1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 #include "idpf_ptp.h"
7 #include "xdp.h"
8 #include "xsk.h"
9
10 static const struct net_device_ops idpf_netdev_ops;
11
12 /**
13 * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
14 * @adapter: private data struct
15 *
16 * Return 0 on success, error on failure
17 */
idpf_init_vector_stack(struct idpf_adapter * adapter)18 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
19 {
20 struct idpf_vector_lifo *stack;
21 u16 min_vec;
22 u32 i;
23
24 mutex_lock(&adapter->vector_lock);
25 min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
26 stack = &adapter->vector_stack;
27 stack->size = adapter->num_msix_entries;
28 /* set the base and top to point at start of the 'free pool' to
29 * distribute the unused vectors on-demand basis
30 */
31 stack->base = min_vec;
32 stack->top = min_vec;
33
34 stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
35 if (!stack->vec_idx) {
36 mutex_unlock(&adapter->vector_lock);
37
38 return -ENOMEM;
39 }
40
41 for (i = 0; i < stack->size; i++)
42 stack->vec_idx[i] = i;
43
44 mutex_unlock(&adapter->vector_lock);
45
46 return 0;
47 }
48
49 /**
50 * idpf_deinit_vector_stack - zero out the MSIX vector stack
51 * @adapter: private data struct
52 */
idpf_deinit_vector_stack(struct idpf_adapter * adapter)53 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
54 {
55 struct idpf_vector_lifo *stack;
56
57 mutex_lock(&adapter->vector_lock);
58 stack = &adapter->vector_stack;
59 kfree(stack->vec_idx);
60 stack->vec_idx = NULL;
61 mutex_unlock(&adapter->vector_lock);
62 }
63
64 /**
65 * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
66 * @adapter: adapter structure
67 *
68 * This will also disable interrupt mode and queue up mailbox task. Mailbox
69 * task will reschedule itself if not in interrupt mode.
70 */
idpf_mb_intr_rel_irq(struct idpf_adapter * adapter)71 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
72 {
73 clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
74 kfree(free_irq(adapter->msix_entries[0].vector, adapter));
75 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
76 }
77
78 /**
79 * idpf_intr_rel - Release interrupt capabilities and free memory
80 * @adapter: adapter to disable interrupts on
81 */
idpf_intr_rel(struct idpf_adapter * adapter)82 void idpf_intr_rel(struct idpf_adapter *adapter)
83 {
84 if (!adapter->msix_entries)
85 return;
86
87 idpf_mb_intr_rel_irq(adapter);
88 pci_free_irq_vectors(adapter->pdev);
89 idpf_send_dealloc_vectors_msg(adapter);
90 idpf_deinit_vector_stack(adapter);
91 kfree(adapter->msix_entries);
92 adapter->msix_entries = NULL;
93 kfree(adapter->rdma_msix_entries);
94 adapter->rdma_msix_entries = NULL;
95 }
96
97 /**
98 * idpf_mb_intr_clean - Interrupt handler for the mailbox
99 * @irq: interrupt number
100 * @data: pointer to the adapter structure
101 */
idpf_mb_intr_clean(int __always_unused irq,void * data)102 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
103 {
104 struct idpf_adapter *adapter = (struct idpf_adapter *)data;
105
106 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
107
108 return IRQ_HANDLED;
109 }
110
111 /**
112 * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
113 * @adapter: adapter to get the hardware address for register write
114 */
idpf_mb_irq_enable(struct idpf_adapter * adapter)115 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
116 {
117 struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
118 u32 val;
119
120 val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
121 writel(val, intr->dyn_ctl);
122 writel(intr->icr_ena_ctlq_m, intr->icr_ena);
123 }
124
125 /**
126 * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
127 * @adapter: adapter structure to pass to the mailbox irq handler
128 */
idpf_mb_intr_req_irq(struct idpf_adapter * adapter)129 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
130 {
131 int irq_num, mb_vidx = 0, err;
132 char *name;
133
134 irq_num = adapter->msix_entries[mb_vidx].vector;
135 name = kasprintf(GFP_KERNEL, "%s-%s-%d",
136 dev_driver_string(&adapter->pdev->dev),
137 "Mailbox", mb_vidx);
138 err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
139 if (err) {
140 dev_err(&adapter->pdev->dev,
141 "IRQ request for mailbox failed, error: %d\n", err);
142
143 return err;
144 }
145
146 set_bit(IDPF_MB_INTR_MODE, adapter->flags);
147
148 return 0;
149 }
150
151 /**
152 * idpf_mb_intr_init - Initialize the mailbox interrupt
153 * @adapter: adapter structure to store the mailbox vector
154 */
idpf_mb_intr_init(struct idpf_adapter * adapter)155 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
156 {
157 adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
158 adapter->irq_mb_handler = idpf_mb_intr_clean;
159
160 return idpf_mb_intr_req_irq(adapter);
161 }
162
163 /**
164 * idpf_vector_lifo_push - push MSIX vector index onto stack
165 * @adapter: private data struct
166 * @vec_idx: vector index to store
167 */
idpf_vector_lifo_push(struct idpf_adapter * adapter,u16 vec_idx)168 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
169 {
170 struct idpf_vector_lifo *stack = &adapter->vector_stack;
171
172 lockdep_assert_held(&adapter->vector_lock);
173
174 if (stack->top == stack->base) {
175 dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
176 stack->top);
177 return -EINVAL;
178 }
179
180 stack->vec_idx[--stack->top] = vec_idx;
181
182 return 0;
183 }
184
185 /**
186 * idpf_vector_lifo_pop - pop MSIX vector index from stack
187 * @adapter: private data struct
188 */
idpf_vector_lifo_pop(struct idpf_adapter * adapter)189 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
190 {
191 struct idpf_vector_lifo *stack = &adapter->vector_stack;
192
193 lockdep_assert_held(&adapter->vector_lock);
194
195 if (stack->top == stack->size) {
196 dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
197
198 return -EINVAL;
199 }
200
201 return stack->vec_idx[stack->top++];
202 }
203
204 /**
205 * idpf_vector_stash - Store the vector indexes onto the stack
206 * @adapter: private data struct
207 * @q_vector_idxs: vector index array
208 * @vec_info: info related to the number of vectors
209 *
210 * This function is a no-op if there are no vectors indexes to be stashed
211 */
idpf_vector_stash(struct idpf_adapter * adapter,u16 * q_vector_idxs,struct idpf_vector_info * vec_info)212 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
213 struct idpf_vector_info *vec_info)
214 {
215 int i, base = 0;
216 u16 vec_idx;
217
218 lockdep_assert_held(&adapter->vector_lock);
219
220 if (!vec_info->num_curr_vecs)
221 return;
222
223 /* For default vports, no need to stash vector allocated from the
224 * default pool onto the stack
225 */
226 if (vec_info->default_vport)
227 base = IDPF_MIN_Q_VEC;
228
229 for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
230 vec_idx = q_vector_idxs[i];
231 idpf_vector_lifo_push(adapter, vec_idx);
232 adapter->num_avail_msix++;
233 }
234 }
235
236 /**
237 * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
238 * @adapter: driver specific private structure
239 * @q_vector_idxs: vector index array
240 * @vec_info: info related to the number of vectors
241 *
242 * This is the core function to distribute the MSIX vectors acquired from the
243 * OS. It expects the caller to pass the number of vectors required and
244 * also previously allocated. First, it stashes previously allocated vector
245 * indexes on to the stack and then figures out if it can allocate requested
246 * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
247 * requested vectors, then this function just stashes the already allocated
248 * vectors and returns 0.
249 *
250 * Returns actual number of vectors allocated on success, error value on failure
251 * If 0 is returned, implies the stack has no vectors to allocate which is also
252 * a failure case for the caller
253 */
idpf_req_rel_vector_indexes(struct idpf_adapter * adapter,u16 * q_vector_idxs,struct idpf_vector_info * vec_info)254 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
255 u16 *q_vector_idxs,
256 struct idpf_vector_info *vec_info)
257 {
258 u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
259 struct idpf_vector_lifo *stack;
260 int i, j, vecid;
261
262 mutex_lock(&adapter->vector_lock);
263 stack = &adapter->vector_stack;
264 num_req_vecs = vec_info->num_req_vecs;
265
266 /* Stash interrupt vector indexes onto the stack if required */
267 idpf_vector_stash(adapter, q_vector_idxs, vec_info);
268
269 if (!num_req_vecs)
270 goto rel_lock;
271
272 if (vec_info->default_vport) {
273 /* As IDPF_MIN_Q_VEC per default vport is put aside in the
274 * default pool of the stack, use them for default vports
275 */
276 j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
277 for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
278 q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
279 num_req_vecs--;
280 }
281 }
282
283 /* Find if stack has enough vector to allocate */
284 max_vecs = min(adapter->num_avail_msix, num_req_vecs);
285
286 for (j = 0; j < max_vecs; j++) {
287 vecid = idpf_vector_lifo_pop(adapter);
288 q_vector_idxs[num_alloc_vecs++] = vecid;
289 }
290 adapter->num_avail_msix -= max_vecs;
291
292 rel_lock:
293 mutex_unlock(&adapter->vector_lock);
294
295 return num_alloc_vecs;
296 }
297
298 /**
299 * idpf_intr_req - Request interrupt capabilities
300 * @adapter: adapter to enable interrupts on
301 *
302 * Returns 0 on success, negative on failure
303 */
idpf_intr_req(struct idpf_adapter * adapter)304 int idpf_intr_req(struct idpf_adapter *adapter)
305 {
306 u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0;
307 u16 default_vports = idpf_get_default_vports(adapter);
308 int num_q_vecs, total_vecs, num_vec_ids;
309 int min_vectors, actual_vecs, err;
310 unsigned int vector;
311 u16 *vecids;
312 int i;
313
314 total_vecs = idpf_get_reserved_vecs(adapter);
315 num_lan_vecs = total_vecs;
316 if (idpf_is_rdma_cap_ena(adapter)) {
317 num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter);
318 min_rdma_vecs = IDPF_MIN_RDMA_VEC;
319
320 if (!num_rdma_vecs) {
321 /* If idpf_get_reserved_rdma_vecs is 0, vectors are
322 * pulled from the LAN pool.
323 */
324 num_rdma_vecs = min_rdma_vecs;
325 } else if (num_rdma_vecs < min_rdma_vecs) {
326 dev_err(&adapter->pdev->dev,
327 "Not enough vectors reserved for RDMA (min: %u, current: %u)\n",
328 min_rdma_vecs, num_rdma_vecs);
329 return -EINVAL;
330 }
331 }
332
333 num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
334
335 err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
336 if (err) {
337 dev_err(&adapter->pdev->dev,
338 "Failed to allocate %d vectors: %d\n", num_q_vecs, err);
339
340 return -EAGAIN;
341 }
342
343 min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
344 min_vectors = min_lan_vecs + min_rdma_vecs;
345 actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
346 total_vecs, PCI_IRQ_MSIX);
347 if (actual_vecs < 0) {
348 dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n",
349 min_vectors);
350 err = actual_vecs;
351 goto send_dealloc_vecs;
352 }
353
354 if (idpf_is_rdma_cap_ena(adapter)) {
355 if (actual_vecs < total_vecs) {
356 dev_warn(&adapter->pdev->dev,
357 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n",
358 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC);
359 num_rdma_vecs = IDPF_MIN_RDMA_VEC;
360 }
361
362 adapter->rdma_msix_entries = kcalloc(num_rdma_vecs,
363 sizeof(struct msix_entry),
364 GFP_KERNEL);
365 if (!adapter->rdma_msix_entries) {
366 err = -ENOMEM;
367 goto free_irq;
368 }
369 }
370
371 num_lan_vecs = actual_vecs - num_rdma_vecs;
372 adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry),
373 GFP_KERNEL);
374 if (!adapter->msix_entries) {
375 err = -ENOMEM;
376 goto free_rdma_msix;
377 }
378
379 adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id);
380
381 vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL);
382 if (!vecids) {
383 err = -ENOMEM;
384 goto free_msix;
385 }
386
387 num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs,
388 &adapter->req_vec_chunks->vchunks);
389 if (num_vec_ids < actual_vecs) {
390 err = -EINVAL;
391 goto free_vecids;
392 }
393
394 for (vector = 0; vector < num_lan_vecs; vector++) {
395 adapter->msix_entries[vector].entry = vecids[vector];
396 adapter->msix_entries[vector].vector =
397 pci_irq_vector(adapter->pdev, vector);
398 }
399 for (i = 0; i < num_rdma_vecs; vector++, i++) {
400 adapter->rdma_msix_entries[i].entry = vecids[vector];
401 adapter->rdma_msix_entries[i].vector =
402 pci_irq_vector(adapter->pdev, vector);
403 }
404
405 /* 'num_avail_msix' is used to distribute excess vectors to the vports
406 * after considering the minimum vectors required per each default
407 * vport
408 */
409 adapter->num_avail_msix = num_lan_vecs - min_lan_vecs;
410 adapter->num_msix_entries = num_lan_vecs;
411 if (idpf_is_rdma_cap_ena(adapter))
412 adapter->num_rdma_msix_entries = num_rdma_vecs;
413
414 /* Fill MSIX vector lifo stack with vector indexes */
415 err = idpf_init_vector_stack(adapter);
416 if (err)
417 goto free_vecids;
418
419 err = idpf_mb_intr_init(adapter);
420 if (err)
421 goto deinit_vec_stack;
422 idpf_mb_irq_enable(adapter);
423 kfree(vecids);
424
425 return 0;
426
427 deinit_vec_stack:
428 idpf_deinit_vector_stack(adapter);
429 free_vecids:
430 kfree(vecids);
431 free_msix:
432 kfree(adapter->msix_entries);
433 adapter->msix_entries = NULL;
434 free_rdma_msix:
435 kfree(adapter->rdma_msix_entries);
436 adapter->rdma_msix_entries = NULL;
437 free_irq:
438 pci_free_irq_vectors(adapter->pdev);
439 send_dealloc_vecs:
440 idpf_send_dealloc_vectors_msg(adapter);
441
442 return err;
443 }
444
445 /**
446 * idpf_find_mac_filter - Search filter list for specific mac filter
447 * @vconfig: Vport config structure
448 * @macaddr: The MAC address
449 *
450 * Returns ptr to the filter object or NULL. Must be called while holding the
451 * mac_filter_list_lock.
452 **/
idpf_find_mac_filter(struct idpf_vport_config * vconfig,const u8 * macaddr)453 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
454 const u8 *macaddr)
455 {
456 struct idpf_mac_filter *f;
457
458 if (!macaddr)
459 return NULL;
460
461 list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
462 if (ether_addr_equal(macaddr, f->macaddr))
463 return f;
464 }
465
466 return NULL;
467 }
468
469 /**
470 * __idpf_del_mac_filter - Delete a MAC filter from the filter list
471 * @vport_config: Vport config structure
472 * @macaddr: The MAC address
473 *
474 * Returns 0 on success, error value on failure
475 **/
__idpf_del_mac_filter(struct idpf_vport_config * vport_config,const u8 * macaddr)476 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
477 const u8 *macaddr)
478 {
479 struct idpf_mac_filter *f;
480
481 spin_lock_bh(&vport_config->mac_filter_list_lock);
482 f = idpf_find_mac_filter(vport_config, macaddr);
483 if (f) {
484 list_del(&f->list);
485 kfree(f);
486 }
487 spin_unlock_bh(&vport_config->mac_filter_list_lock);
488
489 return 0;
490 }
491
492 /**
493 * idpf_del_mac_filter - Delete a MAC filter from the filter list
494 * @vport: Main vport structure
495 * @np: Netdev private structure
496 * @macaddr: The MAC address
497 * @async: Don't wait for return message
498 *
499 * Removes filter from list and if interface is up, tells hardware about the
500 * removed filter.
501 **/
idpf_del_mac_filter(struct idpf_vport * vport,struct idpf_netdev_priv * np,const u8 * macaddr,bool async)502 static int idpf_del_mac_filter(struct idpf_vport *vport,
503 struct idpf_netdev_priv *np,
504 const u8 *macaddr, bool async)
505 {
506 struct idpf_vport_config *vport_config;
507 struct idpf_mac_filter *f;
508
509 vport_config = np->adapter->vport_config[np->vport_idx];
510
511 spin_lock_bh(&vport_config->mac_filter_list_lock);
512 f = idpf_find_mac_filter(vport_config, macaddr);
513 if (f) {
514 f->remove = true;
515 } else {
516 spin_unlock_bh(&vport_config->mac_filter_list_lock);
517
518 return -EINVAL;
519 }
520 spin_unlock_bh(&vport_config->mac_filter_list_lock);
521
522 if (np->state == __IDPF_VPORT_UP) {
523 int err;
524
525 err = idpf_add_del_mac_filters(vport, np, false, async);
526 if (err)
527 return err;
528 }
529
530 return __idpf_del_mac_filter(vport_config, macaddr);
531 }
532
533 /**
534 * __idpf_add_mac_filter - Add mac filter helper function
535 * @vport_config: Vport config structure
536 * @macaddr: Address to add
537 *
538 * Takes mac_filter_list_lock spinlock to add new filter to list.
539 */
__idpf_add_mac_filter(struct idpf_vport_config * vport_config,const u8 * macaddr)540 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
541 const u8 *macaddr)
542 {
543 struct idpf_mac_filter *f;
544
545 spin_lock_bh(&vport_config->mac_filter_list_lock);
546
547 f = idpf_find_mac_filter(vport_config, macaddr);
548 if (f) {
549 f->remove = false;
550 spin_unlock_bh(&vport_config->mac_filter_list_lock);
551
552 return 0;
553 }
554
555 f = kzalloc(sizeof(*f), GFP_ATOMIC);
556 if (!f) {
557 spin_unlock_bh(&vport_config->mac_filter_list_lock);
558
559 return -ENOMEM;
560 }
561
562 ether_addr_copy(f->macaddr, macaddr);
563 list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
564 f->add = true;
565
566 spin_unlock_bh(&vport_config->mac_filter_list_lock);
567
568 return 0;
569 }
570
571 /**
572 * idpf_add_mac_filter - Add a mac filter to the filter list
573 * @vport: Main vport structure
574 * @np: Netdev private structure
575 * @macaddr: The MAC address
576 * @async: Don't wait for return message
577 *
578 * Returns 0 on success or error on failure. If interface is up, we'll also
579 * send the virtchnl message to tell hardware about the filter.
580 **/
idpf_add_mac_filter(struct idpf_vport * vport,struct idpf_netdev_priv * np,const u8 * macaddr,bool async)581 static int idpf_add_mac_filter(struct idpf_vport *vport,
582 struct idpf_netdev_priv *np,
583 const u8 *macaddr, bool async)
584 {
585 struct idpf_vport_config *vport_config;
586 int err;
587
588 vport_config = np->adapter->vport_config[np->vport_idx];
589 err = __idpf_add_mac_filter(vport_config, macaddr);
590 if (err)
591 return err;
592
593 if (np->state == __IDPF_VPORT_UP)
594 err = idpf_add_del_mac_filters(vport, np, true, async);
595
596 return err;
597 }
598
599 /**
600 * idpf_del_all_mac_filters - Delete all MAC filters in list
601 * @vport: main vport struct
602 *
603 * Takes mac_filter_list_lock spinlock. Deletes all filters
604 */
idpf_del_all_mac_filters(struct idpf_vport * vport)605 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
606 {
607 struct idpf_vport_config *vport_config;
608 struct idpf_mac_filter *f, *ftmp;
609
610 vport_config = vport->adapter->vport_config[vport->idx];
611 spin_lock_bh(&vport_config->mac_filter_list_lock);
612
613 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
614 list) {
615 list_del(&f->list);
616 kfree(f);
617 }
618
619 spin_unlock_bh(&vport_config->mac_filter_list_lock);
620 }
621
622 /**
623 * idpf_restore_mac_filters - Re-add all MAC filters in list
624 * @vport: main vport struct
625 *
626 * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to
627 * resync filters back to HW.
628 */
idpf_restore_mac_filters(struct idpf_vport * vport)629 static void idpf_restore_mac_filters(struct idpf_vport *vport)
630 {
631 struct idpf_vport_config *vport_config;
632 struct idpf_mac_filter *f;
633
634 vport_config = vport->adapter->vport_config[vport->idx];
635 spin_lock_bh(&vport_config->mac_filter_list_lock);
636
637 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
638 f->add = true;
639
640 spin_unlock_bh(&vport_config->mac_filter_list_lock);
641
642 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
643 true, false);
644 }
645
646 /**
647 * idpf_remove_mac_filters - Remove all MAC filters in list
648 * @vport: main vport struct
649 *
650 * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
651 * to remove filters in HW.
652 */
idpf_remove_mac_filters(struct idpf_vport * vport)653 static void idpf_remove_mac_filters(struct idpf_vport *vport)
654 {
655 struct idpf_vport_config *vport_config;
656 struct idpf_mac_filter *f;
657
658 vport_config = vport->adapter->vport_config[vport->idx];
659 spin_lock_bh(&vport_config->mac_filter_list_lock);
660
661 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
662 f->remove = true;
663
664 spin_unlock_bh(&vport_config->mac_filter_list_lock);
665
666 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
667 false, false);
668 }
669
670 /**
671 * idpf_deinit_mac_addr - deinitialize mac address for vport
672 * @vport: main vport structure
673 */
idpf_deinit_mac_addr(struct idpf_vport * vport)674 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
675 {
676 struct idpf_vport_config *vport_config;
677 struct idpf_mac_filter *f;
678
679 vport_config = vport->adapter->vport_config[vport->idx];
680
681 spin_lock_bh(&vport_config->mac_filter_list_lock);
682
683 f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
684 if (f) {
685 list_del(&f->list);
686 kfree(f);
687 }
688
689 spin_unlock_bh(&vport_config->mac_filter_list_lock);
690 }
691
692 /**
693 * idpf_init_mac_addr - initialize mac address for vport
694 * @vport: main vport structure
695 * @netdev: pointer to netdev struct associated with this vport
696 */
idpf_init_mac_addr(struct idpf_vport * vport,struct net_device * netdev)697 static int idpf_init_mac_addr(struct idpf_vport *vport,
698 struct net_device *netdev)
699 {
700 struct idpf_netdev_priv *np = netdev_priv(netdev);
701 struct idpf_adapter *adapter = vport->adapter;
702 int err;
703
704 if (is_valid_ether_addr(vport->default_mac_addr)) {
705 eth_hw_addr_set(netdev, vport->default_mac_addr);
706 ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
707
708 return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
709 false);
710 }
711
712 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
713 VIRTCHNL2_CAP_MACFILTER)) {
714 dev_err(&adapter->pdev->dev,
715 "MAC address is not provided and capability is not set\n");
716
717 return -EINVAL;
718 }
719
720 eth_hw_addr_random(netdev);
721 err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
722 if (err)
723 return err;
724
725 dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
726 vport->default_mac_addr, netdev->dev_addr);
727 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
728
729 return 0;
730 }
731
732 /**
733 * idpf_cfg_netdev - Allocate, configure and register a netdev
734 * @vport: main vport structure
735 *
736 * Returns 0 on success, negative value on failure.
737 */
idpf_cfg_netdev(struct idpf_vport * vport)738 static int idpf_cfg_netdev(struct idpf_vport *vport)
739 {
740 struct idpf_adapter *adapter = vport->adapter;
741 struct idpf_vport_config *vport_config;
742 netdev_features_t other_offloads = 0;
743 netdev_features_t csum_offloads = 0;
744 netdev_features_t tso_offloads = 0;
745 netdev_features_t dflt_features;
746 struct idpf_netdev_priv *np;
747 struct net_device *netdev;
748 u16 idx = vport->idx;
749 int err;
750
751 vport_config = adapter->vport_config[idx];
752
753 /* It's possible we already have a netdev allocated and registered for
754 * this vport
755 */
756 if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
757 netdev = adapter->netdevs[idx];
758 np = netdev_priv(netdev);
759 np->vport = vport;
760 np->vport_idx = vport->idx;
761 np->vport_id = vport->vport_id;
762 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
763 vport->netdev = netdev;
764
765 return idpf_init_mac_addr(vport, netdev);
766 }
767
768 netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
769 vport_config->max_q.max_txq,
770 vport_config->max_q.max_rxq);
771 if (!netdev)
772 return -ENOMEM;
773
774 vport->netdev = netdev;
775 np = netdev_priv(netdev);
776 np->vport = vport;
777 np->adapter = adapter;
778 np->vport_idx = vport->idx;
779 np->vport_id = vport->vport_id;
780 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
781 np->tx_max_bufs = idpf_get_max_tx_bufs(adapter);
782
783 spin_lock_init(&np->stats_lock);
784
785 err = idpf_init_mac_addr(vport, netdev);
786 if (err) {
787 free_netdev(vport->netdev);
788 vport->netdev = NULL;
789
790 return err;
791 }
792
793 /* assign netdev_ops */
794 netdev->netdev_ops = &idpf_netdev_ops;
795
796 /* setup watchdog timeout value to be 5 second */
797 netdev->watchdog_timeo = 5 * HZ;
798
799 netdev->dev_port = idx;
800
801 /* configure default MTU size */
802 netdev->min_mtu = ETH_MIN_MTU;
803 netdev->max_mtu = vport->max_mtu;
804
805 dflt_features = NETIF_F_SG |
806 NETIF_F_HIGHDMA;
807
808 if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
809 dflt_features |= NETIF_F_RXHASH;
810 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
811 VIRTCHNL2_CAP_FLOW_STEER) &&
812 idpf_vport_is_cap_ena(vport, VIRTCHNL2_VPORT_SIDEBAND_FLOW_STEER))
813 dflt_features |= NETIF_F_NTUPLE;
814 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4))
815 csum_offloads |= NETIF_F_IP_CSUM;
816 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6))
817 csum_offloads |= NETIF_F_IPV6_CSUM;
818 if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
819 csum_offloads |= NETIF_F_RXCSUM;
820 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM))
821 csum_offloads |= NETIF_F_SCTP_CRC;
822
823 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
824 tso_offloads |= NETIF_F_TSO;
825 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
826 tso_offloads |= NETIF_F_TSO6;
827 if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
828 VIRTCHNL2_CAP_SEG_IPV4_UDP |
829 VIRTCHNL2_CAP_SEG_IPV6_UDP))
830 tso_offloads |= NETIF_F_GSO_UDP_L4;
831 if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
832 other_offloads |= NETIF_F_GRO_HW;
833 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
834 other_offloads |= NETIF_F_LOOPBACK;
835
836 netdev->features |= dflt_features | csum_offloads | tso_offloads;
837 netdev->hw_features |= netdev->features | other_offloads;
838 netdev->vlan_features |= netdev->features | other_offloads;
839 netdev->hw_enc_features |= dflt_features | other_offloads;
840 idpf_xdp_set_features(vport);
841
842 idpf_set_ethtool_ops(netdev);
843 netif_set_affinity_auto(netdev);
844 SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
845
846 /* carrier off on init to avoid Tx hangs */
847 netif_carrier_off(netdev);
848
849 /* make sure transmit queues start off as stopped */
850 netif_tx_stop_all_queues(netdev);
851
852 /* The vport can be arbitrarily released so we need to also track
853 * netdevs in the adapter struct
854 */
855 adapter->netdevs[idx] = netdev;
856
857 return 0;
858 }
859
860 /**
861 * idpf_get_free_slot - get the next non-NULL location index in array
862 * @adapter: adapter in which to look for a free vport slot
863 */
idpf_get_free_slot(struct idpf_adapter * adapter)864 static int idpf_get_free_slot(struct idpf_adapter *adapter)
865 {
866 unsigned int i;
867
868 for (i = 0; i < adapter->max_vports; i++) {
869 if (!adapter->vports[i])
870 return i;
871 }
872
873 return IDPF_NO_FREE_SLOT;
874 }
875
876 /**
877 * idpf_remove_features - Turn off feature configs
878 * @vport: virtual port structure
879 */
idpf_remove_features(struct idpf_vport * vport)880 static void idpf_remove_features(struct idpf_vport *vport)
881 {
882 struct idpf_adapter *adapter = vport->adapter;
883
884 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
885 idpf_remove_mac_filters(vport);
886 }
887
888 /**
889 * idpf_vport_stop - Disable a vport
890 * @vport: vport to disable
891 * @rtnl: whether to take RTNL lock
892 */
idpf_vport_stop(struct idpf_vport * vport,bool rtnl)893 static void idpf_vport_stop(struct idpf_vport *vport, bool rtnl)
894 {
895 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
896
897 if (np->state <= __IDPF_VPORT_DOWN)
898 return;
899
900 if (rtnl)
901 rtnl_lock();
902
903 netif_carrier_off(vport->netdev);
904 netif_tx_disable(vport->netdev);
905
906 idpf_send_disable_vport_msg(vport);
907 idpf_send_disable_queues_msg(vport);
908 idpf_send_map_unmap_queue_vector_msg(vport, false);
909 /* Normally we ask for queues in create_vport, but if the number of
910 * initially requested queues have changed, for example via ethtool
911 * set channels, we do delete queues and then add the queues back
912 * instead of deleting and reallocating the vport.
913 */
914 if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
915 idpf_send_delete_queues_msg(vport);
916
917 idpf_remove_features(vport);
918
919 vport->link_up = false;
920 idpf_vport_intr_deinit(vport);
921 idpf_xdp_rxq_info_deinit_all(vport);
922 idpf_vport_queues_rel(vport);
923 idpf_vport_intr_rel(vport);
924 np->state = __IDPF_VPORT_DOWN;
925
926 if (rtnl)
927 rtnl_unlock();
928 }
929
930 /**
931 * idpf_stop - Disables a network interface
932 * @netdev: network interface device structure
933 *
934 * The stop entry point is called when an interface is de-activated by the OS,
935 * and the netdevice enters the DOWN state. The hardware is still under the
936 * driver's control, but the netdev interface is disabled.
937 *
938 * Returns success only - not allowed to fail
939 */
idpf_stop(struct net_device * netdev)940 static int idpf_stop(struct net_device *netdev)
941 {
942 struct idpf_netdev_priv *np = netdev_priv(netdev);
943 struct idpf_vport *vport;
944
945 if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
946 return 0;
947
948 idpf_vport_ctrl_lock(netdev);
949 vport = idpf_netdev_to_vport(netdev);
950
951 idpf_vport_stop(vport, false);
952
953 idpf_vport_ctrl_unlock(netdev);
954
955 return 0;
956 }
957
958 /**
959 * idpf_decfg_netdev - Unregister the netdev
960 * @vport: vport for which netdev to be unregistered
961 */
idpf_decfg_netdev(struct idpf_vport * vport)962 static void idpf_decfg_netdev(struct idpf_vport *vport)
963 {
964 struct idpf_adapter *adapter = vport->adapter;
965 u16 idx = vport->idx;
966
967 kfree(vport->rx_ptype_lkup);
968 vport->rx_ptype_lkup = NULL;
969
970 if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV,
971 adapter->vport_config[idx]->flags)) {
972 unregister_netdev(vport->netdev);
973 free_netdev(vport->netdev);
974 }
975 vport->netdev = NULL;
976
977 adapter->netdevs[idx] = NULL;
978 }
979
980 /**
981 * idpf_vport_rel - Delete a vport and free its resources
982 * @vport: the vport being removed
983 */
idpf_vport_rel(struct idpf_vport * vport)984 static void idpf_vport_rel(struct idpf_vport *vport)
985 {
986 struct idpf_adapter *adapter = vport->adapter;
987 struct idpf_vport_config *vport_config;
988 struct idpf_vector_info vec_info;
989 struct idpf_rss_data *rss_data;
990 struct idpf_vport_max_q max_q;
991 u16 idx = vport->idx;
992
993 vport_config = adapter->vport_config[vport->idx];
994 idpf_deinit_rss(vport);
995 rss_data = &vport_config->user_config.rss_data;
996 kfree(rss_data->rss_key);
997 rss_data->rss_key = NULL;
998
999 idpf_send_destroy_vport_msg(vport);
1000
1001 /* Release all max queues allocated to the adapter's pool */
1002 max_q.max_rxq = vport_config->max_q.max_rxq;
1003 max_q.max_txq = vport_config->max_q.max_txq;
1004 max_q.max_bufq = vport_config->max_q.max_bufq;
1005 max_q.max_complq = vport_config->max_q.max_complq;
1006 idpf_vport_dealloc_max_qs(adapter, &max_q);
1007
1008 /* Release all the allocated vectors on the stack */
1009 vec_info.num_req_vecs = 0;
1010 vec_info.num_curr_vecs = vport->num_q_vectors;
1011 vec_info.default_vport = vport->default_vport;
1012
1013 idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
1014
1015 kfree(vport->q_vector_idxs);
1016 vport->q_vector_idxs = NULL;
1017
1018 kfree(adapter->vport_params_recvd[idx]);
1019 adapter->vport_params_recvd[idx] = NULL;
1020 kfree(adapter->vport_params_reqd[idx]);
1021 adapter->vport_params_reqd[idx] = NULL;
1022 if (adapter->vport_config[idx]) {
1023 kfree(adapter->vport_config[idx]->req_qs_chunks);
1024 adapter->vport_config[idx]->req_qs_chunks = NULL;
1025 }
1026 kfree(vport);
1027 adapter->num_alloc_vports--;
1028 }
1029
1030 /**
1031 * idpf_vport_dealloc - cleanup and release a given vport
1032 * @vport: pointer to idpf vport structure
1033 *
1034 * returns nothing
1035 */
idpf_vport_dealloc(struct idpf_vport * vport)1036 static void idpf_vport_dealloc(struct idpf_vport *vport)
1037 {
1038 struct idpf_adapter *adapter = vport->adapter;
1039 unsigned int i = vport->idx;
1040
1041 idpf_idc_deinit_vport_aux_device(vport->vdev_info);
1042
1043 idpf_deinit_mac_addr(vport);
1044 idpf_vport_stop(vport, true);
1045
1046 if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1047 idpf_decfg_netdev(vport);
1048 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1049 idpf_del_all_mac_filters(vport);
1050
1051 if (adapter->netdevs[i]) {
1052 struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1053
1054 np->vport = NULL;
1055 }
1056
1057 idpf_vport_rel(vport);
1058
1059 adapter->vports[i] = NULL;
1060 adapter->next_vport = idpf_get_free_slot(adapter);
1061 }
1062
1063 /**
1064 * idpf_is_hsplit_supported - check whether the header split is supported
1065 * @vport: virtual port to check the capability for
1066 *
1067 * Return: true if it's supported by the HW/FW, false if not.
1068 */
idpf_is_hsplit_supported(const struct idpf_vport * vport)1069 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1070 {
1071 return idpf_is_queue_model_split(vport->rxq_model) &&
1072 idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1073 IDPF_CAP_HSPLIT);
1074 }
1075
1076 /**
1077 * idpf_vport_get_hsplit - get the current header split feature state
1078 * @vport: virtual port to query the state for
1079 *
1080 * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1081 * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1082 * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1083 */
idpf_vport_get_hsplit(const struct idpf_vport * vport)1084 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1085 {
1086 const struct idpf_vport_user_config_data *config;
1087
1088 if (!idpf_is_hsplit_supported(vport))
1089 return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1090
1091 config = &vport->adapter->vport_config[vport->idx]->user_config;
1092
1093 return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1094 ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1095 ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1096 }
1097
1098 /**
1099 * idpf_vport_set_hsplit - enable or disable header split on a given vport
1100 * @vport: virtual port to configure
1101 * @val: Ethtool flag controlling the header split state
1102 *
1103 * Return: true on success, false if not supported by the HW.
1104 */
idpf_vport_set_hsplit(const struct idpf_vport * vport,u8 val)1105 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1106 {
1107 struct idpf_vport_user_config_data *config;
1108
1109 if (!idpf_is_hsplit_supported(vport))
1110 return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1111
1112 config = &vport->adapter->vport_config[vport->idx]->user_config;
1113
1114 switch (val) {
1115 case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1116 /* Default is to enable */
1117 case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1118 __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1119 return true;
1120 case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1121 __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1122 return true;
1123 default:
1124 return false;
1125 }
1126 }
1127
1128 /**
1129 * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1130 * @adapter: board private structure
1131 * @max_q: vport max queue info
1132 *
1133 * returns a pointer to a vport on success, NULL on failure.
1134 */
idpf_vport_alloc(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1135 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1136 struct idpf_vport_max_q *max_q)
1137 {
1138 struct idpf_rss_data *rss_data;
1139 u16 idx = adapter->next_vport;
1140 struct idpf_vport *vport;
1141 u16 num_max_q;
1142
1143 if (idx == IDPF_NO_FREE_SLOT)
1144 return NULL;
1145
1146 vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1147 if (!vport)
1148 return vport;
1149
1150 num_max_q = max(max_q->max_txq, max_q->max_rxq) + IDPF_RESERVED_VECS;
1151 if (!adapter->vport_config[idx]) {
1152 struct idpf_vport_config *vport_config;
1153 struct idpf_q_coalesce *q_coal;
1154
1155 vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1156 if (!vport_config) {
1157 kfree(vport);
1158
1159 return NULL;
1160 }
1161
1162 q_coal = kcalloc(num_max_q, sizeof(*q_coal), GFP_KERNEL);
1163 if (!q_coal) {
1164 kfree(vport_config);
1165 kfree(vport);
1166
1167 return NULL;
1168 }
1169 for (int i = 0; i < num_max_q; i++) {
1170 q_coal[i].tx_intr_mode = IDPF_ITR_DYNAMIC;
1171 q_coal[i].tx_coalesce_usecs = IDPF_ITR_TX_DEF;
1172 q_coal[i].rx_intr_mode = IDPF_ITR_DYNAMIC;
1173 q_coal[i].rx_coalesce_usecs = IDPF_ITR_RX_DEF;
1174 }
1175 vport_config->user_config.q_coalesce = q_coal;
1176
1177 adapter->vport_config[idx] = vport_config;
1178 }
1179
1180 vport->idx = idx;
1181 vport->adapter = adapter;
1182 vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1183 vport->default_vport = adapter->num_alloc_vports <
1184 idpf_get_default_vports(adapter);
1185
1186 vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1187 if (!vport->q_vector_idxs)
1188 goto free_vport;
1189
1190 idpf_vport_init(vport, max_q);
1191
1192 /* This alloc is done separate from the LUT because it's not strictly
1193 * dependent on how many queues we have. If we change number of queues
1194 * and soft reset we'll need a new LUT but the key can remain the same
1195 * for as long as the vport exists.
1196 */
1197 rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1198 rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1199 if (!rss_data->rss_key)
1200 goto free_vector_idxs;
1201
1202 /* Initialize default rss key */
1203 netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1204
1205 /* fill vport slot in the adapter struct */
1206 adapter->vports[idx] = vport;
1207 adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1208
1209 adapter->num_alloc_vports++;
1210 /* prepare adapter->next_vport for next use */
1211 adapter->next_vport = idpf_get_free_slot(adapter);
1212
1213 return vport;
1214
1215 free_vector_idxs:
1216 kfree(vport->q_vector_idxs);
1217 free_vport:
1218 kfree(vport);
1219
1220 return NULL;
1221 }
1222
1223 /**
1224 * idpf_get_stats64 - get statistics for network device structure
1225 * @netdev: network interface device structure
1226 * @stats: main device statistics structure
1227 */
idpf_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1228 static void idpf_get_stats64(struct net_device *netdev,
1229 struct rtnl_link_stats64 *stats)
1230 {
1231 struct idpf_netdev_priv *np = netdev_priv(netdev);
1232
1233 spin_lock_bh(&np->stats_lock);
1234 *stats = np->netstats;
1235 spin_unlock_bh(&np->stats_lock);
1236 }
1237
1238 /**
1239 * idpf_statistics_task - Delayed task to get statistics over mailbox
1240 * @work: work_struct handle to our data
1241 */
idpf_statistics_task(struct work_struct * work)1242 void idpf_statistics_task(struct work_struct *work)
1243 {
1244 struct idpf_adapter *adapter;
1245 int i;
1246
1247 adapter = container_of(work, struct idpf_adapter, stats_task.work);
1248
1249 for (i = 0; i < adapter->max_vports; i++) {
1250 struct idpf_vport *vport = adapter->vports[i];
1251
1252 if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1253 idpf_send_get_stats_msg(vport);
1254 }
1255
1256 queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1257 msecs_to_jiffies(10000));
1258 }
1259
1260 /**
1261 * idpf_mbx_task - Delayed task to handle mailbox responses
1262 * @work: work_struct handle
1263 */
idpf_mbx_task(struct work_struct * work)1264 void idpf_mbx_task(struct work_struct *work)
1265 {
1266 struct idpf_adapter *adapter;
1267
1268 adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1269
1270 if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1271 idpf_mb_irq_enable(adapter);
1272 else
1273 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1274 msecs_to_jiffies(300));
1275
1276 idpf_recv_mb_msg(adapter);
1277 }
1278
1279 /**
1280 * idpf_service_task - Delayed task for handling mailbox responses
1281 * @work: work_struct handle to our data
1282 *
1283 */
idpf_service_task(struct work_struct * work)1284 void idpf_service_task(struct work_struct *work)
1285 {
1286 struct idpf_adapter *adapter;
1287
1288 adapter = container_of(work, struct idpf_adapter, serv_task.work);
1289
1290 if (idpf_is_reset_detected(adapter) &&
1291 !idpf_is_reset_in_prog(adapter) &&
1292 !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1293 dev_info(&adapter->pdev->dev, "HW reset detected\n");
1294 set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1295 queue_delayed_work(adapter->vc_event_wq,
1296 &adapter->vc_event_task,
1297 msecs_to_jiffies(10));
1298 }
1299
1300 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1301 msecs_to_jiffies(300));
1302 }
1303
1304 /**
1305 * idpf_restore_features - Restore feature configs
1306 * @vport: virtual port structure
1307 */
idpf_restore_features(struct idpf_vport * vport)1308 static void idpf_restore_features(struct idpf_vport *vport)
1309 {
1310 struct idpf_adapter *adapter = vport->adapter;
1311
1312 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1313 idpf_restore_mac_filters(vport);
1314 }
1315
1316 /**
1317 * idpf_set_real_num_queues - set number of queues for netdev
1318 * @vport: virtual port structure
1319 *
1320 * Returns 0 on success, negative on failure.
1321 */
idpf_set_real_num_queues(struct idpf_vport * vport)1322 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1323 {
1324 int err, txq = vport->num_txq - vport->num_xdp_txq;
1325
1326 err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1327 if (err)
1328 return err;
1329
1330 return netif_set_real_num_tx_queues(vport->netdev, txq);
1331 }
1332
1333 /**
1334 * idpf_up_complete - Complete interface up sequence
1335 * @vport: virtual port structure
1336 *
1337 * Returns 0 on success, negative on failure.
1338 */
idpf_up_complete(struct idpf_vport * vport)1339 static int idpf_up_complete(struct idpf_vport *vport)
1340 {
1341 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1342
1343 if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1344 netif_carrier_on(vport->netdev);
1345 netif_tx_start_all_queues(vport->netdev);
1346 }
1347
1348 np->state = __IDPF_VPORT_UP;
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1355 * @vport: virtual port struct
1356 */
idpf_rx_init_buf_tail(struct idpf_vport * vport)1357 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1358 {
1359 int i, j;
1360
1361 for (i = 0; i < vport->num_rxq_grp; i++) {
1362 struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1363
1364 if (idpf_is_queue_model_split(vport->rxq_model)) {
1365 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1366 const struct idpf_buf_queue *q =
1367 &grp->splitq.bufq_sets[j].bufq;
1368
1369 writel(q->next_to_alloc, q->tail);
1370 }
1371 } else {
1372 for (j = 0; j < grp->singleq.num_rxq; j++) {
1373 const struct idpf_rx_queue *q =
1374 grp->singleq.rxqs[j];
1375
1376 writel(q->next_to_alloc, q->tail);
1377 }
1378 }
1379 }
1380 }
1381
1382 /**
1383 * idpf_vport_open - Bring up a vport
1384 * @vport: vport to bring up
1385 * @rtnl: whether to take RTNL lock
1386 */
idpf_vport_open(struct idpf_vport * vport,bool rtnl)1387 static int idpf_vport_open(struct idpf_vport *vport, bool rtnl)
1388 {
1389 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1390 struct idpf_adapter *adapter = vport->adapter;
1391 struct idpf_vport_config *vport_config;
1392 int err;
1393
1394 if (np->state != __IDPF_VPORT_DOWN)
1395 return -EBUSY;
1396
1397 if (rtnl)
1398 rtnl_lock();
1399
1400 /* we do not allow interface up just yet */
1401 netif_carrier_off(vport->netdev);
1402
1403 err = idpf_vport_intr_alloc(vport);
1404 if (err) {
1405 dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1406 vport->vport_id, err);
1407 goto err_rtnl_unlock;
1408 }
1409
1410 err = idpf_vport_queues_alloc(vport);
1411 if (err)
1412 goto intr_rel;
1413
1414 err = idpf_vport_queue_ids_init(vport);
1415 if (err) {
1416 dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1417 vport->vport_id, err);
1418 goto queues_rel;
1419 }
1420
1421 err = idpf_vport_intr_init(vport);
1422 if (err) {
1423 dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1424 vport->vport_id, err);
1425 goto queues_rel;
1426 }
1427
1428 err = idpf_queue_reg_init(vport);
1429 if (err) {
1430 dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1431 vport->vport_id, err);
1432 goto queues_rel;
1433 }
1434
1435 err = idpf_rx_bufs_init_all(vport);
1436 if (err) {
1437 dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1438 vport->vport_id, err);
1439 goto queues_rel;
1440 }
1441
1442 idpf_rx_init_buf_tail(vport);
1443
1444 err = idpf_xdp_rxq_info_init_all(vport);
1445 if (err) {
1446 netdev_err(vport->netdev,
1447 "Failed to initialize XDP RxQ info for vport %u: %pe\n",
1448 vport->vport_id, ERR_PTR(err));
1449 goto intr_deinit;
1450 }
1451
1452 idpf_vport_intr_ena(vport);
1453
1454 err = idpf_send_config_queues_msg(vport);
1455 if (err) {
1456 dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1457 vport->vport_id, err);
1458 goto rxq_deinit;
1459 }
1460
1461 err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1462 if (err) {
1463 dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1464 vport->vport_id, err);
1465 goto rxq_deinit;
1466 }
1467
1468 err = idpf_send_enable_queues_msg(vport);
1469 if (err) {
1470 dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1471 vport->vport_id, err);
1472 goto unmap_queue_vectors;
1473 }
1474
1475 err = idpf_send_enable_vport_msg(vport);
1476 if (err) {
1477 dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1478 vport->vport_id, err);
1479 err = -EAGAIN;
1480 goto disable_queues;
1481 }
1482
1483 idpf_restore_features(vport);
1484
1485 vport_config = adapter->vport_config[vport->idx];
1486 if (vport_config->user_config.rss_data.rss_lut)
1487 err = idpf_config_rss(vport);
1488 else
1489 err = idpf_init_rss(vport);
1490 if (err) {
1491 dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1492 vport->vport_id, err);
1493 goto disable_vport;
1494 }
1495
1496 err = idpf_up_complete(vport);
1497 if (err) {
1498 dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1499 vport->vport_id, err);
1500 goto deinit_rss;
1501 }
1502
1503 if (rtnl)
1504 rtnl_unlock();
1505
1506 return 0;
1507
1508 deinit_rss:
1509 idpf_deinit_rss(vport);
1510 disable_vport:
1511 idpf_send_disable_vport_msg(vport);
1512 disable_queues:
1513 idpf_send_disable_queues_msg(vport);
1514 unmap_queue_vectors:
1515 idpf_send_map_unmap_queue_vector_msg(vport, false);
1516 rxq_deinit:
1517 idpf_xdp_rxq_info_deinit_all(vport);
1518 intr_deinit:
1519 idpf_vport_intr_deinit(vport);
1520 queues_rel:
1521 idpf_vport_queues_rel(vport);
1522 intr_rel:
1523 idpf_vport_intr_rel(vport);
1524
1525 err_rtnl_unlock:
1526 if (rtnl)
1527 rtnl_unlock();
1528
1529 return err;
1530 }
1531
1532 /**
1533 * idpf_init_task - Delayed initialization task
1534 * @work: work_struct handle to our data
1535 *
1536 * Init task finishes up pending work started in probe. Due to the asynchronous
1537 * nature in which the device communicates with hardware, we may have to wait
1538 * several milliseconds to get a response. Instead of busy polling in probe,
1539 * pulling it out into a delayed work task prevents us from bogging down the
1540 * whole system waiting for a response from hardware.
1541 */
idpf_init_task(struct work_struct * work)1542 void idpf_init_task(struct work_struct *work)
1543 {
1544 struct idpf_vport_config *vport_config;
1545 struct idpf_vport_max_q max_q;
1546 struct idpf_adapter *adapter;
1547 struct idpf_netdev_priv *np;
1548 struct idpf_vport *vport;
1549 u16 num_default_vports;
1550 struct pci_dev *pdev;
1551 bool default_vport;
1552 int index, err;
1553
1554 adapter = container_of(work, struct idpf_adapter, init_task.work);
1555
1556 num_default_vports = idpf_get_default_vports(adapter);
1557 if (adapter->num_alloc_vports < num_default_vports)
1558 default_vport = true;
1559 else
1560 default_vport = false;
1561
1562 err = idpf_vport_alloc_max_qs(adapter, &max_q);
1563 if (err)
1564 goto unwind_vports;
1565
1566 err = idpf_send_create_vport_msg(adapter, &max_q);
1567 if (err) {
1568 idpf_vport_dealloc_max_qs(adapter, &max_q);
1569 goto unwind_vports;
1570 }
1571
1572 pdev = adapter->pdev;
1573 vport = idpf_vport_alloc(adapter, &max_q);
1574 if (!vport) {
1575 err = -EFAULT;
1576 dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1577 err);
1578 idpf_vport_dealloc_max_qs(adapter, &max_q);
1579 goto unwind_vports;
1580 }
1581
1582 index = vport->idx;
1583 vport_config = adapter->vport_config[index];
1584
1585 spin_lock_init(&vport_config->mac_filter_list_lock);
1586
1587 INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1588 INIT_LIST_HEAD(&vport_config->user_config.flow_steer_list);
1589
1590 err = idpf_check_supported_desc_ids(vport);
1591 if (err) {
1592 dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1593 goto cfg_netdev_err;
1594 }
1595
1596 if (idpf_cfg_netdev(vport))
1597 goto cfg_netdev_err;
1598
1599 err = idpf_send_get_rx_ptype_msg(vport);
1600 if (err)
1601 goto handle_err;
1602
1603 /* Once state is put into DOWN, driver is ready for dev_open */
1604 np = netdev_priv(vport->netdev);
1605 np->state = __IDPF_VPORT_DOWN;
1606 if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1607 idpf_vport_open(vport, true);
1608
1609 /* Spawn and return 'idpf_init_task' work queue until all the
1610 * default vports are created
1611 */
1612 if (adapter->num_alloc_vports < num_default_vports) {
1613 queue_delayed_work(adapter->init_wq, &adapter->init_task,
1614 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1615
1616 return;
1617 }
1618
1619 for (index = 0; index < adapter->max_vports; index++) {
1620 struct net_device *netdev = adapter->netdevs[index];
1621 struct idpf_vport_config *vport_config;
1622
1623 vport_config = adapter->vport_config[index];
1624
1625 if (!netdev ||
1626 test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags))
1627 continue;
1628
1629 err = register_netdev(netdev);
1630 if (err) {
1631 dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n",
1632 index, ERR_PTR(err));
1633 continue;
1634 }
1635 set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags);
1636 }
1637
1638 /* As all the required vports are created, clear the reset flag
1639 * unconditionally here in case we were in reset and the link was down.
1640 */
1641 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1642 /* Start the statistics task now */
1643 queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1644 msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1645
1646 return;
1647
1648 handle_err:
1649 idpf_decfg_netdev(vport);
1650 cfg_netdev_err:
1651 idpf_vport_rel(vport);
1652 adapter->vports[index] = NULL;
1653 unwind_vports:
1654 if (default_vport) {
1655 for (index = 0; index < adapter->max_vports; index++) {
1656 if (adapter->vports[index])
1657 idpf_vport_dealloc(adapter->vports[index]);
1658 }
1659 }
1660 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1661 }
1662
1663 /**
1664 * idpf_sriov_ena - Enable or change number of VFs
1665 * @adapter: private data struct
1666 * @num_vfs: number of VFs to allocate
1667 */
idpf_sriov_ena(struct idpf_adapter * adapter,int num_vfs)1668 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1669 {
1670 struct device *dev = &adapter->pdev->dev;
1671 int err;
1672
1673 err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1674 if (err) {
1675 dev_err(dev, "Failed to allocate VFs: %d\n", err);
1676
1677 return err;
1678 }
1679
1680 err = pci_enable_sriov(adapter->pdev, num_vfs);
1681 if (err) {
1682 idpf_send_set_sriov_vfs_msg(adapter, 0);
1683 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1684
1685 return err;
1686 }
1687
1688 adapter->num_vfs = num_vfs;
1689
1690 return num_vfs;
1691 }
1692
1693 /**
1694 * idpf_sriov_configure - Configure the requested VFs
1695 * @pdev: pointer to a pci_dev structure
1696 * @num_vfs: number of vfs to allocate
1697 *
1698 * Enable or change the number of VFs. Called when the user updates the number
1699 * of VFs in sysfs.
1700 **/
idpf_sriov_configure(struct pci_dev * pdev,int num_vfs)1701 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1702 {
1703 struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1704
1705 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1706 dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1707
1708 return -EOPNOTSUPP;
1709 }
1710
1711 if (num_vfs)
1712 return idpf_sriov_ena(adapter, num_vfs);
1713
1714 if (pci_vfs_assigned(pdev)) {
1715 dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1716
1717 return -EBUSY;
1718 }
1719
1720 pci_disable_sriov(adapter->pdev);
1721 idpf_send_set_sriov_vfs_msg(adapter, 0);
1722 adapter->num_vfs = 0;
1723
1724 return 0;
1725 }
1726
1727 /**
1728 * idpf_deinit_task - Device deinit routine
1729 * @adapter: Driver specific private structure
1730 *
1731 * Extended remove logic which will be used for
1732 * hard reset as well
1733 */
idpf_deinit_task(struct idpf_adapter * adapter)1734 void idpf_deinit_task(struct idpf_adapter *adapter)
1735 {
1736 unsigned int i;
1737
1738 /* Wait until the init_task is done else this thread might release
1739 * the resources first and the other thread might end up in a bad state
1740 */
1741 cancel_delayed_work_sync(&adapter->init_task);
1742
1743 if (!adapter->vports)
1744 return;
1745
1746 cancel_delayed_work_sync(&adapter->stats_task);
1747
1748 for (i = 0; i < adapter->max_vports; i++) {
1749 if (adapter->vports[i])
1750 idpf_vport_dealloc(adapter->vports[i]);
1751 }
1752 }
1753
1754 /**
1755 * idpf_check_reset_complete - check that reset is complete
1756 * @hw: pointer to hw struct
1757 * @reset_reg: struct with reset registers
1758 *
1759 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1760 **/
idpf_check_reset_complete(struct idpf_hw * hw,struct idpf_reset_reg * reset_reg)1761 static int idpf_check_reset_complete(struct idpf_hw *hw,
1762 struct idpf_reset_reg *reset_reg)
1763 {
1764 struct idpf_adapter *adapter = hw->back;
1765 int i;
1766
1767 for (i = 0; i < 2000; i++) {
1768 u32 reg_val = readl(reset_reg->rstat);
1769
1770 /* 0xFFFFFFFF might be read if other side hasn't cleared the
1771 * register for us yet and 0xFFFFFFFF is not a valid value for
1772 * the register, so treat that as invalid.
1773 */
1774 if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1775 return 0;
1776
1777 usleep_range(5000, 10000);
1778 }
1779
1780 dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1781 /* Clear the reset flag unconditionally here since the reset
1782 * technically isn't in progress anymore from the driver's perspective
1783 */
1784 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1785
1786 return -EBUSY;
1787 }
1788
1789 /**
1790 * idpf_set_vport_state - Set the vport state to be after the reset
1791 * @adapter: Driver specific private structure
1792 */
idpf_set_vport_state(struct idpf_adapter * adapter)1793 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1794 {
1795 u16 i;
1796
1797 for (i = 0; i < adapter->max_vports; i++) {
1798 struct idpf_netdev_priv *np;
1799
1800 if (!adapter->netdevs[i])
1801 continue;
1802
1803 np = netdev_priv(adapter->netdevs[i]);
1804 if (np->state == __IDPF_VPORT_UP)
1805 set_bit(IDPF_VPORT_UP_REQUESTED,
1806 adapter->vport_config[i]->flags);
1807 }
1808 }
1809
1810 /**
1811 * idpf_init_hard_reset - Initiate a hardware reset
1812 * @adapter: Driver specific private structure
1813 *
1814 * Deallocate the vports and all the resources associated with them and
1815 * reallocate. Also reinitialize the mailbox. Return 0 on success,
1816 * negative on failure.
1817 */
idpf_init_hard_reset(struct idpf_adapter * adapter)1818 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1819 {
1820 struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1821 struct device *dev = &adapter->pdev->dev;
1822 struct net_device *netdev;
1823 int err;
1824 u16 i;
1825
1826 mutex_lock(&adapter->vport_ctrl_lock);
1827
1828 dev_info(dev, "Device HW Reset initiated\n");
1829
1830 /* Avoid TX hangs on reset */
1831 for (i = 0; i < adapter->max_vports; i++) {
1832 netdev = adapter->netdevs[i];
1833 if (!netdev)
1834 continue;
1835
1836 netif_carrier_off(netdev);
1837 netif_tx_disable(netdev);
1838 }
1839
1840 /* Prepare for reset */
1841 if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1842 reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1843 } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1844 bool is_reset = idpf_is_reset_detected(adapter);
1845
1846 idpf_idc_issue_reset_event(adapter->cdev_info);
1847
1848 idpf_set_vport_state(adapter);
1849 idpf_vc_core_deinit(adapter);
1850 if (!is_reset)
1851 reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1852 idpf_deinit_dflt_mbx(adapter);
1853 } else {
1854 dev_err(dev, "Unhandled hard reset cause\n");
1855 err = -EBADRQC;
1856 goto unlock_mutex;
1857 }
1858
1859 /* Wait for reset to complete */
1860 err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1861 if (err) {
1862 dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1863 adapter->state);
1864 goto unlock_mutex;
1865 }
1866
1867 /* Reset is complete and so start building the driver resources again */
1868 err = idpf_init_dflt_mbx(adapter);
1869 if (err) {
1870 dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1871 goto unlock_mutex;
1872 }
1873
1874 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1875
1876 /* Initialize the state machine, also allocate memory and request
1877 * resources
1878 */
1879 err = idpf_vc_core_init(adapter);
1880 if (err) {
1881 cancel_delayed_work_sync(&adapter->mbx_task);
1882 idpf_deinit_dflt_mbx(adapter);
1883 goto unlock_mutex;
1884 }
1885
1886 /* Wait till all the vports are initialized to release the reset lock,
1887 * else user space callbacks may access uninitialized vports
1888 */
1889 while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1890 msleep(100);
1891
1892 unlock_mutex:
1893 mutex_unlock(&adapter->vport_ctrl_lock);
1894
1895 /* Wait until all vports are created to init RDMA CORE AUX */
1896 if (!err)
1897 err = idpf_idc_init(adapter);
1898
1899 return err;
1900 }
1901
1902 /**
1903 * idpf_vc_event_task - Handle virtchannel event logic
1904 * @work: work queue struct
1905 */
idpf_vc_event_task(struct work_struct * work)1906 void idpf_vc_event_task(struct work_struct *work)
1907 {
1908 struct idpf_adapter *adapter;
1909
1910 adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1911
1912 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1913 return;
1914
1915 if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags))
1916 goto func_reset;
1917
1918 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags))
1919 goto drv_load;
1920
1921 return;
1922
1923 func_reset:
1924 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
1925 drv_load:
1926 set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1927 idpf_init_hard_reset(adapter);
1928 }
1929
1930 /**
1931 * idpf_initiate_soft_reset - Initiate a software reset
1932 * @vport: virtual port data struct
1933 * @reset_cause: reason for the soft reset
1934 *
1935 * Soft reset only reallocs vport queue resources. Returns 0 on success,
1936 * negative on failure.
1937 */
idpf_initiate_soft_reset(struct idpf_vport * vport,enum idpf_vport_reset_cause reset_cause)1938 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1939 enum idpf_vport_reset_cause reset_cause)
1940 {
1941 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1942 enum idpf_vport_state current_state = np->state;
1943 struct idpf_adapter *adapter = vport->adapter;
1944 struct idpf_vport *new_vport;
1945 int err;
1946
1947 /* If the system is low on memory, we can end up in bad state if we
1948 * free all the memory for queue resources and try to allocate them
1949 * again. Instead, we can pre-allocate the new resources before doing
1950 * anything and bailing if the alloc fails.
1951 *
1952 * Make a clone of the existing vport to mimic its current
1953 * configuration, then modify the new structure with any requested
1954 * changes. Once the allocation of the new resources is done, stop the
1955 * existing vport and copy the configuration to the main vport. If an
1956 * error occurred, the existing vport will be untouched.
1957 *
1958 */
1959 new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1960 if (!new_vport)
1961 return -ENOMEM;
1962
1963 /* This purposely avoids copying the end of the struct because it
1964 * contains wait_queues and mutexes and other stuff we don't want to
1965 * mess with. Nothing below should use those variables from new_vport
1966 * and should instead always refer to them in vport if they need to.
1967 */
1968 memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up));
1969
1970 /* Adjust resource parameters prior to reallocating resources */
1971 switch (reset_cause) {
1972 case IDPF_SR_Q_CHANGE:
1973 err = idpf_vport_adjust_qs(new_vport);
1974 if (err)
1975 goto free_vport;
1976 break;
1977 case IDPF_SR_Q_DESC_CHANGE:
1978 /* Update queue parameters before allocating resources */
1979 idpf_vport_calc_num_q_desc(new_vport);
1980 break;
1981 case IDPF_SR_MTU_CHANGE:
1982 idpf_idc_vdev_mtu_event(vport->vdev_info,
1983 IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE);
1984 break;
1985 case IDPF_SR_RSC_CHANGE:
1986 break;
1987 default:
1988 dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1989 err = -EINVAL;
1990 goto free_vport;
1991 }
1992
1993 if (current_state <= __IDPF_VPORT_DOWN) {
1994 idpf_send_delete_queues_msg(vport);
1995 } else {
1996 set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1997 idpf_vport_stop(vport, false);
1998 }
1999
2000 idpf_deinit_rss(vport);
2001 /* We're passing in vport here because we need its wait_queue
2002 * to send a message and it should be getting all the vport
2003 * config data out of the adapter but we need to be careful not
2004 * to add code to add_queues to change the vport config within
2005 * vport itself as it will be wiped with a memcpy later.
2006 */
2007 err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
2008 new_vport->num_complq,
2009 new_vport->num_rxq,
2010 new_vport->num_bufq);
2011 if (err)
2012 goto err_reset;
2013
2014 /* Same comment as above regarding avoiding copying the wait_queues and
2015 * mutexes applies here. We do not want to mess with those if possible.
2016 */
2017 memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up));
2018
2019 if (reset_cause == IDPF_SR_Q_CHANGE)
2020 idpf_vport_alloc_vec_indexes(vport);
2021
2022 err = idpf_set_real_num_queues(vport);
2023 if (err)
2024 goto err_open;
2025
2026 if (current_state == __IDPF_VPORT_UP)
2027 err = idpf_vport_open(vport, false);
2028
2029 goto free_vport;
2030
2031 err_reset:
2032 idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq,
2033 vport->num_rxq, vport->num_bufq);
2034
2035 err_open:
2036 if (current_state == __IDPF_VPORT_UP)
2037 idpf_vport_open(vport, false);
2038
2039 free_vport:
2040 kfree(new_vport);
2041
2042 if (reset_cause == IDPF_SR_MTU_CHANGE)
2043 idpf_idc_vdev_mtu_event(vport->vdev_info,
2044 IIDC_RDMA_EVENT_AFTER_MTU_CHANGE);
2045
2046 return err;
2047 }
2048
2049 /**
2050 * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
2051 * @netdev: the netdevice
2052 * @addr: address to add
2053 *
2054 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2055 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2056 * meaning we cannot sleep in this context. Due to this, we have to add the
2057 * filter and send the virtchnl message asynchronously without waiting for the
2058 * response from the other side. We won't know whether or not the operation
2059 * actually succeeded until we get the message back. Returns 0 on success,
2060 * negative on failure.
2061 */
idpf_addr_sync(struct net_device * netdev,const u8 * addr)2062 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
2063 {
2064 struct idpf_netdev_priv *np = netdev_priv(netdev);
2065
2066 return idpf_add_mac_filter(np->vport, np, addr, true);
2067 }
2068
2069 /**
2070 * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2071 * @netdev: the netdevice
2072 * @addr: address to add
2073 *
2074 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2075 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2076 * meaning we cannot sleep in this context. Due to this we have to delete the
2077 * filter and send the virtchnl message asynchronously without waiting for the
2078 * return from the other side. We won't know whether or not the operation
2079 * actually succeeded until we get the message back. Returns 0 on success,
2080 * negative on failure.
2081 */
idpf_addr_unsync(struct net_device * netdev,const u8 * addr)2082 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
2083 {
2084 struct idpf_netdev_priv *np = netdev_priv(netdev);
2085
2086 /* Under some circumstances, we might receive a request to delete
2087 * our own device address from our uc list. Because we store the
2088 * device address in the VSI's MAC filter list, we need to ignore
2089 * such requests and not delete our device address from this list.
2090 */
2091 if (ether_addr_equal(addr, netdev->dev_addr))
2092 return 0;
2093
2094 idpf_del_mac_filter(np->vport, np, addr, true);
2095
2096 return 0;
2097 }
2098
2099 /**
2100 * idpf_set_rx_mode - NDO callback to set the netdev filters
2101 * @netdev: network interface device structure
2102 *
2103 * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We
2104 * cannot sleep in this context.
2105 */
idpf_set_rx_mode(struct net_device * netdev)2106 static void idpf_set_rx_mode(struct net_device *netdev)
2107 {
2108 struct idpf_netdev_priv *np = netdev_priv(netdev);
2109 struct idpf_vport_user_config_data *config_data;
2110 struct idpf_adapter *adapter;
2111 bool changed = false;
2112 struct device *dev;
2113 int err;
2114
2115 adapter = np->adapter;
2116 dev = &adapter->pdev->dev;
2117
2118 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2119 __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2120 __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2121 }
2122
2123 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2124 return;
2125
2126 config_data = &adapter->vport_config[np->vport_idx]->user_config;
2127 /* IFF_PROMISC enables both unicast and multicast promiscuous,
2128 * while IFF_ALLMULTI only enables multicast such that:
2129 *
2130 * promisc + allmulti = unicast | multicast
2131 * promisc + !allmulti = unicast | multicast
2132 * !promisc + allmulti = multicast
2133 */
2134 if ((netdev->flags & IFF_PROMISC) &&
2135 !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2136 changed = true;
2137 dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2138 if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2139 dev_info(dev, "Entering multicast promiscuous mode\n");
2140 }
2141
2142 if (!(netdev->flags & IFF_PROMISC) &&
2143 test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2144 changed = true;
2145 dev_info(dev, "Leaving promiscuous mode\n");
2146 }
2147
2148 if (netdev->flags & IFF_ALLMULTI &&
2149 !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2150 changed = true;
2151 dev_info(dev, "Entering multicast promiscuous mode\n");
2152 }
2153
2154 if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2155 test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2156 changed = true;
2157 dev_info(dev, "Leaving multicast promiscuous mode\n");
2158 }
2159
2160 if (!changed)
2161 return;
2162
2163 err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2164 if (err)
2165 dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2166 }
2167
2168 /**
2169 * idpf_vport_manage_rss_lut - disable/enable RSS
2170 * @vport: the vport being changed
2171 *
2172 * In the event of disable request for RSS, this function will zero out RSS
2173 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2174 * LUT with the default LUT configuration.
2175 */
idpf_vport_manage_rss_lut(struct idpf_vport * vport)2176 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2177 {
2178 bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2179 struct idpf_rss_data *rss_data;
2180 u16 idx = vport->idx;
2181 int lut_size;
2182
2183 rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2184 lut_size = rss_data->rss_lut_size * sizeof(u32);
2185
2186 if (ena) {
2187 /* This will contain the default or user configured LUT */
2188 memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2189 } else {
2190 /* Save a copy of the current LUT to be restored later if
2191 * requested.
2192 */
2193 memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2194
2195 /* Zero out the current LUT to disable */
2196 memset(rss_data->rss_lut, 0, lut_size);
2197 }
2198
2199 return idpf_config_rss(vport);
2200 }
2201
2202 /**
2203 * idpf_set_features - set the netdev feature flags
2204 * @netdev: ptr to the netdev being adjusted
2205 * @features: the feature set that the stack is suggesting
2206 */
idpf_set_features(struct net_device * netdev,netdev_features_t features)2207 static int idpf_set_features(struct net_device *netdev,
2208 netdev_features_t features)
2209 {
2210 netdev_features_t changed = netdev->features ^ features;
2211 struct idpf_adapter *adapter;
2212 struct idpf_vport *vport;
2213 int err = 0;
2214
2215 idpf_vport_ctrl_lock(netdev);
2216 vport = idpf_netdev_to_vport(netdev);
2217
2218 adapter = vport->adapter;
2219
2220 if (idpf_is_reset_in_prog(adapter)) {
2221 dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2222 err = -EBUSY;
2223 goto unlock_mutex;
2224 }
2225
2226 if (changed & NETIF_F_RXHASH) {
2227 netdev->features ^= NETIF_F_RXHASH;
2228 err = idpf_vport_manage_rss_lut(vport);
2229 if (err)
2230 goto unlock_mutex;
2231 }
2232
2233 if (changed & NETIF_F_GRO_HW) {
2234 netdev->features ^= NETIF_F_GRO_HW;
2235 err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2236 if (err)
2237 goto unlock_mutex;
2238 }
2239
2240 if (changed & NETIF_F_LOOPBACK) {
2241 netdev->features ^= NETIF_F_LOOPBACK;
2242 err = idpf_send_ena_dis_loopback_msg(vport);
2243 }
2244
2245 unlock_mutex:
2246 idpf_vport_ctrl_unlock(netdev);
2247
2248 return err;
2249 }
2250
2251 /**
2252 * idpf_open - Called when a network interface becomes active
2253 * @netdev: network interface device structure
2254 *
2255 * The open entry point is called when a network interface is made
2256 * active by the system (IFF_UP). At this point all resources needed
2257 * for transmit and receive operations are allocated, the interrupt
2258 * handler is registered with the OS, the netdev watchdog is enabled,
2259 * and the stack is notified that the interface is ready.
2260 *
2261 * Returns 0 on success, negative value on failure
2262 */
idpf_open(struct net_device * netdev)2263 static int idpf_open(struct net_device *netdev)
2264 {
2265 struct idpf_vport *vport;
2266 int err;
2267
2268 idpf_vport_ctrl_lock(netdev);
2269 vport = idpf_netdev_to_vport(netdev);
2270
2271 err = idpf_set_real_num_queues(vport);
2272 if (err)
2273 goto unlock;
2274
2275 err = idpf_vport_open(vport, false);
2276
2277 unlock:
2278 idpf_vport_ctrl_unlock(netdev);
2279
2280 return err;
2281 }
2282
2283 /**
2284 * idpf_change_mtu - NDO callback to change the MTU
2285 * @netdev: network interface device structure
2286 * @new_mtu: new value for maximum frame size
2287 *
2288 * Returns 0 on success, negative on failure
2289 */
idpf_change_mtu(struct net_device * netdev,int new_mtu)2290 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2291 {
2292 struct idpf_vport *vport;
2293 int err;
2294
2295 idpf_vport_ctrl_lock(netdev);
2296 vport = idpf_netdev_to_vport(netdev);
2297
2298 WRITE_ONCE(netdev->mtu, new_mtu);
2299
2300 err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2301
2302 idpf_vport_ctrl_unlock(netdev);
2303
2304 return err;
2305 }
2306
2307 /**
2308 * idpf_chk_tso_segment - Check skb is not using too many buffers
2309 * @skb: send buffer
2310 * @max_bufs: maximum number of buffers
2311 *
2312 * For TSO we need to count the TSO header and segment payload separately. As
2313 * such we need to check cases where we have max_bufs-1 fragments or more as we
2314 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1
2315 * for the segment payload in the first descriptor, and another max_buf-1 for
2316 * the fragments.
2317 *
2318 * Returns true if the packet needs to be software segmented by core stack.
2319 */
idpf_chk_tso_segment(const struct sk_buff * skb,unsigned int max_bufs)2320 static bool idpf_chk_tso_segment(const struct sk_buff *skb,
2321 unsigned int max_bufs)
2322 {
2323 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2324 const skb_frag_t *frag, *stale;
2325 int nr_frags, sum;
2326
2327 /* no need to check if number of frags is less than max_bufs - 1 */
2328 nr_frags = shinfo->nr_frags;
2329 if (nr_frags < (max_bufs - 1))
2330 return false;
2331
2332 /* We need to walk through the list and validate that each group
2333 * of max_bufs-2 fragments totals at least gso_size.
2334 */
2335 nr_frags -= max_bufs - 2;
2336 frag = &shinfo->frags[0];
2337
2338 /* Initialize size to the negative value of gso_size minus 1. We use
2339 * this as the worst case scenario in which the frag ahead of us only
2340 * provides one byte which is why we are limited to max_bufs-2
2341 * descriptors for a single transmit as the header and previous
2342 * fragment are already consuming 2 descriptors.
2343 */
2344 sum = 1 - shinfo->gso_size;
2345
2346 /* Add size of frags 0 through 4 to create our initial sum */
2347 sum += skb_frag_size(frag++);
2348 sum += skb_frag_size(frag++);
2349 sum += skb_frag_size(frag++);
2350 sum += skb_frag_size(frag++);
2351 sum += skb_frag_size(frag++);
2352
2353 /* Walk through fragments adding latest fragment, testing it, and
2354 * then removing stale fragments from the sum.
2355 */
2356 for (stale = &shinfo->frags[0];; stale++) {
2357 int stale_size = skb_frag_size(stale);
2358
2359 sum += skb_frag_size(frag++);
2360
2361 /* The stale fragment may present us with a smaller
2362 * descriptor than the actual fragment size. To account
2363 * for that we need to remove all the data on the front and
2364 * figure out what the remainder would be in the last
2365 * descriptor associated with the fragment.
2366 */
2367 if (stale_size > IDPF_TX_MAX_DESC_DATA) {
2368 int align_pad = -(skb_frag_off(stale)) &
2369 (IDPF_TX_MAX_READ_REQ_SIZE - 1);
2370
2371 sum -= align_pad;
2372 stale_size -= align_pad;
2373
2374 do {
2375 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2376 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2377 } while (stale_size > IDPF_TX_MAX_DESC_DATA);
2378 }
2379
2380 /* if sum is negative we failed to make sufficient progress */
2381 if (sum < 0)
2382 return true;
2383
2384 if (!nr_frags--)
2385 break;
2386
2387 sum -= stale_size;
2388 }
2389
2390 return false;
2391 }
2392
2393 /**
2394 * idpf_features_check - Validate packet conforms to limits
2395 * @skb: skb buffer
2396 * @netdev: This port's netdev
2397 * @features: Offload features that the stack believes apply
2398 */
idpf_features_check(struct sk_buff * skb,struct net_device * netdev,netdev_features_t features)2399 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2400 struct net_device *netdev,
2401 netdev_features_t features)
2402 {
2403 struct idpf_netdev_priv *np = netdev_priv(netdev);
2404 u16 max_tx_hdr_size = np->max_tx_hdr_size;
2405 size_t len;
2406
2407 /* No point in doing any of this if neither checksum nor GSO are
2408 * being requested for this frame. We can rule out both by just
2409 * checking for CHECKSUM_PARTIAL
2410 */
2411 if (skb->ip_summed != CHECKSUM_PARTIAL)
2412 return features;
2413
2414 if (skb_is_gso(skb)) {
2415 /* We cannot support GSO if the MSS is going to be less than
2416 * 88 bytes. If it is then we need to drop support for GSO.
2417 */
2418 if (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS)
2419 features &= ~NETIF_F_GSO_MASK;
2420 else if (idpf_chk_tso_segment(skb, np->tx_max_bufs))
2421 features &= ~NETIF_F_GSO_MASK;
2422 }
2423
2424 /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2425 len = skb_network_offset(skb);
2426 if (unlikely(len & ~(126)))
2427 goto unsupported;
2428
2429 len = skb_network_header_len(skb);
2430 if (unlikely(len > max_tx_hdr_size))
2431 goto unsupported;
2432
2433 if (!skb->encapsulation)
2434 return features;
2435
2436 /* L4TUNLEN can support 127 words */
2437 len = skb_inner_network_header(skb) - skb_transport_header(skb);
2438 if (unlikely(len & ~(127 * 2)))
2439 goto unsupported;
2440
2441 /* IPLEN can support at most 127 dwords */
2442 len = skb_inner_network_header_len(skb);
2443 if (unlikely(len > max_tx_hdr_size))
2444 goto unsupported;
2445
2446 /* No need to validate L4LEN as TCP is the only protocol with a
2447 * a flexible value and we support all possible values supported
2448 * by TCP, which is at most 15 dwords
2449 */
2450
2451 return features;
2452
2453 unsupported:
2454 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2455 }
2456
2457 /**
2458 * idpf_set_mac - NDO callback to set port mac address
2459 * @netdev: network interface device structure
2460 * @p: pointer to an address structure
2461 *
2462 * Returns 0 on success, negative on failure
2463 **/
idpf_set_mac(struct net_device * netdev,void * p)2464 static int idpf_set_mac(struct net_device *netdev, void *p)
2465 {
2466 struct idpf_netdev_priv *np = netdev_priv(netdev);
2467 struct idpf_vport_config *vport_config;
2468 struct sockaddr *addr = p;
2469 u8 old_mac_addr[ETH_ALEN];
2470 struct idpf_vport *vport;
2471 int err = 0;
2472
2473 idpf_vport_ctrl_lock(netdev);
2474 vport = idpf_netdev_to_vport(netdev);
2475
2476 if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2477 VIRTCHNL2_CAP_MACFILTER)) {
2478 dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2479 err = -EOPNOTSUPP;
2480 goto unlock_mutex;
2481 }
2482
2483 if (!is_valid_ether_addr(addr->sa_data)) {
2484 dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2485 addr->sa_data);
2486 err = -EADDRNOTAVAIL;
2487 goto unlock_mutex;
2488 }
2489
2490 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2491 goto unlock_mutex;
2492
2493 ether_addr_copy(old_mac_addr, vport->default_mac_addr);
2494 ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2495 vport_config = vport->adapter->vport_config[vport->idx];
2496 err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2497 if (err) {
2498 __idpf_del_mac_filter(vport_config, addr->sa_data);
2499 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
2500 goto unlock_mutex;
2501 }
2502
2503 if (is_valid_ether_addr(old_mac_addr))
2504 __idpf_del_mac_filter(vport_config, old_mac_addr);
2505
2506 eth_hw_addr_set(netdev, addr->sa_data);
2507
2508 unlock_mutex:
2509 idpf_vport_ctrl_unlock(netdev);
2510
2511 return err;
2512 }
2513
2514 /**
2515 * idpf_alloc_dma_mem - Allocate dma memory
2516 * @hw: pointer to hw struct
2517 * @mem: pointer to dma_mem struct
2518 * @size: size of the memory to allocate
2519 */
idpf_alloc_dma_mem(struct idpf_hw * hw,struct idpf_dma_mem * mem,u64 size)2520 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2521 {
2522 struct idpf_adapter *adapter = hw->back;
2523 size_t sz = ALIGN(size, 4096);
2524
2525 /* The control queue resources are freed under a spinlock, contiguous
2526 * pages will avoid IOMMU remapping and the use vmap (and vunmap in
2527 * dma_free_*() path.
2528 */
2529 mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa,
2530 GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS);
2531 mem->size = sz;
2532
2533 return mem->va;
2534 }
2535
2536 /**
2537 * idpf_free_dma_mem - Free the allocated dma memory
2538 * @hw: pointer to hw struct
2539 * @mem: pointer to dma_mem struct
2540 */
idpf_free_dma_mem(struct idpf_hw * hw,struct idpf_dma_mem * mem)2541 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2542 {
2543 struct idpf_adapter *adapter = hw->back;
2544
2545 dma_free_attrs(&adapter->pdev->dev, mem->size,
2546 mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS);
2547 mem->size = 0;
2548 mem->va = NULL;
2549 mem->pa = 0;
2550 }
2551
idpf_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2552 static int idpf_hwtstamp_set(struct net_device *netdev,
2553 struct kernel_hwtstamp_config *config,
2554 struct netlink_ext_ack *extack)
2555 {
2556 struct idpf_vport *vport;
2557 int err;
2558
2559 idpf_vport_ctrl_lock(netdev);
2560 vport = idpf_netdev_to_vport(netdev);
2561
2562 if (!vport->link_up) {
2563 idpf_vport_ctrl_unlock(netdev);
2564 return -EPERM;
2565 }
2566
2567 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2568 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2569 idpf_vport_ctrl_unlock(netdev);
2570 return -EOPNOTSUPP;
2571 }
2572
2573 err = idpf_ptp_set_timestamp_mode(vport, config);
2574
2575 idpf_vport_ctrl_unlock(netdev);
2576
2577 return err;
2578 }
2579
idpf_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * config)2580 static int idpf_hwtstamp_get(struct net_device *netdev,
2581 struct kernel_hwtstamp_config *config)
2582 {
2583 struct idpf_vport *vport;
2584
2585 idpf_vport_ctrl_lock(netdev);
2586 vport = idpf_netdev_to_vport(netdev);
2587
2588 if (!vport->link_up) {
2589 idpf_vport_ctrl_unlock(netdev);
2590 return -EPERM;
2591 }
2592
2593 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2594 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2595 idpf_vport_ctrl_unlock(netdev);
2596 return 0;
2597 }
2598
2599 *config = vport->tstamp_config;
2600
2601 idpf_vport_ctrl_unlock(netdev);
2602
2603 return 0;
2604 }
2605
2606 static const struct net_device_ops idpf_netdev_ops = {
2607 .ndo_open = idpf_open,
2608 .ndo_stop = idpf_stop,
2609 .ndo_start_xmit = idpf_tx_start,
2610 .ndo_features_check = idpf_features_check,
2611 .ndo_set_rx_mode = idpf_set_rx_mode,
2612 .ndo_validate_addr = eth_validate_addr,
2613 .ndo_set_mac_address = idpf_set_mac,
2614 .ndo_change_mtu = idpf_change_mtu,
2615 .ndo_get_stats64 = idpf_get_stats64,
2616 .ndo_set_features = idpf_set_features,
2617 .ndo_tx_timeout = idpf_tx_timeout,
2618 .ndo_hwtstamp_get = idpf_hwtstamp_get,
2619 .ndo_hwtstamp_set = idpf_hwtstamp_set,
2620 .ndo_bpf = idpf_xdp,
2621 .ndo_xdp_xmit = idpf_xdp_xmit,
2622 .ndo_xsk_wakeup = idpf_xsk_wakeup,
2623 };
2624