1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *
7 * The filters are packed to hash tables of key nodes
8 * with a set of 32bit key/mask pairs at every node.
9 * Nodes reference next level hash tables etc.
10 *
11 * This scheme is the best universal classifier I managed to
12 * invent; it is not super-fast, but it is not slow (provided you
13 * program it correctly), and general enough. And its relative
14 * speed grows as the number of rules becomes larger.
15 *
16 * It seems that it represents the best middle point between
17 * speed and manageability both by human and by machine.
18 *
19 * It is especially useful for link sharing combined with QoS;
20 * pure RSVP doesn't need such a general approach and can use
21 * much simpler (and faster) schemes, sort of cls_rsvp.c.
22 *
23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24 */
25
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/types.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/errno.h>
32 #include <linux/percpu.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitmap.h>
36 #include <linux/netdevice.h>
37 #include <linux/hash.h>
38 #include <net/netlink.h>
39 #include <net/act_api.h>
40 #include <net/pkt_cls.h>
41 #include <linux/idr.h>
42 #include <net/tc_wrapper.h>
43
44 struct tc_u_knode {
45 struct tc_u_knode __rcu *next;
46 u32 handle;
47 struct tc_u_hnode __rcu *ht_up;
48 struct tcf_exts exts;
49 int ifindex;
50 u8 fshift;
51 struct tcf_result res;
52 struct tc_u_hnode __rcu *ht_down;
53 #ifdef CONFIG_CLS_U32_PERF
54 struct tc_u32_pcnt __percpu *pf;
55 #endif
56 u32 flags;
57 unsigned int in_hw_count;
58 #ifdef CONFIG_CLS_U32_MARK
59 u32 val;
60 u32 mask;
61 u32 __percpu *pcpu_success;
62 #endif
63 struct rcu_work rwork;
64 /* The 'sel' field MUST be the last field in structure to allow for
65 * tc_u32_keys allocated at end of structure.
66 */
67 struct tc_u32_sel sel;
68 };
69
70 struct tc_u_hnode {
71 struct tc_u_hnode __rcu *next;
72 u32 handle;
73 u32 prio;
74 refcount_t refcnt;
75 unsigned int divisor;
76 struct idr handle_idr;
77 bool is_root;
78 struct rcu_head rcu;
79 u32 flags;
80 /* The 'ht' field MUST be the last field in structure to allow for
81 * more entries allocated at end of structure.
82 */
83 struct tc_u_knode __rcu *ht[];
84 };
85
86 struct tc_u_common {
87 struct tc_u_hnode __rcu *hlist;
88 void *ptr;
89 refcount_t refcnt;
90 struct idr handle_idr;
91 struct hlist_node hnode;
92 long knodes;
93 };
94
handle2id(u32 h)95 static u32 handle2id(u32 h)
96 {
97 return ((h & 0x80000000) ? ((h >> 20) & 0x7FF) : h);
98 }
99
id2handle(u32 id)100 static u32 id2handle(u32 id)
101 {
102 return (id | 0x800U) << 20;
103 }
104
u32_hash_fold(__be32 key,const struct tc_u32_sel * sel,u8 fshift)105 static inline unsigned int u32_hash_fold(__be32 key,
106 const struct tc_u32_sel *sel,
107 u8 fshift)
108 {
109 unsigned int h = ntohl(key & sel->hmask) >> fshift;
110
111 return h;
112 }
113
u32_classify(struct sk_buff * skb,const struct tcf_proto * tp,struct tcf_result * res)114 TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb,
115 const struct tcf_proto *tp,
116 struct tcf_result *res)
117 {
118 struct {
119 struct tc_u_knode *knode;
120 unsigned int off;
121 } stack[TC_U32_MAXDEPTH];
122
123 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
124 unsigned int off = skb_network_offset(skb);
125 struct tc_u_knode *n;
126 int sdepth = 0;
127 int off2 = 0;
128 int sel = 0;
129 #ifdef CONFIG_CLS_U32_PERF
130 int j;
131 #endif
132 int i, r;
133
134 next_ht:
135 n = rcu_dereference_bh(ht->ht[sel]);
136
137 next_knode:
138 if (n) {
139 struct tc_u32_key *key = n->sel.keys;
140
141 #ifdef CONFIG_CLS_U32_PERF
142 __this_cpu_inc(n->pf->rcnt);
143 j = 0;
144 #endif
145
146 if (tc_skip_sw(n->flags)) {
147 n = rcu_dereference_bh(n->next);
148 goto next_knode;
149 }
150
151 #ifdef CONFIG_CLS_U32_MARK
152 if ((skb->mark & n->mask) != n->val) {
153 n = rcu_dereference_bh(n->next);
154 goto next_knode;
155 } else {
156 __this_cpu_inc(*n->pcpu_success);
157 }
158 #endif
159
160 for (i = n->sel.nkeys; i > 0; i--, key++) {
161 int toff = off + key->off + (off2 & key->offmask);
162 __be32 *data, hdata;
163
164 data = skb_header_pointer_careful(skb, toff, 4,
165 &hdata);
166 if (!data)
167 goto out;
168 if ((*data ^ key->val) & key->mask) {
169 n = rcu_dereference_bh(n->next);
170 goto next_knode;
171 }
172 #ifdef CONFIG_CLS_U32_PERF
173 __this_cpu_inc(n->pf->kcnts[j]);
174 j++;
175 #endif
176 }
177
178 ht = rcu_dereference_bh(n->ht_down);
179 if (!ht) {
180 check_terminal:
181 if (n->sel.flags & TC_U32_TERMINAL) {
182
183 *res = n->res;
184 if (!tcf_match_indev(skb, n->ifindex)) {
185 n = rcu_dereference_bh(n->next);
186 goto next_knode;
187 }
188 #ifdef CONFIG_CLS_U32_PERF
189 __this_cpu_inc(n->pf->rhit);
190 #endif
191 r = tcf_exts_exec(skb, &n->exts, res);
192 if (r < 0) {
193 n = rcu_dereference_bh(n->next);
194 goto next_knode;
195 }
196
197 return r;
198 }
199 n = rcu_dereference_bh(n->next);
200 goto next_knode;
201 }
202
203 /* PUSH */
204 if (sdepth >= TC_U32_MAXDEPTH)
205 goto deadloop;
206 stack[sdepth].knode = n;
207 stack[sdepth].off = off;
208 sdepth++;
209
210 ht = rcu_dereference_bh(n->ht_down);
211 sel = 0;
212 if (ht->divisor) {
213 __be32 *data, hdata;
214
215 data = skb_header_pointer_careful(skb,
216 off + n->sel.hoff,
217 4, &hdata);
218 if (!data)
219 goto out;
220 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
221 n->fshift);
222 }
223 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
224 goto next_ht;
225
226 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
227 off2 = n->sel.off + 3;
228 if (n->sel.flags & TC_U32_VAROFFSET) {
229 __be16 *data, hdata;
230
231 data = skb_header_pointer_careful(skb,
232 off + n->sel.offoff,
233 2, &hdata);
234 if (!data)
235 goto out;
236 off2 += ntohs(n->sel.offmask & *data) >>
237 n->sel.offshift;
238 }
239 off2 &= ~3;
240 }
241 if (n->sel.flags & TC_U32_EAT) {
242 off += off2;
243 off2 = 0;
244 }
245
246 if (off < skb->len)
247 goto next_ht;
248 }
249
250 /* POP */
251 if (sdepth--) {
252 n = stack[sdepth].knode;
253 ht = rcu_dereference_bh(n->ht_up);
254 off = stack[sdepth].off;
255 goto check_terminal;
256 }
257 out:
258 return -1;
259
260 deadloop:
261 net_warn_ratelimited("cls_u32: dead loop\n");
262 return -1;
263 }
264
u32_lookup_ht(struct tc_u_common * tp_c,u32 handle)265 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
266 {
267 struct tc_u_hnode *ht;
268
269 for (ht = rtnl_dereference(tp_c->hlist);
270 ht;
271 ht = rtnl_dereference(ht->next))
272 if (ht->handle == handle)
273 break;
274
275 return ht;
276 }
277
u32_lookup_key(struct tc_u_hnode * ht,u32 handle)278 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
279 {
280 unsigned int sel;
281 struct tc_u_knode *n = NULL;
282
283 sel = TC_U32_HASH(handle);
284 if (sel > ht->divisor)
285 goto out;
286
287 for (n = rtnl_dereference(ht->ht[sel]);
288 n;
289 n = rtnl_dereference(n->next))
290 if (n->handle == handle)
291 break;
292 out:
293 return n;
294 }
295
296
u32_get(struct tcf_proto * tp,u32 handle)297 static void *u32_get(struct tcf_proto *tp, u32 handle)
298 {
299 struct tc_u_hnode *ht;
300 struct tc_u_common *tp_c = tp->data;
301
302 if (TC_U32_HTID(handle) == TC_U32_ROOT)
303 ht = rtnl_dereference(tp->root);
304 else
305 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
306
307 if (!ht)
308 return NULL;
309
310 if (TC_U32_KEY(handle) == 0)
311 return ht;
312
313 return u32_lookup_key(ht, handle);
314 }
315
316 /* Protected by rtnl lock */
gen_new_htid(struct tc_u_common * tp_c,struct tc_u_hnode * ptr)317 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
318 {
319 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
320 if (id < 0)
321 return 0;
322 return id2handle(id);
323 }
324
325 static struct hlist_head *tc_u_common_hash;
326
327 #define U32_HASH_SHIFT 10
328 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
329
tc_u_common_ptr(const struct tcf_proto * tp)330 static void *tc_u_common_ptr(const struct tcf_proto *tp)
331 {
332 struct tcf_block *block = tp->chain->block;
333
334 /* The block sharing is currently supported only
335 * for classless qdiscs. In that case we use block
336 * for tc_u_common identification. In case the
337 * block is not shared, block->q is a valid pointer
338 * and we can use that. That works for classful qdiscs.
339 */
340 if (tcf_block_shared(block))
341 return block;
342 else
343 return block->q;
344 }
345
tc_u_hash(void * key)346 static struct hlist_head *tc_u_hash(void *key)
347 {
348 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
349 }
350
tc_u_common_find(void * key)351 static struct tc_u_common *tc_u_common_find(void *key)
352 {
353 struct tc_u_common *tc;
354 hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
355 if (tc->ptr == key)
356 return tc;
357 }
358 return NULL;
359 }
360
u32_init(struct tcf_proto * tp)361 static int u32_init(struct tcf_proto *tp)
362 {
363 struct tc_u_hnode *root_ht;
364 void *key = tc_u_common_ptr(tp);
365 struct tc_u_common *tp_c = tc_u_common_find(key);
366
367 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
368 if (root_ht == NULL)
369 return -ENOBUFS;
370
371 refcount_set(&root_ht->refcnt, 1);
372 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : id2handle(0);
373 root_ht->prio = tp->prio;
374 root_ht->is_root = true;
375 idr_init(&root_ht->handle_idr);
376
377 if (tp_c == NULL) {
378 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
379 if (tp_c == NULL) {
380 kfree(root_ht);
381 return -ENOBUFS;
382 }
383 refcount_set(&tp_c->refcnt, 1);
384 tp_c->ptr = key;
385 INIT_HLIST_NODE(&tp_c->hnode);
386 idr_init(&tp_c->handle_idr);
387
388 hlist_add_head(&tp_c->hnode, tc_u_hash(key));
389 } else {
390 refcount_inc(&tp_c->refcnt);
391 }
392
393 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
394 rcu_assign_pointer(tp_c->hlist, root_ht);
395
396 /* root_ht must be destroyed when tcf_proto is destroyed */
397 rcu_assign_pointer(tp->root, root_ht);
398 tp->data = tp_c;
399 return 0;
400 }
401
__u32_destroy_key(struct tc_u_knode * n)402 static void __u32_destroy_key(struct tc_u_knode *n)
403 {
404 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
405
406 tcf_exts_destroy(&n->exts);
407 if (ht && refcount_dec_and_test(&ht->refcnt))
408 kfree(ht);
409 kfree(n);
410 }
411
u32_destroy_key(struct tc_u_knode * n,bool free_pf)412 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
413 {
414 tcf_exts_put_net(&n->exts);
415 #ifdef CONFIG_CLS_U32_PERF
416 if (free_pf)
417 free_percpu(n->pf);
418 #endif
419 #ifdef CONFIG_CLS_U32_MARK
420 if (free_pf)
421 free_percpu(n->pcpu_success);
422 #endif
423 __u32_destroy_key(n);
424 }
425
426 /* u32_delete_key_rcu should be called when free'ing a copied
427 * version of a tc_u_knode obtained from u32_init_knode(). When
428 * copies are obtained from u32_init_knode() the statistics are
429 * shared between the old and new copies to allow readers to
430 * continue to update the statistics during the copy. To support
431 * this the u32_delete_key_rcu variant does not free the percpu
432 * statistics.
433 */
u32_delete_key_work(struct work_struct * work)434 static void u32_delete_key_work(struct work_struct *work)
435 {
436 struct tc_u_knode *key = container_of(to_rcu_work(work),
437 struct tc_u_knode,
438 rwork);
439 rtnl_lock();
440 u32_destroy_key(key, false);
441 rtnl_unlock();
442 }
443
444 /* u32_delete_key_freepf_rcu is the rcu callback variant
445 * that free's the entire structure including the statistics
446 * percpu variables. Only use this if the key is not a copy
447 * returned by u32_init_knode(). See u32_delete_key_rcu()
448 * for the variant that should be used with keys return from
449 * u32_init_knode()
450 */
u32_delete_key_freepf_work(struct work_struct * work)451 static void u32_delete_key_freepf_work(struct work_struct *work)
452 {
453 struct tc_u_knode *key = container_of(to_rcu_work(work),
454 struct tc_u_knode,
455 rwork);
456 rtnl_lock();
457 u32_destroy_key(key, true);
458 rtnl_unlock();
459 }
460
u32_delete_key(struct tcf_proto * tp,struct tc_u_knode * key)461 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
462 {
463 struct tc_u_common *tp_c = tp->data;
464 struct tc_u_knode __rcu **kp;
465 struct tc_u_knode *pkp;
466 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
467
468 if (ht) {
469 kp = &ht->ht[TC_U32_HASH(key->handle)];
470 for (pkp = rtnl_dereference(*kp); pkp;
471 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
472 if (pkp == key) {
473 RCU_INIT_POINTER(*kp, key->next);
474 tp_c->knodes--;
475
476 tcf_unbind_filter(tp, &key->res);
477 idr_remove(&ht->handle_idr, key->handle);
478 tcf_exts_get_net(&key->exts);
479 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
480 return 0;
481 }
482 }
483 }
484 WARN_ON(1);
485 return 0;
486 }
487
u32_clear_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,struct netlink_ext_ack * extack)488 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
489 struct netlink_ext_ack *extack)
490 {
491 struct tcf_block *block = tp->chain->block;
492 struct tc_cls_u32_offload cls_u32 = {};
493
494 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
495 cls_u32.command = TC_CLSU32_DELETE_HNODE;
496 cls_u32.hnode.divisor = h->divisor;
497 cls_u32.hnode.handle = h->handle;
498 cls_u32.hnode.prio = h->prio;
499
500 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
501 }
502
u32_replace_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,u32 flags,struct netlink_ext_ack * extack)503 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
504 u32 flags, struct netlink_ext_ack *extack)
505 {
506 struct tcf_block *block = tp->chain->block;
507 struct tc_cls_u32_offload cls_u32 = {};
508 bool skip_sw = tc_skip_sw(flags);
509 bool offloaded = false;
510 int err;
511
512 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
513 cls_u32.command = TC_CLSU32_NEW_HNODE;
514 cls_u32.hnode.divisor = h->divisor;
515 cls_u32.hnode.handle = h->handle;
516 cls_u32.hnode.prio = h->prio;
517
518 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
519 if (err < 0) {
520 u32_clear_hw_hnode(tp, h, NULL);
521 return err;
522 } else if (err > 0) {
523 offloaded = true;
524 }
525
526 if (skip_sw && !offloaded)
527 return -EINVAL;
528
529 return 0;
530 }
531
u32_remove_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,struct netlink_ext_ack * extack)532 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
533 struct netlink_ext_ack *extack)
534 {
535 struct tcf_block *block = tp->chain->block;
536 struct tc_cls_u32_offload cls_u32 = {};
537
538 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
539 cls_u32.command = TC_CLSU32_DELETE_KNODE;
540 cls_u32.knode.handle = n->handle;
541
542 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
543 &n->flags, &n->in_hw_count, true);
544 }
545
u32_replace_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,u32 flags,struct netlink_ext_ack * extack)546 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
547 u32 flags, struct netlink_ext_ack *extack)
548 {
549 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
550 struct tcf_block *block = tp->chain->block;
551 struct tc_cls_u32_offload cls_u32 = {};
552 bool skip_sw = tc_skip_sw(flags);
553 int err;
554
555 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
556 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
557 cls_u32.knode.handle = n->handle;
558 cls_u32.knode.fshift = n->fshift;
559 #ifdef CONFIG_CLS_U32_MARK
560 cls_u32.knode.val = n->val;
561 cls_u32.knode.mask = n->mask;
562 #else
563 cls_u32.knode.val = 0;
564 cls_u32.knode.mask = 0;
565 #endif
566 cls_u32.knode.sel = &n->sel;
567 cls_u32.knode.res = &n->res;
568 cls_u32.knode.exts = &n->exts;
569 if (n->ht_down)
570 cls_u32.knode.link_handle = ht->handle;
571
572 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
573 &n->flags, &n->in_hw_count, true);
574 if (err) {
575 u32_remove_hw_knode(tp, n, NULL);
576 return err;
577 }
578
579 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
580 return -EINVAL;
581
582 return 0;
583 }
584
u32_clear_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)585 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
586 struct netlink_ext_ack *extack)
587 {
588 struct tc_u_common *tp_c = tp->data;
589 struct tc_u_knode *n;
590 unsigned int h;
591
592 for (h = 0; h <= ht->divisor; h++) {
593 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
594 RCU_INIT_POINTER(ht->ht[h],
595 rtnl_dereference(n->next));
596 tp_c->knodes--;
597 tcf_unbind_filter(tp, &n->res);
598 u32_remove_hw_knode(tp, n, extack);
599 idr_remove(&ht->handle_idr, n->handle);
600 if (tcf_exts_get_net(&n->exts))
601 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
602 else
603 u32_destroy_key(n, true);
604 }
605 }
606 }
607
u32_destroy_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)608 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
609 struct netlink_ext_ack *extack)
610 {
611 struct tc_u_common *tp_c = tp->data;
612 struct tc_u_hnode __rcu **hn;
613 struct tc_u_hnode *phn;
614
615 u32_clear_hnode(tp, ht, extack);
616
617 hn = &tp_c->hlist;
618 for (phn = rtnl_dereference(*hn);
619 phn;
620 hn = &phn->next, phn = rtnl_dereference(*hn)) {
621 if (phn == ht) {
622 u32_clear_hw_hnode(tp, ht, extack);
623 idr_destroy(&ht->handle_idr);
624 idr_remove(&tp_c->handle_idr, handle2id(ht->handle));
625 RCU_INIT_POINTER(*hn, ht->next);
626 kfree_rcu(ht, rcu);
627 return 0;
628 }
629 }
630
631 return -ENOENT;
632 }
633
u32_destroy(struct tcf_proto * tp,bool rtnl_held,struct netlink_ext_ack * extack)634 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
635 struct netlink_ext_ack *extack)
636 {
637 struct tc_u_common *tp_c = tp->data;
638 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
639
640 WARN_ON(root_ht == NULL);
641
642 if (root_ht && refcount_dec_and_test(&root_ht->refcnt))
643 u32_destroy_hnode(tp, root_ht, extack);
644
645 if (refcount_dec_and_test(&tp_c->refcnt)) {
646 struct tc_u_hnode *ht;
647
648 hlist_del(&tp_c->hnode);
649
650 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
651 u32_clear_hnode(tp, ht, extack);
652 RCU_INIT_POINTER(tp_c->hlist, ht->next);
653
654 /* u32_destroy_key() will later free ht for us, if it's
655 * still referenced by some knode
656 */
657 if (refcount_dec_and_test(&ht->refcnt))
658 kfree_rcu(ht, rcu);
659 }
660
661 idr_destroy(&tp_c->handle_idr);
662 kfree(tp_c);
663 }
664
665 tp->data = NULL;
666 }
667
u32_delete(struct tcf_proto * tp,void * arg,bool * last,bool rtnl_held,struct netlink_ext_ack * extack)668 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
669 bool rtnl_held, struct netlink_ext_ack *extack)
670 {
671 struct tc_u_hnode *ht = arg;
672 struct tc_u_common *tp_c = tp->data;
673 int ret = 0;
674
675 if (TC_U32_KEY(ht->handle)) {
676 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
677 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
678 goto out;
679 }
680
681 if (ht->is_root) {
682 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
683 return -EINVAL;
684 }
685
686 if (refcount_dec_if_one(&ht->refcnt)) {
687 u32_destroy_hnode(tp, ht, extack);
688 } else {
689 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
690 return -EBUSY;
691 }
692
693 out:
694 *last = refcount_read(&tp_c->refcnt) == 1 && tp_c->knodes == 0;
695 return ret;
696 }
697
gen_new_kid(struct tc_u_hnode * ht,u32 htid)698 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
699 {
700 u32 index = htid | 0x800;
701 u32 max = htid | 0xFFF;
702
703 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
704 index = htid + 1;
705 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
706 GFP_KERNEL))
707 index = max;
708 }
709
710 return index;
711 }
712
713 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
714 [TCA_U32_CLASSID] = { .type = NLA_U32 },
715 [TCA_U32_HASH] = { .type = NLA_U32 },
716 [TCA_U32_LINK] = { .type = NLA_U32 },
717 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
718 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
719 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
720 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
721 [TCA_U32_FLAGS] = { .type = NLA_U32 },
722 };
723
u32_unbind_filter(struct tcf_proto * tp,struct tc_u_knode * n,struct nlattr ** tb)724 static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
725 struct nlattr **tb)
726 {
727 if (tb[TCA_U32_CLASSID])
728 tcf_unbind_filter(tp, &n->res);
729 }
730
u32_bind_filter(struct tcf_proto * tp,struct tc_u_knode * n,unsigned long base,struct nlattr ** tb)731 static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
732 unsigned long base, struct nlattr **tb)
733 {
734 if (tb[TCA_U32_CLASSID]) {
735 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
736 tcf_bind_filter(tp, &n->res, base);
737 }
738 }
739
u32_set_parms(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n,struct nlattr ** tb,struct nlattr * est,u32 flags,u32 fl_flags,struct netlink_ext_ack * extack)740 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
741 struct tc_u_knode *n, struct nlattr **tb,
742 struct nlattr *est, u32 flags, u32 fl_flags,
743 struct netlink_ext_ack *extack)
744 {
745 int err, ifindex = -1;
746
747 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags,
748 fl_flags, extack);
749 if (err < 0)
750 return err;
751
752 if (tb[TCA_U32_INDEV]) {
753 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
754 if (ifindex < 0)
755 return -EINVAL;
756 }
757
758 if (tb[TCA_U32_LINK]) {
759 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
760 struct tc_u_hnode *ht_down = NULL, *ht_old;
761
762 if (TC_U32_KEY(handle)) {
763 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
764 return -EINVAL;
765 }
766
767 if (handle) {
768 ht_down = u32_lookup_ht(tp->data, handle);
769
770 if (!ht_down) {
771 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
772 return -EINVAL;
773 }
774 if (ht_down->is_root) {
775 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
776 return -EINVAL;
777 }
778 refcount_inc(&ht_down->refcnt);
779 }
780
781 ht_old = rtnl_dereference(n->ht_down);
782 rcu_assign_pointer(n->ht_down, ht_down);
783
784 if (ht_old)
785 refcount_dec(&ht_old->refcnt);
786 }
787
788 if (ifindex >= 0)
789 n->ifindex = ifindex;
790
791 return 0;
792 }
793
u32_replace_knode(struct tcf_proto * tp,struct tc_u_common * tp_c,struct tc_u_knode * n)794 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
795 struct tc_u_knode *n)
796 {
797 struct tc_u_knode __rcu **ins;
798 struct tc_u_knode *pins;
799 struct tc_u_hnode *ht;
800
801 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
802 ht = rtnl_dereference(tp->root);
803 else
804 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
805
806 ins = &ht->ht[TC_U32_HASH(n->handle)];
807
808 /* The node must always exist for it to be replaced if this is not the
809 * case then something went very wrong elsewhere.
810 */
811 for (pins = rtnl_dereference(*ins); ;
812 ins = &pins->next, pins = rtnl_dereference(*ins))
813 if (pins->handle == n->handle)
814 break;
815
816 idr_replace(&ht->handle_idr, n, n->handle);
817 RCU_INIT_POINTER(n->next, pins->next);
818 rcu_assign_pointer(*ins, n);
819 }
820
u32_init_knode(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n)821 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
822 struct tc_u_knode *n)
823 {
824 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
825 struct tc_u32_sel *s = &n->sel;
826 struct tc_u_knode *new;
827
828 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
829 if (!new)
830 return NULL;
831
832 RCU_INIT_POINTER(new->next, n->next);
833 new->handle = n->handle;
834 RCU_INIT_POINTER(new->ht_up, n->ht_up);
835
836 new->ifindex = n->ifindex;
837 new->fshift = n->fshift;
838 new->flags = n->flags;
839 RCU_INIT_POINTER(new->ht_down, ht);
840
841 #ifdef CONFIG_CLS_U32_PERF
842 /* Statistics may be incremented by readers during update
843 * so we must keep them in tact. When the node is later destroyed
844 * a special destroy call must be made to not free the pf memory.
845 */
846 new->pf = n->pf;
847 #endif
848
849 #ifdef CONFIG_CLS_U32_MARK
850 new->val = n->val;
851 new->mask = n->mask;
852 /* Similarly success statistics must be moved as pointers */
853 new->pcpu_success = n->pcpu_success;
854 #endif
855 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
856
857 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
858 kfree(new);
859 return NULL;
860 }
861
862 /* bump reference count as long as we hold pointer to structure */
863 if (ht)
864 refcount_inc(&ht->refcnt);
865
866 return new;
867 }
868
u32_change(struct net * net,struct sk_buff * in_skb,struct tcf_proto * tp,unsigned long base,u32 handle,struct nlattr ** tca,void ** arg,u32 flags,struct netlink_ext_ack * extack)869 static int u32_change(struct net *net, struct sk_buff *in_skb,
870 struct tcf_proto *tp, unsigned long base, u32 handle,
871 struct nlattr **tca, void **arg, u32 flags,
872 struct netlink_ext_ack *extack)
873 {
874 struct tc_u_common *tp_c = tp->data;
875 struct tc_u_hnode *ht;
876 struct tc_u_knode *n;
877 struct tc_u32_sel *s;
878 struct nlattr *opt = tca[TCA_OPTIONS];
879 struct nlattr *tb[TCA_U32_MAX + 1];
880 u32 htid, userflags = 0;
881 size_t sel_size;
882 int err;
883
884 if (!opt) {
885 if (handle) {
886 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
887 return -EINVAL;
888 } else {
889 return 0;
890 }
891 }
892
893 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
894 extack);
895 if (err < 0)
896 return err;
897
898 if (tb[TCA_U32_FLAGS]) {
899 userflags = nla_get_u32(tb[TCA_U32_FLAGS]);
900 if (!tc_flags_valid(userflags)) {
901 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
902 return -EINVAL;
903 }
904 }
905
906 n = *arg;
907 if (n) {
908 struct tc_u_knode *new;
909
910 if (TC_U32_KEY(n->handle) == 0) {
911 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
912 return -EINVAL;
913 }
914
915 if ((n->flags ^ userflags) &
916 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
917 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
918 return -EINVAL;
919 }
920
921 new = u32_init_knode(net, tp, n);
922 if (!new)
923 return -ENOMEM;
924
925 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE],
926 flags, new->flags, extack);
927
928 if (err) {
929 __u32_destroy_key(new);
930 return err;
931 }
932
933 u32_bind_filter(tp, new, base, tb);
934
935 err = u32_replace_hw_knode(tp, new, flags, extack);
936 if (err) {
937 u32_unbind_filter(tp, new, tb);
938
939 if (tb[TCA_U32_LINK]) {
940 struct tc_u_hnode *ht_old;
941
942 ht_old = rtnl_dereference(n->ht_down);
943 if (ht_old)
944 refcount_inc(&ht_old->refcnt);
945 }
946 __u32_destroy_key(new);
947 return err;
948 }
949
950 if (!tc_in_hw(new->flags))
951 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
952
953 tcf_proto_update_usesw(tp, new->flags);
954
955 u32_replace_knode(tp, tp_c, new);
956 tcf_unbind_filter(tp, &n->res);
957 tcf_exts_get_net(&n->exts);
958 tcf_queue_work(&n->rwork, u32_delete_key_work);
959 return 0;
960 }
961
962 if (tb[TCA_U32_DIVISOR]) {
963 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
964
965 if (!is_power_of_2(divisor)) {
966 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
967 return -EINVAL;
968 }
969 if (divisor-- > 0x100) {
970 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
971 return -EINVAL;
972 }
973 if (TC_U32_KEY(handle)) {
974 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
975 return -EINVAL;
976 }
977 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
978 if (ht == NULL)
979 return -ENOBUFS;
980 if (handle == 0) {
981 handle = gen_new_htid(tp->data, ht);
982 if (handle == 0) {
983 kfree(ht);
984 return -ENOMEM;
985 }
986 } else {
987 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
988 handle, GFP_KERNEL);
989 if (err) {
990 kfree(ht);
991 return err;
992 }
993 }
994 refcount_set(&ht->refcnt, 1);
995 ht->divisor = divisor;
996 ht->handle = handle;
997 ht->prio = tp->prio;
998 idr_init(&ht->handle_idr);
999 ht->flags = userflags;
1000
1001 err = u32_replace_hw_hnode(tp, ht, userflags, extack);
1002 if (err) {
1003 idr_remove(&tp_c->handle_idr, handle2id(handle));
1004 kfree(ht);
1005 return err;
1006 }
1007
1008 RCU_INIT_POINTER(ht->next, tp_c->hlist);
1009 rcu_assign_pointer(tp_c->hlist, ht);
1010 *arg = ht;
1011
1012 return 0;
1013 }
1014
1015 if (tb[TCA_U32_HASH]) {
1016 htid = nla_get_u32(tb[TCA_U32_HASH]);
1017 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1018 ht = rtnl_dereference(tp->root);
1019 htid = ht->handle;
1020 } else {
1021 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
1022 if (!ht) {
1023 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
1024 return -EINVAL;
1025 }
1026 }
1027 } else {
1028 ht = rtnl_dereference(tp->root);
1029 htid = ht->handle;
1030 }
1031
1032 if (ht->divisor < TC_U32_HASH(htid)) {
1033 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
1034 return -EINVAL;
1035 }
1036
1037 /* At this point, we need to derive the new handle that will be used to
1038 * uniquely map the identity of this table match entry. The
1039 * identity of the entry that we need to construct is 32 bits made of:
1040 * htid(12b):bucketid(8b):node/entryid(12b)
1041 *
1042 * At this point _we have the table(ht)_ in which we will insert this
1043 * entry. We carry the table's id in variable "htid".
1044 * Note that earlier code picked the ht selection either by a) the user
1045 * providing the htid specified via TCA_U32_HASH attribute or b) when
1046 * no such attribute is passed then the root ht, is default to at ID
1047 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1048 * If OTOH the user passed us the htid, they may also pass a bucketid of
1049 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1050 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1051 * passed via the htid, so even if it was non-zero it will be ignored.
1052 *
1053 * We may also have a handle, if the user passed one. The handle also
1054 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1055 * Rule: the bucketid on the handle is ignored even if one was passed;
1056 * rather the value on "htid" is always assumed to be the bucketid.
1057 */
1058 if (handle) {
1059 /* Rule: The htid from handle and tableid from htid must match */
1060 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1061 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1062 return -EINVAL;
1063 }
1064 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1065 * need to finalize the table entry identification with the last
1066 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1067 * entries. Rule: nodeid of 0 is reserved only for tables(see
1068 * earlier code which processes TC_U32_DIVISOR attribute).
1069 * Rule: The nodeid can only be derived from the handle (and not
1070 * htid).
1071 * Rule: if the handle specified zero for the node id example
1072 * 0x60000000, then pick a new nodeid from the pool of IDs
1073 * this hash table has been allocating from.
1074 * If OTOH it is specified (i.e for example the user passed a
1075 * handle such as 0x60000123), then we use it generate our final
1076 * handle which is used to uniquely identify the match entry.
1077 */
1078 if (!TC_U32_NODE(handle)) {
1079 handle = gen_new_kid(ht, htid);
1080 } else {
1081 handle = htid | TC_U32_NODE(handle);
1082 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle,
1083 handle, GFP_KERNEL);
1084 if (err)
1085 return err;
1086 }
1087 } else {
1088 /* The user did not give us a handle; lets just generate one
1089 * from the table's pool of nodeids.
1090 */
1091 handle = gen_new_kid(ht, htid);
1092 }
1093
1094 if (tb[TCA_U32_SEL] == NULL) {
1095 NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1096 err = -EINVAL;
1097 goto erridr;
1098 }
1099
1100 s = nla_data(tb[TCA_U32_SEL]);
1101 sel_size = struct_size(s, keys, s->nkeys);
1102 if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
1103 err = -EINVAL;
1104 goto erridr;
1105 }
1106
1107 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1108 if (n == NULL) {
1109 err = -ENOBUFS;
1110 goto erridr;
1111 }
1112
1113 #ifdef CONFIG_CLS_U32_PERF
1114 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1115 __alignof__(struct tc_u32_pcnt));
1116 if (!n->pf) {
1117 err = -ENOBUFS;
1118 goto errfree;
1119 }
1120 #endif
1121
1122 unsafe_memcpy(&n->sel, s, sel_size,
1123 /* A composite flex-array structure destination,
1124 * which was correctly sized with struct_size(),
1125 * bounds-checked against nla_len(), and allocated
1126 * above. */);
1127 RCU_INIT_POINTER(n->ht_up, ht);
1128 n->handle = handle;
1129 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1130 n->flags = userflags;
1131
1132 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
1133 if (err < 0)
1134 goto errout;
1135
1136 #ifdef CONFIG_CLS_U32_MARK
1137 n->pcpu_success = alloc_percpu(u32);
1138 if (!n->pcpu_success) {
1139 err = -ENOMEM;
1140 goto errout;
1141 }
1142
1143 if (tb[TCA_U32_MARK]) {
1144 struct tc_u32_mark *mark;
1145
1146 mark = nla_data(tb[TCA_U32_MARK]);
1147 n->val = mark->val;
1148 n->mask = mark->mask;
1149 }
1150 #endif
1151
1152 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE],
1153 flags, n->flags, extack);
1154
1155 u32_bind_filter(tp, n, base, tb);
1156
1157 if (err == 0) {
1158 struct tc_u_knode __rcu **ins;
1159 struct tc_u_knode *pins;
1160
1161 err = u32_replace_hw_knode(tp, n, flags, extack);
1162 if (err)
1163 goto errunbind;
1164
1165 if (!tc_in_hw(n->flags))
1166 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1167
1168 tcf_proto_update_usesw(tp, n->flags);
1169
1170 ins = &ht->ht[TC_U32_HASH(handle)];
1171 for (pins = rtnl_dereference(*ins); pins;
1172 ins = &pins->next, pins = rtnl_dereference(*ins))
1173 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1174 break;
1175
1176 RCU_INIT_POINTER(n->next, pins);
1177 rcu_assign_pointer(*ins, n);
1178 tp_c->knodes++;
1179 *arg = n;
1180 return 0;
1181 }
1182
1183 errunbind:
1184 u32_unbind_filter(tp, n, tb);
1185
1186 #ifdef CONFIG_CLS_U32_MARK
1187 free_percpu(n->pcpu_success);
1188 #endif
1189
1190 errout:
1191 tcf_exts_destroy(&n->exts);
1192 #ifdef CONFIG_CLS_U32_PERF
1193 errfree:
1194 free_percpu(n->pf);
1195 #endif
1196 kfree(n);
1197 erridr:
1198 idr_remove(&ht->handle_idr, handle);
1199 return err;
1200 }
1201
u32_walk(struct tcf_proto * tp,struct tcf_walker * arg,bool rtnl_held)1202 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1203 bool rtnl_held)
1204 {
1205 struct tc_u_common *tp_c = tp->data;
1206 struct tc_u_hnode *ht;
1207 struct tc_u_knode *n;
1208 unsigned int h;
1209
1210 if (arg->stop)
1211 return;
1212
1213 for (ht = rtnl_dereference(tp_c->hlist);
1214 ht;
1215 ht = rtnl_dereference(ht->next)) {
1216 if (ht->prio != tp->prio)
1217 continue;
1218
1219 if (!tc_cls_stats_dump(tp, arg, ht))
1220 return;
1221
1222 for (h = 0; h <= ht->divisor; h++) {
1223 for (n = rtnl_dereference(ht->ht[h]);
1224 n;
1225 n = rtnl_dereference(n->next)) {
1226 if (!tc_cls_stats_dump(tp, arg, n))
1227 return;
1228 }
1229 }
1230 }
1231 }
1232
u32_reoffload_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1233 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1234 bool add, flow_setup_cb_t *cb, void *cb_priv,
1235 struct netlink_ext_ack *extack)
1236 {
1237 struct tc_cls_u32_offload cls_u32 = {};
1238 int err;
1239
1240 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
1241 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1242 cls_u32.hnode.divisor = ht->divisor;
1243 cls_u32.hnode.handle = ht->handle;
1244 cls_u32.hnode.prio = ht->prio;
1245
1246 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1247 if (err && add && tc_skip_sw(ht->flags))
1248 return err;
1249
1250 return 0;
1251 }
1252
u32_reoffload_knode(struct tcf_proto * tp,struct tc_u_knode * n,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1253 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1254 bool add, flow_setup_cb_t *cb, void *cb_priv,
1255 struct netlink_ext_ack *extack)
1256 {
1257 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1258 struct tcf_block *block = tp->chain->block;
1259 struct tc_cls_u32_offload cls_u32 = {};
1260
1261 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
1262 cls_u32.command = add ?
1263 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1264 cls_u32.knode.handle = n->handle;
1265
1266 if (add) {
1267 cls_u32.knode.fshift = n->fshift;
1268 #ifdef CONFIG_CLS_U32_MARK
1269 cls_u32.knode.val = n->val;
1270 cls_u32.knode.mask = n->mask;
1271 #else
1272 cls_u32.knode.val = 0;
1273 cls_u32.knode.mask = 0;
1274 #endif
1275 cls_u32.knode.sel = &n->sel;
1276 cls_u32.knode.res = &n->res;
1277 cls_u32.knode.exts = &n->exts;
1278 if (n->ht_down)
1279 cls_u32.knode.link_handle = ht->handle;
1280 }
1281
1282 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
1283 &cls_u32, cb_priv, &n->flags,
1284 &n->in_hw_count);
1285 }
1286
u32_reoffload(struct tcf_proto * tp,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1287 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1288 void *cb_priv, struct netlink_ext_ack *extack)
1289 {
1290 struct tc_u_common *tp_c = tp->data;
1291 struct tc_u_hnode *ht;
1292 struct tc_u_knode *n;
1293 unsigned int h;
1294 int err;
1295
1296 for (ht = rtnl_dereference(tp_c->hlist);
1297 ht;
1298 ht = rtnl_dereference(ht->next)) {
1299 if (ht->prio != tp->prio)
1300 continue;
1301
1302 /* When adding filters to a new dev, try to offload the
1303 * hashtable first. When removing, do the filters before the
1304 * hashtable.
1305 */
1306 if (add && !tc_skip_hw(ht->flags)) {
1307 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1308 extack);
1309 if (err)
1310 return err;
1311 }
1312
1313 for (h = 0; h <= ht->divisor; h++) {
1314 for (n = rtnl_dereference(ht->ht[h]);
1315 n;
1316 n = rtnl_dereference(n->next)) {
1317 if (tc_skip_hw(n->flags))
1318 continue;
1319
1320 err = u32_reoffload_knode(tp, n, add, cb,
1321 cb_priv, extack);
1322 if (err)
1323 return err;
1324 }
1325 }
1326
1327 if (!add && !tc_skip_hw(ht->flags))
1328 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1329 }
1330
1331 return 0;
1332 }
1333
u32_bind_class(void * fh,u32 classid,unsigned long cl,void * q,unsigned long base)1334 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1335 unsigned long base)
1336 {
1337 struct tc_u_knode *n = fh;
1338
1339 tc_cls_bind_class(classid, cl, q, &n->res, base);
1340 }
1341
u32_dump(struct net * net,struct tcf_proto * tp,void * fh,struct sk_buff * skb,struct tcmsg * t,bool rtnl_held)1342 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1343 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1344 {
1345 struct tc_u_knode *n = fh;
1346 struct tc_u_hnode *ht_up, *ht_down;
1347 struct nlattr *nest;
1348
1349 if (n == NULL)
1350 return skb->len;
1351
1352 t->tcm_handle = n->handle;
1353
1354 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1355 if (nest == NULL)
1356 goto nla_put_failure;
1357
1358 if (TC_U32_KEY(n->handle) == 0) {
1359 struct tc_u_hnode *ht = fh;
1360 u32 divisor = ht->divisor + 1;
1361
1362 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1363 goto nla_put_failure;
1364 } else {
1365 #ifdef CONFIG_CLS_U32_PERF
1366 struct tc_u32_pcnt *gpf;
1367 int cpu;
1368 #endif
1369
1370 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1371 &n->sel))
1372 goto nla_put_failure;
1373
1374 ht_up = rtnl_dereference(n->ht_up);
1375 if (ht_up) {
1376 u32 htid = n->handle & 0xFFFFF000;
1377 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1378 goto nla_put_failure;
1379 }
1380 if (n->res.classid &&
1381 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1382 goto nla_put_failure;
1383
1384 ht_down = rtnl_dereference(n->ht_down);
1385 if (ht_down &&
1386 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1387 goto nla_put_failure;
1388
1389 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1390 goto nla_put_failure;
1391
1392 #ifdef CONFIG_CLS_U32_MARK
1393 if ((n->val || n->mask)) {
1394 struct tc_u32_mark mark = {.val = n->val,
1395 .mask = n->mask,
1396 .success = 0};
1397 int cpum;
1398
1399 for_each_possible_cpu(cpum) {
1400 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1401
1402 mark.success += cnt;
1403 }
1404
1405 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1406 goto nla_put_failure;
1407 }
1408 #endif
1409
1410 if (tcf_exts_dump(skb, &n->exts) < 0)
1411 goto nla_put_failure;
1412
1413 if (n->ifindex) {
1414 struct net_device *dev;
1415 dev = __dev_get_by_index(net, n->ifindex);
1416 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1417 goto nla_put_failure;
1418 }
1419 #ifdef CONFIG_CLS_U32_PERF
1420 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1421 if (!gpf)
1422 goto nla_put_failure;
1423
1424 for_each_possible_cpu(cpu) {
1425 int i;
1426 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1427
1428 gpf->rcnt += pf->rcnt;
1429 gpf->rhit += pf->rhit;
1430 for (i = 0; i < n->sel.nkeys; i++)
1431 gpf->kcnts[i] += pf->kcnts[i];
1432 }
1433
1434 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1435 gpf, TCA_U32_PAD)) {
1436 kfree(gpf);
1437 goto nla_put_failure;
1438 }
1439 kfree(gpf);
1440 #endif
1441 }
1442
1443 nla_nest_end(skb, nest);
1444
1445 if (TC_U32_KEY(n->handle))
1446 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1447 goto nla_put_failure;
1448 return skb->len;
1449
1450 nla_put_failure:
1451 nla_nest_cancel(skb, nest);
1452 return -1;
1453 }
1454
1455 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1456 .kind = "u32",
1457 .classify = u32_classify,
1458 .init = u32_init,
1459 .destroy = u32_destroy,
1460 .get = u32_get,
1461 .change = u32_change,
1462 .delete = u32_delete,
1463 .walk = u32_walk,
1464 .reoffload = u32_reoffload,
1465 .dump = u32_dump,
1466 .bind_class = u32_bind_class,
1467 .owner = THIS_MODULE,
1468 };
1469 MODULE_ALIAS_NET_CLS("u32");
1470
init_u32(void)1471 static int __init init_u32(void)
1472 {
1473 int i, ret;
1474
1475 pr_info("u32 classifier\n");
1476 #ifdef CONFIG_CLS_U32_PERF
1477 pr_info(" Performance counters on\n");
1478 #endif
1479 pr_info(" input device check on\n");
1480 #ifdef CONFIG_NET_CLS_ACT
1481 pr_info(" Actions configured\n");
1482 #endif
1483 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1484 sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!tc_u_common_hash)
1487 return -ENOMEM;
1488
1489 for (i = 0; i < U32_HASH_SIZE; i++)
1490 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1491
1492 ret = register_tcf_proto_ops(&cls_u32_ops);
1493 if (ret)
1494 kvfree(tc_u_common_hash);
1495 return ret;
1496 }
1497
exit_u32(void)1498 static void __exit exit_u32(void)
1499 {
1500 unregister_tcf_proto_ops(&cls_u32_ops);
1501 kvfree(tc_u_common_hash);
1502 }
1503
1504 module_init(init_u32)
1505 module_exit(exit_u32)
1506 MODULE_DESCRIPTION("Universal 32bit based TC Classifier");
1507 MODULE_LICENSE("GPL");
1508