1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_IMPORT_NS("LIBIE_ADMINQ");
42 MODULE_IMPORT_NS("LIBIE_FWLOG");
43 MODULE_LICENSE("GPL v2");
44 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
45
46 static int debug = -1;
47 module_param(debug, int, 0644);
48 #ifndef CONFIG_DYNAMIC_DEBUG
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
50 #else
51 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
52 #endif /* !CONFIG_DYNAMIC_DEBUG */
53
54 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
55 EXPORT_SYMBOL(ice_xdp_locking_key);
56
57 /**
58 * ice_hw_to_dev - Get device pointer from the hardware structure
59 * @hw: pointer to the device HW structure
60 *
61 * Used to access the device pointer from compilation units which can't easily
62 * include the definition of struct ice_pf without leading to circular header
63 * dependencies.
64 */
ice_hw_to_dev(struct ice_hw * hw)65 struct device *ice_hw_to_dev(struct ice_hw *hw)
66 {
67 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
68
69 return &pf->pdev->dev;
70 }
71
72 static struct workqueue_struct *ice_wq;
73 struct workqueue_struct *ice_lag_wq;
74 static const struct net_device_ops ice_netdev_safe_mode_ops;
75 static const struct net_device_ops ice_netdev_ops;
76
77 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
78
79 static void ice_vsi_release_all(struct ice_pf *pf);
80
81 static int ice_rebuild_channels(struct ice_pf *pf);
82 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
83
84 static int
85 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
86 void *cb_priv, enum tc_setup_type type, void *type_data,
87 void *data,
88 void (*cleanup)(struct flow_block_cb *block_cb));
89
netif_is_ice(const struct net_device * dev)90 bool netif_is_ice(const struct net_device *dev)
91 {
92 return dev && (dev->netdev_ops == &ice_netdev_ops ||
93 dev->netdev_ops == &ice_netdev_safe_mode_ops);
94 }
95
96 /**
97 * ice_get_tx_pending - returns number of Tx descriptors not processed
98 * @ring: the ring of descriptors
99 */
ice_get_tx_pending(struct ice_tx_ring * ring)100 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
101 {
102 u16 head, tail;
103
104 head = ring->next_to_clean;
105 tail = ring->next_to_use;
106
107 if (head != tail)
108 return (head < tail) ?
109 tail - head : (tail + ring->count - head);
110 return 0;
111 }
112
113 /**
114 * ice_check_for_hang_subtask - check for and recover hung queues
115 * @pf: pointer to PF struct
116 */
ice_check_for_hang_subtask(struct ice_pf * pf)117 static void ice_check_for_hang_subtask(struct ice_pf *pf)
118 {
119 struct ice_vsi *vsi = NULL;
120 struct ice_hw *hw;
121 unsigned int i;
122 int packets;
123 u32 v;
124
125 ice_for_each_vsi(pf, v)
126 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
127 vsi = pf->vsi[v];
128 break;
129 }
130
131 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
132 return;
133
134 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
135 return;
136
137 hw = &vsi->back->hw;
138
139 ice_for_each_txq(vsi, i) {
140 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
141 struct ice_ring_stats *ring_stats;
142
143 if (!tx_ring)
144 continue;
145 if (ice_ring_ch_enabled(tx_ring))
146 continue;
147
148 ring_stats = tx_ring->ring_stats;
149 if (!ring_stats)
150 continue;
151
152 if (tx_ring->desc) {
153 /* If packet counter has not changed the queue is
154 * likely stalled, so force an interrupt for this
155 * queue.
156 *
157 * prev_pkt would be negative if there was no
158 * pending work.
159 */
160 packets = ring_stats->stats.pkts & INT_MAX;
161 if (ring_stats->tx_stats.prev_pkt == packets) {
162 /* Trigger sw interrupt to revive the queue */
163 ice_trigger_sw_intr(hw, tx_ring->q_vector);
164 continue;
165 }
166
167 /* Memory barrier between read of packet count and call
168 * to ice_get_tx_pending()
169 */
170 smp_rmb();
171 ring_stats->tx_stats.prev_pkt =
172 ice_get_tx_pending(tx_ring) ? packets : -1;
173 }
174 }
175 }
176
177 /**
178 * ice_init_mac_fltr - Set initial MAC filters
179 * @pf: board private structure
180 *
181 * Set initial set of MAC filters for PF VSI; configure filters for permanent
182 * address and broadcast address. If an error is encountered, netdevice will be
183 * unregistered.
184 */
ice_init_mac_fltr(struct ice_pf * pf)185 static int ice_init_mac_fltr(struct ice_pf *pf)
186 {
187 struct ice_vsi *vsi;
188 u8 *perm_addr;
189
190 vsi = ice_get_main_vsi(pf);
191 if (!vsi)
192 return -EINVAL;
193
194 perm_addr = vsi->port_info->mac.perm_addr;
195 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
196 }
197
198 /**
199 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
200 * @netdev: the net device on which the sync is happening
201 * @addr: MAC address to sync
202 *
203 * This is a callback function which is called by the in kernel device sync
204 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
205 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
206 * MAC filters from the hardware.
207 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)208 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
209 {
210 struct ice_netdev_priv *np = netdev_priv(netdev);
211 struct ice_vsi *vsi = np->vsi;
212
213 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
214 ICE_FWD_TO_VSI))
215 return -EINVAL;
216
217 return 0;
218 }
219
220 /**
221 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
222 * @netdev: the net device on which the unsync is happening
223 * @addr: MAC address to unsync
224 *
225 * This is a callback function which is called by the in kernel device unsync
226 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
227 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
228 * delete the MAC filters from the hardware.
229 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)230 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
231 {
232 struct ice_netdev_priv *np = netdev_priv(netdev);
233 struct ice_vsi *vsi = np->vsi;
234
235 /* Under some circumstances, we might receive a request to delete our
236 * own device address from our uc list. Because we store the device
237 * address in the VSI's MAC filter list, we need to ignore such
238 * requests and not delete our device address from this list.
239 */
240 if (ether_addr_equal(addr, netdev->dev_addr))
241 return 0;
242
243 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
244 ICE_FWD_TO_VSI))
245 return -EINVAL;
246
247 return 0;
248 }
249
250 /**
251 * ice_vsi_fltr_changed - check if filter state changed
252 * @vsi: VSI to be checked
253 *
254 * returns true if filter state has changed, false otherwise.
255 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)256 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
257 {
258 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
259 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
260 }
261
262 /**
263 * ice_set_promisc - Enable promiscuous mode for a given PF
264 * @vsi: the VSI being configured
265 * @promisc_m: mask of promiscuous config bits
266 *
267 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)268 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
269 {
270 int status;
271
272 if (vsi->type != ICE_VSI_PF)
273 return 0;
274
275 if (ice_vsi_has_non_zero_vlans(vsi)) {
276 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
277 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
278 promisc_m);
279 } else {
280 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
281 promisc_m, 0);
282 }
283 if (status && status != -EEXIST)
284 return status;
285
286 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
287 vsi->vsi_num, promisc_m);
288 return 0;
289 }
290
291 /**
292 * ice_clear_promisc - Disable promiscuous mode for a given PF
293 * @vsi: the VSI being configured
294 * @promisc_m: mask of promiscuous config bits
295 *
296 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)297 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
298 {
299 int status;
300
301 if (vsi->type != ICE_VSI_PF)
302 return 0;
303
304 if (ice_vsi_has_non_zero_vlans(vsi)) {
305 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
306 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
307 promisc_m);
308 } else {
309 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
310 promisc_m, 0);
311 }
312
313 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
314 vsi->vsi_num, promisc_m);
315 return status;
316 }
317
318 /**
319 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
320 * @vsi: ptr to the VSI
321 *
322 * Push any outstanding VSI filter changes through the AdminQ.
323 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)324 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
325 {
326 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
327 struct device *dev = ice_pf_to_dev(vsi->back);
328 struct net_device *netdev = vsi->netdev;
329 bool promisc_forced_on = false;
330 struct ice_pf *pf = vsi->back;
331 struct ice_hw *hw = &pf->hw;
332 u32 changed_flags = 0;
333 int err;
334
335 if (!vsi->netdev)
336 return -EINVAL;
337
338 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
339 usleep_range(1000, 2000);
340
341 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
342 vsi->current_netdev_flags = vsi->netdev->flags;
343
344 INIT_LIST_HEAD(&vsi->tmp_sync_list);
345 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
346
347 if (ice_vsi_fltr_changed(vsi)) {
348 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
349 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
350
351 /* grab the netdev's addr_list_lock */
352 netif_addr_lock_bh(netdev);
353 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
356 ice_add_mac_to_unsync_list);
357 /* our temp lists are populated. release lock */
358 netif_addr_unlock_bh(netdev);
359 }
360
361 /* Remove MAC addresses in the unsync list */
362 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
363 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
364 if (err) {
365 netdev_err(netdev, "Failed to delete MAC filters\n");
366 /* if we failed because of alloc failures, just bail */
367 if (err == -ENOMEM)
368 goto out;
369 }
370
371 /* Add MAC addresses in the sync list */
372 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
373 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
374 /* If filter is added successfully or already exists, do not go into
375 * 'if' condition and report it as error. Instead continue processing
376 * rest of the function.
377 */
378 if (err && err != -EEXIST) {
379 netdev_err(netdev, "Failed to add MAC filters\n");
380 /* If there is no more space for new umac filters, VSI
381 * should go into promiscuous mode. There should be some
382 * space reserved for promiscuous filters.
383 */
384 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC &&
385 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
386 vsi->state)) {
387 promisc_forced_on = true;
388 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
389 vsi->vsi_num);
390 } else {
391 goto out;
392 }
393 }
394 err = 0;
395 /* check for changes in promiscuous modes */
396 if (changed_flags & IFF_ALLMULTI) {
397 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
398 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
399 if (err) {
400 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
401 goto out_promisc;
402 }
403 } else {
404 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
405 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
406 if (err) {
407 vsi->current_netdev_flags |= IFF_ALLMULTI;
408 goto out_promisc;
409 }
410 }
411 }
412
413 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
414 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
415 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
416 if (vsi->current_netdev_flags & IFF_PROMISC) {
417 /* Apply Rx filter rule to get traffic from wire */
418 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
419 err = ice_set_dflt_vsi(vsi);
420 if (err && err != -EEXIST) {
421 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
422 err, vsi->vsi_num);
423 vsi->current_netdev_flags &=
424 ~IFF_PROMISC;
425 goto out_promisc;
426 }
427 err = 0;
428 vlan_ops->dis_rx_filtering(vsi);
429
430 /* promiscuous mode implies allmulticast so
431 * that VSIs that are in promiscuous mode are
432 * subscribed to multicast packets coming to
433 * the port
434 */
435 err = ice_set_promisc(vsi,
436 ICE_MCAST_PROMISC_BITS);
437 if (err)
438 goto out_promisc;
439 }
440 } else {
441 /* Clear Rx filter to remove traffic from wire */
442 if (ice_is_vsi_dflt_vsi(vsi)) {
443 err = ice_clear_dflt_vsi(vsi);
444 if (err) {
445 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
446 err, vsi->vsi_num);
447 vsi->current_netdev_flags |=
448 IFF_PROMISC;
449 goto out_promisc;
450 }
451 if (vsi->netdev->features &
452 NETIF_F_HW_VLAN_CTAG_FILTER)
453 vlan_ops->ena_rx_filtering(vsi);
454 }
455
456 /* disable allmulti here, but only if allmulti is not
457 * still enabled for the netdev
458 */
459 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
460 err = ice_clear_promisc(vsi,
461 ICE_MCAST_PROMISC_BITS);
462 if (err) {
463 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
464 err, vsi->vsi_num);
465 }
466 }
467 }
468 }
469 goto exit;
470
471 out_promisc:
472 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
473 goto exit;
474 out:
475 /* if something went wrong then set the changed flag so we try again */
476 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
477 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
478 exit:
479 clear_bit(ICE_CFG_BUSY, vsi->state);
480 return err;
481 }
482
483 /**
484 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
485 * @pf: board private structure
486 */
ice_sync_fltr_subtask(struct ice_pf * pf)487 static void ice_sync_fltr_subtask(struct ice_pf *pf)
488 {
489 int v;
490
491 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
492 return;
493
494 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
495
496 ice_for_each_vsi(pf, v)
497 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
498 ice_vsi_sync_fltr(pf->vsi[v])) {
499 /* come back and try again later */
500 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
501 break;
502 }
503 }
504
505 /**
506 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
507 * @pf: the PF
508 * @locked: is the rtnl_lock already held
509 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)510 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
511 {
512 int node;
513 int v;
514
515 ice_for_each_vsi(pf, v)
516 if (pf->vsi[v])
517 ice_dis_vsi(pf->vsi[v], locked);
518
519 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
520 pf->pf_agg_node[node].num_vsis = 0;
521
522 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
523 pf->vf_agg_node[node].num_vsis = 0;
524 }
525
526 /**
527 * ice_prepare_for_reset - prep for reset
528 * @pf: board private structure
529 * @reset_type: reset type requested
530 *
531 * Inform or close all dependent features in prep for reset.
532 */
533 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)534 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
535 {
536 struct ice_hw *hw = &pf->hw;
537 struct ice_vsi *vsi;
538 struct ice_vf *vf;
539 unsigned int bkt;
540
541 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
542
543 /* already prepared for reset */
544 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
545 return;
546
547 synchronize_irq(pf->oicr_irq.virq);
548
549 ice_unplug_aux_dev(pf);
550
551 /* Notify VFs of impending reset */
552 if (ice_check_sq_alive(hw, &hw->mailboxq))
553 ice_vc_notify_reset(pf);
554
555 /* Disable VFs until reset is completed */
556 mutex_lock(&pf->vfs.table_lock);
557 ice_for_each_vf(pf, bkt, vf)
558 ice_set_vf_state_dis(vf);
559 mutex_unlock(&pf->vfs.table_lock);
560
561 if (ice_is_eswitch_mode_switchdev(pf)) {
562 rtnl_lock();
563 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
564 rtnl_unlock();
565 }
566
567 /* release ADQ specific HW and SW resources */
568 vsi = ice_get_main_vsi(pf);
569 if (!vsi)
570 goto skip;
571
572 /* to be on safe side, reset orig_rss_size so that normal flow
573 * of deciding rss_size can take precedence
574 */
575 vsi->orig_rss_size = 0;
576
577 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
578 if (reset_type == ICE_RESET_PFR) {
579 vsi->old_ena_tc = vsi->all_enatc;
580 vsi->old_numtc = vsi->all_numtc;
581 } else {
582 ice_remove_q_channels(vsi, true);
583
584 /* for other reset type, do not support channel rebuild
585 * hence reset needed info
586 */
587 vsi->old_ena_tc = 0;
588 vsi->all_enatc = 0;
589 vsi->old_numtc = 0;
590 vsi->all_numtc = 0;
591 vsi->req_txq = 0;
592 vsi->req_rxq = 0;
593 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
594 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
595 }
596 }
597
598 if (vsi->netdev)
599 netif_device_detach(vsi->netdev);
600 skip:
601
602 /* clear SW filtering DB */
603 ice_clear_hw_tbls(hw);
604 /* disable the VSIs and their queues that are not already DOWN */
605 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
606 ice_pf_dis_all_vsi(pf, false);
607
608 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
609 ice_ptp_prepare_for_reset(pf, reset_type);
610
611 if (ice_is_feature_supported(pf, ICE_F_GNSS))
612 ice_gnss_exit(pf);
613
614 if (hw->port_info)
615 ice_sched_clear_port(hw->port_info);
616
617 ice_shutdown_all_ctrlq(hw, false);
618
619 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
620 }
621
622 /**
623 * ice_do_reset - Initiate one of many types of resets
624 * @pf: board private structure
625 * @reset_type: reset type requested before this function was called.
626 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)627 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
628 {
629 struct device *dev = ice_pf_to_dev(pf);
630 struct ice_hw *hw = &pf->hw;
631
632 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
633
634 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
635 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
636 reset_type = ICE_RESET_CORER;
637 }
638
639 ice_prepare_for_reset(pf, reset_type);
640
641 /* trigger the reset */
642 if (ice_reset(hw, reset_type)) {
643 dev_err(dev, "reset %d failed\n", reset_type);
644 set_bit(ICE_RESET_FAILED, pf->state);
645 clear_bit(ICE_RESET_OICR_RECV, pf->state);
646 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
647 clear_bit(ICE_PFR_REQ, pf->state);
648 clear_bit(ICE_CORER_REQ, pf->state);
649 clear_bit(ICE_GLOBR_REQ, pf->state);
650 wake_up(&pf->reset_wait_queue);
651 return;
652 }
653
654 /* PFR is a bit of a special case because it doesn't result in an OICR
655 * interrupt. So for PFR, rebuild after the reset and clear the reset-
656 * associated state bits.
657 */
658 if (reset_type == ICE_RESET_PFR) {
659 pf->pfr_count++;
660 ice_rebuild(pf, reset_type);
661 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
662 clear_bit(ICE_PFR_REQ, pf->state);
663 wake_up(&pf->reset_wait_queue);
664 ice_reset_all_vfs(pf);
665 }
666 }
667
668 /**
669 * ice_reset_subtask - Set up for resetting the device and driver
670 * @pf: board private structure
671 */
ice_reset_subtask(struct ice_pf * pf)672 static void ice_reset_subtask(struct ice_pf *pf)
673 {
674 enum ice_reset_req reset_type = ICE_RESET_INVAL;
675
676 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
677 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
678 * of reset is pending and sets bits in pf->state indicating the reset
679 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
680 * prepare for pending reset if not already (for PF software-initiated
681 * global resets the software should already be prepared for it as
682 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
683 * by firmware or software on other PFs, that bit is not set so prepare
684 * for the reset now), poll for reset done, rebuild and return.
685 */
686 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
687 /* Perform the largest reset requested */
688 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
689 reset_type = ICE_RESET_CORER;
690 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
691 reset_type = ICE_RESET_GLOBR;
692 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
693 reset_type = ICE_RESET_EMPR;
694 /* return if no valid reset type requested */
695 if (reset_type == ICE_RESET_INVAL)
696 return;
697 ice_prepare_for_reset(pf, reset_type);
698
699 /* make sure we are ready to rebuild */
700 if (ice_check_reset(&pf->hw)) {
701 set_bit(ICE_RESET_FAILED, pf->state);
702 } else {
703 /* done with reset. start rebuild */
704 pf->hw.reset_ongoing = false;
705 ice_rebuild(pf, reset_type);
706 /* clear bit to resume normal operations, but
707 * ICE_NEEDS_RESTART bit is set in case rebuild failed
708 */
709 clear_bit(ICE_RESET_OICR_RECV, pf->state);
710 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
711 clear_bit(ICE_PFR_REQ, pf->state);
712 clear_bit(ICE_CORER_REQ, pf->state);
713 clear_bit(ICE_GLOBR_REQ, pf->state);
714 wake_up(&pf->reset_wait_queue);
715 ice_reset_all_vfs(pf);
716 }
717
718 return;
719 }
720
721 /* No pending resets to finish processing. Check for new resets */
722 if (test_bit(ICE_PFR_REQ, pf->state)) {
723 reset_type = ICE_RESET_PFR;
724 if (pf->lag && pf->lag->bonded) {
725 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
726 reset_type = ICE_RESET_CORER;
727 }
728 }
729 if (test_bit(ICE_CORER_REQ, pf->state))
730 reset_type = ICE_RESET_CORER;
731 if (test_bit(ICE_GLOBR_REQ, pf->state))
732 reset_type = ICE_RESET_GLOBR;
733 /* If no valid reset type requested just return */
734 if (reset_type == ICE_RESET_INVAL)
735 return;
736
737 /* reset if not already down or busy */
738 if (!test_bit(ICE_DOWN, pf->state) &&
739 !test_bit(ICE_CFG_BUSY, pf->state)) {
740 ice_do_reset(pf, reset_type);
741 }
742 }
743
744 /**
745 * ice_print_topo_conflict - print topology conflict message
746 * @vsi: the VSI whose topology status is being checked
747 */
ice_print_topo_conflict(struct ice_vsi * vsi)748 static void ice_print_topo_conflict(struct ice_vsi *vsi)
749 {
750 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
751 case ICE_AQ_LINK_TOPO_CONFLICT:
752 case ICE_AQ_LINK_MEDIA_CONFLICT:
753 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
754 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
755 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
756 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
757 break;
758 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
759 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
760 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
761 else
762 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
763 break;
764 default:
765 break;
766 }
767 }
768
769 /**
770 * ice_print_link_msg - print link up or down message
771 * @vsi: the VSI whose link status is being queried
772 * @isup: boolean for if the link is now up or down
773 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)774 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
775 {
776 struct ice_aqc_get_phy_caps_data *caps;
777 const char *an_advertised;
778 const char *fec_req;
779 const char *speed;
780 const char *fec;
781 const char *fc;
782 const char *an;
783 int status;
784
785 if (!vsi)
786 return;
787
788 if (vsi->current_isup == isup)
789 return;
790
791 vsi->current_isup = isup;
792
793 if (!isup) {
794 netdev_info(vsi->netdev, "NIC Link is Down\n");
795 return;
796 }
797
798 switch (vsi->port_info->phy.link_info.link_speed) {
799 case ICE_AQ_LINK_SPEED_200GB:
800 speed = "200 G";
801 break;
802 case ICE_AQ_LINK_SPEED_100GB:
803 speed = "100 G";
804 break;
805 case ICE_AQ_LINK_SPEED_50GB:
806 speed = "50 G";
807 break;
808 case ICE_AQ_LINK_SPEED_40GB:
809 speed = "40 G";
810 break;
811 case ICE_AQ_LINK_SPEED_25GB:
812 speed = "25 G";
813 break;
814 case ICE_AQ_LINK_SPEED_20GB:
815 speed = "20 G";
816 break;
817 case ICE_AQ_LINK_SPEED_10GB:
818 speed = "10 G";
819 break;
820 case ICE_AQ_LINK_SPEED_5GB:
821 speed = "5 G";
822 break;
823 case ICE_AQ_LINK_SPEED_2500MB:
824 speed = "2.5 G";
825 break;
826 case ICE_AQ_LINK_SPEED_1000MB:
827 speed = "1 G";
828 break;
829 case ICE_AQ_LINK_SPEED_100MB:
830 speed = "100 M";
831 break;
832 default:
833 speed = "Unknown ";
834 break;
835 }
836
837 switch (vsi->port_info->fc.current_mode) {
838 case ICE_FC_FULL:
839 fc = "Rx/Tx";
840 break;
841 case ICE_FC_TX_PAUSE:
842 fc = "Tx";
843 break;
844 case ICE_FC_RX_PAUSE:
845 fc = "Rx";
846 break;
847 case ICE_FC_NONE:
848 fc = "None";
849 break;
850 default:
851 fc = "Unknown";
852 break;
853 }
854
855 /* Get FEC mode based on negotiated link info */
856 switch (vsi->port_info->phy.link_info.fec_info) {
857 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
858 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
859 fec = "RS-FEC";
860 break;
861 case ICE_AQ_LINK_25G_KR_FEC_EN:
862 fec = "FC-FEC/BASE-R";
863 break;
864 default:
865 fec = "NONE";
866 break;
867 }
868
869 /* check if autoneg completed, might be false due to not supported */
870 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
871 an = "True";
872 else
873 an = "False";
874
875 /* Get FEC mode requested based on PHY caps last SW configuration */
876 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
877 if (!caps) {
878 fec_req = "Unknown";
879 an_advertised = "Unknown";
880 goto done;
881 }
882
883 status = ice_aq_get_phy_caps(vsi->port_info, false,
884 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
885 if (status)
886 netdev_info(vsi->netdev, "Get phy capability failed.\n");
887
888 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
889
890 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
891 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
892 fec_req = "RS-FEC";
893 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
894 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
895 fec_req = "FC-FEC/BASE-R";
896 else
897 fec_req = "NONE";
898
899 kfree(caps);
900
901 done:
902 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
903 speed, fec_req, fec, an_advertised, an, fc);
904 ice_print_topo_conflict(vsi);
905 }
906
907 /**
908 * ice_vsi_link_event - update the VSI's netdev
909 * @vsi: the VSI on which the link event occurred
910 * @link_up: whether or not the VSI needs to be set up or down
911 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)912 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
913 {
914 if (!vsi)
915 return;
916
917 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
918 return;
919
920 if (vsi->type == ICE_VSI_PF) {
921 if (link_up == netif_carrier_ok(vsi->netdev))
922 return;
923
924 if (link_up) {
925 netif_carrier_on(vsi->netdev);
926 netif_tx_wake_all_queues(vsi->netdev);
927 } else {
928 netif_carrier_off(vsi->netdev);
929 netif_tx_stop_all_queues(vsi->netdev);
930 }
931 }
932 }
933
934 /**
935 * ice_set_dflt_mib - send a default config MIB to the FW
936 * @pf: private PF struct
937 *
938 * This function sends a default configuration MIB to the FW.
939 *
940 * If this function errors out at any point, the driver is still able to
941 * function. The main impact is that LFC may not operate as expected.
942 * Therefore an error state in this function should be treated with a DBG
943 * message and continue on with driver rebuild/reenable.
944 */
ice_set_dflt_mib(struct ice_pf * pf)945 static void ice_set_dflt_mib(struct ice_pf *pf)
946 {
947 struct device *dev = ice_pf_to_dev(pf);
948 u8 mib_type, *buf, *lldpmib = NULL;
949 u16 len, typelen, offset = 0;
950 struct ice_lldp_org_tlv *tlv;
951 struct ice_hw *hw = &pf->hw;
952 u32 ouisubtype;
953
954 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
955 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
956 if (!lldpmib) {
957 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
958 __func__);
959 return;
960 }
961
962 /* Add ETS CFG TLV */
963 tlv = (struct ice_lldp_org_tlv *)lldpmib;
964 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
965 ICE_IEEE_ETS_TLV_LEN);
966 tlv->typelen = htons(typelen);
967 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
968 ICE_IEEE_SUBTYPE_ETS_CFG);
969 tlv->ouisubtype = htonl(ouisubtype);
970
971 buf = tlv->tlvinfo;
972 buf[0] = 0;
973
974 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
975 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
976 * Octets 13 - 20 are TSA values - leave as zeros
977 */
978 buf[5] = 0x64;
979 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
980 offset += len + 2;
981 tlv = (struct ice_lldp_org_tlv *)
982 ((char *)tlv + sizeof(tlv->typelen) + len);
983
984 /* Add ETS REC TLV */
985 buf = tlv->tlvinfo;
986 tlv->typelen = htons(typelen);
987
988 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
989 ICE_IEEE_SUBTYPE_ETS_REC);
990 tlv->ouisubtype = htonl(ouisubtype);
991
992 /* First octet of buf is reserved
993 * Octets 1 - 4 map UP to TC - all UPs map to zero
994 * Octets 5 - 12 are BW values - set TC 0 to 100%.
995 * Octets 13 - 20 are TSA value - leave as zeros
996 */
997 buf[5] = 0x64;
998 offset += len + 2;
999 tlv = (struct ice_lldp_org_tlv *)
1000 ((char *)tlv + sizeof(tlv->typelen) + len);
1001
1002 /* Add PFC CFG TLV */
1003 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1004 ICE_IEEE_PFC_TLV_LEN);
1005 tlv->typelen = htons(typelen);
1006
1007 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1008 ICE_IEEE_SUBTYPE_PFC_CFG);
1009 tlv->ouisubtype = htonl(ouisubtype);
1010
1011 /* Octet 1 left as all zeros - PFC disabled */
1012 buf[0] = 0x08;
1013 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1014 offset += len + 2;
1015
1016 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1017 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1018
1019 kfree(lldpmib);
1020 }
1021
1022 /**
1023 * ice_check_phy_fw_load - check if PHY FW load failed
1024 * @pf: pointer to PF struct
1025 * @link_cfg_err: bitmap from the link info structure
1026 *
1027 * check if external PHY FW load failed and print an error message if it did
1028 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1029 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1030 {
1031 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1032 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1033 return;
1034 }
1035
1036 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1037 return;
1038
1039 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1040 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1041 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1042 }
1043 }
1044
1045 /**
1046 * ice_check_module_power
1047 * @pf: pointer to PF struct
1048 * @link_cfg_err: bitmap from the link info structure
1049 *
1050 * check module power level returned by a previous call to aq_get_link_info
1051 * and print error messages if module power level is not supported
1052 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1053 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1054 {
1055 /* if module power level is supported, clear the flag */
1056 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1057 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1058 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1059 return;
1060 }
1061
1062 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1063 * above block didn't clear this bit, there's nothing to do
1064 */
1065 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1066 return;
1067
1068 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1069 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1070 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1071 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1072 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1073 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1074 }
1075 }
1076
1077 /**
1078 * ice_check_link_cfg_err - check if link configuration failed
1079 * @pf: pointer to the PF struct
1080 * @link_cfg_err: bitmap from the link info structure
1081 *
1082 * print if any link configuration failure happens due to the value in the
1083 * link_cfg_err parameter in the link info structure
1084 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1085 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1086 {
1087 ice_check_module_power(pf, link_cfg_err);
1088 ice_check_phy_fw_load(pf, link_cfg_err);
1089 }
1090
1091 /**
1092 * ice_link_event - process the link event
1093 * @pf: PF that the link event is associated with
1094 * @pi: port_info for the port that the link event is associated with
1095 * @link_up: true if the physical link is up and false if it is down
1096 * @link_speed: current link speed received from the link event
1097 *
1098 * Returns 0 on success and negative on failure
1099 */
1100 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1101 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1102 u16 link_speed)
1103 {
1104 struct device *dev = ice_pf_to_dev(pf);
1105 struct ice_phy_info *phy_info;
1106 struct ice_vsi *vsi;
1107 u16 old_link_speed;
1108 bool old_link;
1109 int status;
1110
1111 phy_info = &pi->phy;
1112 phy_info->link_info_old = phy_info->link_info;
1113
1114 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1115 old_link_speed = phy_info->link_info_old.link_speed;
1116
1117 /* update the link info structures and re-enable link events,
1118 * don't bail on failure due to other book keeping needed
1119 */
1120 status = ice_update_link_info(pi);
1121 if (status)
1122 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1123 pi->lport, status,
1124 libie_aq_str(pi->hw->adminq.sq_last_status));
1125
1126 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1127
1128 /* Check if the link state is up after updating link info, and treat
1129 * this event as an UP event since the link is actually UP now.
1130 */
1131 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1132 link_up = true;
1133
1134 vsi = ice_get_main_vsi(pf);
1135 if (!vsi || !vsi->port_info)
1136 return -EINVAL;
1137
1138 /* turn off PHY if media was removed */
1139 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1140 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1141 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1142 ice_set_link(vsi, false);
1143 }
1144
1145 /* if the old link up/down and speed is the same as the new */
1146 if (link_up == old_link && link_speed == old_link_speed)
1147 return 0;
1148
1149 if (!link_up && old_link)
1150 pf->link_down_events++;
1151
1152 ice_ptp_link_change(pf, link_up);
1153
1154 if (ice_is_dcb_active(pf)) {
1155 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1156 ice_dcb_rebuild(pf);
1157 } else {
1158 if (link_up)
1159 ice_set_dflt_mib(pf);
1160 }
1161 ice_vsi_link_event(vsi, link_up);
1162 ice_print_link_msg(vsi, link_up);
1163
1164 ice_vc_notify_link_state(pf);
1165
1166 return 0;
1167 }
1168
1169 /**
1170 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1171 * @pf: board private structure
1172 */
ice_watchdog_subtask(struct ice_pf * pf)1173 static void ice_watchdog_subtask(struct ice_pf *pf)
1174 {
1175 int i;
1176
1177 /* if interface is down do nothing */
1178 if (test_bit(ICE_DOWN, pf->state) ||
1179 test_bit(ICE_CFG_BUSY, pf->state))
1180 return;
1181
1182 /* make sure we don't do these things too often */
1183 if (time_before(jiffies,
1184 pf->serv_tmr_prev + pf->serv_tmr_period))
1185 return;
1186
1187 pf->serv_tmr_prev = jiffies;
1188
1189 /* Update the stats for active netdevs so the network stack
1190 * can look at updated numbers whenever it cares to
1191 */
1192 ice_update_pf_stats(pf);
1193 ice_for_each_vsi(pf, i)
1194 if (pf->vsi[i] && pf->vsi[i]->netdev)
1195 ice_update_vsi_stats(pf->vsi[i]);
1196 }
1197
1198 /**
1199 * ice_init_link_events - enable/initialize link events
1200 * @pi: pointer to the port_info instance
1201 *
1202 * Returns -EIO on failure, 0 on success
1203 */
ice_init_link_events(struct ice_port_info * pi)1204 static int ice_init_link_events(struct ice_port_info *pi)
1205 {
1206 u16 mask;
1207
1208 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1209 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1210 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1211
1212 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1213 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1214 pi->lport);
1215 return -EIO;
1216 }
1217
1218 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1220 pi->lport);
1221 return -EIO;
1222 }
1223
1224 return 0;
1225 }
1226
1227 /**
1228 * ice_handle_link_event - handle link event via ARQ
1229 * @pf: PF that the link event is associated with
1230 * @event: event structure containing link status info
1231 */
1232 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1233 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1234 {
1235 struct ice_aqc_get_link_status_data *link_data;
1236 struct ice_port_info *port_info;
1237 int status;
1238
1239 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1240 port_info = pf->hw.port_info;
1241 if (!port_info)
1242 return -EINVAL;
1243
1244 status = ice_link_event(pf, port_info,
1245 !!(link_data->link_info & ICE_AQ_LINK_UP),
1246 le16_to_cpu(link_data->link_speed));
1247 if (status)
1248 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1249 status);
1250
1251 return status;
1252 }
1253
1254 /**
1255 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1256 * @pf: pointer to the PF private structure
1257 * @task: intermediate helper storage and identifier for waiting
1258 * @opcode: the opcode to wait for
1259 *
1260 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1261 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1262 *
1263 * Calls are separated to allow caller registering for event before sending
1264 * the command, which mitigates a race between registering and FW responding.
1265 *
1266 * To obtain only the descriptor contents, pass an task->event with null
1267 * msg_buf. If the complete data buffer is desired, allocate the
1268 * task->event.msg_buf with enough space ahead of time.
1269 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1270 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1271 u16 opcode)
1272 {
1273 INIT_HLIST_NODE(&task->entry);
1274 task->opcode = opcode;
1275 task->state = ICE_AQ_TASK_WAITING;
1276
1277 spin_lock_bh(&pf->aq_wait_lock);
1278 hlist_add_head(&task->entry, &pf->aq_wait_list);
1279 spin_unlock_bh(&pf->aq_wait_lock);
1280 }
1281
1282 /**
1283 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1284 * @pf: pointer to the PF private structure
1285 * @task: ptr prepared by ice_aq_prep_for_event()
1286 * @timeout: how long to wait, in jiffies
1287 *
1288 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1289 * current thread will be put to sleep until the specified event occurs or
1290 * until the given timeout is reached.
1291 *
1292 * Returns: zero on success, or a negative error code on failure.
1293 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1294 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1295 unsigned long timeout)
1296 {
1297 enum ice_aq_task_state *state = &task->state;
1298 struct device *dev = ice_pf_to_dev(pf);
1299 unsigned long start = jiffies;
1300 long ret;
1301 int err;
1302
1303 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1304 *state != ICE_AQ_TASK_WAITING,
1305 timeout);
1306 switch (*state) {
1307 case ICE_AQ_TASK_NOT_PREPARED:
1308 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1309 err = -EINVAL;
1310 break;
1311 case ICE_AQ_TASK_WAITING:
1312 err = ret < 0 ? ret : -ETIMEDOUT;
1313 break;
1314 case ICE_AQ_TASK_CANCELED:
1315 err = ret < 0 ? ret : -ECANCELED;
1316 break;
1317 case ICE_AQ_TASK_COMPLETE:
1318 err = ret < 0 ? ret : 0;
1319 break;
1320 default:
1321 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1322 err = -EINVAL;
1323 break;
1324 }
1325
1326 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1327 jiffies_to_msecs(jiffies - start),
1328 jiffies_to_msecs(timeout),
1329 task->opcode);
1330
1331 spin_lock_bh(&pf->aq_wait_lock);
1332 hlist_del(&task->entry);
1333 spin_unlock_bh(&pf->aq_wait_lock);
1334
1335 return err;
1336 }
1337
1338 /**
1339 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1340 * @pf: pointer to the PF private structure
1341 * @opcode: the opcode of the event
1342 * @event: the event to check
1343 *
1344 * Loops over the current list of pending threads waiting for an AdminQ event.
1345 * For each matching task, copy the contents of the event into the task
1346 * structure and wake up the thread.
1347 *
1348 * If multiple threads wait for the same opcode, they will all be woken up.
1349 *
1350 * Note that event->msg_buf will only be duplicated if the event has a buffer
1351 * with enough space already allocated. Otherwise, only the descriptor and
1352 * message length will be copied.
1353 *
1354 * Returns: true if an event was found, false otherwise
1355 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1356 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1357 struct ice_rq_event_info *event)
1358 {
1359 struct ice_rq_event_info *task_ev;
1360 struct ice_aq_task *task;
1361 bool found = false;
1362
1363 spin_lock_bh(&pf->aq_wait_lock);
1364 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1365 if (task->state != ICE_AQ_TASK_WAITING)
1366 continue;
1367 if (task->opcode != opcode)
1368 continue;
1369
1370 task_ev = &task->event;
1371 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1372 task_ev->msg_len = event->msg_len;
1373
1374 /* Only copy the data buffer if a destination was set */
1375 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1376 memcpy(task_ev->msg_buf, event->msg_buf,
1377 event->buf_len);
1378 task_ev->buf_len = event->buf_len;
1379 }
1380
1381 task->state = ICE_AQ_TASK_COMPLETE;
1382 found = true;
1383 }
1384 spin_unlock_bh(&pf->aq_wait_lock);
1385
1386 if (found)
1387 wake_up(&pf->aq_wait_queue);
1388 }
1389
1390 /**
1391 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1392 * @pf: the PF private structure
1393 *
1394 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1395 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1396 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1397 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1398 {
1399 struct ice_aq_task *task;
1400
1401 spin_lock_bh(&pf->aq_wait_lock);
1402 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1403 task->state = ICE_AQ_TASK_CANCELED;
1404 spin_unlock_bh(&pf->aq_wait_lock);
1405
1406 wake_up(&pf->aq_wait_queue);
1407 }
1408
1409 #define ICE_MBX_OVERFLOW_WATERMARK 64
1410
1411 /**
1412 * __ice_clean_ctrlq - helper function to clean controlq rings
1413 * @pf: ptr to struct ice_pf
1414 * @q_type: specific Control queue type
1415 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1416 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1417 {
1418 struct device *dev = ice_pf_to_dev(pf);
1419 struct ice_rq_event_info event;
1420 struct ice_hw *hw = &pf->hw;
1421 struct ice_ctl_q_info *cq;
1422 u16 pending, i = 0;
1423 const char *qtype;
1424 u32 oldval, val;
1425
1426 /* Do not clean control queue if/when PF reset fails */
1427 if (test_bit(ICE_RESET_FAILED, pf->state))
1428 return 0;
1429
1430 switch (q_type) {
1431 case ICE_CTL_Q_ADMIN:
1432 cq = &hw->adminq;
1433 qtype = "Admin";
1434 break;
1435 case ICE_CTL_Q_SB:
1436 cq = &hw->sbq;
1437 qtype = "Sideband";
1438 break;
1439 case ICE_CTL_Q_MAILBOX:
1440 cq = &hw->mailboxq;
1441 qtype = "Mailbox";
1442 /* we are going to try to detect a malicious VF, so set the
1443 * state to begin detection
1444 */
1445 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1446 break;
1447 default:
1448 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1449 return 0;
1450 }
1451
1452 /* check for error indications - PF_xx_AxQLEN register layout for
1453 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1454 */
1455 val = rd32(hw, cq->rq.len);
1456 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1457 PF_FW_ARQLEN_ARQCRIT_M)) {
1458 oldval = val;
1459 if (val & PF_FW_ARQLEN_ARQVFE_M)
1460 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1461 qtype);
1462 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1463 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1464 qtype);
1465 }
1466 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1467 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1468 qtype);
1469 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1470 PF_FW_ARQLEN_ARQCRIT_M);
1471 if (oldval != val)
1472 wr32(hw, cq->rq.len, val);
1473 }
1474
1475 val = rd32(hw, cq->sq.len);
1476 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1477 PF_FW_ATQLEN_ATQCRIT_M)) {
1478 oldval = val;
1479 if (val & PF_FW_ATQLEN_ATQVFE_M)
1480 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1481 qtype);
1482 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1483 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1484 qtype);
1485 }
1486 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1487 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1488 qtype);
1489 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1490 PF_FW_ATQLEN_ATQCRIT_M);
1491 if (oldval != val)
1492 wr32(hw, cq->sq.len, val);
1493 }
1494
1495 event.buf_len = cq->rq_buf_size;
1496 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1497 if (!event.msg_buf)
1498 return 0;
1499
1500 do {
1501 struct ice_mbx_data data = {};
1502 u16 opcode;
1503 int ret;
1504
1505 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1506 if (ret == -EALREADY)
1507 break;
1508 if (ret) {
1509 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1510 ret);
1511 break;
1512 }
1513
1514 opcode = le16_to_cpu(event.desc.opcode);
1515
1516 /* Notify any thread that might be waiting for this event */
1517 ice_aq_check_events(pf, opcode, &event);
1518
1519 switch (opcode) {
1520 case ice_aqc_opc_get_link_status:
1521 if (ice_handle_link_event(pf, &event))
1522 dev_err(dev, "Could not handle link event\n");
1523 break;
1524 case ice_aqc_opc_event_lan_overflow:
1525 ice_vf_lan_overflow_event(pf, &event);
1526 break;
1527 case ice_mbx_opc_send_msg_to_pf:
1528 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1529 ice_vc_process_vf_msg(pf, &event, NULL);
1530 ice_mbx_vf_dec_trig_e830(hw, &event);
1531 } else {
1532 u16 val = hw->mailboxq.num_rq_entries;
1533
1534 data.max_num_msgs_mbx = val;
1535 val = ICE_MBX_OVERFLOW_WATERMARK;
1536 data.async_watermark_val = val;
1537 data.num_msg_proc = i;
1538 data.num_pending_arq = pending;
1539
1540 ice_vc_process_vf_msg(pf, &event, &data);
1541 }
1542 break;
1543 case ice_aqc_opc_fw_logs_event:
1544 libie_get_fwlog_data(&hw->fwlog, event.msg_buf,
1545 le16_to_cpu(event.desc.datalen));
1546 break;
1547 case ice_aqc_opc_lldp_set_mib_change:
1548 ice_dcb_process_lldp_set_mib_change(pf, &event);
1549 break;
1550 case ice_aqc_opc_get_health_status:
1551 ice_process_health_status_event(pf, &event);
1552 break;
1553 default:
1554 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1555 qtype, opcode);
1556 break;
1557 }
1558 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1559
1560 kfree(event.msg_buf);
1561
1562 return pending && (i == ICE_DFLT_IRQ_WORK);
1563 }
1564
1565 /**
1566 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1567 * @hw: pointer to hardware info
1568 * @cq: control queue information
1569 *
1570 * returns true if there are pending messages in a queue, false if there aren't
1571 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1572 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1573 {
1574 u16 ntu;
1575
1576 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1577 return cq->rq.next_to_clean != ntu;
1578 }
1579
1580 /**
1581 * ice_clean_adminq_subtask - clean the AdminQ rings
1582 * @pf: board private structure
1583 */
ice_clean_adminq_subtask(struct ice_pf * pf)1584 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1585 {
1586 struct ice_hw *hw = &pf->hw;
1587
1588 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1589 return;
1590
1591 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1592 return;
1593
1594 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1595
1596 /* There might be a situation where new messages arrive to a control
1597 * queue between processing the last message and clearing the
1598 * EVENT_PENDING bit. So before exiting, check queue head again (using
1599 * ice_ctrlq_pending) and process new messages if any.
1600 */
1601 if (ice_ctrlq_pending(hw, &hw->adminq))
1602 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1603
1604 ice_flush(hw);
1605 }
1606
1607 /**
1608 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1609 * @pf: board private structure
1610 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1611 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1612 {
1613 struct ice_hw *hw = &pf->hw;
1614
1615 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1616 return;
1617
1618 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1619 return;
1620
1621 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1622
1623 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1624 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1625
1626 ice_flush(hw);
1627 }
1628
1629 /**
1630 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1631 * @pf: board private structure
1632 */
ice_clean_sbq_subtask(struct ice_pf * pf)1633 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1634 {
1635 struct ice_hw *hw = &pf->hw;
1636
1637 /* if mac_type is not generic, sideband is not supported
1638 * and there's nothing to do here
1639 */
1640 if (!ice_is_generic_mac(hw)) {
1641 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1642 return;
1643 }
1644
1645 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1646 return;
1647
1648 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1649 return;
1650
1651 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1652
1653 if (ice_ctrlq_pending(hw, &hw->sbq))
1654 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1655
1656 ice_flush(hw);
1657 }
1658
1659 /**
1660 * ice_service_task_schedule - schedule the service task to wake up
1661 * @pf: board private structure
1662 *
1663 * If not already scheduled, this puts the task into the work queue.
1664 */
ice_service_task_schedule(struct ice_pf * pf)1665 void ice_service_task_schedule(struct ice_pf *pf)
1666 {
1667 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1668 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1669 !test_bit(ICE_NEEDS_RESTART, pf->state))
1670 queue_work(ice_wq, &pf->serv_task);
1671 }
1672
1673 /**
1674 * ice_service_task_complete - finish up the service task
1675 * @pf: board private structure
1676 */
ice_service_task_complete(struct ice_pf * pf)1677 static void ice_service_task_complete(struct ice_pf *pf)
1678 {
1679 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1680
1681 /* force memory (pf->state) to sync before next service task */
1682 smp_mb__before_atomic();
1683 clear_bit(ICE_SERVICE_SCHED, pf->state);
1684 }
1685
1686 /**
1687 * ice_service_task_stop - stop service task and cancel works
1688 * @pf: board private structure
1689 *
1690 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1691 * 1 otherwise.
1692 */
ice_service_task_stop(struct ice_pf * pf)1693 static int ice_service_task_stop(struct ice_pf *pf)
1694 {
1695 int ret;
1696
1697 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1698
1699 if (pf->serv_tmr.function)
1700 timer_delete_sync(&pf->serv_tmr);
1701 if (pf->serv_task.func)
1702 cancel_work_sync(&pf->serv_task);
1703
1704 clear_bit(ICE_SERVICE_SCHED, pf->state);
1705 return ret;
1706 }
1707
1708 /**
1709 * ice_service_task_restart - restart service task and schedule works
1710 * @pf: board private structure
1711 *
1712 * This function is needed for suspend and resume works (e.g WoL scenario)
1713 */
ice_service_task_restart(struct ice_pf * pf)1714 static void ice_service_task_restart(struct ice_pf *pf)
1715 {
1716 clear_bit(ICE_SERVICE_DIS, pf->state);
1717 ice_service_task_schedule(pf);
1718 }
1719
1720 /**
1721 * ice_service_timer - timer callback to schedule service task
1722 * @t: pointer to timer_list
1723 */
ice_service_timer(struct timer_list * t)1724 static void ice_service_timer(struct timer_list *t)
1725 {
1726 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr);
1727
1728 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1729 ice_service_task_schedule(pf);
1730 }
1731
1732 /**
1733 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1734 * @pf: pointer to the PF structure
1735 * @vf: pointer to the VF structure
1736 * @reset_vf_tx: whether Tx MDD has occurred
1737 * @reset_vf_rx: whether Rx MDD has occurred
1738 *
1739 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1740 * automatically reset the VF by enabling the private ethtool flag
1741 * mdd-auto-reset-vf.
1742 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1743 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1744 bool reset_vf_tx, bool reset_vf_rx)
1745 {
1746 struct device *dev = ice_pf_to_dev(pf);
1747
1748 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1749 return;
1750
1751 /* VF MDD event counters will be cleared by reset, so print the event
1752 * prior to reset.
1753 */
1754 if (reset_vf_tx)
1755 ice_print_vf_tx_mdd_event(vf);
1756
1757 if (reset_vf_rx)
1758 ice_print_vf_rx_mdd_event(vf);
1759
1760 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1761 pf->hw.pf_id, vf->vf_id);
1762 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1763 }
1764
1765 /**
1766 * ice_handle_mdd_event - handle malicious driver detect event
1767 * @pf: pointer to the PF structure
1768 *
1769 * Called from service task. OICR interrupt handler indicates MDD event.
1770 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1771 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1772 * disable the queue, the PF can be configured to reset the VF using ethtool
1773 * private flag mdd-auto-reset-vf.
1774 */
ice_handle_mdd_event(struct ice_pf * pf)1775 static void ice_handle_mdd_event(struct ice_pf *pf)
1776 {
1777 struct device *dev = ice_pf_to_dev(pf);
1778 struct ice_hw *hw = &pf->hw;
1779 struct ice_vf *vf;
1780 unsigned int bkt;
1781 u32 reg;
1782
1783 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1784 /* Since the VF MDD event logging is rate limited, check if
1785 * there are pending MDD events.
1786 */
1787 ice_print_vfs_mdd_events(pf);
1788 return;
1789 }
1790
1791 /* find what triggered an MDD event */
1792 reg = rd32(hw, GL_MDET_TX_PQM);
1793 if (reg & GL_MDET_TX_PQM_VALID_M) {
1794 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1795 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1796 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1797 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1798
1799 if (netif_msg_tx_err(pf))
1800 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1801 event, queue, pf_num, vf_num);
1802 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1803 event, queue);
1804 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1805 }
1806
1807 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1808 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1809 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1810 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1811 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1812 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1813
1814 if (netif_msg_tx_err(pf))
1815 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1816 event, queue, pf_num, vf_num);
1817 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1818 event, queue);
1819 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1820 }
1821
1822 reg = rd32(hw, GL_MDET_RX);
1823 if (reg & GL_MDET_RX_VALID_M) {
1824 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1825 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1826 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1827 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1828
1829 if (netif_msg_rx_err(pf))
1830 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1831 event, queue, pf_num, vf_num);
1832 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1833 queue);
1834 wr32(hw, GL_MDET_RX, 0xffffffff);
1835 }
1836
1837 /* check to see if this PF caused an MDD event */
1838 reg = rd32(hw, PF_MDET_TX_PQM);
1839 if (reg & PF_MDET_TX_PQM_VALID_M) {
1840 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1841 if (netif_msg_tx_err(pf))
1842 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1843 }
1844
1845 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1846 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1847 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1848 if (netif_msg_tx_err(pf))
1849 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1850 }
1851
1852 reg = rd32(hw, PF_MDET_RX);
1853 if (reg & PF_MDET_RX_VALID_M) {
1854 wr32(hw, PF_MDET_RX, 0xFFFF);
1855 if (netif_msg_rx_err(pf))
1856 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1857 }
1858
1859 /* Check to see if one of the VFs caused an MDD event, and then
1860 * increment counters and set print pending
1861 */
1862 mutex_lock(&pf->vfs.table_lock);
1863 ice_for_each_vf(pf, bkt, vf) {
1864 bool reset_vf_tx = false, reset_vf_rx = false;
1865
1866 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1867 if (reg & VP_MDET_TX_PQM_VALID_M) {
1868 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1869 vf->mdd_tx_events.count++;
1870 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1871 if (netif_msg_tx_err(pf))
1872 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1873 vf->vf_id);
1874
1875 reset_vf_tx = true;
1876 }
1877
1878 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1879 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1880 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1881 vf->mdd_tx_events.count++;
1882 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1883 if (netif_msg_tx_err(pf))
1884 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1885 vf->vf_id);
1886
1887 reset_vf_tx = true;
1888 }
1889
1890 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1891 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1892 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1893 vf->mdd_tx_events.count++;
1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1895 if (netif_msg_tx_err(pf))
1896 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1897 vf->vf_id);
1898
1899 reset_vf_tx = true;
1900 }
1901
1902 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1903 if (reg & VP_MDET_RX_VALID_M) {
1904 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1905 vf->mdd_rx_events.count++;
1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1907 if (netif_msg_rx_err(pf))
1908 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1909 vf->vf_id);
1910
1911 reset_vf_rx = true;
1912 }
1913
1914 if (reset_vf_tx || reset_vf_rx)
1915 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1916 reset_vf_rx);
1917 }
1918 mutex_unlock(&pf->vfs.table_lock);
1919
1920 ice_print_vfs_mdd_events(pf);
1921 }
1922
1923 /**
1924 * ice_force_phys_link_state - Force the physical link state
1925 * @vsi: VSI to force the physical link state to up/down
1926 * @link_up: true/false indicates to set the physical link to up/down
1927 *
1928 * Force the physical link state by getting the current PHY capabilities from
1929 * hardware and setting the PHY config based on the determined capabilities. If
1930 * link changes a link event will be triggered because both the Enable Automatic
1931 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1932 *
1933 * Returns 0 on success, negative on failure
1934 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1935 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1936 {
1937 struct ice_aqc_get_phy_caps_data *pcaps;
1938 struct ice_aqc_set_phy_cfg_data *cfg;
1939 struct ice_port_info *pi;
1940 struct device *dev;
1941 int retcode;
1942
1943 if (!vsi || !vsi->port_info || !vsi->back)
1944 return -EINVAL;
1945 if (vsi->type != ICE_VSI_PF)
1946 return 0;
1947
1948 dev = ice_pf_to_dev(vsi->back);
1949
1950 pi = vsi->port_info;
1951
1952 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1953 if (!pcaps)
1954 return -ENOMEM;
1955
1956 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1957 NULL);
1958 if (retcode) {
1959 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1960 vsi->vsi_num, retcode);
1961 retcode = -EIO;
1962 goto out;
1963 }
1964
1965 /* No change in link */
1966 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1967 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1968 goto out;
1969
1970 /* Use the current user PHY configuration. The current user PHY
1971 * configuration is initialized during probe from PHY capabilities
1972 * software mode, and updated on set PHY configuration.
1973 */
1974 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1975 if (!cfg) {
1976 retcode = -ENOMEM;
1977 goto out;
1978 }
1979
1980 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1981 if (link_up)
1982 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1983 else
1984 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1985
1986 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1987 if (retcode) {
1988 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1989 vsi->vsi_num, retcode);
1990 retcode = -EIO;
1991 }
1992
1993 kfree(cfg);
1994 out:
1995 kfree(pcaps);
1996 return retcode;
1997 }
1998
1999 /**
2000 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2001 * @pi: port info structure
2002 *
2003 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2004 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2005 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2006 {
2007 struct ice_aqc_get_phy_caps_data *pcaps;
2008 struct ice_pf *pf = pi->hw->back;
2009 int err;
2010
2011 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2012 if (!pcaps)
2013 return -ENOMEM;
2014
2015 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2016 pcaps, NULL);
2017
2018 if (err) {
2019 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2020 goto out;
2021 }
2022
2023 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2024 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2025
2026 out:
2027 kfree(pcaps);
2028 return err;
2029 }
2030
2031 /**
2032 * ice_init_link_dflt_override - Initialize link default override
2033 * @pi: port info structure
2034 *
2035 * Initialize link default override and PHY total port shutdown during probe
2036 */
ice_init_link_dflt_override(struct ice_port_info * pi)2037 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2038 {
2039 struct ice_link_default_override_tlv *ldo;
2040 struct ice_pf *pf = pi->hw->back;
2041
2042 ldo = &pf->link_dflt_override;
2043 if (ice_get_link_default_override(ldo, pi))
2044 return;
2045
2046 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2047 return;
2048
2049 /* Enable Total Port Shutdown (override/replace link-down-on-close
2050 * ethtool private flag) for ports with Port Disable bit set.
2051 */
2052 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2053 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2054 }
2055
2056 /**
2057 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2058 * @pi: port info structure
2059 *
2060 * If default override is enabled, initialize the user PHY cfg speed and FEC
2061 * settings using the default override mask from the NVM.
2062 *
2063 * The PHY should only be configured with the default override settings the
2064 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2065 * is used to indicate that the user PHY cfg default override is initialized
2066 * and the PHY has not been configured with the default override settings. The
2067 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2068 * configured.
2069 *
2070 * This function should be called only if the FW doesn't support default
2071 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2072 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2073 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2074 {
2075 struct ice_link_default_override_tlv *ldo;
2076 struct ice_aqc_set_phy_cfg_data *cfg;
2077 struct ice_phy_info *phy = &pi->phy;
2078 struct ice_pf *pf = pi->hw->back;
2079
2080 ldo = &pf->link_dflt_override;
2081
2082 /* If link default override is enabled, use to mask NVM PHY capabilities
2083 * for speed and FEC default configuration.
2084 */
2085 cfg = &phy->curr_user_phy_cfg;
2086
2087 if (ldo->phy_type_low || ldo->phy_type_high) {
2088 cfg->phy_type_low = pf->nvm_phy_type_lo &
2089 cpu_to_le64(ldo->phy_type_low);
2090 cfg->phy_type_high = pf->nvm_phy_type_hi &
2091 cpu_to_le64(ldo->phy_type_high);
2092 }
2093 cfg->link_fec_opt = ldo->fec_options;
2094 phy->curr_user_fec_req = ICE_FEC_AUTO;
2095
2096 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2097 }
2098
2099 /**
2100 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2101 * @pi: port info structure
2102 *
2103 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2104 * mode to default. The PHY defaults are from get PHY capabilities topology
2105 * with media so call when media is first available. An error is returned if
2106 * called when media is not available. The PHY initialization completed state is
2107 * set here.
2108 *
2109 * These configurations are used when setting PHY
2110 * configuration. The user PHY configuration is updated on set PHY
2111 * configuration. Returns 0 on success, negative on failure
2112 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2113 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2114 {
2115 struct ice_aqc_get_phy_caps_data *pcaps;
2116 struct ice_phy_info *phy = &pi->phy;
2117 struct ice_pf *pf = pi->hw->back;
2118 int err;
2119
2120 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2121 return -EIO;
2122
2123 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2124 if (!pcaps)
2125 return -ENOMEM;
2126
2127 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2128 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2129 pcaps, NULL);
2130 else
2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2132 pcaps, NULL);
2133 if (err) {
2134 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2135 goto err_out;
2136 }
2137
2138 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2139
2140 /* check if lenient mode is supported and enabled */
2141 if (ice_fw_supports_link_override(pi->hw) &&
2142 !(pcaps->module_compliance_enforcement &
2143 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2144 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2145
2146 /* if the FW supports default PHY configuration mode, then the driver
2147 * does not have to apply link override settings. If not,
2148 * initialize user PHY configuration with link override values
2149 */
2150 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2151 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2152 ice_init_phy_cfg_dflt_override(pi);
2153 goto out;
2154 }
2155 }
2156
2157 /* if link default override is not enabled, set user flow control and
2158 * FEC settings based on what get_phy_caps returned
2159 */
2160 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2161 pcaps->link_fec_options);
2162 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2163
2164 out:
2165 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2166 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2167 err_out:
2168 kfree(pcaps);
2169 return err;
2170 }
2171
2172 /**
2173 * ice_configure_phy - configure PHY
2174 * @vsi: VSI of PHY
2175 *
2176 * Set the PHY configuration. If the current PHY configuration is the same as
2177 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2178 * configure the based get PHY capabilities for topology with media.
2179 */
ice_configure_phy(struct ice_vsi * vsi)2180 static int ice_configure_phy(struct ice_vsi *vsi)
2181 {
2182 struct device *dev = ice_pf_to_dev(vsi->back);
2183 struct ice_port_info *pi = vsi->port_info;
2184 struct ice_aqc_get_phy_caps_data *pcaps;
2185 struct ice_aqc_set_phy_cfg_data *cfg;
2186 struct ice_phy_info *phy = &pi->phy;
2187 struct ice_pf *pf = vsi->back;
2188 int err;
2189
2190 /* Ensure we have media as we cannot configure a medialess port */
2191 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2192 return -ENOMEDIUM;
2193
2194 ice_print_topo_conflict(vsi);
2195
2196 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2197 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2198 return -EPERM;
2199
2200 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2201 return ice_force_phys_link_state(vsi, true);
2202
2203 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2204 if (!pcaps)
2205 return -ENOMEM;
2206
2207 /* Get current PHY config */
2208 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2209 NULL);
2210 if (err) {
2211 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2212 vsi->vsi_num, err);
2213 goto done;
2214 }
2215
2216 /* If PHY enable link is configured and configuration has not changed,
2217 * there's nothing to do
2218 */
2219 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2220 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2221 goto done;
2222
2223 /* Use PHY topology as baseline for configuration */
2224 memset(pcaps, 0, sizeof(*pcaps));
2225 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2226 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2227 pcaps, NULL);
2228 else
2229 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2230 pcaps, NULL);
2231 if (err) {
2232 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2233 vsi->vsi_num, err);
2234 goto done;
2235 }
2236
2237 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2238 if (!cfg) {
2239 err = -ENOMEM;
2240 goto done;
2241 }
2242
2243 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2244
2245 /* Speed - If default override pending, use curr_user_phy_cfg set in
2246 * ice_init_phy_user_cfg_ldo.
2247 */
2248 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2249 vsi->back->state)) {
2250 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2251 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2252 } else {
2253 u64 phy_low = 0, phy_high = 0;
2254
2255 ice_update_phy_type(&phy_low, &phy_high,
2256 pi->phy.curr_user_speed_req);
2257 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2258 cfg->phy_type_high = pcaps->phy_type_high &
2259 cpu_to_le64(phy_high);
2260 }
2261
2262 /* Can't provide what was requested; use PHY capabilities */
2263 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2264 cfg->phy_type_low = pcaps->phy_type_low;
2265 cfg->phy_type_high = pcaps->phy_type_high;
2266 }
2267
2268 /* FEC */
2269 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2270
2271 /* Can't provide what was requested; use PHY capabilities */
2272 if (cfg->link_fec_opt !=
2273 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2274 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2275 cfg->link_fec_opt = pcaps->link_fec_options;
2276 }
2277
2278 /* Flow Control - always supported; no need to check against
2279 * capabilities
2280 */
2281 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2282
2283 /* Enable link and link update */
2284 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2285
2286 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2287 if (err)
2288 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2289 vsi->vsi_num, err);
2290
2291 kfree(cfg);
2292 done:
2293 kfree(pcaps);
2294 return err;
2295 }
2296
2297 /**
2298 * ice_check_media_subtask - Check for media
2299 * @pf: pointer to PF struct
2300 *
2301 * If media is available, then initialize PHY user configuration if it is not
2302 * been, and configure the PHY if the interface is up.
2303 */
ice_check_media_subtask(struct ice_pf * pf)2304 static void ice_check_media_subtask(struct ice_pf *pf)
2305 {
2306 struct ice_port_info *pi;
2307 struct ice_vsi *vsi;
2308 int err;
2309
2310 /* No need to check for media if it's already present */
2311 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2312 return;
2313
2314 vsi = ice_get_main_vsi(pf);
2315 if (!vsi)
2316 return;
2317
2318 /* Refresh link info and check if media is present */
2319 pi = vsi->port_info;
2320 err = ice_update_link_info(pi);
2321 if (err)
2322 return;
2323
2324 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2325
2326 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2327 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2328 ice_init_phy_user_cfg(pi);
2329
2330 /* PHY settings are reset on media insertion, reconfigure
2331 * PHY to preserve settings.
2332 */
2333 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2334 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2335 return;
2336
2337 err = ice_configure_phy(vsi);
2338 if (!err)
2339 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2340
2341 /* A Link Status Event will be generated; the event handler
2342 * will complete bringing the interface up
2343 */
2344 }
2345 }
2346
ice_service_task_recovery_mode(struct work_struct * work)2347 static void ice_service_task_recovery_mode(struct work_struct *work)
2348 {
2349 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2350
2351 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2352 ice_clean_adminq_subtask(pf);
2353
2354 ice_service_task_complete(pf);
2355
2356 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2357 }
2358
2359 /**
2360 * ice_service_task - manage and run subtasks
2361 * @work: pointer to work_struct contained by the PF struct
2362 */
ice_service_task(struct work_struct * work)2363 static void ice_service_task(struct work_struct *work)
2364 {
2365 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2366 unsigned long start_time = jiffies;
2367
2368 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2369 ice_report_tx_hang(pf);
2370 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2371 }
2372
2373 ice_reset_subtask(pf);
2374
2375 /* bail if a reset/recovery cycle is pending or rebuild failed */
2376 if (ice_is_reset_in_progress(pf->state) ||
2377 test_bit(ICE_SUSPENDED, pf->state) ||
2378 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2379 ice_service_task_complete(pf);
2380 return;
2381 }
2382
2383 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2384 struct iidc_rdma_event *event;
2385
2386 event = kzalloc(sizeof(*event), GFP_KERNEL);
2387 if (event) {
2388 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type);
2389 /* report the entire OICR value to AUX driver */
2390 swap(event->reg, pf->oicr_err_reg);
2391 ice_send_event_to_aux(pf, event);
2392 kfree(event);
2393 }
2394 }
2395
2396 /* unplug aux dev per request, if an unplug request came in
2397 * while processing a plug request, this will handle it
2398 */
2399 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2400 ice_unplug_aux_dev(pf);
2401
2402 /* Plug aux device per request */
2403 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2404 ice_plug_aux_dev(pf);
2405
2406 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2407 struct iidc_rdma_event *event;
2408
2409 event = kzalloc(sizeof(*event), GFP_KERNEL);
2410 if (event) {
2411 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type);
2412 ice_send_event_to_aux(pf, event);
2413 kfree(event);
2414 }
2415 }
2416
2417 ice_clean_adminq_subtask(pf);
2418 ice_check_media_subtask(pf);
2419 ice_check_for_hang_subtask(pf);
2420 ice_sync_fltr_subtask(pf);
2421 ice_handle_mdd_event(pf);
2422 ice_watchdog_subtask(pf);
2423
2424 if (ice_is_safe_mode(pf)) {
2425 ice_service_task_complete(pf);
2426 return;
2427 }
2428
2429 ice_process_vflr_event(pf);
2430 ice_clean_mailboxq_subtask(pf);
2431 ice_clean_sbq_subtask(pf);
2432 ice_sync_arfs_fltrs(pf);
2433 ice_flush_fdir_ctx(pf);
2434
2435 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2436 ice_service_task_complete(pf);
2437
2438 /* If the tasks have taken longer than one service timer period
2439 * or there is more work to be done, reset the service timer to
2440 * schedule the service task now.
2441 */
2442 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2443 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2444 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2445 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2446 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2447 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2448 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2449 mod_timer(&pf->serv_tmr, jiffies);
2450 }
2451
2452 /**
2453 * ice_set_ctrlq_len - helper function to set controlq length
2454 * @hw: pointer to the HW instance
2455 */
ice_set_ctrlq_len(struct ice_hw * hw)2456 static void ice_set_ctrlq_len(struct ice_hw *hw)
2457 {
2458 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2459 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2460 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2461 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2462 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2463 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2464 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2465 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2466 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2467 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2468 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2469 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2470 }
2471
2472 /**
2473 * ice_schedule_reset - schedule a reset
2474 * @pf: board private structure
2475 * @reset: reset being requested
2476 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2477 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2478 {
2479 struct device *dev = ice_pf_to_dev(pf);
2480
2481 /* bail out if earlier reset has failed */
2482 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2483 dev_dbg(dev, "earlier reset has failed\n");
2484 return -EIO;
2485 }
2486 /* bail if reset/recovery already in progress */
2487 if (ice_is_reset_in_progress(pf->state)) {
2488 dev_dbg(dev, "Reset already in progress\n");
2489 return -EBUSY;
2490 }
2491
2492 switch (reset) {
2493 case ICE_RESET_PFR:
2494 set_bit(ICE_PFR_REQ, pf->state);
2495 break;
2496 case ICE_RESET_CORER:
2497 set_bit(ICE_CORER_REQ, pf->state);
2498 break;
2499 case ICE_RESET_GLOBR:
2500 set_bit(ICE_GLOBR_REQ, pf->state);
2501 break;
2502 default:
2503 return -EINVAL;
2504 }
2505
2506 ice_service_task_schedule(pf);
2507 return 0;
2508 }
2509
2510 /**
2511 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2512 * @vsi: the VSI being configured
2513 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2514 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2515 {
2516 struct ice_hw *hw = &vsi->back->hw;
2517 int i;
2518
2519 ice_for_each_q_vector(vsi, i)
2520 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2521
2522 ice_flush(hw);
2523 return 0;
2524 }
2525
2526 /**
2527 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2528 * @vsi: the VSI being configured
2529 * @basename: name for the vector
2530 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2531 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2532 {
2533 int q_vectors = vsi->num_q_vectors;
2534 struct ice_pf *pf = vsi->back;
2535 struct device *dev;
2536 int rx_int_idx = 0;
2537 int tx_int_idx = 0;
2538 int vector, err;
2539 int irq_num;
2540
2541 dev = ice_pf_to_dev(pf);
2542 for (vector = 0; vector < q_vectors; vector++) {
2543 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2544
2545 irq_num = q_vector->irq.virq;
2546
2547 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2548 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2549 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2550 tx_int_idx++;
2551 } else if (q_vector->rx.rx_ring) {
2552 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2553 "%s-%s-%d", basename, "rx", rx_int_idx++);
2554 } else if (q_vector->tx.tx_ring) {
2555 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2556 "%s-%s-%d", basename, "tx", tx_int_idx++);
2557 } else {
2558 /* skip this unused q_vector */
2559 continue;
2560 }
2561 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2562 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2563 IRQF_SHARED, q_vector->name,
2564 q_vector);
2565 else
2566 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2567 0, q_vector->name, q_vector);
2568 if (err) {
2569 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2570 err);
2571 goto free_q_irqs;
2572 }
2573 }
2574
2575 err = ice_set_cpu_rx_rmap(vsi);
2576 if (err) {
2577 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2578 vsi->vsi_num, ERR_PTR(err));
2579 goto free_q_irqs;
2580 }
2581
2582 vsi->irqs_ready = true;
2583 return 0;
2584
2585 free_q_irqs:
2586 while (vector--) {
2587 irq_num = vsi->q_vectors[vector]->irq.virq;
2588 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2589 }
2590 return err;
2591 }
2592
2593 /**
2594 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2595 * @vsi: VSI to setup Tx rings used by XDP
2596 *
2597 * Return 0 on success and negative value on error
2598 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2599 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2600 {
2601 struct device *dev = ice_pf_to_dev(vsi->back);
2602 struct ice_tx_desc *tx_desc;
2603 int i, j;
2604
2605 ice_for_each_xdp_txq(vsi, i) {
2606 u16 xdp_q_idx = vsi->alloc_txq + i;
2607 struct ice_ring_stats *ring_stats;
2608 struct ice_tx_ring *xdp_ring;
2609
2610 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2611 if (!xdp_ring)
2612 goto free_xdp_rings;
2613
2614 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2615 if (!ring_stats) {
2616 ice_free_tx_ring(xdp_ring);
2617 goto free_xdp_rings;
2618 }
2619
2620 xdp_ring->ring_stats = ring_stats;
2621 xdp_ring->q_index = xdp_q_idx;
2622 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2623 xdp_ring->vsi = vsi;
2624 xdp_ring->netdev = NULL;
2625 xdp_ring->dev = dev;
2626 xdp_ring->count = vsi->num_tx_desc;
2627 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2628 if (ice_setup_tx_ring(xdp_ring))
2629 goto free_xdp_rings;
2630 ice_set_ring_xdp(xdp_ring);
2631 spin_lock_init(&xdp_ring->tx_lock);
2632 for (j = 0; j < xdp_ring->count; j++) {
2633 tx_desc = ICE_TX_DESC(xdp_ring, j);
2634 tx_desc->cmd_type_offset_bsz = 0;
2635 }
2636 }
2637
2638 return 0;
2639
2640 free_xdp_rings:
2641 for (; i >= 0; i--) {
2642 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2643 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2644 vsi->xdp_rings[i]->ring_stats = NULL;
2645 ice_free_tx_ring(vsi->xdp_rings[i]);
2646 }
2647 }
2648 return -ENOMEM;
2649 }
2650
2651 /**
2652 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2653 * @vsi: VSI to set the bpf prog on
2654 * @prog: the bpf prog pointer
2655 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2656 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2657 {
2658 struct bpf_prog *old_prog;
2659 int i;
2660
2661 old_prog = xchg(&vsi->xdp_prog, prog);
2662 ice_for_each_rxq(vsi, i)
2663 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2664
2665 if (old_prog)
2666 bpf_prog_put(old_prog);
2667 }
2668
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2669 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2670 {
2671 struct ice_q_vector *q_vector;
2672 struct ice_tx_ring *ring;
2673
2674 if (static_key_enabled(&ice_xdp_locking_key))
2675 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2676
2677 q_vector = vsi->rx_rings[qid]->q_vector;
2678 ice_for_each_tx_ring(ring, q_vector->tx)
2679 if (ice_ring_is_xdp(ring))
2680 return ring;
2681
2682 return NULL;
2683 }
2684
2685 /**
2686 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2687 * @vsi: the VSI with XDP rings being configured
2688 *
2689 * Map XDP rings to interrupt vectors and perform the configuration steps
2690 * dependent on the mapping.
2691 */
ice_map_xdp_rings(struct ice_vsi * vsi)2692 void ice_map_xdp_rings(struct ice_vsi *vsi)
2693 {
2694 int xdp_rings_rem = vsi->num_xdp_txq;
2695 int v_idx, q_idx;
2696
2697 /* follow the logic from ice_vsi_map_rings_to_vectors */
2698 ice_for_each_q_vector(vsi, v_idx) {
2699 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2700 int xdp_rings_per_v, q_id, q_base;
2701
2702 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2703 vsi->num_q_vectors - v_idx);
2704 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2705
2706 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2707 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2708
2709 xdp_ring->q_vector = q_vector;
2710 xdp_ring->next = q_vector->tx.tx_ring;
2711 q_vector->tx.tx_ring = xdp_ring;
2712 }
2713 xdp_rings_rem -= xdp_rings_per_v;
2714 }
2715
2716 ice_for_each_rxq(vsi, q_idx) {
2717 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2718 q_idx);
2719 ice_tx_xsk_pool(vsi, q_idx);
2720 }
2721 }
2722
2723 /**
2724 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2725 * @vsi: the VSI with XDP rings being unmapped
2726 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2727 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2728 {
2729 int v_idx;
2730
2731 ice_for_each_q_vector(vsi, v_idx) {
2732 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2733 struct ice_tx_ring *ring;
2734
2735 ice_for_each_tx_ring(ring, q_vector->tx)
2736 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2737 break;
2738
2739 /* restore the value of last node prior to XDP setup */
2740 q_vector->tx.tx_ring = ring;
2741 }
2742 }
2743
2744 /**
2745 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2746 * @vsi: VSI to bring up Tx rings used by XDP
2747 * @prog: bpf program that will be assigned to VSI
2748 * @cfg_type: create from scratch or restore the existing configuration
2749 *
2750 * Return 0 on success and negative value on error
2751 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2752 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2753 enum ice_xdp_cfg cfg_type)
2754 {
2755 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2756 struct ice_pf *pf = vsi->back;
2757 struct ice_qs_cfg xdp_qs_cfg = {
2758 .qs_mutex = &pf->avail_q_mutex,
2759 .pf_map = pf->avail_txqs,
2760 .pf_map_size = pf->max_pf_txqs,
2761 .q_count = vsi->num_xdp_txq,
2762 .scatter_count = ICE_MAX_SCATTER_TXQS,
2763 .vsi_map = vsi->txq_map,
2764 .vsi_map_offset = vsi->alloc_txq,
2765 .mapping_mode = ICE_VSI_MAP_CONTIG
2766 };
2767 struct device *dev;
2768 int status, i;
2769
2770 dev = ice_pf_to_dev(pf);
2771 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2772 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2773 if (!vsi->xdp_rings)
2774 return -ENOMEM;
2775
2776 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2777 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2778 goto err_map_xdp;
2779
2780 if (static_key_enabled(&ice_xdp_locking_key))
2781 netdev_warn(vsi->netdev,
2782 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2783
2784 if (ice_xdp_alloc_setup_rings(vsi))
2785 goto clear_xdp_rings;
2786
2787 /* omit the scheduler update if in reset path; XDP queues will be
2788 * taken into account at the end of ice_vsi_rebuild, where
2789 * ice_cfg_vsi_lan is being called
2790 */
2791 if (cfg_type == ICE_XDP_CFG_PART)
2792 return 0;
2793
2794 ice_map_xdp_rings(vsi);
2795
2796 /* tell the Tx scheduler that right now we have
2797 * additional queues
2798 */
2799 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2800 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2801
2802 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2803 max_txqs);
2804 if (status) {
2805 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2806 status);
2807 goto unmap_xdp_rings;
2808 }
2809
2810 /* assign the prog only when it's not already present on VSI;
2811 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2812 * VSI rebuild that happens under ethtool -L can expose us to
2813 * the bpf_prog refcount issues as we would be swapping same
2814 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2815 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2816 * this is not harmful as dev_xdp_install bumps the refcount
2817 * before calling the op exposed by the driver;
2818 */
2819 if (!ice_is_xdp_ena_vsi(vsi))
2820 ice_vsi_assign_bpf_prog(vsi, prog);
2821
2822 return 0;
2823 unmap_xdp_rings:
2824 ice_unmap_xdp_rings(vsi);
2825 clear_xdp_rings:
2826 ice_for_each_xdp_txq(vsi, i)
2827 if (vsi->xdp_rings[i]) {
2828 kfree_rcu(vsi->xdp_rings[i], rcu);
2829 vsi->xdp_rings[i] = NULL;
2830 }
2831
2832 err_map_xdp:
2833 mutex_lock(&pf->avail_q_mutex);
2834 ice_for_each_xdp_txq(vsi, i) {
2835 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2836 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2837 }
2838 mutex_unlock(&pf->avail_q_mutex);
2839
2840 devm_kfree(dev, vsi->xdp_rings);
2841 vsi->xdp_rings = NULL;
2842
2843 return -ENOMEM;
2844 }
2845
2846 /**
2847 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2848 * @vsi: VSI to remove XDP rings
2849 * @cfg_type: disable XDP permanently or allow it to be restored later
2850 *
2851 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2852 * resources
2853 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2854 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2855 {
2856 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2857 struct ice_pf *pf = vsi->back;
2858 int i;
2859
2860 /* q_vectors are freed in reset path so there's no point in detaching
2861 * rings
2862 */
2863 if (cfg_type == ICE_XDP_CFG_PART)
2864 goto free_qmap;
2865
2866 ice_unmap_xdp_rings(vsi);
2867
2868 free_qmap:
2869 mutex_lock(&pf->avail_q_mutex);
2870 ice_for_each_xdp_txq(vsi, i) {
2871 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2872 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2873 }
2874 mutex_unlock(&pf->avail_q_mutex);
2875
2876 ice_for_each_xdp_txq(vsi, i)
2877 if (vsi->xdp_rings[i]) {
2878 if (vsi->xdp_rings[i]->desc) {
2879 synchronize_rcu();
2880 ice_free_tx_ring(vsi->xdp_rings[i]);
2881 }
2882 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2883 vsi->xdp_rings[i]->ring_stats = NULL;
2884 kfree_rcu(vsi->xdp_rings[i], rcu);
2885 vsi->xdp_rings[i] = NULL;
2886 }
2887
2888 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2889 vsi->xdp_rings = NULL;
2890
2891 if (static_key_enabled(&ice_xdp_locking_key))
2892 static_branch_dec(&ice_xdp_locking_key);
2893
2894 if (cfg_type == ICE_XDP_CFG_PART)
2895 return 0;
2896
2897 ice_vsi_assign_bpf_prog(vsi, NULL);
2898
2899 /* notify Tx scheduler that we destroyed XDP queues and bring
2900 * back the old number of child nodes
2901 */
2902 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2903 max_txqs[i] = vsi->num_txq;
2904
2905 /* change number of XDP Tx queues to 0 */
2906 vsi->num_xdp_txq = 0;
2907
2908 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2909 max_txqs);
2910 }
2911
2912 /**
2913 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2914 * @vsi: VSI to schedule napi on
2915 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2916 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2917 {
2918 int i;
2919
2920 ice_for_each_rxq(vsi, i) {
2921 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2922
2923 if (READ_ONCE(rx_ring->xsk_pool))
2924 napi_schedule(&rx_ring->q_vector->napi);
2925 }
2926 }
2927
2928 /**
2929 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2930 * @vsi: VSI to determine the count of XDP Tx qs
2931 *
2932 * returns 0 if Tx qs count is higher than at least half of CPU count,
2933 * -ENOMEM otherwise
2934 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2935 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2936 {
2937 u16 avail = ice_get_avail_txq_count(vsi->back);
2938 u16 cpus = num_possible_cpus();
2939
2940 if (avail < cpus / 2)
2941 return -ENOMEM;
2942
2943 if (vsi->type == ICE_VSI_SF)
2944 avail = vsi->alloc_txq;
2945
2946 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2947
2948 if (vsi->num_xdp_txq < cpus)
2949 static_branch_inc(&ice_xdp_locking_key);
2950
2951 return 0;
2952 }
2953
2954 /**
2955 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2956 * @vsi: Pointer to VSI structure
2957 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2958 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2959 {
2960 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2961 return ICE_RXBUF_1664;
2962 else
2963 return ICE_RXBUF_3072;
2964 }
2965
2966 /**
2967 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2968 * @vsi: VSI to setup XDP for
2969 * @prog: XDP program
2970 * @extack: netlink extended ack
2971 */
2972 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2973 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2974 struct netlink_ext_ack *extack)
2975 {
2976 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2977 int ret = 0, xdp_ring_err = 0;
2978 bool if_running;
2979
2980 if (prog && !prog->aux->xdp_has_frags) {
2981 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2982 NL_SET_ERR_MSG_MOD(extack,
2983 "MTU is too large for linear frames and XDP prog does not support frags");
2984 return -EOPNOTSUPP;
2985 }
2986 }
2987
2988 /* hot swap progs and avoid toggling link */
2989 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2990 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2991 ice_vsi_assign_bpf_prog(vsi, prog);
2992 return 0;
2993 }
2994
2995 if_running = netif_running(vsi->netdev) &&
2996 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
2997
2998 /* need to stop netdev while setting up the program for Rx rings */
2999 if (if_running) {
3000 ret = ice_down(vsi);
3001 if (ret) {
3002 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3003 return ret;
3004 }
3005 }
3006
3007 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3008 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3009 if (xdp_ring_err) {
3010 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3011 goto resume_if;
3012 } else {
3013 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3014 ICE_XDP_CFG_FULL);
3015 if (xdp_ring_err) {
3016 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3017 goto resume_if;
3018 }
3019 }
3020 xdp_features_set_redirect_target(vsi->netdev, true);
3021 /* reallocate Rx queues that are used for zero-copy */
3022 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3023 if (xdp_ring_err)
3024 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3025 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3026 xdp_features_clear_redirect_target(vsi->netdev);
3027 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3028 if (xdp_ring_err)
3029 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3030 /* reallocate Rx queues that were used for zero-copy */
3031 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3032 if (xdp_ring_err)
3033 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3034 }
3035
3036 resume_if:
3037 if (if_running)
3038 ret = ice_up(vsi);
3039
3040 if (!ret && prog)
3041 ice_vsi_rx_napi_schedule(vsi);
3042
3043 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3044 }
3045
3046 /**
3047 * ice_xdp_safe_mode - XDP handler for safe mode
3048 * @dev: netdevice
3049 * @xdp: XDP command
3050 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3051 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3052 struct netdev_bpf *xdp)
3053 {
3054 NL_SET_ERR_MSG_MOD(xdp->extack,
3055 "Please provide working DDP firmware package in order to use XDP\n"
3056 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3057 return -EOPNOTSUPP;
3058 }
3059
3060 /**
3061 * ice_xdp - implements XDP handler
3062 * @dev: netdevice
3063 * @xdp: XDP command
3064 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3065 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3066 {
3067 struct ice_netdev_priv *np = netdev_priv(dev);
3068 struct ice_vsi *vsi = np->vsi;
3069 int ret;
3070
3071 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3072 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3073 return -EINVAL;
3074 }
3075
3076 mutex_lock(&vsi->xdp_state_lock);
3077
3078 switch (xdp->command) {
3079 case XDP_SETUP_PROG:
3080 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3081 break;
3082 case XDP_SETUP_XSK_POOL:
3083 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3084 break;
3085 default:
3086 ret = -EINVAL;
3087 }
3088
3089 mutex_unlock(&vsi->xdp_state_lock);
3090 return ret;
3091 }
3092
3093 /**
3094 * ice_ena_misc_vector - enable the non-queue interrupts
3095 * @pf: board private structure
3096 */
ice_ena_misc_vector(struct ice_pf * pf)3097 static void ice_ena_misc_vector(struct ice_pf *pf)
3098 {
3099 struct ice_hw *hw = &pf->hw;
3100 u32 pf_intr_start_offset;
3101 u32 val;
3102
3103 /* Disable anti-spoof detection interrupt to prevent spurious event
3104 * interrupts during a function reset. Anti-spoof functionally is
3105 * still supported.
3106 */
3107 val = rd32(hw, GL_MDCK_TX_TDPU);
3108 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3109 wr32(hw, GL_MDCK_TX_TDPU, val);
3110
3111 /* clear things first */
3112 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3113 rd32(hw, PFINT_OICR); /* read to clear */
3114
3115 val = (PFINT_OICR_ECC_ERR_M |
3116 PFINT_OICR_MAL_DETECT_M |
3117 PFINT_OICR_GRST_M |
3118 PFINT_OICR_PCI_EXCEPTION_M |
3119 PFINT_OICR_VFLR_M |
3120 PFINT_OICR_HMC_ERR_M |
3121 PFINT_OICR_PE_PUSH_M |
3122 PFINT_OICR_PE_CRITERR_M);
3123
3124 wr32(hw, PFINT_OICR_ENA, val);
3125
3126 /* SW_ITR_IDX = 0, but don't change INTENA */
3127 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3128 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3129
3130 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3131 return;
3132 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3133 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3134 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3135 }
3136
3137 /**
3138 * ice_ll_ts_intr - ll_ts interrupt handler
3139 * @irq: interrupt number
3140 * @data: pointer to a q_vector
3141 */
ice_ll_ts_intr(int __always_unused irq,void * data)3142 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3143 {
3144 struct ice_pf *pf = data;
3145 u32 pf_intr_start_offset;
3146 struct ice_ptp_tx *tx;
3147 unsigned long flags;
3148 struct ice_hw *hw;
3149 u32 val;
3150 u8 idx;
3151
3152 hw = &pf->hw;
3153 tx = &pf->ptp.port.tx;
3154 spin_lock_irqsave(&tx->lock, flags);
3155 if (tx->init) {
3156 ice_ptp_complete_tx_single_tstamp(tx);
3157
3158 idx = find_next_bit_wrap(tx->in_use, tx->len,
3159 tx->last_ll_ts_idx_read + 1);
3160 if (idx != tx->len)
3161 ice_ptp_req_tx_single_tstamp(tx, idx);
3162 }
3163 spin_unlock_irqrestore(&tx->lock, flags);
3164
3165 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3166 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3167 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3168 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3169 val);
3170
3171 return IRQ_HANDLED;
3172 }
3173
3174 /**
3175 * ice_misc_intr - misc interrupt handler
3176 * @irq: interrupt number
3177 * @data: pointer to a q_vector
3178 */
ice_misc_intr(int __always_unused irq,void * data)3179 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3180 {
3181 struct ice_pf *pf = (struct ice_pf *)data;
3182 irqreturn_t ret = IRQ_HANDLED;
3183 struct ice_hw *hw = &pf->hw;
3184 struct device *dev;
3185 u32 oicr, ena_mask;
3186
3187 dev = ice_pf_to_dev(pf);
3188 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3189 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3190 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3191
3192 oicr = rd32(hw, PFINT_OICR);
3193 ena_mask = rd32(hw, PFINT_OICR_ENA);
3194
3195 if (oicr & PFINT_OICR_SWINT_M) {
3196 ena_mask &= ~PFINT_OICR_SWINT_M;
3197 pf->sw_int_count++;
3198 }
3199
3200 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3201 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3202 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3203 }
3204 if (oicr & PFINT_OICR_VFLR_M) {
3205 /* disable any further VFLR event notifications */
3206 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3207 u32 reg = rd32(hw, PFINT_OICR_ENA);
3208
3209 reg &= ~PFINT_OICR_VFLR_M;
3210 wr32(hw, PFINT_OICR_ENA, reg);
3211 } else {
3212 ena_mask &= ~PFINT_OICR_VFLR_M;
3213 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3214 }
3215 }
3216
3217 if (oicr & PFINT_OICR_GRST_M) {
3218 u32 reset;
3219
3220 /* we have a reset warning */
3221 ena_mask &= ~PFINT_OICR_GRST_M;
3222 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3223 rd32(hw, GLGEN_RSTAT));
3224
3225 if (reset == ICE_RESET_CORER)
3226 pf->corer_count++;
3227 else if (reset == ICE_RESET_GLOBR)
3228 pf->globr_count++;
3229 else if (reset == ICE_RESET_EMPR)
3230 pf->empr_count++;
3231 else
3232 dev_dbg(dev, "Invalid reset type %d\n", reset);
3233
3234 /* If a reset cycle isn't already in progress, we set a bit in
3235 * pf->state so that the service task can start a reset/rebuild.
3236 */
3237 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3238 if (reset == ICE_RESET_CORER)
3239 set_bit(ICE_CORER_RECV, pf->state);
3240 else if (reset == ICE_RESET_GLOBR)
3241 set_bit(ICE_GLOBR_RECV, pf->state);
3242 else
3243 set_bit(ICE_EMPR_RECV, pf->state);
3244
3245 /* There are couple of different bits at play here.
3246 * hw->reset_ongoing indicates whether the hardware is
3247 * in reset. This is set to true when a reset interrupt
3248 * is received and set back to false after the driver
3249 * has determined that the hardware is out of reset.
3250 *
3251 * ICE_RESET_OICR_RECV in pf->state indicates
3252 * that a post reset rebuild is required before the
3253 * driver is operational again. This is set above.
3254 *
3255 * As this is the start of the reset/rebuild cycle, set
3256 * both to indicate that.
3257 */
3258 hw->reset_ongoing = true;
3259 }
3260 }
3261
3262 if (oicr & PFINT_OICR_TSYN_TX_M) {
3263 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3264
3265 ret = ice_ptp_ts_irq(pf);
3266 }
3267
3268 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3269 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3270 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3271
3272 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3273
3274 if (ice_pf_src_tmr_owned(pf)) {
3275 /* Save EVENTs from GLTSYN register */
3276 pf->ptp.ext_ts_irq |= gltsyn_stat &
3277 (GLTSYN_STAT_EVENT0_M |
3278 GLTSYN_STAT_EVENT1_M |
3279 GLTSYN_STAT_EVENT2_M);
3280
3281 ice_ptp_extts_event(pf);
3282 }
3283 }
3284
3285 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3286 if (oicr & ICE_AUX_CRIT_ERR) {
3287 pf->oicr_err_reg |= oicr;
3288 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3289 ena_mask &= ~ICE_AUX_CRIT_ERR;
3290 }
3291
3292 /* Report any remaining unexpected interrupts */
3293 oicr &= ena_mask;
3294 if (oicr) {
3295 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3296 /* If a critical error is pending there is no choice but to
3297 * reset the device.
3298 */
3299 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3300 PFINT_OICR_ECC_ERR_M)) {
3301 set_bit(ICE_PFR_REQ, pf->state);
3302 }
3303 }
3304 ice_service_task_schedule(pf);
3305 if (ret == IRQ_HANDLED)
3306 ice_irq_dynamic_ena(hw, NULL, NULL);
3307
3308 return ret;
3309 }
3310
3311 /**
3312 * ice_misc_intr_thread_fn - misc interrupt thread function
3313 * @irq: interrupt number
3314 * @data: pointer to a q_vector
3315 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3316 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3317 {
3318 struct ice_pf *pf = data;
3319 struct ice_hw *hw;
3320
3321 hw = &pf->hw;
3322
3323 if (ice_is_reset_in_progress(pf->state))
3324 goto skip_irq;
3325
3326 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3327 /* Process outstanding Tx timestamps. If there is more work,
3328 * re-arm the interrupt to trigger again.
3329 */
3330 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3331 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3332 ice_flush(hw);
3333 }
3334 }
3335
3336 skip_irq:
3337 ice_irq_dynamic_ena(hw, NULL, NULL);
3338
3339 return IRQ_HANDLED;
3340 }
3341
3342 /**
3343 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3344 * @hw: pointer to HW structure
3345 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3346 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3347 {
3348 /* disable Admin queue Interrupt causes */
3349 wr32(hw, PFINT_FW_CTL,
3350 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3351
3352 /* disable Mailbox queue Interrupt causes */
3353 wr32(hw, PFINT_MBX_CTL,
3354 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3355
3356 wr32(hw, PFINT_SB_CTL,
3357 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3358
3359 /* disable Control queue Interrupt causes */
3360 wr32(hw, PFINT_OICR_CTL,
3361 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3362
3363 ice_flush(hw);
3364 }
3365
3366 /**
3367 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3368 * @pf: board private structure
3369 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3370 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3371 {
3372 int irq_num = pf->ll_ts_irq.virq;
3373
3374 synchronize_irq(irq_num);
3375 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3376
3377 ice_free_irq(pf, pf->ll_ts_irq);
3378 }
3379
3380 /**
3381 * ice_free_irq_msix_misc - Unroll misc vector setup
3382 * @pf: board private structure
3383 */
ice_free_irq_msix_misc(struct ice_pf * pf)3384 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3385 {
3386 int misc_irq_num = pf->oicr_irq.virq;
3387 struct ice_hw *hw = &pf->hw;
3388
3389 ice_dis_ctrlq_interrupts(hw);
3390
3391 /* disable OICR interrupt */
3392 wr32(hw, PFINT_OICR_ENA, 0);
3393 ice_flush(hw);
3394
3395 synchronize_irq(misc_irq_num);
3396 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3397
3398 ice_free_irq(pf, pf->oicr_irq);
3399 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3400 ice_free_irq_msix_ll_ts(pf);
3401 }
3402
3403 /**
3404 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3405 * @hw: pointer to HW structure
3406 * @reg_idx: HW vector index to associate the control queue interrupts with
3407 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3408 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3409 {
3410 u32 val;
3411
3412 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3413 PFINT_OICR_CTL_CAUSE_ENA_M);
3414 wr32(hw, PFINT_OICR_CTL, val);
3415
3416 /* enable Admin queue Interrupt causes */
3417 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3418 PFINT_FW_CTL_CAUSE_ENA_M);
3419 wr32(hw, PFINT_FW_CTL, val);
3420
3421 /* enable Mailbox queue Interrupt causes */
3422 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3423 PFINT_MBX_CTL_CAUSE_ENA_M);
3424 wr32(hw, PFINT_MBX_CTL, val);
3425
3426 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3427 /* enable Sideband queue Interrupt causes */
3428 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3429 PFINT_SB_CTL_CAUSE_ENA_M);
3430 wr32(hw, PFINT_SB_CTL, val);
3431 }
3432
3433 ice_flush(hw);
3434 }
3435
3436 /**
3437 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3438 * @pf: board private structure
3439 *
3440 * This sets up the handler for MSIX 0, which is used to manage the
3441 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3442 * when in MSI or Legacy interrupt mode.
3443 */
ice_req_irq_msix_misc(struct ice_pf * pf)3444 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3445 {
3446 struct device *dev = ice_pf_to_dev(pf);
3447 struct ice_hw *hw = &pf->hw;
3448 u32 pf_intr_start_offset;
3449 struct msi_map irq;
3450 int err = 0;
3451
3452 if (!pf->int_name[0])
3453 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3454 dev_driver_string(dev), dev_name(dev));
3455
3456 if (!pf->int_name_ll_ts[0])
3457 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3458 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3459 /* Do not request IRQ but do enable OICR interrupt since settings are
3460 * lost during reset. Note that this function is called only during
3461 * rebuild path and not while reset is in progress.
3462 */
3463 if (ice_is_reset_in_progress(pf->state))
3464 goto skip_req_irq;
3465
3466 /* reserve one vector in irq_tracker for misc interrupts */
3467 irq = ice_alloc_irq(pf, false);
3468 if (irq.index < 0)
3469 return irq.index;
3470
3471 pf->oicr_irq = irq;
3472 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3473 ice_misc_intr_thread_fn, 0,
3474 pf->int_name, pf);
3475 if (err) {
3476 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3477 pf->int_name, err);
3478 ice_free_irq(pf, pf->oicr_irq);
3479 return err;
3480 }
3481
3482 /* reserve one vector in irq_tracker for ll_ts interrupt */
3483 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3484 goto skip_req_irq;
3485
3486 irq = ice_alloc_irq(pf, false);
3487 if (irq.index < 0)
3488 return irq.index;
3489
3490 pf->ll_ts_irq = irq;
3491 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3492 pf->int_name_ll_ts, pf);
3493 if (err) {
3494 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3495 pf->int_name_ll_ts, err);
3496 ice_free_irq(pf, pf->ll_ts_irq);
3497 return err;
3498 }
3499
3500 skip_req_irq:
3501 ice_ena_misc_vector(pf);
3502
3503 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3504 /* This enables LL TS interrupt */
3505 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3506 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3507 wr32(hw, PFINT_SB_CTL,
3508 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3509 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3510 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3511 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3512
3513 ice_flush(hw);
3514 ice_irq_dynamic_ena(hw, NULL, NULL);
3515
3516 return 0;
3517 }
3518
3519 /**
3520 * ice_set_ops - set netdev and ethtools ops for the given netdev
3521 * @vsi: the VSI associated with the new netdev
3522 */
ice_set_ops(struct ice_vsi * vsi)3523 static void ice_set_ops(struct ice_vsi *vsi)
3524 {
3525 struct net_device *netdev = vsi->netdev;
3526 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3527
3528 if (ice_is_safe_mode(pf)) {
3529 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3530 ice_set_ethtool_safe_mode_ops(netdev);
3531 return;
3532 }
3533
3534 netdev->netdev_ops = &ice_netdev_ops;
3535 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3536 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3537 ice_set_ethtool_ops(netdev);
3538
3539 if (vsi->type != ICE_VSI_PF)
3540 return;
3541
3542 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3543 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3544 NETDEV_XDP_ACT_RX_SG;
3545 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3546 }
3547
3548 /**
3549 * ice_set_netdev_features - set features for the given netdev
3550 * @netdev: netdev instance
3551 */
ice_set_netdev_features(struct net_device * netdev)3552 void ice_set_netdev_features(struct net_device *netdev)
3553 {
3554 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3555 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3556 netdev_features_t csumo_features;
3557 netdev_features_t vlano_features;
3558 netdev_features_t dflt_features;
3559 netdev_features_t tso_features;
3560
3561 if (ice_is_safe_mode(pf)) {
3562 /* safe mode */
3563 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3564 netdev->hw_features = netdev->features;
3565 return;
3566 }
3567
3568 dflt_features = NETIF_F_SG |
3569 NETIF_F_HIGHDMA |
3570 NETIF_F_NTUPLE |
3571 NETIF_F_RXHASH;
3572
3573 csumo_features = NETIF_F_RXCSUM |
3574 NETIF_F_IP_CSUM |
3575 NETIF_F_SCTP_CRC |
3576 NETIF_F_IPV6_CSUM;
3577
3578 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3579 NETIF_F_HW_VLAN_CTAG_TX |
3580 NETIF_F_HW_VLAN_CTAG_RX;
3581
3582 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3583 if (is_dvm_ena)
3584 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3585
3586 tso_features = NETIF_F_TSO |
3587 NETIF_F_TSO_ECN |
3588 NETIF_F_TSO6 |
3589 NETIF_F_GSO_GRE |
3590 NETIF_F_GSO_UDP_TUNNEL |
3591 NETIF_F_GSO_GRE_CSUM |
3592 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3593 NETIF_F_GSO_PARTIAL |
3594 NETIF_F_GSO_IPXIP4 |
3595 NETIF_F_GSO_IPXIP6 |
3596 NETIF_F_GSO_UDP_L4;
3597
3598 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3599 NETIF_F_GSO_GRE_CSUM;
3600 /* set features that user can change */
3601 netdev->hw_features = dflt_features | csumo_features |
3602 vlano_features | tso_features;
3603
3604 /* add support for HW_CSUM on packets with MPLS header */
3605 netdev->mpls_features = NETIF_F_HW_CSUM |
3606 NETIF_F_TSO |
3607 NETIF_F_TSO6;
3608
3609 /* enable features */
3610 netdev->features |= netdev->hw_features;
3611
3612 netdev->hw_features |= NETIF_F_HW_TC;
3613 netdev->hw_features |= NETIF_F_LOOPBACK;
3614
3615 /* encap and VLAN devices inherit default, csumo and tso features */
3616 netdev->hw_enc_features |= dflt_features | csumo_features |
3617 tso_features;
3618 netdev->vlan_features |= dflt_features | csumo_features |
3619 tso_features;
3620
3621 /* advertise support but don't enable by default since only one type of
3622 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3623 * type turns on the other has to be turned off. This is enforced by the
3624 * ice_fix_features() ndo callback.
3625 */
3626 if (is_dvm_ena)
3627 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3628 NETIF_F_HW_VLAN_STAG_TX;
3629
3630 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3631 * be changed at runtime
3632 */
3633 netdev->hw_features |= NETIF_F_RXFCS;
3634
3635 /* Allow core to manage IRQs affinity */
3636 netif_set_affinity_auto(netdev);
3637
3638 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3639 * ndo callback.
3640 */
3641 if (ice_is_feature_supported(pf, ICE_F_GCS))
3642 netdev->hw_features |= NETIF_F_HW_CSUM;
3643
3644 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3645 }
3646
3647 /**
3648 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3649 * @lut: Lookup table
3650 * @rss_table_size: Lookup table size
3651 * @rss_size: Range of queue number for hashing
3652 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3653 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3654 {
3655 u16 i;
3656
3657 for (i = 0; i < rss_table_size; i++)
3658 lut[i] = i % rss_size;
3659 }
3660
3661 /**
3662 * ice_pf_vsi_setup - Set up a PF VSI
3663 * @pf: board private structure
3664 * @pi: pointer to the port_info instance
3665 *
3666 * Returns pointer to the successfully allocated VSI software struct
3667 * on success, otherwise returns NULL on failure.
3668 */
3669 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3670 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3671 {
3672 struct ice_vsi_cfg_params params = {};
3673
3674 params.type = ICE_VSI_PF;
3675 params.port_info = pi;
3676 params.flags = ICE_VSI_FLAG_INIT;
3677
3678 return ice_vsi_setup(pf, ¶ms);
3679 }
3680
3681 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3682 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3683 struct ice_channel *ch)
3684 {
3685 struct ice_vsi_cfg_params params = {};
3686
3687 params.type = ICE_VSI_CHNL;
3688 params.port_info = pi;
3689 params.ch = ch;
3690 params.flags = ICE_VSI_FLAG_INIT;
3691
3692 return ice_vsi_setup(pf, ¶ms);
3693 }
3694
3695 /**
3696 * ice_ctrl_vsi_setup - Set up a control VSI
3697 * @pf: board private structure
3698 * @pi: pointer to the port_info instance
3699 *
3700 * Returns pointer to the successfully allocated VSI software struct
3701 * on success, otherwise returns NULL on failure.
3702 */
3703 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3704 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3705 {
3706 struct ice_vsi_cfg_params params = {};
3707
3708 params.type = ICE_VSI_CTRL;
3709 params.port_info = pi;
3710 params.flags = ICE_VSI_FLAG_INIT;
3711
3712 return ice_vsi_setup(pf, ¶ms);
3713 }
3714
3715 /**
3716 * ice_lb_vsi_setup - Set up a loopback VSI
3717 * @pf: board private structure
3718 * @pi: pointer to the port_info instance
3719 *
3720 * Returns pointer to the successfully allocated VSI software struct
3721 * on success, otherwise returns NULL on failure.
3722 */
3723 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3724 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3725 {
3726 struct ice_vsi_cfg_params params = {};
3727
3728 params.type = ICE_VSI_LB;
3729 params.port_info = pi;
3730 params.flags = ICE_VSI_FLAG_INIT;
3731
3732 return ice_vsi_setup(pf, ¶ms);
3733 }
3734
3735 /**
3736 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3737 * @netdev: network interface to be adjusted
3738 * @proto: VLAN TPID
3739 * @vid: VLAN ID to be added
3740 *
3741 * net_device_ops implementation for adding VLAN IDs
3742 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3743 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3744 {
3745 struct ice_netdev_priv *np = netdev_priv(netdev);
3746 struct ice_vsi_vlan_ops *vlan_ops;
3747 struct ice_vsi *vsi = np->vsi;
3748 struct ice_vlan vlan;
3749 int ret;
3750
3751 /* VLAN 0 is added by default during load/reset */
3752 if (!vid)
3753 return 0;
3754
3755 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3756 usleep_range(1000, 2000);
3757
3758 /* Add multicast promisc rule for the VLAN ID to be added if
3759 * all-multicast is currently enabled.
3760 */
3761 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3762 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3763 ICE_MCAST_VLAN_PROMISC_BITS,
3764 vid);
3765 if (ret)
3766 goto finish;
3767 }
3768
3769 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3770
3771 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3772 * packets aren't pruned by the device's internal switch on Rx
3773 */
3774 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3775 ret = vlan_ops->add_vlan(vsi, &vlan);
3776 if (ret)
3777 goto finish;
3778
3779 /* If all-multicast is currently enabled and this VLAN ID is only one
3780 * besides VLAN-0 we have to update look-up type of multicast promisc
3781 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3782 */
3783 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3784 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3785 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3786 ICE_MCAST_PROMISC_BITS, 0);
3787 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3788 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3789 }
3790
3791 finish:
3792 clear_bit(ICE_CFG_BUSY, vsi->state);
3793
3794 return ret;
3795 }
3796
3797 /**
3798 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3799 * @netdev: network interface to be adjusted
3800 * @proto: VLAN TPID
3801 * @vid: VLAN ID to be removed
3802 *
3803 * net_device_ops implementation for removing VLAN IDs
3804 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3805 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3806 {
3807 struct ice_netdev_priv *np = netdev_priv(netdev);
3808 struct ice_vsi_vlan_ops *vlan_ops;
3809 struct ice_vsi *vsi = np->vsi;
3810 struct ice_vlan vlan;
3811 int ret;
3812
3813 /* don't allow removal of VLAN 0 */
3814 if (!vid)
3815 return 0;
3816
3817 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3818 usleep_range(1000, 2000);
3819
3820 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3821 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3822 if (ret) {
3823 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3824 vsi->vsi_num);
3825 vsi->current_netdev_flags |= IFF_ALLMULTI;
3826 }
3827
3828 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3829
3830 /* Make sure VLAN delete is successful before updating VLAN
3831 * information
3832 */
3833 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3834 ret = vlan_ops->del_vlan(vsi, &vlan);
3835 if (ret)
3836 goto finish;
3837
3838 /* Remove multicast promisc rule for the removed VLAN ID if
3839 * all-multicast is enabled.
3840 */
3841 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3842 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3843 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3844
3845 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3846 /* Update look-up type of multicast promisc rule for VLAN 0
3847 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3848 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3849 */
3850 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3851 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3852 ICE_MCAST_VLAN_PROMISC_BITS,
3853 0);
3854 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3855 ICE_MCAST_PROMISC_BITS, 0);
3856 }
3857 }
3858
3859 finish:
3860 clear_bit(ICE_CFG_BUSY, vsi->state);
3861
3862 return ret;
3863 }
3864
3865 /**
3866 * ice_rep_indr_tc_block_unbind
3867 * @cb_priv: indirection block private data
3868 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3869 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3870 {
3871 struct ice_indr_block_priv *indr_priv = cb_priv;
3872
3873 list_del(&indr_priv->list);
3874 kfree(indr_priv);
3875 }
3876
3877 /**
3878 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3879 * @vsi: VSI struct which has the netdev
3880 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3881 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3882 {
3883 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3884
3885 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3886 ice_rep_indr_tc_block_unbind);
3887 }
3888
3889 /**
3890 * ice_tc_indir_block_register - Register TC indirect block notifications
3891 * @vsi: VSI struct which has the netdev
3892 *
3893 * Returns 0 on success, negative value on failure
3894 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3895 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3896 {
3897 struct ice_netdev_priv *np;
3898
3899 if (!vsi || !vsi->netdev)
3900 return -EINVAL;
3901
3902 np = netdev_priv(vsi->netdev);
3903
3904 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3905 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3906 }
3907
3908 /**
3909 * ice_get_avail_q_count - Get count of queues in use
3910 * @pf_qmap: bitmap to get queue use count from
3911 * @lock: pointer to a mutex that protects access to pf_qmap
3912 * @size: size of the bitmap
3913 */
3914 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3915 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3916 {
3917 unsigned long bit;
3918 u16 count = 0;
3919
3920 mutex_lock(lock);
3921 for_each_clear_bit(bit, pf_qmap, size)
3922 count++;
3923 mutex_unlock(lock);
3924
3925 return count;
3926 }
3927
3928 /**
3929 * ice_get_avail_txq_count - Get count of Tx queues in use
3930 * @pf: pointer to an ice_pf instance
3931 */
ice_get_avail_txq_count(struct ice_pf * pf)3932 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3933 {
3934 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3935 pf->max_pf_txqs);
3936 }
3937
3938 /**
3939 * ice_get_avail_rxq_count - Get count of Rx queues in use
3940 * @pf: pointer to an ice_pf instance
3941 */
ice_get_avail_rxq_count(struct ice_pf * pf)3942 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3943 {
3944 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3945 pf->max_pf_rxqs);
3946 }
3947
3948 /**
3949 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3950 * @pf: board private structure to initialize
3951 */
ice_deinit_pf(struct ice_pf * pf)3952 static void ice_deinit_pf(struct ice_pf *pf)
3953 {
3954 ice_service_task_stop(pf);
3955 mutex_destroy(&pf->lag_mutex);
3956 mutex_destroy(&pf->adev_mutex);
3957 mutex_destroy(&pf->sw_mutex);
3958 mutex_destroy(&pf->tc_mutex);
3959 mutex_destroy(&pf->avail_q_mutex);
3960 mutex_destroy(&pf->vfs.table_lock);
3961
3962 if (pf->avail_txqs) {
3963 bitmap_free(pf->avail_txqs);
3964 pf->avail_txqs = NULL;
3965 }
3966
3967 if (pf->avail_rxqs) {
3968 bitmap_free(pf->avail_rxqs);
3969 pf->avail_rxqs = NULL;
3970 }
3971
3972 if (pf->txtime_txqs) {
3973 bitmap_free(pf->txtime_txqs);
3974 pf->txtime_txqs = NULL;
3975 }
3976
3977 if (pf->ptp.clock)
3978 ptp_clock_unregister(pf->ptp.clock);
3979
3980 xa_destroy(&pf->dyn_ports);
3981 xa_destroy(&pf->sf_nums);
3982 }
3983
3984 /**
3985 * ice_set_pf_caps - set PFs capability flags
3986 * @pf: pointer to the PF instance
3987 */
ice_set_pf_caps(struct ice_pf * pf)3988 static void ice_set_pf_caps(struct ice_pf *pf)
3989 {
3990 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3991
3992 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3993 if (func_caps->common_cap.rdma)
3994 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3995 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3996 if (func_caps->common_cap.dcb)
3997 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3998 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3999 if (func_caps->common_cap.sr_iov_1_1) {
4000 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4001 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4002 ICE_MAX_SRIOV_VFS);
4003 }
4004 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4005 if (func_caps->common_cap.rss_table_size)
4006 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4007
4008 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4009 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4010 u16 unused;
4011
4012 /* ctrl_vsi_idx will be set to a valid value when flow director
4013 * is setup by ice_init_fdir
4014 */
4015 pf->ctrl_vsi_idx = ICE_NO_VSI;
4016 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4017 /* force guaranteed filter pool for PF */
4018 ice_alloc_fd_guar_item(&pf->hw, &unused,
4019 func_caps->fd_fltr_guar);
4020 /* force shared filter pool for PF */
4021 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4022 func_caps->fd_fltr_best_effort);
4023 }
4024
4025 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4026 if (func_caps->common_cap.ieee_1588)
4027 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4028
4029 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4030 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4031 }
4032
4033 /**
4034 * ice_init_pf - Initialize general software structures (struct ice_pf)
4035 * @pf: board private structure to initialize
4036 */
ice_init_pf(struct ice_pf * pf)4037 static int ice_init_pf(struct ice_pf *pf)
4038 {
4039 ice_set_pf_caps(pf);
4040
4041 mutex_init(&pf->sw_mutex);
4042 mutex_init(&pf->tc_mutex);
4043 mutex_init(&pf->adev_mutex);
4044 mutex_init(&pf->lag_mutex);
4045
4046 INIT_HLIST_HEAD(&pf->aq_wait_list);
4047 spin_lock_init(&pf->aq_wait_lock);
4048 init_waitqueue_head(&pf->aq_wait_queue);
4049
4050 init_waitqueue_head(&pf->reset_wait_queue);
4051
4052 /* setup service timer and periodic service task */
4053 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4054 pf->serv_tmr_period = HZ;
4055 INIT_WORK(&pf->serv_task, ice_service_task);
4056 clear_bit(ICE_SERVICE_SCHED, pf->state);
4057
4058 mutex_init(&pf->avail_q_mutex);
4059 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4060 if (!pf->avail_txqs)
4061 return -ENOMEM;
4062
4063 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4064 if (!pf->avail_rxqs) {
4065 bitmap_free(pf->avail_txqs);
4066 pf->avail_txqs = NULL;
4067 return -ENOMEM;
4068 }
4069
4070 pf->txtime_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4071 if (!pf->txtime_txqs) {
4072 bitmap_free(pf->avail_txqs);
4073 pf->avail_txqs = NULL;
4074 bitmap_free(pf->avail_rxqs);
4075 pf->avail_rxqs = NULL;
4076 return -ENOMEM;
4077 }
4078
4079 mutex_init(&pf->vfs.table_lock);
4080 hash_init(pf->vfs.table);
4081 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4082 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4083 ICE_MBX_OVERFLOW_WATERMARK);
4084 else
4085 ice_mbx_init_snapshot(&pf->hw);
4086
4087 xa_init(&pf->dyn_ports);
4088 xa_init(&pf->sf_nums);
4089
4090 return 0;
4091 }
4092
4093 /**
4094 * ice_is_wol_supported - check if WoL is supported
4095 * @hw: pointer to hardware info
4096 *
4097 * Check if WoL is supported based on the HW configuration.
4098 * Returns true if NVM supports and enables WoL for this port, false otherwise
4099 */
ice_is_wol_supported(struct ice_hw * hw)4100 bool ice_is_wol_supported(struct ice_hw *hw)
4101 {
4102 u16 wol_ctrl;
4103
4104 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4105 * word) indicates WoL is not supported on the corresponding PF ID.
4106 */
4107 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4108 return false;
4109
4110 return !(BIT(hw->port_info->lport) & wol_ctrl);
4111 }
4112
4113 /**
4114 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4115 * @vsi: VSI being changed
4116 * @new_rx: new number of Rx queues
4117 * @new_tx: new number of Tx queues
4118 * @locked: is adev device_lock held
4119 *
4120 * Only change the number of queues if new_tx, or new_rx is non-0.
4121 *
4122 * Returns 0 on success.
4123 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4124 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4125 {
4126 struct ice_pf *pf = vsi->back;
4127 int i, err = 0, timeout = 50;
4128
4129 if (!new_rx && !new_tx)
4130 return -EINVAL;
4131
4132 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4133 timeout--;
4134 if (!timeout)
4135 return -EBUSY;
4136 usleep_range(1000, 2000);
4137 }
4138
4139 if (new_tx)
4140 vsi->req_txq = (u16)new_tx;
4141 if (new_rx)
4142 vsi->req_rxq = (u16)new_rx;
4143
4144 /* set for the next time the netdev is started */
4145 if (!netif_running(vsi->netdev)) {
4146 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4147 if (err)
4148 goto rebuild_err;
4149 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4150 goto done;
4151 }
4152
4153 ice_vsi_close(vsi);
4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4155 if (err)
4156 goto rebuild_err;
4157
4158 ice_for_each_traffic_class(i) {
4159 if (vsi->tc_cfg.ena_tc & BIT(i))
4160 netdev_set_tc_queue(vsi->netdev,
4161 vsi->tc_cfg.tc_info[i].netdev_tc,
4162 vsi->tc_cfg.tc_info[i].qcount_tx,
4163 vsi->tc_cfg.tc_info[i].qoffset);
4164 }
4165 ice_pf_dcb_recfg(pf, locked);
4166 ice_vsi_open(vsi);
4167 goto done;
4168
4169 rebuild_err:
4170 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4171 err);
4172 done:
4173 clear_bit(ICE_CFG_BUSY, pf->state);
4174 return err;
4175 }
4176
4177 /**
4178 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4179 * @pf: PF to configure
4180 *
4181 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4182 * VSI can still Tx/Rx VLAN tagged packets.
4183 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4184 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4185 {
4186 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4187 struct ice_vsi_ctx *ctxt;
4188 struct ice_hw *hw;
4189 int status;
4190
4191 if (!vsi)
4192 return;
4193
4194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4195 if (!ctxt)
4196 return;
4197
4198 hw = &pf->hw;
4199 ctxt->info = vsi->info;
4200
4201 ctxt->info.valid_sections =
4202 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4203 ICE_AQ_VSI_PROP_SECURITY_VALID |
4204 ICE_AQ_VSI_PROP_SW_VALID);
4205
4206 /* disable VLAN anti-spoof */
4207 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4208 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4209
4210 /* disable VLAN pruning and keep all other settings */
4211 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4212
4213 /* allow all VLANs on Tx and don't strip on Rx */
4214 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4215 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4216
4217 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4218 if (status) {
4219 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4220 status, libie_aq_str(hw->adminq.sq_last_status));
4221 } else {
4222 vsi->info.sec_flags = ctxt->info.sec_flags;
4223 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4224 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4225 }
4226
4227 kfree(ctxt);
4228 }
4229
4230 /**
4231 * ice_log_pkg_init - log result of DDP package load
4232 * @hw: pointer to hardware info
4233 * @state: state of package load
4234 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4235 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4236 {
4237 struct ice_pf *pf = hw->back;
4238 struct device *dev;
4239
4240 dev = ice_pf_to_dev(pf);
4241
4242 switch (state) {
4243 case ICE_DDP_PKG_SUCCESS:
4244 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4245 hw->active_pkg_name,
4246 hw->active_pkg_ver.major,
4247 hw->active_pkg_ver.minor,
4248 hw->active_pkg_ver.update,
4249 hw->active_pkg_ver.draft);
4250 break;
4251 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4252 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4253 hw->active_pkg_name,
4254 hw->active_pkg_ver.major,
4255 hw->active_pkg_ver.minor,
4256 hw->active_pkg_ver.update,
4257 hw->active_pkg_ver.draft);
4258 break;
4259 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4260 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4261 hw->active_pkg_name,
4262 hw->active_pkg_ver.major,
4263 hw->active_pkg_ver.minor,
4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4265 break;
4266 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4267 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4268 hw->active_pkg_name,
4269 hw->active_pkg_ver.major,
4270 hw->active_pkg_ver.minor,
4271 hw->active_pkg_ver.update,
4272 hw->active_pkg_ver.draft,
4273 hw->pkg_name,
4274 hw->pkg_ver.major,
4275 hw->pkg_ver.minor,
4276 hw->pkg_ver.update,
4277 hw->pkg_ver.draft);
4278 break;
4279 case ICE_DDP_PKG_FW_MISMATCH:
4280 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4281 break;
4282 case ICE_DDP_PKG_INVALID_FILE:
4283 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4284 break;
4285 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4286 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4287 break;
4288 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4289 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4290 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4291 break;
4292 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4293 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4294 break;
4295 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4296 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4297 break;
4298 case ICE_DDP_PKG_LOAD_ERROR:
4299 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4300 /* poll for reset to complete */
4301 if (ice_check_reset(hw))
4302 dev_err(dev, "Error resetting device. Please reload the driver\n");
4303 break;
4304 case ICE_DDP_PKG_ERR:
4305 default:
4306 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4307 break;
4308 }
4309 }
4310
4311 /**
4312 * ice_load_pkg - load/reload the DDP Package file
4313 * @firmware: firmware structure when firmware requested or NULL for reload
4314 * @pf: pointer to the PF instance
4315 *
4316 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4317 * initialize HW tables.
4318 */
4319 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4320 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4321 {
4322 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4323 struct device *dev = ice_pf_to_dev(pf);
4324 struct ice_hw *hw = &pf->hw;
4325
4326 /* Load DDP Package */
4327 if (firmware && !hw->pkg_copy) {
4328 state = ice_copy_and_init_pkg(hw, firmware->data,
4329 firmware->size);
4330 ice_log_pkg_init(hw, state);
4331 } else if (!firmware && hw->pkg_copy) {
4332 /* Reload package during rebuild after CORER/GLOBR reset */
4333 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4334 ice_log_pkg_init(hw, state);
4335 } else {
4336 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4337 }
4338
4339 if (!ice_is_init_pkg_successful(state)) {
4340 /* Safe Mode */
4341 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4342 return;
4343 }
4344
4345 /* Successful download package is the precondition for advanced
4346 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4347 */
4348 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4349 }
4350
4351 /**
4352 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4353 * @pf: pointer to the PF structure
4354 *
4355 * There is no error returned here because the driver should be able to handle
4356 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4357 * specifically with Tx.
4358 */
ice_verify_cacheline_size(struct ice_pf * pf)4359 static void ice_verify_cacheline_size(struct ice_pf *pf)
4360 {
4361 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4362 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4363 ICE_CACHE_LINE_BYTES);
4364 }
4365
4366 /**
4367 * ice_send_version - update firmware with driver version
4368 * @pf: PF struct
4369 *
4370 * Returns 0 on success, else error code
4371 */
ice_send_version(struct ice_pf * pf)4372 static int ice_send_version(struct ice_pf *pf)
4373 {
4374 struct ice_driver_ver dv;
4375
4376 dv.major_ver = 0xff;
4377 dv.minor_ver = 0xff;
4378 dv.build_ver = 0xff;
4379 dv.subbuild_ver = 0;
4380 strscpy((char *)dv.driver_string, UTS_RELEASE,
4381 sizeof(dv.driver_string));
4382 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4383 }
4384
4385 /**
4386 * ice_init_fdir - Initialize flow director VSI and configuration
4387 * @pf: pointer to the PF instance
4388 *
4389 * returns 0 on success, negative on error
4390 */
ice_init_fdir(struct ice_pf * pf)4391 static int ice_init_fdir(struct ice_pf *pf)
4392 {
4393 struct device *dev = ice_pf_to_dev(pf);
4394 struct ice_vsi *ctrl_vsi;
4395 int err;
4396
4397 /* Side Band Flow Director needs to have a control VSI.
4398 * Allocate it and store it in the PF.
4399 */
4400 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4401 if (!ctrl_vsi) {
4402 dev_dbg(dev, "could not create control VSI\n");
4403 return -ENOMEM;
4404 }
4405
4406 err = ice_vsi_open_ctrl(ctrl_vsi);
4407 if (err) {
4408 dev_dbg(dev, "could not open control VSI\n");
4409 goto err_vsi_open;
4410 }
4411
4412 mutex_init(&pf->hw.fdir_fltr_lock);
4413
4414 err = ice_fdir_create_dflt_rules(pf);
4415 if (err)
4416 goto err_fdir_rule;
4417
4418 return 0;
4419
4420 err_fdir_rule:
4421 ice_fdir_release_flows(&pf->hw);
4422 ice_vsi_close(ctrl_vsi);
4423 err_vsi_open:
4424 ice_vsi_release(ctrl_vsi);
4425 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4426 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4427 pf->ctrl_vsi_idx = ICE_NO_VSI;
4428 }
4429 return err;
4430 }
4431
ice_deinit_fdir(struct ice_pf * pf)4432 static void ice_deinit_fdir(struct ice_pf *pf)
4433 {
4434 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4435
4436 if (!vsi)
4437 return;
4438
4439 ice_vsi_manage_fdir(vsi, false);
4440 ice_vsi_release(vsi);
4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4442 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4443 pf->ctrl_vsi_idx = ICE_NO_VSI;
4444 }
4445
4446 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4447 }
4448
4449 /**
4450 * ice_get_opt_fw_name - return optional firmware file name or NULL
4451 * @pf: pointer to the PF instance
4452 */
ice_get_opt_fw_name(struct ice_pf * pf)4453 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4454 {
4455 /* Optional firmware name same as default with additional dash
4456 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4457 */
4458 struct pci_dev *pdev = pf->pdev;
4459 char *opt_fw_filename;
4460 u64 dsn;
4461
4462 /* Determine the name of the optional file using the DSN (two
4463 * dwords following the start of the DSN Capability).
4464 */
4465 dsn = pci_get_dsn(pdev);
4466 if (!dsn)
4467 return NULL;
4468
4469 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4470 if (!opt_fw_filename)
4471 return NULL;
4472
4473 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4474 ICE_DDP_PKG_PATH, dsn);
4475
4476 return opt_fw_filename;
4477 }
4478
4479 /**
4480 * ice_request_fw - Device initialization routine
4481 * @pf: pointer to the PF instance
4482 * @firmware: double pointer to firmware struct
4483 *
4484 * Return: zero when successful, negative values otherwise.
4485 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4486 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4487 {
4488 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4489 struct device *dev = ice_pf_to_dev(pf);
4490 int err = 0;
4491
4492 /* optional device-specific DDP (if present) overrides the default DDP
4493 * package file. kernel logs a debug message if the file doesn't exist,
4494 * and warning messages for other errors.
4495 */
4496 if (opt_fw_filename) {
4497 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4498 kfree(opt_fw_filename);
4499 if (!err)
4500 return err;
4501 }
4502 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4503 if (err)
4504 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4505
4506 return err;
4507 }
4508
4509 /**
4510 * ice_init_tx_topology - performs Tx topology initialization
4511 * @hw: pointer to the hardware structure
4512 * @firmware: pointer to firmware structure
4513 *
4514 * Return: zero when init was successful, negative values otherwise.
4515 */
4516 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4517 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4518 {
4519 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4520 struct ice_pf *pf = hw->back;
4521 struct device *dev;
4522 int err;
4523
4524 dev = ice_pf_to_dev(pf);
4525 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4526 if (!err) {
4527 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4528 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4529 else
4530 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4531 return 0;
4532 } else if (err == -ENODEV) {
4533 /* If we failed to re-initialize the device, we can no longer
4534 * continue loading.
4535 */
4536 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n");
4537 return err;
4538 } else if (err == -EIO) {
4539 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4540 return 0;
4541 } else if (err == -EEXIST) {
4542 return 0;
4543 }
4544
4545 /* Do not treat this as a fatal error. */
4546 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n",
4547 ERR_PTR(err));
4548 return 0;
4549 }
4550
4551 /**
4552 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4553 * @hw: pointer to the hardware structure
4554 * @pf: pointer to pf structure
4555 *
4556 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4557 * formats the PF hardware supports. The exact list of supported RXDIDs
4558 * depends on the loaded DDP package. The IDs can be determined by reading the
4559 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4560 *
4561 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4562 * in the DDP package. The 16-byte legacy descriptor is never supported by
4563 * VFs.
4564 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4565 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4566 {
4567 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4568
4569 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4570 u32 regval;
4571
4572 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4573 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4574 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4575 pf->supported_rxdids |= BIT(i);
4576 }
4577 }
4578
4579 /**
4580 * ice_init_ddp_config - DDP related configuration
4581 * @hw: pointer to the hardware structure
4582 * @pf: pointer to pf structure
4583 *
4584 * This function loads DDP file from the disk, then initializes Tx
4585 * topology. At the end DDP package is loaded on the card.
4586 *
4587 * Return: zero when init was successful, negative values otherwise.
4588 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4589 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4590 {
4591 struct device *dev = ice_pf_to_dev(pf);
4592 const struct firmware *firmware = NULL;
4593 int err;
4594
4595 err = ice_request_fw(pf, &firmware);
4596 if (err) {
4597 dev_err(dev, "Fail during requesting FW: %d\n", err);
4598 return err;
4599 }
4600
4601 err = ice_init_tx_topology(hw, firmware);
4602 if (err) {
4603 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4604 err);
4605 release_firmware(firmware);
4606 return err;
4607 }
4608
4609 /* Download firmware to device */
4610 ice_load_pkg(firmware, pf);
4611 release_firmware(firmware);
4612
4613 /* Initialize the supported Rx descriptor IDs after loading DDP */
4614 ice_init_supported_rxdids(hw, pf);
4615
4616 return 0;
4617 }
4618
4619 /**
4620 * ice_print_wake_reason - show the wake up cause in the log
4621 * @pf: pointer to the PF struct
4622 */
ice_print_wake_reason(struct ice_pf * pf)4623 static void ice_print_wake_reason(struct ice_pf *pf)
4624 {
4625 u32 wus = pf->wakeup_reason;
4626 const char *wake_str;
4627
4628 /* if no wake event, nothing to print */
4629 if (!wus)
4630 return;
4631
4632 if (wus & PFPM_WUS_LNKC_M)
4633 wake_str = "Link\n";
4634 else if (wus & PFPM_WUS_MAG_M)
4635 wake_str = "Magic Packet\n";
4636 else if (wus & PFPM_WUS_MNG_M)
4637 wake_str = "Management\n";
4638 else if (wus & PFPM_WUS_FW_RST_WK_M)
4639 wake_str = "Firmware Reset\n";
4640 else
4641 wake_str = "Unknown\n";
4642
4643 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4644 }
4645
4646 /**
4647 * ice_register_netdev - register netdev
4648 * @vsi: pointer to the VSI struct
4649 */
ice_register_netdev(struct ice_vsi * vsi)4650 static int ice_register_netdev(struct ice_vsi *vsi)
4651 {
4652 int err;
4653
4654 if (!vsi || !vsi->netdev)
4655 return -EIO;
4656
4657 err = register_netdev(vsi->netdev);
4658 if (err)
4659 return err;
4660
4661 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4662 netif_carrier_off(vsi->netdev);
4663 netif_tx_stop_all_queues(vsi->netdev);
4664
4665 return 0;
4666 }
4667
ice_unregister_netdev(struct ice_vsi * vsi)4668 static void ice_unregister_netdev(struct ice_vsi *vsi)
4669 {
4670 if (!vsi || !vsi->netdev)
4671 return;
4672
4673 unregister_netdev(vsi->netdev);
4674 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4675 }
4676
4677 /**
4678 * ice_cfg_netdev - Allocate, configure and register a netdev
4679 * @vsi: the VSI associated with the new netdev
4680 *
4681 * Returns 0 on success, negative value on failure
4682 */
ice_cfg_netdev(struct ice_vsi * vsi)4683 static int ice_cfg_netdev(struct ice_vsi *vsi)
4684 {
4685 struct ice_netdev_priv *np;
4686 struct net_device *netdev;
4687 u8 mac_addr[ETH_ALEN];
4688
4689 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4690 vsi->alloc_rxq);
4691 if (!netdev)
4692 return -ENOMEM;
4693
4694 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4695 vsi->netdev = netdev;
4696 np = netdev_priv(netdev);
4697 np->vsi = vsi;
4698
4699 ice_set_netdev_features(netdev);
4700 ice_set_ops(vsi);
4701
4702 if (vsi->type == ICE_VSI_PF) {
4703 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4704 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4705 eth_hw_addr_set(netdev, mac_addr);
4706 }
4707
4708 netdev->priv_flags |= IFF_UNICAST_FLT;
4709
4710 /* Setup netdev TC information */
4711 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4712
4713 netdev->max_mtu = ICE_MAX_MTU;
4714
4715 return 0;
4716 }
4717
ice_decfg_netdev(struct ice_vsi * vsi)4718 static void ice_decfg_netdev(struct ice_vsi *vsi)
4719 {
4720 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4721 free_netdev(vsi->netdev);
4722 vsi->netdev = NULL;
4723 }
4724
ice_init_dev(struct ice_pf * pf)4725 int ice_init_dev(struct ice_pf *pf)
4726 {
4727 struct device *dev = ice_pf_to_dev(pf);
4728 struct ice_hw *hw = &pf->hw;
4729 int err;
4730
4731 ice_init_feature_support(pf);
4732
4733 err = ice_init_ddp_config(hw, pf);
4734
4735 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4736 * set in pf->state, which will cause ice_is_safe_mode to return
4737 * true
4738 */
4739 if (err || ice_is_safe_mode(pf)) {
4740 /* we already got function/device capabilities but these don't
4741 * reflect what the driver needs to do in safe mode. Instead of
4742 * adding conditional logic everywhere to ignore these
4743 * device/function capabilities, override them.
4744 */
4745 ice_set_safe_mode_caps(hw);
4746 }
4747
4748 err = ice_init_pf(pf);
4749 if (err) {
4750 dev_err(dev, "ice_init_pf failed: %d\n", err);
4751 return err;
4752 }
4753
4754 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4755 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4756 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4757 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4758 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4759 pf->hw.tnl.valid_count[TNL_VXLAN];
4760 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4761 UDP_TUNNEL_TYPE_VXLAN;
4762 }
4763 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4764 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4765 pf->hw.tnl.valid_count[TNL_GENEVE];
4766 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4767 UDP_TUNNEL_TYPE_GENEVE;
4768 }
4769
4770 err = ice_init_interrupt_scheme(pf);
4771 if (err) {
4772 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4773 err = -EIO;
4774 goto unroll_pf_init;
4775 }
4776
4777 /* In case of MSIX we are going to setup the misc vector right here
4778 * to handle admin queue events etc. In case of legacy and MSI
4779 * the misc functionality and queue processing is combined in
4780 * the same vector and that gets setup at open.
4781 */
4782 err = ice_req_irq_msix_misc(pf);
4783 if (err) {
4784 dev_err(dev, "setup of misc vector failed: %d\n", err);
4785 goto unroll_irq_scheme_init;
4786 }
4787
4788 return 0;
4789
4790 unroll_irq_scheme_init:
4791 ice_clear_interrupt_scheme(pf);
4792 unroll_pf_init:
4793 ice_deinit_pf(pf);
4794 return err;
4795 }
4796
ice_deinit_dev(struct ice_pf * pf)4797 void ice_deinit_dev(struct ice_pf *pf)
4798 {
4799 ice_free_irq_msix_misc(pf);
4800 ice_deinit_pf(pf);
4801 ice_deinit_hw(&pf->hw);
4802
4803 /* Service task is already stopped, so call reset directly. */
4804 ice_reset(&pf->hw, ICE_RESET_PFR);
4805 pci_wait_for_pending_transaction(pf->pdev);
4806 ice_clear_interrupt_scheme(pf);
4807 }
4808
ice_init_features(struct ice_pf * pf)4809 static void ice_init_features(struct ice_pf *pf)
4810 {
4811 struct device *dev = ice_pf_to_dev(pf);
4812
4813 if (ice_is_safe_mode(pf))
4814 return;
4815
4816 /* initialize DDP driven features */
4817 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4818 ice_ptp_init(pf);
4819
4820 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4821 ice_gnss_init(pf);
4822
4823 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4824 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4825 ice_dpll_init(pf);
4826
4827 /* Note: Flow director init failure is non-fatal to load */
4828 if (ice_init_fdir(pf))
4829 dev_err(dev, "could not initialize flow director\n");
4830
4831 /* Note: DCB init failure is non-fatal to load */
4832 if (ice_init_pf_dcb(pf, false)) {
4833 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4834 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4835 } else {
4836 ice_cfg_lldp_mib_change(&pf->hw, true);
4837 }
4838
4839 if (ice_init_lag(pf))
4840 dev_warn(dev, "Failed to init link aggregation support\n");
4841
4842 ice_hwmon_init(pf);
4843 }
4844
ice_deinit_features(struct ice_pf * pf)4845 static void ice_deinit_features(struct ice_pf *pf)
4846 {
4847 if (ice_is_safe_mode(pf))
4848 return;
4849
4850 ice_deinit_lag(pf);
4851 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4852 ice_cfg_lldp_mib_change(&pf->hw, false);
4853 ice_deinit_fdir(pf);
4854 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4855 ice_gnss_exit(pf);
4856 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4857 ice_ptp_release(pf);
4858 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4859 ice_dpll_deinit(pf);
4860 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4861 xa_destroy(&pf->eswitch.reprs);
4862 }
4863
ice_init_wakeup(struct ice_pf * pf)4864 static void ice_init_wakeup(struct ice_pf *pf)
4865 {
4866 /* Save wakeup reason register for later use */
4867 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4868
4869 /* check for a power management event */
4870 ice_print_wake_reason(pf);
4871
4872 /* clear wake status, all bits */
4873 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4874
4875 /* Disable WoL at init, wait for user to enable */
4876 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4877 }
4878
ice_init_link(struct ice_pf * pf)4879 static int ice_init_link(struct ice_pf *pf)
4880 {
4881 struct device *dev = ice_pf_to_dev(pf);
4882 int err;
4883
4884 err = ice_init_link_events(pf->hw.port_info);
4885 if (err) {
4886 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4887 return err;
4888 }
4889
4890 /* not a fatal error if this fails */
4891 err = ice_init_nvm_phy_type(pf->hw.port_info);
4892 if (err)
4893 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4894
4895 /* not a fatal error if this fails */
4896 err = ice_update_link_info(pf->hw.port_info);
4897 if (err)
4898 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4899
4900 ice_init_link_dflt_override(pf->hw.port_info);
4901
4902 ice_check_link_cfg_err(pf,
4903 pf->hw.port_info->phy.link_info.link_cfg_err);
4904
4905 /* if media available, initialize PHY settings */
4906 if (pf->hw.port_info->phy.link_info.link_info &
4907 ICE_AQ_MEDIA_AVAILABLE) {
4908 /* not a fatal error if this fails */
4909 err = ice_init_phy_user_cfg(pf->hw.port_info);
4910 if (err)
4911 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4912
4913 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4914 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4915
4916 if (vsi)
4917 ice_configure_phy(vsi);
4918 }
4919 } else {
4920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4921 }
4922
4923 return err;
4924 }
4925
ice_init_pf_sw(struct ice_pf * pf)4926 static int ice_init_pf_sw(struct ice_pf *pf)
4927 {
4928 bool dvm = ice_is_dvm_ena(&pf->hw);
4929 struct ice_vsi *vsi;
4930 int err;
4931
4932 /* create switch struct for the switch element created by FW on boot */
4933 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4934 if (!pf->first_sw)
4935 return -ENOMEM;
4936
4937 if (pf->hw.evb_veb)
4938 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4939 else
4940 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4941
4942 pf->first_sw->pf = pf;
4943
4944 /* record the sw_id available for later use */
4945 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4946
4947 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4948 if (err)
4949 goto err_aq_set_port_params;
4950
4951 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4952 if (!vsi) {
4953 err = -ENOMEM;
4954 goto err_pf_vsi_setup;
4955 }
4956
4957 return 0;
4958
4959 err_pf_vsi_setup:
4960 err_aq_set_port_params:
4961 kfree(pf->first_sw);
4962 return err;
4963 }
4964
ice_deinit_pf_sw(struct ice_pf * pf)4965 static void ice_deinit_pf_sw(struct ice_pf *pf)
4966 {
4967 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4968
4969 if (!vsi)
4970 return;
4971
4972 ice_vsi_release(vsi);
4973 kfree(pf->first_sw);
4974 }
4975
ice_alloc_vsis(struct ice_pf * pf)4976 static int ice_alloc_vsis(struct ice_pf *pf)
4977 {
4978 struct device *dev = ice_pf_to_dev(pf);
4979
4980 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4981 if (!pf->num_alloc_vsi)
4982 return -EIO;
4983
4984 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4985 dev_warn(dev,
4986 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4987 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4988 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4989 }
4990
4991 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4992 GFP_KERNEL);
4993 if (!pf->vsi)
4994 return -ENOMEM;
4995
4996 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4997 sizeof(*pf->vsi_stats), GFP_KERNEL);
4998 if (!pf->vsi_stats) {
4999 devm_kfree(dev, pf->vsi);
5000 return -ENOMEM;
5001 }
5002
5003 return 0;
5004 }
5005
ice_dealloc_vsis(struct ice_pf * pf)5006 static void ice_dealloc_vsis(struct ice_pf *pf)
5007 {
5008 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5009 pf->vsi_stats = NULL;
5010
5011 pf->num_alloc_vsi = 0;
5012 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5013 pf->vsi = NULL;
5014 }
5015
ice_init_devlink(struct ice_pf * pf)5016 static int ice_init_devlink(struct ice_pf *pf)
5017 {
5018 int err;
5019
5020 err = ice_devlink_register_params(pf);
5021 if (err)
5022 return err;
5023
5024 ice_devlink_init_regions(pf);
5025 ice_devlink_register(pf);
5026 ice_health_init(pf);
5027
5028 return 0;
5029 }
5030
ice_deinit_devlink(struct ice_pf * pf)5031 static void ice_deinit_devlink(struct ice_pf *pf)
5032 {
5033 ice_health_deinit(pf);
5034 ice_devlink_unregister(pf);
5035 ice_devlink_destroy_regions(pf);
5036 ice_devlink_unregister_params(pf);
5037 }
5038
ice_init(struct ice_pf * pf)5039 static int ice_init(struct ice_pf *pf)
5040 {
5041 int err;
5042
5043 err = ice_init_dev(pf);
5044 if (err)
5045 return err;
5046
5047 if (pf->hw.mac_type == ICE_MAC_E830) {
5048 err = pci_enable_ptm(pf->pdev, NULL);
5049 if (err)
5050 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5051 }
5052
5053 err = ice_alloc_vsis(pf);
5054 if (err)
5055 goto err_alloc_vsis;
5056
5057 err = ice_init_pf_sw(pf);
5058 if (err)
5059 goto err_init_pf_sw;
5060
5061 ice_init_wakeup(pf);
5062
5063 err = ice_init_link(pf);
5064 if (err)
5065 goto err_init_link;
5066
5067 err = ice_send_version(pf);
5068 if (err)
5069 goto err_init_link;
5070
5071 ice_verify_cacheline_size(pf);
5072
5073 if (ice_is_safe_mode(pf))
5074 ice_set_safe_mode_vlan_cfg(pf);
5075 else
5076 /* print PCI link speed and width */
5077 pcie_print_link_status(pf->pdev);
5078
5079 /* ready to go, so clear down state bit */
5080 clear_bit(ICE_DOWN, pf->state);
5081 clear_bit(ICE_SERVICE_DIS, pf->state);
5082
5083 /* since everything is good, start the service timer */
5084 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5085
5086 return 0;
5087
5088 err_init_link:
5089 ice_deinit_pf_sw(pf);
5090 err_init_pf_sw:
5091 ice_dealloc_vsis(pf);
5092 err_alloc_vsis:
5093 ice_deinit_dev(pf);
5094 return err;
5095 }
5096
ice_deinit(struct ice_pf * pf)5097 static void ice_deinit(struct ice_pf *pf)
5098 {
5099 set_bit(ICE_SERVICE_DIS, pf->state);
5100 set_bit(ICE_DOWN, pf->state);
5101
5102 ice_deinit_pf_sw(pf);
5103 ice_dealloc_vsis(pf);
5104 ice_deinit_dev(pf);
5105 }
5106
5107 /**
5108 * ice_load - load pf by init hw and starting VSI
5109 * @pf: pointer to the pf instance
5110 *
5111 * This function has to be called under devl_lock.
5112 */
ice_load(struct ice_pf * pf)5113 int ice_load(struct ice_pf *pf)
5114 {
5115 struct ice_vsi *vsi;
5116 int err;
5117
5118 devl_assert_locked(priv_to_devlink(pf));
5119
5120 vsi = ice_get_main_vsi(pf);
5121
5122 /* init channel list */
5123 INIT_LIST_HEAD(&vsi->ch_list);
5124
5125 err = ice_cfg_netdev(vsi);
5126 if (err)
5127 return err;
5128
5129 /* Setup DCB netlink interface */
5130 ice_dcbnl_setup(vsi);
5131
5132 err = ice_init_mac_fltr(pf);
5133 if (err)
5134 goto err_init_mac_fltr;
5135
5136 err = ice_devlink_create_pf_port(pf);
5137 if (err)
5138 goto err_devlink_create_pf_port;
5139
5140 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5141
5142 err = ice_register_netdev(vsi);
5143 if (err)
5144 goto err_register_netdev;
5145
5146 err = ice_tc_indir_block_register(vsi);
5147 if (err)
5148 goto err_tc_indir_block_register;
5149
5150 ice_napi_add(vsi);
5151
5152 ice_init_features(pf);
5153
5154 err = ice_init_rdma(pf);
5155 if (err)
5156 goto err_init_rdma;
5157
5158 ice_service_task_restart(pf);
5159
5160 clear_bit(ICE_DOWN, pf->state);
5161
5162 return 0;
5163
5164 err_init_rdma:
5165 ice_deinit_features(pf);
5166 ice_tc_indir_block_unregister(vsi);
5167 err_tc_indir_block_register:
5168 ice_unregister_netdev(vsi);
5169 err_register_netdev:
5170 ice_devlink_destroy_pf_port(pf);
5171 err_devlink_create_pf_port:
5172 err_init_mac_fltr:
5173 ice_decfg_netdev(vsi);
5174 return err;
5175 }
5176
5177 /**
5178 * ice_unload - unload pf by stopping VSI and deinit hw
5179 * @pf: pointer to the pf instance
5180 *
5181 * This function has to be called under devl_lock.
5182 */
ice_unload(struct ice_pf * pf)5183 void ice_unload(struct ice_pf *pf)
5184 {
5185 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5186
5187 devl_assert_locked(priv_to_devlink(pf));
5188
5189 ice_deinit_rdma(pf);
5190 ice_deinit_features(pf);
5191 ice_tc_indir_block_unregister(vsi);
5192 ice_unregister_netdev(vsi);
5193 ice_devlink_destroy_pf_port(pf);
5194 ice_decfg_netdev(vsi);
5195 }
5196
ice_probe_recovery_mode(struct ice_pf * pf)5197 static int ice_probe_recovery_mode(struct ice_pf *pf)
5198 {
5199 struct device *dev = ice_pf_to_dev(pf);
5200 int err;
5201
5202 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5203
5204 INIT_HLIST_HEAD(&pf->aq_wait_list);
5205 spin_lock_init(&pf->aq_wait_lock);
5206 init_waitqueue_head(&pf->aq_wait_queue);
5207
5208 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5209 pf->serv_tmr_period = HZ;
5210 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5211 clear_bit(ICE_SERVICE_SCHED, pf->state);
5212 err = ice_create_all_ctrlq(&pf->hw);
5213 if (err)
5214 return err;
5215
5216 scoped_guard(devl, priv_to_devlink(pf)) {
5217 err = ice_init_devlink(pf);
5218 if (err)
5219 return err;
5220 }
5221
5222 ice_service_task_restart(pf);
5223
5224 return 0;
5225 }
5226
5227 /**
5228 * ice_probe - Device initialization routine
5229 * @pdev: PCI device information struct
5230 * @ent: entry in ice_pci_tbl
5231 *
5232 * Returns 0 on success, negative on failure
5233 */
5234 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5235 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5236 {
5237 struct device *dev = &pdev->dev;
5238 struct ice_adapter *adapter;
5239 struct ice_pf *pf;
5240 struct ice_hw *hw;
5241 int err;
5242
5243 if (pdev->is_virtfn) {
5244 dev_err(dev, "can't probe a virtual function\n");
5245 return -EINVAL;
5246 }
5247
5248 /* when under a kdump kernel initiate a reset before enabling the
5249 * device in order to clear out any pending DMA transactions. These
5250 * transactions can cause some systems to machine check when doing
5251 * the pcim_enable_device() below.
5252 */
5253 if (is_kdump_kernel()) {
5254 pci_save_state(pdev);
5255 pci_clear_master(pdev);
5256 err = pcie_flr(pdev);
5257 if (err)
5258 return err;
5259 pci_restore_state(pdev);
5260 }
5261
5262 /* this driver uses devres, see
5263 * Documentation/driver-api/driver-model/devres.rst
5264 */
5265 err = pcim_enable_device(pdev);
5266 if (err)
5267 return err;
5268
5269 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5270 if (err) {
5271 dev_err(dev, "BAR0 I/O map error %d\n", err);
5272 return err;
5273 }
5274
5275 pf = ice_allocate_pf(dev);
5276 if (!pf)
5277 return -ENOMEM;
5278
5279 /* initialize Auxiliary index to invalid value */
5280 pf->aux_idx = -1;
5281
5282 /* set up for high or low DMA */
5283 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5284 if (err) {
5285 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5286 return err;
5287 }
5288
5289 pci_set_master(pdev);
5290 pf->pdev = pdev;
5291 pci_set_drvdata(pdev, pf);
5292 set_bit(ICE_DOWN, pf->state);
5293 /* Disable service task until DOWN bit is cleared */
5294 set_bit(ICE_SERVICE_DIS, pf->state);
5295
5296 hw = &pf->hw;
5297 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5298 pci_save_state(pdev);
5299
5300 hw->back = pf;
5301 hw->port_info = NULL;
5302 hw->vendor_id = pdev->vendor;
5303 hw->device_id = pdev->device;
5304 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5305 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5306 hw->subsystem_device_id = pdev->subsystem_device;
5307 hw->bus.device = PCI_SLOT(pdev->devfn);
5308 hw->bus.func = PCI_FUNC(pdev->devfn);
5309 ice_set_ctrlq_len(hw);
5310
5311 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5312
5313 #ifndef CONFIG_DYNAMIC_DEBUG
5314 if (debug < -1)
5315 hw->debug_mask = debug;
5316 #endif
5317
5318 if (ice_is_recovery_mode(hw))
5319 return ice_probe_recovery_mode(pf);
5320
5321 err = ice_init_hw(hw);
5322 if (err) {
5323 dev_err(dev, "ice_init_hw failed: %d\n", err);
5324 return err;
5325 }
5326
5327 adapter = ice_adapter_get(pdev);
5328 if (IS_ERR(adapter)) {
5329 err = PTR_ERR(adapter);
5330 goto unroll_hw_init;
5331 }
5332 pf->adapter = adapter;
5333
5334 err = ice_init(pf);
5335 if (err)
5336 goto unroll_adapter;
5337
5338 devl_lock(priv_to_devlink(pf));
5339 err = ice_load(pf);
5340 if (err)
5341 goto unroll_init;
5342
5343 err = ice_init_devlink(pf);
5344 if (err)
5345 goto unroll_load;
5346 devl_unlock(priv_to_devlink(pf));
5347
5348 return 0;
5349
5350 unroll_load:
5351 ice_unload(pf);
5352 unroll_init:
5353 devl_unlock(priv_to_devlink(pf));
5354 ice_deinit(pf);
5355 unroll_adapter:
5356 ice_adapter_put(pdev);
5357 unroll_hw_init:
5358 ice_deinit_hw(hw);
5359 return err;
5360 }
5361
5362 /**
5363 * ice_set_wake - enable or disable Wake on LAN
5364 * @pf: pointer to the PF struct
5365 *
5366 * Simple helper for WoL control
5367 */
ice_set_wake(struct ice_pf * pf)5368 static void ice_set_wake(struct ice_pf *pf)
5369 {
5370 struct ice_hw *hw = &pf->hw;
5371 bool wol = pf->wol_ena;
5372
5373 /* clear wake state, otherwise new wake events won't fire */
5374 wr32(hw, PFPM_WUS, U32_MAX);
5375
5376 /* enable / disable APM wake up, no RMW needed */
5377 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5378
5379 /* set magic packet filter enabled */
5380 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5381 }
5382
5383 /**
5384 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5385 * @pf: pointer to the PF struct
5386 *
5387 * Issue firmware command to enable multicast magic wake, making
5388 * sure that any locally administered address (LAA) is used for
5389 * wake, and that PF reset doesn't undo the LAA.
5390 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5391 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5392 {
5393 struct device *dev = ice_pf_to_dev(pf);
5394 struct ice_hw *hw = &pf->hw;
5395 u8 mac_addr[ETH_ALEN];
5396 struct ice_vsi *vsi;
5397 int status;
5398 u8 flags;
5399
5400 if (!pf->wol_ena)
5401 return;
5402
5403 vsi = ice_get_main_vsi(pf);
5404 if (!vsi)
5405 return;
5406
5407 /* Get current MAC address in case it's an LAA */
5408 if (vsi->netdev)
5409 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5410 else
5411 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5412
5413 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5414 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5415 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5416
5417 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5418 if (status)
5419 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5420 status, libie_aq_str(hw->adminq.sq_last_status));
5421 }
5422
5423 /**
5424 * ice_remove - Device removal routine
5425 * @pdev: PCI device information struct
5426 */
ice_remove(struct pci_dev * pdev)5427 static void ice_remove(struct pci_dev *pdev)
5428 {
5429 struct ice_pf *pf = pci_get_drvdata(pdev);
5430 int i;
5431
5432 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5433 if (!ice_is_reset_in_progress(pf->state))
5434 break;
5435 msleep(100);
5436 }
5437
5438 if (ice_is_recovery_mode(&pf->hw)) {
5439 ice_service_task_stop(pf);
5440 scoped_guard(devl, priv_to_devlink(pf)) {
5441 ice_deinit_devlink(pf);
5442 }
5443 return;
5444 }
5445
5446 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5447 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5448 ice_free_vfs(pf);
5449 }
5450
5451 ice_hwmon_exit(pf);
5452
5453 ice_service_task_stop(pf);
5454 ice_aq_cancel_waiting_tasks(pf);
5455 set_bit(ICE_DOWN, pf->state);
5456
5457 if (!ice_is_safe_mode(pf))
5458 ice_remove_arfs(pf);
5459
5460 devl_lock(priv_to_devlink(pf));
5461 ice_dealloc_all_dynamic_ports(pf);
5462 ice_deinit_devlink(pf);
5463
5464 ice_unload(pf);
5465 devl_unlock(priv_to_devlink(pf));
5466
5467 ice_deinit(pf);
5468 ice_vsi_release_all(pf);
5469
5470 ice_setup_mc_magic_wake(pf);
5471 ice_set_wake(pf);
5472
5473 ice_adapter_put(pdev);
5474 }
5475
5476 /**
5477 * ice_shutdown - PCI callback for shutting down device
5478 * @pdev: PCI device information struct
5479 */
ice_shutdown(struct pci_dev * pdev)5480 static void ice_shutdown(struct pci_dev *pdev)
5481 {
5482 struct ice_pf *pf = pci_get_drvdata(pdev);
5483
5484 ice_remove(pdev);
5485
5486 if (system_state == SYSTEM_POWER_OFF) {
5487 pci_wake_from_d3(pdev, pf->wol_ena);
5488 pci_set_power_state(pdev, PCI_D3hot);
5489 }
5490 }
5491
5492 /**
5493 * ice_prepare_for_shutdown - prep for PCI shutdown
5494 * @pf: board private structure
5495 *
5496 * Inform or close all dependent features in prep for PCI device shutdown
5497 */
ice_prepare_for_shutdown(struct ice_pf * pf)5498 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5499 {
5500 struct ice_hw *hw = &pf->hw;
5501 u32 v;
5502
5503 /* Notify VFs of impending reset */
5504 if (ice_check_sq_alive(hw, &hw->mailboxq))
5505 ice_vc_notify_reset(pf);
5506
5507 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5508
5509 /* disable the VSIs and their queues that are not already DOWN */
5510 ice_pf_dis_all_vsi(pf, false);
5511
5512 ice_for_each_vsi(pf, v)
5513 if (pf->vsi[v])
5514 pf->vsi[v]->vsi_num = 0;
5515
5516 ice_shutdown_all_ctrlq(hw, true);
5517 }
5518
5519 /**
5520 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5521 * @pf: board private structure to reinitialize
5522 *
5523 * This routine reinitialize interrupt scheme that was cleared during
5524 * power management suspend callback.
5525 *
5526 * This should be called during resume routine to re-allocate the q_vectors
5527 * and reacquire interrupts.
5528 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5529 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5530 {
5531 struct device *dev = ice_pf_to_dev(pf);
5532 int ret, v;
5533
5534 /* Since we clear MSIX flag during suspend, we need to
5535 * set it back during resume...
5536 */
5537
5538 ret = ice_init_interrupt_scheme(pf);
5539 if (ret) {
5540 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5541 return ret;
5542 }
5543
5544 /* Remap vectors and rings, after successful re-init interrupts */
5545 ice_for_each_vsi(pf, v) {
5546 if (!pf->vsi[v])
5547 continue;
5548
5549 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5550 if (ret)
5551 goto err_reinit;
5552 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5553 rtnl_lock();
5554 ice_vsi_set_napi_queues(pf->vsi[v]);
5555 rtnl_unlock();
5556 }
5557
5558 ret = ice_req_irq_msix_misc(pf);
5559 if (ret) {
5560 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5561 ret);
5562 goto err_reinit;
5563 }
5564
5565 return 0;
5566
5567 err_reinit:
5568 while (v--)
5569 if (pf->vsi[v]) {
5570 rtnl_lock();
5571 ice_vsi_clear_napi_queues(pf->vsi[v]);
5572 rtnl_unlock();
5573 ice_vsi_free_q_vectors(pf->vsi[v]);
5574 }
5575
5576 return ret;
5577 }
5578
5579 /**
5580 * ice_suspend
5581 * @dev: generic device information structure
5582 *
5583 * Power Management callback to quiesce the device and prepare
5584 * for D3 transition.
5585 */
ice_suspend(struct device * dev)5586 static int ice_suspend(struct device *dev)
5587 {
5588 struct pci_dev *pdev = to_pci_dev(dev);
5589 struct ice_pf *pf;
5590 int disabled, v;
5591
5592 pf = pci_get_drvdata(pdev);
5593
5594 if (!ice_pf_state_is_nominal(pf)) {
5595 dev_err(dev, "Device is not ready, no need to suspend it\n");
5596 return -EBUSY;
5597 }
5598
5599 /* Stop watchdog tasks until resume completion.
5600 * Even though it is most likely that the service task is
5601 * disabled if the device is suspended or down, the service task's
5602 * state is controlled by a different state bit, and we should
5603 * store and honor whatever state that bit is in at this point.
5604 */
5605 disabled = ice_service_task_stop(pf);
5606
5607 ice_deinit_rdma(pf);
5608
5609 /* Already suspended?, then there is nothing to do */
5610 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5611 if (!disabled)
5612 ice_service_task_restart(pf);
5613 return 0;
5614 }
5615
5616 if (test_bit(ICE_DOWN, pf->state) ||
5617 ice_is_reset_in_progress(pf->state)) {
5618 dev_err(dev, "can't suspend device in reset or already down\n");
5619 if (!disabled)
5620 ice_service_task_restart(pf);
5621 return 0;
5622 }
5623
5624 ice_setup_mc_magic_wake(pf);
5625
5626 ice_prepare_for_shutdown(pf);
5627
5628 ice_set_wake(pf);
5629
5630 /* Free vectors, clear the interrupt scheme and release IRQs
5631 * for proper hibernation, especially with large number of CPUs.
5632 * Otherwise hibernation might fail when mapping all the vectors back
5633 * to CPU0.
5634 */
5635 ice_free_irq_msix_misc(pf);
5636 ice_for_each_vsi(pf, v) {
5637 if (!pf->vsi[v])
5638 continue;
5639 rtnl_lock();
5640 ice_vsi_clear_napi_queues(pf->vsi[v]);
5641 rtnl_unlock();
5642 ice_vsi_free_q_vectors(pf->vsi[v]);
5643 }
5644 ice_clear_interrupt_scheme(pf);
5645
5646 pci_save_state(pdev);
5647 pci_wake_from_d3(pdev, pf->wol_ena);
5648 pci_set_power_state(pdev, PCI_D3hot);
5649 return 0;
5650 }
5651
5652 /**
5653 * ice_resume - PM callback for waking up from D3
5654 * @dev: generic device information structure
5655 */
ice_resume(struct device * dev)5656 static int ice_resume(struct device *dev)
5657 {
5658 struct pci_dev *pdev = to_pci_dev(dev);
5659 enum ice_reset_req reset_type;
5660 struct ice_pf *pf;
5661 struct ice_hw *hw;
5662 int ret;
5663
5664 pci_set_power_state(pdev, PCI_D0);
5665 pci_restore_state(pdev);
5666 pci_save_state(pdev);
5667
5668 if (!pci_device_is_present(pdev))
5669 return -ENODEV;
5670
5671 ret = pci_enable_device_mem(pdev);
5672 if (ret) {
5673 dev_err(dev, "Cannot enable device after suspend\n");
5674 return ret;
5675 }
5676
5677 pf = pci_get_drvdata(pdev);
5678 hw = &pf->hw;
5679
5680 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5681 ice_print_wake_reason(pf);
5682
5683 /* We cleared the interrupt scheme when we suspended, so we need to
5684 * restore it now to resume device functionality.
5685 */
5686 ret = ice_reinit_interrupt_scheme(pf);
5687 if (ret)
5688 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5689
5690 ret = ice_init_rdma(pf);
5691 if (ret)
5692 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5693 ret);
5694
5695 clear_bit(ICE_DOWN, pf->state);
5696 /* Now perform PF reset and rebuild */
5697 reset_type = ICE_RESET_PFR;
5698 /* re-enable service task for reset, but allow reset to schedule it */
5699 clear_bit(ICE_SERVICE_DIS, pf->state);
5700
5701 if (ice_schedule_reset(pf, reset_type))
5702 dev_err(dev, "Reset during resume failed.\n");
5703
5704 clear_bit(ICE_SUSPENDED, pf->state);
5705 ice_service_task_restart(pf);
5706
5707 /* Restart the service task */
5708 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5709
5710 return 0;
5711 }
5712
5713 /**
5714 * ice_pci_err_detected - warning that PCI error has been detected
5715 * @pdev: PCI device information struct
5716 * @err: the type of PCI error
5717 *
5718 * Called to warn that something happened on the PCI bus and the error handling
5719 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5720 */
5721 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5722 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5723 {
5724 struct ice_pf *pf = pci_get_drvdata(pdev);
5725
5726 if (!pf) {
5727 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5728 __func__, err);
5729 return PCI_ERS_RESULT_DISCONNECT;
5730 }
5731
5732 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5733 ice_service_task_stop(pf);
5734
5735 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5736 set_bit(ICE_PFR_REQ, pf->state);
5737 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5738 }
5739 }
5740
5741 return PCI_ERS_RESULT_NEED_RESET;
5742 }
5743
5744 /**
5745 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5746 * @pdev: PCI device information struct
5747 *
5748 * Called to determine if the driver can recover from the PCI slot reset by
5749 * using a register read to determine if the device is recoverable.
5750 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5751 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5752 {
5753 struct ice_pf *pf = pci_get_drvdata(pdev);
5754 pci_ers_result_t result;
5755 int err;
5756 u32 reg;
5757
5758 err = pci_enable_device_mem(pdev);
5759 if (err) {
5760 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5761 err);
5762 result = PCI_ERS_RESULT_DISCONNECT;
5763 } else {
5764 pci_set_master(pdev);
5765 pci_restore_state(pdev);
5766 pci_save_state(pdev);
5767 pci_wake_from_d3(pdev, false);
5768
5769 /* Check for life */
5770 reg = rd32(&pf->hw, GLGEN_RTRIG);
5771 if (!reg)
5772 result = PCI_ERS_RESULT_RECOVERED;
5773 else
5774 result = PCI_ERS_RESULT_DISCONNECT;
5775 }
5776
5777 return result;
5778 }
5779
5780 /**
5781 * ice_pci_err_resume - restart operations after PCI error recovery
5782 * @pdev: PCI device information struct
5783 *
5784 * Called to allow the driver to bring things back up after PCI error and/or
5785 * reset recovery have finished
5786 */
ice_pci_err_resume(struct pci_dev * pdev)5787 static void ice_pci_err_resume(struct pci_dev *pdev)
5788 {
5789 struct ice_pf *pf = pci_get_drvdata(pdev);
5790
5791 if (!pf) {
5792 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5793 __func__);
5794 return;
5795 }
5796
5797 if (test_bit(ICE_SUSPENDED, pf->state)) {
5798 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5799 __func__);
5800 return;
5801 }
5802
5803 ice_restore_all_vfs_msi_state(pf);
5804
5805 ice_do_reset(pf, ICE_RESET_PFR);
5806 ice_service_task_restart(pf);
5807 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5808 }
5809
5810 /**
5811 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5812 * @pdev: PCI device information struct
5813 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5814 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5815 {
5816 struct ice_pf *pf = pci_get_drvdata(pdev);
5817
5818 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5819 ice_service_task_stop(pf);
5820
5821 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5822 set_bit(ICE_PFR_REQ, pf->state);
5823 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5824 }
5825 }
5826 }
5827
5828 /**
5829 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5830 * @pdev: PCI device information struct
5831 */
ice_pci_err_reset_done(struct pci_dev * pdev)5832 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5833 {
5834 ice_pci_err_resume(pdev);
5835 }
5836
5837 /* ice_pci_tbl - PCI Device ID Table
5838 *
5839 * Wildcard entries (PCI_ANY_ID) should come last
5840 * Last entry must be all 0s
5841 *
5842 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5843 * Class, Class Mask, private data (not used) }
5844 */
5845 static const struct pci_device_id ice_pci_tbl[] = {
5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), },
5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), },
5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), },
5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), },
5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), },
5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), },
5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), },
5895 /* required last entry */
5896 {}
5897 };
5898 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5899
5900 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5901
5902 static const struct pci_error_handlers ice_pci_err_handler = {
5903 .error_detected = ice_pci_err_detected,
5904 .slot_reset = ice_pci_err_slot_reset,
5905 .reset_prepare = ice_pci_err_reset_prepare,
5906 .reset_done = ice_pci_err_reset_done,
5907 .resume = ice_pci_err_resume
5908 };
5909
5910 static struct pci_driver ice_driver = {
5911 .name = KBUILD_MODNAME,
5912 .id_table = ice_pci_tbl,
5913 .probe = ice_probe,
5914 .remove = ice_remove,
5915 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5916 .shutdown = ice_shutdown,
5917 .sriov_configure = ice_sriov_configure,
5918 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5919 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5920 .err_handler = &ice_pci_err_handler
5921 };
5922
5923 /**
5924 * ice_module_init - Driver registration routine
5925 *
5926 * ice_module_init is the first routine called when the driver is
5927 * loaded. All it does is register with the PCI subsystem.
5928 */
ice_module_init(void)5929 static int __init ice_module_init(void)
5930 {
5931 int status = -ENOMEM;
5932
5933 pr_info("%s\n", ice_driver_string);
5934 pr_info("%s\n", ice_copyright);
5935
5936 ice_adv_lnk_speed_maps_init();
5937
5938 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5939 if (!ice_wq) {
5940 pr_err("Failed to create workqueue\n");
5941 return status;
5942 }
5943
5944 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5945 if (!ice_lag_wq) {
5946 pr_err("Failed to create LAG workqueue\n");
5947 goto err_dest_wq;
5948 }
5949
5950 ice_debugfs_init();
5951
5952 status = pci_register_driver(&ice_driver);
5953 if (status) {
5954 pr_err("failed to register PCI driver, err %d\n", status);
5955 goto err_dest_lag_wq;
5956 }
5957
5958 status = ice_sf_driver_register();
5959 if (status) {
5960 pr_err("Failed to register SF driver, err %d\n", status);
5961 goto err_sf_driver;
5962 }
5963
5964 return 0;
5965
5966 err_sf_driver:
5967 pci_unregister_driver(&ice_driver);
5968 err_dest_lag_wq:
5969 destroy_workqueue(ice_lag_wq);
5970 ice_debugfs_exit();
5971 err_dest_wq:
5972 destroy_workqueue(ice_wq);
5973 return status;
5974 }
5975 module_init(ice_module_init);
5976
5977 /**
5978 * ice_module_exit - Driver exit cleanup routine
5979 *
5980 * ice_module_exit is called just before the driver is removed
5981 * from memory.
5982 */
ice_module_exit(void)5983 static void __exit ice_module_exit(void)
5984 {
5985 ice_sf_driver_unregister();
5986 pci_unregister_driver(&ice_driver);
5987 ice_debugfs_exit();
5988 destroy_workqueue(ice_wq);
5989 destroy_workqueue(ice_lag_wq);
5990 pr_info("module unloaded\n");
5991 }
5992 module_exit(ice_module_exit);
5993
5994 /**
5995 * ice_set_mac_address - NDO callback to set MAC address
5996 * @netdev: network interface device structure
5997 * @pi: pointer to an address structure
5998 *
5999 * Returns 0 on success, negative on failure
6000 */
ice_set_mac_address(struct net_device * netdev,void * pi)6001 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6002 {
6003 struct ice_netdev_priv *np = netdev_priv(netdev);
6004 struct ice_vsi *vsi = np->vsi;
6005 struct ice_pf *pf = vsi->back;
6006 struct ice_hw *hw = &pf->hw;
6007 struct sockaddr *addr = pi;
6008 u8 old_mac[ETH_ALEN];
6009 u8 flags = 0;
6010 u8 *mac;
6011 int err;
6012
6013 mac = (u8 *)addr->sa_data;
6014
6015 if (!is_valid_ether_addr(mac))
6016 return -EADDRNOTAVAIL;
6017
6018 if (test_bit(ICE_DOWN, pf->state) ||
6019 ice_is_reset_in_progress(pf->state)) {
6020 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6021 mac);
6022 return -EBUSY;
6023 }
6024
6025 if (ice_chnl_dmac_fltr_cnt(pf)) {
6026 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6027 mac);
6028 return -EAGAIN;
6029 }
6030
6031 netif_addr_lock_bh(netdev);
6032 ether_addr_copy(old_mac, netdev->dev_addr);
6033 /* change the netdev's MAC address */
6034 eth_hw_addr_set(netdev, mac);
6035 netif_addr_unlock_bh(netdev);
6036
6037 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6038 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6039 if (err && err != -ENOENT) {
6040 err = -EADDRNOTAVAIL;
6041 goto err_update_filters;
6042 }
6043
6044 /* Add filter for new MAC. If filter exists, return success */
6045 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6046 if (err == -EEXIST) {
6047 /* Although this MAC filter is already present in hardware it's
6048 * possible in some cases (e.g. bonding) that dev_addr was
6049 * modified outside of the driver and needs to be restored back
6050 * to this value.
6051 */
6052 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6053
6054 return 0;
6055 } else if (err) {
6056 /* error if the new filter addition failed */
6057 err = -EADDRNOTAVAIL;
6058 }
6059
6060 err_update_filters:
6061 if (err) {
6062 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6063 mac);
6064 netif_addr_lock_bh(netdev);
6065 eth_hw_addr_set(netdev, old_mac);
6066 netif_addr_unlock_bh(netdev);
6067 return err;
6068 }
6069
6070 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6071 netdev->dev_addr);
6072
6073 /* write new MAC address to the firmware */
6074 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6075 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6076 if (err) {
6077 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6078 mac, err);
6079 }
6080 return 0;
6081 }
6082
6083 /**
6084 * ice_set_rx_mode - NDO callback to set the netdev filters
6085 * @netdev: network interface device structure
6086 */
ice_set_rx_mode(struct net_device * netdev)6087 static void ice_set_rx_mode(struct net_device *netdev)
6088 {
6089 struct ice_netdev_priv *np = netdev_priv(netdev);
6090 struct ice_vsi *vsi = np->vsi;
6091
6092 if (!vsi || ice_is_switchdev_running(vsi->back))
6093 return;
6094
6095 /* Set the flags to synchronize filters
6096 * ndo_set_rx_mode may be triggered even without a change in netdev
6097 * flags
6098 */
6099 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6100 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6101 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6102
6103 /* schedule our worker thread which will take care of
6104 * applying the new filter changes
6105 */
6106 ice_service_task_schedule(vsi->back);
6107 }
6108
6109 /**
6110 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6111 * @netdev: network interface device structure
6112 * @queue_index: Queue ID
6113 * @maxrate: maximum bandwidth in Mbps
6114 */
6115 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6116 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6117 {
6118 struct ice_netdev_priv *np = netdev_priv(netdev);
6119 struct ice_vsi *vsi = np->vsi;
6120 u16 q_handle;
6121 int status;
6122 u8 tc;
6123
6124 /* Validate maxrate requested is within permitted range */
6125 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6126 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6127 maxrate, queue_index);
6128 return -EINVAL;
6129 }
6130
6131 q_handle = vsi->tx_rings[queue_index]->q_handle;
6132 tc = ice_dcb_get_tc(vsi, queue_index);
6133
6134 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6135 if (!vsi) {
6136 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6137 queue_index);
6138 return -EINVAL;
6139 }
6140
6141 /* Set BW back to default, when user set maxrate to 0 */
6142 if (!maxrate)
6143 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6144 q_handle, ICE_MAX_BW);
6145 else
6146 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6147 q_handle, ICE_MAX_BW, maxrate * 1000);
6148 if (status)
6149 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6150 status);
6151
6152 return status;
6153 }
6154
6155 /**
6156 * ice_fdb_add - add an entry to the hardware database
6157 * @ndm: the input from the stack
6158 * @tb: pointer to array of nladdr (unused)
6159 * @dev: the net device pointer
6160 * @addr: the MAC address entry being added
6161 * @vid: VLAN ID
6162 * @flags: instructions from stack about fdb operation
6163 * @notified: whether notification was emitted
6164 * @extack: netlink extended ack
6165 */
6166 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6167 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6168 struct net_device *dev, const unsigned char *addr, u16 vid,
6169 u16 flags, bool *notified,
6170 struct netlink_ext_ack __always_unused *extack)
6171 {
6172 int err;
6173
6174 if (vid) {
6175 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6176 return -EINVAL;
6177 }
6178 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6179 netdev_err(dev, "FDB only supports static addresses\n");
6180 return -EINVAL;
6181 }
6182
6183 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6184 err = dev_uc_add_excl(dev, addr);
6185 else if (is_multicast_ether_addr(addr))
6186 err = dev_mc_add_excl(dev, addr);
6187 else
6188 err = -EINVAL;
6189
6190 /* Only return duplicate errors if NLM_F_EXCL is set */
6191 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6192 err = 0;
6193
6194 return err;
6195 }
6196
6197 /**
6198 * ice_fdb_del - delete an entry from the hardware database
6199 * @ndm: the input from the stack
6200 * @tb: pointer to array of nladdr (unused)
6201 * @dev: the net device pointer
6202 * @addr: the MAC address entry being added
6203 * @vid: VLAN ID
6204 * @notified: whether notification was emitted
6205 * @extack: netlink extended ack
6206 */
6207 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6208 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6209 struct net_device *dev, const unsigned char *addr,
6210 __always_unused u16 vid, bool *notified,
6211 struct netlink_ext_ack *extack)
6212 {
6213 int err;
6214
6215 if (ndm->ndm_state & NUD_PERMANENT) {
6216 netdev_err(dev, "FDB only supports static addresses\n");
6217 return -EINVAL;
6218 }
6219
6220 if (is_unicast_ether_addr(addr))
6221 err = dev_uc_del(dev, addr);
6222 else if (is_multicast_ether_addr(addr))
6223 err = dev_mc_del(dev, addr);
6224 else
6225 err = -EINVAL;
6226
6227 return err;
6228 }
6229
6230 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6231 NETIF_F_HW_VLAN_CTAG_TX | \
6232 NETIF_F_HW_VLAN_STAG_RX | \
6233 NETIF_F_HW_VLAN_STAG_TX)
6234
6235 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6236 NETIF_F_HW_VLAN_STAG_RX)
6237
6238 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6239 NETIF_F_HW_VLAN_STAG_FILTER)
6240
6241 /**
6242 * ice_fix_features - fix the netdev features flags based on device limitations
6243 * @netdev: ptr to the netdev that flags are being fixed on
6244 * @features: features that need to be checked and possibly fixed
6245 *
6246 * Make sure any fixups are made to features in this callback. This enables the
6247 * driver to not have to check unsupported configurations throughout the driver
6248 * because that's the responsiblity of this callback.
6249 *
6250 * Single VLAN Mode (SVM) Supported Features:
6251 * NETIF_F_HW_VLAN_CTAG_FILTER
6252 * NETIF_F_HW_VLAN_CTAG_RX
6253 * NETIF_F_HW_VLAN_CTAG_TX
6254 *
6255 * Double VLAN Mode (DVM) Supported Features:
6256 * NETIF_F_HW_VLAN_CTAG_FILTER
6257 * NETIF_F_HW_VLAN_CTAG_RX
6258 * NETIF_F_HW_VLAN_CTAG_TX
6259 *
6260 * NETIF_F_HW_VLAN_STAG_FILTER
6261 * NETIF_HW_VLAN_STAG_RX
6262 * NETIF_HW_VLAN_STAG_TX
6263 *
6264 * Features that need fixing:
6265 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6266 * These are mutually exlusive as the VSI context cannot support multiple
6267 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6268 * is not done, then default to clearing the requested STAG offload
6269 * settings.
6270 *
6271 * All supported filtering has to be enabled or disabled together. For
6272 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6273 * together. If this is not done, then default to VLAN filtering disabled.
6274 * These are mutually exclusive as there is currently no way to
6275 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6276 * prune rules.
6277 */
6278 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6279 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6280 {
6281 struct ice_netdev_priv *np = netdev_priv(netdev);
6282 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6283 bool cur_ctag, cur_stag, req_ctag, req_stag;
6284
6285 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6286 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6287 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6288
6289 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6290 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6291 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6292
6293 if (req_vlan_fltr != cur_vlan_fltr) {
6294 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6295 if (req_ctag && req_stag) {
6296 features |= NETIF_VLAN_FILTERING_FEATURES;
6297 } else if (!req_ctag && !req_stag) {
6298 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6299 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6300 (!cur_stag && req_stag && !cur_ctag)) {
6301 features |= NETIF_VLAN_FILTERING_FEATURES;
6302 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6303 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6304 (cur_stag && !req_stag && cur_ctag)) {
6305 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6306 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6307 }
6308 } else {
6309 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6310 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6311
6312 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6313 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6314 }
6315 }
6316
6317 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6318 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6319 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6320 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6321 NETIF_F_HW_VLAN_STAG_TX);
6322 }
6323
6324 if (!(netdev->features & NETIF_F_RXFCS) &&
6325 (features & NETIF_F_RXFCS) &&
6326 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6327 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6328 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6329 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6330 }
6331
6332 return features;
6333 }
6334
6335 /**
6336 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6337 * @vsi: PF's VSI
6338 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6339 *
6340 * Store current stripped VLAN proto in ring packet context,
6341 * so it can be accessed more efficiently by packet processing code.
6342 */
6343 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6344 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6345 {
6346 u16 i;
6347
6348 ice_for_each_alloc_rxq(vsi, i)
6349 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6350 }
6351
6352 /**
6353 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6354 * @vsi: PF's VSI
6355 * @features: features used to determine VLAN offload settings
6356 *
6357 * First, determine the vlan_ethertype based on the VLAN offload bits in
6358 * features. Then determine if stripping and insertion should be enabled or
6359 * disabled. Finally enable or disable VLAN stripping and insertion.
6360 */
6361 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6362 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6363 {
6364 bool enable_stripping = true, enable_insertion = true;
6365 struct ice_vsi_vlan_ops *vlan_ops;
6366 int strip_err = 0, insert_err = 0;
6367 u16 vlan_ethertype = 0;
6368
6369 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6370
6371 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6372 vlan_ethertype = ETH_P_8021AD;
6373 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6374 vlan_ethertype = ETH_P_8021Q;
6375
6376 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6377 enable_stripping = false;
6378 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6379 enable_insertion = false;
6380
6381 if (enable_stripping)
6382 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6383 else
6384 strip_err = vlan_ops->dis_stripping(vsi);
6385
6386 if (enable_insertion)
6387 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6388 else
6389 insert_err = vlan_ops->dis_insertion(vsi);
6390
6391 if (strip_err || insert_err)
6392 return -EIO;
6393
6394 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6395 htons(vlan_ethertype) : 0);
6396
6397 return 0;
6398 }
6399
6400 /**
6401 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6402 * @vsi: PF's VSI
6403 * @features: features used to determine VLAN filtering settings
6404 *
6405 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6406 * features.
6407 */
6408 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6409 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6410 {
6411 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6412 int err = 0;
6413
6414 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6415 * if either bit is set. In switchdev mode Rx filtering should never be
6416 * enabled.
6417 */
6418 if ((features &
6419 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6420 !ice_is_eswitch_mode_switchdev(vsi->back))
6421 err = vlan_ops->ena_rx_filtering(vsi);
6422 else
6423 err = vlan_ops->dis_rx_filtering(vsi);
6424
6425 return err;
6426 }
6427
6428 /**
6429 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6430 * @netdev: ptr to the netdev being adjusted
6431 * @features: the feature set that the stack is suggesting
6432 *
6433 * Only update VLAN settings if the requested_vlan_features are different than
6434 * the current_vlan_features.
6435 */
6436 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6437 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6438 {
6439 netdev_features_t current_vlan_features, requested_vlan_features;
6440 struct ice_netdev_priv *np = netdev_priv(netdev);
6441 struct ice_vsi *vsi = np->vsi;
6442 int err;
6443
6444 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6445 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6446 if (current_vlan_features ^ requested_vlan_features) {
6447 if ((features & NETIF_F_RXFCS) &&
6448 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6449 dev_err(ice_pf_to_dev(vsi->back),
6450 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6451 return -EIO;
6452 }
6453
6454 err = ice_set_vlan_offload_features(vsi, features);
6455 if (err)
6456 return err;
6457 }
6458
6459 current_vlan_features = netdev->features &
6460 NETIF_VLAN_FILTERING_FEATURES;
6461 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6462 if (current_vlan_features ^ requested_vlan_features) {
6463 err = ice_set_vlan_filtering_features(vsi, features);
6464 if (err)
6465 return err;
6466 }
6467
6468 return 0;
6469 }
6470
6471 /**
6472 * ice_set_loopback - turn on/off loopback mode on underlying PF
6473 * @vsi: ptr to VSI
6474 * @ena: flag to indicate the on/off setting
6475 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6476 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6477 {
6478 bool if_running = netif_running(vsi->netdev);
6479 int ret;
6480
6481 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6482 ret = ice_down(vsi);
6483 if (ret) {
6484 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6485 return ret;
6486 }
6487 }
6488 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6489 if (ret)
6490 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6491 if (if_running)
6492 ret = ice_up(vsi);
6493
6494 return ret;
6495 }
6496
6497 /**
6498 * ice_set_features - set the netdev feature flags
6499 * @netdev: ptr to the netdev being adjusted
6500 * @features: the feature set that the stack is suggesting
6501 */
6502 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6503 ice_set_features(struct net_device *netdev, netdev_features_t features)
6504 {
6505 netdev_features_t changed = netdev->features ^ features;
6506 struct ice_netdev_priv *np = netdev_priv(netdev);
6507 struct ice_vsi *vsi = np->vsi;
6508 struct ice_pf *pf = vsi->back;
6509 int ret = 0;
6510
6511 /* Don't set any netdev advanced features with device in Safe Mode */
6512 if (ice_is_safe_mode(pf)) {
6513 dev_err(ice_pf_to_dev(pf),
6514 "Device is in Safe Mode - not enabling advanced netdev features\n");
6515 return ret;
6516 }
6517
6518 /* Do not change setting during reset */
6519 if (ice_is_reset_in_progress(pf->state)) {
6520 dev_err(ice_pf_to_dev(pf),
6521 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6522 return -EBUSY;
6523 }
6524
6525 /* Multiple features can be changed in one call so keep features in
6526 * separate if/else statements to guarantee each feature is checked
6527 */
6528 if (changed & NETIF_F_RXHASH)
6529 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6530
6531 ret = ice_set_vlan_features(netdev, features);
6532 if (ret)
6533 return ret;
6534
6535 /* Turn on receive of FCS aka CRC, and after setting this
6536 * flag the packet data will have the 4 byte CRC appended
6537 */
6538 if (changed & NETIF_F_RXFCS) {
6539 if ((features & NETIF_F_RXFCS) &&
6540 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6541 dev_err(ice_pf_to_dev(vsi->back),
6542 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6543 return -EIO;
6544 }
6545
6546 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6547 ret = ice_down_up(vsi);
6548 if (ret)
6549 return ret;
6550 }
6551
6552 if (changed & NETIF_F_NTUPLE) {
6553 bool ena = !!(features & NETIF_F_NTUPLE);
6554
6555 ice_vsi_manage_fdir(vsi, ena);
6556 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6557 }
6558
6559 /* don't turn off hw_tc_offload when ADQ is already enabled */
6560 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6561 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6562 return -EACCES;
6563 }
6564
6565 if (changed & NETIF_F_HW_TC) {
6566 bool ena = !!(features & NETIF_F_HW_TC);
6567
6568 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6569 }
6570
6571 if (changed & NETIF_F_LOOPBACK)
6572 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6573
6574 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6575 * (NETIF_F_HW_CSUM) is not supported.
6576 */
6577 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6578 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6579 if (netdev->features & NETIF_F_HW_CSUM)
6580 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6581 else
6582 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6583 return -EIO;
6584 }
6585
6586 return ret;
6587 }
6588
6589 /**
6590 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6591 * @vsi: VSI to setup VLAN properties for
6592 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6593 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6594 {
6595 int err;
6596
6597 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6598 if (err)
6599 return err;
6600
6601 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6602 if (err)
6603 return err;
6604
6605 return ice_vsi_add_vlan_zero(vsi);
6606 }
6607
6608 /**
6609 * ice_vsi_cfg_lan - Setup the VSI lan related config
6610 * @vsi: the VSI being configured
6611 *
6612 * Return 0 on success and negative value on error
6613 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6614 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6615 {
6616 int err;
6617
6618 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6619 ice_set_rx_mode(vsi->netdev);
6620
6621 err = ice_vsi_vlan_setup(vsi);
6622 if (err)
6623 return err;
6624 }
6625 ice_vsi_cfg_dcb_rings(vsi);
6626
6627 err = ice_vsi_cfg_lan_txqs(vsi);
6628 if (!err && ice_is_xdp_ena_vsi(vsi))
6629 err = ice_vsi_cfg_xdp_txqs(vsi);
6630 if (!err)
6631 err = ice_vsi_cfg_rxqs(vsi);
6632
6633 return err;
6634 }
6635
6636 /* THEORY OF MODERATION:
6637 * The ice driver hardware works differently than the hardware that DIMLIB was
6638 * originally made for. ice hardware doesn't have packet count limits that
6639 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6640 * which is hard-coded to a limit of 250,000 ints/second.
6641 * If not using dynamic moderation, the INTRL value can be modified
6642 * by ethtool rx-usecs-high.
6643 */
6644 struct ice_dim {
6645 /* the throttle rate for interrupts, basically worst case delay before
6646 * an initial interrupt fires, value is stored in microseconds.
6647 */
6648 u16 itr;
6649 };
6650
6651 /* Make a different profile for Rx that doesn't allow quite so aggressive
6652 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6653 * second.
6654 */
6655 static const struct ice_dim rx_profile[] = {
6656 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6657 {8}, /* 125,000 ints/s */
6658 {16}, /* 62,500 ints/s */
6659 {62}, /* 16,129 ints/s */
6660 {126} /* 7,936 ints/s */
6661 };
6662
6663 /* The transmit profile, which has the same sorts of values
6664 * as the previous struct
6665 */
6666 static const struct ice_dim tx_profile[] = {
6667 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6668 {8}, /* 125,000 ints/s */
6669 {40}, /* 16,125 ints/s */
6670 {128}, /* 7,812 ints/s */
6671 {256} /* 3,906 ints/s */
6672 };
6673
ice_tx_dim_work(struct work_struct * work)6674 static void ice_tx_dim_work(struct work_struct *work)
6675 {
6676 struct ice_ring_container *rc;
6677 struct dim *dim;
6678 u16 itr;
6679
6680 dim = container_of(work, struct dim, work);
6681 rc = dim->priv;
6682
6683 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6684
6685 /* look up the values in our local table */
6686 itr = tx_profile[dim->profile_ix].itr;
6687
6688 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6689 ice_write_itr(rc, itr);
6690
6691 dim->state = DIM_START_MEASURE;
6692 }
6693
ice_rx_dim_work(struct work_struct * work)6694 static void ice_rx_dim_work(struct work_struct *work)
6695 {
6696 struct ice_ring_container *rc;
6697 struct dim *dim;
6698 u16 itr;
6699
6700 dim = container_of(work, struct dim, work);
6701 rc = dim->priv;
6702
6703 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6704
6705 /* look up the values in our local table */
6706 itr = rx_profile[dim->profile_ix].itr;
6707
6708 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6709 ice_write_itr(rc, itr);
6710
6711 dim->state = DIM_START_MEASURE;
6712 }
6713
6714 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6715
6716 /**
6717 * ice_init_moderation - set up interrupt moderation
6718 * @q_vector: the vector containing rings to be configured
6719 *
6720 * Set up interrupt moderation registers, with the intent to do the right thing
6721 * when called from reset or from probe, and whether or not dynamic moderation
6722 * is enabled or not. Take special care to write all the registers in both
6723 * dynamic moderation mode or not in order to make sure hardware is in a known
6724 * state.
6725 */
ice_init_moderation(struct ice_q_vector * q_vector)6726 static void ice_init_moderation(struct ice_q_vector *q_vector)
6727 {
6728 struct ice_ring_container *rc;
6729 bool tx_dynamic, rx_dynamic;
6730
6731 rc = &q_vector->tx;
6732 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6733 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6734 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6735 rc->dim.priv = rc;
6736 tx_dynamic = ITR_IS_DYNAMIC(rc);
6737
6738 /* set the initial TX ITR to match the above */
6739 ice_write_itr(rc, tx_dynamic ?
6740 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6741
6742 rc = &q_vector->rx;
6743 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6744 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6745 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6746 rc->dim.priv = rc;
6747 rx_dynamic = ITR_IS_DYNAMIC(rc);
6748
6749 /* set the initial RX ITR to match the above */
6750 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6751 rc->itr_setting);
6752
6753 ice_set_q_vector_intrl(q_vector);
6754 }
6755
6756 /**
6757 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6758 * @vsi: the VSI being configured
6759 */
ice_napi_enable_all(struct ice_vsi * vsi)6760 static void ice_napi_enable_all(struct ice_vsi *vsi)
6761 {
6762 int q_idx;
6763
6764 if (!vsi->netdev)
6765 return;
6766
6767 ice_for_each_q_vector(vsi, q_idx) {
6768 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6769
6770 ice_init_moderation(q_vector);
6771
6772 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6773 napi_enable(&q_vector->napi);
6774 }
6775 }
6776
6777 /**
6778 * ice_up_complete - Finish the last steps of bringing up a connection
6779 * @vsi: The VSI being configured
6780 *
6781 * Return 0 on success and negative value on error
6782 */
ice_up_complete(struct ice_vsi * vsi)6783 static int ice_up_complete(struct ice_vsi *vsi)
6784 {
6785 struct ice_pf *pf = vsi->back;
6786 int err;
6787
6788 ice_vsi_cfg_msix(vsi);
6789
6790 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6791 * Tx queue group list was configured and the context bits were
6792 * programmed using ice_vsi_cfg_txqs
6793 */
6794 err = ice_vsi_start_all_rx_rings(vsi);
6795 if (err)
6796 return err;
6797
6798 clear_bit(ICE_VSI_DOWN, vsi->state);
6799 ice_napi_enable_all(vsi);
6800 ice_vsi_ena_irq(vsi);
6801
6802 if (vsi->port_info &&
6803 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6804 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6805 vsi->type == ICE_VSI_SF)))) {
6806 ice_print_link_msg(vsi, true);
6807 netif_tx_start_all_queues(vsi->netdev);
6808 netif_carrier_on(vsi->netdev);
6809 ice_ptp_link_change(pf, true);
6810 }
6811
6812 /* Perform an initial read of the statistics registers now to
6813 * set the baseline so counters are ready when interface is up
6814 */
6815 ice_update_eth_stats(vsi);
6816
6817 if (vsi->type == ICE_VSI_PF)
6818 ice_service_task_schedule(pf);
6819
6820 return 0;
6821 }
6822
6823 /**
6824 * ice_up - Bring the connection back up after being down
6825 * @vsi: VSI being configured
6826 */
ice_up(struct ice_vsi * vsi)6827 int ice_up(struct ice_vsi *vsi)
6828 {
6829 int err;
6830
6831 err = ice_vsi_cfg_lan(vsi);
6832 if (!err)
6833 err = ice_up_complete(vsi);
6834
6835 return err;
6836 }
6837
6838 /**
6839 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6840 * @syncp: pointer to u64_stats_sync
6841 * @stats: stats that pkts and bytes count will be taken from
6842 * @pkts: packets stats counter
6843 * @bytes: bytes stats counter
6844 *
6845 * This function fetches stats from the ring considering the atomic operations
6846 * that needs to be performed to read u64 values in 32 bit machine.
6847 */
6848 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6849 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6850 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6851 {
6852 unsigned int start;
6853
6854 do {
6855 start = u64_stats_fetch_begin(syncp);
6856 *pkts = stats.pkts;
6857 *bytes = stats.bytes;
6858 } while (u64_stats_fetch_retry(syncp, start));
6859 }
6860
6861 /**
6862 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6863 * @vsi: the VSI to be updated
6864 * @vsi_stats: the stats struct to be updated
6865 * @rings: rings to work on
6866 * @count: number of rings
6867 */
6868 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6869 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6870 struct rtnl_link_stats64 *vsi_stats,
6871 struct ice_tx_ring **rings, u16 count)
6872 {
6873 u16 i;
6874
6875 for (i = 0; i < count; i++) {
6876 struct ice_tx_ring *ring;
6877 u64 pkts = 0, bytes = 0;
6878
6879 ring = READ_ONCE(rings[i]);
6880 if (!ring || !ring->ring_stats)
6881 continue;
6882 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6883 ring->ring_stats->stats, &pkts,
6884 &bytes);
6885 vsi_stats->tx_packets += pkts;
6886 vsi_stats->tx_bytes += bytes;
6887 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6888 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6889 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6890 }
6891 }
6892
6893 /**
6894 * ice_update_vsi_ring_stats - Update VSI stats counters
6895 * @vsi: the VSI to be updated
6896 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6897 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6898 {
6899 struct rtnl_link_stats64 *net_stats, *stats_prev;
6900 struct rtnl_link_stats64 *vsi_stats;
6901 struct ice_pf *pf = vsi->back;
6902 u64 pkts, bytes;
6903 int i;
6904
6905 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6906 if (!vsi_stats)
6907 return;
6908
6909 /* reset non-netdev (extended) stats */
6910 vsi->tx_restart = 0;
6911 vsi->tx_busy = 0;
6912 vsi->tx_linearize = 0;
6913 vsi->rx_buf_failed = 0;
6914 vsi->rx_page_failed = 0;
6915
6916 rcu_read_lock();
6917
6918 /* update Tx rings counters */
6919 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6920 vsi->num_txq);
6921
6922 /* update Rx rings counters */
6923 ice_for_each_rxq(vsi, i) {
6924 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6925 struct ice_ring_stats *ring_stats;
6926
6927 ring_stats = ring->ring_stats;
6928 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6929 ring_stats->stats, &pkts,
6930 &bytes);
6931 vsi_stats->rx_packets += pkts;
6932 vsi_stats->rx_bytes += bytes;
6933 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6934 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6935 }
6936
6937 /* update XDP Tx rings counters */
6938 if (ice_is_xdp_ena_vsi(vsi))
6939 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6940 vsi->num_xdp_txq);
6941
6942 rcu_read_unlock();
6943
6944 net_stats = &vsi->net_stats;
6945 stats_prev = &vsi->net_stats_prev;
6946
6947 /* Update netdev counters, but keep in mind that values could start at
6948 * random value after PF reset. And as we increase the reported stat by
6949 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6950 * let's skip this round.
6951 */
6952 if (likely(pf->stat_prev_loaded)) {
6953 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6954 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6955 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6956 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6957 }
6958
6959 stats_prev->tx_packets = vsi_stats->tx_packets;
6960 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6961 stats_prev->rx_packets = vsi_stats->rx_packets;
6962 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6963
6964 kfree(vsi_stats);
6965 }
6966
6967 /**
6968 * ice_update_vsi_stats - Update VSI stats counters
6969 * @vsi: the VSI to be updated
6970 */
ice_update_vsi_stats(struct ice_vsi * vsi)6971 void ice_update_vsi_stats(struct ice_vsi *vsi)
6972 {
6973 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6974 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6975 struct ice_pf *pf = vsi->back;
6976
6977 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6978 test_bit(ICE_CFG_BUSY, pf->state))
6979 return;
6980
6981 /* get stats as recorded by Tx/Rx rings */
6982 ice_update_vsi_ring_stats(vsi);
6983
6984 /* get VSI stats as recorded by the hardware */
6985 ice_update_eth_stats(vsi);
6986
6987 cur_ns->tx_errors = cur_es->tx_errors;
6988 cur_ns->rx_dropped = cur_es->rx_discards;
6989 cur_ns->tx_dropped = cur_es->tx_discards;
6990 cur_ns->multicast = cur_es->rx_multicast;
6991
6992 /* update some more netdev stats if this is main VSI */
6993 if (vsi->type == ICE_VSI_PF) {
6994 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6995 cur_ns->rx_errors = pf->stats.crc_errors +
6996 pf->stats.illegal_bytes +
6997 pf->stats.rx_undersize +
6998 pf->hw_csum_rx_error +
6999 pf->stats.rx_jabber +
7000 pf->stats.rx_fragments +
7001 pf->stats.rx_oversize;
7002 /* record drops from the port level */
7003 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
7004 }
7005 }
7006
7007 /**
7008 * ice_update_pf_stats - Update PF port stats counters
7009 * @pf: PF whose stats needs to be updated
7010 */
ice_update_pf_stats(struct ice_pf * pf)7011 void ice_update_pf_stats(struct ice_pf *pf)
7012 {
7013 struct ice_hw_port_stats *prev_ps, *cur_ps;
7014 struct ice_hw *hw = &pf->hw;
7015 u16 fd_ctr_base;
7016 u8 port;
7017
7018 port = hw->port_info->lport;
7019 prev_ps = &pf->stats_prev;
7020 cur_ps = &pf->stats;
7021
7022 if (ice_is_reset_in_progress(pf->state))
7023 pf->stat_prev_loaded = false;
7024
7025 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7026 &prev_ps->eth.rx_bytes,
7027 &cur_ps->eth.rx_bytes);
7028
7029 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7030 &prev_ps->eth.rx_unicast,
7031 &cur_ps->eth.rx_unicast);
7032
7033 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7034 &prev_ps->eth.rx_multicast,
7035 &cur_ps->eth.rx_multicast);
7036
7037 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7038 &prev_ps->eth.rx_broadcast,
7039 &cur_ps->eth.rx_broadcast);
7040
7041 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7042 &prev_ps->eth.rx_discards,
7043 &cur_ps->eth.rx_discards);
7044
7045 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7046 &prev_ps->eth.tx_bytes,
7047 &cur_ps->eth.tx_bytes);
7048
7049 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7050 &prev_ps->eth.tx_unicast,
7051 &cur_ps->eth.tx_unicast);
7052
7053 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7054 &prev_ps->eth.tx_multicast,
7055 &cur_ps->eth.tx_multicast);
7056
7057 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7058 &prev_ps->eth.tx_broadcast,
7059 &cur_ps->eth.tx_broadcast);
7060
7061 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7062 &prev_ps->tx_dropped_link_down,
7063 &cur_ps->tx_dropped_link_down);
7064
7065 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7066 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7067
7068 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7069 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7070
7071 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7072 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7073
7074 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7075 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7076
7077 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7078 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7079
7080 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7081 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7082
7083 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7084 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7085
7086 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7087 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7088
7089 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7090 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7091
7092 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7093 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7094
7095 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7096 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7097
7098 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7099 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7100
7101 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7102 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7103
7104 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7105 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7106
7107 fd_ctr_base = hw->fd_ctr_base;
7108
7109 ice_stat_update40(hw,
7110 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7111 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7112 &cur_ps->fd_sb_match);
7113 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7114 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7115
7116 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7117 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7118
7119 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7120 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7121
7122 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7123 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7124
7125 ice_update_dcb_stats(pf);
7126
7127 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7128 &prev_ps->crc_errors, &cur_ps->crc_errors);
7129
7130 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7131 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7132
7133 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7134 &prev_ps->mac_local_faults,
7135 &cur_ps->mac_local_faults);
7136
7137 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7138 &prev_ps->mac_remote_faults,
7139 &cur_ps->mac_remote_faults);
7140
7141 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7142 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7143
7144 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7145 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7146
7147 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7148 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7149
7150 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7151 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7152
7153 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7154
7155 pf->stat_prev_loaded = true;
7156 }
7157
7158 /**
7159 * ice_get_stats64 - get statistics for network device structure
7160 * @netdev: network interface device structure
7161 * @stats: main device statistics structure
7162 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7163 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7164 {
7165 struct ice_netdev_priv *np = netdev_priv(netdev);
7166 struct rtnl_link_stats64 *vsi_stats;
7167 struct ice_vsi *vsi = np->vsi;
7168
7169 vsi_stats = &vsi->net_stats;
7170
7171 if (!vsi->num_txq || !vsi->num_rxq)
7172 return;
7173
7174 /* netdev packet/byte stats come from ring counter. These are obtained
7175 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7176 * But, only call the update routine and read the registers if VSI is
7177 * not down.
7178 */
7179 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7180 ice_update_vsi_ring_stats(vsi);
7181 stats->tx_packets = vsi_stats->tx_packets;
7182 stats->tx_bytes = vsi_stats->tx_bytes;
7183 stats->rx_packets = vsi_stats->rx_packets;
7184 stats->rx_bytes = vsi_stats->rx_bytes;
7185
7186 /* The rest of the stats can be read from the hardware but instead we
7187 * just return values that the watchdog task has already obtained from
7188 * the hardware.
7189 */
7190 stats->multicast = vsi_stats->multicast;
7191 stats->tx_errors = vsi_stats->tx_errors;
7192 stats->tx_dropped = vsi_stats->tx_dropped;
7193 stats->rx_errors = vsi_stats->rx_errors;
7194 stats->rx_dropped = vsi_stats->rx_dropped;
7195 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7196 stats->rx_length_errors = vsi_stats->rx_length_errors;
7197 }
7198
7199 /**
7200 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7201 * @vsi: VSI having NAPI disabled
7202 */
ice_napi_disable_all(struct ice_vsi * vsi)7203 static void ice_napi_disable_all(struct ice_vsi *vsi)
7204 {
7205 int q_idx;
7206
7207 if (!vsi->netdev)
7208 return;
7209
7210 ice_for_each_q_vector(vsi, q_idx) {
7211 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7212
7213 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7214 napi_disable(&q_vector->napi);
7215
7216 cancel_work_sync(&q_vector->tx.dim.work);
7217 cancel_work_sync(&q_vector->rx.dim.work);
7218 }
7219 }
7220
7221 /**
7222 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7223 * @vsi: the VSI being un-configured
7224 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7225 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7226 {
7227 struct ice_pf *pf = vsi->back;
7228 struct ice_hw *hw = &pf->hw;
7229 u32 val;
7230 int i;
7231
7232 /* disable interrupt causation from each Rx queue; Tx queues are
7233 * handled in ice_vsi_stop_tx_ring()
7234 */
7235 if (vsi->rx_rings) {
7236 ice_for_each_rxq(vsi, i) {
7237 if (vsi->rx_rings[i]) {
7238 u16 reg;
7239
7240 reg = vsi->rx_rings[i]->reg_idx;
7241 val = rd32(hw, QINT_RQCTL(reg));
7242 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7243 wr32(hw, QINT_RQCTL(reg), val);
7244 }
7245 }
7246 }
7247
7248 /* disable each interrupt */
7249 ice_for_each_q_vector(vsi, i) {
7250 if (!vsi->q_vectors[i])
7251 continue;
7252 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7253 }
7254
7255 ice_flush(hw);
7256
7257 /* don't call synchronize_irq() for VF's from the host */
7258 if (vsi->type == ICE_VSI_VF)
7259 return;
7260
7261 ice_for_each_q_vector(vsi, i)
7262 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7263 }
7264
7265 /**
7266 * ice_down - Shutdown the connection
7267 * @vsi: The VSI being stopped
7268 *
7269 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7270 */
ice_down(struct ice_vsi * vsi)7271 int ice_down(struct ice_vsi *vsi)
7272 {
7273 int i, tx_err, rx_err, vlan_err = 0;
7274
7275 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7276
7277 if (vsi->netdev) {
7278 vlan_err = ice_vsi_del_vlan_zero(vsi);
7279 ice_ptp_link_change(vsi->back, false);
7280 netif_carrier_off(vsi->netdev);
7281 netif_tx_disable(vsi->netdev);
7282 }
7283
7284 ice_vsi_dis_irq(vsi);
7285
7286 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7287 if (tx_err)
7288 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7289 vsi->vsi_num, tx_err);
7290 if (!tx_err && vsi->xdp_rings) {
7291 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7292 if (tx_err)
7293 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7294 vsi->vsi_num, tx_err);
7295 }
7296
7297 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7298 if (rx_err)
7299 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7300 vsi->vsi_num, rx_err);
7301
7302 ice_napi_disable_all(vsi);
7303
7304 ice_for_each_txq(vsi, i)
7305 ice_clean_tx_ring(vsi->tx_rings[i]);
7306
7307 if (vsi->xdp_rings)
7308 ice_for_each_xdp_txq(vsi, i)
7309 ice_clean_tx_ring(vsi->xdp_rings[i]);
7310
7311 ice_for_each_rxq(vsi, i)
7312 ice_clean_rx_ring(vsi->rx_rings[i]);
7313
7314 if (tx_err || rx_err || vlan_err) {
7315 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7316 vsi->vsi_num, vsi->vsw->sw_id);
7317 return -EIO;
7318 }
7319
7320 return 0;
7321 }
7322
7323 /**
7324 * ice_down_up - shutdown the VSI connection and bring it up
7325 * @vsi: the VSI to be reconnected
7326 */
ice_down_up(struct ice_vsi * vsi)7327 int ice_down_up(struct ice_vsi *vsi)
7328 {
7329 int ret;
7330
7331 /* if DOWN already set, nothing to do */
7332 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7333 return 0;
7334
7335 ret = ice_down(vsi);
7336 if (ret)
7337 return ret;
7338
7339 ret = ice_up(vsi);
7340 if (ret) {
7341 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7342 return ret;
7343 }
7344
7345 return 0;
7346 }
7347
7348 /**
7349 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7350 * @vsi: VSI having resources allocated
7351 *
7352 * Return 0 on success, negative on failure
7353 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7354 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7355 {
7356 int i, err = 0;
7357
7358 if (!vsi->num_txq) {
7359 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7360 vsi->vsi_num);
7361 return -EINVAL;
7362 }
7363
7364 ice_for_each_txq(vsi, i) {
7365 struct ice_tx_ring *ring = vsi->tx_rings[i];
7366
7367 if (!ring)
7368 return -EINVAL;
7369
7370 if (vsi->netdev)
7371 ring->netdev = vsi->netdev;
7372 err = ice_setup_tx_ring(ring);
7373 if (err)
7374 break;
7375 }
7376
7377 return err;
7378 }
7379
7380 /**
7381 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7382 * @vsi: VSI having resources allocated
7383 *
7384 * Return 0 on success, negative on failure
7385 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7386 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7387 {
7388 int i, err = 0;
7389
7390 if (!vsi->num_rxq) {
7391 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7392 vsi->vsi_num);
7393 return -EINVAL;
7394 }
7395
7396 ice_for_each_rxq(vsi, i) {
7397 struct ice_rx_ring *ring = vsi->rx_rings[i];
7398
7399 if (!ring)
7400 return -EINVAL;
7401
7402 if (vsi->netdev)
7403 ring->netdev = vsi->netdev;
7404 err = ice_setup_rx_ring(ring);
7405 if (err)
7406 break;
7407 }
7408
7409 return err;
7410 }
7411
7412 /**
7413 * ice_vsi_open_ctrl - open control VSI for use
7414 * @vsi: the VSI to open
7415 *
7416 * Initialization of the Control VSI
7417 *
7418 * Returns 0 on success, negative value on error
7419 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7420 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7421 {
7422 char int_name[ICE_INT_NAME_STR_LEN];
7423 struct ice_pf *pf = vsi->back;
7424 struct device *dev;
7425 int err;
7426
7427 dev = ice_pf_to_dev(pf);
7428 /* allocate descriptors */
7429 err = ice_vsi_setup_tx_rings(vsi);
7430 if (err)
7431 goto err_setup_tx;
7432
7433 err = ice_vsi_setup_rx_rings(vsi);
7434 if (err)
7435 goto err_setup_rx;
7436
7437 err = ice_vsi_cfg_lan(vsi);
7438 if (err)
7439 goto err_setup_rx;
7440
7441 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7442 dev_driver_string(dev), dev_name(dev));
7443 err = ice_vsi_req_irq_msix(vsi, int_name);
7444 if (err)
7445 goto err_setup_rx;
7446
7447 ice_vsi_cfg_msix(vsi);
7448
7449 err = ice_vsi_start_all_rx_rings(vsi);
7450 if (err)
7451 goto err_up_complete;
7452
7453 clear_bit(ICE_VSI_DOWN, vsi->state);
7454 ice_vsi_ena_irq(vsi);
7455
7456 return 0;
7457
7458 err_up_complete:
7459 ice_down(vsi);
7460 err_setup_rx:
7461 ice_vsi_free_rx_rings(vsi);
7462 err_setup_tx:
7463 ice_vsi_free_tx_rings(vsi);
7464
7465 return err;
7466 }
7467
7468 /**
7469 * ice_vsi_open - Called when a network interface is made active
7470 * @vsi: the VSI to open
7471 *
7472 * Initialization of the VSI
7473 *
7474 * Returns 0 on success, negative value on error
7475 */
ice_vsi_open(struct ice_vsi * vsi)7476 int ice_vsi_open(struct ice_vsi *vsi)
7477 {
7478 char int_name[ICE_INT_NAME_STR_LEN];
7479 struct ice_pf *pf = vsi->back;
7480 int err;
7481
7482 /* allocate descriptors */
7483 err = ice_vsi_setup_tx_rings(vsi);
7484 if (err)
7485 goto err_setup_tx;
7486
7487 err = ice_vsi_setup_rx_rings(vsi);
7488 if (err)
7489 goto err_setup_rx;
7490
7491 err = ice_vsi_cfg_lan(vsi);
7492 if (err)
7493 goto err_setup_rx;
7494
7495 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7496 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7497 err = ice_vsi_req_irq_msix(vsi, int_name);
7498 if (err)
7499 goto err_setup_rx;
7500
7501 if (bitmap_empty(pf->txtime_txqs, pf->max_pf_txqs))
7502 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7503
7504 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7505 /* Notify the stack of the actual queue counts. */
7506 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7507 if (err)
7508 goto err_set_qs;
7509
7510 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7511 if (err)
7512 goto err_set_qs;
7513
7514 ice_vsi_set_napi_queues(vsi);
7515 }
7516
7517 err = ice_up_complete(vsi);
7518 if (err)
7519 goto err_up_complete;
7520
7521 return 0;
7522
7523 err_up_complete:
7524 ice_down(vsi);
7525 err_set_qs:
7526 ice_vsi_free_irq(vsi);
7527 err_setup_rx:
7528 ice_vsi_free_rx_rings(vsi);
7529 err_setup_tx:
7530 ice_vsi_free_tx_rings(vsi);
7531
7532 return err;
7533 }
7534
7535 /**
7536 * ice_vsi_release_all - Delete all VSIs
7537 * @pf: PF from which all VSIs are being removed
7538 */
ice_vsi_release_all(struct ice_pf * pf)7539 static void ice_vsi_release_all(struct ice_pf *pf)
7540 {
7541 int err, i;
7542
7543 if (!pf->vsi)
7544 return;
7545
7546 ice_for_each_vsi(pf, i) {
7547 if (!pf->vsi[i])
7548 continue;
7549
7550 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7551 continue;
7552
7553 err = ice_vsi_release(pf->vsi[i]);
7554 if (err)
7555 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7556 i, err, pf->vsi[i]->vsi_num);
7557 }
7558 }
7559
7560 /**
7561 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7562 * @pf: pointer to the PF instance
7563 * @type: VSI type to rebuild
7564 *
7565 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7566 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7567 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7568 {
7569 struct device *dev = ice_pf_to_dev(pf);
7570 int i, err;
7571
7572 ice_for_each_vsi(pf, i) {
7573 struct ice_vsi *vsi = pf->vsi[i];
7574
7575 if (!vsi || vsi->type != type)
7576 continue;
7577
7578 /* rebuild the VSI */
7579 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7580 if (err) {
7581 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7582 err, vsi->idx, ice_vsi_type_str(type));
7583 return err;
7584 }
7585
7586 /* replay filters for the VSI */
7587 err = ice_replay_vsi(&pf->hw, vsi->idx);
7588 if (err) {
7589 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7590 err, vsi->idx, ice_vsi_type_str(type));
7591 return err;
7592 }
7593
7594 /* Re-map HW VSI number, using VSI handle that has been
7595 * previously validated in ice_replay_vsi() call above
7596 */
7597 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7598
7599 /* enable the VSI */
7600 err = ice_ena_vsi(vsi, false);
7601 if (err) {
7602 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7603 err, vsi->idx, ice_vsi_type_str(type));
7604 return err;
7605 }
7606
7607 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7608 ice_vsi_type_str(type));
7609 }
7610
7611 return 0;
7612 }
7613
7614 /**
7615 * ice_update_pf_netdev_link - Update PF netdev link status
7616 * @pf: pointer to the PF instance
7617 */
ice_update_pf_netdev_link(struct ice_pf * pf)7618 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7619 {
7620 bool link_up;
7621 int i;
7622
7623 ice_for_each_vsi(pf, i) {
7624 struct ice_vsi *vsi = pf->vsi[i];
7625
7626 if (!vsi || vsi->type != ICE_VSI_PF)
7627 return;
7628
7629 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7630 if (link_up) {
7631 netif_carrier_on(pf->vsi[i]->netdev);
7632 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7633 } else {
7634 netif_carrier_off(pf->vsi[i]->netdev);
7635 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7636 }
7637 }
7638 }
7639
7640 /**
7641 * ice_rebuild - rebuild after reset
7642 * @pf: PF to rebuild
7643 * @reset_type: type of reset
7644 *
7645 * Do not rebuild VF VSI in this flow because that is already handled via
7646 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7647 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7648 * to reset/rebuild all the VF VSI twice.
7649 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7650 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7651 {
7652 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7653 struct device *dev = ice_pf_to_dev(pf);
7654 struct ice_hw *hw = &pf->hw;
7655 bool dvm;
7656 int err;
7657
7658 if (test_bit(ICE_DOWN, pf->state))
7659 goto clear_recovery;
7660
7661 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7662
7663 #define ICE_EMP_RESET_SLEEP_MS 5000
7664 if (reset_type == ICE_RESET_EMPR) {
7665 /* If an EMP reset has occurred, any previously pending flash
7666 * update will have completed. We no longer know whether or
7667 * not the NVM update EMP reset is restricted.
7668 */
7669 pf->fw_emp_reset_disabled = false;
7670
7671 msleep(ICE_EMP_RESET_SLEEP_MS);
7672 }
7673
7674 err = ice_init_all_ctrlq(hw);
7675 if (err) {
7676 dev_err(dev, "control queues init failed %d\n", err);
7677 goto err_init_ctrlq;
7678 }
7679
7680 /* if DDP was previously loaded successfully */
7681 if (!ice_is_safe_mode(pf)) {
7682 /* reload the SW DB of filter tables */
7683 if (reset_type == ICE_RESET_PFR)
7684 ice_fill_blk_tbls(hw);
7685 else
7686 /* Reload DDP Package after CORER/GLOBR reset */
7687 ice_load_pkg(NULL, pf);
7688 }
7689
7690 err = ice_clear_pf_cfg(hw);
7691 if (err) {
7692 dev_err(dev, "clear PF configuration failed %d\n", err);
7693 goto err_init_ctrlq;
7694 }
7695
7696 ice_clear_pxe_mode(hw);
7697
7698 err = ice_init_nvm(hw);
7699 if (err) {
7700 dev_err(dev, "ice_init_nvm failed %d\n", err);
7701 goto err_init_ctrlq;
7702 }
7703
7704 err = ice_get_caps(hw);
7705 if (err) {
7706 dev_err(dev, "ice_get_caps failed %d\n", err);
7707 goto err_init_ctrlq;
7708 }
7709
7710 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7711 if (err) {
7712 dev_err(dev, "set_mac_cfg failed %d\n", err);
7713 goto err_init_ctrlq;
7714 }
7715
7716 dvm = ice_is_dvm_ena(hw);
7717
7718 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7719 if (err)
7720 goto err_init_ctrlq;
7721
7722 err = ice_sched_init_port(hw->port_info);
7723 if (err)
7724 goto err_sched_init_port;
7725
7726 /* start misc vector */
7727 err = ice_req_irq_msix_misc(pf);
7728 if (err) {
7729 dev_err(dev, "misc vector setup failed: %d\n", err);
7730 goto err_sched_init_port;
7731 }
7732
7733 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7734 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7735 if (!rd32(hw, PFQF_FD_SIZE)) {
7736 u16 unused, guar, b_effort;
7737
7738 guar = hw->func_caps.fd_fltr_guar;
7739 b_effort = hw->func_caps.fd_fltr_best_effort;
7740
7741 /* force guaranteed filter pool for PF */
7742 ice_alloc_fd_guar_item(hw, &unused, guar);
7743 /* force shared filter pool for PF */
7744 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7745 }
7746 }
7747
7748 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7749 ice_dcb_rebuild(pf);
7750
7751 /* If the PF previously had enabled PTP, PTP init needs to happen before
7752 * the VSI rebuild. If not, this causes the PTP link status events to
7753 * fail.
7754 */
7755 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7756 ice_ptp_rebuild(pf, reset_type);
7757
7758 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7759 ice_gnss_init(pf);
7760
7761 /* rebuild PF VSI */
7762 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7763 if (err) {
7764 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7765 goto err_vsi_rebuild;
7766 }
7767
7768 if (reset_type == ICE_RESET_PFR) {
7769 err = ice_rebuild_channels(pf);
7770 if (err) {
7771 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7772 err);
7773 goto err_vsi_rebuild;
7774 }
7775 }
7776
7777 /* If Flow Director is active */
7778 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7779 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7780 if (err) {
7781 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7782 goto err_vsi_rebuild;
7783 }
7784
7785 /* replay HW Flow Director recipes */
7786 if (hw->fdir_prof)
7787 ice_fdir_replay_flows(hw);
7788
7789 /* replay Flow Director filters */
7790 ice_fdir_replay_fltrs(pf);
7791
7792 ice_rebuild_arfs(pf);
7793 }
7794
7795 if (vsi && vsi->netdev)
7796 netif_device_attach(vsi->netdev);
7797
7798 ice_update_pf_netdev_link(pf);
7799
7800 /* tell the firmware we are up */
7801 err = ice_send_version(pf);
7802 if (err) {
7803 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7804 err);
7805 goto err_vsi_rebuild;
7806 }
7807
7808 ice_replay_post(hw);
7809
7810 /* if we get here, reset flow is successful */
7811 clear_bit(ICE_RESET_FAILED, pf->state);
7812
7813 ice_health_clear(pf);
7814
7815 ice_plug_aux_dev(pf);
7816 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7817 ice_lag_rebuild(pf);
7818
7819 /* Restore timestamp mode settings after VSI rebuild */
7820 ice_ptp_restore_timestamp_mode(pf);
7821 return;
7822
7823 err_vsi_rebuild:
7824 err_sched_init_port:
7825 ice_sched_cleanup_all(hw);
7826 err_init_ctrlq:
7827 ice_shutdown_all_ctrlq(hw, false);
7828 set_bit(ICE_RESET_FAILED, pf->state);
7829 clear_recovery:
7830 /* set this bit in PF state to control service task scheduling */
7831 set_bit(ICE_NEEDS_RESTART, pf->state);
7832 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7833 }
7834
7835 /**
7836 * ice_change_mtu - NDO callback to change the MTU
7837 * @netdev: network interface device structure
7838 * @new_mtu: new value for maximum frame size
7839 *
7840 * Returns 0 on success, negative on failure
7841 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7842 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7843 {
7844 struct ice_netdev_priv *np = netdev_priv(netdev);
7845 struct ice_vsi *vsi = np->vsi;
7846 struct ice_pf *pf = vsi->back;
7847 struct bpf_prog *prog;
7848 u8 count = 0;
7849 int err = 0;
7850
7851 if (new_mtu == (int)netdev->mtu) {
7852 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7853 return 0;
7854 }
7855
7856 prog = vsi->xdp_prog;
7857 if (prog && !prog->aux->xdp_has_frags) {
7858 int frame_size = ice_max_xdp_frame_size(vsi);
7859
7860 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7861 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7862 frame_size - ICE_ETH_PKT_HDR_PAD);
7863 return -EINVAL;
7864 }
7865 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7866 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7867 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7868 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7869 return -EINVAL;
7870 }
7871 }
7872
7873 /* if a reset is in progress, wait for some time for it to complete */
7874 do {
7875 if (ice_is_reset_in_progress(pf->state)) {
7876 count++;
7877 usleep_range(1000, 2000);
7878 } else {
7879 break;
7880 }
7881
7882 } while (count < 100);
7883
7884 if (count == 100) {
7885 netdev_err(netdev, "can't change MTU. Device is busy\n");
7886 return -EBUSY;
7887 }
7888
7889 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7890 err = ice_down_up(vsi);
7891 if (err)
7892 return err;
7893
7894 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7895 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7896
7897 return err;
7898 }
7899
7900 /**
7901 * ice_set_rss_lut - Set RSS LUT
7902 * @vsi: Pointer to VSI structure
7903 * @lut: Lookup table
7904 * @lut_size: Lookup table size
7905 *
7906 * Returns 0 on success, negative on failure
7907 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7908 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7909 {
7910 struct ice_aq_get_set_rss_lut_params params = {};
7911 struct ice_hw *hw = &vsi->back->hw;
7912 int status;
7913
7914 if (!lut)
7915 return -EINVAL;
7916
7917 params.vsi_handle = vsi->idx;
7918 params.lut_size = lut_size;
7919 params.lut_type = vsi->rss_lut_type;
7920 params.lut = lut;
7921
7922 status = ice_aq_set_rss_lut(hw, ¶ms);
7923 if (status)
7924 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7925 status, libie_aq_str(hw->adminq.sq_last_status));
7926
7927 return status;
7928 }
7929
7930 /**
7931 * ice_set_rss_key - Set RSS key
7932 * @vsi: Pointer to the VSI structure
7933 * @seed: RSS hash seed
7934 *
7935 * Returns 0 on success, negative on failure
7936 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7937 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7938 {
7939 struct ice_hw *hw = &vsi->back->hw;
7940 int status;
7941
7942 if (!seed)
7943 return -EINVAL;
7944
7945 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7946 if (status)
7947 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7948 status, libie_aq_str(hw->adminq.sq_last_status));
7949
7950 return status;
7951 }
7952
7953 /**
7954 * ice_get_rss_lut - Get RSS LUT
7955 * @vsi: Pointer to VSI structure
7956 * @lut: Buffer to store the lookup table entries
7957 * @lut_size: Size of buffer to store the lookup table entries
7958 *
7959 * Returns 0 on success, negative on failure
7960 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7961 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7962 {
7963 struct ice_aq_get_set_rss_lut_params params = {};
7964 struct ice_hw *hw = &vsi->back->hw;
7965 int status;
7966
7967 if (!lut)
7968 return -EINVAL;
7969
7970 params.vsi_handle = vsi->idx;
7971 params.lut_size = lut_size;
7972 params.lut_type = vsi->rss_lut_type;
7973 params.lut = lut;
7974
7975 status = ice_aq_get_rss_lut(hw, ¶ms);
7976 if (status)
7977 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7978 status, libie_aq_str(hw->adminq.sq_last_status));
7979
7980 return status;
7981 }
7982
7983 /**
7984 * ice_get_rss_key - Get RSS key
7985 * @vsi: Pointer to VSI structure
7986 * @seed: Buffer to store the key in
7987 *
7988 * Returns 0 on success, negative on failure
7989 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7990 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7991 {
7992 struct ice_hw *hw = &vsi->back->hw;
7993 int status;
7994
7995 if (!seed)
7996 return -EINVAL;
7997
7998 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7999 if (status)
8000 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8001 status, libie_aq_str(hw->adminq.sq_last_status));
8002
8003 return status;
8004 }
8005
8006 /**
8007 * ice_set_rss_hfunc - Set RSS HASH function
8008 * @vsi: Pointer to VSI structure
8009 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8010 *
8011 * Returns 0 on success, negative on failure
8012 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8013 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8014 {
8015 struct ice_hw *hw = &vsi->back->hw;
8016 struct ice_vsi_ctx *ctx;
8017 bool symm;
8018 int err;
8019
8020 if (hfunc == vsi->rss_hfunc)
8021 return 0;
8022
8023 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8024 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8025 return -EOPNOTSUPP;
8026
8027 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8028 if (!ctx)
8029 return -ENOMEM;
8030
8031 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8032 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8033 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8034 ctx->info.q_opt_rss |=
8035 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8036 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8037 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8038
8039 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8040 if (err) {
8041 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8042 vsi->vsi_num, err);
8043 } else {
8044 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8045 vsi->rss_hfunc = hfunc;
8046 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8047 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8048 "Symmetric " : "");
8049 }
8050 kfree(ctx);
8051 if (err)
8052 return err;
8053
8054 /* Fix the symmetry setting for all existing RSS configurations */
8055 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8056 return ice_set_rss_cfg_symm(hw, vsi, symm);
8057 }
8058
8059 /**
8060 * ice_bridge_getlink - Get the hardware bridge mode
8061 * @skb: skb buff
8062 * @pid: process ID
8063 * @seq: RTNL message seq
8064 * @dev: the netdev being configured
8065 * @filter_mask: filter mask passed in
8066 * @nlflags: netlink flags passed in
8067 *
8068 * Return the bridge mode (VEB/VEPA)
8069 */
8070 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8071 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8072 struct net_device *dev, u32 filter_mask, int nlflags)
8073 {
8074 struct ice_netdev_priv *np = netdev_priv(dev);
8075 struct ice_vsi *vsi = np->vsi;
8076 struct ice_pf *pf = vsi->back;
8077 u16 bmode;
8078
8079 bmode = pf->first_sw->bridge_mode;
8080
8081 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8082 filter_mask, NULL);
8083 }
8084
8085 /**
8086 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8087 * @vsi: Pointer to VSI structure
8088 * @bmode: Hardware bridge mode (VEB/VEPA)
8089 *
8090 * Returns 0 on success, negative on failure
8091 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8092 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8093 {
8094 struct ice_aqc_vsi_props *vsi_props;
8095 struct ice_hw *hw = &vsi->back->hw;
8096 struct ice_vsi_ctx *ctxt;
8097 int ret;
8098
8099 vsi_props = &vsi->info;
8100
8101 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8102 if (!ctxt)
8103 return -ENOMEM;
8104
8105 ctxt->info = vsi->info;
8106
8107 if (bmode == BRIDGE_MODE_VEB)
8108 /* change from VEPA to VEB mode */
8109 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8110 else
8111 /* change from VEB to VEPA mode */
8112 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8113 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8114
8115 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8116 if (ret) {
8117 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8118 bmode, ret, libie_aq_str(hw->adminq.sq_last_status));
8119 goto out;
8120 }
8121 /* Update sw flags for book keeping */
8122 vsi_props->sw_flags = ctxt->info.sw_flags;
8123
8124 out:
8125 kfree(ctxt);
8126 return ret;
8127 }
8128
8129 /**
8130 * ice_bridge_setlink - Set the hardware bridge mode
8131 * @dev: the netdev being configured
8132 * @nlh: RTNL message
8133 * @flags: bridge setlink flags
8134 * @extack: netlink extended ack
8135 *
8136 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8137 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8138 * not already set for all VSIs connected to this switch. And also update the
8139 * unicast switch filter rules for the corresponding switch of the netdev.
8140 */
8141 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8142 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8143 u16 __always_unused flags,
8144 struct netlink_ext_ack __always_unused *extack)
8145 {
8146 struct ice_netdev_priv *np = netdev_priv(dev);
8147 struct ice_pf *pf = np->vsi->back;
8148 struct nlattr *attr, *br_spec;
8149 struct ice_hw *hw = &pf->hw;
8150 struct ice_sw *pf_sw;
8151 int rem, v, err = 0;
8152
8153 pf_sw = pf->first_sw;
8154 /* find the attribute in the netlink message */
8155 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8156 if (!br_spec)
8157 return -EINVAL;
8158
8159 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8160 __u16 mode = nla_get_u16(attr);
8161
8162 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8163 return -EINVAL;
8164 /* Continue if bridge mode is not being flipped */
8165 if (mode == pf_sw->bridge_mode)
8166 continue;
8167 /* Iterates through the PF VSI list and update the loopback
8168 * mode of the VSI
8169 */
8170 ice_for_each_vsi(pf, v) {
8171 if (!pf->vsi[v])
8172 continue;
8173 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8174 if (err)
8175 return err;
8176 }
8177
8178 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8179 /* Update the unicast switch filter rules for the corresponding
8180 * switch of the netdev
8181 */
8182 err = ice_update_sw_rule_bridge_mode(hw);
8183 if (err) {
8184 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8185 mode, err,
8186 libie_aq_str(hw->adminq.sq_last_status));
8187 /* revert hw->evb_veb */
8188 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8189 return err;
8190 }
8191
8192 pf_sw->bridge_mode = mode;
8193 }
8194
8195 return 0;
8196 }
8197
8198 /**
8199 * ice_tx_timeout - Respond to a Tx Hang
8200 * @netdev: network interface device structure
8201 * @txqueue: Tx queue
8202 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8203 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8204 {
8205 struct ice_netdev_priv *np = netdev_priv(netdev);
8206 struct ice_tx_ring *tx_ring = NULL;
8207 struct ice_vsi *vsi = np->vsi;
8208 struct ice_pf *pf = vsi->back;
8209 u32 i;
8210
8211 pf->tx_timeout_count++;
8212
8213 /* Check if PFC is enabled for the TC to which the queue belongs
8214 * to. If yes then Tx timeout is not caused by a hung queue, no
8215 * need to reset and rebuild
8216 */
8217 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8218 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8219 txqueue);
8220 return;
8221 }
8222
8223 /* now that we have an index, find the tx_ring struct */
8224 ice_for_each_txq(vsi, i)
8225 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8226 if (txqueue == vsi->tx_rings[i]->q_index) {
8227 tx_ring = vsi->tx_rings[i];
8228 break;
8229 }
8230
8231 /* Reset recovery level if enough time has elapsed after last timeout.
8232 * Also ensure no new reset action happens before next timeout period.
8233 */
8234 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8235 pf->tx_timeout_recovery_level = 1;
8236 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8237 netdev->watchdog_timeo)))
8238 return;
8239
8240 if (tx_ring) {
8241 struct ice_hw *hw = &pf->hw;
8242 u32 head, intr = 0;
8243
8244 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8245 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8246 /* Read interrupt register */
8247 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8248
8249 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8250 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8251 head, tx_ring->next_to_use, intr);
8252
8253 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8254 }
8255
8256 pf->tx_timeout_last_recovery = jiffies;
8257 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8258 pf->tx_timeout_recovery_level, txqueue);
8259
8260 switch (pf->tx_timeout_recovery_level) {
8261 case 1:
8262 set_bit(ICE_PFR_REQ, pf->state);
8263 break;
8264 case 2:
8265 set_bit(ICE_CORER_REQ, pf->state);
8266 break;
8267 case 3:
8268 set_bit(ICE_GLOBR_REQ, pf->state);
8269 break;
8270 default:
8271 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8272 set_bit(ICE_DOWN, pf->state);
8273 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8274 set_bit(ICE_SERVICE_DIS, pf->state);
8275 break;
8276 }
8277
8278 ice_service_task_schedule(pf);
8279 pf->tx_timeout_recovery_level++;
8280 }
8281
8282 /**
8283 * ice_setup_tc_cls_flower - flower classifier offloads
8284 * @np: net device to configure
8285 * @filter_dev: device on which filter is added
8286 * @cls_flower: offload data
8287 * @ingress: if the rule is added to an ingress block
8288 *
8289 * Return: 0 if the flower was successfully added or deleted,
8290 * negative error code otherwise.
8291 */
8292 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower,bool ingress)8293 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8294 struct net_device *filter_dev,
8295 struct flow_cls_offload *cls_flower,
8296 bool ingress)
8297 {
8298 struct ice_vsi *vsi = np->vsi;
8299
8300 if (cls_flower->common.chain_index)
8301 return -EOPNOTSUPP;
8302
8303 switch (cls_flower->command) {
8304 case FLOW_CLS_REPLACE:
8305 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress);
8306 case FLOW_CLS_DESTROY:
8307 return ice_del_cls_flower(vsi, cls_flower);
8308 default:
8309 return -EINVAL;
8310 }
8311 }
8312
8313 /**
8314 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block
8315 * @type: TC SETUP type
8316 * @type_data: TC flower offload data that contains user input
8317 * @cb_priv: netdev private data
8318 *
8319 * Return: 0 if the setup was successful, negative error code otherwise.
8320 */
8321 static int
ice_setup_tc_block_cb_ingress(enum tc_setup_type type,void * type_data,void * cb_priv)8322 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data,
8323 void *cb_priv)
8324 {
8325 struct ice_netdev_priv *np = cb_priv;
8326
8327 switch (type) {
8328 case TC_SETUP_CLSFLOWER:
8329 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8330 type_data, true);
8331 default:
8332 return -EOPNOTSUPP;
8333 }
8334 }
8335
8336 /**
8337 * ice_setup_tc_block_cb_egress - callback handler for egress TC block
8338 * @type: TC SETUP type
8339 * @type_data: TC flower offload data that contains user input
8340 * @cb_priv: netdev private data
8341 *
8342 * Return: 0 if the setup was successful, negative error code otherwise.
8343 */
8344 static int
ice_setup_tc_block_cb_egress(enum tc_setup_type type,void * type_data,void * cb_priv)8345 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data,
8346 void *cb_priv)
8347 {
8348 struct ice_netdev_priv *np = cb_priv;
8349
8350 switch (type) {
8351 case TC_SETUP_CLSFLOWER:
8352 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8353 type_data, false);
8354 default:
8355 return -EOPNOTSUPP;
8356 }
8357 }
8358
8359 /**
8360 * ice_validate_mqprio_qopt - Validate TCF input parameters
8361 * @vsi: Pointer to VSI
8362 * @mqprio_qopt: input parameters for mqprio queue configuration
8363 *
8364 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8365 * needed), and make sure user doesn't specify qcount and BW rate limit
8366 * for TCs, which are more than "num_tc"
8367 */
8368 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8369 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8370 struct tc_mqprio_qopt_offload *mqprio_qopt)
8371 {
8372 int non_power_of_2_qcount = 0;
8373 struct ice_pf *pf = vsi->back;
8374 int max_rss_q_cnt = 0;
8375 u64 sum_min_rate = 0;
8376 struct device *dev;
8377 int i, speed;
8378 u8 num_tc;
8379
8380 if (vsi->type != ICE_VSI_PF)
8381 return -EINVAL;
8382
8383 if (mqprio_qopt->qopt.offset[0] != 0 ||
8384 mqprio_qopt->qopt.num_tc < 1 ||
8385 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8386 return -EINVAL;
8387
8388 dev = ice_pf_to_dev(pf);
8389 vsi->ch_rss_size = 0;
8390 num_tc = mqprio_qopt->qopt.num_tc;
8391 speed = ice_get_link_speed_kbps(vsi);
8392
8393 for (i = 0; num_tc; i++) {
8394 int qcount = mqprio_qopt->qopt.count[i];
8395 u64 max_rate, min_rate, rem;
8396
8397 if (!qcount)
8398 return -EINVAL;
8399
8400 if (is_power_of_2(qcount)) {
8401 if (non_power_of_2_qcount &&
8402 qcount > non_power_of_2_qcount) {
8403 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8404 qcount, non_power_of_2_qcount);
8405 return -EINVAL;
8406 }
8407 if (qcount > max_rss_q_cnt)
8408 max_rss_q_cnt = qcount;
8409 } else {
8410 if (non_power_of_2_qcount &&
8411 qcount != non_power_of_2_qcount) {
8412 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8413 qcount, non_power_of_2_qcount);
8414 return -EINVAL;
8415 }
8416 if (qcount < max_rss_q_cnt) {
8417 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8418 qcount, max_rss_q_cnt);
8419 return -EINVAL;
8420 }
8421 max_rss_q_cnt = qcount;
8422 non_power_of_2_qcount = qcount;
8423 }
8424
8425 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8426 * converts the bandwidth rate limit into Bytes/s when
8427 * passing it down to the driver. So convert input bandwidth
8428 * from Bytes/s to Kbps
8429 */
8430 max_rate = mqprio_qopt->max_rate[i];
8431 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8432
8433 /* min_rate is minimum guaranteed rate and it can't be zero */
8434 min_rate = mqprio_qopt->min_rate[i];
8435 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8436 sum_min_rate += min_rate;
8437
8438 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8439 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8440 min_rate, ICE_MIN_BW_LIMIT);
8441 return -EINVAL;
8442 }
8443
8444 if (max_rate && max_rate > speed) {
8445 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8446 i, max_rate, speed);
8447 return -EINVAL;
8448 }
8449
8450 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8451 if (rem) {
8452 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8453 i, ICE_MIN_BW_LIMIT);
8454 return -EINVAL;
8455 }
8456
8457 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8458 if (rem) {
8459 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8460 i, ICE_MIN_BW_LIMIT);
8461 return -EINVAL;
8462 }
8463
8464 /* min_rate can't be more than max_rate, except when max_rate
8465 * is zero (implies max_rate sought is max line rate). In such
8466 * a case min_rate can be more than max.
8467 */
8468 if (max_rate && min_rate > max_rate) {
8469 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8470 min_rate, max_rate);
8471 return -EINVAL;
8472 }
8473
8474 if (i >= mqprio_qopt->qopt.num_tc - 1)
8475 break;
8476 if (mqprio_qopt->qopt.offset[i + 1] !=
8477 (mqprio_qopt->qopt.offset[i] + qcount))
8478 return -EINVAL;
8479 }
8480 if (vsi->num_rxq <
8481 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8482 return -EINVAL;
8483 if (vsi->num_txq <
8484 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8485 return -EINVAL;
8486
8487 if (sum_min_rate && sum_min_rate > (u64)speed) {
8488 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8489 sum_min_rate, speed);
8490 return -EINVAL;
8491 }
8492
8493 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8494 vsi->ch_rss_size = max_rss_q_cnt;
8495
8496 return 0;
8497 }
8498
8499 /**
8500 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8501 * @pf: ptr to PF device
8502 * @vsi: ptr to VSI
8503 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8504 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8505 {
8506 struct device *dev = ice_pf_to_dev(pf);
8507 bool added = false;
8508 struct ice_hw *hw;
8509 int flow;
8510
8511 if (!(vsi->num_gfltr || vsi->num_bfltr))
8512 return -EINVAL;
8513
8514 hw = &pf->hw;
8515 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8516 struct ice_fd_hw_prof *prof;
8517 int tun, status;
8518 u64 entry_h;
8519
8520 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8521 hw->fdir_prof[flow]->cnt))
8522 continue;
8523
8524 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8525 enum ice_flow_priority prio;
8526
8527 /* add this VSI to FDir profile for this flow */
8528 prio = ICE_FLOW_PRIO_NORMAL;
8529 prof = hw->fdir_prof[flow];
8530 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8531 prof->prof_id[tun],
8532 prof->vsi_h[0], vsi->idx,
8533 prio, prof->fdir_seg[tun],
8534 &entry_h);
8535 if (status) {
8536 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8537 vsi->idx, flow);
8538 continue;
8539 }
8540
8541 prof->entry_h[prof->cnt][tun] = entry_h;
8542 }
8543
8544 /* store VSI for filter replay and delete */
8545 prof->vsi_h[prof->cnt] = vsi->idx;
8546 prof->cnt++;
8547
8548 added = true;
8549 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8550 flow);
8551 }
8552
8553 if (!added)
8554 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8555
8556 return 0;
8557 }
8558
8559 /**
8560 * ice_add_channel - add a channel by adding VSI
8561 * @pf: ptr to PF device
8562 * @sw_id: underlying HW switching element ID
8563 * @ch: ptr to channel structure
8564 *
8565 * Add a channel (VSI) using add_vsi and queue_map
8566 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8567 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8568 {
8569 struct device *dev = ice_pf_to_dev(pf);
8570 struct ice_vsi *vsi;
8571
8572 if (ch->type != ICE_VSI_CHNL) {
8573 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8574 return -EINVAL;
8575 }
8576
8577 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8578 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8579 dev_err(dev, "create chnl VSI failure\n");
8580 return -EINVAL;
8581 }
8582
8583 ice_add_vsi_to_fdir(pf, vsi);
8584
8585 ch->sw_id = sw_id;
8586 ch->vsi_num = vsi->vsi_num;
8587 ch->info.mapping_flags = vsi->info.mapping_flags;
8588 ch->ch_vsi = vsi;
8589 /* set the back pointer of channel for newly created VSI */
8590 vsi->ch = ch;
8591
8592 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8593 sizeof(vsi->info.q_mapping));
8594 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8595 sizeof(vsi->info.tc_mapping));
8596
8597 return 0;
8598 }
8599
8600 /**
8601 * ice_chnl_cfg_res
8602 * @vsi: the VSI being setup
8603 * @ch: ptr to channel structure
8604 *
8605 * Configure channel specific resources such as rings, vector.
8606 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8607 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8608 {
8609 int i;
8610
8611 for (i = 0; i < ch->num_txq; i++) {
8612 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8613 struct ice_ring_container *rc;
8614 struct ice_tx_ring *tx_ring;
8615 struct ice_rx_ring *rx_ring;
8616
8617 tx_ring = vsi->tx_rings[ch->base_q + i];
8618 rx_ring = vsi->rx_rings[ch->base_q + i];
8619 if (!tx_ring || !rx_ring)
8620 continue;
8621
8622 /* setup ring being channel enabled */
8623 tx_ring->ch = ch;
8624 rx_ring->ch = ch;
8625
8626 /* following code block sets up vector specific attributes */
8627 tx_q_vector = tx_ring->q_vector;
8628 rx_q_vector = rx_ring->q_vector;
8629 if (!tx_q_vector && !rx_q_vector)
8630 continue;
8631
8632 if (tx_q_vector) {
8633 tx_q_vector->ch = ch;
8634 /* setup Tx and Rx ITR setting if DIM is off */
8635 rc = &tx_q_vector->tx;
8636 if (!ITR_IS_DYNAMIC(rc))
8637 ice_write_itr(rc, rc->itr_setting);
8638 }
8639 if (rx_q_vector) {
8640 rx_q_vector->ch = ch;
8641 /* setup Tx and Rx ITR setting if DIM is off */
8642 rc = &rx_q_vector->rx;
8643 if (!ITR_IS_DYNAMIC(rc))
8644 ice_write_itr(rc, rc->itr_setting);
8645 }
8646 }
8647
8648 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8649 * GLINT_ITR register would have written to perform in-context
8650 * update, hence perform flush
8651 */
8652 if (ch->num_txq || ch->num_rxq)
8653 ice_flush(&vsi->back->hw);
8654 }
8655
8656 /**
8657 * ice_cfg_chnl_all_res - configure channel resources
8658 * @vsi: pte to main_vsi
8659 * @ch: ptr to channel structure
8660 *
8661 * This function configures channel specific resources such as flow-director
8662 * counter index, and other resources such as queues, vectors, ITR settings
8663 */
8664 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8665 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8666 {
8667 /* configure channel (aka ADQ) resources such as queues, vectors,
8668 * ITR settings for channel specific vectors and anything else
8669 */
8670 ice_chnl_cfg_res(vsi, ch);
8671 }
8672
8673 /**
8674 * ice_setup_hw_channel - setup new channel
8675 * @pf: ptr to PF device
8676 * @vsi: the VSI being setup
8677 * @ch: ptr to channel structure
8678 * @sw_id: underlying HW switching element ID
8679 * @type: type of channel to be created (VMDq2/VF)
8680 *
8681 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8682 * and configures Tx rings accordingly
8683 */
8684 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8685 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8686 struct ice_channel *ch, u16 sw_id, u8 type)
8687 {
8688 struct device *dev = ice_pf_to_dev(pf);
8689 int ret;
8690
8691 ch->base_q = vsi->next_base_q;
8692 ch->type = type;
8693
8694 ret = ice_add_channel(pf, sw_id, ch);
8695 if (ret) {
8696 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8697 return ret;
8698 }
8699
8700 /* configure/setup ADQ specific resources */
8701 ice_cfg_chnl_all_res(vsi, ch);
8702
8703 /* make sure to update the next_base_q so that subsequent channel's
8704 * (aka ADQ) VSI queue map is correct
8705 */
8706 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8707 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8708 ch->num_rxq);
8709
8710 return 0;
8711 }
8712
8713 /**
8714 * ice_setup_channel - setup new channel using uplink element
8715 * @pf: ptr to PF device
8716 * @vsi: the VSI being setup
8717 * @ch: ptr to channel structure
8718 *
8719 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8720 * and uplink switching element
8721 */
8722 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8723 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8724 struct ice_channel *ch)
8725 {
8726 struct device *dev = ice_pf_to_dev(pf);
8727 u16 sw_id;
8728 int ret;
8729
8730 if (vsi->type != ICE_VSI_PF) {
8731 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8732 return false;
8733 }
8734
8735 sw_id = pf->first_sw->sw_id;
8736
8737 /* create channel (VSI) */
8738 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8739 if (ret) {
8740 dev_err(dev, "failed to setup hw_channel\n");
8741 return false;
8742 }
8743 dev_dbg(dev, "successfully created channel()\n");
8744
8745 return ch->ch_vsi ? true : false;
8746 }
8747
8748 /**
8749 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8750 * @vsi: VSI to be configured
8751 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8752 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8753 */
8754 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8755 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8756 {
8757 int err;
8758
8759 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8760 if (err)
8761 return err;
8762
8763 return ice_set_max_bw_limit(vsi, max_tx_rate);
8764 }
8765
8766 /**
8767 * ice_create_q_channel - function to create channel
8768 * @vsi: VSI to be configured
8769 * @ch: ptr to channel (it contains channel specific params)
8770 *
8771 * This function creates channel (VSI) using num_queues specified by user,
8772 * reconfigs RSS if needed.
8773 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8774 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8775 {
8776 struct ice_pf *pf = vsi->back;
8777 struct device *dev;
8778
8779 if (!ch)
8780 return -EINVAL;
8781
8782 dev = ice_pf_to_dev(pf);
8783 if (!ch->num_txq || !ch->num_rxq) {
8784 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8785 return -EINVAL;
8786 }
8787
8788 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8789 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8790 vsi->cnt_q_avail, ch->num_txq);
8791 return -EINVAL;
8792 }
8793
8794 if (!ice_setup_channel(pf, vsi, ch)) {
8795 dev_info(dev, "Failed to setup channel\n");
8796 return -EINVAL;
8797 }
8798 /* configure BW rate limit */
8799 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8800 int ret;
8801
8802 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8803 ch->min_tx_rate);
8804 if (ret)
8805 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8806 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8807 else
8808 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8809 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8810 }
8811
8812 vsi->cnt_q_avail -= ch->num_txq;
8813
8814 return 0;
8815 }
8816
8817 /**
8818 * ice_rem_all_chnl_fltrs - removes all channel filters
8819 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8820 *
8821 * Remove all advanced switch filters only if they are channel specific
8822 * tc-flower based filter
8823 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8824 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8825 {
8826 struct ice_tc_flower_fltr *fltr;
8827 struct hlist_node *node;
8828
8829 /* to remove all channel filters, iterate an ordered list of filters */
8830 hlist_for_each_entry_safe(fltr, node,
8831 &pf->tc_flower_fltr_list,
8832 tc_flower_node) {
8833 struct ice_rule_query_data rule;
8834 int status;
8835
8836 /* for now process only channel specific filters */
8837 if (!ice_is_chnl_fltr(fltr))
8838 continue;
8839
8840 rule.rid = fltr->rid;
8841 rule.rule_id = fltr->rule_id;
8842 rule.vsi_handle = fltr->dest_vsi_handle;
8843 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8844 if (status) {
8845 if (status == -ENOENT)
8846 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8847 rule.rule_id);
8848 else
8849 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8850 status);
8851 } else if (fltr->dest_vsi) {
8852 /* update advanced switch filter count */
8853 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8854 u32 flags = fltr->flags;
8855
8856 fltr->dest_vsi->num_chnl_fltr--;
8857 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8858 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8859 pf->num_dmac_chnl_fltrs--;
8860 }
8861 }
8862
8863 hlist_del(&fltr->tc_flower_node);
8864 kfree(fltr);
8865 }
8866 }
8867
8868 /**
8869 * ice_remove_q_channels - Remove queue channels for the TCs
8870 * @vsi: VSI to be configured
8871 * @rem_fltr: delete advanced switch filter or not
8872 *
8873 * Remove queue channels for the TCs
8874 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8875 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8876 {
8877 struct ice_channel *ch, *ch_tmp;
8878 struct ice_pf *pf = vsi->back;
8879 int i;
8880
8881 /* remove all tc-flower based filter if they are channel filters only */
8882 if (rem_fltr)
8883 ice_rem_all_chnl_fltrs(pf);
8884
8885 /* remove ntuple filters since queue configuration is being changed */
8886 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8887 struct ice_hw *hw = &pf->hw;
8888
8889 mutex_lock(&hw->fdir_fltr_lock);
8890 ice_fdir_del_all_fltrs(vsi);
8891 mutex_unlock(&hw->fdir_fltr_lock);
8892 }
8893
8894 /* perform cleanup for channels if they exist */
8895 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8896 struct ice_vsi *ch_vsi;
8897
8898 list_del(&ch->list);
8899 ch_vsi = ch->ch_vsi;
8900 if (!ch_vsi) {
8901 kfree(ch);
8902 continue;
8903 }
8904
8905 /* Reset queue contexts */
8906 for (i = 0; i < ch->num_rxq; i++) {
8907 struct ice_tx_ring *tx_ring;
8908 struct ice_rx_ring *rx_ring;
8909
8910 tx_ring = vsi->tx_rings[ch->base_q + i];
8911 rx_ring = vsi->rx_rings[ch->base_q + i];
8912 if (tx_ring) {
8913 tx_ring->ch = NULL;
8914 if (tx_ring->q_vector)
8915 tx_ring->q_vector->ch = NULL;
8916 }
8917 if (rx_ring) {
8918 rx_ring->ch = NULL;
8919 if (rx_ring->q_vector)
8920 rx_ring->q_vector->ch = NULL;
8921 }
8922 }
8923
8924 /* Release FD resources for the channel VSI */
8925 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8926
8927 /* clear the VSI from scheduler tree */
8928 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8929
8930 /* Delete VSI from FW, PF and HW VSI arrays */
8931 ice_vsi_delete(ch->ch_vsi);
8932
8933 /* free the channel */
8934 kfree(ch);
8935 }
8936
8937 /* clear the channel VSI map which is stored in main VSI */
8938 ice_for_each_chnl_tc(i)
8939 vsi->tc_map_vsi[i] = NULL;
8940
8941 /* reset main VSI's all TC information */
8942 vsi->all_enatc = 0;
8943 vsi->all_numtc = 0;
8944 }
8945
8946 /**
8947 * ice_rebuild_channels - rebuild channel
8948 * @pf: ptr to PF
8949 *
8950 * Recreate channel VSIs and replay filters
8951 */
ice_rebuild_channels(struct ice_pf * pf)8952 static int ice_rebuild_channels(struct ice_pf *pf)
8953 {
8954 struct device *dev = ice_pf_to_dev(pf);
8955 struct ice_vsi *main_vsi;
8956 bool rem_adv_fltr = true;
8957 struct ice_channel *ch;
8958 struct ice_vsi *vsi;
8959 int tc_idx = 1;
8960 int i, err;
8961
8962 main_vsi = ice_get_main_vsi(pf);
8963 if (!main_vsi)
8964 return 0;
8965
8966 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8967 main_vsi->old_numtc == 1)
8968 return 0; /* nothing to be done */
8969
8970 /* reconfigure main VSI based on old value of TC and cached values
8971 * for MQPRIO opts
8972 */
8973 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8974 if (err) {
8975 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8976 main_vsi->old_ena_tc, main_vsi->vsi_num);
8977 return err;
8978 }
8979
8980 /* rebuild ADQ VSIs */
8981 ice_for_each_vsi(pf, i) {
8982 enum ice_vsi_type type;
8983
8984 vsi = pf->vsi[i];
8985 if (!vsi || vsi->type != ICE_VSI_CHNL)
8986 continue;
8987
8988 type = vsi->type;
8989
8990 /* rebuild ADQ VSI */
8991 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8992 if (err) {
8993 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8994 ice_vsi_type_str(type), vsi->idx, err);
8995 goto cleanup;
8996 }
8997
8998 /* Re-map HW VSI number, using VSI handle that has been
8999 * previously validated in ice_replay_vsi() call above
9000 */
9001 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9002
9003 /* replay filters for the VSI */
9004 err = ice_replay_vsi(&pf->hw, vsi->idx);
9005 if (err) {
9006 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9007 ice_vsi_type_str(type), err, vsi->idx);
9008 rem_adv_fltr = false;
9009 goto cleanup;
9010 }
9011 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9012 ice_vsi_type_str(type), vsi->idx);
9013
9014 /* store ADQ VSI at correct TC index in main VSI's
9015 * map of TC to VSI
9016 */
9017 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9018 }
9019
9020 /* ADQ VSI(s) has been rebuilt successfully, so setup
9021 * channel for main VSI's Tx and Rx rings
9022 */
9023 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9024 struct ice_vsi *ch_vsi;
9025
9026 ch_vsi = ch->ch_vsi;
9027 if (!ch_vsi)
9028 continue;
9029
9030 /* reconfig channel resources */
9031 ice_cfg_chnl_all_res(main_vsi, ch);
9032
9033 /* replay BW rate limit if it is non-zero */
9034 if (!ch->max_tx_rate && !ch->min_tx_rate)
9035 continue;
9036
9037 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9038 ch->min_tx_rate);
9039 if (err)
9040 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9041 err, ch->max_tx_rate, ch->min_tx_rate,
9042 ch_vsi->vsi_num);
9043 else
9044 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9045 ch->max_tx_rate, ch->min_tx_rate,
9046 ch_vsi->vsi_num);
9047 }
9048
9049 /* reconfig RSS for main VSI */
9050 if (main_vsi->ch_rss_size)
9051 ice_vsi_cfg_rss_lut_key(main_vsi);
9052
9053 return 0;
9054
9055 cleanup:
9056 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9057 return err;
9058 }
9059
9060 /**
9061 * ice_create_q_channels - Add queue channel for the given TCs
9062 * @vsi: VSI to be configured
9063 *
9064 * Configures queue channel mapping to the given TCs
9065 */
ice_create_q_channels(struct ice_vsi * vsi)9066 static int ice_create_q_channels(struct ice_vsi *vsi)
9067 {
9068 struct ice_pf *pf = vsi->back;
9069 struct ice_channel *ch;
9070 int ret = 0, i;
9071
9072 ice_for_each_chnl_tc(i) {
9073 if (!(vsi->all_enatc & BIT(i)))
9074 continue;
9075
9076 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9077 if (!ch) {
9078 ret = -ENOMEM;
9079 goto err_free;
9080 }
9081 INIT_LIST_HEAD(&ch->list);
9082 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9083 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9084 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9085 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9086 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9087
9088 /* convert to Kbits/s */
9089 if (ch->max_tx_rate)
9090 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9091 ICE_BW_KBPS_DIVISOR);
9092 if (ch->min_tx_rate)
9093 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9094 ICE_BW_KBPS_DIVISOR);
9095
9096 ret = ice_create_q_channel(vsi, ch);
9097 if (ret) {
9098 dev_err(ice_pf_to_dev(pf),
9099 "failed creating channel TC:%d\n", i);
9100 kfree(ch);
9101 goto err_free;
9102 }
9103 list_add_tail(&ch->list, &vsi->ch_list);
9104 vsi->tc_map_vsi[i] = ch->ch_vsi;
9105 dev_dbg(ice_pf_to_dev(pf),
9106 "successfully created channel: VSI %p\n", ch->ch_vsi);
9107 }
9108 return 0;
9109
9110 err_free:
9111 ice_remove_q_channels(vsi, false);
9112
9113 return ret;
9114 }
9115
9116 /**
9117 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9118 * @netdev: net device to configure
9119 * @type_data: TC offload data
9120 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9121 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9122 {
9123 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9124 struct ice_netdev_priv *np = netdev_priv(netdev);
9125 struct ice_vsi *vsi = np->vsi;
9126 struct ice_pf *pf = vsi->back;
9127 u16 mode, ena_tc_qdisc = 0;
9128 int cur_txq, cur_rxq;
9129 u8 hw = 0, num_tcf;
9130 struct device *dev;
9131 int ret, i;
9132
9133 dev = ice_pf_to_dev(pf);
9134 num_tcf = mqprio_qopt->qopt.num_tc;
9135 hw = mqprio_qopt->qopt.hw;
9136 mode = mqprio_qopt->mode;
9137 if (!hw) {
9138 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9139 vsi->ch_rss_size = 0;
9140 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9141 goto config_tcf;
9142 }
9143
9144 /* Generate queue region map for number of TCF requested */
9145 for (i = 0; i < num_tcf; i++)
9146 ena_tc_qdisc |= BIT(i);
9147
9148 switch (mode) {
9149 case TC_MQPRIO_MODE_CHANNEL:
9150
9151 if (pf->hw.port_info->is_custom_tx_enabled) {
9152 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9153 return -EBUSY;
9154 }
9155 ice_tear_down_devlink_rate_tree(pf);
9156
9157 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9158 if (ret) {
9159 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9160 ret);
9161 return ret;
9162 }
9163 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9164 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9165 /* don't assume state of hw_tc_offload during driver load
9166 * and set the flag for TC flower filter if hw_tc_offload
9167 * already ON
9168 */
9169 if (vsi->netdev->features & NETIF_F_HW_TC)
9170 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9171 break;
9172 default:
9173 return -EINVAL;
9174 }
9175
9176 config_tcf:
9177
9178 /* Requesting same TCF configuration as already enabled */
9179 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9180 mode != TC_MQPRIO_MODE_CHANNEL)
9181 return 0;
9182
9183 /* Pause VSI queues */
9184 ice_dis_vsi(vsi, true);
9185
9186 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9187 ice_remove_q_channels(vsi, true);
9188
9189 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9190 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9191 num_online_cpus());
9192 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9193 num_online_cpus());
9194 } else {
9195 /* logic to rebuild VSI, same like ethtool -L */
9196 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9197
9198 for (i = 0; i < num_tcf; i++) {
9199 if (!(ena_tc_qdisc & BIT(i)))
9200 continue;
9201
9202 offset = vsi->mqprio_qopt.qopt.offset[i];
9203 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9204 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9205 }
9206 vsi->req_txq = offset + qcount_tx;
9207 vsi->req_rxq = offset + qcount_rx;
9208
9209 /* store away original rss_size info, so that it gets reused
9210 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9211 * determine, what should be the rss_sizefor main VSI
9212 */
9213 vsi->orig_rss_size = vsi->rss_size;
9214 }
9215
9216 /* save current values of Tx and Rx queues before calling VSI rebuild
9217 * for fallback option
9218 */
9219 cur_txq = vsi->num_txq;
9220 cur_rxq = vsi->num_rxq;
9221
9222 /* proceed with rebuild main VSI using correct number of queues */
9223 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9224 if (ret) {
9225 /* fallback to current number of queues */
9226 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9227 vsi->req_txq = cur_txq;
9228 vsi->req_rxq = cur_rxq;
9229 clear_bit(ICE_RESET_FAILED, pf->state);
9230 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9231 dev_err(dev, "Rebuild of main VSI failed again\n");
9232 return ret;
9233 }
9234 }
9235
9236 vsi->all_numtc = num_tcf;
9237 vsi->all_enatc = ena_tc_qdisc;
9238 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9239 if (ret) {
9240 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9241 vsi->vsi_num);
9242 goto exit;
9243 }
9244
9245 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9246 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9247 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9248
9249 /* set TC0 rate limit if specified */
9250 if (max_tx_rate || min_tx_rate) {
9251 /* convert to Kbits/s */
9252 if (max_tx_rate)
9253 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9254 if (min_tx_rate)
9255 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9256
9257 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9258 if (!ret) {
9259 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9260 max_tx_rate, min_tx_rate, vsi->vsi_num);
9261 } else {
9262 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9263 max_tx_rate, min_tx_rate, vsi->vsi_num);
9264 goto exit;
9265 }
9266 }
9267 ret = ice_create_q_channels(vsi);
9268 if (ret) {
9269 netdev_err(netdev, "failed configuring queue channels\n");
9270 goto exit;
9271 } else {
9272 netdev_dbg(netdev, "successfully configured channels\n");
9273 }
9274 }
9275
9276 if (vsi->ch_rss_size)
9277 ice_vsi_cfg_rss_lut_key(vsi);
9278
9279 exit:
9280 /* if error, reset the all_numtc and all_enatc */
9281 if (ret) {
9282 vsi->all_numtc = 0;
9283 vsi->all_enatc = 0;
9284 }
9285 /* resume VSI */
9286 ice_ena_vsi(vsi, true);
9287
9288 return ret;
9289 }
9290
9291 /**
9292 * ice_cfg_txtime - configure Tx Time for the Tx ring
9293 * @tx_ring: pointer to the Tx ring structure
9294 *
9295 * Return: 0 on success, negative value on failure.
9296 */
ice_cfg_txtime(struct ice_tx_ring * tx_ring)9297 static int ice_cfg_txtime(struct ice_tx_ring *tx_ring)
9298 {
9299 int err, timeout = 50;
9300 struct ice_vsi *vsi;
9301 struct device *dev;
9302 struct ice_pf *pf;
9303 u32 queue;
9304
9305 if (!tx_ring)
9306 return -EINVAL;
9307
9308 vsi = tx_ring->vsi;
9309 pf = vsi->back;
9310 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
9311 timeout--;
9312 if (!timeout)
9313 return -EBUSY;
9314 usleep_range(1000, 2000);
9315 }
9316
9317 queue = tx_ring->q_index;
9318 dev = ice_pf_to_dev(pf);
9319
9320 /* Ignore return value, and always attempt to enable queue. */
9321 ice_qp_dis(vsi, queue);
9322
9323 err = ice_qp_ena(vsi, queue);
9324 if (err)
9325 dev_err(dev, "Failed to enable Tx queue %d for TxTime configuration\n",
9326 queue);
9327
9328 clear_bit(ICE_CFG_BUSY, pf->state);
9329 return err;
9330 }
9331
9332 /**
9333 * ice_offload_txtime - set earliest TxTime first
9334 * @netdev: network interface device structure
9335 * @qopt_off: etf queue option offload from the skb to set
9336 *
9337 * Return: 0 on success, negative value on failure.
9338 */
ice_offload_txtime(struct net_device * netdev,void * qopt_off)9339 static int ice_offload_txtime(struct net_device *netdev,
9340 void *qopt_off)
9341 {
9342 struct ice_netdev_priv *np = netdev_priv(netdev);
9343 struct ice_pf *pf = np->vsi->back;
9344 struct tc_etf_qopt_offload *qopt;
9345 struct ice_vsi *vsi = np->vsi;
9346 struct ice_tx_ring *tx_ring;
9347 int ret = 0;
9348
9349 if (!ice_is_feature_supported(pf, ICE_F_TXTIME))
9350 return -EOPNOTSUPP;
9351
9352 qopt = qopt_off;
9353 if (!qopt_off || qopt->queue < 0 || qopt->queue >= vsi->num_txq)
9354 return -EINVAL;
9355
9356 if (qopt->enable)
9357 set_bit(qopt->queue, pf->txtime_txqs);
9358 else
9359 clear_bit(qopt->queue, pf->txtime_txqs);
9360
9361 if (netif_running(vsi->netdev)) {
9362 tx_ring = vsi->tx_rings[qopt->queue];
9363 ret = ice_cfg_txtime(tx_ring);
9364 if (ret)
9365 goto err;
9366 }
9367
9368 netdev_info(netdev, "%s TxTime on queue: %i\n",
9369 str_enable_disable(qopt->enable), qopt->queue);
9370 return 0;
9371
9372 err:
9373 netdev_err(netdev, "Failed to %s TxTime on queue: %i\n",
9374 str_enable_disable(qopt->enable), qopt->queue);
9375
9376 if (qopt->enable)
9377 clear_bit(qopt->queue, pf->txtime_txqs);
9378 return ret;
9379 }
9380
9381 static LIST_HEAD(ice_block_cb_list);
9382
9383 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9384 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9385 void *type_data)
9386 {
9387 struct ice_netdev_priv *np = netdev_priv(netdev);
9388 enum flow_block_binder_type binder_type;
9389 struct iidc_rdma_core_dev_info *cdev;
9390 struct ice_pf *pf = np->vsi->back;
9391 flow_setup_cb_t *flower_handler;
9392 bool locked = false;
9393 int err;
9394
9395 switch (type) {
9396 case TC_SETUP_BLOCK:
9397 binder_type =
9398 ((struct flow_block_offload *)type_data)->binder_type;
9399
9400 switch (binder_type) {
9401 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS:
9402 flower_handler = ice_setup_tc_block_cb_ingress;
9403 break;
9404 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS:
9405 flower_handler = ice_setup_tc_block_cb_egress;
9406 break;
9407 default:
9408 return -EOPNOTSUPP;
9409 }
9410
9411 return flow_block_cb_setup_simple(type_data,
9412 &ice_block_cb_list,
9413 flower_handler,
9414 np, np, false);
9415 case TC_SETUP_QDISC_MQPRIO:
9416 if (ice_is_eswitch_mode_switchdev(pf)) {
9417 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9418 return -EOPNOTSUPP;
9419 }
9420
9421 cdev = pf->cdev_info;
9422 if (cdev && cdev->adev) {
9423 mutex_lock(&pf->adev_mutex);
9424 device_lock(&cdev->adev->dev);
9425 locked = true;
9426 if (cdev->adev->dev.driver) {
9427 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9428 err = -EBUSY;
9429 goto adev_unlock;
9430 }
9431 }
9432
9433 /* setup traffic classifier for receive side */
9434 mutex_lock(&pf->tc_mutex);
9435 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9436 mutex_unlock(&pf->tc_mutex);
9437
9438 adev_unlock:
9439 if (locked) {
9440 device_unlock(&cdev->adev->dev);
9441 mutex_unlock(&pf->adev_mutex);
9442 }
9443 return err;
9444 case TC_SETUP_QDISC_ETF:
9445 return ice_offload_txtime(netdev, type_data);
9446 default:
9447 return -EOPNOTSUPP;
9448 }
9449 return -EOPNOTSUPP;
9450 }
9451
9452 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9453 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9454 struct net_device *netdev)
9455 {
9456 struct ice_indr_block_priv *cb_priv;
9457
9458 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9459 if (!cb_priv->netdev)
9460 return NULL;
9461 if (cb_priv->netdev == netdev)
9462 return cb_priv;
9463 }
9464 return NULL;
9465 }
9466
9467 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9468 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9469 void *indr_priv)
9470 {
9471 struct ice_indr_block_priv *priv = indr_priv;
9472 struct ice_netdev_priv *np = priv->np;
9473
9474 switch (type) {
9475 case TC_SETUP_CLSFLOWER:
9476 return ice_setup_tc_cls_flower(np, priv->netdev,
9477 (struct flow_cls_offload *)
9478 type_data, false);
9479 default:
9480 return -EOPNOTSUPP;
9481 }
9482 }
9483
9484 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9485 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9486 struct ice_netdev_priv *np,
9487 struct flow_block_offload *f, void *data,
9488 void (*cleanup)(struct flow_block_cb *block_cb))
9489 {
9490 struct ice_indr_block_priv *indr_priv;
9491 struct flow_block_cb *block_cb;
9492
9493 if (!ice_is_tunnel_supported(netdev) &&
9494 !(is_vlan_dev(netdev) &&
9495 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9496 return -EOPNOTSUPP;
9497
9498 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9499 return -EOPNOTSUPP;
9500
9501 switch (f->command) {
9502 case FLOW_BLOCK_BIND:
9503 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9504 if (indr_priv)
9505 return -EEXIST;
9506
9507 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9508 if (!indr_priv)
9509 return -ENOMEM;
9510
9511 indr_priv->netdev = netdev;
9512 indr_priv->np = np;
9513 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9514
9515 block_cb =
9516 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9517 indr_priv, indr_priv,
9518 ice_rep_indr_tc_block_unbind,
9519 f, netdev, sch, data, np,
9520 cleanup);
9521
9522 if (IS_ERR(block_cb)) {
9523 list_del(&indr_priv->list);
9524 kfree(indr_priv);
9525 return PTR_ERR(block_cb);
9526 }
9527 flow_block_cb_add(block_cb, f);
9528 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9529 break;
9530 case FLOW_BLOCK_UNBIND:
9531 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9532 if (!indr_priv)
9533 return -ENOENT;
9534
9535 block_cb = flow_block_cb_lookup(f->block,
9536 ice_indr_setup_block_cb,
9537 indr_priv);
9538 if (!block_cb)
9539 return -ENOENT;
9540
9541 flow_indr_block_cb_remove(block_cb, f);
9542
9543 list_del(&block_cb->driver_list);
9544 break;
9545 default:
9546 return -EOPNOTSUPP;
9547 }
9548 return 0;
9549 }
9550
9551 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9552 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9553 void *cb_priv, enum tc_setup_type type, void *type_data,
9554 void *data,
9555 void (*cleanup)(struct flow_block_cb *block_cb))
9556 {
9557 switch (type) {
9558 case TC_SETUP_BLOCK:
9559 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9560 data, cleanup);
9561
9562 default:
9563 return -EOPNOTSUPP;
9564 }
9565 }
9566
9567 /**
9568 * ice_open - Called when a network interface becomes active
9569 * @netdev: network interface device structure
9570 *
9571 * The open entry point is called when a network interface is made
9572 * active by the system (IFF_UP). At this point all resources needed
9573 * for transmit and receive operations are allocated, the interrupt
9574 * handler is registered with the OS, the netdev watchdog is enabled,
9575 * and the stack is notified that the interface is ready.
9576 *
9577 * Returns 0 on success, negative value on failure
9578 */
ice_open(struct net_device * netdev)9579 int ice_open(struct net_device *netdev)
9580 {
9581 struct ice_netdev_priv *np = netdev_priv(netdev);
9582 struct ice_pf *pf = np->vsi->back;
9583
9584 if (ice_is_reset_in_progress(pf->state)) {
9585 netdev_err(netdev, "can't open net device while reset is in progress");
9586 return -EBUSY;
9587 }
9588
9589 return ice_open_internal(netdev);
9590 }
9591
9592 /**
9593 * ice_open_internal - Called when a network interface becomes active
9594 * @netdev: network interface device structure
9595 *
9596 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9597 * handling routine
9598 *
9599 * Returns 0 on success, negative value on failure
9600 */
ice_open_internal(struct net_device * netdev)9601 int ice_open_internal(struct net_device *netdev)
9602 {
9603 struct ice_netdev_priv *np = netdev_priv(netdev);
9604 struct ice_vsi *vsi = np->vsi;
9605 struct ice_pf *pf = vsi->back;
9606 struct ice_port_info *pi;
9607 int err;
9608
9609 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9610 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9611 return -EIO;
9612 }
9613
9614 netif_carrier_off(netdev);
9615
9616 pi = vsi->port_info;
9617 err = ice_update_link_info(pi);
9618 if (err) {
9619 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9620 return err;
9621 }
9622
9623 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9624
9625 /* Set PHY if there is media, otherwise, turn off PHY */
9626 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9627 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9628 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9629 err = ice_init_phy_user_cfg(pi);
9630 if (err) {
9631 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9632 err);
9633 return err;
9634 }
9635 }
9636
9637 err = ice_configure_phy(vsi);
9638 if (err) {
9639 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9640 err);
9641 return err;
9642 }
9643 } else {
9644 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9645 ice_set_link(vsi, false);
9646 }
9647
9648 err = ice_vsi_open(vsi);
9649 if (err)
9650 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9651 vsi->vsi_num, vsi->vsw->sw_id);
9652
9653 /* Update existing tunnels information */
9654 udp_tunnel_get_rx_info(netdev);
9655
9656 return err;
9657 }
9658
9659 /**
9660 * ice_stop - Disables a network interface
9661 * @netdev: network interface device structure
9662 *
9663 * The stop entry point is called when an interface is de-activated by the OS,
9664 * and the netdevice enters the DOWN state. The hardware is still under the
9665 * driver's control, but the netdev interface is disabled.
9666 *
9667 * Returns success only - not allowed to fail
9668 */
ice_stop(struct net_device * netdev)9669 int ice_stop(struct net_device *netdev)
9670 {
9671 struct ice_netdev_priv *np = netdev_priv(netdev);
9672 struct ice_vsi *vsi = np->vsi;
9673 struct ice_pf *pf = vsi->back;
9674
9675 if (ice_is_reset_in_progress(pf->state)) {
9676 netdev_err(netdev, "can't stop net device while reset is in progress");
9677 return -EBUSY;
9678 }
9679
9680 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9681 int link_err = ice_force_phys_link_state(vsi, false);
9682
9683 if (link_err) {
9684 if (link_err == -ENOMEDIUM)
9685 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9686 vsi->vsi_num);
9687 else
9688 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9689 vsi->vsi_num, link_err);
9690
9691 ice_vsi_close(vsi);
9692 return -EIO;
9693 }
9694 }
9695
9696 ice_vsi_close(vsi);
9697
9698 return 0;
9699 }
9700
9701 /**
9702 * ice_features_check - Validate encapsulated packet conforms to limits
9703 * @skb: skb buffer
9704 * @netdev: This port's netdev
9705 * @features: Offload features that the stack believes apply
9706 */
9707 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9708 ice_features_check(struct sk_buff *skb,
9709 struct net_device __always_unused *netdev,
9710 netdev_features_t features)
9711 {
9712 bool gso = skb_is_gso(skb);
9713 size_t len;
9714
9715 /* No point in doing any of this if neither checksum nor GSO are
9716 * being requested for this frame. We can rule out both by just
9717 * checking for CHECKSUM_PARTIAL
9718 */
9719 if (skb->ip_summed != CHECKSUM_PARTIAL)
9720 return features;
9721
9722 /* We cannot support GSO if the MSS is going to be less than
9723 * 64 bytes. If it is then we need to drop support for GSO.
9724 */
9725 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9726 features &= ~NETIF_F_GSO_MASK;
9727
9728 len = skb_network_offset(skb);
9729 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9730 goto out_rm_features;
9731
9732 len = skb_network_header_len(skb);
9733 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9734 goto out_rm_features;
9735
9736 if (skb->encapsulation) {
9737 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9738 * the case of IPIP frames, the transport header pointer is
9739 * after the inner header! So check to make sure that this
9740 * is a GRE or UDP_TUNNEL frame before doing that math.
9741 */
9742 if (gso && (skb_shinfo(skb)->gso_type &
9743 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9744 len = skb_inner_network_header(skb) -
9745 skb_transport_header(skb);
9746 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9747 goto out_rm_features;
9748 }
9749
9750 len = skb_inner_network_header_len(skb);
9751 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9752 goto out_rm_features;
9753 }
9754
9755 return features;
9756 out_rm_features:
9757 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9758 }
9759
9760 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9761 .ndo_open = ice_open,
9762 .ndo_stop = ice_stop,
9763 .ndo_start_xmit = ice_start_xmit,
9764 .ndo_set_mac_address = ice_set_mac_address,
9765 .ndo_validate_addr = eth_validate_addr,
9766 .ndo_change_mtu = ice_change_mtu,
9767 .ndo_get_stats64 = ice_get_stats64,
9768 .ndo_tx_timeout = ice_tx_timeout,
9769 .ndo_bpf = ice_xdp_safe_mode,
9770 };
9771
9772 static const struct net_device_ops ice_netdev_ops = {
9773 .ndo_open = ice_open,
9774 .ndo_stop = ice_stop,
9775 .ndo_start_xmit = ice_start_xmit,
9776 .ndo_select_queue = ice_select_queue,
9777 .ndo_features_check = ice_features_check,
9778 .ndo_fix_features = ice_fix_features,
9779 .ndo_set_rx_mode = ice_set_rx_mode,
9780 .ndo_set_mac_address = ice_set_mac_address,
9781 .ndo_validate_addr = eth_validate_addr,
9782 .ndo_change_mtu = ice_change_mtu,
9783 .ndo_get_stats64 = ice_get_stats64,
9784 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9785 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9786 .ndo_set_vf_mac = ice_set_vf_mac,
9787 .ndo_get_vf_config = ice_get_vf_cfg,
9788 .ndo_set_vf_trust = ice_set_vf_trust,
9789 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9790 .ndo_set_vf_link_state = ice_set_vf_link_state,
9791 .ndo_get_vf_stats = ice_get_vf_stats,
9792 .ndo_set_vf_rate = ice_set_vf_bw,
9793 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9794 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9795 .ndo_setup_tc = ice_setup_tc,
9796 .ndo_set_features = ice_set_features,
9797 .ndo_bridge_getlink = ice_bridge_getlink,
9798 .ndo_bridge_setlink = ice_bridge_setlink,
9799 .ndo_fdb_add = ice_fdb_add,
9800 .ndo_fdb_del = ice_fdb_del,
9801 #ifdef CONFIG_RFS_ACCEL
9802 .ndo_rx_flow_steer = ice_rx_flow_steer,
9803 #endif
9804 .ndo_tx_timeout = ice_tx_timeout,
9805 .ndo_bpf = ice_xdp,
9806 .ndo_xdp_xmit = ice_xdp_xmit,
9807 .ndo_xsk_wakeup = ice_xsk_wakeup,
9808 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get,
9809 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set,
9810 };
9811