xref: /freebsd/sys/dev/sym/sym_hipd.c (revision e769bc77184312b6137a9b180c97b87c0760b849)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 
64 #include <sys/param.h>
65 
66 /*
67  *  Driver configuration options.
68  */
69 #include "opt_sym.h"
70 #include <dev/sym/sym_conf.h>
71 
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/endian.h>
75 #include <sys/kernel.h>
76 #include <sys/lock.h>
77 #include <sys/mutex.h>
78 #include <sys/module.h>
79 #include <sys/bus.h>
80 
81 #include <sys/proc.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <machine/bus.h>
87 #include <machine/resource.h>
88 #include <machine/atomic.h>
89 
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94 #include <cam/cam_sim.h>
95 #include <cam/cam_xpt_sim.h>
96 #include <cam/cam_debug.h>
97 
98 #include <cam/scsi/scsi_all.h>
99 #include <cam/scsi/scsi_message.h>
100 
101 /* Short and quite clear integer types */
102 typedef int8_t    s8;
103 typedef int16_t   s16;
104 typedef	int32_t   s32;
105 typedef u_int8_t  u8;
106 typedef u_int16_t u16;
107 typedef	u_int32_t u32;
108 
109 /*
110  *  Driver definitions.
111  */
112 #include <dev/sym/sym_defs.h>
113 #include <dev/sym/sym_fw.h>
114 
115 /*
116  *  Architectures may implement weak ordering that requires memory barriers
117  *  to be used for LOADS and STORES to become globally visible (and also IO
118  *  barriers when they make sense).
119  */
120 #ifdef __powerpc__
121 #define	MEMORY_READ_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
122 #define	MEMORY_WRITE_BARRIER()	MEMORY_READ_BARRIER()
123 #else
124 #define	MEMORY_READ_BARRIER()	rmb()
125 #define	MEMORY_WRITE_BARRIER()	wmb()
126 #endif
127 
128 /*
129  *  A la VMS/CAM-3 queue management.
130  */
131 typedef struct sym_quehead {
132 	struct sym_quehead *flink;	/* Forward  pointer */
133 	struct sym_quehead *blink;	/* Backward pointer */
134 } SYM_QUEHEAD;
135 
136 #define sym_que_init(ptr) do { \
137 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
138 } while (0)
139 
__sym_que_add(struct sym_quehead * new,struct sym_quehead * blink,struct sym_quehead * flink)140 static __inline void __sym_que_add(struct sym_quehead * new,
141 	struct sym_quehead * blink,
142 	struct sym_quehead * flink)
143 {
144 	flink->blink	= new;
145 	new->flink	= flink;
146 	new->blink	= blink;
147 	blink->flink	= new;
148 }
149 
__sym_que_del(struct sym_quehead * blink,struct sym_quehead * flink)150 static __inline void __sym_que_del(struct sym_quehead * blink,
151 	struct sym_quehead * flink)
152 {
153 	flink->blink = blink;
154 	blink->flink = flink;
155 }
156 
sym_que_empty(struct sym_quehead * head)157 static __inline int sym_que_empty(struct sym_quehead *head)
158 {
159 	return head->flink == head;
160 }
161 
sym_que_splice(struct sym_quehead * list,struct sym_quehead * head)162 static __inline void sym_que_splice(struct sym_quehead *list,
163 	struct sym_quehead *head)
164 {
165 	struct sym_quehead *first = list->flink;
166 
167 	if (first != list) {
168 		struct sym_quehead *last = list->blink;
169 		struct sym_quehead *at   = head->flink;
170 
171 		first->blink = head;
172 		head->flink  = first;
173 
174 		last->flink = at;
175 		at->blink   = last;
176 	}
177 }
178 
179 #define sym_que_entry(ptr, type, member) \
180 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
181 
182 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
183 
184 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
185 
186 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
187 
sym_remque_head(struct sym_quehead * head)188 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
189 {
190 	struct sym_quehead *elem = head->flink;
191 
192 	if (elem != head)
193 		__sym_que_del(head, elem->flink);
194 	else
195 		elem = NULL;
196 	return elem;
197 }
198 
199 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
200 
201 /*
202  *  This one may be useful.
203  */
204 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
205 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
206 /*
207  *  FreeBSD does not offer our kind of queue in the CAM CCB.
208  *  So, we have to cast.
209  */
210 #define sym_qptr(p)	((struct sym_quehead *) (p))
211 
212 /*
213  *  Simple bitmap operations.
214  */
215 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
216 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
217 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
218 
219 /*
220  *  Number of tasks per device we want to handle.
221  */
222 #if	SYM_CONF_MAX_TAG_ORDER > 8
223 #error	"more than 256 tags per logical unit not allowed."
224 #endif
225 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
226 
227 /*
228  *  Donnot use more tasks that we can handle.
229  */
230 #ifndef	SYM_CONF_MAX_TAG
231 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
232 #endif
233 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
234 #undef	SYM_CONF_MAX_TAG
235 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
236 #endif
237 
238 /*
239  *    This one means 'NO TAG for this job'
240  */
241 #define NO_TAG	(256)
242 
243 /*
244  *  Number of SCSI targets.
245  */
246 #if	SYM_CONF_MAX_TARGET > 16
247 #error	"more than 16 targets not allowed."
248 #endif
249 
250 /*
251  *  Number of logical units per target.
252  */
253 #if	SYM_CONF_MAX_LUN > 64
254 #error	"more than 64 logical units per target not allowed."
255 #endif
256 
257 /*
258  *    Asynchronous pre-scaler (ns). Shall be 40 for
259  *    the SCSI timings to be compliant.
260  */
261 #define	SYM_CONF_MIN_ASYNC (40)
262 
263 /*
264  *  Number of entries in the START and DONE queues.
265  *
266  *  We limit to 1 PAGE in order to succeed allocation of
267  *  these queues. Each entry is 8 bytes long (2 DWORDS).
268  */
269 #ifdef	SYM_CONF_MAX_START
270 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
271 #else
272 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
273 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
274 #endif
275 
276 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
277 #undef	SYM_CONF_MAX_QUEUE
278 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
279 #undef	SYM_CONF_MAX_START
280 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
281 #endif
282 
283 /*
284  *  For this one, we want a short name :-)
285  */
286 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
287 
288 /*
289  *  Active debugging tags and verbosity.
290  */
291 #define DEBUG_ALLOC	(0x0001)
292 #define DEBUG_PHASE	(0x0002)
293 #define DEBUG_POLL	(0x0004)
294 #define DEBUG_QUEUE	(0x0008)
295 #define DEBUG_RESULT	(0x0010)
296 #define DEBUG_SCATTER	(0x0020)
297 #define DEBUG_SCRIPT	(0x0040)
298 #define DEBUG_TINY	(0x0080)
299 #define DEBUG_TIMING	(0x0100)
300 #define DEBUG_NEGO	(0x0200)
301 #define DEBUG_TAGS	(0x0400)
302 #define DEBUG_POINTER	(0x0800)
303 
304 #if 0
305 static int sym_debug = 0;
306 	#define DEBUG_FLAGS sym_debug
307 #else
308 /*	#define DEBUG_FLAGS (0x0631) */
309 	#define DEBUG_FLAGS (0x0000)
310 
311 #endif
312 #define sym_verbose	(np->verbose)
313 
314 /*
315  *  Insert a delay in micro-seconds and milli-seconds.
316  */
UDELAY(int us)317 static void UDELAY(int us) { DELAY(us); }
MDELAY(int ms)318 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
319 
320 /*
321  *  Simple power of two buddy-like allocator.
322  *
323  *  This simple code is not intended to be fast, but to
324  *  provide power of 2 aligned memory allocations.
325  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
326  *  this allocator allows simple and fast address calculations
327  *  from the SCRIPTS code. In addition, cache line alignment
328  *  is guaranteed for power of 2 cache line size.
329  *
330  *  This allocator has been developed for the Linux sym53c8xx
331  *  driver, since this O/S does not provide naturally aligned
332  *  allocations.
333  *  It has the advantage of allowing the driver to use private
334  *  pages of memory that will be useful if we ever need to deal
335  *  with IO MMUs for PCI.
336  */
337 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
338 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
339 #if 0
340 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
341 #endif
342 #define MEMO_WARN	1
343 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
344 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
345 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
346 
347 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
348 #define free_pages(p)		free((p), M_DEVBUF)
349 
350 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
351 
352 typedef struct m_link {		/* Link between free memory chunks */
353 	struct m_link *next;
354 } m_link_s;
355 
356 typedef struct m_vtob {		/* Virtual to Bus address translation */
357 	struct m_vtob	*next;
358 	bus_dmamap_t	dmamap;	/* Map for this chunk */
359 	m_addr_t	vaddr;	/* Virtual address */
360 	m_addr_t	baddr;	/* Bus physical address */
361 } m_vtob_s;
362 /* Hash this stuff a bit to speed up translations */
363 #define VTOB_HASH_SHIFT		5
364 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
365 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
366 #define VTOB_HASH_CODE(m)	\
367 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
368 
369 typedef struct m_pool {		/* Memory pool of a given kind */
370 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
371 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
372 	m_addr_t (*getp)(struct m_pool *);
373 #ifdef	MEMO_FREE_UNUSED
374 	void (*freep)(struct m_pool *, m_addr_t);
375 #endif
376 #define M_GETP()		mp->getp(mp)
377 #define M_FREEP(p)		mp->freep(mp, p)
378 	int nump;
379 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
380 	struct m_pool *next;
381 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
382 } m_pool_s;
383 
___sym_malloc(m_pool_s * mp,int size)384 static void *___sym_malloc(m_pool_s *mp, int size)
385 {
386 	int i = 0;
387 	int s = (1 << MEMO_SHIFT);
388 	int j;
389 	m_addr_t a;
390 	m_link_s *h = mp->h;
391 
392 	if (size > MEMO_CLUSTER_SIZE)
393 		return NULL;
394 
395 	while (size > s) {
396 		s <<= 1;
397 		++i;
398 	}
399 
400 	j = i;
401 	while (!h[j].next) {
402 		if (s == MEMO_CLUSTER_SIZE) {
403 			h[j].next = (m_link_s *) M_GETP();
404 			if (h[j].next)
405 				h[j].next->next = NULL;
406 			break;
407 		}
408 		++j;
409 		s <<= 1;
410 	}
411 	a = (m_addr_t) h[j].next;
412 	if (a) {
413 		h[j].next = h[j].next->next;
414 		while (j > i) {
415 			j -= 1;
416 			s >>= 1;
417 			h[j].next = (m_link_s *) (a+s);
418 			h[j].next->next = NULL;
419 		}
420 	}
421 #ifdef DEBUG
422 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
423 #endif
424 	return (void *) a;
425 }
426 
___sym_mfree(m_pool_s * mp,void * ptr,int size)427 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
428 {
429 	int i = 0;
430 	int s = (1 << MEMO_SHIFT);
431 	m_link_s *q;
432 	m_addr_t a, b;
433 	m_link_s *h = mp->h;
434 
435 #ifdef DEBUG
436 	printf("___sym_mfree(%p, %d)\n", ptr, size);
437 #endif
438 
439 	if (size > MEMO_CLUSTER_SIZE)
440 		return;
441 
442 	while (size > s) {
443 		s <<= 1;
444 		++i;
445 	}
446 
447 	a = (m_addr_t) ptr;
448 
449 	while (1) {
450 #ifdef MEMO_FREE_UNUSED
451 		if (s == MEMO_CLUSTER_SIZE) {
452 			M_FREEP(a);
453 			break;
454 		}
455 #endif
456 		b = a ^ s;
457 		q = &h[i];
458 		while (q->next && q->next != (m_link_s *) b) {
459 			q = q->next;
460 		}
461 		if (!q->next) {
462 			((m_link_s *) a)->next = h[i].next;
463 			h[i].next = (m_link_s *) a;
464 			break;
465 		}
466 		q->next = q->next->next;
467 		a = a & b;
468 		s <<= 1;
469 		++i;
470 	}
471 }
472 
__sym_calloc2(m_pool_s * mp,int size,char * name,int uflags)473 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
474 {
475 	void *p;
476 
477 	p = ___sym_malloc(mp, size);
478 
479 	if (DEBUG_FLAGS & DEBUG_ALLOC)
480 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
481 
482 	if (p)
483 		bzero(p, size);
484 	else if (uflags & MEMO_WARN)
485 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
486 
487 	return p;
488 }
489 
490 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
491 
__sym_mfree(m_pool_s * mp,void * ptr,int size,char * name)492 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
493 {
494 	if (DEBUG_FLAGS & DEBUG_ALLOC)
495 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
496 
497 	___sym_mfree(mp, ptr, size);
498 
499 }
500 
501 /*
502  * Default memory pool we donnot need to involve in DMA.
503  */
504 /*
505  * With the `bus dma abstraction', we use a separate pool for
506  * memory we donnot need to involve in DMA.
507  */
___mp0_getp(m_pool_s * mp)508 static m_addr_t ___mp0_getp(m_pool_s *mp)
509 {
510 	m_addr_t m = (m_addr_t) get_pages();
511 	if (m)
512 		++mp->nump;
513 	return m;
514 }
515 
516 #ifdef	MEMO_FREE_UNUSED
___mp0_freep(m_pool_s * mp,m_addr_t m)517 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
518 {
519 	free_pages(m);
520 	--mp->nump;
521 }
522 #endif
523 
524 #ifdef	MEMO_FREE_UNUSED
525 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
526 #else
527 static m_pool_s mp0 = {0, 0, ___mp0_getp};
528 #endif
529 
530 /*
531  * Actual memory allocation routine for non-DMAed memory.
532  */
sym_calloc(int size,char * name)533 static void *sym_calloc(int size, char *name)
534 {
535 	void *m;
536 	/* Lock */
537 	m = __sym_calloc(&mp0, size, name);
538 	/* Unlock */
539 	return m;
540 }
541 
542 /*
543  * Actual memory allocation routine for non-DMAed memory.
544  */
sym_mfree(void * ptr,int size,char * name)545 static void sym_mfree(void *ptr, int size, char *name)
546 {
547 	/* Lock */
548 	__sym_mfree(&mp0, ptr, size, name);
549 	/* Unlock */
550 }
551 
552 /*
553  * DMAable pools.
554  */
555 /*
556  * With `bus dma abstraction', we use a separate pool per parent
557  * BUS handle. A reverse table (hashed) is maintained for virtual
558  * to BUS address translation.
559  */
getbaddrcb(void * arg,bus_dma_segment_t * segs,int nseg __diagused,int error)560 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __diagused,
561     int error)
562 {
563 	bus_addr_t *baddr;
564 
565 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
566 
567 	baddr = (bus_addr_t *)arg;
568 	if (error)
569 		*baddr = 0;
570 	else
571 		*baddr = segs->ds_addr;
572 }
573 
___dma_getp(m_pool_s * mp)574 static m_addr_t ___dma_getp(m_pool_s *mp)
575 {
576 	m_vtob_s *vbp;
577 	void *vaddr = NULL;
578 	bus_addr_t baddr = 0;
579 
580 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
581 	if (!vbp)
582 		goto out_err;
583 
584 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
585 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
586 		goto out_err;
587 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
588 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
589 	if (baddr) {
590 		int hc = VTOB_HASH_CODE(vaddr);
591 		vbp->vaddr = (m_addr_t) vaddr;
592 		vbp->baddr = (m_addr_t) baddr;
593 		vbp->next = mp->vtob[hc];
594 		mp->vtob[hc] = vbp;
595 		++mp->nump;
596 		return (m_addr_t) vaddr;
597 	}
598 out_err:
599 	if (vaddr)
600 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
601 	if (vbp)
602 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
603 	return 0;
604 }
605 
606 #ifdef	MEMO_FREE_UNUSED
___dma_freep(m_pool_s * mp,m_addr_t m)607 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
608 {
609 	m_vtob_s **vbpp, *vbp;
610 	int hc = VTOB_HASH_CODE(m);
611 
612 	vbpp = &mp->vtob[hc];
613 	while (*vbpp && (*vbpp)->vaddr != m)
614 		vbpp = &(*vbpp)->next;
615 	if (*vbpp) {
616 		vbp = *vbpp;
617 		*vbpp = (*vbpp)->next;
618 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
619 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
620 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
621 		--mp->nump;
622 	}
623 }
624 #endif
625 
___get_dma_pool(bus_dma_tag_t dev_dmat)626 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
627 {
628 	m_pool_s *mp;
629 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
630 	return mp;
631 }
632 
___cre_dma_pool(bus_dma_tag_t dev_dmat)633 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
634 {
635 	m_pool_s *mp = NULL;
636 
637 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
638 	if (mp) {
639 		mp->dev_dmat = dev_dmat;
640 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
641 			       BUS_SPACE_MAXADDR_32BIT,
642 			       BUS_SPACE_MAXADDR,
643 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
644 			       MEMO_CLUSTER_SIZE, 0,
645 			       NULL, NULL, &mp->dmat)) {
646 			mp->getp = ___dma_getp;
647 #ifdef	MEMO_FREE_UNUSED
648 			mp->freep = ___dma_freep;
649 #endif
650 			mp->next = mp0.next;
651 			mp0.next = mp;
652 			return mp;
653 		}
654 	}
655 	if (mp)
656 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
657 	return NULL;
658 }
659 
660 #ifdef	MEMO_FREE_UNUSED
___del_dma_pool(m_pool_s * p)661 static void ___del_dma_pool(m_pool_s *p)
662 {
663 	struct m_pool **pp = &mp0.next;
664 
665 	while (*pp && *pp != p)
666 		pp = &(*pp)->next;
667 	if (*pp) {
668 		*pp = (*pp)->next;
669 		bus_dma_tag_destroy(p->dmat);
670 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
671 	}
672 }
673 #endif
674 
__sym_calloc_dma(bus_dma_tag_t dev_dmat,int size,char * name)675 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
676 {
677 	struct m_pool *mp;
678 	void *m = NULL;
679 
680 	/* Lock */
681 	mp = ___get_dma_pool(dev_dmat);
682 	if (!mp)
683 		mp = ___cre_dma_pool(dev_dmat);
684 	if (mp)
685 		m = __sym_calloc(mp, size, name);
686 #ifdef	MEMO_FREE_UNUSED
687 	if (mp && !mp->nump)
688 		___del_dma_pool(mp);
689 #endif
690 	/* Unlock */
691 
692 	return m;
693 }
694 
695 static void
__sym_mfree_dma(bus_dma_tag_t dev_dmat,void * m,int size,char * name)696 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
697 {
698 	struct m_pool *mp;
699 
700 	/* Lock */
701 	mp = ___get_dma_pool(dev_dmat);
702 	if (mp)
703 		__sym_mfree(mp, m, size, name);
704 #ifdef	MEMO_FREE_UNUSED
705 	if (mp && !mp->nump)
706 		___del_dma_pool(mp);
707 #endif
708 	/* Unlock */
709 }
710 
__vtobus(bus_dma_tag_t dev_dmat,void * m)711 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
712 {
713 	m_pool_s *mp;
714 	int hc = VTOB_HASH_CODE(m);
715 	m_vtob_s *vp = NULL;
716 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
717 
718 	/* Lock */
719 	mp = ___get_dma_pool(dev_dmat);
720 	if (mp) {
721 		vp = mp->vtob[hc];
722 		while (vp && (m_addr_t) vp->vaddr != a)
723 			vp = vp->next;
724 	}
725 	/* Unlock */
726 	if (!vp)
727 		panic("sym: VTOBUS FAILED!\n");
728 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
729 }
730 
731 /*
732  * Verbs for DMAable memory handling.
733  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
734  * being discarded.
735  */
736 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
737 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
738 #define _sym_mfree_dma(np, p, s, n)	\
739 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
740 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
741 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
742 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
743 #define vtobus(p)			_vtobus(np, p)
744 
745 /*
746  *  Print a buffer in hexadecimal format.
747  */
sym_printb_hex(u_char * p,int n)748 static void sym_printb_hex (u_char *p, int n)
749 {
750 	while (n-- > 0)
751 		printf (" %x", *p++);
752 }
753 
754 /*
755  *  Same with a label at beginning and .\n at end.
756  */
sym_printl_hex(char * label,u_char * p,int n)757 static void sym_printl_hex (char *label, u_char *p, int n)
758 {
759 	printf ("%s", label);
760 	sym_printb_hex (p, n);
761 	printf (".\n");
762 }
763 
764 /*
765  *  Return a string for SCSI BUS mode.
766  */
sym_scsi_bus_mode(int mode)767 static const char *sym_scsi_bus_mode(int mode)
768 {
769 	switch(mode) {
770 	case SMODE_HVD:	return "HVD";
771 	case SMODE_SE:	return "SE";
772 	case SMODE_LVD: return "LVD";
773 	}
774 	return "??";
775 }
776 
777 /*
778  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
779  */
780 #ifdef SYM_CONF_NVRAM_SUPPORT
781 static const u_char Tekram_sync[16] =
782 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
783 #endif
784 
785 /*
786  *  Union of supported NVRAM formats.
787  */
788 struct sym_nvram {
789 	int type;
790 #define	SYM_SYMBIOS_NVRAM	(1)
791 #define	SYM_TEKRAM_NVRAM	(2)
792 #ifdef	SYM_CONF_NVRAM_SUPPORT
793 	union {
794 		Symbios_nvram Symbios;
795 		Tekram_nvram Tekram;
796 	} data;
797 #endif
798 };
799 
800 /*
801  *  This one is hopefully useless, but actually useful. :-)
802  */
803 #ifndef assert
804 #define	assert(expression) { \
805 	if (!(expression)) { \
806 		(void)panic( \
807 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
808 			#expression, \
809 			__FILE__, __LINE__); \
810 	} \
811 }
812 #endif
813 
814 /*
815  *  Some provision for a possible big endian mode supported by
816  *  Symbios chips (never seen, by the way).
817  *  For now, this stuff does not deserve any comments. :)
818  */
819 #define sym_offb(o)	(o)
820 #define sym_offw(o)	(o)
821 
822 /*
823  *  Some provision for support for BIG ENDIAN CPU.
824  */
825 #define cpu_to_scr(dw)	htole32(dw)
826 #define scr_to_cpu(dw)	le32toh(dw)
827 
828 /*
829  *  Access to the chip IO registers and on-chip RAM.
830  *  We use the `bus space' interface under FreeBSD-4 and
831  *  later kernel versions.
832  */
833 #if defined(SYM_CONF_IOMAPPED)
834 
835 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
836 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
837 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
838 
839 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
840 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
841 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
842 
843 #else	/* Memory mapped IO */
844 
845 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
846 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
847 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
848 
849 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
850 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
851 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
852 
853 #endif	/* SYM_CONF_IOMAPPED */
854 
855 #define OUTRAM_OFF(o, a, l)	\
856 	bus_write_region_1(np->ram_res, (o), (a), (l))
857 
858 /*
859  *  Common definitions for both bus space and legacy IO methods.
860  */
861 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
862 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
863 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
864 
865 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
866 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
867 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
868 
869 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
870 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
871 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
872 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
873 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
874 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
875 
876 /*
877  *  We normally want the chip to have a consistent view
878  *  of driver internal data structures when we restart it.
879  *  Thus these macros.
880  */
881 #define OUTL_DSP(v)				\
882 	do {					\
883 		MEMORY_WRITE_BARRIER();		\
884 		OUTL (nc_dsp, (v));		\
885 	} while (0)
886 
887 #define OUTONB_STD()				\
888 	do {					\
889 		MEMORY_WRITE_BARRIER();		\
890 		OUTONB (nc_dcntl, (STD|NOCOM));	\
891 	} while (0)
892 
893 /*
894  *  Command control block states.
895  */
896 #define HS_IDLE		(0)
897 #define HS_BUSY		(1)
898 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
899 #define HS_DISCONNECT	(3)	/* Disconnected by target */
900 #define HS_WAIT		(4)	/* waiting for resource	  */
901 
902 #define HS_DONEMASK	(0x80)
903 #define HS_COMPLETE	(4|HS_DONEMASK)
904 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
905 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
906 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
907 
908 /*
909  *  Software Interrupt Codes
910  */
911 #define	SIR_BAD_SCSI_STATUS	(1)
912 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
913 #define	SIR_MSG_RECEIVED	(3)
914 #define	SIR_MSG_WEIRD		(4)
915 #define	SIR_NEGO_FAILED		(5)
916 #define	SIR_NEGO_PROTO		(6)
917 #define	SIR_SCRIPT_STOPPED	(7)
918 #define	SIR_REJECT_TO_SEND	(8)
919 #define	SIR_SWIDE_OVERRUN	(9)
920 #define	SIR_SODL_UNDERRUN	(10)
921 #define	SIR_RESEL_NO_MSG_IN	(11)
922 #define	SIR_RESEL_NO_IDENTIFY	(12)
923 #define	SIR_RESEL_BAD_LUN	(13)
924 #define	SIR_TARGET_SELECTED	(14)
925 #define	SIR_RESEL_BAD_I_T_L	(15)
926 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
927 #define	SIR_ABORT_SENT		(17)
928 #define	SIR_RESEL_ABORTED	(18)
929 #define	SIR_MSG_OUT_DONE	(19)
930 #define	SIR_COMPLETE_ERROR	(20)
931 #define	SIR_DATA_OVERRUN	(21)
932 #define	SIR_BAD_PHASE		(22)
933 #define	SIR_MAX			(22)
934 
935 /*
936  *  Extended error bit codes.
937  *  xerr_status field of struct sym_ccb.
938  */
939 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
940 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
941 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
942 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
943 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
944 
945 /*
946  *  Negotiation status.
947  *  nego_status field of struct sym_ccb.
948  */
949 #define NS_SYNC		(1)
950 #define NS_WIDE		(2)
951 #define NS_PPR		(3)
952 
953 /*
954  *  A CCB hashed table is used to retrieve CCB address
955  *  from DSA value.
956  */
957 #define CCB_HASH_SHIFT		8
958 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
959 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
960 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
961 
962 /*
963  *  Device flags.
964  */
965 #define SYM_DISC_ENABLED	(1)
966 #define SYM_TAGS_ENABLED	(1<<1)
967 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
968 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
969 
970 /*
971  *  Host adapter miscellaneous flags.
972  */
973 #define SYM_AVOID_BUS_RESET	(1)
974 #define SYM_SCAN_TARGETS_HILO	(1<<1)
975 
976 /*
977  *  Device quirks.
978  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
979  *  saving the DATA POINTER then reselects and terminates the IO.
980  *  On reselection, the automatic RESTORE DATA POINTER makes the
981  *  CURRENT DATA POINTER not point at the end of the IO.
982  *  This behaviour just breaks our calculation of the residual.
983  *  For now, we just force an AUTO SAVE on disconnection and will
984  *  fix that in a further driver version.
985  */
986 #define SYM_QUIRK_AUTOSAVE 1
987 
988 /*
989  *  Misc.
990  */
991 #define	SYM_LOCK()		mtx_lock(&np->mtx)
992 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
993 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
994 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
995 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
996 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
997 
998 #define SYM_SNOOP_TIMEOUT (10000000)
999 #define SYM_PCI_IO	PCIR_BAR(0)
1000 #define SYM_PCI_MMIO	PCIR_BAR(1)
1001 #define SYM_PCI_RAM	PCIR_BAR(2)
1002 #define SYM_PCI_RAM64	PCIR_BAR(3)
1003 
1004 /*
1005  *  Back-pointer from the CAM CCB to our data structures.
1006  */
1007 #define sym_hcb_ptr	spriv_ptr0
1008 /* #define sym_ccb_ptr	spriv_ptr1 */
1009 
1010 /*
1011  *  We mostly have to deal with pointers.
1012  *  Thus these typedef's.
1013  */
1014 typedef struct sym_tcb *tcb_p;
1015 typedef struct sym_lcb *lcb_p;
1016 typedef struct sym_ccb *ccb_p;
1017 typedef struct sym_hcb *hcb_p;
1018 
1019 /*
1020  *  Gather negotiable parameters value
1021  */
1022 struct sym_trans {
1023 	u8 scsi_version;
1024 	u8 spi_version;
1025 	u8 period;
1026 	u8 offset;
1027 	u8 width;
1028 	u8 options;	/* PPR options */
1029 };
1030 
1031 struct sym_tinfo {
1032 	struct sym_trans current;
1033 	struct sym_trans goal;
1034 	struct sym_trans user;
1035 };
1036 
1037 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1038 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1039 
1040 /*
1041  *  Global TCB HEADER.
1042  *
1043  *  Due to lack of indirect addressing on earlier NCR chips,
1044  *  this substructure is copied from the TCB to a global
1045  *  address after selection.
1046  *  For SYMBIOS chips that support LOAD/STORE this copy is
1047  *  not needed and thus not performed.
1048  */
1049 struct sym_tcbh {
1050 	/*
1051 	 *  Scripts bus addresses of LUN table accessed from scripts.
1052 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1053 	 *  and we we want to speed-up the general case and not waste
1054 	 *  resources.
1055 	 */
1056 	u32	luntbl_sa;	/* bus address of this table	*/
1057 	u32	lun0_sa;	/* bus address of LCB #0	*/
1058 	/*
1059 	 *  Actual SYNC/WIDE IO registers value for this target.
1060 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1061 	 *  so have alignment constraints.
1062 	 */
1063 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1064 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1065 /*2*/	u_char	filler1;
1066 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1067 };
1068 
1069 /*
1070  *  Target Control Block
1071  */
1072 struct sym_tcb {
1073 	/*
1074 	 *  TCB header.
1075 	 *  Assumed at offset 0.
1076 	 */
1077 /*0*/	struct sym_tcbh head;
1078 
1079 	/*
1080 	 *  LUN table used by the SCRIPTS processor.
1081 	 *  An array of bus addresses is used on reselection.
1082 	 */
1083 	u32	*luntbl;	/* LCBs bus address table	*/
1084 
1085 	/*
1086 	 *  LUN table used by the C code.
1087 	 */
1088 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1089 #if SYM_CONF_MAX_LUN > 1
1090 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1091 #endif
1092 
1093 	/*
1094 	 *  Bitmap that tells about LUNs that succeeded at least
1095 	 *  1 IO and therefore assumed to be a real device.
1096 	 *  Avoid useless allocation of the LCB structure.
1097 	 */
1098 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1099 
1100 	/*
1101 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1102 	 *  allocated (not discovered or LCB allocation failed).
1103 	 */
1104 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1105 
1106 	/*
1107 	 *  Transfer capabilities (SIP)
1108 	 */
1109 	struct sym_tinfo tinfo;
1110 
1111 	/*
1112 	 * Keep track of the CCB used for the negotiation in order
1113 	 * to ensure that only 1 negotiation is queued at a time.
1114 	 */
1115 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1116 
1117 	/*
1118 	 *  Set when we want to reset the device.
1119 	 */
1120 	u_char	to_reset;
1121 
1122 	/*
1123 	 *  Other user settable limits and options.
1124 	 *  These limits are read from the NVRAM if present.
1125 	 */
1126 	u_char	usrflags;
1127 	u_short	usrtags;
1128 };
1129 
1130 /*
1131  *  Assert some alignments required by the chip.
1132  */
1133 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1134     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1135 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1136     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1137 
1138 /*
1139  *  Global LCB HEADER.
1140  *
1141  *  Due to lack of indirect addressing on earlier NCR chips,
1142  *  this substructure is copied from the LCB to a global
1143  *  address after selection.
1144  *  For SYMBIOS chips that support LOAD/STORE this copy is
1145  *  not needed and thus not performed.
1146  */
1147 struct sym_lcbh {
1148 	/*
1149 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1150 	 *  For not probed logical units, this address points to
1151 	 *  SCRIPTS that deal with bad LU handling (must be at
1152 	 *  offset zero of the LCB for that reason).
1153 	 */
1154 /*0*/	u32	resel_sa;
1155 
1156 	/*
1157 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1158 	 *  to the unique ITL nexus allowed to be disconnected.
1159 	 */
1160 	u32	itl_task_sa;
1161 
1162 	/*
1163 	 *  Task table bus address (read from SCRIPTS).
1164 	 */
1165 	u32	itlq_tbl_sa;
1166 };
1167 
1168 /*
1169  *  Logical Unit Control Block
1170  */
1171 struct sym_lcb {
1172 	/*
1173 	 *  TCB header.
1174 	 *  Assumed at offset 0.
1175 	 */
1176 /*0*/	struct sym_lcbh head;
1177 
1178 	/*
1179 	 *  Task table read from SCRIPTS that contains pointers to
1180 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1181 	 *  inside the header.
1182 	 */
1183 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1184 
1185 	/*
1186 	 *  Busy CCBs management.
1187 	 */
1188 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1189 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1190 
1191 	/*
1192 	 *  Circular tag allocation buffer.
1193 	 */
1194 	u_short	ia_tag;		/* Tag allocation index		*/
1195 	u_short	if_tag;		/* Tag release index		*/
1196 	u_char	*cb_tags;	/* Circular tags buffer		*/
1197 
1198 	/*
1199 	 *  Set when we want to clear all tasks.
1200 	 */
1201 	u_char to_clear;
1202 
1203 	/*
1204 	 *  Capabilities.
1205 	 */
1206 	u_char	user_flags;
1207 	u_char	current_flags;
1208 };
1209 
1210 /*
1211  *  Action from SCRIPTS on a task.
1212  *  Is part of the CCB, but is also used separately to plug
1213  *  error handling action to perform from SCRIPTS.
1214  */
1215 struct sym_actscr {
1216 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1217 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1218 };
1219 
1220 /*
1221  *  Phase mismatch context.
1222  *
1223  *  It is part of the CCB and is used as parameters for the
1224  *  DATA pointer. We need two contexts to handle correctly the
1225  *  SAVED DATA POINTER.
1226  */
1227 struct sym_pmc {
1228 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1229 	u32	ret;		/* SCRIPT return address	*/
1230 };
1231 
1232 /*
1233  *  LUN control block lookup.
1234  *  We use a direct pointer for LUN #0, and a table of
1235  *  pointers which is only allocated for devices that support
1236  *  LUN(s) > 0.
1237  */
1238 #if SYM_CONF_MAX_LUN <= 1
1239 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1240 #else
1241 #define sym_lp(tp, lun) \
1242 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1243 #endif
1244 
1245 /*
1246  *  Status are used by the host and the script processor.
1247  *
1248  *  The last four bytes (status[4]) are copied to the
1249  *  scratchb register (declared as scr0..scr3) just after the
1250  *  select/reselect, and copied back just after disconnecting.
1251  *  Inside the script the XX_REG are used.
1252  */
1253 
1254 /*
1255  *  Last four bytes (script)
1256  */
1257 #define  QU_REG	scr0
1258 #define  HS_REG	scr1
1259 #define  HS_PRT	nc_scr1
1260 #define  SS_REG	scr2
1261 #define  SS_PRT	nc_scr2
1262 #define  HF_REG	scr3
1263 #define  HF_PRT	nc_scr3
1264 
1265 /*
1266  *  Last four bytes (host)
1267  */
1268 #define  actualquirks  phys.head.status[0]
1269 #define  host_status   phys.head.status[1]
1270 #define  ssss_status   phys.head.status[2]
1271 #define  host_flags    phys.head.status[3]
1272 
1273 /*
1274  *  Host flags
1275  */
1276 #define HF_IN_PM0	1u
1277 #define HF_IN_PM1	(1u<<1)
1278 #define HF_ACT_PM	(1u<<2)
1279 #define HF_DP_SAVED	(1u<<3)
1280 #define HF_SENSE	(1u<<4)
1281 #define HF_EXT_ERR	(1u<<5)
1282 #define HF_DATA_IN	(1u<<6)
1283 #ifdef SYM_CONF_IARB_SUPPORT
1284 #define HF_HINT_IARB	(1u<<7)
1285 #endif
1286 
1287 /*
1288  *  Global CCB HEADER.
1289  *
1290  *  Due to lack of indirect addressing on earlier NCR chips,
1291  *  this substructure is copied from the ccb to a global
1292  *  address after selection (or reselection) and copied back
1293  *  before disconnect.
1294  *  For SYMBIOS chips that support LOAD/STORE this copy is
1295  *  not needed and thus not performed.
1296  */
1297 struct sym_ccbh {
1298 	/*
1299 	 *  Start and restart SCRIPTS addresses (must be at 0).
1300 	 */
1301 /*0*/	struct sym_actscr go;
1302 
1303 	/*
1304 	 *  SCRIPTS jump address that deal with data pointers.
1305 	 *  'savep' points to the position in the script responsible
1306 	 *  for the actual transfer of data.
1307 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1308 	 */
1309 	u32	savep;		/* Jump address to saved data pointer	*/
1310 	u32	lastp;		/* SCRIPTS address at end of data	*/
1311 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1312 
1313 	/*
1314 	 *  Status fields.
1315 	 */
1316 	u8	status[4];
1317 };
1318 
1319 /*
1320  *  Data Structure Block
1321  *
1322  *  During execution of a ccb by the script processor, the
1323  *  DSA (data structure address) register points to this
1324  *  substructure of the ccb.
1325  */
1326 struct sym_dsb {
1327 	/*
1328 	 *  CCB header.
1329 	 *  Also assumed at offset 0 of the sym_ccb structure.
1330 	 */
1331 /*0*/	struct sym_ccbh head;
1332 
1333 	/*
1334 	 *  Phase mismatch contexts.
1335 	 *  We need two to handle correctly the SAVED DATA POINTER.
1336 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1337 	 *  for address calculation from SCRIPTS.
1338 	 */
1339 	struct sym_pmc pm0;
1340 	struct sym_pmc pm1;
1341 
1342 	/*
1343 	 *  Table data for Script
1344 	 */
1345 	struct sym_tblsel  select;
1346 	struct sym_tblmove smsg;
1347 	struct sym_tblmove smsg_ext;
1348 	struct sym_tblmove cmd;
1349 	struct sym_tblmove sense;
1350 	struct sym_tblmove wresid;
1351 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1352 };
1353 
1354 /*
1355  *  Our Command Control Block
1356  */
1357 struct sym_ccb {
1358 	/*
1359 	 *  This is the data structure which is pointed by the DSA
1360 	 *  register when it is executed by the script processor.
1361 	 *  It must be the first entry.
1362 	 */
1363 	struct sym_dsb phys;
1364 
1365 	/*
1366 	 *  Pointer to CAM ccb and related stuff.
1367 	 */
1368 	struct callout ch;	/* callout handle		*/
1369 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1370 	u8	cdb_buf[16];	/* Copy of CDB			*/
1371 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1372 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1373 	int	data_len;	/* Total data length		*/
1374 	int	segments;	/* Number of SG segments	*/
1375 
1376 	/*
1377 	 *  Miscellaneous status'.
1378 	 */
1379 	u_char	nego_status;	/* Negotiation status		*/
1380 	u_char	xerr_status;	/* Extended error flags		*/
1381 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1382 
1383 	/*
1384 	 *  Message areas.
1385 	 *  We prepare a message to be sent after selection.
1386 	 *  We may use a second one if the command is rescheduled
1387 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1388 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1389 	 *  While negotiating sync or wide transfer,
1390 	 *  a SDTR or WDTR message is appended.
1391 	 */
1392 	u_char	scsi_smsg [12];
1393 	u_char	scsi_smsg2[12];
1394 
1395 	/*
1396 	 *  Auto request sense related fields.
1397 	 */
1398 	u_char	sensecmd[6];	/* Request Sense command	*/
1399 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1400 	u_char	sv_xerr_status;	/* Saved extended status	*/
1401 	int	sv_resid;	/* Saved residual		*/
1402 
1403 	/*
1404 	 *  Map for the DMA of user data.
1405 	 */
1406 	void		*arg;	/* Argument for some callback	*/
1407 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1408 	u_char		dmamapped;
1409 #define SYM_DMA_NONE	0
1410 #define SYM_DMA_READ	1
1411 #define SYM_DMA_WRITE	2
1412 	/*
1413 	 *  Other fields.
1414 	 */
1415 	u32	ccb_ba;		/* BUS address of this CCB	*/
1416 	u_short	tag;		/* Tag for this transfer	*/
1417 				/*  NO_TAG means no tag		*/
1418 	u_char	target;
1419 	u_char	lun;
1420 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1421 	SYM_QUEHEAD
1422 		link_ccbq;	/* Link to free/busy CCB queue	*/
1423 	u32	startp;		/* Initial data pointer		*/
1424 	int	ext_sg;		/* Extreme data pointer, used	*/
1425 	int	ext_ofs;	/*  to calculate the residual.	*/
1426 	u_char	to_abort;	/* Want this IO to be aborted	*/
1427 };
1428 
1429 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1430 
1431 /*
1432  *  Host Control Block
1433  */
1434 struct sym_hcb {
1435 	struct mtx	mtx;
1436 
1437 	/*
1438 	 *  Global headers.
1439 	 *  Due to poorness of addressing capabilities, earlier
1440 	 *  chips (810, 815, 825) copy part of the data structures
1441 	 *  (CCB, TCB and LCB) in fixed areas.
1442 	 */
1443 #ifdef	SYM_CONF_GENERIC_SUPPORT
1444 	struct sym_ccbh	ccb_head;
1445 	struct sym_tcbh	tcb_head;
1446 	struct sym_lcbh	lcb_head;
1447 #endif
1448 	/*
1449 	 *  Idle task and invalid task actions and
1450 	 *  their bus addresses.
1451 	 */
1452 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1453 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1454 
1455 	/*
1456 	 *  Dummy lun table to protect us against target
1457 	 *  returning bad lun number on reselection.
1458 	 */
1459 	u32	*badluntbl;	/* Table physical address	*/
1460 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1461 
1462 	/*
1463 	 *  Bus address of this host control block.
1464 	 */
1465 	u32	hcb_ba;
1466 
1467 	/*
1468 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1469 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1470 	 *  field.
1471 	 */
1472 	u32	scr_ram_seg;
1473 
1474 	/*
1475 	 *  Chip and controller indentification.
1476 	 */
1477 	device_t device;
1478 
1479 	/*
1480 	 *  Initial value of some IO register bits.
1481 	 *  These values are assumed to have been set by BIOS, and may
1482 	 *  be used to probe adapter implementation differences.
1483 	 */
1484 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1485 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1486 		sv_stest1;
1487 
1488 	/*
1489 	 *  Actual initial value of IO register bits used by the
1490 	 *  driver. They are loaded at initialisation according to
1491 	 *  features that are to be enabled/disabled.
1492 	 */
1493 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1494 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1495 
1496 	/*
1497 	 *  Target data.
1498 	 */
1499 #ifdef __amd64__
1500 	struct sym_tcb	*target;
1501 #else
1502 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1503 #endif
1504 
1505 	/*
1506 	 *  Target control block bus address array used by the SCRIPT
1507 	 *  on reselection.
1508 	 */
1509 	u32		*targtbl;
1510 	u32		targtbl_ba;
1511 
1512 	/*
1513 	 *  CAM SIM information for this instance.
1514 	 */
1515 	struct		cam_sim  *sim;
1516 	struct		cam_path *path;
1517 
1518 	/*
1519 	 *  Allocated hardware resources.
1520 	 */
1521 	struct resource	*irq_res;
1522 	struct resource	*io_res;
1523 	struct resource	*mmio_res;
1524 	struct resource	*ram_res;
1525 	int		ram_id;
1526 	void *intr;
1527 
1528 	/*
1529 	 *  Bus stuff.
1530 	 *
1531 	 *  My understanding of PCI is that all agents must share the
1532 	 *  same addressing range and model.
1533 	 *  But some hardware architecture guys provide complex and
1534 	 *  brain-deaded stuff that makes shit.
1535 	 *  This driver only support PCI compliant implementations and
1536 	 *  deals with part of the BUS stuff complexity only to fit O/S
1537 	 *  requirements.
1538 	 */
1539 
1540 	/*
1541 	 *  DMA stuff.
1542 	 */
1543 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1544 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1545 	/*
1546 	 *  BUS addresses of the chip
1547 	 */
1548 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1549 	int		mmio_ws;	/* MMIO Window size		*/
1550 
1551 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1552 	int		ram_ws;		/* RAM window size		*/
1553 
1554 	/*
1555 	 *  SCRIPTS virtual and physical bus addresses.
1556 	 *  'script'  is loaded in the on-chip RAM if present.
1557 	 *  'scripth' stays in main memory for all chips except the
1558 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1559 	 */
1560 	u_char		*scripta0;	/* Copies of script and scripth	*/
1561 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1562 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1563 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1564 	vm_offset_t	scriptb0_ba;
1565 	u_short		scripta_sz;	/* Actual size of script A	*/
1566 	u_short		scriptb_sz;	/* Actual size of script B	*/
1567 
1568 	/*
1569 	 *  Bus addresses, setup and patch methods for
1570 	 *  the selected firmware.
1571 	 */
1572 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1573 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1574 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1575 	void		(*fw_patch)(hcb_p np);
1576 	const char	*fw_name;
1577 
1578 	/*
1579 	 *  General controller parameters and configuration.
1580 	 */
1581 	u_short	device_id;	/* PCI device id		*/
1582 	u_char	revision_id;	/* PCI device revision id	*/
1583 	u_int	features;	/* Chip features map		*/
1584 	u_char	myaddr;		/* SCSI id of the adapter	*/
1585 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1586 	u_char	maxwide;	/* Maximum transfer width	*/
1587 	u_char	minsync;	/* Min sync period factor (ST)	*/
1588 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1589 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1590 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1591 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1592 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1593 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1594 	u_char	clock_divn;	/* Number of clock divisors	*/
1595 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1596 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1597 	/*
1598 	 *  Start queue management.
1599 	 *  It is filled up by the host processor and accessed by the
1600 	 *  SCRIPTS processor in order to start SCSI commands.
1601 	 */
1602 	volatile		/* Prevent code optimizations	*/
1603 	u32	*squeue;	/* Start queue virtual address	*/
1604 	u32	squeue_ba;	/* Start queue BUS address	*/
1605 	u_short	squeueput;	/* Next free slot of the queue	*/
1606 	u_short	actccbs;	/* Number of allocated CCBs	*/
1607 
1608 	/*
1609 	 *  Command completion queue.
1610 	 *  It is the same size as the start queue to avoid overflow.
1611 	 */
1612 	u_short	dqueueget;	/* Next position to scan	*/
1613 	volatile		/* Prevent code optimizations	*/
1614 	u32	*dqueue;	/* Completion (done) queue	*/
1615 	u32	dqueue_ba;	/* Done queue BUS address	*/
1616 
1617 	/*
1618 	 *  Miscellaneous buffers accessed by the scripts-processor.
1619 	 *  They shall be DWORD aligned, because they may be read or
1620 	 *  written with a script command.
1621 	 */
1622 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1623 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1624 	u32		lastmsg;	/* Last SCSI message sent	*/
1625 	u_char		scratch;	/* Scratch for SCSI receive	*/
1626 
1627 	/*
1628 	 *  Miscellaneous configuration and status parameters.
1629 	 */
1630 	u_char		usrflags;	/* Miscellaneous user flags	*/
1631 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1632 	u_char		verbose;	/* Verbosity for this controller*/
1633 	u32		cache;		/* Used for cache test at init.	*/
1634 
1635 	/*
1636 	 *  CCB lists and queue.
1637 	 */
1638 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1639 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1640 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1641 
1642 	/*
1643 	 *  During error handling and/or recovery,
1644 	 *  active CCBs that are to be completed with
1645 	 *  error or requeued are moved from the busy_ccbq
1646 	 *  to the comp_ccbq prior to completion.
1647 	 */
1648 	SYM_QUEHEAD	comp_ccbq;
1649 
1650 	/*
1651 	 *  CAM CCB pending queue.
1652 	 */
1653 	SYM_QUEHEAD	cam_ccbq;
1654 
1655 	/*
1656 	 *  IMMEDIATE ARBITRATION (IARB) control.
1657 	 *
1658 	 *  We keep track in 'last_cp' of the last CCB that has been
1659 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1660 	 *  this CCB completes. If last_cp is not zero at the moment
1661 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1662 	 *  used by the SCRIPTS as a hint for setting IARB.
1663 	 *  We donnot set more than 'iarb_max' consecutive hints for
1664 	 *  IARB in order to leave devices a chance to reselect.
1665 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1666 	 */
1667 #ifdef SYM_CONF_IARB_SUPPORT
1668 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1669 	u_short		iarb_count;	/* Actual # of these hints	*/
1670 	ccb_p		last_cp;
1671 #endif
1672 
1673 	/*
1674 	 *  Command abort handling.
1675 	 *  We need to synchronize tightly with the SCRIPTS
1676 	 *  processor in order to handle things correctly.
1677 	 */
1678 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1679 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1680 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1681 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1682 };
1683 
1684 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1685 
1686 /*
1687  *  Return the name of the controller.
1688  */
sym_name(hcb_p np)1689 static __inline const char *sym_name(hcb_p np)
1690 {
1691 	return device_get_nameunit(np->device);
1692 }
1693 
1694 /*--------------------------------------------------------------------------*/
1695 /*------------------------------ FIRMWARES ---------------------------------*/
1696 /*--------------------------------------------------------------------------*/
1697 
1698 /*
1699  *  This stuff will be moved to a separate source file when
1700  *  the driver will be broken into several source modules.
1701  */
1702 
1703 /*
1704  *  Macros used for all firmwares.
1705  */
1706 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1707 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1708 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1709 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1710 
1711 #ifdef	SYM_CONF_GENERIC_SUPPORT
1712 /*
1713  *  Allocate firmware #1 script area.
1714  */
1715 #define	SYM_FWA_SCR		sym_fw1a_scr
1716 #define	SYM_FWB_SCR		sym_fw1b_scr
1717 #include <dev/sym/sym_fw1.h>
1718 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1719 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1720 };
1721 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1722 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1723 };
1724 #undef	SYM_FWA_SCR
1725 #undef	SYM_FWB_SCR
1726 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1727 
1728 /*
1729  *  Allocate firmware #2 script area.
1730  */
1731 #define	SYM_FWA_SCR		sym_fw2a_scr
1732 #define	SYM_FWB_SCR		sym_fw2b_scr
1733 #include <dev/sym/sym_fw2.h>
1734 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1735 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1736 };
1737 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1738 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1739 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1740 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1741 };
1742 #undef	SYM_FWA_SCR
1743 #undef	SYM_FWB_SCR
1744 
1745 #undef	SYM_GEN_A
1746 #undef	SYM_GEN_B
1747 #undef	PADDR_A
1748 #undef	PADDR_B
1749 
1750 #ifdef	SYM_CONF_GENERIC_SUPPORT
1751 /*
1752  *  Patch routine for firmware #1.
1753  */
1754 static void
sym_fw1_patch(hcb_p np)1755 sym_fw1_patch(hcb_p np)
1756 {
1757 	struct sym_fw1a_scr *scripta0;
1758 	struct sym_fw1b_scr *scriptb0;
1759 
1760 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1761 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1762 
1763 	/*
1764 	 *  Remove LED support if not needed.
1765 	 */
1766 	if (!(np->features & FE_LED0)) {
1767 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1768 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1769 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1770 	}
1771 
1772 #ifdef SYM_CONF_IARB_SUPPORT
1773 	/*
1774 	 *    If user does not want to use IMMEDIATE ARBITRATION
1775 	 *    when we are reselected while attempting to arbitrate,
1776 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1777 	 */
1778 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1779 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1780 #endif
1781 	/*
1782 	 *  Patch some data in SCRIPTS.
1783 	 *  - start and done queue initial bus address.
1784 	 *  - target bus address table bus address.
1785 	 */
1786 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1787 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1788 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1789 }
1790 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1791 
1792 /*
1793  *  Patch routine for firmware #2.
1794  */
1795 static void
sym_fw2_patch(hcb_p np)1796 sym_fw2_patch(hcb_p np)
1797 {
1798 	struct sym_fw2a_scr *scripta0;
1799 	struct sym_fw2b_scr *scriptb0;
1800 
1801 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1802 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1803 
1804 	/*
1805 	 *  Remove LED support if not needed.
1806 	 */
1807 	if (!(np->features & FE_LED0)) {
1808 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1809 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1810 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1811 	}
1812 
1813 #ifdef SYM_CONF_IARB_SUPPORT
1814 	/*
1815 	 *    If user does not want to use IMMEDIATE ARBITRATION
1816 	 *    when we are reselected while attempting to arbitrate,
1817 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1818 	 */
1819 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1820 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1821 #endif
1822 	/*
1823 	 *  Patch some variable in SCRIPTS.
1824 	 *  - start and done queue initial bus address.
1825 	 *  - target bus address table bus address.
1826 	 */
1827 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1828 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1829 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1830 
1831 	/*
1832 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1833 	 */
1834 	if (!(np->features & FE_C10)) {
1835 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1836 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1837 	}
1838 
1839 	/*
1840 	 *  Remove a couple of work-arounds specific to C1010 if
1841 	 *  they are not desirable. See `sym_fw2.h' for more details.
1842 	 */
1843 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1844 	      np->revision_id < 0x1 &&
1845 	      np->pciclk_khz < 60000)) {
1846 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1847 		scripta0->datao_phase[1] = cpu_to_scr(0);
1848 	}
1849 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1850 	      /* np->revision_id < 0xff */ 1)) {
1851 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1852 		scripta0->sel_done[1] = cpu_to_scr(0);
1853 	}
1854 
1855 	/*
1856 	 *  Patch some other variables in SCRIPTS.
1857 	 *  These ones are loaded by the SCRIPTS processor.
1858 	 */
1859 	scriptb0->pm0_data_addr[0] =
1860 		cpu_to_scr(np->scripta_ba +
1861 			   offsetof(struct sym_fw2a_scr, pm0_data));
1862 	scriptb0->pm1_data_addr[0] =
1863 		cpu_to_scr(np->scripta_ba +
1864 			   offsetof(struct sym_fw2a_scr, pm1_data));
1865 }
1866 
1867 /*
1868  *  Fill the data area in scripts.
1869  *  To be done for all firmwares.
1870  */
1871 static void
sym_fw_fill_data(u32 * in,u32 * out)1872 sym_fw_fill_data (u32 *in, u32 *out)
1873 {
1874 	int	i;
1875 
1876 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1877 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1878 		*in++  = offsetof (struct sym_dsb, data[i]);
1879 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1880 		*out++ = offsetof (struct sym_dsb, data[i]);
1881 	}
1882 }
1883 
1884 /*
1885  *  Setup useful script bus addresses.
1886  *  To be done for all firmwares.
1887  */
1888 static void
sym_fw_setup_bus_addresses(hcb_p np,const struct sym_fw * fw)1889 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1890 {
1891 	u32 *pa;
1892 	const u_short *po;
1893 	int i;
1894 
1895 	/*
1896 	 *  Build the bus address table for script A
1897 	 *  from the script A offset table.
1898 	 */
1899 	po = (const u_short *) fw->a_ofs;
1900 	pa = (u32 *) &np->fwa_bas;
1901 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1902 		pa[i] = np->scripta_ba + po[i];
1903 
1904 	/*
1905 	 *  Same for script B.
1906 	 */
1907 	po = (const u_short *) fw->b_ofs;
1908 	pa = (u32 *) &np->fwb_bas;
1909 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1910 		pa[i] = np->scriptb_ba + po[i];
1911 }
1912 
1913 #ifdef	SYM_CONF_GENERIC_SUPPORT
1914 /*
1915  *  Setup routine for firmware #1.
1916  */
1917 static void
sym_fw1_setup(hcb_p np,const struct sym_fw * fw)1918 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1919 {
1920 	struct sym_fw1a_scr *scripta0;
1921 
1922 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1923 
1924 	/*
1925 	 *  Fill variable parts in scripts.
1926 	 */
1927 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1928 
1929 	/*
1930 	 *  Setup bus addresses used from the C code..
1931 	 */
1932 	sym_fw_setup_bus_addresses(np, fw);
1933 }
1934 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1935 
1936 /*
1937  *  Setup routine for firmware #2.
1938  */
1939 static void
sym_fw2_setup(hcb_p np,const struct sym_fw * fw)1940 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1941 {
1942 	struct sym_fw2a_scr *scripta0;
1943 
1944 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1945 
1946 	/*
1947 	 *  Fill variable parts in scripts.
1948 	 */
1949 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1950 
1951 	/*
1952 	 *  Setup bus addresses used from the C code..
1953 	 */
1954 	sym_fw_setup_bus_addresses(np, fw);
1955 }
1956 
1957 /*
1958  *  Allocate firmware descriptors.
1959  */
1960 #ifdef	SYM_CONF_GENERIC_SUPPORT
1961 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1962 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1963 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1964 
1965 /*
1966  *  Find the most appropriate firmware for a chip.
1967  */
1968 static const struct sym_fw *
sym_find_firmware(const struct sym_pci_chip * chip)1969 sym_find_firmware(const struct sym_pci_chip *chip)
1970 {
1971 	if (chip->features & FE_LDSTR)
1972 		return &sym_fw2;
1973 #ifdef	SYM_CONF_GENERIC_SUPPORT
1974 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1975 		return &sym_fw1;
1976 #endif
1977 	else
1978 		return NULL;
1979 }
1980 
1981 /*
1982  *  Bind a script to physical addresses.
1983  */
sym_fw_bind_script(hcb_p np,u32 * start,int len)1984 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
1985 {
1986 	u32 opcode, new, old, tmp1, tmp2;
1987 	u32 *end, *cur;
1988 	int relocs;
1989 
1990 	cur = start;
1991 	end = start + len/4;
1992 
1993 	while (cur < end) {
1994 		opcode = *cur;
1995 
1996 		/*
1997 		 *  If we forget to change the length
1998 		 *  in scripts, a field will be
1999 		 *  padded with 0. This is an illegal
2000 		 *  command.
2001 		 */
2002 		if (opcode == 0) {
2003 			device_printf(np->device, "ERROR0 IN SCRIPT at %d.\n",
2004 			    (int)(cur-start));
2005 			MDELAY (10000);
2006 			++cur;
2007 			continue;
2008 		}
2009 
2010 		/*
2011 		 *  We use the bogus value 0xf00ff00f ;-)
2012 		 *  to reserve data area in SCRIPTS.
2013 		 */
2014 		if (opcode == SCR_DATA_ZERO) {
2015 			*cur++ = 0;
2016 			continue;
2017 		}
2018 
2019 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2020 			printf ("%d:  <%x>\n", (int) (cur-start),
2021 				(unsigned)opcode);
2022 
2023 		/*
2024 		 *  We don't have to decode ALL commands
2025 		 */
2026 		switch (opcode >> 28) {
2027 		case 0xf:
2028 			/*
2029 			 *  LOAD / STORE DSA relative, don't relocate.
2030 			 */
2031 			relocs = 0;
2032 			break;
2033 		case 0xe:
2034 			/*
2035 			 *  LOAD / STORE absolute.
2036 			 */
2037 			relocs = 1;
2038 			break;
2039 		case 0xc:
2040 			/*
2041 			 *  COPY has TWO arguments.
2042 			 */
2043 			relocs = 2;
2044 			tmp1 = cur[1];
2045 			tmp2 = cur[2];
2046 			if ((tmp1 ^ tmp2) & 3) {
2047 				device_printf(np->device,
2048 				    "ERROR1 IN SCRIPT at %d.\n",
2049 				    (int)(cur-start));
2050 				MDELAY (10000);
2051 			}
2052 			/*
2053 			 *  If PREFETCH feature not enabled, remove
2054 			 *  the NO FLUSH bit if present.
2055 			 */
2056 			if ((opcode & SCR_NO_FLUSH) &&
2057 			    !(np->features & FE_PFEN)) {
2058 				opcode = (opcode & ~SCR_NO_FLUSH);
2059 			}
2060 			break;
2061 		case 0x0:
2062 			/*
2063 			 *  MOVE/CHMOV (absolute address)
2064 			 */
2065 			if (!(np->features & FE_WIDE))
2066 				opcode = (opcode | OPC_MOVE);
2067 			relocs = 1;
2068 			break;
2069 		case 0x1:
2070 			/*
2071 			 *  MOVE/CHMOV (table indirect)
2072 			 */
2073 			if (!(np->features & FE_WIDE))
2074 				opcode = (opcode | OPC_MOVE);
2075 			relocs = 0;
2076 			break;
2077 		case 0x8:
2078 			/*
2079 			 *  JUMP / CALL
2080 			 *  dont't relocate if relative :-)
2081 			 */
2082 			if (opcode & 0x00800000)
2083 				relocs = 0;
2084 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2085 				relocs = 2;
2086 			else
2087 				relocs = 1;
2088 			break;
2089 		case 0x4:
2090 		case 0x5:
2091 		case 0x6:
2092 		case 0x7:
2093 			relocs = 1;
2094 			break;
2095 		default:
2096 			relocs = 0;
2097 			break;
2098 		}
2099 
2100 		/*
2101 		 *  Scriptify:) the opcode.
2102 		 */
2103 		*cur++ = cpu_to_scr(opcode);
2104 
2105 		/*
2106 		 *  If no relocation, assume 1 argument
2107 		 *  and just scriptize:) it.
2108 		 */
2109 		if (!relocs) {
2110 			*cur = cpu_to_scr(*cur);
2111 			++cur;
2112 			continue;
2113 		}
2114 
2115 		/*
2116 		 *  Otherwise performs all needed relocations.
2117 		 */
2118 		while (relocs--) {
2119 			old = *cur;
2120 
2121 			switch (old & RELOC_MASK) {
2122 			case RELOC_REGISTER:
2123 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2124 				break;
2125 			case RELOC_LABEL_A:
2126 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2127 				break;
2128 			case RELOC_LABEL_B:
2129 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2130 				break;
2131 			case RELOC_SOFTC:
2132 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2133 				break;
2134 			case 0:
2135 				/*
2136 				 *  Don't relocate a 0 address.
2137 				 *  They are mostly used for patched or
2138 				 *  script self-modified areas.
2139 				 */
2140 				if (old == 0) {
2141 					new = old;
2142 					break;
2143 				}
2144 				/* fall through */
2145 			default:
2146 				new = 0;
2147 				panic("sym_fw_bind_script: "
2148 				      "weird relocation %x\n", old);
2149 				break;
2150 			}
2151 
2152 			*cur++ = cpu_to_scr(new);
2153 		}
2154 	}
2155 }
2156 
2157 /*---------------------------------------------------------------------------*/
2158 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2159 /*---------------------------------------------------------------------------*/
2160 
2161 /*
2162  *  Function prototypes.
2163  */
2164 static void sym_save_initial_setting (hcb_p np);
2165 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2166 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2167 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2168 static void sym_chip_reset (hcb_p np);
2169 static void sym_soft_reset (hcb_p np);
2170 static void sym_start_reset (hcb_p np);
2171 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2172 static int  sym_wakeup_done (hcb_p np);
2173 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2174 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2175 static void sym_init (hcb_p np, int reason);
2176 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2177 		        u_char *fakp);
2178 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2179 			 u_char div, u_char fak);
2180 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2181 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2182 			 u_char per, u_char wide, u_char div, u_char fak);
2183 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2184 			 u_char per, u_char wide, u_char div, u_char fak);
2185 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2186 static void sym_intr (void *arg);
2187 static void sym_poll (struct cam_sim *sim);
2188 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2189 static void sym_int_sto (hcb_p np);
2190 static void sym_int_udc (hcb_p np);
2191 static void sym_int_sbmc (hcb_p np);
2192 static void sym_int_par (hcb_p np, u_short sist);
2193 static void sym_int_ma (hcb_p np);
2194 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2195 				    int task);
2196 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2197 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2198 static void sym_sir_task_recovery (hcb_p np, int num);
2199 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2200 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2201 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2202 static int  sym_show_msg (u_char * msg);
2203 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2204 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2205 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2206 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2207 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2208 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2209 static void sym_int_sir (hcb_p np);
2210 static void sym_free_ccb (hcb_p np, ccb_p cp);
2211 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2212 static ccb_p sym_alloc_ccb (hcb_p np);
2213 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2214 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2215 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2216 static int  sym_snooptest (hcb_p np);
2217 static void sym_selectclock(hcb_p np, u_char scntl3);
2218 static void sym_getclock (hcb_p np, int mult);
2219 static int  sym_getpciclock (hcb_p np);
2220 static void sym_complete_ok (hcb_p np, ccb_p cp);
2221 static void sym_complete_error (hcb_p np, ccb_p cp);
2222 static void sym_callout (void *arg);
2223 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2224 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2225 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2226 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2227 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2228 				      ccb_p cp);
2229 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2230 					bus_dma_segment_t *psegs, int nsegs);
2231 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2232 				    bus_dma_segment_t *psegs, int nsegs);
2233 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2234 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2235 			      struct ccb_trans_settings *cts);
2236 static void sym_update_dflags(hcb_p np, u_char *flags,
2237 			      struct ccb_trans_settings *cts);
2238 
2239 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2240 
2241 static device_probe_t sym_pci_probe;
2242 static device_attach_t sym_pci_attach;
2243 static device_detach_t sym_pci_detach;
2244 
2245 static int  sym_cam_attach (hcb_p np);
2246 static void sym_cam_free (hcb_p np);
2247 
2248 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2249 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2250 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2251 
2252 /*
2253  *  Print something which allows to retrieve the controller type,
2254  *  unit, target, lun concerned by a kernel message.
2255  */
PRINT_TARGET(hcb_p np,int target)2256 static void PRINT_TARGET (hcb_p np, int target)
2257 {
2258 	printf ("%s:%d:", sym_name(np), target);
2259 }
2260 
PRINT_LUN(hcb_p np,int target,int lun)2261 static void PRINT_LUN(hcb_p np, int target, int lun)
2262 {
2263 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2264 }
2265 
PRINT_ADDR(ccb_p cp)2266 static void PRINT_ADDR (ccb_p cp)
2267 {
2268 	if (cp && cp->cam_ccb)
2269 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2270 }
2271 
2272 /*
2273  *  Take into account this ccb in the freeze count.
2274  */
sym_freeze_cam_ccb(union ccb * ccb)2275 static void sym_freeze_cam_ccb(union ccb *ccb)
2276 {
2277 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2278 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2279 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2280 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2281 		}
2282 	}
2283 }
2284 
2285 /*
2286  *  Set the status field of a CAM CCB.
2287  */
sym_set_cam_status(union ccb * ccb,cam_status status)2288 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2289 {
2290 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2291 	ccb->ccb_h.status |= status;
2292 }
2293 
2294 /*
2295  *  Get the status field of a CAM CCB.
2296  */
sym_get_cam_status(union ccb * ccb)2297 static __inline int sym_get_cam_status(union ccb *ccb)
2298 {
2299 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2300 }
2301 
2302 /*
2303  *  Enqueue a CAM CCB.
2304  */
sym_enqueue_cam_ccb(ccb_p cp)2305 static void sym_enqueue_cam_ccb(ccb_p cp)
2306 {
2307 	hcb_p np;
2308 	union ccb *ccb;
2309 
2310 	ccb = cp->cam_ccb;
2311 	np = (hcb_p) cp->arg;
2312 
2313 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2314 	ccb->ccb_h.status = CAM_REQ_INPROG;
2315 
2316 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2317 	    (caddr_t)ccb, 0);
2318 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2319 	ccb->ccb_h.sym_hcb_ptr = np;
2320 
2321 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2322 }
2323 
2324 /*
2325  *  Complete a pending CAM CCB.
2326  */
2327 
sym_xpt_done(hcb_p np,union ccb * ccb,ccb_p cp)2328 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2329 {
2330 
2331 	SYM_LOCK_ASSERT(MA_OWNED);
2332 
2333 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2334 		callout_stop(&cp->ch);
2335 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2336 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2337 		ccb->ccb_h.sym_hcb_ptr = NULL;
2338 	}
2339 	xpt_done(ccb);
2340 }
2341 
sym_xpt_done2(hcb_p np,union ccb * ccb,int cam_status)2342 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2343 {
2344 
2345 	SYM_LOCK_ASSERT(MA_OWNED);
2346 
2347 	sym_set_cam_status(ccb, cam_status);
2348 	xpt_done(ccb);
2349 }
2350 
2351 /*
2352  *  SYMBIOS chip clock divisor table.
2353  *
2354  *  Divisors are multiplied by 10,000,000 in order to make
2355  *  calculations more simple.
2356  */
2357 #define _5M 5000000
2358 static const u32 div_10M[] =
2359 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2360 
2361 /*
2362  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2363  *  128 transfers. All chips support at least 16 transfers
2364  *  bursts. The 825A, 875 and 895 chips support bursts of up
2365  *  to 128 transfers and the 895A and 896 support bursts of up
2366  *  to 64 transfers. All other chips support up to 16
2367  *  transfers bursts.
2368  *
2369  *  For PCI 32 bit data transfers each transfer is a DWORD.
2370  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2371  *
2372  *  We use log base 2 (burst length) as internal code, with
2373  *  value 0 meaning "burst disabled".
2374  */
2375 
2376 /*
2377  *  Burst length from burst code.
2378  */
2379 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2380 
2381 /*
2382  *  Burst code from io register bits.
2383  */
2384 #define burst_code(dmode, ctest4, ctest5) \
2385 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2386 
2387 /*
2388  *  Set initial io register bits from burst code.
2389  */
sym_init_burst(hcb_p np,u_char bc)2390 static __inline void sym_init_burst(hcb_p np, u_char bc)
2391 {
2392 	np->rv_ctest4	&= ~0x80;
2393 	np->rv_dmode	&= ~(0x3 << 6);
2394 	np->rv_ctest5	&= ~0x4;
2395 
2396 	if (!bc) {
2397 		np->rv_ctest4	|= 0x80;
2398 	}
2399 	else {
2400 		--bc;
2401 		np->rv_dmode	|= ((bc & 0x3) << 6);
2402 		np->rv_ctest5	|= (bc & 0x4);
2403 	}
2404 }
2405 
2406 /*
2407  * Print out the list of targets that have some flag disabled by user.
2408  */
sym_print_targets_flag(hcb_p np,int mask,char * msg)2409 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2410 {
2411 	int cnt;
2412 	int i;
2413 
2414 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2415 		if (i == np->myaddr)
2416 			continue;
2417 		if (np->target[i].usrflags & mask) {
2418 			if (!cnt++)
2419 				device_printf(np->device,
2420 				    "%s disabled for targets", msg);
2421 			printf(" %d", i);
2422 		}
2423 	}
2424 	if (cnt)
2425 		printf(".\n");
2426 }
2427 
2428 /*
2429  *  Save initial settings of some IO registers.
2430  *  Assumed to have been set by BIOS.
2431  *  We cannot reset the chip prior to reading the
2432  *  IO registers, since informations will be lost.
2433  *  Since the SCRIPTS processor may be running, this
2434  *  is not safe on paper, but it seems to work quite
2435  *  well. :)
2436  */
sym_save_initial_setting(hcb_p np)2437 static void sym_save_initial_setting (hcb_p np)
2438 {
2439 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2440 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2441 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2442 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2443 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2444 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2445 	np->sv_gpcntl	= INB(nc_gpcntl);
2446 	np->sv_stest1	= INB(nc_stest1);
2447 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2448 	np->sv_stest4	= INB(nc_stest4);
2449 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2450 		np->sv_scntl4	= INB(nc_scntl4);
2451 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2452 	}
2453 	else
2454 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2455 }
2456 
2457 /*
2458  *  Prepare io register values used by sym_init() according
2459  *  to selected and supported features.
2460  */
sym_prepare_setting(hcb_p np,struct sym_nvram * nvram)2461 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2462 {
2463 	u_char	burst_max;
2464 	u32	period;
2465 	int i;
2466 
2467 	/*
2468 	 *  Wide ?
2469 	 */
2470 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2471 
2472 	/*
2473 	 *  Get the frequency of the chip's clock.
2474 	 */
2475 	if	(np->features & FE_QUAD)
2476 		np->multiplier	= 4;
2477 	else if	(np->features & FE_DBLR)
2478 		np->multiplier	= 2;
2479 	else
2480 		np->multiplier	= 1;
2481 
2482 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2483 	np->clock_khz	*= np->multiplier;
2484 
2485 	if (np->clock_khz != 40000)
2486 		sym_getclock(np, np->multiplier);
2487 
2488 	/*
2489 	 * Divisor to be used for async (timer pre-scaler).
2490 	 */
2491 	i = np->clock_divn - 1;
2492 	while (--i >= 0) {
2493 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2494 			++i;
2495 			break;
2496 		}
2497 	}
2498 	np->rv_scntl3 = i+1;
2499 
2500 	/*
2501 	 * The C1010 uses hardwired divisors for async.
2502 	 * So, we just throw away, the async. divisor.:-)
2503 	 */
2504 	if (np->features & FE_C10)
2505 		np->rv_scntl3 = 0;
2506 
2507 	/*
2508 	 * Minimum synchronous period factor supported by the chip.
2509 	 * Btw, 'period' is in tenths of nanoseconds.
2510 	 */
2511 	period = howmany(4 * div_10M[0], np->clock_khz);
2512 	if	(period <= 250)		np->minsync = 10;
2513 	else if	(period <= 303)		np->minsync = 11;
2514 	else if	(period <= 500)		np->minsync = 12;
2515 	else				np->minsync = howmany(period, 40);
2516 
2517 	/*
2518 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2519 	 */
2520 	if	(np->minsync < 25 &&
2521 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2522 		np->minsync = 25;
2523 	else if	(np->minsync < 12 &&
2524 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2525 		np->minsync = 12;
2526 
2527 	/*
2528 	 * Maximum synchronous period factor supported by the chip.
2529 	 */
2530 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2531 	np->maxsync = period > 2540 ? 254 : period / 10;
2532 
2533 	/*
2534 	 * If chip is a C1010, guess the sync limits in DT mode.
2535 	 */
2536 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2537 		if (np->clock_khz == 160000) {
2538 			np->minsync_dt = 9;
2539 			np->maxsync_dt = 50;
2540 			np->maxoffs_dt = 62;
2541 		}
2542 	}
2543 
2544 	/*
2545 	 *  64 bit addressing  (895A/896/1010) ?
2546 	 */
2547 	if (np->features & FE_DAC)
2548 #ifdef __LP64__
2549 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2550 #else
2551 		np->rv_ccntl1	|= (DDAC);
2552 #endif
2553 
2554 	/*
2555 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2556   	 */
2557 	if (np->features & FE_NOPM)
2558 		np->rv_ccntl0	|= (ENPMJ);
2559 
2560  	/*
2561 	 *  C1010 Errata.
2562 	 *  In dual channel mode, contention occurs if internal cycles
2563 	 *  are used. Disable internal cycles.
2564 	 */
2565 	if (np->device_id == PCI_ID_LSI53C1010 &&
2566 	    np->revision_id < 0x2)
2567 		np->rv_ccntl0	|=  DILS;
2568 
2569 	/*
2570 	 *  Select burst length (dwords)
2571 	 */
2572 	burst_max	= SYM_SETUP_BURST_ORDER;
2573 	if (burst_max == 255)
2574 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2575 				       np->sv_ctest5);
2576 	if (burst_max > 7)
2577 		burst_max = 7;
2578 	if (burst_max > np->maxburst)
2579 		burst_max = np->maxburst;
2580 
2581 	/*
2582 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2583 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2584 	 *  based transactions on LOAD/STORE instructions. So we have
2585 	 *  to prevent these chips from using such PCI transactions in
2586 	 *  this driver. The generic ncr driver that does not use
2587 	 *  LOAD/STORE instructions does not need this work-around.
2588 	 */
2589 	if ((np->device_id == PCI_ID_SYM53C810 &&
2590 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2591 	    (np->device_id == PCI_ID_SYM53C860 &&
2592 	     np->revision_id <= 0x1))
2593 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2594 
2595 	/*
2596 	 *  Select all supported special features.
2597 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2598 	 *  does not help, but burst op fetch (BOF) does.
2599 	 *  Disabling PFEN makes sure BOF will be used.
2600 	 */
2601 	if (np->features & FE_ERL)
2602 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2603 	if (np->features & FE_BOF)
2604 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2605 	if (np->features & FE_ERMP)
2606 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2607 #if 1
2608 	if ((np->features & FE_PFEN) && !np->ram_ba)
2609 #else
2610 	if (np->features & FE_PFEN)
2611 #endif
2612 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2613 	if (np->features & FE_CLSE)
2614 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2615 	if (np->features & FE_WRIE)
2616 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2617 	if (np->features & FE_DFS)
2618 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2619 
2620 	/*
2621 	 *  Select some other
2622 	 */
2623 	if (SYM_SETUP_PCI_PARITY)
2624 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2625 	if (SYM_SETUP_SCSI_PARITY)
2626 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2627 
2628 	/*
2629 	 *  Get parity checking, host ID and verbose mode from NVRAM
2630 	 */
2631 	np->myaddr = 255;
2632 	sym_nvram_setup_host (np, nvram);
2633 
2634 	/*
2635 	 *  Get SCSI addr of host adapter (set by bios?).
2636 	 */
2637 	if (np->myaddr == 255) {
2638 		np->myaddr = INB(nc_scid) & 0x07;
2639 		if (!np->myaddr)
2640 			np->myaddr = SYM_SETUP_HOST_ID;
2641 	}
2642 
2643 	/*
2644 	 *  Prepare initial io register bits for burst length
2645 	 */
2646 	sym_init_burst(np, burst_max);
2647 
2648 	/*
2649 	 *  Set SCSI BUS mode.
2650 	 *  - LVD capable chips (895/895A/896/1010) report the
2651 	 *    current BUS mode through the STEST4 IO register.
2652 	 *  - For previous generation chips (825/825A/875),
2653 	 *    user has to tell us how to check against HVD,
2654 	 *    since a 100% safe algorithm is not possible.
2655 	 */
2656 	np->scsi_mode = SMODE_SE;
2657 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2658 		np->scsi_mode = (np->sv_stest4 & SMODE);
2659 	else if	(np->features & FE_DIFF) {
2660 		if (SYM_SETUP_SCSI_DIFF == 1) {
2661 			if (np->sv_scntl3) {
2662 				if (np->sv_stest2 & 0x20)
2663 					np->scsi_mode = SMODE_HVD;
2664 			}
2665 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2666 				if (!(INB(nc_gpreg) & 0x08))
2667 					np->scsi_mode = SMODE_HVD;
2668 			}
2669 		}
2670 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2671 			np->scsi_mode = SMODE_HVD;
2672 	}
2673 	if (np->scsi_mode == SMODE_HVD)
2674 		np->rv_stest2 |= 0x20;
2675 
2676 	/*
2677 	 *  Set LED support from SCRIPTS.
2678 	 *  Ignore this feature for boards known to use a
2679 	 *  specific GPIO wiring and for the 895A, 896
2680 	 *  and 1010 that drive the LED directly.
2681 	 */
2682 	if ((SYM_SETUP_SCSI_LED ||
2683 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2684 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2685 	       np->device_id == PCI_ID_SYM53C895))) &&
2686 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2687 		np->features |= FE_LED0;
2688 
2689 	/*
2690 	 *  Set irq mode.
2691 	 */
2692 	switch(SYM_SETUP_IRQ_MODE & 3) {
2693 	case 2:
2694 		np->rv_dcntl	|= IRQM;
2695 		break;
2696 	case 1:
2697 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2698 		break;
2699 	default:
2700 		break;
2701 	}
2702 
2703 	/*
2704 	 *  Configure targets according to driver setup.
2705 	 *  If NVRAM present get targets setup from NVRAM.
2706 	 */
2707 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2708 		tcb_p tp = &np->target[i];
2709 
2710 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2711 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2712 		tp->tinfo.user.period = np->minsync;
2713 		if (np->features & FE_ULTRA3)
2714 			tp->tinfo.user.period = np->minsync_dt;
2715 		tp->tinfo.user.offset = np->maxoffs;
2716 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2717 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2718 		tp->usrtags = SYM_SETUP_MAX_TAG;
2719 
2720 		sym_nvram_setup_target (np, i, nvram);
2721 
2722 		/*
2723 		 *  For now, guess PPR/DT support from the period
2724 		 *  and BUS width.
2725 		 */
2726 		if (np->features & FE_ULTRA3) {
2727 			if (tp->tinfo.user.period <= 9	&&
2728 			    tp->tinfo.user.width == BUS_16_BIT) {
2729 				tp->tinfo.user.options |= PPR_OPT_DT;
2730 				tp->tinfo.user.offset   = np->maxoffs_dt;
2731 				tp->tinfo.user.spi_version = 3;
2732 			}
2733 		}
2734 
2735 		if (!tp->usrtags)
2736 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2737 	}
2738 
2739 	/*
2740 	 *  Let user know about the settings.
2741 	 */
2742 	i = nvram->type;
2743 	device_printf(np->device, "%s NVRAM, ID %d, Fast-%d, %s, %s\n",
2744 	    i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2745 	    (i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2746 	    np->myaddr,
2747 	    (np->features & FE_ULTRA3)	? 80 :
2748 	    (np->features & FE_ULTRA2)	? 40 :
2749 	    (np->features & FE_ULTRA)	? 20 : 10,
2750 	    sym_scsi_bus_mode(np->scsi_mode),
2751 	    (np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2752 	/*
2753 	 *  Tell him more on demand.
2754 	 */
2755 	if (sym_verbose) {
2756 		device_printf(np->device, "%s IRQ line driver%s\n",
2757 		    np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2758 		    np->ram_ba ? ", using on-chip SRAM" : "");
2759 		device_printf(np->device, "using %s firmware.\n", np->fw_name);
2760 		if (np->features & FE_NOPM)
2761 			device_printf(np->device,
2762 			    "handling phase mismatch from SCRIPTS.\n");
2763 	}
2764 	/*
2765 	 *  And still more.
2766 	 */
2767 	if (sym_verbose > 1) {
2768 		device_printf(np->device,
2769 		    "initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2770 		    "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2771 		    np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3,
2772 		    np->sv_ctest4, np->sv_ctest5);
2773 
2774 		device_printf(np->device,
2775 		    "final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2776 		    "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2777 		    np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2778 		    np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2779 	}
2780 	/*
2781 	 *  Let user be aware of targets that have some disable flags set.
2782 	 */
2783 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2784 	if (sym_verbose)
2785 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2786 				       "SCAN FOR LUNS");
2787 
2788 	return 0;
2789 }
2790 
2791 /*
2792  *  Prepare the next negotiation message if needed.
2793  *
2794  *  Fill in the part of message buffer that contains the
2795  *  negotiation and the nego_status field of the CCB.
2796  *  Returns the size of the message in bytes.
2797  */
sym_prepare_nego(hcb_p np,ccb_p cp,int nego,u_char * msgptr)2798 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2799 {
2800 	tcb_p tp = &np->target[cp->target];
2801 	int msglen = 0;
2802 
2803 	/*
2804 	 *  Early C1010 chips need a work-around for DT
2805 	 *  data transfer to work.
2806 	 */
2807 	if (!(np->features & FE_U3EN))
2808 		tp->tinfo.goal.options = 0;
2809 	/*
2810 	 *  negotiate using PPR ?
2811 	 */
2812 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2813 		nego = NS_PPR;
2814 	/*
2815 	 *  negotiate wide transfers ?
2816 	 */
2817 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2818 		nego = NS_WIDE;
2819 	/*
2820 	 *  negotiate synchronous transfers?
2821 	 */
2822 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2823 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2824 		nego = NS_SYNC;
2825 
2826 	switch (nego) {
2827 	case NS_SYNC:
2828 		msgptr[msglen++] = M_EXTENDED;
2829 		msgptr[msglen++] = 3;
2830 		msgptr[msglen++] = M_X_SYNC_REQ;
2831 		msgptr[msglen++] = tp->tinfo.goal.period;
2832 		msgptr[msglen++] = tp->tinfo.goal.offset;
2833 		break;
2834 	case NS_WIDE:
2835 		msgptr[msglen++] = M_EXTENDED;
2836 		msgptr[msglen++] = 2;
2837 		msgptr[msglen++] = M_X_WIDE_REQ;
2838 		msgptr[msglen++] = tp->tinfo.goal.width;
2839 		break;
2840 	case NS_PPR:
2841 		msgptr[msglen++] = M_EXTENDED;
2842 		msgptr[msglen++] = 6;
2843 		msgptr[msglen++] = M_X_PPR_REQ;
2844 		msgptr[msglen++] = tp->tinfo.goal.period;
2845 		msgptr[msglen++] = 0;
2846 		msgptr[msglen++] = tp->tinfo.goal.offset;
2847 		msgptr[msglen++] = tp->tinfo.goal.width;
2848 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2849 		break;
2850 	}
2851 
2852 	cp->nego_status = nego;
2853 
2854 	if (nego) {
2855 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2856 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2857 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2858 					  nego == NS_WIDE ? "wide msgout" :
2859 					  "ppr msgout", msgptr);
2860 		}
2861 	}
2862 
2863 	return msglen;
2864 }
2865 
2866 /*
2867  *  Insert a job into the start queue.
2868  */
sym_put_start_queue(hcb_p np,ccb_p cp)2869 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2870 {
2871 	u_short	qidx;
2872 
2873 #ifdef SYM_CONF_IARB_SUPPORT
2874 	/*
2875 	 *  If the previously queued CCB is not yet done,
2876 	 *  set the IARB hint. The SCRIPTS will go with IARB
2877 	 *  for this job when starting the previous one.
2878 	 *  We leave devices a chance to win arbitration by
2879 	 *  not using more than 'iarb_max' consecutive
2880 	 *  immediate arbitrations.
2881 	 */
2882 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2883 		np->last_cp->host_flags |= HF_HINT_IARB;
2884 		++np->iarb_count;
2885 	}
2886 	else
2887 		np->iarb_count = 0;
2888 	np->last_cp = cp;
2889 #endif
2890 
2891 	/*
2892 	 *  Insert first the idle task and then our job.
2893 	 *  The MB should ensure proper ordering.
2894 	 */
2895 	qidx = np->squeueput + 2;
2896 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2897 
2898 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2899 	MEMORY_WRITE_BARRIER();
2900 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2901 
2902 	np->squeueput = qidx;
2903 
2904 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2905 		device_printf(np->device, "queuepos=%d.\n", np->squeueput);
2906 
2907 	/*
2908 	 *  Script processor may be waiting for reselect.
2909 	 *  Wake it up.
2910 	 */
2911 	MEMORY_WRITE_BARRIER();
2912 	OUTB (nc_istat, SIGP|np->istat_sem);
2913 }
2914 
2915 /*
2916  *  Soft reset the chip.
2917  *
2918  *  Raising SRST when the chip is running may cause
2919  *  problems on dual function chips (see below).
2920  *  On the other hand, LVD devices need some delay
2921  *  to settle and report actual BUS mode in STEST4.
2922  */
sym_chip_reset(hcb_p np)2923 static void sym_chip_reset (hcb_p np)
2924 {
2925 	OUTB (nc_istat, SRST);
2926 	UDELAY (10);
2927 	OUTB (nc_istat, 0);
2928 	UDELAY(2000);	/* For BUS MODE to settle */
2929 }
2930 
2931 /*
2932  *  Soft reset the chip.
2933  *
2934  *  Some 896 and 876 chip revisions may hang-up if we set
2935  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2936  *  are running.
2937  *  So, we need to abort the current operation prior to
2938  *  soft resetting the chip.
2939  */
sym_soft_reset(hcb_p np)2940 static void sym_soft_reset (hcb_p np)
2941 {
2942 	u_char istat;
2943 	int i;
2944 
2945 	OUTB (nc_istat, CABRT);
2946 	for (i = 1000000 ; i ; --i) {
2947 		istat = INB (nc_istat);
2948 		if (istat & SIP) {
2949 			INW (nc_sist);
2950 			continue;
2951 		}
2952 		if (istat & DIP) {
2953 			OUTB (nc_istat, 0);
2954 			INB (nc_dstat);
2955 			break;
2956 		}
2957 	}
2958 	if (!i)
2959 		device_printf(np->device,
2960 		    "unable to abort current chip operation.\n");
2961 	sym_chip_reset (np);
2962 }
2963 
2964 /*
2965  *  Start reset process.
2966  *
2967  *  The interrupt handler will reinitialize the chip.
2968  */
sym_start_reset(hcb_p np)2969 static void sym_start_reset(hcb_p np)
2970 {
2971 	(void) sym_reset_scsi_bus(np, 1);
2972 }
2973 
sym_reset_scsi_bus(hcb_p np,int enab_int)2974 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2975 {
2976 	u32 term;
2977 	int retv = 0;
2978 
2979 	sym_soft_reset(np);	/* Soft reset the chip */
2980 	if (enab_int)
2981 		OUTW (nc_sien, RST);
2982 	/*
2983 	 *  Enable Tolerant, reset IRQD if present and
2984 	 *  properly set IRQ mode, prior to resetting the bus.
2985 	 */
2986 	OUTB (nc_stest3, TE);
2987 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
2988 	OUTB (nc_scntl1, CRST);
2989 	UDELAY (200);
2990 
2991 	if (!SYM_SETUP_SCSI_BUS_CHECK)
2992 		goto out;
2993 	/*
2994 	 *  Check for no terminators or SCSI bus shorts to ground.
2995 	 *  Read SCSI data bus, data parity bits and control signals.
2996 	 *  We are expecting RESET to be TRUE and other signals to be
2997 	 *  FALSE.
2998 	 */
2999 	term =	INB(nc_sstat0);
3000 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3001 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3002 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3003 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3004 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3005 
3006 	if (!(np->features & FE_WIDE))
3007 		term &= 0x3ffff;
3008 
3009 	if (term != (2<<7)) {
3010 		device_printf(np->device,
3011 		    "suspicious SCSI data while resetting the BUS.\n");
3012 		device_printf(np->device,
3013 		    "%sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3014 		    "0x%lx, expecting 0x%lx\n", (np->features & FE_WIDE) ?
3015 		    "dp1,d15-8," : "", (u_long)term, (u_long)(2 << 7));
3016 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3017 			retv = 1;
3018 	}
3019 out:
3020 	OUTB (nc_scntl1, 0);
3021 	/* MDELAY(100); */
3022 	return retv;
3023 }
3024 
3025 /*
3026  *  The chip may have completed jobs. Look at the DONE QUEUE.
3027  *
3028  *  On architectures that may reorder LOAD/STORE operations,
3029  *  a memory barrier may be needed after the reading of the
3030  *  so-called `flag' and prior to dealing with the data.
3031  */
sym_wakeup_done(hcb_p np)3032 static int sym_wakeup_done (hcb_p np)
3033 {
3034 	ccb_p cp;
3035 	int i, n;
3036 	u32 dsa;
3037 
3038 	SYM_LOCK_ASSERT(MA_OWNED);
3039 
3040 	n = 0;
3041 	i = np->dqueueget;
3042 	while (1) {
3043 		dsa = scr_to_cpu(np->dqueue[i]);
3044 		if (!dsa)
3045 			break;
3046 		np->dqueue[i] = 0;
3047 		if ((i = i+2) >= MAX_QUEUE*2)
3048 			i = 0;
3049 
3050 		cp = sym_ccb_from_dsa(np, dsa);
3051 		if (cp) {
3052 			MEMORY_READ_BARRIER();
3053 			sym_complete_ok (np, cp);
3054 			++n;
3055 		} else
3056 			device_printf(np->device,
3057 			    "bad DSA (%x) in done queue.\n", (u_int)dsa);
3058 	}
3059 	np->dqueueget = i;
3060 
3061 	return n;
3062 }
3063 
3064 /*
3065  *  Complete all active CCBs with error.
3066  *  Used on CHIP/SCSI RESET.
3067  */
sym_flush_busy_queue(hcb_p np,int cam_status)3068 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3069 {
3070 	/*
3071 	 *  Move all active CCBs to the COMP queue
3072 	 *  and flush this queue.
3073 	 */
3074 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3075 	sym_que_init(&np->busy_ccbq);
3076 	sym_flush_comp_queue(np, cam_status);
3077 }
3078 
3079 /*
3080  *  Start chip.
3081  *
3082  *  'reason' means:
3083  *     0: initialisation.
3084  *     1: SCSI BUS RESET delivered or received.
3085  *     2: SCSI BUS MODE changed.
3086  */
sym_init(hcb_p np,int reason)3087 static void sym_init (hcb_p np, int reason)
3088 {
3089  	int	i;
3090 	u32	phys;
3091 
3092 	SYM_LOCK_ASSERT(MA_OWNED);
3093 
3094  	/*
3095 	 *  Reset chip if asked, otherwise just clear fifos.
3096  	 */
3097 	if (reason == 1)
3098 		sym_soft_reset(np);
3099 	else {
3100 		OUTB (nc_stest3, TE|CSF);
3101 		OUTONB (nc_ctest3, CLF);
3102 	}
3103 
3104 	/*
3105 	 *  Clear Start Queue
3106 	 */
3107 	phys = np->squeue_ba;
3108 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3109 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3110 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3111 	}
3112 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3113 
3114 	/*
3115 	 *  Start at first entry.
3116 	 */
3117 	np->squeueput = 0;
3118 
3119 	/*
3120 	 *  Clear Done Queue
3121 	 */
3122 	phys = np->dqueue_ba;
3123 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3124 		np->dqueue[i]   = 0;
3125 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3126 	}
3127 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3128 
3129 	/*
3130 	 *  Start at first entry.
3131 	 */
3132 	np->dqueueget = 0;
3133 
3134 	/*
3135 	 *  Install patches in scripts.
3136 	 *  This also let point to first position the start
3137 	 *  and done queue pointers used from SCRIPTS.
3138 	 */
3139 	np->fw_patch(np);
3140 
3141 	/*
3142 	 *  Wakeup all pending jobs.
3143 	 */
3144 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3145 
3146 	/*
3147 	 *  Init chip.
3148 	 */
3149 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3150 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3151 
3152 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3153 					/*  full arb., ena parity, par->ATN  */
3154 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3155 
3156 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3157 
3158 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3159 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3160 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3161 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3162 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3163 
3164 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3165 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3166 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3167 
3168 	/* Extended Sreq/Sack filtering not supported on the C10 */
3169 	if (np->features & FE_C10)
3170 		OUTB (nc_stest2, np->rv_stest2);
3171 	else
3172 		OUTB (nc_stest2, EXT|np->rv_stest2);
3173 
3174 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3175 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3176 
3177 	/*
3178 	 *  For now, disable AIP generation on C1010-66.
3179 	 */
3180 	if (np->device_id == PCI_ID_LSI53C1010_2)
3181 		OUTB (nc_aipcntl1, DISAIP);
3182 
3183 	/*
3184 	 *  C10101 Errata.
3185 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3186 	 *  STEST1 register to disable SGE. We probably should do
3187 	 *  that from SCRIPTS for each selection/reselection, but
3188 	 *  I just don't want. :)
3189 	 */
3190 	if (np->device_id == PCI_ID_LSI53C1010 &&
3191 	    /* np->revision_id < 0xff */ 1)
3192 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3193 
3194 	/*
3195 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3196 	 *  Disable overlapped arbitration for some dual function devices,
3197 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3198 	 */
3199 	if (np->device_id == PCI_ID_SYM53C875)
3200 		OUTB (nc_ctest0, (1<<5));
3201 	else if (np->device_id == PCI_ID_SYM53C896)
3202 		np->rv_ccntl0 |= DPR;
3203 
3204 	/*
3205 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3206 	 *  and/or hardware phase mismatch, since only such chips
3207 	 *  seem to support those IO registers.
3208 	 */
3209 	if (np->features & (FE_DAC|FE_NOPM)) {
3210 		OUTB (nc_ccntl0, np->rv_ccntl0);
3211 		OUTB (nc_ccntl1, np->rv_ccntl1);
3212 	}
3213 
3214 	/*
3215 	 *  If phase mismatch handled by scripts (895A/896/1010),
3216 	 *  set PM jump addresses.
3217 	 */
3218 	if (np->features & FE_NOPM) {
3219 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3220 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3221 	}
3222 
3223 	/*
3224 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3225 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3226 	 */
3227 	if (np->features & FE_LED0)
3228 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3229 	else if (np->features & FE_LEDC)
3230 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3231 
3232 	/*
3233 	 *      enable ints
3234 	 */
3235 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3236 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3237 
3238 	/*
3239 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3240 	 *  Try to eat the spurious SBMC interrupt that may occur when
3241 	 *  we reset the chip but not the SCSI BUS (at initialization).
3242 	 */
3243 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3244 		OUTONW (nc_sien, SBMC);
3245 		if (reason == 0) {
3246 			MDELAY(100);
3247 			INW (nc_sist);
3248 		}
3249 		np->scsi_mode = INB (nc_stest4) & SMODE;
3250 	}
3251 
3252 	/*
3253 	 *  Fill in target structure.
3254 	 *  Reinitialize usrsync.
3255 	 *  Reinitialize usrwide.
3256 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3257 	 */
3258 	for (i = 0; i < SYM_CONF_MAX_TARGET; i++) {
3259 		tcb_p tp = &np->target[i];
3260 
3261 		tp->to_reset  = 0;
3262 		tp->head.sval = 0;
3263 		tp->head.wval = np->rv_scntl3;
3264 		tp->head.uval = 0;
3265 
3266 		tp->tinfo.current.period = 0;
3267 		tp->tinfo.current.offset = 0;
3268 		tp->tinfo.current.width  = BUS_8_BIT;
3269 		tp->tinfo.current.options = 0;
3270 	}
3271 
3272 	/*
3273 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3274 	 *  and start script processor.
3275 	 */
3276 	if (np->ram_ba) {
3277 		if (sym_verbose > 1)
3278 			device_printf(np->device,
3279 			    "Downloading SCSI SCRIPTS.\n");
3280 		if (np->ram_ws == 8192) {
3281 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3282 			OUTL (nc_mmws, np->scr_ram_seg);
3283 			OUTL (nc_mmrs, np->scr_ram_seg);
3284 			OUTL (nc_sfs,  np->scr_ram_seg);
3285 			phys = SCRIPTB_BA (np, start64);
3286 		}
3287 		else
3288 			phys = SCRIPTA_BA (np, init);
3289 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3290 	}
3291 	else
3292 		phys = SCRIPTA_BA (np, init);
3293 
3294 	np->istat_sem = 0;
3295 
3296 	OUTL (nc_dsa, np->hcb_ba);
3297 	OUTL_DSP (phys);
3298 
3299 	/*
3300 	 *  Notify the XPT about the RESET condition.
3301 	 */
3302 	if (reason != 0)
3303 		xpt_async(AC_BUS_RESET, np->path, NULL);
3304 }
3305 
3306 /*
3307  *  Get clock factor and sync divisor for a given
3308  *  synchronous factor period.
3309  */
3310 static int
sym_getsync(hcb_p np,u_char dt,u_char sfac,u_char * divp,u_char * fakp)3311 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3312 {
3313 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3314 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3315 	u32	fak;			/* Sync factor in sxfer		*/
3316 	u32	per;			/* Period in tenths of ns	*/
3317 	u32	kpc;			/* (per * clk)			*/
3318 	int	ret;
3319 
3320 	/*
3321 	 *  Compute the synchronous period in tenths of nano-seconds
3322 	 */
3323 	if (dt && sfac <= 9)	per = 125;
3324 	else if	(sfac <= 10)	per = 250;
3325 	else if	(sfac == 11)	per = 303;
3326 	else if	(sfac == 12)	per = 500;
3327 	else			per = 40 * sfac;
3328 	ret = per;
3329 
3330 	kpc = per * clk;
3331 	if (dt)
3332 		kpc <<= 1;
3333 
3334 	/*
3335 	 *  For earliest C10 revision 0, we cannot use extra
3336 	 *  clocks for the setting of the SCSI clocking.
3337 	 *  Note that this limits the lowest sync data transfer
3338 	 *  to 5 Mega-transfers per second and may result in
3339 	 *  using higher clock divisors.
3340 	 */
3341 #if 1
3342 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3343 		/*
3344 		 *  Look for the lowest clock divisor that allows an
3345 		 *  output speed not faster than the period.
3346 		 */
3347 		while (div > 0) {
3348 			--div;
3349 			if (kpc > (div_10M[div] << 2)) {
3350 				++div;
3351 				break;
3352 			}
3353 		}
3354 		fak = 0;			/* No extra clocks */
3355 		if (div == np->clock_divn) {	/* Are we too fast ? */
3356 			ret = -1;
3357 		}
3358 		*divp = div;
3359 		*fakp = fak;
3360 		return ret;
3361 	}
3362 #endif
3363 
3364 	/*
3365 	 *  Look for the greatest clock divisor that allows an
3366 	 *  input speed faster than the period.
3367 	 */
3368 	while (div-- > 0)
3369 		if (kpc >= (div_10M[div] << 2)) break;
3370 
3371 	/*
3372 	 *  Calculate the lowest clock factor that allows an output
3373 	 *  speed not faster than the period, and the max output speed.
3374 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3375 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3376 	 */
3377 	if (dt) {
3378 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3379 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3380 	}
3381 	else {
3382 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3383 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3384 	}
3385 
3386 	/*
3387 	 *  Check against our hardware limits, or bugs :).
3388 	 */
3389 	if (fak > 2)	{fak = 2; ret = -1;}
3390 
3391 	/*
3392 	 *  Compute and return sync parameters.
3393 	 */
3394 	*divp = div;
3395 	*fakp = fak;
3396 
3397 	return ret;
3398 }
3399 
3400 /*
3401  *  Tell the SCSI layer about the new transfer parameters.
3402  */
3403 static void
sym_xpt_async_transfer_neg(hcb_p np,int target,u_int spi_valid)3404 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3405 {
3406 	struct ccb_trans_settings cts;
3407 	struct cam_path *path;
3408 	int sts;
3409 	tcb_p tp = &np->target[target];
3410 
3411 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3412 	                      CAM_LUN_WILDCARD);
3413 	if (sts != CAM_REQ_CMP)
3414 		return;
3415 
3416 	bzero(&cts, sizeof(cts));
3417 
3418 #define	cts__scsi (cts.proto_specific.scsi)
3419 #define	cts__spi  (cts.xport_specific.spi)
3420 
3421 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3422 	cts.protocol  = PROTO_SCSI;
3423 	cts.transport = XPORT_SPI;
3424 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3425 	cts.transport_version = tp->tinfo.current.spi_version;
3426 
3427 	cts__spi.valid = spi_valid;
3428 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3429 		cts__spi.sync_period = tp->tinfo.current.period;
3430 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3431 		cts__spi.sync_offset = tp->tinfo.current.offset;
3432 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3433 		cts__spi.bus_width   = tp->tinfo.current.width;
3434 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3435 		cts__spi.ppr_options = tp->tinfo.current.options;
3436 #undef cts__spi
3437 #undef cts__scsi
3438 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3439 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3440 	xpt_free_path(path);
3441 }
3442 
3443 #define SYM_SPI_VALID_WDTR		\
3444 	CTS_SPI_VALID_BUS_WIDTH |	\
3445 	CTS_SPI_VALID_SYNC_RATE |	\
3446 	CTS_SPI_VALID_SYNC_OFFSET
3447 #define SYM_SPI_VALID_SDTR		\
3448 	CTS_SPI_VALID_SYNC_RATE |	\
3449 	CTS_SPI_VALID_SYNC_OFFSET
3450 #define SYM_SPI_VALID_PPR		\
3451 	CTS_SPI_VALID_PPR_OPTIONS |	\
3452 	CTS_SPI_VALID_BUS_WIDTH |	\
3453 	CTS_SPI_VALID_SYNC_RATE |	\
3454 	CTS_SPI_VALID_SYNC_OFFSET
3455 
3456 /*
3457  *  We received a WDTR.
3458  *  Let everything be aware of the changes.
3459  */
sym_setwide(hcb_p np,ccb_p cp,u_char wide)3460 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3461 {
3462 	tcb_p tp = &np->target[cp->target];
3463 
3464 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3465 
3466 	/*
3467 	 *  Tell the SCSI layer about the new transfer parameters.
3468 	 */
3469 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3470 	tp->tinfo.current.offset = 0;
3471 	tp->tinfo.current.period = 0;
3472 	tp->tinfo.current.options = 0;
3473 
3474 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3475 }
3476 
3477 /*
3478  *  We received a SDTR.
3479  *  Let everything be aware of the changes.
3480  */
3481 static void
sym_setsync(hcb_p np,ccb_p cp,u_char ofs,u_char per,u_char div,u_char fak)3482 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3483 {
3484 	tcb_p tp = &np->target[cp->target];
3485 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3486 
3487 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3488 
3489 	/*
3490 	 *  Tell the SCSI layer about the new transfer parameters.
3491 	 */
3492 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3493 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3494 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3495 
3496 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3497 }
3498 
3499 /*
3500  *  We received a PPR.
3501  *  Let everything be aware of the changes.
3502  */
sym_setpprot(hcb_p np,ccb_p cp,u_char dt,u_char ofs,u_char per,u_char wide,u_char div,u_char fak)3503 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3504 			 u_char per, u_char wide, u_char div, u_char fak)
3505 {
3506 	tcb_p tp = &np->target[cp->target];
3507 
3508 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3509 
3510 	/*
3511 	 *  Tell the SCSI layer about the new transfer parameters.
3512 	 */
3513 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3514 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3515 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3516 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3517 
3518 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3519 }
3520 
3521 /*
3522  *  Switch trans mode for current job and it's target.
3523  */
sym_settrans(hcb_p np,ccb_p cp,u_char dt,u_char ofs,u_char per,u_char wide,u_char div,u_char fak)3524 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3525 			 u_char per, u_char wide, u_char div, u_char fak)
3526 {
3527 	SYM_QUEHEAD *qp;
3528 	union	ccb *ccb;
3529 	tcb_p tp;
3530 	u_char target = INB (nc_sdid) & 0x0f;
3531 	u_char sval, wval, uval;
3532 
3533 	assert (cp);
3534 	if (!cp) return;
3535 	ccb = cp->cam_ccb;
3536 	assert (ccb);
3537 	if (!ccb) return;
3538 	assert (target == (cp->target & 0xf));
3539 	tp = &np->target[target];
3540 
3541 	sval = tp->head.sval;
3542 	wval = tp->head.wval;
3543 	uval = tp->head.uval;
3544 
3545 #if 0
3546 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3547 		sval, wval, uval, np->rv_scntl3);
3548 #endif
3549 	/*
3550 	 *  Set the offset.
3551 	 */
3552 	if (!(np->features & FE_C10))
3553 		sval = (sval & ~0x1f) | ofs;
3554 	else
3555 		sval = (sval & ~0x3f) | ofs;
3556 
3557 	/*
3558 	 *  Set the sync divisor and extra clock factor.
3559 	 */
3560 	if (ofs != 0) {
3561 		wval = (wval & ~0x70) | ((div+1) << 4);
3562 		if (!(np->features & FE_C10))
3563 			sval = (sval & ~0xe0) | (fak << 5);
3564 		else {
3565 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3566 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3567 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3568 		}
3569 	}
3570 
3571 	/*
3572 	 *  Set the bus width.
3573 	 */
3574 	wval = wval & ~EWS;
3575 	if (wide != 0)
3576 		wval |= EWS;
3577 
3578 	/*
3579 	 *  Set misc. ultra enable bits.
3580 	 */
3581 	if (np->features & FE_C10) {
3582 		uval = uval & ~(U3EN|AIPCKEN);
3583 		if (dt)	{
3584 			assert(np->features & FE_U3EN);
3585 			uval |= U3EN;
3586 		}
3587 	}
3588 	else {
3589 		wval = wval & ~ULTRA;
3590 		if (per <= 12)	wval |= ULTRA;
3591 	}
3592 
3593 	/*
3594 	 *   Stop there if sync parameters are unchanged.
3595 	 */
3596 	if (tp->head.sval == sval &&
3597 	    tp->head.wval == wval &&
3598 	    tp->head.uval == uval)
3599 		return;
3600 	tp->head.sval = sval;
3601 	tp->head.wval = wval;
3602 	tp->head.uval = uval;
3603 
3604 	/*
3605 	 *  Disable extended Sreq/Sack filtering if per < 50.
3606 	 *  Not supported on the C1010.
3607 	 */
3608 	if (per < 50 && !(np->features & FE_C10))
3609 		OUTOFFB (nc_stest2, EXT);
3610 
3611 	/*
3612 	 *  set actual value and sync_status
3613 	 */
3614 	OUTB (nc_sxfer,  tp->head.sval);
3615 	OUTB (nc_scntl3, tp->head.wval);
3616 
3617 	if (np->features & FE_C10) {
3618 		OUTB (nc_scntl4, tp->head.uval);
3619 	}
3620 
3621 	/*
3622 	 *  patch ALL busy ccbs of this target.
3623 	 */
3624 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3625 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3626 		if (cp->target != target)
3627 			continue;
3628 		cp->phys.select.sel_scntl3 = tp->head.wval;
3629 		cp->phys.select.sel_sxfer  = tp->head.sval;
3630 		if (np->features & FE_C10) {
3631 			cp->phys.select.sel_scntl4 = tp->head.uval;
3632 		}
3633 	}
3634 }
3635 
3636 /*
3637  *  log message for real hard errors
3638  *
3639  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3640  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3641  *
3642  *  exception register:
3643  *  	ds:	dstat
3644  *  	si:	sist
3645  *
3646  *  SCSI bus lines:
3647  *  	so:	control lines as driven by chip.
3648  *  	si:	control lines as seen by chip.
3649  *  	sd:	scsi data lines as seen by chip.
3650  *
3651  *  wide/fastmode:
3652  *  	sxfer:	(see the manual)
3653  *  	scntl3:	(see the manual)
3654  *
3655  *  current script command:
3656  *  	dsp:	script address (relative to start of script).
3657  *  	dbc:	first word of script command.
3658  *
3659  *  First 24 register of the chip:
3660  *  	r0..rf
3661  */
sym_log_hard_error(hcb_p np,u_short sist,u_char dstat)3662 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3663 {
3664 	u32	dsp;
3665 	int	script_ofs;
3666 	int	script_size;
3667 	char	*script_name;
3668 	u_char	*script_base;
3669 	int	i;
3670 
3671 	dsp	= INL (nc_dsp);
3672 
3673 	if	(dsp > np->scripta_ba &&
3674 		 dsp <= np->scripta_ba + np->scripta_sz) {
3675 		script_ofs	= dsp - np->scripta_ba;
3676 		script_size	= np->scripta_sz;
3677 		script_base	= (u_char *) np->scripta0;
3678 		script_name	= "scripta";
3679 	}
3680 	else if (np->scriptb_ba < dsp &&
3681 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3682 		script_ofs	= dsp - np->scriptb_ba;
3683 		script_size	= np->scriptb_sz;
3684 		script_base	= (u_char *) np->scriptb0;
3685 		script_name	= "scriptb";
3686 	} else {
3687 		script_ofs	= dsp;
3688 		script_size	= 0;
3689 		script_base	= NULL;
3690 		script_name	= "mem";
3691 	}
3692 
3693 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3694 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3695 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3696 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3697 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3698 		(unsigned)INL (nc_dbc));
3699 
3700 	if (((script_ofs & 3) == 0) &&
3701 	    (unsigned)script_ofs < script_size) {
3702 		device_printf(np->device, "script cmd = %08x\n",
3703 		    scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3704 	}
3705 
3706 	device_printf(np->device, "regdump:");
3707         for (i = 0; i < 24; i++)
3708             printf (" %02x", (unsigned)INB_OFF(i));
3709         printf (".\n");
3710 
3711 	/*
3712 	 *  PCI BUS error, read the PCI ststus register.
3713 	 */
3714 	if (dstat & (MDPE|BF)) {
3715 		u_short pci_sts;
3716 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3717 		if (pci_sts & 0xf900) {
3718 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3719 			device_printf(np->device, "PCI STATUS = 0x%04x\n",
3720 			    pci_sts & 0xf900);
3721 		}
3722 	}
3723 }
3724 
3725 /*
3726  *  chip interrupt handler
3727  *
3728  *  In normal situations, interrupt conditions occur one at
3729  *  a time. But when something bad happens on the SCSI BUS,
3730  *  the chip may raise several interrupt flags before
3731  *  stopping and interrupting the CPU. The additionnal
3732  *  interrupt flags are stacked in some extra registers
3733  *  after the SIP and/or DIP flag has been raised in the
3734  *  ISTAT. After the CPU has read the interrupt condition
3735  *  flag from SIST or DSTAT, the chip unstacks the other
3736  *  interrupt flags and sets the corresponding bits in
3737  *  SIST or DSTAT. Since the chip starts stacking once the
3738  *  SIP or DIP flag is set, there is a small window of time
3739  *  where the stacking does not occur.
3740  *
3741  *  Typically, multiple interrupt conditions may happen in
3742  *  the following situations:
3743  *
3744  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3745  *    When a parity error is detected in input phase
3746  *    and the device switches to msg-in phase inside a
3747  *    block MOV.
3748  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3749  *    When a stupid device does not want to handle the
3750  *    recovery of an SCSI parity error.
3751  *  - Some combinations of STO, PAR, UDC, ...
3752  *    When using non compliant SCSI stuff, when user is
3753  *    doing non compliant hot tampering on the BUS, when
3754  *    something really bad happens to a device, etc ...
3755  *
3756  *  The heuristic suggested by SYMBIOS to handle
3757  *  multiple interrupts is to try unstacking all
3758  *  interrupts conditions and to handle them on some
3759  *  priority based on error severity.
3760  *  This will work when the unstacking has been
3761  *  successful, but we cannot be 100 % sure of that,
3762  *  since the CPU may have been faster to unstack than
3763  *  the chip is able to stack. Hmmm ... But it seems that
3764  *  such a situation is very unlikely to happen.
3765  *
3766  *  If this happen, for example STO caught by the CPU
3767  *  then UDC happenning before the CPU have restarted
3768  *  the SCRIPTS, the driver may wrongly complete the
3769  *  same command on UDC, since the SCRIPTS didn't restart
3770  *  and the DSA still points to the same command.
3771  *  We avoid this situation by setting the DSA to an
3772  *  invalid value when the CCB is completed and before
3773  *  restarting the SCRIPTS.
3774  *
3775  *  Another issue is that we need some section of our
3776  *  recovery procedures to be somehow uninterruptible but
3777  *  the SCRIPTS processor does not provides such a
3778  *  feature. For this reason, we handle recovery preferently
3779  *  from the C code and check against some SCRIPTS critical
3780  *  sections from the C code.
3781  *
3782  *  Hopefully, the interrupt handling of the driver is now
3783  *  able to resist to weird BUS error conditions, but donnot
3784  *  ask me for any guarantee that it will never fail. :-)
3785  *  Use at your own decision and risk.
3786  */
sym_intr1(hcb_p np)3787 static void sym_intr1 (hcb_p np)
3788 {
3789 	u_char	istat, istatc;
3790 	u_char	dstat;
3791 	u_short	sist;
3792 
3793 	SYM_LOCK_ASSERT(MA_OWNED);
3794 
3795 	/*
3796 	 *  interrupt on the fly ?
3797 	 *
3798 	 *  A `dummy read' is needed to ensure that the
3799 	 *  clear of the INTF flag reaches the device
3800 	 *  before the scanning of the DONE queue.
3801 	 */
3802 	istat = INB (nc_istat);
3803 	if (istat & INTF) {
3804 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3805 		istat = INB (nc_istat);		/* DUMMY READ */
3806 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3807 		(void)sym_wakeup_done (np);
3808 	}
3809 
3810 	if (!(istat & (SIP|DIP)))
3811 		return;
3812 
3813 #if 0	/* We should never get this one */
3814 	if (istat & CABRT)
3815 		OUTB (nc_istat, CABRT);
3816 #endif
3817 
3818 	/*
3819 	 *  PAR and MA interrupts may occur at the same time,
3820 	 *  and we need to know of both in order to handle
3821 	 *  this situation properly. We try to unstack SCSI
3822 	 *  interrupts for that reason. BTW, I dislike a LOT
3823 	 *  such a loop inside the interrupt routine.
3824 	 *  Even if DMA interrupt stacking is very unlikely to
3825 	 *  happen, we also try unstacking these ones, since
3826 	 *  this has no performance impact.
3827 	 */
3828 	sist	= 0;
3829 	dstat	= 0;
3830 	istatc	= istat;
3831 	do {
3832 		if (istatc & SIP)
3833 			sist  |= INW (nc_sist);
3834 		if (istatc & DIP)
3835 			dstat |= INB (nc_dstat);
3836 		istatc = INB (nc_istat);
3837 		istat |= istatc;
3838 	} while (istatc & (SIP|DIP));
3839 
3840 	if (DEBUG_FLAGS & DEBUG_TINY)
3841 		printf ("<%d|%x:%x|%x:%x>",
3842 			(int)INB(nc_scr0),
3843 			dstat,sist,
3844 			(unsigned)INL(nc_dsp),
3845 			(unsigned)INL(nc_dbc));
3846 	/*
3847 	 *  On paper, a memory barrier may be needed here.
3848 	 *  And since we are paranoid ... :)
3849 	 */
3850 	MEMORY_READ_BARRIER();
3851 
3852 	/*
3853 	 *  First, interrupts we want to service cleanly.
3854 	 *
3855 	 *  Phase mismatch (MA) is the most frequent interrupt
3856 	 *  for chip earlier than the 896 and so we have to service
3857 	 *  it as quickly as possible.
3858 	 *  A SCSI parity error (PAR) may be combined with a phase
3859 	 *  mismatch condition (MA).
3860 	 *  Programmed interrupts (SIR) are used to call the C code
3861 	 *  from SCRIPTS.
3862 	 *  The single step interrupt (SSI) is not used in this
3863 	 *  driver.
3864 	 */
3865 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3866 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3867 		if	(sist & PAR)	sym_int_par (np, sist);
3868 		else if (sist & MA)	sym_int_ma (np);
3869 		else if (dstat & SIR)	sym_int_sir (np);
3870 		else if (dstat & SSI)	OUTONB_STD ();
3871 		else			goto unknown_int;
3872 		return;
3873 	}
3874 
3875 	/*
3876 	 *  Now, interrupts that donnot happen in normal
3877 	 *  situations and that we may need to recover from.
3878 	 *
3879 	 *  On SCSI RESET (RST), we reset everything.
3880 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3881 	 *  active CCBs with RESET status, prepare all devices
3882 	 *  for negotiating again and restart the SCRIPTS.
3883 	 *  On STO and UDC, we complete the CCB with the corres-
3884 	 *  ponding status and restart the SCRIPTS.
3885 	 */
3886 	if (sist & RST) {
3887 		xpt_print_path(np->path);
3888 		printf("SCSI BUS reset detected.\n");
3889 		sym_init (np, 1);
3890 		return;
3891 	}
3892 
3893 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3894 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3895 
3896 	if (!(sist  & (GEN|HTH|SGE)) &&
3897 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3898 		if	(sist & SBMC)	sym_int_sbmc (np);
3899 		else if (sist & STO)	sym_int_sto (np);
3900 		else if (sist & UDC)	sym_int_udc (np);
3901 		else			goto unknown_int;
3902 		return;
3903 	}
3904 
3905 	/*
3906 	 *  Now, interrupts we are not able to recover cleanly.
3907 	 *
3908 	 *  Log message for hard errors.
3909 	 *  Reset everything.
3910 	 */
3911 
3912 	sym_log_hard_error(np, sist, dstat);
3913 
3914 	if ((sist & (GEN|HTH|SGE)) ||
3915 		(dstat & (MDPE|BF|ABRT|IID))) {
3916 		sym_start_reset(np);
3917 		return;
3918 	}
3919 
3920 unknown_int:
3921 	/*
3922 	 *  We just miss the cause of the interrupt. :(
3923 	 *  Print a message. The timeout will do the real work.
3924 	 */
3925 	device_printf(np->device,
3926 	    "unknown interrupt(s) ignored, ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3927 	    istat, dstat, sist);
3928 }
3929 
sym_intr(void * arg)3930 static void sym_intr(void *arg)
3931 {
3932 	hcb_p np = arg;
3933 
3934 	SYM_LOCK();
3935 
3936 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3937 	sym_intr1((hcb_p) arg);
3938 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3939 
3940 	SYM_UNLOCK();
3941 }
3942 
sym_poll(struct cam_sim * sim)3943 static void sym_poll(struct cam_sim *sim)
3944 {
3945 	sym_intr1(cam_sim_softc(sim));
3946 }
3947 
3948 /*
3949  *  generic recovery from scsi interrupt
3950  *
3951  *  The doc says that when the chip gets an SCSI interrupt,
3952  *  it tries to stop in an orderly fashion, by completing
3953  *  an instruction fetch that had started or by flushing
3954  *  the DMA fifo for a write to memory that was executing.
3955  *  Such a fashion is not enough to know if the instruction
3956  *  that was just before the current DSP value has been
3957  *  executed or not.
3958  *
3959  *  There are some small SCRIPTS sections that deal with
3960  *  the start queue and the done queue that may break any
3961  *  assomption from the C code if we are interrupted
3962  *  inside, so we reset if this happens. Btw, since these
3963  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3964  *  started SCSI operations, it is very unlikely to happen.
3965  *
3966  *  All the driver data structures are supposed to be
3967  *  allocated from the same 4 GB memory window, so there
3968  *  is a 1 to 1 relationship between DSA and driver data
3969  *  structures. Since we are careful :) to invalidate the
3970  *  DSA when we complete a command or when the SCRIPTS
3971  *  pushes a DSA into a queue, we can trust it when it
3972  *  points to a CCB.
3973  */
sym_recover_scsi_int(hcb_p np,u_char hsts)3974 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3975 {
3976 	u32	dsp	= INL (nc_dsp);
3977 	u32	dsa	= INL (nc_dsa);
3978 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3979 
3980 	/*
3981 	 *  If we haven't been interrupted inside the SCRIPTS
3982 	 *  critical paths, we can safely restart the SCRIPTS
3983 	 *  and trust the DSA value if it matches a CCB.
3984 	 */
3985 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
3986 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
3987 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
3988 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
3989 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
3990 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
3991 	    (!(dsp > SCRIPTA_BA (np, done) &&
3992 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
3993 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3994 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3995 		/*
3996 		 *  If we have a CCB, let the SCRIPTS call us back for
3997 		 *  the handling of the error with SCRATCHA filled with
3998 		 *  STARTPOS. This way, we will be able to freeze the
3999 		 *  device queue and requeue awaiting IOs.
4000 		 */
4001 		if (cp) {
4002 			cp->host_status = hsts;
4003 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4004 		}
4005 		/*
4006 		 *  Otherwise just restart the SCRIPTS.
4007 		 */
4008 		else {
4009 			OUTL (nc_dsa, 0xffffff);
4010 			OUTL_DSP (SCRIPTA_BA (np, start));
4011 		}
4012 	}
4013 	else
4014 		goto reset_all;
4015 
4016 	return;
4017 
4018 reset_all:
4019 	sym_start_reset(np);
4020 }
4021 
4022 /*
4023  *  chip exception handler for selection timeout
4024  */
sym_int_sto(hcb_p np)4025 static void sym_int_sto (hcb_p np)
4026 {
4027 	u32 dsp	= INL (nc_dsp);
4028 
4029 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4030 
4031 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4032 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4033 	else
4034 		sym_start_reset(np);
4035 }
4036 
4037 /*
4038  *  chip exception handler for unexpected disconnect
4039  */
sym_int_udc(hcb_p np)4040 static void sym_int_udc (hcb_p np)
4041 {
4042 	device_printf(np->device, "unexpected disconnect\n");
4043 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4044 }
4045 
4046 /*
4047  *  chip exception handler for SCSI bus mode change
4048  *
4049  *  spi2-r12 11.2.3 says a transceiver mode change must
4050  *  generate a reset event and a device that detects a reset
4051  *  event shall initiate a hard reset. It says also that a
4052  *  device that detects a mode change shall set data transfer
4053  *  mode to eight bit asynchronous, etc...
4054  *  So, just reinitializing all except chip should be enough.
4055  */
sym_int_sbmc(hcb_p np)4056 static void sym_int_sbmc (hcb_p np)
4057 {
4058 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4059 
4060 	/*
4061 	 *  Notify user.
4062 	 */
4063 	xpt_print_path(np->path);
4064 	printf("SCSI BUS mode change from %s to %s.\n",
4065 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4066 
4067 	/*
4068 	 *  Should suspend command processing for a few seconds and
4069 	 *  reinitialize all except the chip.
4070 	 */
4071 	sym_init (np, 2);
4072 }
4073 
4074 /*
4075  *  chip exception handler for SCSI parity error.
4076  *
4077  *  When the chip detects a SCSI parity error and is
4078  *  currently executing a (CH)MOV instruction, it does
4079  *  not interrupt immediately, but tries to finish the
4080  *  transfer of the current scatter entry before
4081  *  interrupting. The following situations may occur:
4082  *
4083  *  - The complete scatter entry has been transferred
4084  *    without the device having changed phase.
4085  *    The chip will then interrupt with the DSP pointing
4086  *    to the instruction that follows the MOV.
4087  *
4088  *  - A phase mismatch occurs before the MOV finished
4089  *    and phase errors are to be handled by the C code.
4090  *    The chip will then interrupt with both PAR and MA
4091  *    conditions set.
4092  *
4093  *  - A phase mismatch occurs before the MOV finished and
4094  *    phase errors are to be handled by SCRIPTS.
4095  *    The chip will load the DSP with the phase mismatch
4096  *    JUMP address and interrupt the host processor.
4097  */
sym_int_par(hcb_p np,u_short sist)4098 static void sym_int_par (hcb_p np, u_short sist)
4099 {
4100 	u_char	hsts	= INB (HS_PRT);
4101 	u32	dsp	= INL (nc_dsp);
4102 	u32	dbc	= INL (nc_dbc);
4103 	u32	dsa	= INL (nc_dsa);
4104 	u_char	sbcl	= INB (nc_sbcl);
4105 	u_char	cmd	= dbc >> 24;
4106 	int phase	= cmd & 7;
4107 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4108 
4109 	device_printf(np->device,
4110 	    "SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", hsts, dbc,
4111 	    sbcl);
4112 
4113 	/*
4114 	 *  Check that the chip is connected to the SCSI BUS.
4115 	 */
4116 	if (!(INB (nc_scntl1) & ISCON)) {
4117 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4118 		return;
4119 	}
4120 
4121 	/*
4122 	 *  If the nexus is not clearly identified, reset the bus.
4123 	 *  We will try to do better later.
4124 	 */
4125 	if (!cp)
4126 		goto reset_all;
4127 
4128 	/*
4129 	 *  Check instruction was a MOV, direction was INPUT and
4130 	 *  ATN is asserted.
4131 	 */
4132 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4133 		goto reset_all;
4134 
4135 	/*
4136 	 *  Keep track of the parity error.
4137 	 */
4138 	OUTONB (HF_PRT, HF_EXT_ERR);
4139 	cp->xerr_status |= XE_PARITY_ERR;
4140 
4141 	/*
4142 	 *  Prepare the message to send to the device.
4143 	 */
4144 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4145 
4146 	/*
4147 	 *  If the old phase was DATA IN phase, we have to deal with
4148 	 *  the 3 situations described above.
4149 	 *  For other input phases (MSG IN and STATUS), the device
4150 	 *  must resend the whole thing that failed parity checking
4151 	 *  or signal error. So, jumping to dispatcher should be OK.
4152 	 */
4153 	if (phase == 1 || phase == 5) {
4154 		/* Phase mismatch handled by SCRIPTS */
4155 		if (dsp == SCRIPTB_BA (np, pm_handle))
4156 			OUTL_DSP (dsp);
4157 		/* Phase mismatch handled by the C code */
4158 		else if (sist & MA)
4159 			sym_int_ma (np);
4160 		/* No phase mismatch occurred */
4161 		else {
4162 			OUTL (nc_temp, dsp);
4163 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4164 		}
4165 	}
4166 	else
4167 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4168 	return;
4169 
4170 reset_all:
4171 	sym_start_reset(np);
4172 }
4173 
4174 /*
4175  *  chip exception handler for phase errors.
4176  *
4177  *  We have to construct a new transfer descriptor,
4178  *  to transfer the rest of the current block.
4179  */
sym_int_ma(hcb_p np)4180 static void sym_int_ma (hcb_p np)
4181 {
4182 	u32	dbc;
4183 	u32	rest;
4184 	u32	dsp;
4185 	u32	dsa;
4186 	u32	nxtdsp;
4187 	u32	*vdsp;
4188 	u32	oadr, olen;
4189 	u32	*tblp;
4190         u32	newcmd;
4191 	u_int	delta;
4192 	u_char	cmd;
4193 	u_char	hflags, hflags0;
4194 	struct	sym_pmc *pm;
4195 	ccb_p	cp;
4196 
4197 	dsp	= INL (nc_dsp);
4198 	dbc	= INL (nc_dbc);
4199 	dsa	= INL (nc_dsa);
4200 
4201 	cmd	= dbc >> 24;
4202 	rest	= dbc & 0xffffff;
4203 	delta	= 0;
4204 
4205 	/*
4206 	 *  locate matching cp if any.
4207 	 */
4208 	cp = sym_ccb_from_dsa(np, dsa);
4209 
4210 	/*
4211 	 *  Donnot take into account dma fifo and various buffers in
4212 	 *  INPUT phase since the chip flushes everything before
4213 	 *  raising the MA interrupt for interrupted INPUT phases.
4214 	 *  For DATA IN phase, we will check for the SWIDE later.
4215 	 */
4216 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4217 		u_char ss0, ss2;
4218 
4219 		if (np->features & FE_DFBC)
4220 			delta = INW (nc_dfbc);
4221 		else {
4222 			u32 dfifo;
4223 
4224 			/*
4225 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4226 			 */
4227 			dfifo = INL(nc_dfifo);
4228 
4229 			/*
4230 			 *  Calculate remaining bytes in DMA fifo.
4231 			 *  (CTEST5 = dfifo >> 16)
4232 			 */
4233 			if (dfifo & (DFS << 16))
4234 				delta = ((((dfifo >> 8) & 0x300) |
4235 				          (dfifo & 0xff)) - rest) & 0x3ff;
4236 			else
4237 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4238 		}
4239 
4240 		/*
4241 		 *  The data in the dma fifo has not been transferred to
4242 		 *  the target -> add the amount to the rest
4243 		 *  and clear the data.
4244 		 *  Check the sstat2 register in case of wide transfer.
4245 		 */
4246 		rest += delta;
4247 		ss0  = INB (nc_sstat0);
4248 		if (ss0 & OLF) rest++;
4249 		if (!(np->features & FE_C10))
4250 			if (ss0 & ORF) rest++;
4251 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4252 			ss2 = INB (nc_sstat2);
4253 			if (ss2 & OLF1) rest++;
4254 			if (!(np->features & FE_C10))
4255 				if (ss2 & ORF1) rest++;
4256 		}
4257 
4258 		/*
4259 		 *  Clear fifos.
4260 		 */
4261 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4262 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4263 	}
4264 
4265 	/*
4266 	 *  log the information
4267 	 */
4268 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4269 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4270 			(unsigned) rest, (unsigned) delta);
4271 
4272 	/*
4273 	 *  try to find the interrupted script command,
4274 	 *  and the address at which to continue.
4275 	 */
4276 	vdsp	= NULL;
4277 	nxtdsp	= 0;
4278 	if	(dsp >  np->scripta_ba &&
4279 		 dsp <= np->scripta_ba + np->scripta_sz) {
4280 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4281 		nxtdsp = dsp;
4282 	}
4283 	else if	(dsp >  np->scriptb_ba &&
4284 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4285 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4286 		nxtdsp = dsp;
4287 	}
4288 
4289 	/*
4290 	 *  log the information
4291 	 */
4292 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4293 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4294 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4295 	}
4296 
4297 	if (!vdsp) {
4298 		device_printf(np->device,
4299 		    "interrupted SCRIPT address not found.\n");
4300 		goto reset_all;
4301 	}
4302 
4303 	if (!cp) {
4304 		device_printf(np->device,
4305 		    "SCSI phase error fixup: CCB already dequeued.\n");
4306 		goto reset_all;
4307 	}
4308 
4309 	/*
4310 	 *  get old startaddress and old length.
4311 	 */
4312 	oadr = scr_to_cpu(vdsp[1]);
4313 
4314 	if (cmd & 0x10) {	/* Table indirect */
4315 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4316 		olen = scr_to_cpu(tblp[0]);
4317 		oadr = scr_to_cpu(tblp[1]);
4318 	} else {
4319 		tblp = (u32 *) 0;
4320 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4321 	}
4322 
4323 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4324 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4325 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4326 			tblp,
4327 			(unsigned) olen,
4328 			(unsigned) oadr);
4329 	}
4330 
4331 	/*
4332 	 *  check cmd against assumed interrupted script command.
4333 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4334 	 *  the phase.
4335 	 */
4336 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4337 		PRINT_ADDR(cp);
4338 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4339 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4340 
4341 		goto reset_all;
4342 	}
4343 
4344 	/*
4345 	 *  if old phase not dataphase, leave here.
4346 	 */
4347 	if (cmd & 2) {
4348 		PRINT_ADDR(cp);
4349 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4350 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4351 			(unsigned)oadr, (unsigned)rest);
4352 		goto unexpected_phase;
4353 	}
4354 
4355 	/*
4356 	 *  Choose the correct PM save area.
4357 	 *
4358 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4359 	 *  this stuff. The equivalent code is implemented in
4360 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4361 	 *  handle PM from the SCRIPTS processor.
4362 	 */
4363 	hflags0 = INB (HF_PRT);
4364 	hflags = hflags0;
4365 
4366 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4367 		if (hflags & HF_IN_PM0)
4368 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4369 		else if	(hflags & HF_IN_PM1)
4370 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4371 
4372 		if (hflags & HF_DP_SAVED)
4373 			hflags ^= HF_ACT_PM;
4374 	}
4375 
4376 	if (!(hflags & HF_ACT_PM)) {
4377 		pm = &cp->phys.pm0;
4378 		newcmd = SCRIPTA_BA (np, pm0_data);
4379 	}
4380 	else {
4381 		pm = &cp->phys.pm1;
4382 		newcmd = SCRIPTA_BA (np, pm1_data);
4383 	}
4384 
4385 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4386 	if (hflags != hflags0)
4387 		OUTB (HF_PRT, hflags);
4388 
4389 	/*
4390 	 *  fillin the phase mismatch context
4391 	 */
4392 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4393 	pm->sg.size = cpu_to_scr(rest);
4394 	pm->ret     = cpu_to_scr(nxtdsp);
4395 
4396 	/*
4397 	 *  If we have a SWIDE,
4398 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4399 	 *  - compute the SCRIPTS address to restart from,
4400 	 *  - move current data pointer context by one byte.
4401 	 */
4402 	nxtdsp = SCRIPTA_BA (np, dispatch);
4403 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4404 	    (INB (nc_scntl2) & WSR)) {
4405 		u32 tmp;
4406 
4407 		/*
4408 		 *  Set up the table indirect for the MOVE
4409 		 *  of the residual byte and adjust the data
4410 		 *  pointer context.
4411 		 */
4412 		tmp = scr_to_cpu(pm->sg.addr);
4413 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4414 		pm->sg.addr = cpu_to_scr(tmp + 1);
4415 		tmp = scr_to_cpu(pm->sg.size);
4416 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4417 		pm->sg.size = cpu_to_scr(tmp - 1);
4418 
4419 		/*
4420 		 *  If only the residual byte is to be moved,
4421 		 *  no PM context is needed.
4422 		 */
4423 		if ((tmp&0xffffff) == 1)
4424 			newcmd = pm->ret;
4425 
4426 		/*
4427 		 *  Prepare the address of SCRIPTS that will
4428 		 *  move the residual byte to memory.
4429 		 */
4430 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4431 	}
4432 
4433 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4434 		PRINT_ADDR(cp);
4435 		printf ("PM %x %x %x / %x %x %x.\n",
4436 			hflags0, hflags, newcmd,
4437 			(unsigned)scr_to_cpu(pm->sg.addr),
4438 			(unsigned)scr_to_cpu(pm->sg.size),
4439 			(unsigned)scr_to_cpu(pm->ret));
4440 	}
4441 
4442 	/*
4443 	 *  Restart the SCRIPTS processor.
4444 	 */
4445 	OUTL (nc_temp, newcmd);
4446 	OUTL_DSP (nxtdsp);
4447 	return;
4448 
4449 	/*
4450 	 *  Unexpected phase changes that occurs when the current phase
4451 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4452 	 *  Such event may only happen when the SCRIPTS is using a
4453 	 *  multibyte SCSI MOVE.
4454 	 *
4455 	 *  Phase change		Some possible cause
4456 	 *
4457 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4458 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4459 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4460 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4461 	 *  			negotiation messages.
4462 	 *
4463 	 *  The code below does not care of the new phase and so
4464 	 *  trusts the target. Why to annoy it ?
4465 	 *  If the interrupted phase is COMMAND phase, we restart at
4466 	 *  dispatcher.
4467 	 *  If a target does not get all the messages after selection,
4468 	 *  the code assumes blindly that the target discards extended
4469 	 *  messages and clears the negotiation status.
4470 	 *  If the target does not want all our response to negotiation,
4471 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4472 	 *  bloat for such a should_not_happen situation).
4473 	 *  In all other situation, we reset the BUS.
4474 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4475 	 */
4476 unexpected_phase:
4477 	dsp -= 8;
4478 	nxtdsp = 0;
4479 
4480 	switch (cmd & 7) {
4481 	case 2:	/* COMMAND phase */
4482 		nxtdsp = SCRIPTA_BA (np, dispatch);
4483 		break;
4484 #if 0
4485 	case 3:	/* STATUS  phase */
4486 		nxtdsp = SCRIPTA_BA (np, dispatch);
4487 		break;
4488 #endif
4489 	case 6:	/* MSG OUT phase */
4490 		/*
4491 		 *  If the device may want to use untagged when we want
4492 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4493 		 *  since we will not be able to handle reselect.
4494 		 *  Otherwise, we just don't care.
4495 		 */
4496 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4497 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4498 				cp->host_status = HS_BUSY;
4499 				np->msgout[0] = M_IDENTIFY | cp->lun;
4500 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4501 			}
4502 			else
4503 				nxtdsp = SCRIPTB_BA (np, ident_break);
4504 		}
4505 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4506 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4507 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4508 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4509 		}
4510 		break;
4511 #if 0
4512 	case 7:	/* MSG IN  phase */
4513 		nxtdsp = SCRIPTA_BA (np, clrack);
4514 		break;
4515 #endif
4516 	}
4517 
4518 	if (nxtdsp) {
4519 		OUTL_DSP (nxtdsp);
4520 		return;
4521 	}
4522 
4523 reset_all:
4524 	sym_start_reset(np);
4525 }
4526 
4527 /*
4528  *  Dequeue from the START queue all CCBs that match
4529  *  a given target/lun/task condition (-1 means all),
4530  *  and move them from the BUSY queue to the COMP queue
4531  *  with CAM_REQUEUE_REQ status condition.
4532  *  This function is used during error handling/recovery.
4533  *  It is called with SCRIPTS not running.
4534  */
4535 static int
sym_dequeue_from_squeue(hcb_p np,int i,int target,int lun,int task)4536 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4537 {
4538 	int j;
4539 	ccb_p cp;
4540 
4541 	/*
4542 	 *  Make sure the starting index is within range.
4543 	 */
4544 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4545 
4546 	/*
4547 	 *  Walk until end of START queue and dequeue every job
4548 	 *  that matches the target/lun/task condition.
4549 	 */
4550 	j = i;
4551 	while (i != np->squeueput) {
4552 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4553 		assert(cp);
4554 #ifdef SYM_CONF_IARB_SUPPORT
4555 		/* Forget hints for IARB, they may be no longer relevant */
4556 		cp->host_flags &= ~HF_HINT_IARB;
4557 #endif
4558 		if ((target == -1 || cp->target == target) &&
4559 		    (lun    == -1 || cp->lun    == lun)    &&
4560 		    (task   == -1 || cp->tag    == task)) {
4561 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4562 			sym_remque(&cp->link_ccbq);
4563 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4564 		}
4565 		else {
4566 			if (i != j)
4567 				np->squeue[j] = np->squeue[i];
4568 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4569 		}
4570 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4571 	}
4572 	if (i != j)		/* Copy back the idle task if needed */
4573 		np->squeue[j] = np->squeue[i];
4574 	np->squeueput = j;	/* Update our current start queue pointer */
4575 
4576 	return (i - j) / 2;
4577 }
4578 
4579 /*
4580  *  Complete all CCBs queued to the COMP queue.
4581  *
4582  *  These CCBs are assumed:
4583  *  - Not to be referenced either by devices or
4584  *    SCRIPTS-related queues and datas.
4585  *  - To have to be completed with an error condition
4586  *    or requeued.
4587  *
4588  *  The device queue freeze count is incremented
4589  *  for each CCB that does not prevent this.
4590  *  This function is called when all CCBs involved
4591  *  in error handling/recovery have been reaped.
4592  */
4593 static void
sym_flush_comp_queue(hcb_p np,int cam_status)4594 sym_flush_comp_queue(hcb_p np, int cam_status)
4595 {
4596 	SYM_QUEHEAD *qp;
4597 	ccb_p cp;
4598 
4599 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4600 		union ccb *ccb;
4601 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4602 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4603 		/* Leave quiet CCBs waiting for resources */
4604 		if (cp->host_status == HS_WAIT)
4605 			continue;
4606 		ccb = cp->cam_ccb;
4607 		if (cam_status)
4608 			sym_set_cam_status(ccb, cam_status);
4609 		sym_freeze_cam_ccb(ccb);
4610 		sym_xpt_done(np, ccb, cp);
4611 		sym_free_ccb(np, cp);
4612 	}
4613 }
4614 
4615 /*
4616  *  chip handler for bad SCSI status condition
4617  *
4618  *  In case of bad SCSI status, we unqueue all the tasks
4619  *  currently queued to the controller but not yet started
4620  *  and then restart the SCRIPTS processor immediately.
4621  *
4622  *  QUEUE FULL and BUSY conditions are handled the same way.
4623  *  Basically all the not yet started tasks are requeued in
4624  *  device queue and the queue is frozen until a completion.
4625  *
4626  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4627  *  the CCB of the failed command to prepare a REQUEST SENSE
4628  *  SCSI command and queue it to the controller queue.
4629  *
4630  *  SCRATCHA is assumed to have been loaded with STARTPOS
4631  *  before the SCRIPTS called the C code.
4632  */
sym_sir_bad_scsi_status(hcb_p np,ccb_p cp)4633 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4634 {
4635 	tcb_p tp	= &np->target[cp->target];
4636 	u32		startp;
4637 	u_char		s_status = cp->ssss_status;
4638 	u_char		h_flags  = cp->host_flags;
4639 	int		msglen;
4640 	int		nego;
4641 	int		i;
4642 
4643 	SYM_LOCK_ASSERT(MA_OWNED);
4644 
4645 	/*
4646 	 *  Compute the index of the next job to start from SCRIPTS.
4647 	 */
4648 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4649 
4650 	/*
4651 	 *  The last CCB queued used for IARB hint may be
4652 	 *  no longer relevant. Forget it.
4653 	 */
4654 #ifdef SYM_CONF_IARB_SUPPORT
4655 	if (np->last_cp)
4656 		np->last_cp = NULL;
4657 #endif
4658 
4659 	/*
4660 	 *  Now deal with the SCSI status.
4661 	 */
4662 	switch(s_status) {
4663 	case S_BUSY:
4664 	case S_QUEUE_FULL:
4665 		if (sym_verbose >= 2) {
4666 			PRINT_ADDR(cp);
4667 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4668 		}
4669 		/* FALLTHROUGH */
4670 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4671 		sym_complete_error (np, cp);
4672 		break;
4673 	case S_TERMINATED:
4674 	case S_CHECK_COND:
4675 		/*
4676 		 *  If we get an SCSI error when requesting sense, give up.
4677 		 */
4678 		if (h_flags & HF_SENSE) {
4679 			sym_complete_error (np, cp);
4680 			break;
4681 		}
4682 
4683 		/*
4684 		 *  Dequeue all queued CCBs for that device not yet started,
4685 		 *  and restart the SCRIPTS processor immediately.
4686 		 */
4687 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4688 		OUTL_DSP (SCRIPTA_BA (np, start));
4689 
4690  		/*
4691 		 *  Save some info of the actual IO.
4692 		 *  Compute the data residual.
4693 		 */
4694 		cp->sv_scsi_status = cp->ssss_status;
4695 		cp->sv_xerr_status = cp->xerr_status;
4696 		cp->sv_resid = sym_compute_residual(np, cp);
4697 
4698 		/*
4699 		 *  Prepare all needed data structures for
4700 		 *  requesting sense data.
4701 		 */
4702 
4703 		/*
4704 		 *  identify message
4705 		 */
4706 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4707 		msglen = 1;
4708 
4709 		/*
4710 		 *  If we are currently using anything different from
4711 		 *  async. 8 bit data transfers with that target,
4712 		 *  start a negotiation, since the device may want
4713 		 *  to report us a UNIT ATTENTION condition due to
4714 		 *  a cause we currently ignore, and we donnot want
4715 		 *  to be stuck with WIDE and/or SYNC data transfer.
4716 		 *
4717 		 *  cp->nego_status is filled by sym_prepare_nego().
4718 		 */
4719 		cp->nego_status = 0;
4720 		nego = 0;
4721 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4722 			nego = NS_PPR;
4723 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4724 			nego = NS_WIDE;
4725 		else if (tp->tinfo.current.offset != 0)
4726 			nego = NS_SYNC;
4727 		if (nego)
4728 			msglen +=
4729 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4730 		/*
4731 		 *  Message table indirect structure.
4732 		 */
4733 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4734 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4735 
4736 		/*
4737 		 *  sense command
4738 		 */
4739 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4740 		cp->phys.cmd.size	= cpu_to_scr(6);
4741 
4742 		/*
4743 		 *  patch requested size into sense command
4744 		 */
4745 		cp->sensecmd[0]		= 0x03;
4746 		cp->sensecmd[1]		= cp->lun << 5;
4747 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4748 			cp->sensecmd[1]	= 0;
4749 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4750 		cp->data_len		= SYM_SNS_BBUF_LEN;
4751 
4752 		/*
4753 		 *  sense data
4754 		 */
4755 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4756 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4757 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4758 
4759 		/*
4760 		 *  requeue the command.
4761 		 */
4762 		startp = SCRIPTB_BA (np, sdata_in);
4763 
4764 		cp->phys.head.savep	= cpu_to_scr(startp);
4765 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4766 		cp->phys.head.lastp	= cpu_to_scr(startp);
4767 		cp->startp	= cpu_to_scr(startp);
4768 
4769 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4770 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4771 		cp->ssss_status = S_ILLEGAL;
4772 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4773 		cp->xerr_status = 0;
4774 		cp->extra_bytes = 0;
4775 
4776 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4777 
4778 		/*
4779 		 *  Requeue the command.
4780 		 */
4781 		sym_put_start_queue(np, cp);
4782 
4783 		/*
4784 		 *  Give back to upper layer everything we have dequeued.
4785 		 */
4786 		sym_flush_comp_queue(np, 0);
4787 		break;
4788 	}
4789 }
4790 
4791 /*
4792  *  After a device has accepted some management message
4793  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4794  *  a device signals a UNIT ATTENTION condition, some
4795  *  tasks are thrown away by the device. We are required
4796  *  to reflect that on our tasks list since the device
4797  *  will never complete these tasks.
4798  *
4799  *  This function move from the BUSY queue to the COMP
4800  *  queue all disconnected CCBs for a given target that
4801  *  match the following criteria:
4802  *  - lun=-1  means any logical UNIT otherwise a given one.
4803  *  - task=-1 means any task, otherwise a given one.
4804  */
4805 static int
sym_clear_tasks(hcb_p np,int cam_status,int target,int lun,int task)4806 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4807 {
4808 	SYM_QUEHEAD qtmp, *qp;
4809 	int i = 0;
4810 	ccb_p cp;
4811 
4812 	/*
4813 	 *  Move the entire BUSY queue to our temporary queue.
4814 	 */
4815 	sym_que_init(&qtmp);
4816 	sym_que_splice(&np->busy_ccbq, &qtmp);
4817 	sym_que_init(&np->busy_ccbq);
4818 
4819 	/*
4820 	 *  Put all CCBs that matches our criteria into
4821 	 *  the COMP queue and put back other ones into
4822 	 *  the BUSY queue.
4823 	 */
4824 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4825 		union ccb *ccb;
4826 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4827 		ccb = cp->cam_ccb;
4828 		if (cp->host_status != HS_DISCONNECT ||
4829 		    cp->target != target	     ||
4830 		    (lun  != -1 && cp->lun != lun)   ||
4831 		    (task != -1 &&
4832 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4833 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4834 			continue;
4835 		}
4836 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4837 
4838 		/* Preserve the software timeout condition */
4839 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4840 			sym_set_cam_status(ccb, cam_status);
4841 		++i;
4842 #if 0
4843 printf("XXXX TASK @%p CLEARED\n", cp);
4844 #endif
4845 	}
4846 	return i;
4847 }
4848 
4849 /*
4850  *  chip handler for TASKS recovery
4851  *
4852  *  We cannot safely abort a command, while the SCRIPTS
4853  *  processor is running, since we just would be in race
4854  *  with it.
4855  *
4856  *  As long as we have tasks to abort, we keep the SEM
4857  *  bit set in the ISTAT. When this bit is set, the
4858  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4859  *  each time it enters the scheduler.
4860  *
4861  *  If we have to reset a target, clear tasks of a unit,
4862  *  or to perform the abort of a disconnected job, we
4863  *  restart the SCRIPTS for selecting the target. Once
4864  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4865  *  If it loses arbitration, the SCRIPTS will interrupt again
4866  *  the next time it will enter its scheduler, and so on ...
4867  *
4868  *  On SIR_TARGET_SELECTED, we scan for the more
4869  *  appropriate thing to do:
4870  *
4871  *  - If nothing, we just sent a M_ABORT message to the
4872  *    target to get rid of the useless SCSI bus ownership.
4873  *    According to the specs, no tasks shall be affected.
4874  *  - If the target is to be reset, we send it a M_RESET
4875  *    message.
4876  *  - If a logical UNIT is to be cleared , we send the
4877  *    IDENTIFY(lun) + M_ABORT.
4878  *  - If an untagged task is to be aborted, we send the
4879  *    IDENTIFY(lun) + M_ABORT.
4880  *  - If a tagged task is to be aborted, we send the
4881  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4882  *
4883  *  Once our 'kiss of death' :) message has been accepted
4884  *  by the target, the SCRIPTS interrupts again
4885  *  (SIR_ABORT_SENT). On this interrupt, we complete
4886  *  all the CCBs that should have been aborted by the
4887  *  target according to our message.
4888  */
sym_sir_task_recovery(hcb_p np,int num)4889 static void sym_sir_task_recovery(hcb_p np, int num)
4890 {
4891 	SYM_QUEHEAD *qp;
4892 	ccb_p cp;
4893 	tcb_p tp;
4894 	int target=-1, lun=-1, task;
4895 	int i, k;
4896 
4897 	switch(num) {
4898 	/*
4899 	 *  The SCRIPTS processor stopped before starting
4900 	 *  the next command in order to allow us to perform
4901 	 *  some task recovery.
4902 	 */
4903 	case SIR_SCRIPT_STOPPED:
4904 		/*
4905 		 *  Do we have any target to reset or unit to clear ?
4906 		 */
4907 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4908 			tp = &np->target[i];
4909 			if (tp->to_reset ||
4910 			    (tp->lun0p && tp->lun0p->to_clear)) {
4911 				target = i;
4912 				break;
4913 			}
4914 			if (!tp->lunmp)
4915 				continue;
4916 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4917 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4918 					target	= i;
4919 					break;
4920 				}
4921 			}
4922 			if (target != -1)
4923 				break;
4924 		}
4925 
4926 		/*
4927 		 *  If not, walk the busy queue for any
4928 		 *  disconnected CCB to be aborted.
4929 		 */
4930 		if (target == -1) {
4931 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4932 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4933 				if (cp->host_status != HS_DISCONNECT)
4934 					continue;
4935 				if (cp->to_abort) {
4936 					target = cp->target;
4937 					break;
4938 				}
4939 			}
4940 		}
4941 
4942 		/*
4943 		 *  If some target is to be selected,
4944 		 *  prepare and start the selection.
4945 		 */
4946 		if (target != -1) {
4947 			tp = &np->target[target];
4948 			np->abrt_sel.sel_id	= target;
4949 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4950 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4951 			OUTL(nc_dsa, np->hcb_ba);
4952 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4953 			return;
4954 		}
4955 
4956 		/*
4957 		 *  Now look for a CCB to abort that haven't started yet.
4958 		 *  Btw, the SCRIPTS processor is still stopped, so
4959 		 *  we are not in race.
4960 		 */
4961 		i = 0;
4962 		cp = NULL;
4963 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4964 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4965 			if (cp->host_status != HS_BUSY &&
4966 			    cp->host_status != HS_NEGOTIATE)
4967 				continue;
4968 			if (!cp->to_abort)
4969 				continue;
4970 #ifdef SYM_CONF_IARB_SUPPORT
4971 			/*
4972 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4973 			 *    want to cancel the last queued CCB, since the
4974 			 *    SCRIPTS may have anticipated the selection.
4975 			 */
4976 			if (cp == np->last_cp) {
4977 				cp->to_abort = 0;
4978 				continue;
4979 			}
4980 #endif
4981 			i = 1;	/* Means we have found some */
4982 			break;
4983 		}
4984 		if (!i) {
4985 			/*
4986 			 *  We are done, so we donnot need
4987 			 *  to synchronize with the SCRIPTS anylonger.
4988 			 *  Remove the SEM flag from the ISTAT.
4989 			 */
4990 			np->istat_sem = 0;
4991 			OUTB (nc_istat, SIGP);
4992 			break;
4993 		}
4994 		/*
4995 		 *  Compute index of next position in the start
4996 		 *  queue the SCRIPTS intends to start and dequeue
4997 		 *  all CCBs for that device that haven't been started.
4998 		 */
4999 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5000 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5001 
5002 		/*
5003 		 *  Make sure at least our IO to abort has been dequeued.
5004 		 */
5005 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5006 
5007 		/*
5008 		 *  Keep track in cam status of the reason of the abort.
5009 		 */
5010 		if (cp->to_abort == 2)
5011 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5012 		else
5013 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5014 
5015 		/*
5016 		 *  Complete with error everything that we have dequeued.
5017 	 	 */
5018 		sym_flush_comp_queue(np, 0);
5019 		break;
5020 	/*
5021 	 *  The SCRIPTS processor has selected a target
5022 	 *  we may have some manual recovery to perform for.
5023 	 */
5024 	case SIR_TARGET_SELECTED:
5025 		target = (INB (nc_sdid) & 0xf);
5026 		tp = &np->target[target];
5027 
5028 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5029 
5030 		/*
5031 		 *  If the target is to be reset, prepare a
5032 		 *  M_RESET message and clear the to_reset flag
5033 		 *  since we donnot expect this operation to fail.
5034 		 */
5035 		if (tp->to_reset) {
5036 			np->abrt_msg[0] = M_RESET;
5037 			np->abrt_tbl.size = 1;
5038 			tp->to_reset = 0;
5039 			break;
5040 		}
5041 
5042 		/*
5043 		 *  Otherwise, look for some logical unit to be cleared.
5044 		 */
5045 		if (tp->lun0p && tp->lun0p->to_clear)
5046 			lun = 0;
5047 		else if (tp->lunmp) {
5048 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5049 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5050 					lun = k;
5051 					break;
5052 				}
5053 			}
5054 		}
5055 
5056 		/*
5057 		 *  If a logical unit is to be cleared, prepare
5058 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5059 		 */
5060 		if (lun != -1) {
5061 			lcb_p lp = sym_lp(tp, lun);
5062 			lp->to_clear = 0; /* We donnot expect to fail here */
5063 			np->abrt_msg[0] = M_IDENTIFY | lun;
5064 			np->abrt_msg[1] = M_ABORT;
5065 			np->abrt_tbl.size = 2;
5066 			break;
5067 		}
5068 
5069 		/*
5070 		 *  Otherwise, look for some disconnected job to
5071 		 *  abort for this target.
5072 		 */
5073 		i = 0;
5074 		cp = NULL;
5075 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5076 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5077 			if (cp->host_status != HS_DISCONNECT)
5078 				continue;
5079 			if (cp->target != target)
5080 				continue;
5081 			if (!cp->to_abort)
5082 				continue;
5083 			i = 1;	/* Means we have some */
5084 			break;
5085 		}
5086 
5087 		/*
5088 		 *  If we have none, probably since the device has
5089 		 *  completed the command before we won abitration,
5090 		 *  send a M_ABORT message without IDENTIFY.
5091 		 *  According to the specs, the device must just
5092 		 *  disconnect the BUS and not abort any task.
5093 		 */
5094 		if (!i) {
5095 			np->abrt_msg[0] = M_ABORT;
5096 			np->abrt_tbl.size = 1;
5097 			break;
5098 		}
5099 
5100 		/*
5101 		 *  We have some task to abort.
5102 		 *  Set the IDENTIFY(lun)
5103 		 */
5104 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5105 
5106 		/*
5107 		 *  If we want to abort an untagged command, we
5108 		 *  will send an IDENTIFY + M_ABORT.
5109 		 *  Otherwise (tagged command), we will send
5110 		 *  an IDENTIFY + task attributes + ABORT TAG.
5111 		 */
5112 		if (cp->tag == NO_TAG) {
5113 			np->abrt_msg[1] = M_ABORT;
5114 			np->abrt_tbl.size = 2;
5115 		}
5116 		else {
5117 			np->abrt_msg[1] = cp->scsi_smsg[1];
5118 			np->abrt_msg[2] = cp->scsi_smsg[2];
5119 			np->abrt_msg[3] = M_ABORT_TAG;
5120 			np->abrt_tbl.size = 4;
5121 		}
5122 		/*
5123 		 *  Keep track of software timeout condition, since the
5124 		 *  peripheral driver may not count retries on abort
5125 		 *  conditions not due to timeout.
5126 		 */
5127 		if (cp->to_abort == 2)
5128 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5129 		cp->to_abort = 0; /* We donnot expect to fail here */
5130 		break;
5131 
5132 	/*
5133 	 *  The target has accepted our message and switched
5134 	 *  to BUS FREE phase as we expected.
5135 	 */
5136 	case SIR_ABORT_SENT:
5137 		target = (INB (nc_sdid) & 0xf);
5138 		tp = &np->target[target];
5139 
5140 		/*
5141 		**  If we didn't abort anything, leave here.
5142 		*/
5143 		if (np->abrt_msg[0] == M_ABORT)
5144 			break;
5145 
5146 		/*
5147 		 *  If we sent a M_RESET, then a hardware reset has
5148 		 *  been performed by the target.
5149 		 *  - Reset everything to async 8 bit
5150 		 *  - Tell ourself to negotiate next time :-)
5151 		 *  - Prepare to clear all disconnected CCBs for
5152 		 *    this target from our task list (lun=task=-1)
5153 		 */
5154 		lun = -1;
5155 		task = -1;
5156 		if (np->abrt_msg[0] == M_RESET) {
5157 			tp->head.sval = 0;
5158 			tp->head.wval = np->rv_scntl3;
5159 			tp->head.uval = 0;
5160 			tp->tinfo.current.period = 0;
5161 			tp->tinfo.current.offset = 0;
5162 			tp->tinfo.current.width  = BUS_8_BIT;
5163 			tp->tinfo.current.options = 0;
5164 		}
5165 
5166 		/*
5167 		 *  Otherwise, check for the LUN and TASK(s)
5168 		 *  concerned by the cancellation.
5169 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5170 		 *  or an ABORT message :-)
5171 		 */
5172 		else {
5173 			lun = np->abrt_msg[0] & 0x3f;
5174 			if (np->abrt_msg[1] == M_ABORT_TAG)
5175 				task = np->abrt_msg[2];
5176 		}
5177 
5178 		/*
5179 		 *  Complete all the CCBs the device should have
5180 		 *  aborted due to our 'kiss of death' message.
5181 		 */
5182 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5183 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5184 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5185 		sym_flush_comp_queue(np, 0);
5186 
5187 		/*
5188 		 *  If we sent a BDR, make uper layer aware of that.
5189 		 */
5190 		if (np->abrt_msg[0] == M_RESET)
5191 			xpt_async(AC_SENT_BDR, np->path, NULL);
5192 		break;
5193 	}
5194 
5195 	/*
5196 	 *  Print to the log the message we intend to send.
5197 	 */
5198 	if (num == SIR_TARGET_SELECTED) {
5199 		PRINT_TARGET(np, target);
5200 		sym_printl_hex("control msgout:", np->abrt_msg,
5201 			      np->abrt_tbl.size);
5202 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5203 	}
5204 
5205 	/*
5206 	 *  Let the SCRIPTS processor continue.
5207 	 */
5208 	OUTONB_STD ();
5209 }
5210 
5211 /*
5212  *  Gerard's alchemy:) that deals with with the data
5213  *  pointer for both MDP and the residual calculation.
5214  *
5215  *  I didn't want to bloat the code by more than 200
5216  *  lignes for the handling of both MDP and the residual.
5217  *  This has been achieved by using a data pointer
5218  *  representation consisting in an index in the data
5219  *  array (dp_sg) and a negative offset (dp_ofs) that
5220  *  have the following meaning:
5221  *
5222  *  - dp_sg = SYM_CONF_MAX_SG
5223  *    we are at the end of the data script.
5224  *  - dp_sg < SYM_CONF_MAX_SG
5225  *    dp_sg points to the next entry of the scatter array
5226  *    we want to transfer.
5227  *  - dp_ofs < 0
5228  *    dp_ofs represents the residual of bytes of the
5229  *    previous entry scatter entry we will send first.
5230  *  - dp_ofs = 0
5231  *    no residual to send first.
5232  *
5233  *  The function sym_evaluate_dp() accepts an arbitray
5234  *  offset (basically from the MDP message) and returns
5235  *  the corresponding values of dp_sg and dp_ofs.
5236  */
sym_evaluate_dp(hcb_p np,ccb_p cp,u32 scr,int * ofs)5237 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5238 {
5239 	u32	dp_scr;
5240 	int	dp_ofs, dp_sg, dp_sgmin;
5241 	int	tmp;
5242 	struct sym_pmc *pm;
5243 
5244 	/*
5245 	 *  Compute the resulted data pointer in term of a script
5246 	 *  address within some DATA script and a signed byte offset.
5247 	 */
5248 	dp_scr = scr;
5249 	dp_ofs = *ofs;
5250 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5251 		pm = &cp->phys.pm0;
5252 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5253 		pm = &cp->phys.pm1;
5254 	else
5255 		pm = NULL;
5256 
5257 	if (pm) {
5258 		dp_scr  = scr_to_cpu(pm->ret);
5259 		dp_ofs -= scr_to_cpu(pm->sg.size);
5260 	}
5261 
5262 	/*
5263 	 *  If we are auto-sensing, then we are done.
5264 	 */
5265 	if (cp->host_flags & HF_SENSE) {
5266 		*ofs = dp_ofs;
5267 		return 0;
5268 	}
5269 
5270 	/*
5271 	 *  Deduce the index of the sg entry.
5272 	 *  Keep track of the index of the first valid entry.
5273 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5274 	 *  end of the data.
5275 	 */
5276 	tmp = scr_to_cpu(cp->phys.head.goalp);
5277 	dp_sg = SYM_CONF_MAX_SG;
5278 	if (dp_scr != tmp)
5279 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5280 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5281 
5282 	/*
5283 	 *  Move to the sg entry the data pointer belongs to.
5284 	 *
5285 	 *  If we are inside the data area, we expect result to be:
5286 	 *
5287 	 *  Either,
5288 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5289 	 *      the data pointer belongs to (or the end of the data)
5290 	 *  Or,
5291 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5292 	 *      the data pointer belongs to + 1.
5293 	 */
5294 	if (dp_ofs < 0) {
5295 		int n;
5296 		while (dp_sg > dp_sgmin) {
5297 			--dp_sg;
5298 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5299 			n = dp_ofs + (tmp & 0xffffff);
5300 			if (n > 0) {
5301 				++dp_sg;
5302 				break;
5303 			}
5304 			dp_ofs = n;
5305 		}
5306 	}
5307 	else if (dp_ofs > 0) {
5308 		while (dp_sg < SYM_CONF_MAX_SG) {
5309 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5310 			dp_ofs -= (tmp & 0xffffff);
5311 			++dp_sg;
5312 			if (dp_ofs <= 0)
5313 				break;
5314 		}
5315 	}
5316 
5317 	/*
5318 	 *  Make sure the data pointer is inside the data area.
5319 	 *  If not, return some error.
5320 	 */
5321 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5322 		goto out_err;
5323 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5324 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5325 		goto out_err;
5326 
5327 	/*
5328 	 *  Save the extreme pointer if needed.
5329 	 */
5330 	if (dp_sg > cp->ext_sg ||
5331             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5332 		cp->ext_sg  = dp_sg;
5333 		cp->ext_ofs = dp_ofs;
5334 	}
5335 
5336 	/*
5337 	 *  Return data.
5338 	 */
5339 	*ofs = dp_ofs;
5340 	return dp_sg;
5341 
5342 out_err:
5343 	return -1;
5344 }
5345 
5346 /*
5347  *  chip handler for MODIFY DATA POINTER MESSAGE
5348  *
5349  *  We also call this function on IGNORE WIDE RESIDUE
5350  *  messages that do not match a SWIDE full condition.
5351  *  Btw, we assume in that situation that such a message
5352  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5353  */
sym_modify_dp(hcb_p np,ccb_p cp,int ofs)5354 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5355 {
5356 	int dp_ofs	= ofs;
5357 	u32	dp_scr	= INL (nc_temp);
5358 	u32	dp_ret;
5359 	u32	tmp;
5360 	u_char	hflags;
5361 	int	dp_sg;
5362 	struct	sym_pmc *pm;
5363 
5364 	/*
5365 	 *  Not supported for auto-sense.
5366 	 */
5367 	if (cp->host_flags & HF_SENSE)
5368 		goto out_reject;
5369 
5370 	/*
5371 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5372 	 *  to the resulted data pointer.
5373 	 */
5374 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5375 	if (dp_sg < 0)
5376 		goto out_reject;
5377 
5378 	/*
5379 	 *  And our alchemy:) allows to easily calculate the data
5380 	 *  script address we want to return for the next data phase.
5381 	 */
5382 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5383 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5384 
5385 	/*
5386 	 *  If offset / scatter entry is zero we donnot need
5387 	 *  a context for the new current data pointer.
5388 	 */
5389 	if (dp_ofs == 0) {
5390 		dp_scr = dp_ret;
5391 		goto out_ok;
5392 	}
5393 
5394 	/*
5395 	 *  Get a context for the new current data pointer.
5396 	 */
5397 	hflags = INB (HF_PRT);
5398 
5399 	if (hflags & HF_DP_SAVED)
5400 		hflags ^= HF_ACT_PM;
5401 
5402 	if (!(hflags & HF_ACT_PM)) {
5403 		pm  = &cp->phys.pm0;
5404 		dp_scr = SCRIPTA_BA (np, pm0_data);
5405 	}
5406 	else {
5407 		pm = &cp->phys.pm1;
5408 		dp_scr = SCRIPTA_BA (np, pm1_data);
5409 	}
5410 
5411 	hflags &= ~(HF_DP_SAVED);
5412 
5413 	OUTB (HF_PRT, hflags);
5414 
5415 	/*
5416 	 *  Set up the new current data pointer.
5417 	 *  ofs < 0 there, and for the next data phase, we
5418 	 *  want to transfer part of the data of the sg entry
5419 	 *  corresponding to index dp_sg-1 prior to returning
5420 	 *  to the main data script.
5421 	 */
5422 	pm->ret = cpu_to_scr(dp_ret);
5423 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5424 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5425 	pm->sg.addr = cpu_to_scr(tmp);
5426 	pm->sg.size = cpu_to_scr(-dp_ofs);
5427 
5428 out_ok:
5429 	OUTL (nc_temp, dp_scr);
5430 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5431 	return;
5432 
5433 out_reject:
5434 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5435 }
5436 
5437 /*
5438  *  chip calculation of the data residual.
5439  *
5440  *  As I used to say, the requirement of data residual
5441  *  in SCSI is broken, useless and cannot be achieved
5442  *  without huge complexity.
5443  *  But most OSes and even the official CAM require it.
5444  *  When stupidity happens to be so widely spread inside
5445  *  a community, it gets hard to convince.
5446  *
5447  *  Anyway, I don't care, since I am not going to use
5448  *  any software that considers this data residual as
5449  *  a relevant information. :)
5450  */
sym_compute_residual(hcb_p np,ccb_p cp)5451 static int sym_compute_residual(hcb_p np, ccb_p cp)
5452 {
5453 	int dp_sg, resid = 0;
5454 	int dp_ofs = 0;
5455 
5456 	/*
5457 	 *  Check for some data lost or just thrown away.
5458 	 *  We are not required to be quite accurate in this
5459 	 *  situation. Btw, if we are odd for output and the
5460 	 *  device claims some more data, it may well happen
5461 	 *  than our residual be zero. :-)
5462 	 */
5463 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5464 		if (cp->xerr_status & XE_EXTRA_DATA)
5465 			resid -= cp->extra_bytes;
5466 		if (cp->xerr_status & XE_SODL_UNRUN)
5467 			++resid;
5468 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5469 			--resid;
5470 	}
5471 
5472 	/*
5473 	 *  If all data has been transferred,
5474 	 *  there is no residual.
5475 	 */
5476 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5477 		return resid;
5478 
5479 	/*
5480 	 *  If no data transfer occurs, or if the data
5481 	 *  pointer is weird, return full residual.
5482 	 */
5483 	if (cp->startp == cp->phys.head.lastp ||
5484 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5485 			    &dp_ofs) < 0) {
5486 		return cp->data_len;
5487 	}
5488 
5489 	/*
5490 	 *  If we were auto-sensing, then we are done.
5491 	 */
5492 	if (cp->host_flags & HF_SENSE) {
5493 		return -dp_ofs;
5494 	}
5495 
5496 	/*
5497 	 *  We are now full comfortable in the computation
5498 	 *  of the data residual (2's complement).
5499 	 */
5500 	resid = -cp->ext_ofs;
5501 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5502 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5503 		resid += (tmp & 0xffffff);
5504 	}
5505 
5506 	/*
5507 	 *  Hopefully, the result is not too wrong.
5508 	 */
5509 	return resid;
5510 }
5511 
5512 /*
5513  *  Print out the content of a SCSI message.
5514  */
sym_show_msg(u_char * msg)5515 static int sym_show_msg (u_char * msg)
5516 {
5517 	u_char i;
5518 	printf ("%x",*msg);
5519 	if (*msg==M_EXTENDED) {
5520 		for (i = 1; i < 8; i++) {
5521 			if (i - 1 > msg[1]) break;
5522 			printf ("-%x",msg[i]);
5523 		}
5524 		return (i+1);
5525 	} else if ((*msg & 0xf0) == 0x20) {
5526 		printf ("-%x",msg[1]);
5527 		return (2);
5528 	}
5529 	return (1);
5530 }
5531 
sym_print_msg(ccb_p cp,char * label,u_char * msg)5532 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5533 {
5534 	PRINT_ADDR(cp);
5535 	if (label)
5536 		printf ("%s: ", label);
5537 
5538 	(void) sym_show_msg (msg);
5539 	printf (".\n");
5540 }
5541 
5542 /*
5543  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5544  *
5545  *  When we try to negotiate, we append the negotiation message
5546  *  to the identify and (maybe) simple tag message.
5547  *  The host status field is set to HS_NEGOTIATE to mark this
5548  *  situation.
5549  *
5550  *  If the target doesn't answer this message immediately
5551  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5552  *  will be raised eventually.
5553  *  The handler removes the HS_NEGOTIATE status, and sets the
5554  *  negotiated value to the default (async / nowide).
5555  *
5556  *  If we receive a matching answer immediately, we check it
5557  *  for validity, and set the values.
5558  *
5559  *  If we receive a Reject message immediately, we assume the
5560  *  negotiation has failed, and fall back to standard values.
5561  *
5562  *  If we receive a negotiation message while not in HS_NEGOTIATE
5563  *  state, it's a target initiated negotiation. We prepare a
5564  *  (hopefully) valid answer, set our parameters, and send back
5565  *  this answer to the target.
5566  *
5567  *  If the target doesn't fetch the answer (no message out phase),
5568  *  we assume the negotiation has failed, and fall back to default
5569  *  settings (SIR_NEGO_PROTO interrupt).
5570  *
5571  *  When we set the values, we adjust them in all ccbs belonging
5572  *  to this target, in the controller's register, and in the "phys"
5573  *  field of the controller's struct sym_hcb.
5574  */
5575 
5576 /*
5577  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5578  */
sym_sync_nego(hcb_p np,tcb_p tp,ccb_p cp)5579 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5580 {
5581 	u_char	chg, ofs, per, fak, div;
5582 	int	req = 1;
5583 
5584 	/*
5585 	 *  Synchronous request message received.
5586 	 */
5587 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5588 		sym_print_msg(cp, "sync msgin", np->msgin);
5589 	}
5590 
5591 	/*
5592 	 * request or answer ?
5593 	 */
5594 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5595 		OUTB (HS_PRT, HS_BUSY);
5596 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5597 			goto reject_it;
5598 		req = 0;
5599 	}
5600 
5601 	/*
5602 	 *  get requested values.
5603 	 */
5604 	chg = 0;
5605 	per = np->msgin[3];
5606 	ofs = np->msgin[4];
5607 
5608 	/*
5609 	 *  check values against our limits.
5610 	 */
5611 	if (ofs) {
5612 		if (ofs > np->maxoffs)
5613 			{chg = 1; ofs = np->maxoffs;}
5614 		if (req) {
5615 			if (ofs > tp->tinfo.user.offset)
5616 				{chg = 1; ofs = tp->tinfo.user.offset;}
5617 		}
5618 	}
5619 
5620 	if (ofs) {
5621 		if (per < np->minsync)
5622 			{chg = 1; per = np->minsync;}
5623 		if (req) {
5624 			if (per < tp->tinfo.user.period)
5625 				{chg = 1; per = tp->tinfo.user.period;}
5626 		}
5627 	}
5628 
5629 	div = fak = 0;
5630 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5631 		goto reject_it;
5632 
5633 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5634 		PRINT_ADDR(cp);
5635 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5636 			ofs, per, div, fak, chg);
5637 	}
5638 
5639 	/*
5640 	 *  This was an answer message
5641 	 */
5642 	if (req == 0) {
5643 		if (chg) 	/* Answer wasn't acceptable. */
5644 			goto reject_it;
5645 		sym_setsync (np, cp, ofs, per, div, fak);
5646 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5647 		return;
5648 	}
5649 
5650 	/*
5651 	 *  It was a request. Set value and
5652 	 *  prepare an answer message
5653 	 */
5654 	sym_setsync (np, cp, ofs, per, div, fak);
5655 
5656 	np->msgout[0] = M_EXTENDED;
5657 	np->msgout[1] = 3;
5658 	np->msgout[2] = M_X_SYNC_REQ;
5659 	np->msgout[3] = per;
5660 	np->msgout[4] = ofs;
5661 
5662 	cp->nego_status = NS_SYNC;
5663 
5664 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5665 		sym_print_msg(cp, "sync msgout", np->msgout);
5666 	}
5667 
5668 	np->msgin [0] = M_NOOP;
5669 
5670 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5671 	return;
5672 reject_it:
5673 	sym_setsync (np, cp, 0, 0, 0, 0);
5674 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5675 }
5676 
5677 /*
5678  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5679  */
sym_ppr_nego(hcb_p np,tcb_p tp,ccb_p cp)5680 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5681 {
5682 	u_char	chg, ofs, per, fak, dt, div, wide;
5683 	int	req = 1;
5684 
5685 	/*
5686 	 * Synchronous request message received.
5687 	 */
5688 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5689 		sym_print_msg(cp, "ppr msgin", np->msgin);
5690 	}
5691 
5692 	/*
5693 	 *  get requested values.
5694 	 */
5695 	chg  = 0;
5696 	per  = np->msgin[3];
5697 	ofs  = np->msgin[5];
5698 	wide = np->msgin[6];
5699 	dt   = np->msgin[7] & PPR_OPT_DT;
5700 
5701 	/*
5702 	 * request or answer ?
5703 	 */
5704 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5705 		OUTB (HS_PRT, HS_BUSY);
5706 		if (cp->nego_status && cp->nego_status != NS_PPR)
5707 			goto reject_it;
5708 		req = 0;
5709 	}
5710 
5711 	/*
5712 	 *  check values against our limits.
5713 	 */
5714 	if (wide > np->maxwide)
5715 		{chg = 1; wide = np->maxwide;}
5716 	if (!wide || !(np->features & FE_ULTRA3))
5717 		dt &= ~PPR_OPT_DT;
5718 	if (req) {
5719 		if (wide > tp->tinfo.user.width)
5720 			{chg = 1; wide = tp->tinfo.user.width;}
5721 	}
5722 
5723 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5724 		dt &= ~PPR_OPT_DT;
5725 
5726 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5727 
5728 	if (ofs) {
5729 		if (dt) {
5730 			if (ofs > np->maxoffs_dt)
5731 				{chg = 1; ofs = np->maxoffs_dt;}
5732 		}
5733 		else if (ofs > np->maxoffs)
5734 			{chg = 1; ofs = np->maxoffs;}
5735 		if (req) {
5736 			if (ofs > tp->tinfo.user.offset)
5737 				{chg = 1; ofs = tp->tinfo.user.offset;}
5738 		}
5739 	}
5740 
5741 	if (ofs) {
5742 		if (dt) {
5743 			if (per < np->minsync_dt)
5744 				{chg = 1; per = np->minsync_dt;}
5745 		}
5746 		else if (per < np->minsync)
5747 			{chg = 1; per = np->minsync;}
5748 		if (req) {
5749 			if (per < tp->tinfo.user.period)
5750 				{chg = 1; per = tp->tinfo.user.period;}
5751 		}
5752 	}
5753 
5754 	div = fak = 0;
5755 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5756 		goto reject_it;
5757 
5758 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5759 		PRINT_ADDR(cp);
5760 		printf ("ppr: "
5761 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5762 			dt, ofs, per, wide, div, fak, chg);
5763 	}
5764 
5765 	/*
5766 	 *  It was an answer.
5767 	 */
5768 	if (req == 0) {
5769 		if (chg) 	/* Answer wasn't acceptable */
5770 			goto reject_it;
5771 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5772 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5773 		return;
5774 	}
5775 
5776 	/*
5777 	 *  It was a request. Set value and
5778 	 *  prepare an answer message
5779 	 */
5780 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5781 
5782 	np->msgout[0] = M_EXTENDED;
5783 	np->msgout[1] = 6;
5784 	np->msgout[2] = M_X_PPR_REQ;
5785 	np->msgout[3] = per;
5786 	np->msgout[4] = 0;
5787 	np->msgout[5] = ofs;
5788 	np->msgout[6] = wide;
5789 	np->msgout[7] = dt;
5790 
5791 	cp->nego_status = NS_PPR;
5792 
5793 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5794 		sym_print_msg(cp, "ppr msgout", np->msgout);
5795 	}
5796 
5797 	np->msgin [0] = M_NOOP;
5798 
5799 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5800 	return;
5801 reject_it:
5802 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5803 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5804 	/*
5805 	 *  If it was a device response that should result in
5806 	 *  ST, we may want to try a legacy negotiation later.
5807 	 */
5808 	if (!req && !dt) {
5809 		tp->tinfo.goal.options = 0;
5810 		tp->tinfo.goal.width   = wide;
5811 		tp->tinfo.goal.period  = per;
5812 		tp->tinfo.goal.offset  = ofs;
5813 	}
5814 }
5815 
5816 /*
5817  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5818  */
sym_wide_nego(hcb_p np,tcb_p tp,ccb_p cp)5819 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5820 {
5821 	u_char	chg, wide;
5822 	int	req = 1;
5823 
5824 	/*
5825 	 *  Wide request message received.
5826 	 */
5827 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5828 		sym_print_msg(cp, "wide msgin", np->msgin);
5829 	}
5830 
5831 	/*
5832 	 * Is it a request from the device?
5833 	 */
5834 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5835 		OUTB (HS_PRT, HS_BUSY);
5836 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5837 			goto reject_it;
5838 		req = 0;
5839 	}
5840 
5841 	/*
5842 	 *  get requested values.
5843 	 */
5844 	chg  = 0;
5845 	wide = np->msgin[3];
5846 
5847 	/*
5848 	 *  check values against driver limits.
5849 	 */
5850 	if (wide > np->maxwide)
5851 		{chg = 1; wide = np->maxwide;}
5852 	if (req) {
5853 		if (wide > tp->tinfo.user.width)
5854 			{chg = 1; wide = tp->tinfo.user.width;}
5855 	}
5856 
5857 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5858 		PRINT_ADDR(cp);
5859 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5860 	}
5861 
5862 	/*
5863 	 * This was an answer message
5864 	 */
5865 	if (req == 0) {
5866 		if (chg)	/*  Answer wasn't acceptable. */
5867 			goto reject_it;
5868 		sym_setwide (np, cp, wide);
5869 
5870 		/*
5871 		 * Negotiate for SYNC immediately after WIDE response.
5872 		 * This allows to negotiate for both WIDE and SYNC on
5873 		 * a single SCSI command (Suggested by Justin Gibbs).
5874 		 */
5875 		if (tp->tinfo.goal.offset) {
5876 			np->msgout[0] = M_EXTENDED;
5877 			np->msgout[1] = 3;
5878 			np->msgout[2] = M_X_SYNC_REQ;
5879 			np->msgout[3] = tp->tinfo.goal.period;
5880 			np->msgout[4] = tp->tinfo.goal.offset;
5881 
5882 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5883 				sym_print_msg(cp, "sync msgout", np->msgout);
5884 			}
5885 
5886 			cp->nego_status = NS_SYNC;
5887 			OUTB (HS_PRT, HS_NEGOTIATE);
5888 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5889 			return;
5890 		}
5891 
5892 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5893 		return;
5894 	}
5895 
5896 	/*
5897 	 *  It was a request, set value and
5898 	 *  prepare an answer message
5899 	 */
5900 	sym_setwide (np, cp, wide);
5901 
5902 	np->msgout[0] = M_EXTENDED;
5903 	np->msgout[1] = 2;
5904 	np->msgout[2] = M_X_WIDE_REQ;
5905 	np->msgout[3] = wide;
5906 
5907 	np->msgin [0] = M_NOOP;
5908 
5909 	cp->nego_status = NS_WIDE;
5910 
5911 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5912 		sym_print_msg(cp, "wide msgout", np->msgout);
5913 	}
5914 
5915 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5916 	return;
5917 reject_it:
5918 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5919 }
5920 
5921 /*
5922  *  Reset SYNC or WIDE to default settings.
5923  *
5924  *  Called when a negotiation does not succeed either
5925  *  on rejection or on protocol error.
5926  *
5927  *  If it was a PPR that made problems, we may want to
5928  *  try a legacy negotiation later.
5929  */
sym_nego_default(hcb_p np,tcb_p tp,ccb_p cp)5930 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5931 {
5932 	/*
5933 	 *  any error in negotiation:
5934 	 *  fall back to default mode.
5935 	 */
5936 	switch (cp->nego_status) {
5937 	case NS_PPR:
5938 #if 0
5939 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5940 #else
5941 		tp->tinfo.goal.options = 0;
5942 		if (tp->tinfo.goal.period < np->minsync)
5943 			tp->tinfo.goal.period = np->minsync;
5944 		if (tp->tinfo.goal.offset > np->maxoffs)
5945 			tp->tinfo.goal.offset = np->maxoffs;
5946 #endif
5947 		break;
5948 	case NS_SYNC:
5949 		sym_setsync (np, cp, 0, 0, 0, 0);
5950 		break;
5951 	case NS_WIDE:
5952 		sym_setwide (np, cp, 0);
5953 		break;
5954 	}
5955 	np->msgin [0] = M_NOOP;
5956 	np->msgout[0] = M_NOOP;
5957 	cp->nego_status = 0;
5958 }
5959 
5960 /*
5961  *  chip handler for MESSAGE REJECT received in response to
5962  *  a WIDE or SYNCHRONOUS negotiation.
5963  */
sym_nego_rejected(hcb_p np,tcb_p tp,ccb_p cp)5964 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5965 {
5966 	sym_nego_default(np, tp, cp);
5967 	OUTB (HS_PRT, HS_BUSY);
5968 }
5969 
5970 /*
5971  *  chip exception handler for programmed interrupts.
5972  */
sym_int_sir(hcb_p np)5973 static void sym_int_sir (hcb_p np)
5974 {
5975 	u_char	num	= INB (nc_dsps);
5976 	u32	dsa	= INL (nc_dsa);
5977 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5978 	u_char	target	= INB (nc_sdid) & 0x0f;
5979 	tcb_p	tp	= &np->target[target];
5980 	int	tmp;
5981 
5982 	SYM_LOCK_ASSERT(MA_OWNED);
5983 
5984 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5985 
5986 	switch (num) {
5987 	/*
5988 	 *  Command has been completed with error condition
5989 	 *  or has been auto-sensed.
5990 	 */
5991 	case SIR_COMPLETE_ERROR:
5992 		if (!cp)
5993 			goto out;
5994 		sym_complete_error(np, cp);
5995 		return;
5996 	/*
5997 	 *  The C code is currently trying to recover from something.
5998 	 *  Typically, user want to abort some command.
5999 	 */
6000 	case SIR_SCRIPT_STOPPED:
6001 	case SIR_TARGET_SELECTED:
6002 	case SIR_ABORT_SENT:
6003 		sym_sir_task_recovery(np, num);
6004 		return;
6005 	/*
6006 	 *  The device didn't go to MSG OUT phase after having
6007 	 *  been selected with ATN. We donnot want to handle
6008 	 *  that.
6009 	 */
6010 	case SIR_SEL_ATN_NO_MSG_OUT:
6011 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6012 			sym_name (np), target);
6013 		goto out_stuck;
6014 	/*
6015 	 *  The device didn't switch to MSG IN phase after
6016 	 *  having reseleted the initiator.
6017 	 */
6018 	case SIR_RESEL_NO_MSG_IN:
6019 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6020 			sym_name (np), target);
6021 		goto out_stuck;
6022 	/*
6023 	 *  After reselection, the device sent a message that wasn't
6024 	 *  an IDENTIFY.
6025 	 */
6026 	case SIR_RESEL_NO_IDENTIFY:
6027 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6028 			sym_name (np), target);
6029 		goto out_stuck;
6030 	/*
6031 	 *  The device reselected a LUN we donnot know about.
6032 	 */
6033 	case SIR_RESEL_BAD_LUN:
6034 		np->msgout[0] = M_RESET;
6035 		goto out;
6036 	/*
6037 	 *  The device reselected for an untagged nexus and we
6038 	 *  haven't any.
6039 	 */
6040 	case SIR_RESEL_BAD_I_T_L:
6041 		np->msgout[0] = M_ABORT;
6042 		goto out;
6043 	/*
6044 	 *  The device reselected for a tagged nexus that we donnot
6045 	 *  have.
6046 	 */
6047 	case SIR_RESEL_BAD_I_T_L_Q:
6048 		np->msgout[0] = M_ABORT_TAG;
6049 		goto out;
6050 	/*
6051 	 *  The SCRIPTS let us know that the device has grabbed
6052 	 *  our message and will abort the job.
6053 	 */
6054 	case SIR_RESEL_ABORTED:
6055 		np->lastmsg = np->msgout[0];
6056 		np->msgout[0] = M_NOOP;
6057 		printf ("%s:%d: message %x sent on bad reselection.\n",
6058 			sym_name (np), target, np->lastmsg);
6059 		goto out;
6060 	/*
6061 	 *  The SCRIPTS let us know that a message has been
6062 	 *  successfully sent to the device.
6063 	 */
6064 	case SIR_MSG_OUT_DONE:
6065 		np->lastmsg = np->msgout[0];
6066 		np->msgout[0] = M_NOOP;
6067 		/* Should we really care of that */
6068 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6069 			if (cp) {
6070 				cp->xerr_status &= ~XE_PARITY_ERR;
6071 				if (!cp->xerr_status)
6072 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6073 			}
6074 		}
6075 		goto out;
6076 	/*
6077 	 *  The device didn't send a GOOD SCSI status.
6078 	 *  We may have some work to do prior to allow
6079 	 *  the SCRIPTS processor to continue.
6080 	 */
6081 	case SIR_BAD_SCSI_STATUS:
6082 		if (!cp)
6083 			goto out;
6084 		sym_sir_bad_scsi_status(np, cp);
6085 		return;
6086 	/*
6087 	 *  We are asked by the SCRIPTS to prepare a
6088 	 *  REJECT message.
6089 	 */
6090 	case SIR_REJECT_TO_SEND:
6091 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6092 		np->msgout[0] = M_REJECT;
6093 		goto out;
6094 	/*
6095 	 *  We have been ODD at the end of a DATA IN
6096 	 *  transfer and the device didn't send a
6097 	 *  IGNORE WIDE RESIDUE message.
6098 	 *  It is a data overrun condition.
6099 	 */
6100 	case SIR_SWIDE_OVERRUN:
6101 		if (cp) {
6102 			OUTONB (HF_PRT, HF_EXT_ERR);
6103 			cp->xerr_status |= XE_SWIDE_OVRUN;
6104 		}
6105 		goto out;
6106 	/*
6107 	 *  We have been ODD at the end of a DATA OUT
6108 	 *  transfer.
6109 	 *  It is a data underrun condition.
6110 	 */
6111 	case SIR_SODL_UNDERRUN:
6112 		if (cp) {
6113 			OUTONB (HF_PRT, HF_EXT_ERR);
6114 			cp->xerr_status |= XE_SODL_UNRUN;
6115 		}
6116 		goto out;
6117 	/*
6118 	 *  The device wants us to transfer more data than
6119 	 *  expected or in the wrong direction.
6120 	 *  The number of extra bytes is in scratcha.
6121 	 *  It is a data overrun condition.
6122 	 */
6123 	case SIR_DATA_OVERRUN:
6124 		if (cp) {
6125 			OUTONB (HF_PRT, HF_EXT_ERR);
6126 			cp->xerr_status |= XE_EXTRA_DATA;
6127 			cp->extra_bytes += INL (nc_scratcha);
6128 		}
6129 		goto out;
6130 	/*
6131 	 *  The device switched to an illegal phase (4/5).
6132 	 */
6133 	case SIR_BAD_PHASE:
6134 		if (cp) {
6135 			OUTONB (HF_PRT, HF_EXT_ERR);
6136 			cp->xerr_status |= XE_BAD_PHASE;
6137 		}
6138 		goto out;
6139 	/*
6140 	 *  We received a message.
6141 	 */
6142 	case SIR_MSG_RECEIVED:
6143 		if (!cp)
6144 			goto out_stuck;
6145 		switch (np->msgin [0]) {
6146 		/*
6147 		 *  We received an extended message.
6148 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6149 		 *  and reject all other extended messages.
6150 		 */
6151 		case M_EXTENDED:
6152 			switch (np->msgin [2]) {
6153 			case M_X_MODIFY_DP:
6154 				if (DEBUG_FLAGS & DEBUG_POINTER)
6155 					sym_print_msg(cp,"modify DP",np->msgin);
6156 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6157 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6158 				sym_modify_dp(np, cp, tmp);
6159 				return;
6160 			case M_X_SYNC_REQ:
6161 				sym_sync_nego(np, tp, cp);
6162 				return;
6163 			case M_X_PPR_REQ:
6164 				sym_ppr_nego(np, tp, cp);
6165 				return;
6166 			case M_X_WIDE_REQ:
6167 				sym_wide_nego(np, tp, cp);
6168 				return;
6169 			default:
6170 				goto out_reject;
6171 			}
6172 			break;
6173 		/*
6174 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6175 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6176 		 *  RESIDUE messages that haven't been anticipated by
6177 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6178 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6179 		 */
6180 		case M_IGN_RESIDUE:
6181 			if (DEBUG_FLAGS & DEBUG_POINTER)
6182 				sym_print_msg(cp,"ign wide residue", np->msgin);
6183 			sym_modify_dp(np, cp, -1);
6184 			return;
6185 		case M_REJECT:
6186 			if (INB (HS_PRT) == HS_NEGOTIATE)
6187 				sym_nego_rejected(np, tp, cp);
6188 			else {
6189 				PRINT_ADDR(cp);
6190 				printf ("M_REJECT received (%x:%x).\n",
6191 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6192 			}
6193 			goto out_clrack;
6194 			break;
6195 		default:
6196 			goto out_reject;
6197 		}
6198 		break;
6199 	/*
6200 	 *  We received an unknown message.
6201 	 *  Ignore all MSG IN phases and reject it.
6202 	 */
6203 	case SIR_MSG_WEIRD:
6204 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6205 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6206 		return;
6207 	/*
6208 	 *  Negotiation failed.
6209 	 *  Target does not send us the reply.
6210 	 *  Remove the HS_NEGOTIATE status.
6211 	 */
6212 	case SIR_NEGO_FAILED:
6213 		OUTB (HS_PRT, HS_BUSY);
6214 	/*
6215 	 *  Negotiation failed.
6216 	 *  Target does not want answer message.
6217 	 */
6218 	case SIR_NEGO_PROTO:
6219 		if (!cp)
6220 			goto out;
6221 		sym_nego_default(np, tp, cp);
6222 		goto out;
6223 	}
6224 
6225 out:
6226 	OUTONB_STD ();
6227 	return;
6228 out_reject:
6229 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6230 	return;
6231 out_clrack:
6232 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6233 	return;
6234 out_stuck:
6235 	return;
6236 }
6237 
6238 /*
6239  *  Acquire a control block
6240  */
sym_get_ccb(hcb_p np,u_char tn,u_char ln,u_char tag_order)6241 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6242 {
6243 	tcb_p tp = &np->target[tn];
6244 	lcb_p lp = sym_lp(tp, ln);
6245 	u_short tag = NO_TAG;
6246 	SYM_QUEHEAD *qp;
6247 	ccb_p cp = (ccb_p) NULL;
6248 
6249 	/*
6250 	 *  Look for a free CCB
6251 	 */
6252 	if (sym_que_empty(&np->free_ccbq))
6253 		goto out;
6254 	qp = sym_remque_head(&np->free_ccbq);
6255 	if (!qp)
6256 		goto out;
6257 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6258 
6259 	/*
6260 	 *  If the LCB is not yet available and the LUN
6261 	 *  has been probed ok, try to allocate the LCB.
6262 	 */
6263 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6264 		lp = sym_alloc_lcb(np, tn, ln);
6265 		if (!lp)
6266 			goto out_free;
6267 	}
6268 
6269 	/*
6270 	 *  If the LCB is not available here, then the
6271 	 *  logical unit is not yet discovered. For those
6272 	 *  ones only accept 1 SCSI IO per logical unit,
6273 	 *  since we cannot allow disconnections.
6274 	 */
6275 	if (!lp) {
6276 		if (!sym_is_bit(tp->busy0_map, ln))
6277 			sym_set_bit(tp->busy0_map, ln);
6278 		else
6279 			goto out_free;
6280 	} else {
6281 		/*
6282 		 *  If we have been asked for a tagged command, refuse
6283 		 *  to overlap with an existing untagged one.
6284 		 */
6285 		if (tag_order) {
6286 			if (lp->busy_itl != 0)
6287 				goto out_free;
6288 			/*
6289 			 *  Allocate resources for tags if not yet.
6290 			 */
6291 			if (!lp->cb_tags) {
6292 				sym_alloc_lcb_tags(np, tn, ln);
6293 				if (!lp->cb_tags)
6294 					goto out_free;
6295 			}
6296 			/*
6297 			 *  Get a tag for this SCSI IO and set up
6298 			 *  the CCB bus address for reselection,
6299 			 *  and count it for this LUN.
6300 			 *  Toggle reselect path to tagged.
6301 			 */
6302 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6303 				tag = lp->cb_tags[lp->ia_tag];
6304 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6305 					lp->ia_tag = 0;
6306 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6307 				++lp->busy_itlq;
6308 				lp->head.resel_sa =
6309 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6310 			}
6311 			else
6312 				goto out_free;
6313 		}
6314 		/*
6315 		 *  This command will not be tagged.
6316 		 *  If we already have either a tagged or untagged
6317 		 *  one, refuse to overlap this untagged one.
6318 		 */
6319 		else {
6320 			if (lp->busy_itlq != 0 || lp->busy_itl != 0)
6321 				goto out_free;
6322 			/*
6323 			 *  Count this nexus for this LUN.
6324 			 *  Set up the CCB bus address for reselection.
6325 			 *  Toggle reselect path to untagged.
6326 			 */
6327 			lp->busy_itl = 1;
6328 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6329 			lp->head.resel_sa =
6330 			      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6331 		}
6332 	}
6333 	/*
6334 	 *  Put the CCB into the busy queue.
6335 	 */
6336 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6337 
6338 	/*
6339 	 *  Remember all informations needed to free this CCB.
6340 	 */
6341 	cp->to_abort = 0;
6342 	cp->tag	   = tag;
6343 	cp->target = tn;
6344 	cp->lun    = ln;
6345 
6346 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6347 		PRINT_LUN(np, tn, ln);
6348 		printf ("ccb @%p using tag %d.\n", cp, tag);
6349 	}
6350 
6351 out:
6352 	return cp;
6353 out_free:
6354 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6355 	return NULL;
6356 }
6357 
6358 /*
6359  *  Release one control block
6360  */
sym_free_ccb(hcb_p np,ccb_p cp)6361 static void sym_free_ccb(hcb_p np, ccb_p cp)
6362 {
6363 	tcb_p tp = &np->target[cp->target];
6364 	lcb_p lp = sym_lp(tp, cp->lun);
6365 
6366 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6367 		PRINT_LUN(np, cp->target, cp->lun);
6368 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6369 	}
6370 
6371 	/*
6372 	 *  If LCB available,
6373 	 */
6374 	if (lp) {
6375 		/*
6376 		 *  If tagged, release the tag, set the reselect path.
6377 		 */
6378 		if (cp->tag != NO_TAG) {
6379 			/*
6380 			 *  Free the tag value.
6381 			 */
6382 			lp->cb_tags[lp->if_tag] = cp->tag;
6383 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6384 				lp->if_tag = 0;
6385 			/*
6386 			 *  Make the reselect path invalid,
6387 			 *  and uncount this CCB.
6388 			 */
6389 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6390 			--lp->busy_itlq;
6391 		} else {	/* Untagged */
6392 			/*
6393 			 *  Make the reselect path invalid,
6394 			 *  and uncount this CCB.
6395 			 */
6396 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6397 			lp->busy_itl = 0;
6398 		}
6399 		/*
6400 		 *  If no JOB active, make the LUN reselect path invalid.
6401 		 */
6402 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6403 			lp->head.resel_sa =
6404 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6405 	}
6406 	/*
6407 	 *  Otherwise, we only accept 1 IO per LUN.
6408 	 *  Clear the bit that keeps track of this IO.
6409 	 */
6410 	else
6411 		sym_clr_bit(tp->busy0_map, cp->lun);
6412 
6413 	/*
6414 	 *  We donnot queue more than 1 ccb per target
6415 	 *  with negotiation at any time. If this ccb was
6416 	 *  used for negotiation, clear this info in the tcb.
6417 	 */
6418 	if (cp == tp->nego_cp)
6419 		tp->nego_cp = NULL;
6420 
6421 #ifdef SYM_CONF_IARB_SUPPORT
6422 	/*
6423 	 *  If we just complete the last queued CCB,
6424 	 *  clear this info that is no longer relevant.
6425 	 */
6426 	if (cp == np->last_cp)
6427 		np->last_cp = NULL;
6428 #endif
6429 
6430 	/*
6431 	 *  Unmap user data from DMA map if needed.
6432 	 */
6433 	if (cp->dmamapped) {
6434 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6435 		cp->dmamapped = 0;
6436 	}
6437 
6438 	/*
6439 	 *  Make this CCB available.
6440 	 */
6441 	cp->cam_ccb = NULL;
6442 	cp->host_status = HS_IDLE;
6443 	sym_remque(&cp->link_ccbq);
6444 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6445 }
6446 
6447 /*
6448  *  Allocate a CCB from memory and initialize its fixed part.
6449  */
sym_alloc_ccb(hcb_p np)6450 static ccb_p sym_alloc_ccb(hcb_p np)
6451 {
6452 	ccb_p cp = NULL;
6453 	int hcode;
6454 
6455 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6456 
6457 	/*
6458 	 *  Prevent from allocating more CCBs than we can
6459 	 *  queue to the controller.
6460 	 */
6461 	if (np->actccbs >= SYM_CONF_MAX_START)
6462 		return NULL;
6463 
6464 	/*
6465 	 *  Allocate memory for this CCB.
6466 	 */
6467 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6468 	if (!cp)
6469 		return NULL;
6470 
6471 	/*
6472 	 *  Allocate a bounce buffer for sense data.
6473 	 */
6474 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6475 	if (!cp->sns_bbuf)
6476 		goto out_free;
6477 
6478 	/*
6479 	 *  Allocate a map for the DMA of user data.
6480 	 */
6481 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6482 		goto out_free;
6483 	/*
6484 	 *  Count it.
6485 	 */
6486 	np->actccbs++;
6487 
6488 	/*
6489 	 * Initialize the callout.
6490 	 */
6491 	callout_init(&cp->ch, 1);
6492 
6493 	/*
6494 	 *  Compute the bus address of this ccb.
6495 	 */
6496 	cp->ccb_ba = vtobus(cp);
6497 
6498 	/*
6499 	 *  Insert this ccb into the hashed list.
6500 	 */
6501 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6502 	cp->link_ccbh = np->ccbh[hcode];
6503 	np->ccbh[hcode] = cp;
6504 
6505 	/*
6506 	 *  Initialize the start and restart actions.
6507 	 */
6508 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6509 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6510 
6511  	/*
6512 	 *  Initilialyze some other fields.
6513 	 */
6514 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6515 
6516 	/*
6517 	 *  Chain into free ccb queue.
6518 	 */
6519 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6520 
6521 	return cp;
6522 out_free:
6523 	if (cp->sns_bbuf)
6524 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6525 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6526 	return NULL;
6527 }
6528 
6529 /*
6530  *  Look up a CCB from a DSA value.
6531  */
sym_ccb_from_dsa(hcb_p np,u32 dsa)6532 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6533 {
6534 	int hcode;
6535 	ccb_p cp;
6536 
6537 	hcode = CCB_HASH_CODE(dsa);
6538 	cp = np->ccbh[hcode];
6539 	while (cp) {
6540 		if (cp->ccb_ba == dsa)
6541 			break;
6542 		cp = cp->link_ccbh;
6543 	}
6544 
6545 	return cp;
6546 }
6547 
6548 /*
6549  *  Lun control block allocation and initialization.
6550  */
sym_alloc_lcb(hcb_p np,u_char tn,u_char ln)6551 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6552 {
6553 	tcb_p tp = &np->target[tn];
6554 	lcb_p lp = sym_lp(tp, ln);
6555 
6556 	/*
6557 	 *  Already done, just return.
6558 	 */
6559 	if (lp)
6560 		return lp;
6561 	/*
6562 	 *  Check against some race.
6563 	 */
6564 	assert(!sym_is_bit(tp->busy0_map, ln));
6565 
6566 	/*
6567 	 *  Allocate the LCB bus address array.
6568 	 *  Compute the bus address of this table.
6569 	 */
6570 	if (ln && !tp->luntbl) {
6571 		int i;
6572 
6573 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6574 		if (!tp->luntbl)
6575 			goto fail;
6576 		for (i = 0 ; i < 64 ; i++)
6577 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6578 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6579 	}
6580 
6581 	/*
6582 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6583 	 */
6584 	if (ln && !tp->lunmp) {
6585 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6586 				   "LUNMP");
6587 		if (!tp->lunmp)
6588 			goto fail;
6589 	}
6590 
6591 	/*
6592 	 *  Allocate the lcb.
6593 	 *  Make it available to the chip.
6594 	 */
6595 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6596 	if (!lp)
6597 		goto fail;
6598 	if (ln) {
6599 		tp->lunmp[ln] = lp;
6600 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6601 	}
6602 	else {
6603 		tp->lun0p = lp;
6604 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6605 	}
6606 
6607 	/*
6608 	 *  Let the itl task point to error handling.
6609 	 */
6610 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6611 
6612 	/*
6613 	 *  Set the reselect pattern to our default. :)
6614 	 */
6615 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6616 
6617 	/*
6618 	 *  Set user capabilities.
6619 	 */
6620 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6621 
6622 fail:
6623 	return lp;
6624 }
6625 
6626 /*
6627  *  Allocate LCB resources for tagged command queuing.
6628  */
sym_alloc_lcb_tags(hcb_p np,u_char tn,u_char ln)6629 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6630 {
6631 	tcb_p tp = &np->target[tn];
6632 	lcb_p lp = sym_lp(tp, ln);
6633 	int i;
6634 
6635 	/*
6636 	 *  If LCB not available, try to allocate it.
6637 	 */
6638 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6639 		return;
6640 
6641 	/*
6642 	 *  Allocate the task table and and the tag allocation
6643 	 *  circular buffer. We want both or none.
6644 	 */
6645 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6646 	if (!lp->itlq_tbl)
6647 		return;
6648 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6649 	if (!lp->cb_tags) {
6650 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6651 		lp->itlq_tbl = NULL;
6652 		return;
6653 	}
6654 
6655 	/*
6656 	 *  Initialize the task table with invalid entries.
6657 	 */
6658 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6659 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6660 
6661 	/*
6662 	 *  Fill up the tag buffer with tag numbers.
6663 	 */
6664 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6665 		lp->cb_tags[i] = i;
6666 
6667 	/*
6668 	 *  Make the task table available to SCRIPTS,
6669 	 *  And accept tagged commands now.
6670 	 */
6671 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6672 }
6673 
6674 /*
6675  *  Test the pci bus snoop logic :-(
6676  *
6677  *  Has to be called with interrupts disabled.
6678  */
6679 #ifndef SYM_CONF_IOMAPPED
sym_regtest(hcb_p np)6680 static int sym_regtest (hcb_p np)
6681 {
6682 	register volatile u32 data;
6683 	/*
6684 	 *  chip registers may NOT be cached.
6685 	 *  write 0xffffffff to a read only register area,
6686 	 *  and try to read it back.
6687 	 */
6688 	data = 0xffffffff;
6689 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6690 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6691 #if 1
6692 	if (data == 0xffffffff) {
6693 #else
6694 	if ((data & 0xe2f0fffd) != 0x02000080) {
6695 #endif
6696 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6697 			(unsigned) data);
6698 		return (0x10);
6699 	}
6700 	return (0);
6701 }
6702 #endif
6703 
6704 static int sym_snooptest (hcb_p np)
6705 {
6706 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6707 	int	i, err=0;
6708 #ifndef SYM_CONF_IOMAPPED
6709 	err |= sym_regtest (np);
6710 	if (err) return (err);
6711 #endif
6712 restart_test:
6713 	/*
6714 	 *  Enable Master Parity Checking as we intend
6715 	 *  to enable it for normal operations.
6716 	 */
6717 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6718 	/*
6719 	 *  init
6720 	 */
6721 	pc  = SCRIPTB0_BA (np, snooptest);
6722 	host_wr = 1;
6723 	sym_wr  = 2;
6724 	/*
6725 	 *  Set memory and register.
6726 	 */
6727 	np->cache = cpu_to_scr(host_wr);
6728 	OUTL (nc_temp, sym_wr);
6729 	/*
6730 	 *  Start script (exchange values)
6731 	 */
6732 	OUTL (nc_dsa, np->hcb_ba);
6733 	OUTL_DSP (pc);
6734 	/*
6735 	 *  Wait 'til done (with timeout)
6736 	 */
6737 	for (i = 0; i < SYM_SNOOP_TIMEOUT; i++)
6738 		if (INB(nc_istat) & (INTF|SIP|DIP))
6739 			break;
6740 	if (i >= SYM_SNOOP_TIMEOUT) {
6741 		printf ("CACHE TEST FAILED: timeout.\n");
6742 		return (0x20);
6743 	}
6744 	/*
6745 	 *  Check for fatal DMA errors.
6746 	 */
6747 	dstat = INB (nc_dstat);
6748 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6749 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6750 		device_printf(np->device, "PCI DATA PARITY ERROR DETECTED - "
6751 		    "DISABLING MASTER DATA PARITY CHECKING.\n");
6752 		np->rv_ctest4 &= ~MPEE;
6753 		goto restart_test;
6754 	}
6755 #endif
6756 	if (dstat & (MDPE|BF|IID)) {
6757 		device_printf(np->device,
6758 		    "CACHE TEST FAILED: DMA error (dstat=0x%02x).\n", dstat);
6759 		return (0x80);
6760 	}
6761 	/*
6762 	 *  Save termination position.
6763 	 */
6764 	pc = INL (nc_dsp);
6765 	/*
6766 	 *  Read memory and register.
6767 	 */
6768 	host_rd = scr_to_cpu(np->cache);
6769 	sym_rd  = INL (nc_scratcha);
6770 	sym_bk  = INL (nc_temp);
6771 
6772 	/*
6773 	 *  Check termination position.
6774 	 */
6775 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6776 		device_printf(np->device,
6777 		    "CACHE TEST FAILED: script execution failed.\n");
6778 		device_printf(np->device, "start=%08lx, pc=%08lx, end=%08lx\n",
6779 		    (u_long)SCRIPTB0_BA(np, snooptest), (u_long)pc,
6780 		    (u_long)SCRIPTB0_BA(np, snoopend) + 8);
6781 		return (0x40);
6782 	}
6783 	/*
6784 	 *  Show results.
6785 	 */
6786 	if (host_wr != sym_rd) {
6787 		device_printf(np->device,
6788 		    "CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6789 		    (int)host_wr, (int)sym_rd);
6790 		err |= 1;
6791 	}
6792 	if (host_rd != sym_wr) {
6793 		device_printf(np->device,
6794 		    "CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6795 		    (int)sym_wr, (int)host_rd);
6796 		err |= 2;
6797 	}
6798 	if (sym_bk != sym_wr) {
6799 		device_printf(np->device,
6800 		    "CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6801 		    (int)sym_wr, (int)sym_bk);
6802 		err |= 4;
6803 	}
6804 
6805 	return (err);
6806 }
6807 
6808 /*
6809  *  Determine the chip's clock frequency.
6810  *
6811  *  This is essential for the negotiation of the synchronous
6812  *  transfer rate.
6813  *
6814  *  Note: we have to return the correct value.
6815  *  THERE IS NO SAFE DEFAULT VALUE.
6816  *
6817  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6818  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6819  *  do not have a clock doubler and so are provided with a
6820  *  80 MHz clock. All other fast20 boards incorporate a doubler
6821  *  and so should be delivered with a 40 MHz clock.
6822  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6823  *  clock and provide a clock quadrupler (160 Mhz).
6824  */
6825 
6826 /*
6827  *  Select SCSI clock frequency
6828  */
6829 static void sym_selectclock(hcb_p np, u_char scntl3)
6830 {
6831 	/*
6832 	 *  If multiplier not present or not selected, leave here.
6833 	 */
6834 	if (np->multiplier <= 1) {
6835 		OUTB(nc_scntl3,	scntl3);
6836 		return;
6837 	}
6838 
6839 	if (sym_verbose >= 2)
6840 		device_printf(np->device, "enabling clock multiplier\n");
6841 
6842 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6843 	/*
6844 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6845 	 *  Otherwise wait 20 micro-seconds.
6846 	 */
6847 	if (np->features & FE_LCKFRQ) {
6848 		int i = 20;
6849 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6850 			UDELAY (20);
6851 		if (!i)
6852 			device_printf(np->device,
6853 			    "the chip cannot lock the frequency\n");
6854 	} else
6855 		UDELAY (20);
6856 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6857 	OUTB(nc_scntl3,	scntl3);
6858 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6859 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6860 }
6861 
6862 /*
6863  *  calculate SCSI clock frequency (in KHz)
6864  */
6865 static unsigned getfreq (hcb_p np, int gen)
6866 {
6867 	unsigned int ms = 0;
6868 	unsigned int f;
6869 
6870 	/*
6871 	 * Measure GEN timer delay in order
6872 	 * to calculate SCSI clock frequency
6873 	 *
6874 	 * This code will never execute too
6875 	 * many loop iterations (if DELAY is
6876 	 * reasonably correct). It could get
6877 	 * too low a delay (too high a freq.)
6878 	 * if the CPU is slow executing the
6879 	 * loop for some reason (an NMI, for
6880 	 * example). For this reason we will
6881 	 * if multiple measurements are to be
6882 	 * performed trust the higher delay
6883 	 * (lower frequency returned).
6884 	 */
6885 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6886 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6887 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6888 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6889 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6890 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6891 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6892 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6893 		UDELAY (1000);	/* count ms */
6894 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6895  	/*
6896  	 * set prescaler to divide by whatever 0 means
6897  	 * 0 ought to choose divide by 2, but appears
6898  	 * to set divide by 3.5 mode in my 53c810 ...
6899  	 */
6900  	OUTB (nc_scntl3, 0);
6901 
6902   	/*
6903  	 * adjust for prescaler, and convert into KHz
6904   	 */
6905 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6906 
6907 	if (sym_verbose >= 2)
6908 		device_printf(np->device, "Delay (GEN=%d): %u msec, %u KHz\n",
6909 		    gen, ms, f);
6910 
6911 	return f;
6912 }
6913 
6914 static unsigned sym_getfreq (hcb_p np)
6915 {
6916 	u_int f1, f2;
6917 	int gen = 11;
6918 
6919 	(void) getfreq (np, gen);	/* throw away first result */
6920 	f1 = getfreq (np, gen);
6921 	f2 = getfreq (np, gen);
6922 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6923 	return f1;
6924 }
6925 
6926 /*
6927  *  Get/probe chip SCSI clock frequency
6928  */
6929 static void sym_getclock (hcb_p np, int mult)
6930 {
6931 	unsigned char scntl3 = np->sv_scntl3;
6932 	unsigned char stest1 = np->sv_stest1;
6933 	unsigned f1;
6934 
6935 	/*
6936 	 *  For the C10 core, assume 40 MHz.
6937 	 */
6938 	if (np->features & FE_C10) {
6939 		np->multiplier = mult;
6940 		np->clock_khz = 40000 * mult;
6941 		return;
6942 	}
6943 
6944 	np->multiplier = 1;
6945 	f1 = 40000;
6946 	/*
6947 	 *  True with 875/895/896/895A with clock multiplier selected
6948 	 */
6949 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6950 		if (sym_verbose >= 2)
6951 			device_printf(np->device, "clock multiplier found\n");
6952 		np->multiplier = mult;
6953 	}
6954 
6955 	/*
6956 	 *  If multiplier not found or scntl3 not 7,5,3,
6957 	 *  reset chip and get frequency from general purpose timer.
6958 	 *  Otherwise trust scntl3 BIOS setting.
6959 	 */
6960 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6961 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6962 		f1 = sym_getfreq (np);
6963 
6964 		if (sym_verbose)
6965 			device_printf(np->device, "chip clock is %uKHz\n", f1);
6966 
6967 		if	(f1 <	45000)		f1 =  40000;
6968 		else if (f1 <	55000)		f1 =  50000;
6969 		else				f1 =  80000;
6970 
6971 		if (f1 < 80000 && mult > 1) {
6972 			if (sym_verbose >= 2)
6973 				device_printf(np->device,
6974 				    "clock multiplier assumed\n");
6975 			np->multiplier	= mult;
6976 		}
6977 	} else {
6978 		if	((scntl3 & 7) == 3)	f1 =  40000;
6979 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6980 		else 				f1 = 160000;
6981 
6982 		f1 /= np->multiplier;
6983 	}
6984 
6985 	/*
6986 	 *  Compute controller synchronous parameters.
6987 	 */
6988 	f1		*= np->multiplier;
6989 	np->clock_khz	= f1;
6990 }
6991 
6992 /*
6993  *  Get/probe PCI clock frequency
6994  */
6995 static int sym_getpciclock (hcb_p np)
6996 {
6997 	int f = 0;
6998 
6999 	/*
7000 	 *  For the C1010-33, this doesn't work.
7001 	 *  For the C1010-66, this will be tested when I'll have
7002 	 *  such a beast to play with.
7003 	 */
7004 	if (!(np->features & FE_C10)) {
7005 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7006 		f = (int) sym_getfreq (np);
7007 		OUTB (nc_stest1, 0);
7008 	}
7009 	np->pciclk_khz = f;
7010 
7011 	return f;
7012 }
7013 
7014 /*============= DRIVER ACTION/COMPLETION ====================*/
7015 
7016 /*
7017  *  Print something that tells about extended errors.
7018  */
7019 static void sym_print_xerr(ccb_p cp, int x_status)
7020 {
7021 	if (x_status & XE_PARITY_ERR) {
7022 		PRINT_ADDR(cp);
7023 		printf ("unrecovered SCSI parity error.\n");
7024 	}
7025 	if (x_status & XE_EXTRA_DATA) {
7026 		PRINT_ADDR(cp);
7027 		printf ("extraneous data discarded.\n");
7028 	}
7029 	if (x_status & XE_BAD_PHASE) {
7030 		PRINT_ADDR(cp);
7031 		printf ("illegal scsi phase (4/5).\n");
7032 	}
7033 	if (x_status & XE_SODL_UNRUN) {
7034 		PRINT_ADDR(cp);
7035 		printf ("ODD transfer in DATA OUT phase.\n");
7036 	}
7037 	if (x_status & XE_SWIDE_OVRUN) {
7038 		PRINT_ADDR(cp);
7039 		printf ("ODD transfer in DATA IN phase.\n");
7040 	}
7041 }
7042 
7043 /*
7044  *  Choose the more appropriate CAM status if
7045  *  the IO encountered an extended error.
7046  */
7047 static int sym_xerr_cam_status(int cam_status, int x_status)
7048 {
7049 	if (x_status) {
7050 		if	(x_status & XE_PARITY_ERR)
7051 			cam_status = CAM_UNCOR_PARITY;
7052 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7053 			cam_status = CAM_DATA_RUN_ERR;
7054 		else if	(x_status & XE_BAD_PHASE)
7055 			cam_status = CAM_REQ_CMP_ERR;
7056 		else
7057 			cam_status = CAM_REQ_CMP_ERR;
7058 	}
7059 	return cam_status;
7060 }
7061 
7062 /*
7063  *  Complete execution of a SCSI command with extented
7064  *  error, SCSI status error, or having been auto-sensed.
7065  *
7066  *  The SCRIPTS processor is not running there, so we
7067  *  can safely access IO registers and remove JOBs from
7068  *  the START queue.
7069  *  SCRATCHA is assumed to have been loaded with STARTPOS
7070  *  before the SCRIPTS called the C code.
7071  */
7072 static void sym_complete_error (hcb_p np, ccb_p cp)
7073 {
7074 	struct ccb_scsiio *csio;
7075 	u_int cam_status;
7076 	int i, sense_returned;
7077 
7078 	SYM_LOCK_ASSERT(MA_OWNED);
7079 
7080 	/*
7081 	 *  Paranoid check. :)
7082 	 */
7083 	if (!cp || !cp->cam_ccb)
7084 		return;
7085 
7086 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7087 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7088 			cp->host_status, cp->ssss_status, cp->host_flags,
7089 			cp->target, cp->lun);
7090 		MDELAY(100);
7091 	}
7092 
7093 	/*
7094 	 *  Get CAM command pointer.
7095 	 */
7096 	csio = &cp->cam_ccb->csio;
7097 
7098 	/*
7099 	 *  Check for extended errors.
7100 	 */
7101 	if (cp->xerr_status) {
7102 		if (sym_verbose)
7103 			sym_print_xerr(cp, cp->xerr_status);
7104 		if (cp->host_status == HS_COMPLETE)
7105 			cp->host_status = HS_COMP_ERR;
7106 	}
7107 
7108 	/*
7109 	 *  Calculate the residual.
7110 	 */
7111 	csio->sense_resid = 0;
7112 	csio->resid = sym_compute_residual(np, cp);
7113 
7114 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7115 		csio->resid  = 0;	/* throw them away. :)		   */
7116 		cp->sv_resid = 0;
7117 	}
7118 
7119 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7120 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7121 		csio->sense_resid = csio->resid;	/* Swap residuals */
7122 		csio->resid       = cp->sv_resid;
7123 		cp->sv_resid	  = 0;
7124 		if (sym_verbose && cp->sv_xerr_status)
7125 			sym_print_xerr(cp, cp->sv_xerr_status);
7126 		if (cp->host_status == HS_COMPLETE &&
7127 		    cp->ssss_status == S_GOOD &&
7128 		    cp->xerr_status == 0) {
7129 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7130 							 cp->sv_xerr_status);
7131 			cam_status |= CAM_AUTOSNS_VALID;
7132 			/*
7133 			 *  Bounce back the sense data to user and
7134 			 *  fix the residual.
7135 			 */
7136 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7137 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7138 			if (sense_returned < csio->sense_len)
7139 				csio->sense_resid = csio->sense_len -
7140 				    sense_returned;
7141 			else
7142 				csio->sense_resid = 0;
7143 			memcpy(&csio->sense_data, cp->sns_bbuf,
7144 			    MIN(csio->sense_len, sense_returned));
7145 #if 0
7146 			/*
7147 			 *  If the device reports a UNIT ATTENTION condition
7148 			 *  due to a RESET condition, we should consider all
7149 			 *  disconnect CCBs for this unit as aborted.
7150 			 */
7151 			if (1) {
7152 				u_char *p;
7153 				p  = (u_char *) csio->sense_data;
7154 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7155 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7156 							cp->target,cp->lun, -1);
7157 			}
7158 #endif
7159 		}
7160 		else
7161 			cam_status = CAM_AUTOSENSE_FAIL;
7162 	}
7163 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7164 		csio->scsi_status = cp->ssss_status;
7165 		cam_status = CAM_SCSI_STATUS_ERROR;
7166 	}
7167 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7168 		cam_status = CAM_SEL_TIMEOUT;
7169 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7170 		cam_status = CAM_UNEXP_BUSFREE;
7171 	else {						/* Extended error */
7172 		if (sym_verbose) {
7173 			PRINT_ADDR(cp);
7174 			printf ("COMMAND FAILED (%x %x %x).\n",
7175 				cp->host_status, cp->ssss_status,
7176 				cp->xerr_status);
7177 		}
7178 		csio->scsi_status = cp->ssss_status;
7179 		/*
7180 		 *  Set the most appropriate value for CAM status.
7181 		 */
7182 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7183 						 cp->xerr_status);
7184 	}
7185 
7186 	/*
7187 	 *  Dequeue all queued CCBs for that device
7188 	 *  not yet started by SCRIPTS.
7189 	 */
7190 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7191 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7192 
7193 	/*
7194 	 *  Restart the SCRIPTS processor.
7195 	 */
7196 	OUTL_DSP (SCRIPTA_BA (np, start));
7197 
7198 	/*
7199 	 *  Synchronize DMA map if needed.
7200 	 */
7201 	if (cp->dmamapped) {
7202 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7203 			(cp->dmamapped == SYM_DMA_READ ?
7204 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7205 	}
7206 	/*
7207 	 *  Add this one to the COMP queue.
7208 	 *  Complete all those commands with either error
7209 	 *  or requeue condition.
7210 	 */
7211 	sym_set_cam_status((union ccb *) csio, cam_status);
7212 	sym_remque(&cp->link_ccbq);
7213 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7214 	sym_flush_comp_queue(np, 0);
7215 }
7216 
7217 /*
7218  *  Complete execution of a successful SCSI command.
7219  *
7220  *  Only successful commands go to the DONE queue,
7221  *  since we need to have the SCRIPTS processor
7222  *  stopped on any error condition.
7223  *  The SCRIPTS processor is running while we are
7224  *  completing successful commands.
7225  */
7226 static void sym_complete_ok (hcb_p np, ccb_p cp)
7227 {
7228 	struct ccb_scsiio *csio;
7229 	tcb_p tp;
7230 	lcb_p lp;
7231 
7232 	SYM_LOCK_ASSERT(MA_OWNED);
7233 
7234 	/*
7235 	 *  Paranoid check. :)
7236 	 */
7237 	if (!cp || !cp->cam_ccb)
7238 		return;
7239 	assert (cp->host_status == HS_COMPLETE);
7240 
7241 	/*
7242 	 *  Get command, target and lun pointers.
7243 	 */
7244 	csio = &cp->cam_ccb->csio;
7245 	tp = &np->target[cp->target];
7246 	lp = sym_lp(tp, cp->lun);
7247 
7248 	/*
7249 	 *  Assume device discovered on first success.
7250 	 */
7251 	if (!lp)
7252 		sym_set_bit(tp->lun_map, cp->lun);
7253 
7254 	/*
7255 	 *  If all data have been transferred, given than no
7256 	 *  extended error did occur, there is no residual.
7257 	 */
7258 	csio->resid = 0;
7259 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7260 		csio->resid = sym_compute_residual(np, cp);
7261 
7262 	/*
7263 	 *  Wrong transfer residuals may be worse than just always
7264 	 *  returning zero. User can disable this feature from
7265 	 *  sym_conf.h. Residual support is enabled by default.
7266 	 */
7267 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7268 		csio->resid  = 0;
7269 
7270 	/*
7271 	 *  Synchronize DMA map if needed.
7272 	 */
7273 	if (cp->dmamapped) {
7274 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7275 			(cp->dmamapped == SYM_DMA_READ ?
7276 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7277 	}
7278 	/*
7279 	 *  Set status and complete the command.
7280 	 */
7281 	csio->scsi_status = cp->ssss_status;
7282 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7283 	sym_xpt_done(np, (union ccb *) csio, cp);
7284 	sym_free_ccb(np, cp);
7285 }
7286 
7287 /*
7288  *  Our callout handler
7289  */
7290 static void sym_callout(void *arg)
7291 {
7292 	union ccb *ccb = (union ccb *) arg;
7293 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7294 
7295 	/*
7296 	 *  Check that the CAM CCB is still queued.
7297 	 */
7298 	if (!np)
7299 		return;
7300 
7301 	SYM_LOCK();
7302 
7303 	switch(ccb->ccb_h.func_code) {
7304 	case XPT_SCSI_IO:
7305 		(void) sym_abort_scsiio(np, ccb, 1);
7306 		break;
7307 	default:
7308 		break;
7309 	}
7310 
7311 	SYM_UNLOCK();
7312 }
7313 
7314 /*
7315  *  Abort an SCSI IO.
7316  */
7317 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7318 {
7319 	ccb_p cp;
7320 	SYM_QUEHEAD *qp;
7321 
7322 	SYM_LOCK_ASSERT(MA_OWNED);
7323 
7324 	/*
7325 	 *  Look up our CCB control block.
7326 	 */
7327 	cp = NULL;
7328 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7329 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7330 		if (cp2->cam_ccb == ccb) {
7331 			cp = cp2;
7332 			break;
7333 		}
7334 	}
7335 	if (!cp || cp->host_status == HS_WAIT)
7336 		return -1;
7337 
7338 	/*
7339 	 *  If a previous abort didn't succeed in time,
7340 	 *  perform a BUS reset.
7341 	 */
7342 	if (cp->to_abort) {
7343 		sym_reset_scsi_bus(np, 1);
7344 		return 0;
7345 	}
7346 
7347 	/*
7348 	 *  Mark the CCB for abort and allow time for.
7349 	 */
7350 	cp->to_abort = timed_out ? 2 : 1;
7351 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7352 
7353 	/*
7354 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7355 	 */
7356 	np->istat_sem = SEM;
7357 	OUTB (nc_istat, SIGP|SEM);
7358 	return 0;
7359 }
7360 
7361 /*
7362  *  Reset a SCSI device (all LUNs of a target).
7363  */
7364 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7365 {
7366 	tcb_p tp;
7367 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7368 
7369 	SYM_LOCK_ASSERT(MA_OWNED);
7370 
7371 	if (ccb_h->target_id   == np->myaddr ||
7372 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7373 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7374 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7375 		return;
7376 	}
7377 
7378 	tp = &np->target[ccb_h->target_id];
7379 
7380 	tp->to_reset = 1;
7381 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7382 
7383 	np->istat_sem = SEM;
7384 	OUTB (nc_istat, SIGP|SEM);
7385 }
7386 
7387 /*
7388  *  SIM action entry point.
7389  */
7390 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7391 {
7392 	hcb_p	np;
7393 	tcb_p	tp;
7394 	lcb_p	lp;
7395 	ccb_p	cp;
7396 	int 	tmp;
7397 	u_char	idmsg, *msgptr;
7398 	u_int   msglen;
7399 	struct	ccb_scsiio *csio;
7400 	struct	ccb_hdr  *ccb_h;
7401 
7402 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7403 
7404 	/*
7405 	 *  Retrieve our controller data structure.
7406 	 */
7407 	np = (hcb_p) cam_sim_softc(sim);
7408 
7409 	SYM_LOCK_ASSERT(MA_OWNED);
7410 
7411 	/*
7412 	 *  The common case is SCSI IO.
7413 	 *  We deal with other ones elsewhere.
7414 	 */
7415 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7416 		sym_action2(sim, ccb);
7417 		return;
7418 	}
7419 	csio  = &ccb->csio;
7420 	ccb_h = &csio->ccb_h;
7421 
7422 	/*
7423 	 *  Work around races.
7424 	 */
7425 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7426 		xpt_done(ccb);
7427 		return;
7428 	}
7429 
7430 	/*
7431 	 *  Minimal checkings, so that we will not
7432 	 *  go outside our tables.
7433 	 */
7434 	if (ccb_h->target_id   == np->myaddr ||
7435 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7436 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7437 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7438 		return;
7439         }
7440 
7441 	/*
7442 	 *  Retrieve the target and lun descriptors.
7443 	 */
7444 	tp = &np->target[ccb_h->target_id];
7445 	lp = sym_lp(tp, ccb_h->target_lun);
7446 
7447 	/*
7448 	 *  Complete the 1st INQUIRY command with error
7449 	 *  condition if the device is flagged NOSCAN
7450 	 *  at BOOT in the NVRAM. This may speed up
7451 	 *  the boot and maintain coherency with BIOS
7452 	 *  device numbering. Clearing the flag allows
7453 	 *  user to rescan skipped devices later.
7454 	 *  We also return error for devices not flagged
7455 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7456 	 *  devices behave badly when asked for some non
7457 	 *  zero LUN. Btw, this is an absolute hack.:-)
7458 	 */
7459 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7460 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7461 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7462 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7463 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7464 		     ccb_h->target_lun != 0)) {
7465 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7466 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7467 			return;
7468 		}
7469 	}
7470 
7471 	/*
7472 	 *  Get a control block for this IO.
7473 	 */
7474 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7475 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7476 	if (!cp) {
7477 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7478 		return;
7479 	}
7480 
7481 	/*
7482 	 *  Keep track of the IO in our CCB.
7483 	 */
7484 	cp->cam_ccb = ccb;
7485 
7486 	/*
7487 	 *  Build the IDENTIFY message.
7488 	 */
7489 	idmsg = M_IDENTIFY | cp->lun;
7490 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7491 		idmsg |= 0x40;
7492 
7493 	msgptr = cp->scsi_smsg;
7494 	msglen = 0;
7495 	msgptr[msglen++] = idmsg;
7496 
7497 	/*
7498 	 *  Build the tag message if present.
7499 	 */
7500 	if (cp->tag != NO_TAG) {
7501 		u_char order = csio->tag_action;
7502 
7503 		switch(order) {
7504 		case M_ORDERED_TAG:
7505 			break;
7506 		case M_HEAD_TAG:
7507 			break;
7508 		default:
7509 			order = M_SIMPLE_TAG;
7510 		}
7511 		msgptr[msglen++] = order;
7512 
7513 		/*
7514 		 *  For less than 128 tags, actual tags are numbered
7515 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7516 		 *  with devices that have problems with #TAG 0 or too
7517 		 *  great #TAG numbers. For more tags (up to 256),
7518 		 *  we use directly our tag number.
7519 		 */
7520 #if SYM_CONF_MAX_TASK > (512/4)
7521 		msgptr[msglen++] = cp->tag;
7522 #else
7523 		msgptr[msglen++] = (cp->tag << 1) + 1;
7524 #endif
7525 	}
7526 
7527 	/*
7528 	 *  Build a negotiation message if needed.
7529 	 *  (nego_status is filled by sym_prepare_nego())
7530 	 */
7531 	cp->nego_status = 0;
7532 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7533 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7534 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7535 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7536 		if (!tp->nego_cp && lp)
7537 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7538 	}
7539 
7540 	/*
7541 	 *  Fill in our ccb
7542 	 */
7543 
7544 	/*
7545 	 *  Startqueue
7546 	 */
7547 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7548 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7549 
7550 	/*
7551 	 *  select
7552 	 */
7553 	cp->phys.select.sel_id		= cp->target;
7554 	cp->phys.select.sel_scntl3	= tp->head.wval;
7555 	cp->phys.select.sel_sxfer	= tp->head.sval;
7556 	cp->phys.select.sel_scntl4	= tp->head.uval;
7557 
7558 	/*
7559 	 *  message
7560 	 */
7561 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7562 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7563 
7564 	/*
7565 	 *  command
7566 	 */
7567 	if (sym_setup_cdb(np, csio, cp) < 0) {
7568 		sym_xpt_done(np, ccb, cp);
7569 		sym_free_ccb(np, cp);
7570 		return;
7571 	}
7572 
7573 	/*
7574 	 *  status
7575 	 */
7576 #if	0	/* Provision */
7577 	cp->actualquirks	= tp->quirks;
7578 #endif
7579 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7580 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7581 	cp->ssss_status		= S_ILLEGAL;
7582 	cp->xerr_status		= 0;
7583 	cp->host_flags		= 0;
7584 	cp->extra_bytes		= 0;
7585 
7586 	/*
7587 	 *  extreme data pointer.
7588 	 *  shall be positive, so -1 is lower than lowest.:)
7589 	 */
7590 	cp->ext_sg  = -1;
7591 	cp->ext_ofs = 0;
7592 
7593 	/*
7594 	 *  Build the data descriptor block
7595 	 *  and start the IO.
7596 	 */
7597 	sym_setup_data_and_start(np, csio, cp);
7598 }
7599 
7600 /*
7601  *  Setup buffers and pointers that address the CDB.
7602  *  I bet, physical CDBs will never be used on the planet,
7603  *  since they can be bounced without significant overhead.
7604  */
7605 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7606 {
7607 	struct ccb_hdr *ccb_h;
7608 	u32	cmd_ba;
7609 	int	cmd_len;
7610 
7611 	SYM_LOCK_ASSERT(MA_OWNED);
7612 
7613 	ccb_h = &csio->ccb_h;
7614 
7615 	/*
7616 	 *  CDB is 16 bytes max.
7617 	 */
7618 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7619 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7620 		return -1;
7621 	}
7622 	cmd_len = csio->cdb_len;
7623 
7624 	if (ccb_h->flags & CAM_CDB_POINTER) {
7625 		/* CDB is a pointer */
7626 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7627 			/* CDB pointer is virtual */
7628 			memcpy(cp->cdb_buf, csio->cdb_io.cdb_ptr, cmd_len);
7629 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7630 		} else {
7631 			/* CDB pointer is physical */
7632 #if 0
7633 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7634 #else
7635 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7636 			return -1;
7637 #endif
7638 		}
7639 	} else {
7640 		/* CDB is in the CAM ccb (buffer) */
7641 		memcpy(cp->cdb_buf, csio->cdb_io.cdb_bytes, cmd_len);
7642 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7643 	}
7644 
7645 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7646 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7647 
7648 	return 0;
7649 }
7650 
7651 /*
7652  *  Set up data pointers used by SCRIPTS.
7653  */
7654 static void __inline
7655 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7656 {
7657 	u32 lastp, goalp;
7658 
7659 	SYM_LOCK_ASSERT(MA_OWNED);
7660 
7661 	/*
7662 	 *  No segments means no data.
7663 	 */
7664 	if (!cp->segments)
7665 		dir = CAM_DIR_NONE;
7666 
7667 	/*
7668 	 *  Set the data pointer.
7669 	 */
7670 	switch(dir) {
7671 	case CAM_DIR_OUT:
7672 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7673 		lastp = goalp - 8 - (cp->segments * (2*4));
7674 		break;
7675 	case CAM_DIR_IN:
7676 		cp->host_flags |= HF_DATA_IN;
7677 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7678 		lastp = goalp - 8 - (cp->segments * (2*4));
7679 		break;
7680 	case CAM_DIR_NONE:
7681 	default:
7682 		lastp = goalp = SCRIPTB_BA (np, no_data);
7683 		break;
7684 	}
7685 
7686 	cp->phys.head.lastp = cpu_to_scr(lastp);
7687 	cp->phys.head.goalp = cpu_to_scr(goalp);
7688 	cp->phys.head.savep = cpu_to_scr(lastp);
7689 	cp->startp	    = cp->phys.head.savep;
7690 }
7691 
7692 /*
7693  *  Call back routine for the DMA map service.
7694  *  If bounce buffers are used (why ?), we may sleep and then
7695  *  be called there in another context.
7696  */
7697 static void
7698 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7699 {
7700 	ccb_p	cp;
7701 	hcb_p	np;
7702 	union	ccb *ccb;
7703 
7704 	cp  = (ccb_p) arg;
7705 	ccb = cp->cam_ccb;
7706 	np  = (hcb_p) cp->arg;
7707 
7708 	SYM_LOCK_ASSERT(MA_OWNED);
7709 
7710 	/*
7711 	 *  Deal with weird races.
7712 	 */
7713 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7714 		goto out_abort;
7715 
7716 	/*
7717 	 *  Deal with weird errors.
7718 	 */
7719 	if (error) {
7720 		cp->dmamapped = 0;
7721 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7722 		goto out_abort;
7723 	}
7724 
7725 	/*
7726 	 *  Build the data descriptor for the chip.
7727 	 */
7728 	if (nsegs) {
7729 		int retv;
7730 		/* 896 rev 1 requires to be careful about boundaries */
7731 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7732 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7733 		else
7734 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7735 		if (retv < 0) {
7736 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7737 			goto out_abort;
7738 		}
7739 	}
7740 
7741 	/*
7742 	 *  Synchronize the DMA map only if we have
7743 	 *  actually mapped the data.
7744 	 */
7745 	if (cp->dmamapped) {
7746 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7747 			(cp->dmamapped == SYM_DMA_READ ?
7748 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7749 	}
7750 
7751 	/*
7752 	 *  Set host status to busy state.
7753 	 *  May have been set back to HS_WAIT to avoid a race.
7754 	 */
7755 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7756 
7757 	/*
7758 	 *  Set data pointers.
7759 	 */
7760 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7761 
7762 	/*
7763 	 *  Enqueue this IO in our pending queue.
7764 	 */
7765 	sym_enqueue_cam_ccb(cp);
7766 
7767 	/*
7768 	 *  When `#ifed 1', the code below makes the driver
7769 	 *  panic on the first attempt to write to a SCSI device.
7770 	 *  It is the first test we want to do after a driver
7771 	 *  change that does not seem obviously safe. :)
7772 	 */
7773 #if 0
7774 	switch (cp->cdb_buf[0]) {
7775 	case 0x0A: case 0x2A: case 0xAA:
7776 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7777 		MDELAY(10000);
7778 		break;
7779 	default:
7780 		break;
7781 	}
7782 #endif
7783 	/*
7784 	 *  Activate this job.
7785 	 */
7786 	sym_put_start_queue(np, cp);
7787 	return;
7788 out_abort:
7789 	sym_xpt_done(np, ccb, cp);
7790 	sym_free_ccb(np, cp);
7791 }
7792 
7793 /*
7794  *  How complex it gets to deal with the data in CAM.
7795  *  The Bus Dma stuff makes things still more complex.
7796  */
7797 static void
7798 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7799 {
7800 	struct ccb_hdr *ccb_h;
7801 	int dir, retv;
7802 
7803 	SYM_LOCK_ASSERT(MA_OWNED);
7804 
7805 	ccb_h = &csio->ccb_h;
7806 
7807 	/*
7808 	 *  Now deal with the data.
7809 	 */
7810 	cp->data_len = csio->dxfer_len;
7811 	cp->arg      = np;
7812 
7813 	/*
7814 	 *  No direction means no data.
7815 	 */
7816 	dir = (ccb_h->flags & CAM_DIR_MASK);
7817 	if (dir == CAM_DIR_NONE) {
7818 		sym_execute_ccb(cp, NULL, 0, 0);
7819 		return;
7820 	}
7821 
7822 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7823 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7824 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7825 	if (retv == EINPROGRESS) {
7826 		cp->host_status	= HS_WAIT;
7827 		xpt_freeze_simq(np->sim, 1);
7828 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7829 	}
7830 }
7831 
7832 /*
7833  *  Move the scatter list to our data block.
7834  */
7835 static int
7836 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7837 			     bus_dma_segment_t *psegs, int nsegs)
7838 {
7839 	struct sym_tblmove *data;
7840 	bus_dma_segment_t *psegs2;
7841 
7842 	SYM_LOCK_ASSERT(MA_OWNED);
7843 
7844 	if (nsegs > SYM_CONF_MAX_SG)
7845 		return -1;
7846 
7847 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7848 	psegs2 = &psegs[nsegs-1];
7849 	cp->segments = nsegs;
7850 
7851 	while (1) {
7852 		data->addr = cpu_to_scr(psegs2->ds_addr);
7853 		data->size = cpu_to_scr(psegs2->ds_len);
7854 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7855 			device_printf(np->device,
7856 			    "scatter: paddr=%lx len=%ld\n",
7857 			    (long)psegs2->ds_addr, (long)psegs2->ds_len);
7858 		}
7859 		if (psegs2 != psegs) {
7860 			--data;
7861 			--psegs2;
7862 			continue;
7863 		}
7864 		break;
7865 	}
7866 	return 0;
7867 }
7868 
7869 /*
7870  *  Scatter a SG list with physical addresses into bus addressable chunks.
7871  */
7872 static int
7873 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7874 {
7875 	u_long	ps, pe, pn;
7876 	u_long	k;
7877 	int s, t;
7878 
7879 	SYM_LOCK_ASSERT(MA_OWNED);
7880 
7881 	s  = SYM_CONF_MAX_SG - 1;
7882 	t  = nsegs - 1;
7883 	ps = psegs[t].ds_addr;
7884 	pe = ps + psegs[t].ds_len;
7885 
7886 	while (s >= 0) {
7887 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7888 		if (pn <= ps)
7889 			pn = ps;
7890 		k = pe - pn;
7891 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7892 			device_printf(np->device,
7893 			    "scatter: paddr=%lx len=%ld\n", pn, k);
7894 		}
7895 		cp->phys.data[s].addr = cpu_to_scr(pn);
7896 		cp->phys.data[s].size = cpu_to_scr(k);
7897 		--s;
7898 		if (pn == ps) {
7899 			if (--t < 0)
7900 				break;
7901 			ps = psegs[t].ds_addr;
7902 			pe = ps + psegs[t].ds_len;
7903 		}
7904 		else
7905 			pe = pn;
7906 	}
7907 
7908 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7909 
7910 	return t >= 0 ? -1 : 0;
7911 }
7912 
7913 /*
7914  *  SIM action for non performance critical stuff.
7915  */
7916 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7917 {
7918 	union ccb *abort_ccb;
7919 	struct ccb_hdr *ccb_h;
7920 	struct ccb_pathinq *cpi;
7921 	struct ccb_trans_settings *cts;
7922 	struct sym_trans *tip;
7923 	hcb_p	np;
7924 	tcb_p	tp;
7925 	lcb_p	lp;
7926 	u_char dflags;
7927 
7928 	/*
7929 	 *  Retrieve our controller data structure.
7930 	 */
7931 	np = (hcb_p) cam_sim_softc(sim);
7932 
7933 	SYM_LOCK_ASSERT(MA_OWNED);
7934 
7935 	ccb_h = &ccb->ccb_h;
7936 
7937 	switch (ccb_h->func_code) {
7938 	case XPT_SET_TRAN_SETTINGS:
7939 		cts  = &ccb->cts;
7940 		tp = &np->target[ccb_h->target_id];
7941 
7942 		/*
7943 		 *  Update SPI transport settings in TARGET control block.
7944 		 *  Update SCSI device settings in LUN control block.
7945 		 */
7946 		lp = sym_lp(tp, ccb_h->target_lun);
7947 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7948 			sym_update_trans(np, &tp->tinfo.goal, cts);
7949 			if (lp)
7950 				sym_update_dflags(np, &lp->current_flags, cts);
7951 		}
7952 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7953 			sym_update_trans(np, &tp->tinfo.user, cts);
7954 			if (lp)
7955 				sym_update_dflags(np, &lp->user_flags, cts);
7956 		}
7957 
7958 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7959 		break;
7960 	case XPT_GET_TRAN_SETTINGS:
7961 		cts = &ccb->cts;
7962 		tp = &np->target[ccb_h->target_id];
7963 		lp = sym_lp(tp, ccb_h->target_lun);
7964 
7965 #define	cts__scsi (&cts->proto_specific.scsi)
7966 #define	cts__spi  (&cts->xport_specific.spi)
7967 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7968 			tip = &tp->tinfo.current;
7969 			dflags = lp ? lp->current_flags : 0;
7970 		}
7971 		else {
7972 			tip = &tp->tinfo.user;
7973 			dflags = lp ? lp->user_flags : tp->usrflags;
7974 		}
7975 
7976 		cts->protocol  = PROTO_SCSI;
7977 		cts->transport = XPORT_SPI;
7978 		cts->protocol_version  = tip->scsi_version;
7979 		cts->transport_version = tip->spi_version;
7980 
7981 		cts__spi->sync_period = tip->period;
7982 		cts__spi->sync_offset = tip->offset;
7983 		cts__spi->bus_width   = tip->width;
7984 		cts__spi->ppr_options = tip->options;
7985 
7986 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7987 		                | CTS_SPI_VALID_SYNC_OFFSET
7988 		                | CTS_SPI_VALID_BUS_WIDTH
7989 		                | CTS_SPI_VALID_PPR_OPTIONS;
7990 
7991 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
7992 		if (dflags & SYM_DISC_ENABLED)
7993 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
7994 		cts__spi->valid |= CTS_SPI_VALID_DISC;
7995 
7996 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
7997 		if (dflags & SYM_TAGS_ENABLED)
7998 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
7999 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8000 #undef	cts__spi
8001 #undef	cts__scsi
8002 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8003 		break;
8004 	case XPT_CALC_GEOMETRY:
8005 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8006 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8007 		break;
8008 	case XPT_PATH_INQ:
8009 		cpi = &ccb->cpi;
8010 		cpi->version_num = 1;
8011 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8012 		if ((np->features & FE_WIDE) != 0)
8013 			cpi->hba_inquiry |= PI_WIDE_16;
8014 		cpi->target_sprt = 0;
8015 		cpi->hba_misc = PIM_UNMAPPED;
8016 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8017 			cpi->hba_misc |= PIM_SCANHILO;
8018 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8019 			cpi->hba_misc |= PIM_NOBUSRESET;
8020 		cpi->hba_eng_cnt = 0;
8021 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8022 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8023 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8024 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8025 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8026 		cpi->bus_id = cam_sim_bus(sim);
8027 		cpi->initiator_id = np->myaddr;
8028 		cpi->base_transfer_speed = 3300;
8029 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8030 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8031 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8032 		cpi->unit_number = cam_sim_unit(sim);
8033 
8034 		cpi->protocol = PROTO_SCSI;
8035 		cpi->protocol_version = SCSI_REV_2;
8036 		cpi->transport = XPORT_SPI;
8037 		cpi->transport_version = 2;
8038 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8039 		if (np->features & FE_ULTRA3) {
8040 			cpi->transport_version = 3;
8041 			cpi->xport_specific.spi.ppr_options =
8042 			    SID_SPI_CLOCK_DT_ST;
8043 		}
8044 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8045 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8046 		break;
8047 	case XPT_ABORT:
8048 		abort_ccb = ccb->cab.abort_ccb;
8049 		switch(abort_ccb->ccb_h.func_code) {
8050 		case XPT_SCSI_IO:
8051 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8052 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8053 				break;
8054 			}
8055 		default:
8056 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8057 			break;
8058 		}
8059 		break;
8060 	case XPT_RESET_DEV:
8061 		sym_reset_dev(np, ccb);
8062 		break;
8063 	case XPT_RESET_BUS:
8064 		sym_reset_scsi_bus(np, 0);
8065 		if (sym_verbose) {
8066 			xpt_print_path(np->path);
8067 			printf("SCSI BUS reset delivered.\n");
8068 		}
8069 		sym_init (np, 1);
8070 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8071 		break;
8072 	case XPT_TERM_IO:
8073 	default:
8074 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8075 		break;
8076 	}
8077 }
8078 
8079 /*
8080  *  Asynchronous notification handler.
8081  */
8082 static void
8083 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8084 {
8085 	hcb_p np;
8086 	struct cam_sim *sim;
8087 	u_int tn;
8088 	tcb_p tp;
8089 
8090 	sim = (struct cam_sim *) cb_arg;
8091 	np  = (hcb_p) cam_sim_softc(sim);
8092 
8093 	SYM_LOCK_ASSERT(MA_OWNED);
8094 
8095 	switch (code) {
8096 	case AC_LOST_DEVICE:
8097 		tn = xpt_path_target_id(path);
8098 		if (tn >= SYM_CONF_MAX_TARGET)
8099 			break;
8100 
8101 		tp = &np->target[tn];
8102 
8103 		tp->to_reset  = 0;
8104 		tp->head.sval = 0;
8105 		tp->head.wval = np->rv_scntl3;
8106 		tp->head.uval = 0;
8107 
8108 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8109 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8110 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8111 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8112 
8113 		break;
8114 	default:
8115 		break;
8116 	}
8117 }
8118 
8119 /*
8120  *  Update transfer settings of a target.
8121  */
8122 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8123     struct ccb_trans_settings *cts)
8124 {
8125 
8126 	SYM_LOCK_ASSERT(MA_OWNED);
8127 
8128 	/*
8129 	 *  Update the infos.
8130 	 */
8131 #define cts__spi (&cts->xport_specific.spi)
8132 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8133 		tip->width = cts__spi->bus_width;
8134 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8135 		tip->offset = cts__spi->sync_offset;
8136 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8137 		tip->period = cts__spi->sync_period;
8138 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8139 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8140 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8141 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8142 		tip->scsi_version = cts->protocol_version;
8143 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8144 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8145 		tip->spi_version = cts->transport_version;
8146 #undef cts__spi
8147 	/*
8148 	 *  Scale against driver configuration limits.
8149 	 */
8150 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8151 	if (tip->period && tip->offset) {
8152 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8153 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8154 	} else {
8155 		tip->offset = 0;
8156 		tip->period = 0;
8157 	}
8158 
8159 	/*
8160 	 *  Scale against actual controller BUS width.
8161 	 */
8162 	if (tip->width > np->maxwide)
8163 		tip->width  = np->maxwide;
8164 
8165 	/*
8166 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8167 	 */
8168 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8169 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8170 		tip->options &= ~PPR_OPT_DT;
8171 	}
8172 
8173 	/*
8174 	 *  Scale period factor and offset against controller limits.
8175 	 */
8176 	if (tip->offset && tip->period) {
8177 		if (tip->options & PPR_OPT_DT) {
8178 			if (tip->period < np->minsync_dt)
8179 				tip->period = np->minsync_dt;
8180 			if (tip->period > np->maxsync_dt)
8181 				tip->period = np->maxsync_dt;
8182 			if (tip->offset > np->maxoffs_dt)
8183 				tip->offset = np->maxoffs_dt;
8184 		}
8185 		else {
8186 			if (tip->period < np->minsync)
8187 				tip->period = np->minsync;
8188 			if (tip->period > np->maxsync)
8189 				tip->period = np->maxsync;
8190 			if (tip->offset > np->maxoffs)
8191 				tip->offset = np->maxoffs;
8192 		}
8193 	}
8194 }
8195 
8196 /*
8197  *  Update flags for a device (logical unit).
8198  */
8199 static void
8200 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8201 {
8202 
8203 	SYM_LOCK_ASSERT(MA_OWNED);
8204 
8205 #define	cts__scsi (&cts->proto_specific.scsi)
8206 #define	cts__spi  (&cts->xport_specific.spi)
8207 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8208 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8209 			*flags |= SYM_DISC_ENABLED;
8210 		else
8211 			*flags &= ~SYM_DISC_ENABLED;
8212 	}
8213 
8214 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8215 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8216 			*flags |= SYM_TAGS_ENABLED;
8217 		else
8218 			*flags &= ~SYM_TAGS_ENABLED;
8219 	}
8220 #undef	cts__spi
8221 #undef	cts__scsi
8222 }
8223 
8224 /*============= DRIVER INITIALISATION ==================*/
8225 
8226 static device_method_t sym_pci_methods[] = {
8227 	DEVMETHOD(device_probe,	 sym_pci_probe),
8228 	DEVMETHOD(device_attach, sym_pci_attach),
8229 	DEVMETHOD(device_detach, sym_pci_detach),
8230 	DEVMETHOD_END
8231 };
8232 
8233 static driver_t sym_pci_driver = {
8234 	"sym",
8235 	sym_pci_methods,
8236 	1	/* no softc */
8237 };
8238 
8239 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL);
8240 MODULE_DEPEND(sym, cam, 1, 1, 1);
8241 MODULE_DEPEND(sym, pci, 1, 1, 1);
8242 
8243 static const struct sym_pci_chip sym_pci_dev_table[] = {
8244  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8245  FE_ERL}
8246  ,
8247 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8248  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8249  FE_BOF}
8250  ,
8251 #else
8252  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8253  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8254  ,
8255 #endif
8256  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8257  FE_BOF|FE_ERL}
8258  ,
8259  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8260  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8261  ,
8262  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8263  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8264  ,
8265  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8266  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8267  ,
8268  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8269  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8270  FE_RAM|FE_DIFF}
8271  ,
8272  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8273  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8274  FE_RAM|FE_DIFF}
8275  ,
8276  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8277  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8278  FE_RAM|FE_DIFF}
8279  ,
8280  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8281  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8282  FE_RAM|FE_DIFF}
8283  ,
8284 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8285  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8286  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8287  FE_RAM|FE_LCKFRQ}
8288  ,
8289 #else
8290  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8291  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8292  FE_RAM|FE_LCKFRQ}
8293  ,
8294 #endif
8295  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8296  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8297  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8298  ,
8299  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8300  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8301  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8302  ,
8303  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8304  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8305  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8306  FE_C10}
8307  ,
8308  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8309  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8310  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8311  FE_C10|FE_U3EN}
8312  ,
8313  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8314  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8315  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8316  FE_C10|FE_U3EN}
8317  ,
8318  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8319  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8320  FE_RAM|FE_IO256|FE_LEDC}
8321 };
8322 
8323 /*
8324  *  Look up the chip table.
8325  *
8326  *  Return a pointer to the chip entry if found,
8327  *  zero otherwise.
8328  */
8329 static const struct sym_pci_chip *
8330 sym_find_pci_chip(device_t dev)
8331 {
8332 	const struct	sym_pci_chip *chip;
8333 	int	i;
8334 	u_short	device_id;
8335 	u_char	revision;
8336 
8337 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8338 		return NULL;
8339 
8340 	device_id = pci_get_device(dev);
8341 	revision  = pci_get_revid(dev);
8342 
8343 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8344 		chip = &sym_pci_dev_table[i];
8345 		if (device_id != chip->device_id)
8346 			continue;
8347 		if (revision > chip->revision_id)
8348 			continue;
8349 		return chip;
8350 	}
8351 
8352 	return NULL;
8353 }
8354 
8355 /*
8356  *  Tell upper layer if the chip is supported.
8357  */
8358 static int
8359 sym_pci_probe(device_t dev)
8360 {
8361 	const struct	sym_pci_chip *chip;
8362 
8363 	chip = sym_find_pci_chip(dev);
8364 	if (chip && sym_find_firmware(chip)) {
8365 		device_set_desc(dev, chip->name);
8366 		return BUS_PROBE_DEFAULT;
8367 	}
8368 	return ENXIO;
8369 }
8370 
8371 /*
8372  *  Attach a sym53c8xx device.
8373  */
8374 static int
8375 sym_pci_attach(device_t dev)
8376 {
8377 	const struct	sym_pci_chip *chip;
8378 	u_short	command;
8379 	u_char	cachelnsz;
8380 	struct	sym_hcb *np = NULL;
8381 	struct	sym_nvram nvram;
8382 	const struct	sym_fw *fw = NULL;
8383 	int 	i;
8384 	bus_dma_tag_t	bus_dmat;
8385 
8386 	bus_dmat = bus_get_dma_tag(dev);
8387 
8388 	/*
8389 	 *  Only probed devices should be attached.
8390 	 *  We just enjoy being paranoid. :)
8391 	 */
8392 	chip = sym_find_pci_chip(dev);
8393 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8394 		return (ENXIO);
8395 
8396 	/*
8397 	 *  Allocate immediately the host control block,
8398 	 *  since we are only expecting to succeed. :)
8399 	 *  We keep track in the HCB of all the resources that
8400 	 *  are to be released on error.
8401 	 */
8402 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8403 	if (np)
8404 		np->bus_dmat = bus_dmat;
8405 	else
8406 		return (ENXIO);
8407 	device_set_softc(dev, np);
8408 
8409 	SYM_LOCK_INIT();
8410 
8411 	/*
8412 	 *  Copy some useful infos to the HCB.
8413 	 */
8414 	np->hcb_ba	 = vtobus(np);
8415 	np->verbose	 = bootverbose;
8416 	np->device	 = dev;
8417 	np->device_id	 = pci_get_device(dev);
8418 	np->revision_id  = pci_get_revid(dev);
8419 	np->features	 = chip->features;
8420 	np->clock_divn	 = chip->nr_divisor;
8421 	np->maxoffs	 = chip->offset_max;
8422 	np->maxburst	 = chip->burst_max;
8423 	np->scripta_sz	 = fw->a_size;
8424 	np->scriptb_sz	 = fw->b_size;
8425 	np->fw_setup	 = fw->setup;
8426 	np->fw_patch	 = fw->patch;
8427 	np->fw_name	 = fw->name;
8428 
8429 #ifdef __amd64__
8430 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8431 			"TARGET");
8432 	if (!np->target)
8433 		goto attach_failed;
8434 #endif
8435 
8436 	/*
8437 	 *  Initialize the CCB free and busy queues.
8438 	 */
8439 	sym_que_init(&np->free_ccbq);
8440 	sym_que_init(&np->busy_ccbq);
8441 	sym_que_init(&np->comp_ccbq);
8442 	sym_que_init(&np->cam_ccbq);
8443 
8444 	/*
8445 	 *  Allocate a tag for the DMA of user data.
8446 	 */
8447 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8448 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8449 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8450 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8451 		device_printf(dev, "failed to create DMA tag.\n");
8452 		goto attach_failed;
8453 	}
8454 
8455 	/*
8456 	 *  Read and apply some fix-ups to the PCI COMMAND
8457 	 *  register. We want the chip to be enabled for:
8458 	 *  - BUS mastering
8459 	 *  - PCI parity checking (reporting would also be fine)
8460 	 *  - Write And Invalidate.
8461 	 */
8462 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8463 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8464 	    PCIM_CMD_MWRICEN;
8465 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8466 
8467 	/*
8468 	 *  Let the device know about the cache line size,
8469 	 *  if it doesn't yet.
8470 	 */
8471 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8472 	if (!cachelnsz) {
8473 		cachelnsz = 8;
8474 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8475 	}
8476 
8477 	/*
8478 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8479 	 */
8480 	i = SYM_PCI_MMIO;
8481 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8482 	    RF_ACTIVE);
8483 	if (!np->mmio_res) {
8484 		device_printf(dev, "failed to allocate MMIO resources\n");
8485 		goto attach_failed;
8486 	}
8487 	np->mmio_ba = rman_get_start(np->mmio_res);
8488 
8489 	/*
8490 	 *  Allocate the IRQ.
8491 	 */
8492 	i = 0;
8493 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8494 					     RF_ACTIVE | RF_SHAREABLE);
8495 	if (!np->irq_res) {
8496 		device_printf(dev, "failed to allocate IRQ resource\n");
8497 		goto attach_failed;
8498 	}
8499 
8500 #ifdef	SYM_CONF_IOMAPPED
8501 	/*
8502 	 *  User want us to use normal IO with PCI.
8503 	 *  Alloc/get/map/retrieve everything that deals with IO.
8504 	 */
8505 	i = SYM_PCI_IO;
8506 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8507 	if (!np->io_res) {
8508 		device_printf(dev, "failed to allocate IO resources\n");
8509 		goto attach_failed;
8510 	}
8511 
8512 #endif /* SYM_CONF_IOMAPPED */
8513 
8514 	/*
8515 	 *  If the chip has RAM.
8516 	 *  Alloc/get/map/retrieve the corresponding resources.
8517 	 */
8518 	if (np->features & (FE_RAM|FE_RAM8K)) {
8519 		int regs_id = SYM_PCI_RAM;
8520 		if (np->features & FE_64BIT)
8521 			regs_id = SYM_PCI_RAM64;
8522 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8523 						     &regs_id, RF_ACTIVE);
8524 		if (!np->ram_res) {
8525 			device_printf(dev,"failed to allocate RAM resources\n");
8526 			goto attach_failed;
8527 		}
8528 		np->ram_id  = regs_id;
8529 		np->ram_ba = rman_get_start(np->ram_res);
8530 	}
8531 
8532 	/*
8533 	 *  Save setting of some IO registers, so we will
8534 	 *  be able to probe specific implementations.
8535 	 */
8536 	sym_save_initial_setting (np);
8537 
8538 	/*
8539 	 *  Reset the chip now, since it has been reported
8540 	 *  that SCSI clock calibration may not work properly
8541 	 *  if the chip is currently active.
8542 	 */
8543 	sym_chip_reset (np);
8544 
8545 	/*
8546 	 *  Try to read the user set-up.
8547 	 */
8548 	(void) sym_read_nvram(np, &nvram);
8549 
8550 	/*
8551 	 *  Prepare controller and devices settings, according
8552 	 *  to chip features, user set-up and driver set-up.
8553 	 */
8554 	(void) sym_prepare_setting(np, &nvram);
8555 
8556 	/*
8557 	 *  Check the PCI clock frequency.
8558 	 *  Must be performed after prepare_setting since it destroys
8559 	 *  STEST1 that is used to probe for the clock doubler.
8560 	 */
8561 	i = sym_getpciclock(np);
8562 	if (i > 37000)
8563 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8564 
8565 	/*
8566 	 *  Allocate the start queue.
8567 	 */
8568 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8569 	if (!np->squeue)
8570 		goto attach_failed;
8571 	np->squeue_ba = vtobus(np->squeue);
8572 
8573 	/*
8574 	 *  Allocate the done queue.
8575 	 */
8576 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8577 	if (!np->dqueue)
8578 		goto attach_failed;
8579 	np->dqueue_ba = vtobus(np->dqueue);
8580 
8581 	/*
8582 	 *  Allocate the target bus address array.
8583 	 */
8584 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8585 	if (!np->targtbl)
8586 		goto attach_failed;
8587 	np->targtbl_ba = vtobus(np->targtbl);
8588 
8589 	/*
8590 	 *  Allocate SCRIPTS areas.
8591 	 */
8592 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8593 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8594 	if (!np->scripta0 || !np->scriptb0)
8595 		goto attach_failed;
8596 
8597 	/*
8598 	 *  Allocate the CCBs. We need at least ONE.
8599 	 */
8600 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8601 		;
8602 	if (i < 1)
8603 		goto attach_failed;
8604 
8605 	/*
8606 	 *  Calculate BUS addresses where we are going
8607 	 *  to load the SCRIPTS.
8608 	 */
8609 	np->scripta_ba	= vtobus(np->scripta0);
8610 	np->scriptb_ba	= vtobus(np->scriptb0);
8611 	np->scriptb0_ba	= np->scriptb_ba;
8612 
8613 	if (np->ram_ba) {
8614 		np->scripta_ba	= np->ram_ba;
8615 		if (np->features & FE_RAM8K) {
8616 			np->ram_ws = 8192;
8617 			np->scriptb_ba = np->scripta_ba + 4096;
8618 #ifdef __LP64__
8619 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8620 #endif
8621 		}
8622 		else
8623 			np->ram_ws = 4096;
8624 	}
8625 
8626 	/*
8627 	 *  Copy scripts to controller instance.
8628 	 */
8629 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
8630 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
8631 
8632 	/*
8633 	 *  Setup variable parts in scripts and compute
8634 	 *  scripts bus addresses used from the C code.
8635 	 */
8636 	np->fw_setup(np, fw);
8637 
8638 	/*
8639 	 *  Bind SCRIPTS with physical addresses usable by the
8640 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8641 	 */
8642 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8643 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8644 
8645 #ifdef SYM_CONF_IARB_SUPPORT
8646 	/*
8647 	 *    If user wants IARB to be set when we win arbitration
8648 	 *    and have other jobs, compute the max number of consecutive
8649 	 *    settings of IARB hints before we leave devices a chance to
8650 	 *    arbitrate for reselection.
8651 	 */
8652 #ifdef	SYM_SETUP_IARB_MAX
8653 	np->iarb_max = SYM_SETUP_IARB_MAX;
8654 #else
8655 	np->iarb_max = 4;
8656 #endif
8657 #endif
8658 
8659 	/*
8660 	 *  Prepare the idle and invalid task actions.
8661 	 */
8662 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8663 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8664 	np->idletask_ba		= vtobus(&np->idletask);
8665 
8666 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8667 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8668 	np->notask_ba		= vtobus(&np->notask);
8669 
8670 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8671 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8672 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8673 
8674 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8675 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8676 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8677 
8678 	/*
8679 	 *  Allocate and prepare the lun JUMP table that is used
8680 	 *  for a target prior the probing of devices (bad lun table).
8681 	 *  A private table will be allocated for the target on the
8682 	 *  first INQUIRY response received.
8683 	 */
8684 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8685 	if (!np->badluntbl)
8686 		goto attach_failed;
8687 
8688 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8689 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8690 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8691 
8692 	/*
8693 	 *  Prepare the bus address array that contains the bus
8694 	 *  address of each target control block.
8695 	 *  For now, assume all logical units are wrong. :)
8696 	 */
8697 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8698 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8699 		np->target[i].head.luntbl_sa =
8700 				cpu_to_scr(vtobus(np->badluntbl));
8701 		np->target[i].head.lun0_sa =
8702 				cpu_to_scr(vtobus(&np->badlun_sa));
8703 	}
8704 
8705 	/*
8706 	 *  Now check the cache handling of the pci chipset.
8707 	 */
8708 	if (sym_snooptest (np)) {
8709 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8710 		goto attach_failed;
8711 	}
8712 
8713 	/*
8714 	 *  Now deal with CAM.
8715 	 *  Hopefully, we will succeed with that one.:)
8716 	 */
8717 	if (!sym_cam_attach(np))
8718 		goto attach_failed;
8719 
8720 	/*
8721 	 *  Sigh! we are done.
8722 	 */
8723 	return 0;
8724 
8725 	/*
8726 	 *  We have failed.
8727 	 *  We will try to free all the resources we have
8728 	 *  allocated, but if we are a boot device, this
8729 	 *  will not help that much.;)
8730 	 */
8731 attach_failed:
8732 	if (np)
8733 		sym_pci_detach(dev);
8734 	return ENXIO;
8735 }
8736 
8737 /*
8738  *  Detach a device by freeing everything that has been allocated for it.
8739  */
8740 static int
8741 sym_pci_detach(device_t dev)
8742 {
8743 	hcb_p np;
8744 	SYM_QUEHEAD *qp;
8745 	ccb_p cp;
8746 	tcb_p tp;
8747 	lcb_p lp;
8748 	int target, lun;
8749 
8750 	np = device_get_softc(dev);
8751 
8752 	/*
8753 	 *  First free CAM resources.
8754 	 */
8755 	sym_cam_free(np);
8756 
8757 	/*
8758 	 *  Now every should be quiet for us to
8759 	 *  free other resources.
8760 	 */
8761 	if (np->ram_res)
8762 		bus_release_resource(np->device, SYS_RES_MEMORY,
8763 				     np->ram_id, np->ram_res);
8764 	if (np->mmio_res)
8765 		bus_release_resource(np->device, SYS_RES_MEMORY,
8766 				     SYM_PCI_MMIO, np->mmio_res);
8767 	if (np->io_res)
8768 		bus_release_resource(np->device, SYS_RES_IOPORT,
8769 				     SYM_PCI_IO, np->io_res);
8770 	if (np->irq_res)
8771 		bus_release_resource(np->device, SYS_RES_IRQ,
8772 				     0, np->irq_res);
8773 
8774 	if (np->scriptb0)
8775 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8776 	if (np->scripta0)
8777 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8778 	if (np->squeue)
8779 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8780 	if (np->dqueue)
8781 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8782 
8783 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8784 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8785 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8786 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8787 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8788 	}
8789 
8790 	if (np->badluntbl)
8791 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8792 
8793 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8794 		tp = &np->target[target];
8795 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8796 			lp = sym_lp(tp, lun);
8797 			if (!lp)
8798 				continue;
8799 			if (lp->itlq_tbl)
8800 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8801 				       "ITLQ_TBL");
8802 			if (lp->cb_tags)
8803 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8804 				       "CB_TAGS");
8805 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8806 		}
8807 #if SYM_CONF_MAX_LUN > 1
8808 		if (tp->lunmp)
8809 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8810 			       "LUNMP");
8811 #endif
8812 	}
8813 #ifdef __amd64__
8814 	if (np->target)
8815 		sym_mfree_dma(np->target,
8816 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8817 #endif
8818 	if (np->targtbl)
8819 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8820 	if (np->data_dmat)
8821 		bus_dma_tag_destroy(np->data_dmat);
8822 	if (SYM_LOCK_INITIALIZED() != 0)
8823 		SYM_LOCK_DESTROY();
8824 	device_set_softc(np->device, NULL);
8825 	sym_mfree_dma(np, sizeof(*np), "HCB");
8826 
8827 	return (0);
8828 }
8829 
8830 /*
8831  *  Allocate CAM resources and register a bus to CAM.
8832  */
8833 static int sym_cam_attach(hcb_p np)
8834 {
8835 	struct cam_devq *devq = NULL;
8836 	struct cam_sim *sim = NULL;
8837 	struct cam_path *path = NULL;
8838 	int err;
8839 
8840 	/*
8841 	 *  Establish our interrupt handler.
8842 	 */
8843 	err = bus_setup_intr(np->device, np->irq_res,
8844 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8845 			NULL, sym_intr, np, &np->intr);
8846 	if (err) {
8847 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8848 			      err);
8849 		goto fail;
8850 	}
8851 
8852 	/*
8853 	 *  Create the device queue for our sym SIM.
8854 	 */
8855 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8856 	if (!devq)
8857 		goto fail;
8858 
8859 	/*
8860 	 *  Construct our SIM entry.
8861 	 */
8862 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8863 			device_get_unit(np->device),
8864 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8865 	if (!sim)
8866 		goto fail;
8867 
8868 	SYM_LOCK();
8869 
8870 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8871 		goto fail;
8872 	np->sim = sim;
8873 	sim = NULL;
8874 
8875 	if (xpt_create_path(&path, NULL,
8876 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8877 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8878 		goto fail;
8879 	}
8880 	np->path = path;
8881 
8882 	/*
8883 	 *  Establish our async notification handler.
8884 	 */
8885 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8886 	    CAM_REQ_CMP)
8887 		goto fail;
8888 
8889 	/*
8890 	 *  Start the chip now, without resetting the BUS, since
8891 	 *  it seems that this must stay under control of CAM.
8892 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8893 	 *  get a spurious SMBC interrupt.
8894 	 */
8895 	sym_init (np, 0);
8896 
8897 	SYM_UNLOCK();
8898 
8899 	return 1;
8900 fail:
8901 	SYM_UNLOCK();
8902 
8903 	sym_cam_free(np);
8904 
8905 	return 0;
8906 }
8907 
8908 /*
8909  *  Free everything that deals with CAM.
8910  */
8911 static void sym_cam_free(hcb_p np)
8912 {
8913 
8914 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8915 
8916 	if (np->intr) {
8917 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8918 		np->intr = NULL;
8919 	}
8920 
8921 	SYM_LOCK();
8922 
8923 	if (np->path) {
8924 		xpt_async(AC_LOST_DEVICE, np->path, NULL);
8925 		xpt_free_path(np->path);
8926 		np->path = NULL;
8927 	}
8928 	if (np->sim) {
8929 		xpt_bus_deregister(cam_sim_path(np->sim));
8930 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8931 		np->sim = NULL;
8932 	}
8933 
8934 	SYM_UNLOCK();
8935 }
8936 
8937 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8938 
8939 /*
8940  *  Get host setup from NVRAM.
8941  */
8942 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8943 {
8944 #ifdef SYM_CONF_NVRAM_SUPPORT
8945 	/*
8946 	 *  Get parity checking, host ID, verbose mode
8947 	 *  and miscellaneous host flags from NVRAM.
8948 	 */
8949 	switch(nvram->type) {
8950 	case SYM_SYMBIOS_NVRAM:
8951 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8952 			np->rv_scntl0  &= ~0x0a;
8953 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8954 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8955 			np->verbose += 1;
8956 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8957 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8958 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8959 			np->usrflags |= SYM_AVOID_BUS_RESET;
8960 		break;
8961 	case SYM_TEKRAM_NVRAM:
8962 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8963 		break;
8964 	default:
8965 		break;
8966 	}
8967 #endif
8968 }
8969 
8970 /*
8971  *  Get target setup from NVRAM.
8972  */
8973 #ifdef SYM_CONF_NVRAM_SUPPORT
8974 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8975 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8976 #endif
8977 
8978 static void
8979 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8980 {
8981 #ifdef SYM_CONF_NVRAM_SUPPORT
8982 	switch(nvp->type) {
8983 	case SYM_SYMBIOS_NVRAM:
8984 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8985 		break;
8986 	case SYM_TEKRAM_NVRAM:
8987 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8988 		break;
8989 	default:
8990 		break;
8991 	}
8992 #endif
8993 }
8994 
8995 #ifdef SYM_CONF_NVRAM_SUPPORT
8996 /*
8997  *  Get target set-up from Symbios format NVRAM.
8998  */
8999 static void
9000 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9001 {
9002 	tcb_p tp = &np->target[target];
9003 	Symbios_target *tn = &nvram->target[target];
9004 
9005 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9006 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9007 	tp->usrtags =
9008 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9009 
9010 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9011 		tp->usrflags &= ~SYM_DISC_ENABLED;
9012 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9013 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9014 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9015 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9016 }
9017 
9018 /*
9019  *  Get target set-up from Tekram format NVRAM.
9020  */
9021 static void
9022 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9023 {
9024 	tcb_p tp = &np->target[target];
9025 	struct Tekram_target *tn = &nvram->target[target];
9026 	int i;
9027 
9028 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9029 		i = tn->sync_index & 0xf;
9030 		tp->tinfo.user.period = Tekram_sync[i];
9031 	}
9032 
9033 	tp->tinfo.user.width =
9034 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9035 
9036 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9037 		tp->usrtags = 2 << nvram->max_tags_index;
9038 	}
9039 
9040 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9041 		tp->usrflags |= SYM_DISC_ENABLED;
9042 
9043 	/* If any device does not support parity, we will not use this option */
9044 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9045 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9046 }
9047 
9048 #ifdef	SYM_CONF_DEBUG_NVRAM
9049 /*
9050  *  Dump Symbios format NVRAM for debugging purpose.
9051  */
9052 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9053 {
9054 	int i;
9055 
9056 	/* display Symbios nvram host data */
9057 	device_printf(np->device, "HOST ID=%d%s%s%s%s%s%s\n",
9058 	   nvram->host_id & 0x0f,
9059 	   (nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	: "",
9060 	   (nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	: "",
9061 	   (nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	: "",
9062 	   (nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	: "",
9063 	   (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)	? " NO_RESET"	: "",
9064 	   (nvram->flags1 & SYMBIOS_SCAN_HI_LO)		? " HI_LO"	: "");
9065 
9066 	/* display Symbios nvram drive data */
9067 	for (i = 0 ; i < 15 ; i++) {
9068 		struct Symbios_target *tn = &nvram->target[i];
9069 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9070 		sym_name(np), i,
9071 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9072 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9073 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9074 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9075 		tn->bus_width,
9076 		tn->sync_period / 4,
9077 		tn->timeout);
9078 	}
9079 }
9080 
9081 /*
9082  *  Dump TEKRAM format NVRAM for debugging purpose.
9083  */
9084 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9085 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9086 {
9087 	int i, tags, boot_delay;
9088 	char *rem;
9089 
9090 	/* display Tekram nvram host data */
9091 	tags = 2 << nvram->max_tags_index;
9092 	boot_delay = 0;
9093 	if (nvram->boot_delay_index < 6)
9094 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9095 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9096 	default:
9097 	case 0:	rem = "";			break;
9098 	case 1: rem = " REMOVABLE=boot device";	break;
9099 	case 2: rem = " REMOVABLE=all";		break;
9100 	}
9101 
9102 	device_printf(np->device,
9103 	    "HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9104 	    nvram->host_id & 0x0f,
9105 	    (nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	: "",
9106 	    (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES)	? " >2DRIVES"	: "",
9107 	    (nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	: "",
9108 	    (nvram->flags & TEKRAM_RESET_ON_POWER_ON)	? " RESET"	: "",
9109 	    (nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	: "",
9110 	    (nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	: "",
9111 	    (nvram->flags & TEKRAM_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9112 	    (nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	: "",
9113 	    rem, boot_delay, tags);
9114 
9115 	/* display Tekram nvram drive data */
9116 	for (i = 0; i <= 15; i++) {
9117 		int sync, j;
9118 		struct Tekram_target *tn = &nvram->target[i];
9119 		j = tn->sync_index & 0xf;
9120 		sync = Tekram_sync[j];
9121 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9122 		sym_name(np), i,
9123 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9124 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9125 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9126 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9127 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9128 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9129 		sync);
9130 	}
9131 }
9132 #endif	/* SYM_CONF_DEBUG_NVRAM */
9133 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9134 
9135 /*
9136  *  Try reading Symbios or Tekram NVRAM
9137  */
9138 #ifdef SYM_CONF_NVRAM_SUPPORT
9139 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9140 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9141 #endif
9142 
9143 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9144 {
9145 #ifdef SYM_CONF_NVRAM_SUPPORT
9146 	/*
9147 	 *  Try to read SYMBIOS nvram.
9148 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9149 	 */
9150 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9151 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9152 		nvp->type = SYM_SYMBIOS_NVRAM;
9153 #ifdef SYM_CONF_DEBUG_NVRAM
9154 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9155 #endif
9156 	}
9157 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9158 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9159 		nvp->type = SYM_TEKRAM_NVRAM;
9160 #ifdef SYM_CONF_DEBUG_NVRAM
9161 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9162 #endif
9163 	}
9164 	else
9165 		nvp->type = 0;
9166 #else
9167 	nvp->type = 0;
9168 #endif
9169 	return nvp->type;
9170 }
9171 
9172 #ifdef SYM_CONF_NVRAM_SUPPORT
9173 /*
9174  *  24C16 EEPROM reading.
9175  *
9176  *  GPOI0 - data in/data out
9177  *  GPIO1 - clock
9178  *  Symbios NVRAM wiring now also used by Tekram.
9179  */
9180 
9181 #define SET_BIT 0
9182 #define CLR_BIT 1
9183 #define SET_CLK 2
9184 #define CLR_CLK 3
9185 
9186 /*
9187  *  Set/clear data/clock bit in GPIO0
9188  */
9189 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9190 			  int bit_mode)
9191 {
9192 	UDELAY (5);
9193 	switch (bit_mode){
9194 	case SET_BIT:
9195 		*gpreg |= write_bit;
9196 		break;
9197 	case CLR_BIT:
9198 		*gpreg &= 0xfe;
9199 		break;
9200 	case SET_CLK:
9201 		*gpreg |= 0x02;
9202 		break;
9203 	case CLR_CLK:
9204 		*gpreg &= 0xfd;
9205 		break;
9206 	}
9207 	OUTB (nc_gpreg, *gpreg);
9208 	UDELAY (5);
9209 }
9210 
9211 /*
9212  *  Send START condition to NVRAM to wake it up.
9213  */
9214 static void S24C16_start(hcb_p np, u_char *gpreg)
9215 {
9216 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9217 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9218 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9219 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9220 }
9221 
9222 /*
9223  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9224  */
9225 static void S24C16_stop(hcb_p np, u_char *gpreg)
9226 {
9227 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9228 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9229 }
9230 
9231 /*
9232  *  Read or write a bit to the NVRAM,
9233  *  read if GPIO0 input else write if GPIO0 output
9234  */
9235 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9236 			 u_char *gpreg)
9237 {
9238 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9239 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9240 	if (read_bit)
9241 		*read_bit = INB (nc_gpreg);
9242 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9243 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9244 }
9245 
9246 /*
9247  *  Output an ACK to the NVRAM after reading,
9248  *  change GPIO0 to output and when done back to an input
9249  */
9250 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9251 			    u_char *gpcntl)
9252 {
9253 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9254 	S24C16_do_bit(np, 0, write_bit, gpreg);
9255 	OUTB (nc_gpcntl, *gpcntl);
9256 }
9257 
9258 /*
9259  *  Input an ACK from NVRAM after writing,
9260  *  change GPIO0 to input and when done back to an output
9261  */
9262 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9263 			   u_char *gpcntl)
9264 {
9265 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9266 	S24C16_do_bit(np, read_bit, 1, gpreg);
9267 	OUTB (nc_gpcntl, *gpcntl);
9268 }
9269 
9270 /*
9271  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9272  *  GPIO0 must already be set as an output
9273  */
9274 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9275 			     u_char *gpreg, u_char *gpcntl)
9276 {
9277 	int x;
9278 
9279 	for (x = 0; x < 8; x++)
9280 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9281 
9282 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9283 }
9284 
9285 /*
9286  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9287  *  GPIO0 must already be set as an input
9288  */
9289 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9290 			    u_char *gpreg, u_char *gpcntl)
9291 {
9292 	int x;
9293 	u_char read_bit;
9294 
9295 	*read_data = 0;
9296 	for (x = 0; x < 8; x++) {
9297 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9298 		*read_data |= ((read_bit & 0x01) << (7 - x));
9299 	}
9300 
9301 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9302 }
9303 
9304 /*
9305  *  Read 'len' bytes starting at 'offset'.
9306  */
9307 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9308 {
9309 	u_char	gpcntl, gpreg;
9310 	u_char	old_gpcntl, old_gpreg;
9311 	u_char	ack_data;
9312 	int	retv = 1;
9313 	int	x;
9314 
9315 	/* save current state of GPCNTL and GPREG */
9316 	old_gpreg	= INB (nc_gpreg);
9317 	old_gpcntl	= INB (nc_gpcntl);
9318 	gpcntl		= old_gpcntl & 0x1c;
9319 
9320 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9321 	OUTB (nc_gpreg,  old_gpreg);
9322 	OUTB (nc_gpcntl, gpcntl);
9323 
9324 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9325 	gpreg = old_gpreg;
9326 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9327 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9328 
9329 	/* now set NVRAM inactive with GPIO0/1 both high */
9330 	S24C16_stop(np, &gpreg);
9331 
9332 	/* activate NVRAM */
9333 	S24C16_start(np, &gpreg);
9334 
9335 	/* write device code and random address MSB */
9336 	S24C16_write_byte(np, &ack_data,
9337 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9338 	if (ack_data & 0x01)
9339 		goto out;
9340 
9341 	/* write random address LSB */
9342 	S24C16_write_byte(np, &ack_data,
9343 		offset & 0xff, &gpreg, &gpcntl);
9344 	if (ack_data & 0x01)
9345 		goto out;
9346 
9347 	/* regenerate START state to set up for reading */
9348 	S24C16_start(np, &gpreg);
9349 
9350 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9351 	S24C16_write_byte(np, &ack_data,
9352 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9353 	if (ack_data & 0x01)
9354 		goto out;
9355 
9356 	/* now set up GPIO0 for inputting data */
9357 	gpcntl |= 0x01;
9358 	OUTB (nc_gpcntl, gpcntl);
9359 
9360 	/* input all requested data - only part of total NVRAM */
9361 	for (x = 0; x < len; x++)
9362 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9363 
9364 	/* finally put NVRAM back in inactive mode */
9365 	gpcntl &= 0xfe;
9366 	OUTB (nc_gpcntl, gpcntl);
9367 	S24C16_stop(np, &gpreg);
9368 	retv = 0;
9369 out:
9370 	/* return GPIO0/1 to original states after having accessed NVRAM */
9371 	OUTB (nc_gpcntl, old_gpcntl);
9372 	OUTB (nc_gpreg,  old_gpreg);
9373 
9374 	return retv;
9375 }
9376 
9377 #undef SET_BIT /* 0 */
9378 #undef CLR_BIT /* 1 */
9379 #undef SET_CLK /* 2 */
9380 #undef CLR_CLK /* 3 */
9381 
9382 /*
9383  *  Try reading Symbios NVRAM.
9384  *  Return 0 if OK.
9385  */
9386 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9387 {
9388 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9389 	u_char *data = (u_char *) nvram;
9390 	int len  = sizeof(*nvram);
9391 	u_short	csum;
9392 	int x;
9393 
9394 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9395 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9396 		return 1;
9397 
9398 	/* check valid NVRAM signature, verify byte count and checksum */
9399 	if (nvram->type != 0 ||
9400 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9401 	    nvram->byte_count != len - 12)
9402 		return 1;
9403 
9404 	/* verify checksum */
9405 	for (x = 6, csum = 0; x < len - 6; x++)
9406 		csum += data[x];
9407 	if (csum != nvram->checksum)
9408 		return 1;
9409 
9410 	return 0;
9411 }
9412 
9413 /*
9414  *  93C46 EEPROM reading.
9415  *
9416  *  GPOI0 - data in
9417  *  GPIO1 - data out
9418  *  GPIO2 - clock
9419  *  GPIO4 - chip select
9420  *
9421  *  Used by Tekram.
9422  */
9423 
9424 /*
9425  *  Pulse clock bit in GPIO0
9426  */
9427 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9428 {
9429 	OUTB (nc_gpreg, *gpreg | 0x04);
9430 	UDELAY (2);
9431 	OUTB (nc_gpreg, *gpreg);
9432 }
9433 
9434 /*
9435  *  Read bit from NVRAM
9436  */
9437 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9438 {
9439 	UDELAY (2);
9440 	T93C46_Clk(np, gpreg);
9441 	*read_bit = INB (nc_gpreg);
9442 }
9443 
9444 /*
9445  *  Write bit to GPIO0
9446  */
9447 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9448 {
9449 	if (write_bit & 0x01)
9450 		*gpreg |= 0x02;
9451 	else
9452 		*gpreg &= 0xfd;
9453 
9454 	*gpreg |= 0x10;
9455 
9456 	OUTB (nc_gpreg, *gpreg);
9457 	UDELAY (2);
9458 
9459 	T93C46_Clk(np, gpreg);
9460 }
9461 
9462 /*
9463  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9464  */
9465 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9466 {
9467 	*gpreg &= 0xef;
9468 	OUTB (nc_gpreg, *gpreg);
9469 	UDELAY (2);
9470 
9471 	T93C46_Clk(np, gpreg);
9472 }
9473 
9474 /*
9475  *  Send read command and address to NVRAM
9476  */
9477 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9478 				u_char *read_bit, u_char *gpreg)
9479 {
9480 	int x;
9481 
9482 	/* send 9 bits, start bit (1), command (2), address (6)  */
9483 	for (x = 0; x < 9; x++)
9484 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9485 
9486 	*read_bit = INB (nc_gpreg);
9487 }
9488 
9489 /*
9490  *  READ 2 bytes from the NVRAM
9491  */
9492 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9493 {
9494 	int x;
9495 	u_char read_bit;
9496 
9497 	*nvram_data = 0;
9498 	for (x = 0; x < 16; x++) {
9499 		T93C46_Read_Bit(np, &read_bit, gpreg);
9500 
9501 		if (read_bit & 0x01)
9502 			*nvram_data |=  (0x01 << (15 - x));
9503 		else
9504 			*nvram_data &= ~(0x01 << (15 - x));
9505 	}
9506 }
9507 
9508 /*
9509  *  Read Tekram NvRAM data.
9510  */
9511 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9512 {
9513 	u_char	read_bit;
9514 	int	x;
9515 
9516 	for (x = 0; x < len; x++)  {
9517 		/* output read command and address */
9518 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9519 		if (read_bit & 0x01)
9520 			return 1; /* Bad */
9521 		T93C46_Read_Word(np, &data[x], gpreg);
9522 		T93C46_Stop(np, gpreg);
9523 	}
9524 
9525 	return 0;
9526 }
9527 
9528 /*
9529  *  Try reading 93C46 Tekram NVRAM.
9530  */
9531 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9532 {
9533 	u_char gpcntl, gpreg;
9534 	u_char old_gpcntl, old_gpreg;
9535 	int retv = 1;
9536 
9537 	/* save current state of GPCNTL and GPREG */
9538 	old_gpreg	= INB (nc_gpreg);
9539 	old_gpcntl	= INB (nc_gpcntl);
9540 
9541 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9542 	   1/2/4 out */
9543 	gpreg = old_gpreg & 0xe9;
9544 	OUTB (nc_gpreg, gpreg);
9545 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9546 	OUTB (nc_gpcntl, gpcntl);
9547 
9548 	/* input all of NVRAM, 64 words */
9549 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9550 				sizeof(*nvram) / sizeof(short), &gpreg);
9551 
9552 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9553 	OUTB (nc_gpcntl, old_gpcntl);
9554 	OUTB (nc_gpreg,  old_gpreg);
9555 
9556 	return retv;
9557 }
9558 
9559 /*
9560  *  Try reading Tekram NVRAM.
9561  *  Return 0 if OK.
9562  */
9563 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9564 {
9565 	u_char *data = (u_char *) nvram;
9566 	int len = sizeof(*nvram);
9567 	u_short	csum;
9568 	int x;
9569 
9570 	switch (np->device_id) {
9571 	case PCI_ID_SYM53C885:
9572 	case PCI_ID_SYM53C895:
9573 	case PCI_ID_SYM53C896:
9574 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9575 					  data, len);
9576 		break;
9577 	case PCI_ID_SYM53C875:
9578 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9579 					  data, len);
9580 		if (!x)
9581 			break;
9582 	default:
9583 		x = sym_read_T93C46_nvram(np, nvram);
9584 		break;
9585 	}
9586 	if (x)
9587 		return 1;
9588 
9589 	/* verify checksum */
9590 	for (x = 0, csum = 0; x < len - 1; x += 2)
9591 		csum += data[x] + (data[x+1] << 8);
9592 	if (csum != 0x1234)
9593 		return 1;
9594 
9595 	return 0;
9596 }
9597 
9598 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9599