = i;
337 idpf_vc_xn_release_bufs(xn);
338 init_completion(&xn->completed);
339 }
340
341 bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
342 }
343
344 /**
345 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
346 * @vcxn_mngr: pointer to vc transaction manager struct
347 *
348 * All waiting threads will be woken-up and their transaction aborted. Further
349 * operations on that object will fail.
350 */
idpf_vc_xn_shutdown(struct idpf_vc_xn_manager * vcxn_mngr)351 void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
352 {
353 int i;
354
355 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
356 bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
357 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
358
359 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
360 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
361
362 idpf_vc_xn_lock(xn);
363 xn->state = IDPF_VC_XN_SHUTDOWN;
364 idpf_vc_xn_release_bufs(xn);
365 idpf_vc_xn_unlock(xn);
366 complete_all(&xn->completed);
367 }
368 }
369
370 /**
371 * idpf_vc_xn_pop_free - Pop a free transaction from free list
372 * @vcxn_mngr: transaction manager to pop from
373 *
374 * Returns NULL if no free transactions
375 */
376 static
idpf_vc_xn_pop_free(struct idpf_vc_xn_manager * vcxn_mngr)377 struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
378 {
379 struct idpf_vc_xn *xn = NULL;
380 unsigned long free_idx;
381
382 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
383 free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
384 if (free_idx == IDPF_VC_XN_RING_LEN)
385 goto do_unlock;
386
387 clear_bit(free_idx, vcxn_mngr->free_xn_bm);
388 xn = &vcxn_mngr->ring[free_idx];
389 xn->salt = vcxn_mngr->salt++;
390
391 do_unlock:
392 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
393
394 return xn;
395 }
396
397 /**
398 * idpf_vc_xn_push_free - Push a free transaction to free list
399 * @vcxn_mngr: transaction manager to push to
400 * @xn: transaction to push
401 */
idpf_vc_xn_push_free(struct idpf_vc_xn_manager * vcxn_mngr,struct idpf_vc_xn * xn)402 static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
403 struct idpf_vc_xn *xn)
404 {
405 idpf_vc_xn_release_bufs(xn);
406 set_bit(xn->idx, vcxn_mngr->free_xn_bm);
407 }
408
409 /**
410 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
411 * @adapter: driver specific private structure with vcxn_mngr
412 * @params: parameters for this particular transaction including
413 * -vc_op: virtchannel operation to send
414 * -send_buf: kvec iov for send buf and len
415 * -recv_buf: kvec iov for recv buf and len (ignored if NULL)
416 * -timeout_ms: timeout waiting for a reply (milliseconds)
417 * -async: don't wait for message reply, will lose caller context
418 * -async_handler: callback to handle async replies
419 *
420 * @returns >= 0 for success, the size of the initial reply (may or may not be
421 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
422 * error.
423 */
idpf_vc_xn_exec(struct idpf_adapter * adapter,const struct idpf_vc_xn_params * params)424 ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
425 const struct idpf_vc_xn_params *params)
426 {
427 const struct kvec *send_buf = ¶ms->send_buf;
428 struct idpf_vc_xn *xn;
429 ssize_t retval;
430 u16 cookie;
431
432 xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
433 /* no free transactions available */
434 if (!xn)
435 return -ENOSPC;
436
437 idpf_vc_xn_lock(xn);
438 if (xn->state == IDPF_VC_XN_SHUTDOWN) {
439 retval = -ENXIO;
440 goto only_unlock;
441 } else if (xn->state != IDPF_VC_XN_IDLE) {
442 /* We're just going to clobber this transaction even though
443 * it's not IDLE. If we don't reuse it we could theoretically
444 * eventually leak all the free transactions and not be able to
445 * send any messages. At least this way we make an attempt to
446 * remain functional even though something really bad is
447 * happening that's corrupting what was supposed to be free
448 * transactions.
449 */
450 WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
451 xn->idx, xn->vc_op);
452 }
453
454 xn->reply = params->recv_buf;
455 xn->reply_sz = 0;
456 xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
457 xn->vc_op = params->vc_op;
458 xn->async_handler = params->async_handler;
459 idpf_vc_xn_unlock(xn);
460
461 if (!params->async)
462 reinit_completion(&xn->completed);
463 cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
464 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
465
466 retval = idpf_send_mb_msg(adapter, params->vc_op,
467 send_buf->iov_len, send_buf->iov_base,
468 cookie);
469 if (retval) {
470 idpf_vc_xn_lock(xn);
471 goto release_and_unlock;
472 }
473
474 if (params->async)
475 return 0;
476
477 wait_for_completion_timeout(&xn->completed,
478 msecs_to_jiffies(params->timeout_ms));
479
480 /* No need to check the return value; we check the final state of the
481 * transaction below. It's possible the transaction actually gets more
482 * timeout than specified if we get preempted here but after
483 * wait_for_completion_timeout returns. This should be non-issue
484 * however.
485 */
486 idpf_vc_xn_lock(xn);
487 switch (xn->state) {
488 case IDPF_VC_XN_SHUTDOWN:
489 retval = -ENXIO;
490 goto only_unlock;
491 case IDPF_VC_XN_WAITING:
492 dev_notice_ratelimited(&adapter->pdev->dev,
493 "Transaction timed-out (op:%d cookie:%04x vc_op:%d salt:%02x timeout:%dms)\n",
494 params->vc_op, cookie, xn->vc_op,
495 xn->salt, params->timeout_ms);
496 retval = -ETIME;
497 break;
498 case IDPF_VC_XN_COMPLETED_SUCCESS:
499 retval = xn->reply_sz;
500 break;
501 case IDPF_VC_XN_COMPLETED_FAILED:
502 dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
503 params->vc_op);
504 retval = -EIO;
505 break;
506 default:
507 /* Invalid state. */
508 WARN_ON_ONCE(1);
509 retval = -EIO;
510 break;
511 }
512
513 release_and_unlock:
514 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
515 /* If we receive a VC reply after here, it will be dropped. */
516 only_unlock:
517 idpf_vc_xn_unlock(xn);
518
519 return retval;
520 }
521
522 /**
523 * idpf_vc_xn_forward_async - Handle async reply receives
524 * @adapter: private data struct
525 * @xn: transaction to handle
526 * @ctlq_msg: corresponding ctlq_msg
527 *
528 * For async sends we're going to lose the caller's context so, if an
529 * async_handler was provided, it can deal with the reply, otherwise we'll just
530 * check and report if there is an error.
531 */
532 static int
idpf_vc_xn_forward_async(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)533 idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
534 const struct idpf_ctlq_msg *ctlq_msg)
535 {
536 int err = 0;
537
538 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
539 dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
540 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
541 xn->reply_sz = 0;
542 err = -EINVAL;
543 goto release_bufs;
544 }
545
546 if (xn->async_handler) {
547 err = xn->async_handler(adapter, xn, ctlq_msg);
548 goto release_bufs;
549 }
550
551 if (ctlq_msg->cookie.mbx.chnl_retval) {
552 xn->reply_sz = 0;
553 dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
554 ctlq_msg->cookie.mbx.chnl_opcode);
555 err = -EINVAL;
556 }
557
558 release_bufs:
559 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
560
561 return err;
562 }
563
564 /**
565 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
566 * @adapter: driver specific private structure with vcxn_mngr
567 * @ctlq_msg: controlq message to send back to receiving thread
568 */
569 static int
idpf_vc_xn_forward_reply(struct idpf_adapter * adapter,const struct idpf_ctlq_msg * ctlq_msg)570 idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
571 const struct idpf_ctlq_msg *ctlq_msg)
572 {
573 const void *payload = NULL;
574 size_t payload_size = 0;
575 struct idpf_vc_xn *xn;
576 u16 msg_info;
577 int err = 0;
578 u16 xn_idx;
579 u16 salt;
580
581 msg_info = ctlq_msg->ctx.sw_cookie.data;
582 xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
583 if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
584 dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
585 xn_idx);
586 return -EINVAL;
587 }
588 xn = &adapter->vcxn_mngr->ring[xn_idx];
589 idpf_vc_xn_lock(xn);
590 salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
591 if (xn->salt != salt) {
592 dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (exp:%d@%02x(%d) != got:%d@%02x)\n",
593 xn->vc_op, xn->salt, xn->state,
594 ctlq_msg->cookie.mbx.chnl_opcode, salt);
595 idpf_vc_xn_unlock(xn);
596 return -EINVAL;
597 }
598
599 switch (xn->state) {
600 case IDPF_VC_XN_WAITING:
601 /* success */
602 break;
603 case IDPF_VC_XN_IDLE:
604 dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
605 ctlq_msg->cookie.mbx.chnl_opcode);
606 err = -EINVAL;
607 goto out_unlock;
608 case IDPF_VC_XN_SHUTDOWN:
609 /* ENXIO is a bit special here as the recv msg loop uses that
610 * know if it should stop trying to clean the ring if we lost
611 * the virtchnl. We need to stop playing with registers and
612 * yield.
613 */
614 err = -ENXIO;
615 goto out_unlock;
616 case IDPF_VC_XN_ASYNC:
617 err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
618 idpf_vc_xn_unlock(xn);
619 return err;
620 default:
621 dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
622 ctlq_msg->cookie.mbx.chnl_opcode);
623 err = -EBUSY;
624 goto out_unlock;
625 }
626
627 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
628 dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
629 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
630 xn->reply_sz = 0;
631 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
632 err = -EINVAL;
633 goto out_unlock;
634 }
635
636 if (ctlq_msg->cookie.mbx.chnl_retval) {
637 xn->reply_sz = 0;
638 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
639 err = -EINVAL;
640 goto out_unlock;
641 }
642
643 if (ctlq_msg->data_len) {
644 payload = ctlq_msg->ctx.indirect.payload->va;
645 payload_size = ctlq_msg->data_len;
646 }
647
648 xn->reply_sz = payload_size;
649 xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
650
651 if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
652 memcpy(xn->reply.iov_base, payload,
653 min_t(size_t, xn->reply.iov_len, payload_size));
654
655 out_unlock:
656 idpf_vc_xn_unlock(xn);
657 /* we _cannot_ hold lock while calling complete */
658 complete(&xn->completed);
659
660 return err;
661 }
662
663 /**
664 * idpf_recv_mb_msg - Receive message over mailbox
665 * @adapter: Driver specific private structure
666 *
667 * Will receive control queue message and posts the receive buffer. Returns 0
668 * on success and negative on failure.
669 */
idpf_recv_mb_msg(struct idpf_adapter * adapter)670 int idpf_recv_mb_msg(struct idpf_adapter *adapter)
671 {
672 struct idpf_ctlq_msg ctlq_msg;
673 struct idpf_dma_mem *dma_mem;
674 int post_err, err;
675 u16 num_recv;
676
677 while (1) {
678 /* This will get <= num_recv messages and output how many
679 * actually received on num_recv.
680 */
681 num_recv = 1;
682 err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
683 if (err || !num_recv)
684 break;
685
686 if (ctlq_msg.data_len) {
687 dma_mem = ctlq_msg.ctx.indirect.payload;
688 } else {
689 dma_mem = NULL;
690 num_recv = 0;
691 }
692
693 if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
694 idpf_recv_event_msg(adapter, &ctlq_msg);
695 else
696 err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
697
698 post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
699 adapter->hw.arq,
700 &num_recv, &dma_mem);
701
702 /* If post failed clear the only buffer we supplied */
703 if (post_err) {
704 if (dma_mem)
705 dma_free_coherent(&adapter->pdev->dev,
706 dma_mem->size, dma_mem->va,
707 dma_mem->pa);
708 break;
709 }
710
711 /* virtchnl trying to shutdown, stop cleaning */
712 if (err == -ENXIO)
713 break;
714 }
715
716 return err;
717 }
718
719 struct idpf_chunked_msg_params {
720 u32 (*prepare_msg)(const struct idpf_vport *vport,
721 void *buf, const void *pos,
722 u32 num);
723
724 const void *chunks;
725 u32 num_chunks;
726
727 u32 chunk_sz;
728 u32 config_sz;
729
730 u32 vc_op;
731 };
732
idpf_alloc_queue_set(struct idpf_vport * vport,u32 num)733 struct idpf_queue_set *idpf_alloc_queue_set(struct idpf_vport *vport, u32 num)
734 {
735 struct idpf_queue_set *qp;
736
737 qp = kzalloc(struct_size(qp, qs, num), GFP_KERNEL);
738 if (!qp)
739 return NULL;
740
741 qp->vport = vport;
742 qp->num = num;
743
744 return qp;
745 }
746
747 /**
748 * idpf_send_chunked_msg - send VC message consisting of chunks
749 * @vport: virtual port data structure
750 * @params: message params
751 *
752 * Helper function for preparing a message describing queues to be enabled
753 * or disabled.
754 *
755 * Return: the total size of the prepared message.
756 */
idpf_send_chunked_msg(struct idpf_vport * vport,const struct idpf_chunked_msg_params * params)757 static int idpf_send_chunked_msg(struct idpf_vport *vport,
758 const struct idpf_chunked_msg_params *params)
759 {
760 struct idpf_vc_xn_params xn_params = {
761 .vc_op = params->vc_op,
762 .timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC,
763 };
764 const void *pos = params->chunks;
765 u32 num_chunks, num_msgs, buf_sz;
766 void *buf __free(kfree) = NULL;
767 u32 totqs = params->num_chunks;
768
769 num_chunks = min(IDPF_NUM_CHUNKS_PER_MSG(params->config_sz,
770 params->chunk_sz), totqs);
771 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
772
773 buf_sz = params->config_sz + num_chunks * params->chunk_sz;
774 buf = kzalloc(buf_sz, GFP_KERNEL);
775 if (!buf)
776 return -ENOMEM;
777
778 xn_params.send_buf.iov_base = buf;
779
780 for (u32 i = 0; i < num_msgs; i++) {
781 ssize_t reply_sz;
782
783 memset(buf, 0, buf_sz);
784 xn_params.send_buf.iov_len = buf_sz;
785
786 if (params->prepare_msg(vport, buf, pos, num_chunks) != buf_sz)
787 return -EINVAL;
788
789 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
790 if (reply_sz < 0)
791 return reply_sz;
792
793 pos += num_chunks * params->chunk_sz;
794 totqs -= num_chunks;
795
796 num_chunks = min(num_chunks, totqs);
797 buf_sz = params->config_sz + num_chunks * params->chunk_sz;
798 }
799
800 return 0;
801 }
802
803 /**
804 * idpf_wait_for_marker_event_set - wait for software marker response for
805 * selected Tx queues
806 * @qs: set of the Tx queues
807 *
808 * Return: 0 success, -errno on failure.
809 */
idpf_wait_for_marker_event_set(const struct idpf_queue_set * qs)810 static int idpf_wait_for_marker_event_set(const struct idpf_queue_set *qs)
811 {
812 struct idpf_tx_queue *txq;
813 bool markers_rcvd = true;
814
815 for (u32 i = 0; i < qs->num; i++) {
816 switch (qs->qs[i].type) {
817 case VIRTCHNL2_QUEUE_TYPE_TX:
818 txq = qs->qs[i].txq;
819
820 idpf_queue_set(SW_MARKER, txq);
821 idpf_wait_for_sw_marker_completion(txq);
822 markers_rcvd &= !idpf_queue_has(SW_MARKER, txq);
823 break;
824 default:
825 break;
826 }
827 }
828
829 if (!markers_rcvd) {
830 netdev_warn(qs->vport->netdev,
831 "Failed to receive marker packets\n");
832 return -ETIMEDOUT;
833 }
834
835 return 0;
836 }
837
838 /**
839 * idpf_wait_for_marker_event - wait for software marker response
840 * @vport: virtual port data structure
841 *
842 * Return: 0 success, negative on failure.
843 **/
idpf_wait_for_marker_event(struct idpf_vport * vport)844 static int idpf_wait_for_marker_event(struct idpf_vport *vport)
845 {
846 struct idpf_queue_set *qs __free(kfree) = NULL;
847
848 qs = idpf_alloc_queue_set(vport, vport->num_txq);
849 if (!qs)
850 return -ENOMEM;
851
852 for (u32 i = 0; i < qs->num; i++) {
853 qs->qs[i].type = VIRTCHNL2_QUEUE_TYPE_TX;
854 qs->qs[i].txq = vport->txqs[i];
855 }
856
857 return idpf_wait_for_marker_event_set(qs);
858 }
859
860 /**
861 * idpf_send_ver_msg - send virtchnl version message
862 * @adapter: Driver specific private structure
863 *
864 * Send virtchnl version message. Returns 0 on success, negative on failure.
865 */
idpf_send_ver_msg(struct idpf_adapter * adapter)866 static int idpf_send_ver_msg(struct idpf_adapter *adapter)
867 {
868 struct idpf_vc_xn_params xn_params = {};
869 struct virtchnl2_version_info vvi;
870 ssize_t reply_sz;
871 u32 major, minor;
872 int err = 0;
873
874 if (adapter->virt_ver_maj) {
875 vvi.major = cpu_to_le32(adapter->virt_ver_maj);
876 vvi.minor = cpu_to_le32(adapter->virt_ver_min);
877 } else {
878 vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
879 vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
880 }
881
882 xn_params.vc_op = VIRTCHNL2_OP_VERSION;
883 xn_params.send_buf.iov_base = &vvi;
884 xn_params.send_buf.iov_len = sizeof(vvi);
885 xn_params.recv_buf = xn_params.send_buf;
886 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
887
888 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
889 if (reply_sz < 0)
890 return reply_sz;
891 if (reply_sz < sizeof(vvi))
892 return -EIO;
893
894 major = le32_to_cpu(vvi.major);
895 minor = le32_to_cpu(vvi.minor);
896
897 if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
898 dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
899 return -EINVAL;
900 }
901
902 if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
903 minor > IDPF_VIRTCHNL_VERSION_MINOR)
904 dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
905
906 /* If we have a mismatch, resend version to update receiver on what
907 * version we will use.
908 */
909 if (!adapter->virt_ver_maj &&
910 major != IDPF_VIRTCHNL_VERSION_MAJOR &&
911 minor != IDPF_VIRTCHNL_VERSION_MINOR)
912 err = -EAGAIN;
913
914 adapter->virt_ver_maj = major;
915 adapter->virt_ver_min = minor;
916
917 return err;
918 }
919
920 /**
921 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
922 * @adapter: Driver specific private structure
923 *
924 * Send virtchl get capabilities message. Returns 0 on success, negative on
925 * failure.
926 */
idpf_send_get_caps_msg(struct idpf_adapter * adapter)927 static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
928 {
929 struct virtchnl2_get_capabilities caps = {};
930 struct idpf_vc_xn_params xn_params = {};
931 ssize_t reply_sz;
932
933 caps.csum_caps =
934 cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 |
935 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP |
936 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP |
937 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP |
938 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP |
939 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP |
940 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP |
941 VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 |
942 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP |
943 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP |
944 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP |
945 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP |
946 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP |
947 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP |
948 VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
949 VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
950 VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
951 VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
952 VIRTCHNL2_CAP_RX_CSUM_GENERIC);
953
954 caps.seg_caps =
955 cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP |
956 VIRTCHNL2_CAP_SEG_IPV4_UDP |
957 VIRTCHNL2_CAP_SEG_IPV4_SCTP |
958 VIRTCHNL2_CAP_SEG_IPV6_TCP |
959 VIRTCHNL2_CAP_SEG_IPV6_UDP |
960 VIRTCHNL2_CAP_SEG_IPV6_SCTP |
961 VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
962
963 caps.rss_caps =
964 cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP |
965 VIRTCHNL2_FLOW_IPV4_UDP |
966 VIRTCHNL2_FLOW_IPV4_SCTP |
967 VIRTCHNL2_FLOW_IPV4_OTHER |
968 VIRTCHNL2_FLOW_IPV6_TCP |
969 VIRTCHNL2_FLOW_IPV6_UDP |
970 VIRTCHNL2_FLOW_IPV6_SCTP |
971 VIRTCHNL2_FLOW_IPV6_OTHER);
972
973 caps.hsplit_caps =
974 cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4 |
975 VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
976
977 caps.rsc_caps =
978 cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP |
979 VIRTCHNL2_CAP_RSC_IPV6_TCP);
980
981 caps.other_caps =
982 cpu_to_le64(VIRTCHNL2_CAP_SRIOV |
983 VIRTCHNL2_CAP_RDMA |
984 VIRTCHNL2_CAP_LAN_MEMORY_REGIONS |
985 VIRTCHNL2_CAP_MACFILTER |
986 VIRTCHNL2_CAP_SPLITQ_QSCHED |
987 VIRTCHNL2_CAP_PROMISC |
988 VIRTCHNL2_CAP_LOOPBACK |
989 VIRTCHNL2_CAP_PTP);
990
991 xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
992 xn_params.send_buf.iov_base = ∩︀
993 xn_params.send_buf.iov_len = sizeof(caps);
994 xn_params.recv_buf.iov_base = &adapter->caps;
995 xn_params.recv_buf.iov_len = sizeof(adapter->caps);
996 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
997
998 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
999 if (reply_sz < 0)
1000 return reply_sz;
1001 if (reply_sz < sizeof(adapter->caps))
1002 return -EIO;
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * idpf_send_get_lan_memory_regions - Send virtchnl get LAN memory regions msg
1009 * @adapter: Driver specific private struct
1010 *
1011 * Return: 0 on success or error code on failure.
1012 */
idpf_send_get_lan_memory_regions(struct idpf_adapter * adapter)1013 static int idpf_send_get_lan_memory_regions(struct idpf_adapter *adapter)
1014 {
1015 struct virtchnl2_get_lan_memory_regions *rcvd_regions __free(kfree);
1016 struct idpf_vc_xn_params xn_params = {
1017 .vc_op = VIRTCHNL2_OP_GET_LAN_MEMORY_REGIONS,
1018 .recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN,
1019 .timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC,
1020 };
1021 int num_regions, size;
1022 struct idpf_hw *hw;
1023 ssize_t reply_sz;
1024 int err = 0;
1025
1026 rcvd_regions = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
1027 if (!rcvd_regions)
1028 return -ENOMEM;
1029
1030 xn_params.recv_buf.iov_base = rcvd_regions;
1031 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1032 if (reply_sz < 0)
1033 return reply_sz;
1034
1035 num_regions = le16_to_cpu(rcvd_regions->num_memory_regions);
1036 size = struct_size(rcvd_regions, mem_reg, num_regions);
1037 if (reply_sz < size)
1038 return -EIO;
1039
1040 if (size > IDPF_CTLQ_MAX_BUF_LEN)
1041 return -EINVAL;
1042
1043 hw = &adapter->hw;
1044 hw->lan_regs = kcalloc(num_regions, sizeof(*hw->lan_regs), GFP_KERNEL);
1045 if (!hw->lan_regs)
1046 return -ENOMEM;
1047
1048 for (int i = 0; i < num_regions; i++) {
1049 hw->lan_regs[i].addr_len =
1050 le64_to_cpu(rcvd_regions->mem_reg[i].size);
1051 hw->lan_regs[i].addr_start =
1052 le64_to_cpu(rcvd_regions->mem_reg[i].start_offset);
1053 }
1054 hw->num_lan_regs = num_regions;
1055
1056 return err;
1057 }
1058
1059 /**
1060 * idpf_calc_remaining_mmio_regs - calculate MMIO regions outside mbx and rstat
1061 * @adapter: Driver specific private structure
1062 *
1063 * Called when idpf_send_get_lan_memory_regions is not supported. This will
1064 * calculate the offsets and sizes for the regions before, in between, and
1065 * after the mailbox and rstat MMIO mappings.
1066 *
1067 * Return: 0 on success or error code on failure.
1068 */
idpf_calc_remaining_mmio_regs(struct idpf_adapter * adapter)1069 static int idpf_calc_remaining_mmio_regs(struct idpf_adapter *adapter)
1070 {
1071 struct resource *rstat_reg = &adapter->dev_ops.static_reg_info[1];
1072 struct resource *mbx_reg = &adapter->dev_ops.static_reg_info[0];
1073 struct idpf_hw *hw = &adapter->hw;
1074
1075 hw->num_lan_regs = IDPF_MMIO_MAP_FALLBACK_MAX_REMAINING;
1076 hw->lan_regs = kcalloc(hw->num_lan_regs, sizeof(*hw->lan_regs),
1077 GFP_KERNEL);
1078 if (!hw->lan_regs)
1079 return -ENOMEM;
1080
1081 /* Region preceding mailbox */
1082 hw->lan_regs[0].addr_start = 0;
1083 hw->lan_regs[0].addr_len = mbx_reg->start;
1084 /* Region between mailbox and rstat */
1085 hw->lan_regs[1].addr_start = mbx_reg->end + 1;
1086 hw->lan_regs[1].addr_len = rstat_reg->start -
1087 hw->lan_regs[1].addr_start;
1088 /* Region after rstat */
1089 hw->lan_regs[2].addr_start = rstat_reg->end + 1;
1090 hw->lan_regs[2].addr_len = pci_resource_len(adapter->pdev, 0) -
1091 hw->lan_regs[2].addr_start;
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * idpf_map_lan_mmio_regs - map remaining LAN BAR regions
1098 * @adapter: Driver specific private structure
1099 *
1100 * Return: 0 on success or error code on failure.
1101 */
idpf_map_lan_mmio_regs(struct idpf_adapter * adapter)1102 static int idpf_map_lan_mmio_regs(struct idpf_adapter *adapter)
1103 {
1104 struct pci_dev *pdev = adapter->pdev;
1105 struct idpf_hw *hw = &adapter->hw;
1106 resource_size_t res_start;
1107
1108 res_start = pci_resource_start(pdev, 0);
1109
1110 for (int i = 0; i < hw->num_lan_regs; i++) {
1111 resource_size_t start;
1112 long len;
1113
1114 len = hw->lan_regs[i].addr_len;
1115 if (!len)
1116 continue;
1117 start = hw->lan_regs[i].addr_start + res_start;
1118
1119 hw->lan_regs[i].vaddr = devm_ioremap(&pdev->dev, start, len);
1120 if (!hw->lan_regs[i].vaddr) {
1121 pci_err(pdev, "failed to allocate BAR0 region\n");
1122 return -ENOMEM;
1123 }
1124 }
1125
1126 return 0;
1127 }
1128
1129 /**
1130 * idpf_add_del_fsteer_filters - Send virtchnl add/del Flow Steering message
1131 * @adapter: adapter info struct
1132 * @rule: Flow steering rule to add/delete
1133 * @opcode: VIRTCHNL2_OP_ADD_FLOW_RULE to add filter, or
1134 * VIRTCHNL2_OP_DEL_FLOW_RULE to delete. All other values are invalid.
1135 *
1136 * Send ADD/DELETE flow steering virtchnl message and receive the result.
1137 *
1138 * Return: 0 on success, negative on failure.
1139 */
idpf_add_del_fsteer_filters(struct idpf_adapter * adapter,struct virtchnl2_flow_rule_add_del * rule,enum virtchnl2_op opcode)1140 int idpf_add_del_fsteer_filters(struct idpf_adapter *adapter,
1141 struct virtchnl2_flow_rule_add_del *rule,
1142 enum virtchnl2_op opcode)
1143 {
1144 int rule_count = le32_to_cpu(rule->count);
1145 struct idpf_vc_xn_params xn_params = {};
1146 ssize_t reply_sz;
1147
1148 if (opcode != VIRTCHNL2_OP_ADD_FLOW_RULE &&
1149 opcode != VIRTCHNL2_OP_DEL_FLOW_RULE)
1150 return -EINVAL;
1151
1152 xn_params.vc_op = opcode;
1153 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1154 xn_params.async = false;
1155 xn_params.send_buf.iov_base = rule;
1156 xn_params.send_buf.iov_len = struct_size(rule, rule_info, rule_count);
1157 xn_params.recv_buf.iov_base = rule;
1158 xn_params.recv_buf.iov_len = struct_size(rule, rule_info, rule_count);
1159
1160 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1161 return reply_sz < 0 ? reply_sz : 0;
1162 }
1163
1164 /**
1165 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
1166 * @adapter: Driver specific private structure
1167 * @max_q: vport max queue structure
1168 */
idpf_vport_alloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1169 int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
1170 struct idpf_vport_max_q *max_q)
1171 {
1172 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1173 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1174 u16 default_vports = idpf_get_default_vports(adapter);
1175 u32 max_rx_q, max_tx_q, max_buf_q, max_compl_q;
1176
1177 mutex_lock(&adapter->queue_lock);
1178
1179 /* Caps are device-wide. Give each vport an equal piece */
1180 max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
1181 max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
1182 max_buf_q = le16_to_cpu(caps->max_rx_bufq) / default_vports;
1183 max_compl_q = le16_to_cpu(caps->max_tx_complq) / default_vports;
1184
1185 if (adapter->num_alloc_vports >= default_vports) {
1186 max_rx_q = IDPF_MIN_Q;
1187 max_tx_q = IDPF_MIN_Q;
1188 }
1189
1190 /*
1191 * Harmonize the numbers. The current implementation always creates
1192 * `IDPF_MAX_BUFQS_PER_RXQ_GRP` buffer queues for each Rx queue and
1193 * one completion queue for each Tx queue for best performance.
1194 * If less buffer or completion queues is available, cap the number
1195 * of the corresponding Rx/Tx queues.
1196 */
1197 max_rx_q = min(max_rx_q, max_buf_q / IDPF_MAX_BUFQS_PER_RXQ_GRP);
1198 max_tx_q = min(max_tx_q, max_compl_q);
1199
1200 max_q->max_rxq = max_rx_q;
1201 max_q->max_txq = max_tx_q;
1202 max_q->max_bufq = max_rx_q * IDPF_MAX_BUFQS_PER_RXQ_GRP;
1203 max_q->max_complq = max_tx_q;
1204
1205 if (avail_queues->avail_rxq < max_q->max_rxq ||
1206 avail_queues->avail_txq < max_q->max_txq ||
1207 avail_queues->avail_bufq < max_q->max_bufq ||
1208 avail_queues->avail_complq < max_q->max_complq) {
1209 mutex_unlock(&adapter->queue_lock);
1210
1211 return -EINVAL;
1212 }
1213
1214 avail_queues->avail_rxq -= max_q->max_rxq;
1215 avail_queues->avail_txq -= max_q->max_txq;
1216 avail_queues->avail_bufq -= max_q->max_bufq;
1217 avail_queues->avail_complq -= max_q->max_complq;
1218
1219 mutex_unlock(&adapter->queue_lock);
1220
1221 return 0;
1222 }
1223
1224 /**
1225 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
1226 * @adapter: Driver specific private structure
1227 * @max_q: vport max queue structure
1228 */
idpf_vport_dealloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1229 void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
1230 struct idpf_vport_max_q *max_q)
1231 {
1232 struct idpf_avail_queue_info *avail_queues;
1233
1234 mutex_lock(&adapter->queue_lock);
1235 avail_queues = &adapter->avail_queues;
1236
1237 avail_queues->avail_rxq += max_q->max_rxq;
1238 avail_queues->avail_txq += max_q->max_txq;
1239 avail_queues->avail_bufq += max_q->max_bufq;
1240 avail_queues->avail_complq += max_q->max_complq;
1241
1242 mutex_unlock(&adapter->queue_lock);
1243 }
1244
1245 /**
1246 * idpf_init_avail_queues - Initialize available queues on the device
1247 * @adapter: Driver specific private structure
1248 */
idpf_init_avail_queues(struct idpf_adapter * adapter)1249 static void idpf_init_avail_queues(struct idpf_adapter *adapter)
1250 {
1251 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1252 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1253
1254 avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
1255 avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
1256 avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
1257 avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
1258 }
1259
1260 /**
1261 * idpf_get_reg_intr_vecs - Get vector queue register offset
1262 * @vport: virtual port structure
1263 * @reg_vals: Register offsets to store in
1264 *
1265 * Returns number of registers that got populated
1266 */
idpf_get_reg_intr_vecs(struct idpf_vport * vport,struct idpf_vec_regs * reg_vals)1267 int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1268 struct idpf_vec_regs *reg_vals)
1269 {
1270 struct virtchnl2_vector_chunks *chunks;
1271 struct idpf_vec_regs reg_val;
1272 u16 num_vchunks, num_vec;
1273 int num_regs = 0, i, j;
1274
1275 chunks = &vport->adapter->req_vec_chunks->vchunks;
1276 num_vchunks = le16_to_cpu(chunks->num_vchunks);
1277
1278 for (j = 0; j < num_vchunks; j++) {
1279 struct virtchnl2_vector_chunk *chunk;
1280 u32 dynctl_reg_spacing;
1281 u32 itrn_reg_spacing;
1282
1283 chunk = &chunks->vchunks[j];
1284 num_vec = le16_to_cpu(chunk->num_vectors);
1285 reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1286 reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1287 reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1288
1289 dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1290 itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1291
1292 for (i = 0; i < num_vec; i++) {
1293 reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1294 reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1295 reg_vals[num_regs].itrn_index_spacing =
1296 reg_val.itrn_index_spacing;
1297
1298 reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1299 reg_val.itrn_reg += itrn_reg_spacing;
1300 num_regs++;
1301 }
1302 }
1303
1304 return num_regs;
1305 }
1306
1307 /**
1308 * idpf_vport_get_q_reg - Get the queue registers for the vport
1309 * @reg_vals: register values needing to be set
1310 * @num_regs: amount we expect to fill
1311 * @q_type: queue model
1312 * @chunks: queue regs received over mailbox
1313 *
1314 * This function parses the queue register offsets from the queue register
1315 * chunk information, with a specific queue type and stores it into the array
1316 * passed as an argument. It returns the actual number of queue registers that
1317 * are filled.
1318 */
idpf_vport_get_q_reg(u32 * reg_vals,int num_regs,u32 q_type,struct virtchnl2_queue_reg_chunks * chunks)1319 static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1320 struct virtchnl2_queue_reg_chunks *chunks)
1321 {
1322 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1323 int reg_filled = 0, i;
1324 u32 reg_val;
1325
1326 while (num_chunks--) {
1327 struct virtchnl2_queue_reg_chunk *chunk;
1328 u16 num_q;
1329
1330 chunk = &chunks->chunks[num_chunks];
1331 if (le32_to_cpu(chunk->type) != q_type)
1332 continue;
1333
1334 num_q = le32_to_cpu(chunk->num_queues);
1335 reg_val = le64_to_cpu(chunk->qtail_reg_start);
1336 for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1337 reg_vals[reg_filled++] = reg_val;
1338 reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1339 }
1340 }
1341
1342 return reg_filled;
1343 }
1344
1345 /**
1346 * __idpf_queue_reg_init - initialize queue registers
1347 * @vport: virtual port structure
1348 * @reg_vals: registers we are initializing
1349 * @num_regs: how many registers there are in total
1350 * @q_type: queue model
1351 *
1352 * Return number of queues that are initialized
1353 */
__idpf_queue_reg_init(struct idpf_vport * vport,u32 * reg_vals,int num_regs,u32 q_type)1354 static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1355 int num_regs, u32 q_type)
1356 {
1357 struct idpf_adapter *adapter = vport->adapter;
1358 int i, j, k = 0;
1359
1360 switch (q_type) {
1361 case VIRTCHNL2_QUEUE_TYPE_TX:
1362 for (i = 0; i < vport->num_txq_grp; i++) {
1363 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1364
1365 for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1366 tx_qgrp->txqs[j]->tail =
1367 idpf_get_reg_addr(adapter, reg_vals[k]);
1368 }
1369 break;
1370 case VIRTCHNL2_QUEUE_TYPE_RX:
1371 for (i = 0; i < vport->num_rxq_grp; i++) {
1372 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1373 u16 num_rxq = rx_qgrp->singleq.num_rxq;
1374
1375 for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1376 struct idpf_rx_queue *q;
1377
1378 q = rx_qgrp->singleq.rxqs[j];
1379 q->tail = idpf_get_reg_addr(adapter,
1380 reg_vals[k]);
1381 }
1382 }
1383 break;
1384 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1385 for (i = 0; i < vport->num_rxq_grp; i++) {
1386 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1387 u8 num_bufqs = vport->num_bufqs_per_qgrp;
1388
1389 for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1390 struct idpf_buf_queue *q;
1391
1392 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1393 q->tail = idpf_get_reg_addr(adapter,
1394 reg_vals[k]);
1395 }
1396 }
1397 break;
1398 default:
1399 break;
1400 }
1401
1402 return k;
1403 }
1404
1405 /**
1406 * idpf_queue_reg_init - initialize queue registers
1407 * @vport: virtual port structure
1408 *
1409 * Return 0 on success, negative on failure
1410 */
idpf_queue_reg_init(struct idpf_vport * vport)1411 int idpf_queue_reg_init(struct idpf_vport *vport)
1412 {
1413 struct virtchnl2_create_vport *vport_params;
1414 struct virtchnl2_queue_reg_chunks *chunks;
1415 struct idpf_vport_config *vport_config;
1416 u16 vport_idx = vport->idx;
1417 int num_regs, ret = 0;
1418 u32 *reg_vals;
1419
1420 /* We may never deal with more than 256 same type of queues */
1421 reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1422 if (!reg_vals)
1423 return -ENOMEM;
1424
1425 vport_config = vport->adapter->vport_config[vport_idx];
1426 if (vport_config->req_qs_chunks) {
1427 struct virtchnl2_add_queues *vc_aq =
1428 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1429 chunks = &vc_aq->chunks;
1430 } else {
1431 vport_params = vport->adapter->vport_params_recvd[vport_idx];
1432 chunks = &vport_params->chunks;
1433 }
1434
1435 /* Initialize Tx queue tail register address */
1436 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1437 VIRTCHNL2_QUEUE_TYPE_TX,
1438 chunks);
1439 if (num_regs < vport->num_txq) {
1440 ret = -EINVAL;
1441 goto free_reg_vals;
1442 }
1443
1444 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1445 VIRTCHNL2_QUEUE_TYPE_TX);
1446 if (num_regs < vport->num_txq) {
1447 ret = -EINVAL;
1448 goto free_reg_vals;
1449 }
1450
1451 /* Initialize Rx/buffer queue tail register address based on Rx queue
1452 * model
1453 */
1454 if (idpf_is_queue_model_split(vport->rxq_model)) {
1455 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1456 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1457 chunks);
1458 if (num_regs < vport->num_bufq) {
1459 ret = -EINVAL;
1460 goto free_reg_vals;
1461 }
1462
1463 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1464 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1465 if (num_regs < vport->num_bufq) {
1466 ret = -EINVAL;
1467 goto free_reg_vals;
1468 }
1469 } else {
1470 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1471 VIRTCHNL2_QUEUE_TYPE_RX,
1472 chunks);
1473 if (num_regs < vport->num_rxq) {
1474 ret = -EINVAL;
1475 goto free_reg_vals;
1476 }
1477
1478 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1479 VIRTCHNL2_QUEUE_TYPE_RX);
1480 if (num_regs < vport->num_rxq) {
1481 ret = -EINVAL;
1482 goto free_reg_vals;
1483 }
1484 }
1485
1486 free_reg_vals:
1487 kfree(reg_vals);
1488
1489 return ret;
1490 }
1491
1492 /**
1493 * idpf_send_create_vport_msg - Send virtchnl create vport message
1494 * @adapter: Driver specific private structure
1495 * @max_q: vport max queue info
1496 *
1497 * send virtchnl creae vport message
1498 *
1499 * Returns 0 on success, negative on failure
1500 */
idpf_send_create_vport_msg(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1501 int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1502 struct idpf_vport_max_q *max_q)
1503 {
1504 struct virtchnl2_create_vport *vport_msg;
1505 struct idpf_vc_xn_params xn_params = {};
1506 u16 idx = adapter->next_vport;
1507 int err, buf_size;
1508 ssize_t reply_sz;
1509
1510 buf_size = sizeof(struct virtchnl2_create_vport);
1511 if (!adapter->vport_params_reqd[idx]) {
1512 adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1513 GFP_KERNEL);
1514 if (!adapter->vport_params_reqd[idx])
1515 return -ENOMEM;
1516 }
1517
1518 vport_msg = adapter->vport_params_reqd[idx];
1519 vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1520 vport_msg->vport_index = cpu_to_le16(idx);
1521
1522 if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1523 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1524 else
1525 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1526
1527 if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1528 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1529 else
1530 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1531
1532 err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1533 if (err) {
1534 dev_err(&adapter->pdev->dev, "Enough queues are not available");
1535
1536 return err;
1537 }
1538
1539 if (!adapter->vport_params_recvd[idx]) {
1540 adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1541 GFP_KERNEL);
1542 if (!adapter->vport_params_recvd[idx]) {
1543 err = -ENOMEM;
1544 goto free_vport_params;
1545 }
1546 }
1547
1548 xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1549 xn_params.send_buf.iov_base = vport_msg;
1550 xn_params.send_buf.iov_len = buf_size;
1551 xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1552 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1553 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1554 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1555 if (reply_sz < 0) {
1556 err = reply_sz;
1557 goto free_vport_params;
1558 }
1559
1560 return 0;
1561
1562 free_vport_params:
1563 kfree(adapter->vport_params_recvd[idx]);
1564 adapter->vport_params_recvd[idx] = NULL;
1565 kfree(adapter->vport_params_reqd[idx]);
1566 adapter->vport_params_reqd[idx] = NULL;
1567
1568 return err;
1569 }
1570
1571 /**
1572 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1573 * @vport: virtual port structure
1574 *
1575 * Return 0 on success, error on failure
1576 */
idpf_check_supported_desc_ids(struct idpf_vport * vport)1577 int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1578 {
1579 struct idpf_adapter *adapter = vport->adapter;
1580 struct virtchnl2_create_vport *vport_msg;
1581 u64 rx_desc_ids, tx_desc_ids;
1582
1583 vport_msg = adapter->vport_params_recvd[vport->idx];
1584
1585 if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1586 (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1587 vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1588 pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1589 return -EOPNOTSUPP;
1590 }
1591
1592 rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1593 tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1594
1595 if (idpf_is_queue_model_split(vport->rxq_model)) {
1596 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1597 dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1598 vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1599 }
1600 } else {
1601 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1602 vport->base_rxd = true;
1603 }
1604
1605 if (!idpf_is_queue_model_split(vport->txq_model))
1606 return 0;
1607
1608 if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1609 dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1610 vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1611 }
1612
1613 return 0;
1614 }
1615
1616 /**
1617 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1618 * @vport: virtual port data structure
1619 *
1620 * Send virtchnl destroy vport message. Returns 0 on success, negative on
1621 * failure.
1622 */
idpf_send_destroy_vport_msg(struct idpf_vport * vport)1623 int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1624 {
1625 struct idpf_vc_xn_params xn_params = {};
1626 struct virtchnl2_vport v_id;
1627 ssize_t reply_sz;
1628
1629 v_id.vport_id = cpu_to_le32(vport->vport_id);
1630
1631 xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1632 xn_params.send_buf.iov_base = &v_id;
1633 xn_params.send_buf.iov_len = sizeof(v_id);
1634 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1635 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1636
1637 return reply_sz < 0 ? reply_sz : 0;
1638 }
1639
1640 /**
1641 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1642 * @vport: virtual port data structure
1643 *
1644 * Send enable vport virtchnl message. Returns 0 on success, negative on
1645 * failure.
1646 */
idpf_send_enable_vport_msg(struct idpf_vport * vport)1647 int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1648 {
1649 struct idpf_vc_xn_params xn_params = {};
1650 struct virtchnl2_vport v_id;
1651 ssize_t reply_sz;
1652
1653 v_id.vport_id = cpu_to_le32(vport->vport_id);
1654
1655 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1656 xn_params.send_buf.iov_base = &v_id;
1657 xn_params.send_buf.iov_len = sizeof(v_id);
1658 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1659 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1660
1661 return reply_sz < 0 ? reply_sz : 0;
1662 }
1663
1664 /**
1665 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1666 * @vport: virtual port data structure
1667 *
1668 * Send disable vport virtchnl message. Returns 0 on success, negative on
1669 * failure.
1670 */
idpf_send_disable_vport_msg(struct idpf_vport * vport)1671 int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1672 {
1673 struct idpf_vc_xn_params xn_params = {};
1674 struct virtchnl2_vport v_id;
1675 ssize_t reply_sz;
1676
1677 v_id.vport_id = cpu_to_le32(vport->vport_id);
1678
1679 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1680 xn_params.send_buf.iov_base = &v_id;
1681 xn_params.send_buf.iov_len = sizeof(v_id);
1682 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1683 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1684
1685 return reply_sz < 0 ? reply_sz : 0;
1686 }
1687
1688 /**
1689 * idpf_fill_txq_config_chunk - fill chunk describing the Tx queue
1690 * @vport: virtual port data structure
1691 * @q: Tx queue to be inserted into VC chunk
1692 * @qi: pointer to the buffer containing the VC chunk
1693 */
idpf_fill_txq_config_chunk(const struct idpf_vport * vport,const struct idpf_tx_queue * q,struct virtchnl2_txq_info * qi)1694 static void idpf_fill_txq_config_chunk(const struct idpf_vport *vport,
1695 const struct idpf_tx_queue *q,
1696 struct virtchnl2_txq_info *qi)
1697 {
1698 u32 val;
1699
1700 qi->queue_id = cpu_to_le32(q->q_id);
1701 qi->model = cpu_to_le16(vport->txq_model);
1702 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1703 qi->ring_len = cpu_to_le16(q->desc_count);
1704 qi->dma_ring_addr = cpu_to_le64(q->dma);
1705 qi->relative_queue_id = cpu_to_le16(q->rel_q_id);
1706
1707 if (!idpf_is_queue_model_split(vport->txq_model)) {
1708 qi->sched_mode = cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1709 return;
1710 }
1711
1712 if (idpf_queue_has(XDP, q))
1713 val = q->complq->q_id;
1714 else
1715 val = q->txq_grp->complq->q_id;
1716
1717 qi->tx_compl_queue_id = cpu_to_le16(val);
1718
1719 if (idpf_queue_has(FLOW_SCH_EN, q))
1720 val = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1721 else
1722 val = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1723
1724 qi->sched_mode = cpu_to_le16(val);
1725 }
1726
1727 /**
1728 * idpf_fill_complq_config_chunk - fill chunk describing the completion queue
1729 * @vport: virtual port data structure
1730 * @q: completion queue to be inserted into VC chunk
1731 * @qi: pointer to the buffer containing the VC chunk
1732 */
idpf_fill_complq_config_chunk(const struct idpf_vport * vport,const struct idpf_compl_queue * q,struct virtchnl2_txq_info * qi)1733 static void idpf_fill_complq_config_chunk(const struct idpf_vport *vport,
1734 const struct idpf_compl_queue *q,
1735 struct virtchnl2_txq_info *qi)
1736 {
1737 u32 val;
1738
1739 qi->queue_id = cpu_to_le32(q->q_id);
1740 qi->model = cpu_to_le16(vport->txq_model);
1741 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1742 qi->ring_len = cpu_to_le16(q->desc_count);
1743 qi->dma_ring_addr = cpu_to_le64(q->dma);
1744
1745 if (idpf_queue_has(FLOW_SCH_EN, q))
1746 val = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1747 else
1748 val = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1749
1750 qi->sched_mode = cpu_to_le16(val);
1751 }
1752
1753 /**
1754 * idpf_prepare_cfg_txqs_msg - prepare message to configure selected Tx queues
1755 * @vport: virtual port data structure
1756 * @buf: buffer containing the message
1757 * @pos: pointer to the first chunk describing the tx queue
1758 * @num_chunks: number of chunks in the message
1759 *
1760 * Helper function for preparing the message describing configuration of
1761 * Tx queues.
1762 *
1763 * Return: the total size of the prepared message.
1764 */
idpf_prepare_cfg_txqs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)1765 static u32 idpf_prepare_cfg_txqs_msg(const struct idpf_vport *vport,
1766 void *buf, const void *pos,
1767 u32 num_chunks)
1768 {
1769 struct virtchnl2_config_tx_queues *ctq = buf;
1770
1771 ctq->vport_id = cpu_to_le32(vport->vport_id);
1772 ctq->num_qinfo = cpu_to_le16(num_chunks);
1773 memcpy(ctq->qinfo, pos, num_chunks * sizeof(*ctq->qinfo));
1774
1775 return struct_size(ctq, qinfo, num_chunks);
1776 }
1777
1778 /**
1779 * idpf_send_config_tx_queue_set_msg - send virtchnl config Tx queues
1780 * message for selected queues
1781 * @qs: set of the Tx queues to configure
1782 *
1783 * Send config queues virtchnl message for queues contained in the @qs array.
1784 * The @qs array can contain Tx queues (or completion queues) only.
1785 *
1786 * Return: 0 on success, -errno on failure.
1787 */
idpf_send_config_tx_queue_set_msg(const struct idpf_queue_set * qs)1788 static int idpf_send_config_tx_queue_set_msg(const struct idpf_queue_set *qs)
1789 {
1790 struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1791 struct idpf_chunked_msg_params params = {
1792 .vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES,
1793 .prepare_msg = idpf_prepare_cfg_txqs_msg,
1794 .config_sz = sizeof(struct virtchnl2_config_tx_queues),
1795 .chunk_sz = sizeof(*qi),
1796 };
1797
1798 qi = kcalloc(qs->num, sizeof(*qi), GFP_KERNEL);
1799 if (!qi)
1800 return -ENOMEM;
1801
1802 params.chunks = qi;
1803
1804 for (u32 i = 0; i < qs->num; i++) {
1805 if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_TX)
1806 idpf_fill_txq_config_chunk(qs->vport, qs->qs[i].txq,
1807 &qi[params.num_chunks++]);
1808 else if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION)
1809 idpf_fill_complq_config_chunk(qs->vport,
1810 qs->qs[i].complq,
1811 &qi[params.num_chunks++]);
1812 }
1813
1814 return idpf_send_chunked_msg(qs->vport, ¶ms);
1815 }
1816
1817 /**
1818 * idpf_send_config_tx_queues_msg - send virtchnl config Tx queues message
1819 * @vport: virtual port data structure
1820 *
1821 * Return: 0 on success, -errno on failure.
1822 */
idpf_send_config_tx_queues_msg(struct idpf_vport * vport)1823 static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1824 {
1825 struct idpf_queue_set *qs __free(kfree) = NULL;
1826 u32 totqs = vport->num_txq + vport->num_complq;
1827 u32 k = 0;
1828
1829 qs = idpf_alloc_queue_set(vport, totqs);
1830 if (!qs)
1831 return -ENOMEM;
1832
1833 /* Populate the queue info buffer with all queue context info */
1834 for (u32 i = 0; i < vport->num_txq_grp; i++) {
1835 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1836
1837 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
1838 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
1839 qs->qs[k++].txq = tx_qgrp->txqs[j];
1840 }
1841
1842 if (idpf_is_queue_model_split(vport->txq_model)) {
1843 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
1844 qs->qs[k++].complq = tx_qgrp->complq;
1845 }
1846 }
1847
1848 /* Make sure accounting agrees */
1849 if (k != totqs)
1850 return -EINVAL;
1851
1852 return idpf_send_config_tx_queue_set_msg(qs);
1853 }
1854
1855 /**
1856 * idpf_fill_rxq_config_chunk - fill chunk describing the Rx queue
1857 * @vport: virtual port data structure
1858 * @q: Rx queue to be inserted into VC chunk
1859 * @qi: pointer to the buffer containing the VC chunk
1860 */
idpf_fill_rxq_config_chunk(const struct idpf_vport * vport,struct idpf_rx_queue * q,struct virtchnl2_rxq_info * qi)1861 static void idpf_fill_rxq_config_chunk(const struct idpf_vport *vport,
1862 struct idpf_rx_queue *q,
1863 struct virtchnl2_rxq_info *qi)
1864 {
1865 const struct idpf_bufq_set *sets;
1866
1867 qi->queue_id = cpu_to_le32(q->q_id);
1868 qi->model = cpu_to_le16(vport->rxq_model);
1869 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1870 qi->ring_len = cpu_to_le16(q->desc_count);
1871 qi->dma_ring_addr = cpu_to_le64(q->dma);
1872 qi->max_pkt_size = cpu_to_le32(q->rx_max_pkt_size);
1873 qi->rx_buffer_low_watermark = cpu_to_le16(q->rx_buffer_low_watermark);
1874 qi->qflags = cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1875 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1876 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1877
1878 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1879 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1880 qi->desc_ids = cpu_to_le64(q->rxdids);
1881
1882 return;
1883 }
1884
1885 sets = q->bufq_sets;
1886
1887 /*
1888 * In splitq mode, RxQ buffer size should be set to that of the first
1889 * buffer queue associated with this RxQ.
1890 */
1891 q->rx_buf_size = sets[0].bufq.rx_buf_size;
1892 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1893
1894 qi->rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1895 if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1896 qi->bufq2_ena = IDPF_BUFQ2_ENA;
1897 qi->rx_bufq2_id = cpu_to_le16(sets[1].bufq.q_id);
1898 }
1899
1900 q->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1901
1902 if (idpf_queue_has(HSPLIT_EN, q)) {
1903 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1904 qi->hdr_buffer_size = cpu_to_le16(q->rx_hbuf_size);
1905 }
1906
1907 qi->desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1908 }
1909
1910 /**
1911 * idpf_fill_bufq_config_chunk - fill chunk describing the buffer queue
1912 * @vport: virtual port data structure
1913 * @q: buffer queue to be inserted into VC chunk
1914 * @qi: pointer to the buffer containing the VC chunk
1915 */
idpf_fill_bufq_config_chunk(const struct idpf_vport * vport,const struct idpf_buf_queue * q,struct virtchnl2_rxq_info * qi)1916 static void idpf_fill_bufq_config_chunk(const struct idpf_vport *vport,
1917 const struct idpf_buf_queue *q,
1918 struct virtchnl2_rxq_info *qi)
1919 {
1920 qi->queue_id = cpu_to_le32(q->q_id);
1921 qi->model = cpu_to_le16(vport->rxq_model);
1922 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1923 qi->ring_len = cpu_to_le16(q->desc_count);
1924 qi->dma_ring_addr = cpu_to_le64(q->dma);
1925 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1926 qi->rx_buffer_low_watermark = cpu_to_le16(q->rx_buffer_low_watermark);
1927 qi->desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1928 qi->buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1929 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1930 qi->qflags = cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1931
1932 if (idpf_queue_has(HSPLIT_EN, q)) {
1933 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1934 qi->hdr_buffer_size = cpu_to_le16(q->rx_hbuf_size);
1935 }
1936 }
1937
1938 /**
1939 * idpf_prepare_cfg_rxqs_msg - prepare message to configure selected Rx queues
1940 * @vport: virtual port data structure
1941 * @buf: buffer containing the message
1942 * @pos: pointer to the first chunk describing the rx queue
1943 * @num_chunks: number of chunks in the message
1944 *
1945 * Helper function for preparing the message describing configuration of
1946 * Rx queues.
1947 *
1948 * Return: the total size of the prepared message.
1949 */
idpf_prepare_cfg_rxqs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)1950 static u32 idpf_prepare_cfg_rxqs_msg(const struct idpf_vport *vport,
1951 void *buf, const void *pos,
1952 u32 num_chunks)
1953 {
1954 struct virtchnl2_config_rx_queues *crq = buf;
1955
1956 crq->vport_id = cpu_to_le32(vport->vport_id);
1957 crq->num_qinfo = cpu_to_le16(num_chunks);
1958 memcpy(crq->qinfo, pos, num_chunks * sizeof(*crq->qinfo));
1959
1960 return struct_size(crq, qinfo, num_chunks);
1961 }
1962
1963 /**
1964 * idpf_send_config_rx_queue_set_msg - send virtchnl config Rx queues message
1965 * for selected queues.
1966 * @qs: set of the Rx queues to configure
1967 *
1968 * Send config queues virtchnl message for queues contained in the @qs array.
1969 * The @qs array can contain Rx queues (or buffer queues) only.
1970 *
1971 * Return: 0 on success, -errno on failure.
1972 */
idpf_send_config_rx_queue_set_msg(const struct idpf_queue_set * qs)1973 static int idpf_send_config_rx_queue_set_msg(const struct idpf_queue_set *qs)
1974 {
1975 struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1976 struct idpf_chunked_msg_params params = {
1977 .vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES,
1978 .prepare_msg = idpf_prepare_cfg_rxqs_msg,
1979 .config_sz = sizeof(struct virtchnl2_config_rx_queues),
1980 .chunk_sz = sizeof(*qi),
1981 };
1982
1983 qi = kcalloc(qs->num, sizeof(*qi), GFP_KERNEL);
1984 if (!qi)
1985 return -ENOMEM;
1986
1987 params.chunks = qi;
1988
1989 for (u32 i = 0; i < qs->num; i++) {
1990 if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_RX)
1991 idpf_fill_rxq_config_chunk(qs->vport, qs->qs[i].rxq,
1992 &qi[params.num_chunks++]);
1993 else if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_RX_BUFFER)
1994 idpf_fill_bufq_config_chunk(qs->vport, qs->qs[i].bufq,
1995 &qi[params.num_chunks++]);
1996 }
1997
1998 return idpf_send_chunked_msg(qs->vport, ¶ms);
1999 }
2000
2001 /**
2002 * idpf_send_config_rx_queues_msg - send virtchnl config Rx queues message
2003 * @vport: virtual port data structure
2004 *
2005 * Return: 0 on success, -errno on failure.
2006 */
idpf_send_config_rx_queues_msg(struct idpf_vport * vport)2007 static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
2008 {
2009 bool splitq = idpf_is_queue_model_split(vport->rxq_model);
2010 struct idpf_queue_set *qs __free(kfree) = NULL;
2011 u32 totqs = vport->num_rxq + vport->num_bufq;
2012 u32 k = 0;
2013
2014 qs = idpf_alloc_queue_set(vport, totqs);
2015 if (!qs)
2016 return -ENOMEM;
2017
2018 /* Populate the queue info buffer with all queue context info */
2019 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2020 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2021 u32 num_rxq;
2022
2023 if (!splitq) {
2024 num_rxq = rx_qgrp->singleq.num_rxq;
2025 goto rxq;
2026 }
2027
2028 for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
2029 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
2030 qs->qs[k++].bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
2031 }
2032
2033 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2034
2035 rxq:
2036 for (u32 j = 0; j < num_rxq; j++) {
2037 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2038
2039 if (splitq)
2040 qs->qs[k++].rxq =
2041 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2042 else
2043 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2044 }
2045 }
2046
2047 /* Make sure accounting agrees */
2048 if (k != totqs)
2049 return -EINVAL;
2050
2051 return idpf_send_config_rx_queue_set_msg(qs);
2052 }
2053
2054 /**
2055 * idpf_prepare_ena_dis_qs_msg - prepare message to enable/disable selected
2056 * queues
2057 * @vport: virtual port data structure
2058 * @buf: buffer containing the message
2059 * @pos: pointer to the first chunk describing the queue
2060 * @num_chunks: number of chunks in the message
2061 *
2062 * Helper function for preparing the message describing queues to be enabled
2063 * or disabled.
2064 *
2065 * Return: the total size of the prepared message.
2066 */
idpf_prepare_ena_dis_qs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)2067 static u32 idpf_prepare_ena_dis_qs_msg(const struct idpf_vport *vport,
2068 void *buf, const void *pos,
2069 u32 num_chunks)
2070 {
2071 struct virtchnl2_del_ena_dis_queues *eq = buf;
2072
2073 eq->vport_id = cpu_to_le32(vport->vport_id);
2074 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2075 memcpy(eq->chunks.chunks, pos,
2076 num_chunks * sizeof(*eq->chunks.chunks));
2077
2078 return struct_size(eq, chunks.chunks, num_chunks);
2079 }
2080
2081 /**
2082 * idpf_send_ena_dis_queue_set_msg - send virtchnl enable or disable queues
2083 * message for selected queues
2084 * @qs: set of the queues to enable or disable
2085 * @en: whether to enable or disable queues
2086 *
2087 * Send enable or disable queues virtchnl message for queues contained
2088 * in the @qs array.
2089 * The @qs array can contain pointers to both Rx and Tx queues.
2090 *
2091 * Return: 0 on success, -errno on failure.
2092 */
idpf_send_ena_dis_queue_set_msg(const struct idpf_queue_set * qs,bool en)2093 static int idpf_send_ena_dis_queue_set_msg(const struct idpf_queue_set *qs,
2094 bool en)
2095 {
2096 struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
2097 struct idpf_chunked_msg_params params = {
2098 .vc_op = en ? VIRTCHNL2_OP_ENABLE_QUEUES :
2099 VIRTCHNL2_OP_DISABLE_QUEUES,
2100 .prepare_msg = idpf_prepare_ena_dis_qs_msg,
2101 .config_sz = sizeof(struct virtchnl2_del_ena_dis_queues),
2102 .chunk_sz = sizeof(*qc),
2103 .num_chunks = qs->num,
2104 };
2105
2106 qc = kcalloc(qs->num, sizeof(*qc), GFP_KERNEL);
2107 if (!qc)
2108 return -ENOMEM;
2109
2110 params.chunks = qc;
2111
2112 for (u32 i = 0; i < qs->num; i++) {
2113 const struct idpf_queue_ptr *q = &qs->qs[i];
2114 u32 qid;
2115
2116 qc[i].type = cpu_to_le32(q->type);
2117 qc[i].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
2118
2119 switch (q->type) {
2120 case VIRTCHNL2_QUEUE_TYPE_RX:
2121 qid = q->rxq->q_id;
2122 break;
2123 case VIRTCHNL2_QUEUE_TYPE_TX:
2124 qid = q->txq->q_id;
2125 break;
2126 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
2127 qid = q->bufq->q_id;
2128 break;
2129 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
2130 qid = q->complq->q_id;
2131 break;
2132 default:
2133 return -EINVAL;
2134 }
2135
2136 qc[i].start_queue_id = cpu_to_le32(qid);
2137 }
2138
2139 return idpf_send_chunked_msg(qs->vport, ¶ms);
2140 }
2141
2142 /**
2143 * idpf_send_ena_dis_queues_msg - send virtchnl enable or disable queues
2144 * message
2145 * @vport: virtual port data structure
2146 * @en: whether to enable or disable queues
2147 *
2148 * Return: 0 on success, -errno on failure.
2149 */
idpf_send_ena_dis_queues_msg(struct idpf_vport * vport,bool en)2150 static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool en)
2151 {
2152 struct idpf_queue_set *qs __free(kfree) = NULL;
2153 u32 num_txq, num_q, k = 0;
2154 bool split;
2155
2156 num_txq = vport->num_txq + vport->num_complq;
2157 num_q = num_txq + vport->num_rxq + vport->num_bufq;
2158
2159 qs = idpf_alloc_queue_set(vport, num_q);
2160 if (!qs)
2161 return -ENOMEM;
2162
2163 split = idpf_is_queue_model_split(vport->txq_model);
2164
2165 for (u32 i = 0; i < vport->num_txq_grp; i++) {
2166 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
2167
2168 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
2169 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
2170 qs->qs[k++].txq = tx_qgrp->txqs[j];
2171 }
2172
2173 if (!split)
2174 continue;
2175
2176 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
2177 qs->qs[k++].complq = tx_qgrp->complq;
2178 }
2179
2180 if (k != num_txq)
2181 return -EINVAL;
2182
2183 split = idpf_is_queue_model_split(vport->rxq_model);
2184
2185 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2186 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2187 u32 num_rxq;
2188
2189 if (split)
2190 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2191 else
2192 num_rxq = rx_qgrp->singleq.num_rxq;
2193
2194 for (u32 j = 0; j < num_rxq; j++) {
2195 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2196
2197 if (split)
2198 qs->qs[k++].rxq =
2199 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2200 else
2201 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2202 }
2203
2204 if (!split)
2205 continue;
2206
2207 for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
2208 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
2209 qs->qs[k++].bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
2210 }
2211 }
2212
2213 if (k != num_q)
2214 return -EINVAL;
2215
2216 return idpf_send_ena_dis_queue_set_msg(qs, en);
2217 }
2218
2219 /**
2220 * idpf_prep_map_unmap_queue_set_vector_msg - prepare message to map or unmap
2221 * queue set to the interrupt vector
2222 * @vport: virtual port data structure
2223 * @buf: buffer containing the message
2224 * @pos: pointer to the first chunk describing the vector mapping
2225 * @num_chunks: number of chunks in the message
2226 *
2227 * Helper function for preparing the message describing mapping queues to
2228 * q_vectors.
2229 *
2230 * Return: the total size of the prepared message.
2231 */
2232 static u32
idpf_prep_map_unmap_queue_set_vector_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)2233 idpf_prep_map_unmap_queue_set_vector_msg(const struct idpf_vport *vport,
2234 void *buf, const void *pos,
2235 u32 num_chunks)
2236 {
2237 struct virtchnl2_queue_vector_maps *vqvm = buf;
2238
2239 vqvm->vport_id = cpu_to_le32(vport->vport_id);
2240 vqvm->num_qv_maps = cpu_to_le16(num_chunks);
2241 memcpy(vqvm->qv_maps, pos, num_chunks * sizeof(*vqvm->qv_maps));
2242
2243 return struct_size(vqvm, qv_maps, num_chunks);
2244 }
2245
2246 /**
2247 * idpf_send_map_unmap_queue_set_vector_msg - send virtchnl map or unmap
2248 * queue set vector message
2249 * @qs: set of the queues to map or unmap
2250 * @map: true for map and false for unmap
2251 *
2252 * Return: 0 on success, -errno on failure.
2253 */
2254 static int
idpf_send_map_unmap_queue_set_vector_msg(const struct idpf_queue_set * qs,bool map)2255 idpf_send_map_unmap_queue_set_vector_msg(const struct idpf_queue_set *qs,
2256 bool map)
2257 {
2258 struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
2259 struct idpf_chunked_msg_params params = {
2260 .vc_op = map ? VIRTCHNL2_OP_MAP_QUEUE_VECTOR :
2261 VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR,
2262 .prepare_msg = idpf_prep_map_unmap_queue_set_vector_msg,
2263 .config_sz = sizeof(struct virtchnl2_queue_vector_maps),
2264 .chunk_sz = sizeof(*vqv),
2265 .num_chunks = qs->num,
2266 };
2267 bool split;
2268
2269 vqv = kcalloc(qs->num, sizeof(*vqv), GFP_KERNEL);
2270 if (!vqv)
2271 return -ENOMEM;
2272
2273 params.chunks = vqv;
2274
2275 split = idpf_is_queue_model_split(qs->vport->txq_model);
2276
2277 for (u32 i = 0; i < qs->num; i++) {
2278 const struct idpf_queue_ptr *q = &qs->qs[i];
2279 const struct idpf_q_vector *vec;
2280 u32 qid, v_idx, itr_idx;
2281
2282 vqv[i].queue_type = cpu_to_le32(q->type);
2283
2284 switch (q->type) {
2285 case VIRTCHNL2_QUEUE_TYPE_RX:
2286 qid = q->rxq->q_id;
2287
2288 if (idpf_queue_has(NOIRQ, q->rxq))
2289 vec = NULL;
2290 else
2291 vec = q->rxq->q_vector;
2292
2293 if (vec) {
2294 v_idx = vec->v_idx;
2295 itr_idx = vec->rx_itr_idx;
2296 } else {
2297 v_idx = qs->vport->noirq_v_idx;
2298 itr_idx = VIRTCHNL2_ITR_IDX_0;
2299 }
2300 break;
2301 case VIRTCHNL2_QUEUE_TYPE_TX:
2302 qid = q->txq->q_id;
2303
2304 if (idpf_queue_has(NOIRQ, q->txq))
2305 vec = NULL;
2306 else if (idpf_queue_has(XDP, q->txq))
2307 vec = q->txq->complq->q_vector;
2308 else if (split)
2309 vec = q->txq->txq_grp->complq->q_vector;
2310 else
2311 vec = q->txq->q_vector;
2312
2313 if (vec) {
2314 v_idx = vec->v_idx;
2315 itr_idx = vec->tx_itr_idx;
2316 } else {
2317 v_idx = qs->vport->noirq_v_idx;
2318 itr_idx = VIRTCHNL2_ITR_IDX_1;
2319 }
2320 break;
2321 default:
2322 return -EINVAL;
2323 }
2324
2325 vqv[i].queue_id = cpu_to_le32(qid);
2326 vqv[i].vector_id = cpu_to_le16(v_idx);
2327 vqv[i].itr_idx = cpu_to_le32(itr_idx);
2328 }
2329
2330 return idpf_send_chunked_msg(qs->vport, ¶ms);
2331 }
2332
2333 /**
2334 * idpf_send_map_unmap_queue_vector_msg - send virtchnl map or unmap queue
2335 * vector message
2336 * @vport: virtual port data structure
2337 * @map: true for map and false for unmap
2338 *
2339 * Return: 0 on success, -errno on failure.
2340 */
idpf_send_map_unmap_queue_vector_msg(struct idpf_vport * vport,bool map)2341 int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
2342 {
2343 struct idpf_queue_set *qs __free(kfree) = NULL;
2344 u32 num_q = vport->num_txq + vport->num_rxq;
2345 u32 k = 0;
2346
2347 qs = idpf_alloc_queue_set(vport, num_q);
2348 if (!qs)
2349 return -ENOMEM;
2350
2351 for (u32 i = 0; i < vport->num_txq_grp; i++) {
2352 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
2353
2354 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
2355 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
2356 qs->qs[k++].txq = tx_qgrp->txqs[j];
2357 }
2358 }
2359
2360 if (k != vport->num_txq)
2361 return -EINVAL;
2362
2363 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2364 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2365 u32 num_rxq;
2366
2367 if (idpf_is_queue_model_split(vport->rxq_model))
2368 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2369 else
2370 num_rxq = rx_qgrp->singleq.num_rxq;
2371
2372 for (u32 j = 0; j < num_rxq; j++) {
2373 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2374
2375 if (idpf_is_queue_model_split(vport->rxq_model))
2376 qs->qs[k++].rxq =
2377 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2378 else
2379 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2380 }
2381 }
2382
2383 if (k != num_q)
2384 return -EINVAL;
2385
2386 return idpf_send_map_unmap_queue_set_vector_msg(qs, map);
2387 }
2388
2389 /**
2390 * idpf_send_enable_queue_set_msg - send enable queues virtchnl message for
2391 * selected queues
2392 * @qs: set of the queues
2393 *
2394 * Send enable queues virtchnl message for queues contained in the @qs array.
2395 *
2396 * Return: 0 on success, -errno on failure.
2397 */
idpf_send_enable_queue_set_msg(const struct idpf_queue_set * qs)2398 int idpf_send_enable_queue_set_msg(const struct idpf_queue_set *qs)
2399 {
2400 return idpf_send_ena_dis_queue_set_msg(qs, true);
2401 }
2402
2403 /**
2404 * idpf_send_disable_queue_set_msg - send disable queues virtchnl message for
2405 * selected queues
2406 * @qs: set of the queues
2407 *
2408 * Return: 0 on success, -errno on failure.
2409 */
idpf_send_disable_queue_set_msg(const struct idpf_queue_set * qs)2410 int idpf_send_disable_queue_set_msg(const struct idpf_queue_set *qs)
2411 {
2412 int err;
2413
2414 err = idpf_send_ena_dis_queue_set_msg(qs, false);
2415 if (err)
2416 return err;
2417
2418 return idpf_wait_for_marker_event_set(qs);
2419 }
2420
2421 /**
2422 * idpf_send_config_queue_set_msg - send virtchnl config queues message for
2423 * selected queues
2424 * @qs: set of the queues
2425 *
2426 * Send config queues virtchnl message for queues contained in the @qs array.
2427 * The @qs array can contain both Rx or Tx queues.
2428 *
2429 * Return: 0 on success, -errno on failure.
2430 */
idpf_send_config_queue_set_msg(const struct idpf_queue_set * qs)2431 int idpf_send_config_queue_set_msg(const struct idpf_queue_set *qs)
2432 {
2433 int err;
2434
2435 err = idpf_send_config_tx_queue_set_msg(qs);
2436 if (err)
2437 return err;
2438
2439 return idpf_send_config_rx_queue_set_msg(qs);
2440 }
2441
2442 /**
2443 * idpf_send_enable_queues_msg - send enable queues virtchnl message
2444 * @vport: Virtual port private data structure
2445 *
2446 * Will send enable queues virtchnl message. Returns 0 on success, negative on
2447 * failure.
2448 */
idpf_send_enable_queues_msg(struct idpf_vport * vport)2449 int idpf_send_enable_queues_msg(struct idpf_vport *vport)
2450 {
2451 return idpf_send_ena_dis_queues_msg(vport, true);
2452 }
2453
2454 /**
2455 * idpf_send_disable_queues_msg - send disable queues virtchnl message
2456 * @vport: Virtual port private data structure
2457 *
2458 * Will send disable queues virtchnl message. Returns 0 on success, negative
2459 * on failure.
2460 */
idpf_send_disable_queues_msg(struct idpf_vport * vport)2461 int idpf_send_disable_queues_msg(struct idpf_vport *vport)
2462 {
2463 int err;
2464
2465 err = idpf_send_ena_dis_queues_msg(vport, false);
2466 if (err)
2467 return err;
2468
2469 return idpf_wait_for_marker_event(vport);
2470 }
2471
2472 /**
2473 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2474 * structure
2475 * @dchunks: Destination chunks to store data to
2476 * @schunks: Source chunks to copy data from
2477 * @num_chunks: number of chunks to copy
2478 */
idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk * dchunks,struct virtchnl2_queue_reg_chunk * schunks,u16 num_chunks)2479 static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2480 struct virtchnl2_queue_reg_chunk *schunks,
2481 u16 num_chunks)
2482 {
2483 u16 i;
2484
2485 for (i = 0; i < num_chunks; i++) {
2486 dchunks[i].type = schunks[i].type;
2487 dchunks[i].start_queue_id = schunks[i].start_queue_id;
2488 dchunks[i].num_queues = schunks[i].num_queues;
2489 }
2490 }
2491
2492 /**
2493 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2494 * @vport: Virtual port private data structure
2495 *
2496 * Will send delete queues virtchnl message. Return 0 on success, negative on
2497 * failure.
2498 */
idpf_send_delete_queues_msg(struct idpf_vport * vport)2499 int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2500 {
2501 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2502 struct virtchnl2_create_vport *vport_params;
2503 struct virtchnl2_queue_reg_chunks *chunks;
2504 struct idpf_vc_xn_params xn_params = {};
2505 struct idpf_vport_config *vport_config;
2506 u16 vport_idx = vport->idx;
2507 ssize_t reply_sz;
2508 u16 num_chunks;
2509 int buf_size;
2510
2511 vport_config = vport->adapter->vport_config[vport_idx];
2512 if (vport_config->req_qs_chunks) {
2513 chunks = &vport_config->req_qs_chunks->chunks;
2514 } else {
2515 vport_params = vport->adapter->vport_params_recvd[vport_idx];
2516 chunks = &vport_params->chunks;
2517 }
2518
2519 num_chunks = le16_to_cpu(chunks->num_chunks);
2520 buf_size = struct_size(eq, chunks.chunks, num_chunks);
2521
2522 eq = kzalloc(buf_size, GFP_KERNEL);
2523 if (!eq)
2524 return -ENOMEM;
2525
2526 eq->vport_id = cpu_to_le32(vport->vport_id);
2527 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2528
2529 idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2530 num_chunks);
2531
2532 xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2533 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2534 xn_params.send_buf.iov_base = eq;
2535 xn_params.send_buf.iov_len = buf_size;
2536 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2537
2538 return reply_sz < 0 ? reply_sz : 0;
2539 }
2540
2541 /**
2542 * idpf_send_config_queues_msg - Send config queues virtchnl message
2543 * @vport: Virtual port private data structure
2544 *
2545 * Will send config queues virtchnl message. Returns 0 on success, negative on
2546 * failure.
2547 */
idpf_send_config_queues_msg(struct idpf_vport * vport)2548 int idpf_send_config_queues_msg(struct idpf_vport *vport)
2549 {
2550 int err;
2551
2552 err = idpf_send_config_tx_queues_msg(vport);
2553 if (err)
2554 return err;
2555
2556 return idpf_send_config_rx_queues_msg(vport);
2557 }
2558
2559 /**
2560 * idpf_send_add_queues_msg - Send virtchnl add queues message
2561 * @vport: Virtual port private data structure
2562 * @num_tx_q: number of transmit queues
2563 * @num_complq: number of transmit completion queues
2564 * @num_rx_q: number of receive queues
2565 * @num_rx_bufq: number of receive buffer queues
2566 *
2567 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2568 * we should not change any fields within vport itself in this function.
2569 */
idpf_send_add_queues_msg(const struct idpf_vport * vport,u16 num_tx_q,u16 num_complq,u16 num_rx_q,u16 num_rx_bufq)2570 int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2571 u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2572 {
2573 struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2574 struct idpf_vc_xn_params xn_params = {};
2575 struct idpf_vport_config *vport_config;
2576 struct virtchnl2_add_queues aq = {};
2577 u16 vport_idx = vport->idx;
2578 ssize_t reply_sz;
2579 int size;
2580
2581 vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2582 if (!vc_msg)
2583 return -ENOMEM;
2584
2585 vport_config = vport->adapter->vport_config[vport_idx];
2586 kfree(vport_config->req_qs_chunks);
2587 vport_config->req_qs_chunks = NULL;
2588
2589 aq.vport_id = cpu_to_le32(vport->vport_id);
2590 aq.num_tx_q = cpu_to_le16(num_tx_q);
2591 aq.num_tx_complq = cpu_to_le16(num_complq);
2592 aq.num_rx_q = cpu_to_le16(num_rx_q);
2593 aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2594
2595 xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2596 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2597 xn_params.send_buf.iov_base = &aq;
2598 xn_params.send_buf.iov_len = sizeof(aq);
2599 xn_params.recv_buf.iov_base = vc_msg;
2600 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2601 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2602 if (reply_sz < 0)
2603 return reply_sz;
2604
2605 /* compare vc_msg num queues with vport num queues */
2606 if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2607 le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2608 le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2609 le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2610 return -EINVAL;
2611
2612 size = struct_size(vc_msg, chunks.chunks,
2613 le16_to_cpu(vc_msg->chunks.num_chunks));
2614 if (reply_sz < size)
2615 return -EIO;
2616
2617 vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2618 if (!vport_config->req_qs_chunks)
2619 return -ENOMEM;
2620
2621 return 0;
2622 }
2623
2624 /**
2625 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2626 * @adapter: Driver specific private structure
2627 * @num_vectors: number of vectors to be allocated
2628 *
2629 * Returns 0 on success, negative on failure.
2630 */
idpf_send_alloc_vectors_msg(struct idpf_adapter * adapter,u16 num_vectors)2631 int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2632 {
2633 struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2634 struct idpf_vc_xn_params xn_params = {};
2635 struct virtchnl2_alloc_vectors ac = {};
2636 ssize_t reply_sz;
2637 u16 num_vchunks;
2638 int size;
2639
2640 ac.num_vectors = cpu_to_le16(num_vectors);
2641
2642 rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2643 if (!rcvd_vec)
2644 return -ENOMEM;
2645
2646 xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2647 xn_params.send_buf.iov_base = ∾
2648 xn_params.send_buf.iov_len = sizeof(ac);
2649 xn_params.recv_buf.iov_base = rcvd_vec;
2650 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2651 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2652 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2653 if (reply_sz < 0)
2654 return reply_sz;
2655
2656 num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2657 size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2658 if (reply_sz < size)
2659 return -EIO;
2660
2661 if (size > IDPF_CTLQ_MAX_BUF_LEN)
2662 return -EINVAL;
2663
2664 kfree(adapter->req_vec_chunks);
2665 adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2666 if (!adapter->req_vec_chunks)
2667 return -ENOMEM;
2668
2669 if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2670 kfree(adapter->req_vec_chunks);
2671 adapter->req_vec_chunks = NULL;
2672 return -EINVAL;
2673 }
2674
2675 return 0;
2676 }
2677
2678 /**
2679 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2680 * @adapter: Driver specific private structure
2681 *
2682 * Returns 0 on success, negative on failure.
2683 */
idpf_send_dealloc_vectors_msg(struct idpf_adapter * adapter)2684 int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2685 {
2686 struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2687 struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2688 struct idpf_vc_xn_params xn_params = {};
2689 ssize_t reply_sz;
2690 int buf_size;
2691
2692 buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2693
2694 xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2695 xn_params.send_buf.iov_base = vcs;
2696 xn_params.send_buf.iov_len = buf_size;
2697 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2698 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2699 if (reply_sz < 0)
2700 return reply_sz;
2701
2702 kfree(adapter->req_vec_chunks);
2703 adapter->req_vec_chunks = NULL;
2704
2705 return 0;
2706 }
2707
2708 /**
2709 * idpf_get_max_vfs - Get max number of vfs supported
2710 * @adapter: Driver specific private structure
2711 *
2712 * Returns max number of VFs
2713 */
idpf_get_max_vfs(struct idpf_adapter * adapter)2714 static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2715 {
2716 return le16_to_cpu(adapter->caps.max_sriov_vfs);
2717 }
2718
2719 /**
2720 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2721 * @adapter: Driver specific private structure
2722 * @num_vfs: number of virtual functions to be created
2723 *
2724 * Returns 0 on success, negative on failure.
2725 */
idpf_send_set_sriov_vfs_msg(struct idpf_adapter * adapter,u16 num_vfs)2726 int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2727 {
2728 struct virtchnl2_sriov_vfs_info svi = {};
2729 struct idpf_vc_xn_params xn_params = {};
2730 ssize_t reply_sz;
2731
2732 svi.num_vfs = cpu_to_le16(num_vfs);
2733 xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2734 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2735 xn_params.send_buf.iov_base = &svi;
2736 xn_params.send_buf.iov_len = sizeof(svi);
2737 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2738
2739 return reply_sz < 0 ? reply_sz : 0;
2740 }
2741
2742 /**
2743 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2744 * @vport: vport to get stats for
2745 *
2746 * Returns 0 on success, negative on failure.
2747 */
idpf_send_get_stats_msg(struct idpf_vport * vport)2748 int idpf_send_get_stats_msg(struct idpf_vport *vport)
2749 {
2750 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2751 struct rtnl_link_stats64 *netstats = &np->netstats;
2752 struct virtchnl2_vport_stats stats_msg = {};
2753 struct idpf_vc_xn_params xn_params = {};
2754 ssize_t reply_sz;
2755
2756
2757 /* Don't send get_stats message if the link is down */
2758 if (np->state <= __IDPF_VPORT_DOWN)
2759 return 0;
2760
2761 stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2762
2763 xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2764 xn_params.send_buf.iov_base = &stats_msg;
2765 xn_params.send_buf.iov_len = sizeof(stats_msg);
2766 xn_params.recv_buf = xn_params.send_buf;
2767 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2768
2769 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2770 if (reply_sz < 0)
2771 return reply_sz;
2772 if (reply_sz < sizeof(stats_msg))
2773 return -EIO;
2774
2775 spin_lock_bh(&np->stats_lock);
2776
2777 netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2778 le64_to_cpu(stats_msg.rx_multicast) +
2779 le64_to_cpu(stats_msg.rx_broadcast);
2780 netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2781 le64_to_cpu(stats_msg.tx_multicast) +
2782 le64_to_cpu(stats_msg.tx_broadcast);
2783 netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2784 netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2785 netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2786 netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2787 netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2788 netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2789
2790 vport->port_stats.vport_stats = stats_msg;
2791
2792 spin_unlock_bh(&np->stats_lock);
2793
2794 return 0;
2795 }
2796
2797 /**
2798 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2799 * @vport: virtual port data structure
2800 * @get: flag to set or get rss look up table
2801 *
2802 * Returns 0 on success, negative on failure.
2803 */
idpf_send_get_set_rss_lut_msg(struct idpf_vport * vport,bool get)2804 int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2805 {
2806 struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2807 struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2808 struct idpf_vc_xn_params xn_params = {};
2809 struct idpf_rss_data *rss_data;
2810 int buf_size, lut_buf_size;
2811 ssize_t reply_sz;
2812 int i;
2813
2814 rss_data =
2815 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2816 buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2817 rl = kzalloc(buf_size, GFP_KERNEL);
2818 if (!rl)
2819 return -ENOMEM;
2820
2821 rl->vport_id = cpu_to_le32(vport->vport_id);
2822
2823 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2824 xn_params.send_buf.iov_base = rl;
2825 xn_params.send_buf.iov_len = buf_size;
2826
2827 if (get) {
2828 recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2829 if (!recv_rl)
2830 return -ENOMEM;
2831 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2832 xn_params.recv_buf.iov_base = recv_rl;
2833 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2834 } else {
2835 rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2836 for (i = 0; i < rss_data->rss_lut_size; i++)
2837 rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2838
2839 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2840 }
2841 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2842 if (reply_sz < 0)
2843 return reply_sz;
2844 if (!get)
2845 return 0;
2846 if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2847 return -EIO;
2848
2849 lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2850 if (reply_sz < lut_buf_size)
2851 return -EIO;
2852
2853 /* size didn't change, we can reuse existing lut buf */
2854 if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2855 goto do_memcpy;
2856
2857 rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2858 kfree(rss_data->rss_lut);
2859
2860 rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2861 if (!rss_data->rss_lut) {
2862 rss_data->rss_lut_size = 0;
2863 return -ENOMEM;
2864 }
2865
2866 do_memcpy:
2867 memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2868
2869 return 0;
2870 }
2871
2872 /**
2873 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2874 * @vport: virtual port data structure
2875 * @get: flag to set or get rss look up table
2876 *
2877 * Returns 0 on success, negative on failure
2878 */
idpf_send_get_set_rss_key_msg(struct idpf_vport * vport,bool get)2879 int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2880 {
2881 struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2882 struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2883 struct idpf_vc_xn_params xn_params = {};
2884 struct idpf_rss_data *rss_data;
2885 ssize_t reply_sz;
2886 int i, buf_size;
2887 u16 key_size;
2888
2889 rss_data =
2890 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2891 buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2892 rk = kzalloc(buf_size, GFP_KERNEL);
2893 if (!rk)
2894 return -ENOMEM;
2895
2896 rk->vport_id = cpu_to_le32(vport->vport_id);
2897 xn_params.send_buf.iov_base = rk;
2898 xn_params.send_buf.iov_len = buf_size;
2899 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2900 if (get) {
2901 recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2902 if (!recv_rk)
2903 return -ENOMEM;
2904
2905 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2906 xn_params.recv_buf.iov_base = recv_rk;
2907 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2908 } else {
2909 rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2910 for (i = 0; i < rss_data->rss_key_size; i++)
2911 rk->key_flex[i] = rss_data->rss_key[i];
2912
2913 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2914 }
2915
2916 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2917 if (reply_sz < 0)
2918 return reply_sz;
2919 if (!get)
2920 return 0;
2921 if (reply_sz < sizeof(struct virtchnl2_rss_key))
2922 return -EIO;
2923
2924 key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2925 le16_to_cpu(recv_rk->key_len));
2926 if (reply_sz < key_size)
2927 return -EIO;
2928
2929 /* key len didn't change, reuse existing buf */
2930 if (rss_data->rss_key_size == key_size)
2931 goto do_memcpy;
2932
2933 rss_data->rss_key_size = key_size;
2934 kfree(rss_data->rss_key);
2935 rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2936 if (!rss_data->rss_key) {
2937 rss_data->rss_key_size = 0;
2938 return -ENOMEM;
2939 }
2940
2941 do_memcpy:
2942 memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2943
2944 return 0;
2945 }
2946
2947 /**
2948 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2949 * @ptype: ptype lookup table
2950 * @pstate: state machine for ptype lookup table
2951 * @ipv4: ipv4 or ipv6
2952 * @frag: fragmentation allowed
2953 *
2954 */
idpf_fill_ptype_lookup(struct libeth_rx_pt * ptype,struct idpf_ptype_state * pstate,bool ipv4,bool frag)2955 static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2956 struct idpf_ptype_state *pstate,
2957 bool ipv4, bool frag)
2958 {
2959 if (!pstate->outer_ip || !pstate->outer_frag) {
2960 pstate->outer_ip = true;
2961
2962 if (ipv4)
2963 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2964 else
2965 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2966
2967 if (frag) {
2968 ptype->outer_frag = LIBETH_RX_PT_FRAG;
2969 pstate->outer_frag = true;
2970 }
2971 } else {
2972 ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2973 pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2974
2975 if (ipv4)
2976 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
2977 else
2978 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
2979
2980 if (frag)
2981 ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2982 }
2983 }
2984
idpf_finalize_ptype_lookup(struct libeth_rx_pt * ptype)2985 static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2986 {
2987 if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2988 ptype->inner_prot)
2989 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2990 else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2991 ptype->outer_ip)
2992 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2993 else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2994 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
2995 else
2996 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
2997
2998 libeth_rx_pt_gen_hash_type(ptype);
2999 }
3000
3001 /**
3002 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
3003 * @vport: virtual port data structure
3004 *
3005 * Returns 0 on success, negative on failure.
3006 */
idpf_send_get_rx_ptype_msg(struct idpf_vport * vport)3007 int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
3008 {
3009 struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
3010 struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
3011 struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
3012 int max_ptype, ptypes_recvd = 0, ptype_offset;
3013 struct idpf_adapter *adapter = vport->adapter;
3014 struct idpf_vc_xn_params xn_params = {};
3015 u16 next_ptype_id = 0;
3016 ssize_t reply_sz;
3017 int i, j, k;
3018
3019 if (vport->rx_ptype_lkup)
3020 return 0;
3021
3022 if (idpf_is_queue_model_split(vport->rxq_model))
3023 max_ptype = IDPF_RX_MAX_PTYPE;
3024 else
3025 max_ptype = IDPF_RX_MAX_BASE_PTYPE;
3026
3027 ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
3028 if (!ptype_lkup)
3029 return -ENOMEM;
3030
3031 get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
3032 if (!get_ptype_info)
3033 return -ENOMEM;
3034
3035 ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
3036 if (!ptype_info)
3037 return -ENOMEM;
3038
3039 xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
3040 xn_params.send_buf.iov_base = get_ptype_info;
3041 xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
3042 xn_params.recv_buf.iov_base = ptype_info;
3043 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
3044 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3045
3046 while (next_ptype_id < max_ptype) {
3047 get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
3048
3049 if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
3050 get_ptype_info->num_ptypes =
3051 cpu_to_le16(max_ptype - next_ptype_id);
3052 else
3053 get_ptype_info->num_ptypes =
3054 cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
3055
3056 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3057 if (reply_sz < 0)
3058 return reply_sz;
3059
3060 ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
3061 if (ptypes_recvd > max_ptype)
3062 return -EINVAL;
3063
3064 next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
3065 le16_to_cpu(get_ptype_info->num_ptypes);
3066
3067 ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
3068
3069 for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
3070 struct idpf_ptype_state pstate = { };
3071 struct virtchnl2_ptype *ptype;
3072 u16 id;
3073
3074 ptype = (struct virtchnl2_ptype *)
3075 ((u8 *)ptype_info + ptype_offset);
3076
3077 ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
3078 if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
3079 return -EINVAL;
3080
3081 /* 0xFFFF indicates end of ptypes */
3082 if (le16_to_cpu(ptype->ptype_id_10) ==
3083 IDPF_INVALID_PTYPE_ID)
3084 goto out;
3085
3086 if (idpf_is_queue_model_split(vport->rxq_model))
3087 k = le16_to_cpu(ptype->ptype_id_10);
3088 else
3089 k = ptype->ptype_id_8;
3090
3091 for (j = 0; j < ptype->proto_id_count; j++) {
3092 id = le16_to_cpu(ptype->proto_id[j]);
3093 switch (id) {
3094 case VIRTCHNL2_PROTO_HDR_GRE:
3095 if (pstate.tunnel_state ==
3096 IDPF_PTYPE_TUNNEL_IP) {
3097 ptype_lkup[k].tunnel_type =
3098 LIBETH_RX_PT_TUNNEL_IP_GRENAT;
3099 pstate.tunnel_state |=
3100 IDPF_PTYPE_TUNNEL_IP_GRENAT;
3101 }
3102 break;
3103 case VIRTCHNL2_PROTO_HDR_MAC:
3104 ptype_lkup[k].outer_ip =
3105 LIBETH_RX_PT_OUTER_L2;
3106 if (pstate.tunnel_state ==
3107 IDPF_TUN_IP_GRE) {
3108 ptype_lkup[k].tunnel_type =
3109 LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
3110 pstate.tunnel_state |=
3111 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
3112 }
3113 break;
3114 case VIRTCHNL2_PROTO_HDR_IPV4:
3115 idpf_fill_ptype_lookup(&ptype_lkup[k],
3116 &pstate, true,
3117 false);
3118 break;
3119 case VIRTCHNL2_PROTO_HDR_IPV6:
3120 idpf_fill_ptype_lookup(&ptype_lkup[k],
3121 &pstate, false,
3122 false);
3123 break;
3124 case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
3125 idpf_fill_ptype_lookup(&ptype_lkup[k],
3126 &pstate, true,
3127 true);
3128 break;
3129 case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
3130 idpf_fill_ptype_lookup(&ptype_lkup[k],
3131 &pstate, false,
3132 true);
3133 break;
3134 case VIRTCHNL2_PROTO_HDR_UDP:
3135 ptype_lkup[k].inner_prot =
3136 LIBETH_RX_PT_INNER_UDP;
3137 break;
3138 case VIRTCHNL2_PROTO_HDR_TCP:
3139 ptype_lkup[k].inner_prot =
3140 LIBETH_RX_PT_INNER_TCP;
3141 break;
3142 case VIRTCHNL2_PROTO_HDR_SCTP:
3143 ptype_lkup[k].inner_prot =
3144 LIBETH_RX_PT_INNER_SCTP;
3145 break;
3146 case VIRTCHNL2_PROTO_HDR_ICMP:
3147 ptype_lkup[k].inner_prot =
3148 LIBETH_RX_PT_INNER_ICMP;
3149 break;
3150 case VIRTCHNL2_PROTO_HDR_PAY:
3151 ptype_lkup[k].payload_layer =
3152 LIBETH_RX_PT_PAYLOAD_L2;
3153 break;
3154 case VIRTCHNL2_PROTO_HDR_ICMPV6:
3155 case VIRTCHNL2_PROTO_HDR_IPV6_EH:
3156 case VIRTCHNL2_PROTO_HDR_PRE_MAC:
3157 case VIRTCHNL2_PROTO_HDR_POST_MAC:
3158 case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
3159 case VIRTCHNL2_PROTO_HDR_SVLAN:
3160 case VIRTCHNL2_PROTO_HDR_CVLAN:
3161 case VIRTCHNL2_PROTO_HDR_MPLS:
3162 case VIRTCHNL2_PROTO_HDR_MMPLS:
3163 case VIRTCHNL2_PROTO_HDR_PTP:
3164 case VIRTCHNL2_PROTO_HDR_CTRL:
3165 case VIRTCHNL2_PROTO_HDR_LLDP:
3166 case VIRTCHNL2_PROTO_HDR_ARP:
3167 case VIRTCHNL2_PROTO_HDR_ECP:
3168 case VIRTCHNL2_PROTO_HDR_EAPOL:
3169 case VIRTCHNL2_PROTO_HDR_PPPOD:
3170 case VIRTCHNL2_PROTO_HDR_PPPOE:
3171 case VIRTCHNL2_PROTO_HDR_IGMP:
3172 case VIRTCHNL2_PROTO_HDR_AH:
3173 case VIRTCHNL2_PROTO_HDR_ESP:
3174 case VIRTCHNL2_PROTO_HDR_IKE:
3175 case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
3176 case VIRTCHNL2_PROTO_HDR_L2TPV2:
3177 case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
3178 case VIRTCHNL2_PROTO_HDR_L2TPV3:
3179 case VIRTCHNL2_PROTO_HDR_GTP:
3180 case VIRTCHNL2_PROTO_HDR_GTP_EH:
3181 case VIRTCHNL2_PROTO_HDR_GTPCV2:
3182 case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
3183 case VIRTCHNL2_PROTO_HDR_GTPU:
3184 case VIRTCHNL2_PROTO_HDR_GTPU_UL:
3185 case VIRTCHNL2_PROTO_HDR_GTPU_DL:
3186 case VIRTCHNL2_PROTO_HDR_ECPRI:
3187 case VIRTCHNL2_PROTO_HDR_VRRP:
3188 case VIRTCHNL2_PROTO_HDR_OSPF:
3189 case VIRTCHNL2_PROTO_HDR_TUN:
3190 case VIRTCHNL2_PROTO_HDR_NVGRE:
3191 case VIRTCHNL2_PROTO_HDR_VXLAN:
3192 case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
3193 case VIRTCHNL2_PROTO_HDR_GENEVE:
3194 case VIRTCHNL2_PROTO_HDR_NSH:
3195 case VIRTCHNL2_PROTO_HDR_QUIC:
3196 case VIRTCHNL2_PROTO_HDR_PFCP:
3197 case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
3198 case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
3199 case VIRTCHNL2_PROTO_HDR_RTP:
3200 case VIRTCHNL2_PROTO_HDR_NO_PROTO:
3201 break;
3202 default:
3203 break;
3204 }
3205 }
3206
3207 idpf_finalize_ptype_lookup(&ptype_lkup[k]);
3208 }
3209 }
3210
3211 out:
3212 vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
3213
3214 return 0;
3215 }
3216
3217 /**
3218 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
3219 * message
3220 * @vport: virtual port data structure
3221 *
3222 * Returns 0 on success, negative on failure.
3223 */
idpf_send_ena_dis_loopback_msg(struct idpf_vport * vport)3224 int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
3225 {
3226 struct idpf_vc_xn_params xn_params = {};
3227 struct virtchnl2_loopback loopback;
3228 ssize_t reply_sz;
3229
3230 loopback.vport_id = cpu_to_le32(vport->vport_id);
3231 loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
3232
3233 xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
3234 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3235 xn_params.send_buf.iov_base = &loopback;
3236 xn_params.send_buf.iov_len = sizeof(loopback);
3237 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
3238
3239 return reply_sz < 0 ? reply_sz : 0;
3240 }
3241
3242 /**
3243 * idpf_find_ctlq - Given a type and id, find ctlq info
3244 * @hw: hardware struct
3245 * @type: type of ctrlq to find
3246 * @id: ctlq id to find
3247 *
3248 * Returns pointer to found ctlq info struct, NULL otherwise.
3249 */
idpf_find_ctlq(struct idpf_hw * hw,enum idpf_ctlq_type type,int id)3250 static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
3251 enum idpf_ctlq_type type, int id)
3252 {
3253 struct idpf_ctlq_info *cq, *tmp;
3254
3255 list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
3256 if (cq->q_id == id && cq->cq_type == type)
3257 return cq;
3258
3259 return NULL;
3260 }
3261
3262 /**
3263 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
3264 * @adapter: adapter info struct
3265 *
3266 * Returns 0 on success, negative otherwise
3267 */
idpf_init_dflt_mbx(struct idpf_adapter * adapter)3268 int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
3269 {
3270 struct idpf_ctlq_create_info ctlq_info[] = {
3271 {
3272 .type = IDPF_CTLQ_TYPE_MAILBOX_TX,
3273 .id = IDPF_DFLT_MBX_ID,
3274 .len = IDPF_DFLT_MBX_Q_LEN,
3275 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
3276 },
3277 {
3278 .type = IDPF_CTLQ_TYPE_MAILBOX_RX,
3279 .id = IDPF_DFLT_MBX_ID,
3280 .len = IDPF_DFLT_MBX_Q_LEN,
3281 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
3282 }
3283 };
3284 struct idpf_hw *hw = &adapter->hw;
3285 int err;
3286
3287 adapter->dev_ops.reg_ops.ctlq_reg_init(adapter, ctlq_info);
3288
3289 err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
3290 if (err)
3291 return err;
3292
3293 hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
3294 IDPF_DFLT_MBX_ID);
3295 hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
3296 IDPF_DFLT_MBX_ID);
3297
3298 if (!hw->asq || !hw->arq) {
3299 idpf_ctlq_deinit(hw);
3300
3301 return -ENOENT;
3302 }
3303
3304 adapter->state = __IDPF_VER_CHECK;
3305
3306 return 0;
3307 }
3308
3309 /**
3310 * idpf_deinit_dflt_mbx - Free up ctlqs setup
3311 * @adapter: Driver specific private data structure
3312 */
idpf_deinit_dflt_mbx(struct idpf_adapter * adapter)3313 void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
3314 {
3315 if (adapter->hw.arq && adapter->hw.asq) {
3316 idpf_mb_clean(adapter);
3317 idpf_ctlq_deinit(&adapter->hw);
3318 }
3319 adapter->hw.arq = NULL;
3320 adapter->hw.asq = NULL;
3321 }
3322
3323 /**
3324 * idpf_vport_params_buf_rel - Release memory for MailBox resources
3325 * @adapter: Driver specific private data structure
3326 *
3327 * Will release memory to hold the vport parameters received on MailBox
3328 */
idpf_vport_params_buf_rel(struct idpf_adapter * adapter)3329 static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
3330 {
3331 kfree(adapter->vport_params_recvd);
3332 adapter->vport_params_recvd = NULL;
3333 kfree(adapter->vport_params_reqd);
3334 adapter->vport_params_reqd = NULL;
3335 kfree(adapter->vport_ids);
3336 adapter->vport_ids = NULL;
3337 }
3338
3339 /**
3340 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
3341 * @adapter: Driver specific private data structure
3342 *
3343 * Will alloc memory to hold the vport parameters received on MailBox
3344 */
idpf_vport_params_buf_alloc(struct idpf_adapter * adapter)3345 static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
3346 {
3347 u16 num_max_vports = idpf_get_max_vports(adapter);
3348
3349 adapter->vport_params_reqd = kcalloc(num_max_vports,
3350 sizeof(*adapter->vport_params_reqd),
3351 GFP_KERNEL);
3352 if (!adapter->vport_params_reqd)
3353 return -ENOMEM;
3354
3355 adapter->vport_params_recvd = kcalloc(num_max_vports,
3356 sizeof(*adapter->vport_params_recvd),
3357 GFP_KERNEL);
3358 if (!adapter->vport_params_recvd)
3359 goto err_mem;
3360
3361 adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
3362 if (!adapter->vport_ids)
3363 goto err_mem;
3364
3365 if (adapter->vport_config)
3366 return 0;
3367
3368 adapter->vport_config = kcalloc(num_max_vports,
3369 sizeof(*adapter->vport_config),
3370 GFP_KERNEL);
3371 if (!adapter->vport_config)
3372 goto err_mem;
3373
3374 return 0;
3375
3376 err_mem:
3377 idpf_vport_params_buf_rel(adapter);
3378
3379 return -ENOMEM;
3380 }
3381
3382 /**
3383 * idpf_vc_core_init - Initialize state machine and get driver specific
3384 * resources
3385 * @adapter: Driver specific private structure
3386 *
3387 * This function will initialize the state machine and request all necessary
3388 * resources required by the device driver. Once the state machine is
3389 * initialized, allocate memory to store vport specific information and also
3390 * requests required interrupts.
3391 *
3392 * Returns 0 on success, -EAGAIN function will get called again,
3393 * otherwise negative on failure.
3394 */
idpf_vc_core_init(struct idpf_adapter * adapter)3395 int idpf_vc_core_init(struct idpf_adapter *adapter)
3396 {
3397 int task_delay = 30;
3398 u16 num_max_vports;
3399 int err = 0;
3400
3401 if (!adapter->vcxn_mngr) {
3402 adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
3403 if (!adapter->vcxn_mngr) {
3404 err = -ENOMEM;
3405 goto init_failed;
3406 }
3407 }
3408 idpf_vc_xn_init(adapter->vcxn_mngr);
3409
3410 while (adapter->state != __IDPF_INIT_SW) {
3411 switch (adapter->state) {
3412 case __IDPF_VER_CHECK:
3413 err = idpf_send_ver_msg(adapter);
3414 switch (err) {
3415 case 0:
3416 /* success, move state machine forward */
3417 adapter->state = __IDPF_GET_CAPS;
3418 fallthrough;
3419 case -EAGAIN:
3420 goto restart;
3421 default:
3422 /* Something bad happened, try again but only a
3423 * few times.
3424 */
3425 goto init_failed;
3426 }
3427 case __IDPF_GET_CAPS:
3428 err = idpf_send_get_caps_msg(adapter);
3429 if (err)
3430 goto init_failed;
3431 adapter->state = __IDPF_INIT_SW;
3432 break;
3433 default:
3434 dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
3435 adapter->state);
3436 err = -EINVAL;
3437 goto init_failed;
3438 }
3439 break;
3440 restart:
3441 /* Give enough time before proceeding further with
3442 * state machine
3443 */
3444 msleep(task_delay);
3445 }
3446
3447 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LAN_MEMORY_REGIONS)) {
3448 err = idpf_send_get_lan_memory_regions(adapter);
3449 if (err) {
3450 dev_err(&adapter->pdev->dev, "Failed to get LAN memory regions: %d\n",
3451 err);
3452 return -EINVAL;
3453 }
3454 } else {
3455 /* Fallback to mapping the remaining regions of the entire BAR */
3456 err = idpf_calc_remaining_mmio_regs(adapter);
3457 if (err) {
3458 dev_err(&adapter->pdev->dev, "Failed to allocate BAR0 region(s): %d\n",
3459 err);
3460 return -ENOMEM;
3461 }
3462 }
3463
3464 err = idpf_map_lan_mmio_regs(adapter);
3465 if (err) {
3466 dev_err(&adapter->pdev->dev, "Failed to map BAR0 region(s): %d\n",
3467 err);
3468 return -ENOMEM;
3469 }
3470
3471 pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
3472 num_max_vports = idpf_get_max_vports(adapter);
3473 adapter->max_vports = num_max_vports;
3474 adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
3475 GFP_KERNEL);
3476 if (!adapter->vports)
3477 return -ENOMEM;
3478
3479 if (!adapter->netdevs) {
3480 adapter->netdevs = kcalloc(num_max_vports,
3481 sizeof(struct net_device *),
3482 GFP_KERNEL);
3483 if (!adapter->netdevs) {
3484 err = -ENOMEM;
3485 goto err_netdev_alloc;
3486 }
3487 }
3488
3489 err = idpf_vport_params_buf_alloc(adapter);
3490 if (err) {
3491 dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3492 err);
3493 goto err_netdev_alloc;
3494 }
3495
3496 /* Start the mailbox task before requesting vectors. This will ensure
3497 * vector information response from mailbox is handled
3498 */
3499 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3500
3501 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3502 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3503
3504 err = idpf_intr_req(adapter);
3505 if (err) {
3506 dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3507 err);
3508 goto err_intr_req;
3509 }
3510
3511 err = idpf_ptp_init(adapter);
3512 if (err)
3513 pci_err(adapter->pdev, "PTP init failed, err=%pe\n",
3514 ERR_PTR(err));
3515
3516 idpf_init_avail_queues(adapter);
3517
3518 /* Skew the delay for init tasks for each function based on fn number
3519 * to prevent every function from making the same call simultaneously.
3520 */
3521 queue_delayed_work(adapter->init_wq, &adapter->init_task,
3522 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3523
3524 set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3525
3526 return 0;
3527
3528 err_intr_req:
3529 cancel_delayed_work_sync(&adapter->serv_task);
3530 cancel_delayed_work_sync(&adapter->mbx_task);
3531 idpf_vport_params_buf_rel(adapter);
3532 err_netdev_alloc:
3533 kfree(adapter->vports);
3534 adapter->vports = NULL;
3535 return err;
3536
3537 init_failed:
3538 /* Don't retry if we're trying to go down, just bail. */
3539 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3540 return err;
3541
3542 if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3543 dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3544
3545 return -EFAULT;
3546 }
3547 /* If it reached here, it is possible that mailbox queue initialization
3548 * register writes might not have taken effect. Retry to initialize
3549 * the mailbox again
3550 */
3551 adapter->state = __IDPF_VER_CHECK;
3552 if (adapter->vcxn_mngr)
3553 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3554 set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3555 queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3556 msecs_to_jiffies(task_delay));
3557
3558 return -EAGAIN;
3559 }
3560
3561 /**
3562 * idpf_vc_core_deinit - Device deinit routine
3563 * @adapter: Driver specific private structure
3564 *
3565 */
idpf_vc_core_deinit(struct idpf_adapter * adapter)3566 void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3567 {
3568 bool remove_in_prog;
3569
3570 if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3571 return;
3572
3573 /* Avoid transaction timeouts when called during reset */
3574 remove_in_prog = test_bit(IDPF_REMOVE_IN_PROG, adapter->flags);
3575 if (!remove_in_prog)
3576 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3577
3578 idpf_ptp_release(adapter);
3579 idpf_deinit_task(adapter);
3580 idpf_idc_deinit_core_aux_device(adapter->cdev_info);
3581 idpf_intr_rel(adapter);
3582
3583 if (remove_in_prog)
3584 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3585
3586 cancel_delayed_work_sync(&adapter->serv_task);
3587 cancel_delayed_work_sync(&adapter->mbx_task);
3588
3589 idpf_vport_params_buf_rel(adapter);
3590
3591 kfree(adapter->vports);
3592 adapter->vports = NULL;
3593
3594 clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3595 }
3596
3597 /**
3598 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3599 * @vport: virtual port data struct
3600 *
3601 * This function requests the vector information required for the vport and
3602 * stores the vector indexes received from the 'global vector distribution'
3603 * in the vport's queue vectors array.
3604 *
3605 * Return 0 on success, error on failure
3606 */
idpf_vport_alloc_vec_indexes(struct idpf_vport * vport)3607 int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3608 {
3609 struct idpf_vector_info vec_info;
3610 int num_alloc_vecs;
3611 u32 req;
3612
3613 vec_info.num_curr_vecs = vport->num_q_vectors;
3614 if (vec_info.num_curr_vecs)
3615 vec_info.num_curr_vecs += IDPF_RESERVED_VECS;
3616
3617 /* XDPSQs are all bound to the NOIRQ vector from IDPF_RESERVED_VECS */
3618 req = max(vport->num_txq - vport->num_xdp_txq, vport->num_rxq) +
3619 IDPF_RESERVED_VECS;
3620 vec_info.num_req_vecs = req;
3621
3622 vec_info.default_vport = vport->default_vport;
3623 vec_info.index = vport->idx;
3624
3625 num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3626 vport->q_vector_idxs,
3627 &vec_info);
3628 if (num_alloc_vecs <= 0) {
3629 dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3630 num_alloc_vecs);
3631 return -EINVAL;
3632 }
3633
3634 vport->num_q_vectors = num_alloc_vecs - IDPF_RESERVED_VECS;
3635
3636 return 0;
3637 }
3638
3639 /**
3640 * idpf_vport_init - Initialize virtual port
3641 * @vport: virtual port to be initialized
3642 * @max_q: vport max queue info
3643 *
3644 * Will initialize vport with the info received through MB earlier
3645 */
idpf_vport_init(struct idpf_vport * vport,struct idpf_vport_max_q * max_q)3646 void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3647 {
3648 struct idpf_adapter *adapter = vport->adapter;
3649 struct virtchnl2_create_vport *vport_msg;
3650 struct idpf_vport_config *vport_config;
3651 u16 tx_itr[] = {2, 8, 64, 128, 256};
3652 u16 rx_itr[] = {2, 8, 32, 96, 128};
3653 struct idpf_rss_data *rss_data;
3654 u16 idx = vport->idx;
3655 int err;
3656
3657 vport_config = adapter->vport_config[idx];
3658 rss_data = &vport_config->user_config.rss_data;
3659 vport_msg = adapter->vport_params_recvd[idx];
3660
3661 vport_config->max_q.max_txq = max_q->max_txq;
3662 vport_config->max_q.max_rxq = max_q->max_rxq;
3663 vport_config->max_q.max_complq = max_q->max_complq;
3664 vport_config->max_q.max_bufq = max_q->max_bufq;
3665
3666 vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3667 vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3668 vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3669 vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3670
3671 rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3672 le16_to_cpu(vport_msg->rss_key_size));
3673 rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3674
3675 ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3676 vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3677
3678 /* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3679 memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3680 memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3681
3682 idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3683
3684 idpf_vport_init_num_qs(vport, vport_msg);
3685 idpf_vport_calc_num_q_desc(vport);
3686 idpf_vport_calc_num_q_groups(vport);
3687 idpf_vport_alloc_vec_indexes(vport);
3688
3689 vport->crc_enable = adapter->crc_enable;
3690
3691 if (!(vport_msg->vport_flags &
3692 cpu_to_le16(VIRTCHNL2_VPORT_UPLINK_PORT)))
3693 return;
3694
3695 err = idpf_ptp_get_vport_tstamps_caps(vport);
3696 if (err) {
3697 pci_dbg(vport->adapter->pdev, "Tx timestamping not supported\n");
3698 return;
3699 }
3700
3701 INIT_WORK(&vport->tstamp_task, idpf_tstamp_task);
3702 }
3703
3704 /**
3705 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3706 * @adapter: adapter structure to get the mailbox vector id
3707 * @vecids: Array of vector ids
3708 * @num_vecids: number of vector ids
3709 * @chunks: vector ids received over mailbox
3710 *
3711 * Will initialize the mailbox vector id which is received from the
3712 * get capabilities and data queue vector ids with ids received as
3713 * mailbox parameters.
3714 * Returns number of ids filled
3715 */
idpf_get_vec_ids(struct idpf_adapter * adapter,u16 * vecids,int num_vecids,struct virtchnl2_vector_chunks * chunks)3716 int idpf_get_vec_ids(struct idpf_adapter *adapter,
3717 u16 *vecids, int num_vecids,
3718 struct virtchnl2_vector_chunks *chunks)
3719 {
3720 u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3721 int num_vecid_filled = 0;
3722 int i, j;
3723
3724 vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3725 num_vecid_filled++;
3726
3727 for (j = 0; j < num_chunks; j++) {
3728 struct virtchnl2_vector_chunk *chunk;
3729 u16 start_vecid, num_vec;
3730
3731 chunk = &chunks->vchunks[j];
3732 num_vec = le16_to_cpu(chunk->num_vectors);
3733 start_vecid = le16_to_cpu(chunk->start_vector_id);
3734
3735 for (i = 0; i < num_vec; i++) {
3736 if ((num_vecid_filled + i) < num_vecids) {
3737 vecids[num_vecid_filled + i] = start_vecid;
3738 start_vecid++;
3739 } else {
3740 break;
3741 }
3742 }
3743 num_vecid_filled = num_vecid_filled + i;
3744 }
3745
3746 return num_vecid_filled;
3747 }
3748
3749 /**
3750 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3751 * @qids: Array of queue ids
3752 * @num_qids: number of queue ids
3753 * @q_type: queue model
3754 * @chunks: queue ids received over mailbox
3755 *
3756 * Will initialize all queue ids with ids received as mailbox parameters
3757 * Returns number of ids filled
3758 */
idpf_vport_get_queue_ids(u32 * qids,int num_qids,u16 q_type,struct virtchnl2_queue_reg_chunks * chunks)3759 static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3760 struct virtchnl2_queue_reg_chunks *chunks)
3761 {
3762 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3763 u32 num_q_id_filled = 0, i;
3764 u32 start_q_id, num_q;
3765
3766 while (num_chunks--) {
3767 struct virtchnl2_queue_reg_chunk *chunk;
3768
3769 chunk = &chunks->chunks[num_chunks];
3770 if (le32_to_cpu(chunk->type) != q_type)
3771 continue;
3772
3773 num_q = le32_to_cpu(chunk->num_queues);
3774 start_q_id = le32_to_cpu(chunk->start_queue_id);
3775
3776 for (i = 0; i < num_q; i++) {
3777 if ((num_q_id_filled + i) < num_qids) {
3778 qids[num_q_id_filled + i] = start_q_id;
3779 start_q_id++;
3780 } else {
3781 break;
3782 }
3783 }
3784 num_q_id_filled = num_q_id_filled + i;
3785 }
3786
3787 return num_q_id_filled;
3788 }
3789
3790 /**
3791 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3792 * @vport: virtual port for which the queues ids are initialized
3793 * @qids: queue ids
3794 * @num_qids: number of queue ids
3795 * @q_type: type of queue
3796 *
3797 * Will initialize all queue ids with ids received as mailbox
3798 * parameters. Returns number of queue ids initialized.
3799 */
__idpf_vport_queue_ids_init(struct idpf_vport * vport,const u32 * qids,int num_qids,u32 q_type)3800 static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3801 const u32 *qids,
3802 int num_qids,
3803 u32 q_type)
3804 {
3805 int i, j, k = 0;
3806
3807 switch (q_type) {
3808 case VIRTCHNL2_QUEUE_TYPE_TX:
3809 for (i = 0; i < vport->num_txq_grp; i++) {
3810 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3811
3812 for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3813 tx_qgrp->txqs[j]->q_id = qids[k];
3814 }
3815 break;
3816 case VIRTCHNL2_QUEUE_TYPE_RX:
3817 for (i = 0; i < vport->num_rxq_grp; i++) {
3818 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3819 u16 num_rxq;
3820
3821 if (idpf_is_queue_model_split(vport->rxq_model))
3822 num_rxq = rx_qgrp->splitq.num_rxq_sets;
3823 else
3824 num_rxq = rx_qgrp->singleq.num_rxq;
3825
3826 for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3827 struct idpf_rx_queue *q;
3828
3829 if (idpf_is_queue_model_split(vport->rxq_model))
3830 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3831 else
3832 q = rx_qgrp->singleq.rxqs[j];
3833 q->q_id = qids[k];
3834 }
3835 }
3836 break;
3837 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3838 for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3839 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3840
3841 tx_qgrp->complq->q_id = qids[k];
3842 }
3843 break;
3844 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3845 for (i = 0; i < vport->num_rxq_grp; i++) {
3846 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3847 u8 num_bufqs = vport->num_bufqs_per_qgrp;
3848
3849 for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3850 struct idpf_buf_queue *q;
3851
3852 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3853 q->q_id = qids[k];
3854 }
3855 }
3856 break;
3857 default:
3858 break;
3859 }
3860
3861 return k;
3862 }
3863
3864 /**
3865 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3866 * @vport: virtual port for which the queues ids are initialized
3867 *
3868 * Will initialize all queue ids with ids received as mailbox parameters.
3869 * Returns 0 on success, negative if all the queues are not initialized.
3870 */
idpf_vport_queue_ids_init(struct idpf_vport * vport)3871 int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3872 {
3873 struct virtchnl2_create_vport *vport_params;
3874 struct virtchnl2_queue_reg_chunks *chunks;
3875 struct idpf_vport_config *vport_config;
3876 u16 vport_idx = vport->idx;
3877 int num_ids, err = 0;
3878 u16 q_type;
3879 u32 *qids;
3880
3881 vport_config = vport->adapter->vport_config[vport_idx];
3882 if (vport_config->req_qs_chunks) {
3883 struct virtchnl2_add_queues *vc_aq =
3884 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3885 chunks = &vc_aq->chunks;
3886 } else {
3887 vport_params = vport->adapter->vport_params_recvd[vport_idx];
3888 chunks = &vport_params->chunks;
3889 }
3890
3891 qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3892 if (!qids)
3893 return -ENOMEM;
3894
3895 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3896 VIRTCHNL2_QUEUE_TYPE_TX,
3897 chunks);
3898 if (num_ids < vport->num_txq) {
3899 err = -EINVAL;
3900 goto mem_rel;
3901 }
3902 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3903 VIRTCHNL2_QUEUE_TYPE_TX);
3904 if (num_ids < vport->num_txq) {
3905 err = -EINVAL;
3906 goto mem_rel;
3907 }
3908
3909 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3910 VIRTCHNL2_QUEUE_TYPE_RX,
3911 chunks);
3912 if (num_ids < vport->num_rxq) {
3913 err = -EINVAL;
3914 goto mem_rel;
3915 }
3916 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3917 VIRTCHNL2_QUEUE_TYPE_RX);
3918 if (num_ids < vport->num_rxq) {
3919 err = -EINVAL;
3920 goto mem_rel;
3921 }
3922
3923 if (!idpf_is_queue_model_split(vport->txq_model))
3924 goto check_rxq;
3925
3926 q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3927 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3928 if (num_ids < vport->num_complq) {
3929 err = -EINVAL;
3930 goto mem_rel;
3931 }
3932 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3933 if (num_ids < vport->num_complq) {
3934 err = -EINVAL;
3935 goto mem_rel;
3936 }
3937
3938 check_rxq:
3939 if (!idpf_is_queue_model_split(vport->rxq_model))
3940 goto mem_rel;
3941
3942 q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3943 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3944 if (num_ids < vport->num_bufq) {
3945 err = -EINVAL;
3946 goto mem_rel;
3947 }
3948 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3949 if (num_ids < vport->num_bufq)
3950 err = -EINVAL;
3951
3952 mem_rel:
3953 kfree(qids);
3954
3955 return err;
3956 }
3957
3958 /**
3959 * idpf_vport_adjust_qs - Adjust to new requested queues
3960 * @vport: virtual port data struct
3961 *
3962 * Renegotiate queues. Returns 0 on success, negative on failure.
3963 */
idpf_vport_adjust_qs(struct idpf_vport * vport)3964 int idpf_vport_adjust_qs(struct idpf_vport *vport)
3965 {
3966 struct virtchnl2_create_vport vport_msg;
3967 int err;
3968
3969 vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3970 vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3971 err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3972 NULL);
3973 if (err)
3974 return err;
3975
3976 idpf_vport_init_num_qs(vport, &vport_msg);
3977 idpf_vport_calc_num_q_groups(vport);
3978
3979 return 0;
3980 }
3981
3982 /**
3983 * idpf_is_capability_ena - Default implementation of capability checking
3984 * @adapter: Private data struct
3985 * @all: all or one flag
3986 * @field: caps field to check for flags
3987 * @flag: flag to check
3988 *
3989 * Return true if all capabilities are supported, false otherwise
3990 */
idpf_is_capability_ena(struct idpf_adapter * adapter,bool all,enum idpf_cap_field field,u64 flag)3991 bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3992 enum idpf_cap_field field, u64 flag)
3993 {
3994 u8 *caps = (u8 *)&adapter->caps;
3995 u32 *cap_field;
3996
3997 if (!caps)
3998 return false;
3999
4000 if (field == IDPF_BASE_CAPS)
4001 return false;
4002
4003 cap_field = (u32 *)(caps + field);
4004
4005 if (all)
4006 return (*cap_field & flag) == flag;
4007 else
4008 return !!(*cap_field & flag);
4009 }
4010
4011 /**
4012 * idpf_vport_is_cap_ena - Check if vport capability is enabled
4013 * @vport: Private data struct
4014 * @flag: flag(s) to check
4015 *
4016 * Return: true if the capability is supported, false otherwise
4017 */
idpf_vport_is_cap_ena(struct idpf_vport * vport,u16 flag)4018 bool idpf_vport_is_cap_ena(struct idpf_vport *vport, u16 flag)
4019 {
4020 struct virtchnl2_create_vport *vport_msg;
4021
4022 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4023
4024 return !!(le16_to_cpu(vport_msg->vport_flags) & flag);
4025 }
4026
4027 /**
4028 * idpf_sideband_flow_type_ena - Check if steering is enabled for flow type
4029 * @vport: Private data struct
4030 * @flow_type: flow type to check (from ethtool.h)
4031 *
4032 * Return: true if sideband filters are allowed for @flow_type, false otherwise
4033 */
idpf_sideband_flow_type_ena(struct idpf_vport * vport,u32 flow_type)4034 bool idpf_sideband_flow_type_ena(struct idpf_vport *vport, u32 flow_type)
4035 {
4036 struct virtchnl2_create_vport *vport_msg;
4037 __le64 caps;
4038
4039 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4040 caps = vport_msg->sideband_flow_caps;
4041
4042 switch (flow_type) {
4043 case TCP_V4_FLOW:
4044 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP));
4045 case UDP_V4_FLOW:
4046 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_UDP));
4047 default:
4048 return false;
4049 }
4050 }
4051
4052 /**
4053 * idpf_sideband_action_ena - Check if steering is enabled for action
4054 * @vport: Private data struct
4055 * @fsp: flow spec
4056 *
4057 * Return: true if sideband filters are allowed for @fsp, false otherwise
4058 */
idpf_sideband_action_ena(struct idpf_vport * vport,struct ethtool_rx_flow_spec * fsp)4059 bool idpf_sideband_action_ena(struct idpf_vport *vport,
4060 struct ethtool_rx_flow_spec *fsp)
4061 {
4062 struct virtchnl2_create_vport *vport_msg;
4063 unsigned int supp_actions;
4064
4065 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4066 supp_actions = le32_to_cpu(vport_msg->sideband_flow_actions);
4067
4068 /* Actions Drop/Wake are not supported */
4069 if (fsp->ring_cookie == RX_CLS_FLOW_DISC ||
4070 fsp->ring_cookie == RX_CLS_FLOW_WAKE)
4071 return false;
4072
4073 return !!(supp_actions & VIRTCHNL2_ACTION_QUEUE);
4074 }
4075
idpf_fsteer_max_rules(struct idpf_vport * vport)4076 unsigned int idpf_fsteer_max_rules(struct idpf_vport *vport)
4077 {
4078 struct virtchnl2_create_vport *vport_msg;
4079
4080 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4081 return le32_to_cpu(vport_msg->flow_steer_max_rules);
4082 }
4083
4084 /**
4085 * idpf_get_vport_id: Get vport id
4086 * @vport: virtual port structure
4087 *
4088 * Return vport id from the adapter persistent data
4089 */
idpf_get_vport_id(struct idpf_vport * vport)4090 u32 idpf_get_vport_id(struct idpf_vport *vport)
4091 {
4092 struct virtchnl2_create_vport *vport_msg;
4093
4094 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4095
4096 return le32_to_cpu(vport_msg->vport_id);
4097 }
4098
idpf_set_mac_type(struct idpf_vport * vport,struct virtchnl2_mac_addr * mac_addr)4099 static void idpf_set_mac_type(struct idpf_vport *vport,
4100 struct virtchnl2_mac_addr *mac_addr)
4101 {
4102 bool is_primary;
4103
4104 is_primary = ether_addr_equal(vport->default_mac_addr, mac_addr->addr);
4105 mac_addr->type = is_primary ? VIRTCHNL2_MAC_ADDR_PRIMARY :
4106 VIRTCHNL2_MAC_ADDR_EXTRA;
4107 }
4108
4109 /**
4110 * idpf_mac_filter_async_handler - Async callback for mac filters
4111 * @adapter: private data struct
4112 * @xn: transaction for message
4113 * @ctlq_msg: received message
4114 *
4115 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
4116 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
4117 * situation to deal with errors returned on the reply. The best we can
4118 * ultimately do is remove it from our list of mac filters and report the
4119 * error.
4120 */
idpf_mac_filter_async_handler(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)4121 static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
4122 struct idpf_vc_xn *xn,
4123 const struct idpf_ctlq_msg *ctlq_msg)
4124 {
4125 struct virtchnl2_mac_addr_list *ma_list;
4126 struct idpf_vport_config *vport_config;
4127 struct virtchnl2_mac_addr *mac_addr;
4128 struct idpf_mac_filter *f, *tmp;
4129 struct list_head *ma_list_head;
4130 struct idpf_vport *vport;
4131 u16 num_entries;
4132 int i;
4133
4134 /* if success we're done, we're only here if something bad happened */
4135 if (!ctlq_msg->cookie.mbx.chnl_retval)
4136 return 0;
4137
4138 /* make sure at least struct is there */
4139 if (xn->reply_sz < sizeof(*ma_list))
4140 goto invalid_payload;
4141
4142 ma_list = ctlq_msg->ctx.indirect.payload->va;
4143 mac_addr = ma_list->mac_addr_list;
4144 num_entries = le16_to_cpu(ma_list->num_mac_addr);
4145 /* we should have received a buffer at least this big */
4146 if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
4147 goto invalid_payload;
4148
4149 vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
4150 if (!vport)
4151 goto invalid_payload;
4152
4153 vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
4154 ma_list_head = &vport_config->user_config.mac_filter_list;
4155
4156 /* We can't do much to reconcile bad filters at this point, however we
4157 * should at least remove them from our list one way or the other so we
4158 * have some idea what good filters we have.
4159 */
4160 spin_lock_bh(&vport_config->mac_filter_list_lock);
4161 list_for_each_entry_safe(f, tmp, ma_list_head, list)
4162 for (i = 0; i < num_entries; i++)
4163 if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
4164 list_del(&f->list);
4165 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4166 dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
4167 xn->vc_op);
4168
4169 return 0;
4170
4171 invalid_payload:
4172 dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
4173 xn->vc_op, xn->reply_sz);
4174
4175 return -EINVAL;
4176 }
4177
4178 /**
4179 * idpf_add_del_mac_filters - Add/del mac filters
4180 * @vport: Virtual port data structure
4181 * @np: Netdev private structure
4182 * @add: Add or delete flag
4183 * @async: Don't wait for return message
4184 *
4185 * Returns 0 on success, error on failure.
4186 **/
idpf_add_del_mac_filters(struct idpf_vport * vport,struct idpf_netdev_priv * np,bool add,bool async)4187 int idpf_add_del_mac_filters(struct idpf_vport *vport,
4188 struct idpf_netdev_priv *np,
4189 bool add, bool async)
4190 {
4191 struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
4192 struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
4193 struct idpf_adapter *adapter = np->adapter;
4194 struct idpf_vc_xn_params xn_params = {};
4195 struct idpf_vport_config *vport_config;
4196 u32 num_msgs, total_filters = 0;
4197 struct idpf_mac_filter *f;
4198 ssize_t reply_sz;
4199 int i = 0, k;
4200
4201 xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
4202 VIRTCHNL2_OP_DEL_MAC_ADDR;
4203 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4204 xn_params.async = async;
4205 xn_params.async_handler = idpf_mac_filter_async_handler;
4206
4207 vport_config = adapter->vport_config[np->vport_idx];
4208 spin_lock_bh(&vport_config->mac_filter_list_lock);
4209
4210 /* Find the number of newly added filters */
4211 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
4212 list) {
4213 if (add && f->add)
4214 total_filters++;
4215 else if (!add && f->remove)
4216 total_filters++;
4217 }
4218
4219 if (!total_filters) {
4220 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4221
4222 return 0;
4223 }
4224
4225 /* Fill all the new filters into virtchannel message */
4226 mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
4227 GFP_ATOMIC);
4228 if (!mac_addr) {
4229 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4230
4231 return -ENOMEM;
4232 }
4233
4234 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
4235 list) {
4236 if (add && f->add) {
4237 ether_addr_copy(mac_addr[i].addr, f->macaddr);
4238 idpf_set_mac_type(vport, &mac_addr[i]);
4239 i++;
4240 f->add = false;
4241 if (i == total_filters)
4242 break;
4243 }
4244 if (!add && f->remove) {
4245 ether_addr_copy(mac_addr[i].addr, f->macaddr);
4246 idpf_set_mac_type(vport, &mac_addr[i]);
4247 i++;
4248 f->remove = false;
4249 if (i == total_filters)
4250 break;
4251 }
4252 }
4253
4254 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4255
4256 /* Chunk up the filters into multiple messages to avoid
4257 * sending a control queue message buffer that is too large
4258 */
4259 num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
4260
4261 for (i = 0, k = 0; i < num_msgs; i++) {
4262 u32 entries_size, buf_size, num_entries;
4263
4264 num_entries = min_t(u32, total_filters,
4265 IDPF_NUM_FILTERS_PER_MSG);
4266 entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
4267 buf_size = struct_size(ma_list, mac_addr_list, num_entries);
4268
4269 if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
4270 kfree(ma_list);
4271 ma_list = kzalloc(buf_size, GFP_ATOMIC);
4272 if (!ma_list)
4273 return -ENOMEM;
4274 } else {
4275 memset(ma_list, 0, buf_size);
4276 }
4277
4278 ma_list->vport_id = cpu_to_le32(np->vport_id);
4279 ma_list->num_mac_addr = cpu_to_le16(num_entries);
4280 memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
4281
4282 xn_params.send_buf.iov_base = ma_list;
4283 xn_params.send_buf.iov_len = buf_size;
4284 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4285 if (reply_sz < 0)
4286 return reply_sz;
4287
4288 k += num_entries;
4289 total_filters -= num_entries;
4290 }
4291
4292 return 0;
4293 }
4294
4295 /**
4296 * idpf_set_promiscuous - set promiscuous and send message to mailbox
4297 * @adapter: Driver specific private structure
4298 * @config_data: Vport specific config data
4299 * @vport_id: Vport identifier
4300 *
4301 * Request to enable promiscuous mode for the vport. Message is sent
4302 * asynchronously and won't wait for response. Returns 0 on success, negative
4303 * on failure;
4304 */
idpf_set_promiscuous(struct idpf_adapter * adapter,struct idpf_vport_user_config_data * config_data,u32 vport_id)4305 int idpf_set_promiscuous(struct idpf_adapter *adapter,
4306 struct idpf_vport_user_config_data *config_data,
4307 u32 vport_id)
4308 {
4309 struct idpf_vc_xn_params xn_params = {};
4310 struct virtchnl2_promisc_info vpi;
4311 ssize_t reply_sz;
4312 u16 flags = 0;
4313
4314 if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
4315 flags |= VIRTCHNL2_UNICAST_PROMISC;
4316 if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
4317 flags |= VIRTCHNL2_MULTICAST_PROMISC;
4318
4319 vpi.vport_id = cpu_to_le32(vport_id);
4320 vpi.flags = cpu_to_le16(flags);
4321
4322 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
4323 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4324 xn_params.send_buf.iov_base = &vpi;
4325 xn_params.send_buf.iov_len = sizeof(vpi);
4326 /* setting promiscuous is only ever done asynchronously */
4327 xn_params.async = true;
4328 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4329
4330 return reply_sz < 0 ? reply_sz : 0;
4331 }
4332
4333 /**
4334 * idpf_idc_rdma_vc_send_sync - virtchnl send callback for IDC registered drivers
4335 * @cdev_info: IDC core device info pointer
4336 * @send_msg: message to send
4337 * @msg_size: size of message to send
4338 * @recv_msg: message to populate on reception of response
4339 * @recv_len: length of message copied into recv_msg or 0 on error
4340 *
4341 * Return: 0 on success or error code on failure.
4342 */
idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info * cdev_info,u8 * send_msg,u16 msg_size,u8 * recv_msg,u16 * recv_len)4343 int idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info *cdev_info,
4344 u8 *send_msg, u16 msg_size,
4345 u8 *recv_msg, u16 *recv_len)
4346 {
4347 struct idpf_adapter *adapter = pci_get_drvdata(cdev_info->pdev);
4348 struct idpf_vc_xn_params xn_params = { };
4349 ssize_t reply_sz;
4350 u16 recv_size;
4351
4352 if (!recv_msg || !recv_len || msg_size > IDPF_CTLQ_MAX_BUF_LEN)
4353 return -EINVAL;
4354
4355 recv_size = min_t(u16, *recv_len, IDPF_CTLQ_MAX_BUF_LEN);
4356 *recv_len = 0;
4357 xn_params.vc_op = VIRTCHNL2_OP_RDMA;
4358 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4359 xn_params.send_buf.iov_base = send_msg;
4360 xn_params.send_buf.iov_len = msg_size;
4361 xn_params.recv_buf.iov_base = recv_msg;
4362 xn_params.recv_buf.iov_len = recv_size;
4363 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4364 if (reply_sz < 0)
4365 return reply_sz;
4366 *recv_len = reply_sz;
4367
4368 return 0;
4369 }
4370 EXPORT_SYMBOL_GPL(idpf_idc_rdma_vc_send_sync);
4371