1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/net/intel/libie/rx.h>
5
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25 static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28 /* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43 };
44
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS("LIBETH");
50 MODULE_IMPORT_NS("LIBIE");
51 MODULE_LICENSE("GPL v2");
52
53 static const struct net_device_ops iavf_netdev_ops;
54
iavf_status_to_errno(enum iavf_status status)55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139 }
140
virtchnl_status_to_errno(enum virtchnl_status_code v_status)141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160 }
161
162 /**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
iavf_pdev_to_adapter(struct pci_dev * pdev)166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 return netdev_priv(pci_get_drvdata(pdev));
169 }
170
171 /**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183 }
184
185 /**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
iavf_wait_for_reset(struct iavf_adapter * adapter)191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208 }
209
210 /**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220 {
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233 }
234
235 /**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249 }
250
251 /**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259 {
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270 }
271
272 /**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 kfree(mem->va);
280 }
281
282 /**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295 }
296
297 /**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307
308 /**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320
321 /**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337 }
338
339 /**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352 }
353
354 /**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
iavf_irq_disable(struct iavf_adapter * adapter)358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371 }
372
373 /**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387 }
388
389 /**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403 }
404
405 /**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
iavf_msix_aq(int irq,void * data)410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425 }
426
427 /**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
iavf_msix_clean_rings(int irq,void * data)432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442 }
443
444 /**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469
470 /**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495
496 /**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527
528 /**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538 {
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544
545 /**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
iavf_irq_affinity_release(struct kref * ref)553 static void iavf_irq_affinity_release(struct kref *ref) {}
554
555 /**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619 free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628 }
629
630 /**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656 }
657
658 /**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679 }
680
681 /**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696
697 /**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
iavf_configure_tx(struct iavf_adapter * adapter)703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711
712 /**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
iavf_configure_rx(struct iavf_adapter * adapter)718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725
726 /**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737 {
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747 }
748
749 /**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759 {
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783 clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786 }
787
788 /**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794 {
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816 }
817
818 /**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
iavf_restore_filters(struct iavf_adapter * adapter)824 static void iavf_restore_filters(struct iavf_adapter *adapter)
825 {
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838 }
839
840 /**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845 {
846 return adapter->num_vlan_filters;
847 }
848
849 /**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858 {
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868 }
869
870 /**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875 {
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881 }
882
883 /**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)889 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891 {
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911 }
912
913 /**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921 {
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930 }
931
932 /**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943 {
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954 }
955
956 /**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965 {
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990 }
991
992 /**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005 {
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036 }
1037
1038 /**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1045 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047 {
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062 }
1063
1064 /**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
iavf_set_mac(struct net_device * netdev,void * p)1071 static int iavf_set_mac(struct net_device *netdev, void *p)
1072 {
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105 }
1106
1107 /**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116 {
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134 {
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152 }
1153
1154 /**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159 {
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162 }
1163
1164 /**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
iavf_set_rx_mode(struct net_device * netdev)1168 static void iavf_set_rx_mode(struct net_device *netdev)
1169 {
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181 }
1182
1183 /**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188 {
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable_locked(napi);
1199 }
1200 }
1201
1202 /**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207 {
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable_locked(&q_vector->napi);
1215 }
1216 }
1217
1218 /**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
iavf_configure(struct iavf_adapter * adapter)1222 static void iavf_configure(struct iavf_adapter *adapter)
1223 {
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238 }
1239
1240 /**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
iavf_up_complete(struct iavf_adapter * adapter)1246 static void iavf_up_complete(struct iavf_adapter *adapter)
1247 {
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254 }
1255
1256 /**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262 {
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288 }
1289
1290 /**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296 {
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312 }
1313
1314 /**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320 {
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338 }
1339
1340 /**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346 {
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361 }
1362
1363 /**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
iavf_down(struct iavf_adapter * adapter)1369 void iavf_down(struct iavf_adapter *adapter)
1370 {
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410 }
1411
1412 /**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423 {
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453 }
1454
1455 /**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
iavf_free_queues(struct iavf_adapter * adapter)1461 static void iavf_free_queues(struct iavf_adapter *adapter)
1462 {
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470 }
1471
1472 /**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482 {
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550 }
1551
1552 /**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1560 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561 {
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616 err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619 }
1620
1621 /**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629 {
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662 out:
1663 return err;
1664 }
1665
1666 /**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673 {
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706 }
1707
1708 /**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715 {
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
iavf_config_rss(struct iavf_adapter * adapter)1739 int iavf_config_rss(struct iavf_adapter *adapter)
1740 {
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751 }
1752
1753 /**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758 {
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763 }
1764
1765 /**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
iavf_init_rss(struct iavf_adapter * adapter)1771 static int iavf_init_rss(struct iavf_adapter *adapter)
1772 {
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791 }
1792
1793 /**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801 {
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add_locked(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823 }
1824
1825 /**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834 {
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del_locked(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849 }
1850
1851 /**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857 {
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864 }
1865
1866 /**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872 {
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911 err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913 err_set_interrupt:
1914 iavf_free_queues(adapter);
1915 err_alloc_queues:
1916 return err;
1917 }
1918
1919 /**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
iavf_free_interrupt_scheme(struct iavf_adapter * adapter)1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924 {
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928 }
1929
1930 /**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
iavf_free_rss(struct iavf_adapter * adapter)1934 static void iavf_free_rss(struct iavf_adapter *adapter)
1935 {
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941 }
1942
1943 /**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951 {
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973 err:
1974 return err;
1975 }
1976
1977 /**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
iavf_finish_config(struct work_struct * work)1983 static void iavf_finish_config(struct work_struct *work)
1984 {
1985 struct iavf_adapter *adapter;
1986 bool locks_released = false;
1987 int pairs, err;
1988
1989 adapter = container_of(work, struct iavf_adapter, finish_config);
1990
1991 /* Always take RTNL first to prevent circular lock dependency;
1992 * The dev->lock is needed to update the queue number
1993 */
1994 rtnl_lock();
1995 netdev_lock(adapter->netdev);
1996 mutex_lock(&adapter->crit_lock);
1997
1998 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1999 adapter->netdev->reg_state == NETREG_REGISTERED &&
2000 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2001 netdev_update_features(adapter->netdev);
2002 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2003 }
2004
2005 switch (adapter->state) {
2006 case __IAVF_DOWN:
2007 /* Set the real number of queues when reset occurs while
2008 * state == __IAVF_DOWN
2009 */
2010 pairs = adapter->num_active_queues;
2011 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2012 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2013
2014 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2015 mutex_unlock(&adapter->crit_lock);
2016 netdev_unlock(adapter->netdev);
2017 locks_released = true;
2018 err = register_netdevice(adapter->netdev);
2019 if (err) {
2020 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2021 err);
2022
2023 /* go back and try again.*/
2024 mutex_lock(&adapter->crit_lock);
2025 iavf_free_rss(adapter);
2026 iavf_free_misc_irq(adapter);
2027 iavf_reset_interrupt_capability(adapter);
2028 iavf_change_state(adapter,
2029 __IAVF_INIT_CONFIG_ADAPTER);
2030 mutex_unlock(&adapter->crit_lock);
2031 goto out;
2032 }
2033 }
2034 break;
2035 case __IAVF_RUNNING:
2036 pairs = adapter->num_active_queues;
2037 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2038 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2039 break;
2040
2041 default:
2042 break;
2043 }
2044
2045 out:
2046 if (!locks_released) {
2047 mutex_unlock(&adapter->crit_lock);
2048 netdev_unlock(adapter->netdev);
2049 }
2050 rtnl_unlock();
2051 }
2052
2053 /**
2054 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2055 * @adapter: board private structure
2056 **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2057 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2058 {
2059 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2060 queue_work(adapter->wq, &adapter->finish_config);
2061 }
2062
2063 /**
2064 * iavf_process_aq_command - process aq_required flags
2065 * and sends aq command
2066 * @adapter: pointer to iavf adapter structure
2067 *
2068 * Returns 0 on success
2069 * Returns error code if no command was sent
2070 * or error code if the command failed.
2071 **/
iavf_process_aq_command(struct iavf_adapter * adapter)2072 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2073 {
2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2075 return iavf_send_vf_config_msg(adapter);
2076 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2077 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2078 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2079 iavf_disable_queues(adapter);
2080 return 0;
2081 }
2082
2083 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2084 iavf_map_queues(adapter);
2085 return 0;
2086 }
2087
2088 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2089 iavf_add_ether_addrs(adapter);
2090 return 0;
2091 }
2092
2093 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2094 iavf_add_vlans(adapter);
2095 return 0;
2096 }
2097
2098 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2099 iavf_del_ether_addrs(adapter);
2100 return 0;
2101 }
2102
2103 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2104 iavf_del_vlans(adapter);
2105 return 0;
2106 }
2107
2108 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2109 iavf_enable_vlan_stripping(adapter);
2110 return 0;
2111 }
2112
2113 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2114 iavf_disable_vlan_stripping(adapter);
2115 return 0;
2116 }
2117
2118 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2119 iavf_cfg_queues_bw(adapter);
2120 return 0;
2121 }
2122
2123 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2124 iavf_get_qos_caps(adapter);
2125 return 0;
2126 }
2127
2128 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2129 iavf_cfg_queues_quanta_size(adapter);
2130 return 0;
2131 }
2132
2133 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2134 iavf_configure_queues(adapter);
2135 return 0;
2136 }
2137
2138 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2139 iavf_enable_queues(adapter);
2140 return 0;
2141 }
2142
2143 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2144 /* This message goes straight to the firmware, not the
2145 * PF, so we don't have to set current_op as we will
2146 * not get a response through the ARQ.
2147 */
2148 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2149 return 0;
2150 }
2151 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2152 iavf_get_hena(adapter);
2153 return 0;
2154 }
2155 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2156 iavf_set_hena(adapter);
2157 return 0;
2158 }
2159 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2160 iavf_set_rss_key(adapter);
2161 return 0;
2162 }
2163 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2164 iavf_set_rss_lut(adapter);
2165 return 0;
2166 }
2167 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2168 iavf_set_rss_hfunc(adapter);
2169 return 0;
2170 }
2171
2172 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2173 iavf_set_promiscuous(adapter);
2174 return 0;
2175 }
2176
2177 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2178 iavf_enable_channels(adapter);
2179 return 0;
2180 }
2181
2182 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2183 iavf_disable_channels(adapter);
2184 return 0;
2185 }
2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2187 iavf_add_cloud_filter(adapter);
2188 return 0;
2189 }
2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2191 iavf_del_cloud_filter(adapter);
2192 return 0;
2193 }
2194 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2195 iavf_add_fdir_filter(adapter);
2196 return IAVF_SUCCESS;
2197 }
2198 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2199 iavf_del_fdir_filter(adapter);
2200 return IAVF_SUCCESS;
2201 }
2202 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2203 iavf_add_adv_rss_cfg(adapter);
2204 return 0;
2205 }
2206 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2207 iavf_del_adv_rss_cfg(adapter);
2208 return 0;
2209 }
2210 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2211 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2212 return 0;
2213 }
2214 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2215 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2216 return 0;
2217 }
2218 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2219 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2220 return 0;
2221 }
2222 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2223 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2224 return 0;
2225 }
2226 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2227 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2228 return 0;
2229 }
2230 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2231 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2232 return 0;
2233 }
2234 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2235 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2236 return 0;
2237 }
2238 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2239 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2240 return 0;
2241 }
2242
2243 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2244 iavf_request_stats(adapter);
2245 return 0;
2246 }
2247
2248 return -EAGAIN;
2249 }
2250
2251 /**
2252 * iavf_set_vlan_offload_features - set VLAN offload configuration
2253 * @adapter: board private structure
2254 * @prev_features: previous features used for comparison
2255 * @features: updated features used for configuration
2256 *
2257 * Set the aq_required bit(s) based on the requested features passed in to
2258 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2259 * the watchdog if any changes are requested to expedite the request via
2260 * virtchnl.
2261 **/
2262 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2263 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2264 netdev_features_t prev_features,
2265 netdev_features_t features)
2266 {
2267 bool enable_stripping = true, enable_insertion = true;
2268 u16 vlan_ethertype = 0;
2269 u64 aq_required = 0;
2270
2271 /* keep cases separate because one ethertype for offloads can be
2272 * disabled at the same time as another is disabled, so check for an
2273 * enabled ethertype first, then check for disabled. Default to
2274 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2275 * stripping.
2276 */
2277 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2278 vlan_ethertype = ETH_P_8021AD;
2279 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2280 vlan_ethertype = ETH_P_8021Q;
2281 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2282 vlan_ethertype = ETH_P_8021AD;
2283 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2284 vlan_ethertype = ETH_P_8021Q;
2285 else
2286 vlan_ethertype = ETH_P_8021Q;
2287
2288 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2289 enable_stripping = false;
2290 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2291 enable_insertion = false;
2292
2293 if (VLAN_ALLOWED(adapter)) {
2294 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2295 * stripping via virtchnl. VLAN insertion can be toggled on the
2296 * netdev, but it doesn't require a virtchnl message
2297 */
2298 if (enable_stripping)
2299 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2300 else
2301 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2302
2303 } else if (VLAN_V2_ALLOWED(adapter)) {
2304 switch (vlan_ethertype) {
2305 case ETH_P_8021Q:
2306 if (enable_stripping)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2310
2311 if (enable_insertion)
2312 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2313 else
2314 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2315 break;
2316 case ETH_P_8021AD:
2317 if (enable_stripping)
2318 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2319 else
2320 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2321
2322 if (enable_insertion)
2323 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2324 else
2325 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2326 break;
2327 }
2328 }
2329
2330 if (aq_required)
2331 iavf_schedule_aq_request(adapter, aq_required);
2332 }
2333
2334 /**
2335 * iavf_startup - first step of driver startup
2336 * @adapter: board private structure
2337 *
2338 * Function process __IAVF_STARTUP driver state.
2339 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2340 * when fails the state is changed to __IAVF_INIT_FAILED
2341 **/
iavf_startup(struct iavf_adapter * adapter)2342 static void iavf_startup(struct iavf_adapter *adapter)
2343 {
2344 struct pci_dev *pdev = adapter->pdev;
2345 struct iavf_hw *hw = &adapter->hw;
2346 enum iavf_status status;
2347 int ret;
2348
2349 WARN_ON(adapter->state != __IAVF_STARTUP);
2350
2351 /* driver loaded, probe complete */
2352 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2353 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2354
2355 ret = iavf_check_reset_complete(hw);
2356 if (ret) {
2357 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2358 ret);
2359 goto err;
2360 }
2361 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2362 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2363 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2364 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2365
2366 status = iavf_init_adminq(hw);
2367 if (status) {
2368 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2369 status);
2370 goto err;
2371 }
2372 ret = iavf_send_api_ver(adapter);
2373 if (ret) {
2374 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2375 iavf_shutdown_adminq(hw);
2376 goto err;
2377 }
2378 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2379 return;
2380 err:
2381 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2382 }
2383
2384 /**
2385 * iavf_init_version_check - second step of driver startup
2386 * @adapter: board private structure
2387 *
2388 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2389 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2390 * when fails the state is changed to __IAVF_INIT_FAILED
2391 **/
iavf_init_version_check(struct iavf_adapter * adapter)2392 static void iavf_init_version_check(struct iavf_adapter *adapter)
2393 {
2394 struct pci_dev *pdev = adapter->pdev;
2395 struct iavf_hw *hw = &adapter->hw;
2396 int err = -EAGAIN;
2397
2398 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2399
2400 if (!iavf_asq_done(hw)) {
2401 dev_err(&pdev->dev, "Admin queue command never completed\n");
2402 iavf_shutdown_adminq(hw);
2403 iavf_change_state(adapter, __IAVF_STARTUP);
2404 goto err;
2405 }
2406
2407 /* aq msg sent, awaiting reply */
2408 err = iavf_verify_api_ver(adapter);
2409 if (err) {
2410 if (err == -EALREADY)
2411 err = iavf_send_api_ver(adapter);
2412 else
2413 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2414 adapter->pf_version.major,
2415 adapter->pf_version.minor,
2416 VIRTCHNL_VERSION_MAJOR,
2417 VIRTCHNL_VERSION_MINOR);
2418 goto err;
2419 }
2420 err = iavf_send_vf_config_msg(adapter);
2421 if (err) {
2422 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2423 err);
2424 goto err;
2425 }
2426 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2427 return;
2428 err:
2429 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2430 }
2431
2432 /**
2433 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2434 * @adapter: board private structure
2435 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2436 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2437 {
2438 int i, num_req_queues = adapter->num_req_queues;
2439 struct iavf_vsi *vsi = &adapter->vsi;
2440
2441 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2442 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2443 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2444 }
2445 if (!adapter->vsi_res) {
2446 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2447 return -ENODEV;
2448 }
2449
2450 if (num_req_queues &&
2451 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2452 /* Problem. The PF gave us fewer queues than what we had
2453 * negotiated in our request. Need a reset to see if we can't
2454 * get back to a working state.
2455 */
2456 dev_err(&adapter->pdev->dev,
2457 "Requested %d queues, but PF only gave us %d.\n",
2458 num_req_queues,
2459 adapter->vsi_res->num_queue_pairs);
2460 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2461 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2462 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2463
2464 return -EAGAIN;
2465 }
2466 adapter->num_req_queues = 0;
2467 adapter->vsi.id = adapter->vsi_res->vsi_id;
2468
2469 adapter->vsi.back = adapter;
2470 adapter->vsi.base_vector = 1;
2471 vsi->netdev = adapter->netdev;
2472 vsi->qs_handle = adapter->vsi_res->qset_handle;
2473 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2474 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2475 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2476 } else {
2477 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2478 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2479 }
2480
2481 return 0;
2482 }
2483
2484 /**
2485 * iavf_init_get_resources - third step of driver startup
2486 * @adapter: board private structure
2487 *
2488 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2489 * finishes driver initialization procedure.
2490 * When success the state is changed to __IAVF_DOWN
2491 * when fails the state is changed to __IAVF_INIT_FAILED
2492 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2493 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2494 {
2495 struct pci_dev *pdev = adapter->pdev;
2496 struct iavf_hw *hw = &adapter->hw;
2497 int err;
2498
2499 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2500 /* aq msg sent, awaiting reply */
2501 if (!adapter->vf_res) {
2502 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2503 GFP_KERNEL);
2504 if (!adapter->vf_res) {
2505 err = -ENOMEM;
2506 goto err;
2507 }
2508 }
2509 err = iavf_get_vf_config(adapter);
2510 if (err == -EALREADY) {
2511 err = iavf_send_vf_config_msg(adapter);
2512 goto err;
2513 } else if (err == -EINVAL) {
2514 /* We only get -EINVAL if the device is in a very bad
2515 * state or if we've been disabled for previous bad
2516 * behavior. Either way, we're done now.
2517 */
2518 iavf_shutdown_adminq(hw);
2519 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2520 return;
2521 }
2522 if (err) {
2523 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2524 goto err_alloc;
2525 }
2526
2527 err = iavf_parse_vf_resource_msg(adapter);
2528 if (err) {
2529 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2530 err);
2531 goto err_alloc;
2532 }
2533 /* Some features require additional messages to negotiate extended
2534 * capabilities. These are processed in sequence by the
2535 * __IAVF_INIT_EXTENDED_CAPS driver state.
2536 */
2537 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2538
2539 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2540 return;
2541
2542 err_alloc:
2543 kfree(adapter->vf_res);
2544 adapter->vf_res = NULL;
2545 err:
2546 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2547 }
2548
2549 /**
2550 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2551 * @adapter: board private structure
2552 *
2553 * Function processes send of the extended VLAN V2 capability message to the
2554 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2555 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2556 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2557 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2558 {
2559 int ret;
2560
2561 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2562
2563 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2564 if (ret && ret == -EOPNOTSUPP) {
2565 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2566 * we did not send the capability exchange message and do not
2567 * expect a response.
2568 */
2569 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2570 }
2571
2572 /* We sent the message, so move on to the next step */
2573 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2574 }
2575
2576 /**
2577 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2578 * @adapter: board private structure
2579 *
2580 * Function processes receipt of the extended VLAN V2 capability message from
2581 * the PF.
2582 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2583 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2584 {
2585 int ret;
2586
2587 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2588
2589 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2590
2591 ret = iavf_get_vf_vlan_v2_caps(adapter);
2592 if (ret)
2593 goto err;
2594
2595 /* We've processed receipt of the VLAN V2 caps message */
2596 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2597 return;
2598 err:
2599 /* We didn't receive a reply. Make sure we try sending again when
2600 * __IAVF_INIT_FAILED attempts to recover.
2601 */
2602 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2603 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2604 }
2605
2606 /**
2607 * iavf_init_process_extended_caps - Part of driver startup
2608 * @adapter: board private structure
2609 *
2610 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2611 * handles negotiating capabilities for features which require an additional
2612 * message.
2613 *
2614 * Once all extended capabilities exchanges are finished, the driver will
2615 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2616 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2617 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2618 {
2619 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2620
2621 /* Process capability exchange for VLAN V2 */
2622 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2623 iavf_init_send_offload_vlan_v2_caps(adapter);
2624 return;
2625 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2626 iavf_init_recv_offload_vlan_v2_caps(adapter);
2627 return;
2628 }
2629
2630 /* When we reach here, no further extended capabilities exchanges are
2631 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2632 */
2633 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2634 }
2635
2636 /**
2637 * iavf_init_config_adapter - last part of driver startup
2638 * @adapter: board private structure
2639 *
2640 * After all the supported capabilities are negotiated, then the
2641 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2642 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2643 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2644 {
2645 struct net_device *netdev = adapter->netdev;
2646 struct pci_dev *pdev = adapter->pdev;
2647 int err;
2648
2649 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2650
2651 if (iavf_process_config(adapter))
2652 goto err;
2653
2654 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2655
2656 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2657
2658 netdev->netdev_ops = &iavf_netdev_ops;
2659 iavf_set_ethtool_ops(netdev);
2660 netdev->watchdog_timeo = 5 * HZ;
2661
2662 netdev->min_mtu = ETH_MIN_MTU;
2663 netdev->max_mtu = LIBIE_MAX_MTU;
2664
2665 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2666 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2667 adapter->hw.mac.addr);
2668 eth_hw_addr_random(netdev);
2669 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2670 } else {
2671 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2672 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2673 }
2674
2675 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2676 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2677 err = iavf_init_interrupt_scheme(adapter);
2678 if (err)
2679 goto err_sw_init;
2680 iavf_map_rings_to_vectors(adapter);
2681 if (adapter->vf_res->vf_cap_flags &
2682 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2683 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2684
2685 err = iavf_request_misc_irq(adapter);
2686 if (err)
2687 goto err_sw_init;
2688
2689 netif_carrier_off(netdev);
2690 adapter->link_up = false;
2691 netif_tx_stop_all_queues(netdev);
2692
2693 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2694 if (netdev->features & NETIF_F_GRO)
2695 dev_info(&pdev->dev, "GRO is enabled\n");
2696
2697 iavf_change_state(adapter, __IAVF_DOWN);
2698 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2699
2700 iavf_misc_irq_enable(adapter);
2701 wake_up(&adapter->down_waitqueue);
2702
2703 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2704 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2705 if (!adapter->rss_key || !adapter->rss_lut) {
2706 err = -ENOMEM;
2707 goto err_mem;
2708 }
2709 if (RSS_AQ(adapter))
2710 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2711 else
2712 iavf_init_rss(adapter);
2713
2714 if (VLAN_V2_ALLOWED(adapter))
2715 /* request initial VLAN offload settings */
2716 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2717
2718 if (QOS_ALLOWED(adapter))
2719 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2720
2721 iavf_schedule_finish_config(adapter);
2722 return;
2723
2724 err_mem:
2725 iavf_free_rss(adapter);
2726 iavf_free_misc_irq(adapter);
2727 err_sw_init:
2728 iavf_reset_interrupt_capability(adapter);
2729 err:
2730 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2731 }
2732
2733 /**
2734 * iavf_watchdog_task - Periodic call-back task
2735 * @work: pointer to work_struct
2736 **/
iavf_watchdog_task(struct work_struct * work)2737 static void iavf_watchdog_task(struct work_struct *work)
2738 {
2739 struct iavf_adapter *adapter = container_of(work,
2740 struct iavf_adapter,
2741 watchdog_task.work);
2742 struct net_device *netdev = adapter->netdev;
2743 struct iavf_hw *hw = &adapter->hw;
2744 u32 reg_val;
2745
2746 netdev_lock(netdev);
2747 if (!mutex_trylock(&adapter->crit_lock)) {
2748 if (adapter->state == __IAVF_REMOVE) {
2749 netdev_unlock(netdev);
2750 return;
2751 }
2752
2753 goto restart_watchdog;
2754 }
2755
2756 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2757 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2758
2759 switch (adapter->state) {
2760 case __IAVF_STARTUP:
2761 iavf_startup(adapter);
2762 mutex_unlock(&adapter->crit_lock);
2763 netdev_unlock(netdev);
2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2765 msecs_to_jiffies(30));
2766 return;
2767 case __IAVF_INIT_VERSION_CHECK:
2768 iavf_init_version_check(adapter);
2769 mutex_unlock(&adapter->crit_lock);
2770 netdev_unlock(netdev);
2771 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2772 msecs_to_jiffies(30));
2773 return;
2774 case __IAVF_INIT_GET_RESOURCES:
2775 iavf_init_get_resources(adapter);
2776 mutex_unlock(&adapter->crit_lock);
2777 netdev_unlock(netdev);
2778 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2779 msecs_to_jiffies(1));
2780 return;
2781 case __IAVF_INIT_EXTENDED_CAPS:
2782 iavf_init_process_extended_caps(adapter);
2783 mutex_unlock(&adapter->crit_lock);
2784 netdev_unlock(netdev);
2785 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2786 msecs_to_jiffies(1));
2787 return;
2788 case __IAVF_INIT_CONFIG_ADAPTER:
2789 iavf_init_config_adapter(adapter);
2790 mutex_unlock(&adapter->crit_lock);
2791 netdev_unlock(netdev);
2792 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2793 msecs_to_jiffies(1));
2794 return;
2795 case __IAVF_INIT_FAILED:
2796 if (test_bit(__IAVF_IN_REMOVE_TASK,
2797 &adapter->crit_section)) {
2798 /* Do not update the state and do not reschedule
2799 * watchdog task, iavf_remove should handle this state
2800 * as it can loop forever
2801 */
2802 mutex_unlock(&adapter->crit_lock);
2803 netdev_unlock(netdev);
2804 return;
2805 }
2806 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2807 dev_err(&adapter->pdev->dev,
2808 "Failed to communicate with PF; waiting before retry\n");
2809 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2810 iavf_shutdown_adminq(hw);
2811 mutex_unlock(&adapter->crit_lock);
2812 netdev_unlock(netdev);
2813 queue_delayed_work(adapter->wq,
2814 &adapter->watchdog_task, (5 * HZ));
2815 return;
2816 }
2817 /* Try again from failed step*/
2818 iavf_change_state(adapter, adapter->last_state);
2819 mutex_unlock(&adapter->crit_lock);
2820 netdev_unlock(netdev);
2821 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2822 return;
2823 case __IAVF_COMM_FAILED:
2824 if (test_bit(__IAVF_IN_REMOVE_TASK,
2825 &adapter->crit_section)) {
2826 /* Set state to __IAVF_INIT_FAILED and perform remove
2827 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2828 * doesn't bring the state back to __IAVF_COMM_FAILED.
2829 */
2830 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2831 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2832 mutex_unlock(&adapter->crit_lock);
2833 netdev_unlock(netdev);
2834 return;
2835 }
2836 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2837 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2838 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2839 reg_val == VIRTCHNL_VFR_COMPLETED) {
2840 /* A chance for redemption! */
2841 dev_err(&adapter->pdev->dev,
2842 "Hardware came out of reset. Attempting reinit.\n");
2843 /* When init task contacts the PF and
2844 * gets everything set up again, it'll restart the
2845 * watchdog for us. Down, boy. Sit. Stay. Woof.
2846 */
2847 iavf_change_state(adapter, __IAVF_STARTUP);
2848 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2849 }
2850 adapter->aq_required = 0;
2851 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2852 mutex_unlock(&adapter->crit_lock);
2853 netdev_unlock(netdev);
2854 queue_delayed_work(adapter->wq,
2855 &adapter->watchdog_task,
2856 msecs_to_jiffies(10));
2857 return;
2858 case __IAVF_RESETTING:
2859 mutex_unlock(&adapter->crit_lock);
2860 netdev_unlock(netdev);
2861 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2862 HZ * 2);
2863 return;
2864 case __IAVF_DOWN:
2865 case __IAVF_DOWN_PENDING:
2866 case __IAVF_TESTING:
2867 case __IAVF_RUNNING:
2868 if (adapter->current_op) {
2869 if (!iavf_asq_done(hw)) {
2870 dev_dbg(&adapter->pdev->dev,
2871 "Admin queue timeout\n");
2872 iavf_send_api_ver(adapter);
2873 }
2874 } else {
2875 int ret = iavf_process_aq_command(adapter);
2876
2877 /* An error will be returned if no commands were
2878 * processed; use this opportunity to update stats
2879 * if the error isn't -ENOTSUPP
2880 */
2881 if (ret && ret != -EOPNOTSUPP &&
2882 adapter->state == __IAVF_RUNNING)
2883 iavf_request_stats(adapter);
2884 }
2885 if (adapter->state == __IAVF_RUNNING)
2886 iavf_detect_recover_hung(&adapter->vsi);
2887 break;
2888 case __IAVF_REMOVE:
2889 default:
2890 mutex_unlock(&adapter->crit_lock);
2891 netdev_unlock(netdev);
2892 return;
2893 }
2894
2895 /* check for hw reset */
2896 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2897 if (!reg_val) {
2898 adapter->aq_required = 0;
2899 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2900 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2901 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2902 mutex_unlock(&adapter->crit_lock);
2903 netdev_unlock(netdev);
2904 queue_delayed_work(adapter->wq,
2905 &adapter->watchdog_task, HZ * 2);
2906 return;
2907 }
2908
2909 mutex_unlock(&adapter->crit_lock);
2910 restart_watchdog:
2911 netdev_unlock(netdev);
2912 if (adapter->state >= __IAVF_DOWN)
2913 queue_work(adapter->wq, &adapter->adminq_task);
2914 if (adapter->aq_required)
2915 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2916 msecs_to_jiffies(20));
2917 else
2918 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2919 HZ * 2);
2920 }
2921
2922 /**
2923 * iavf_disable_vf - disable VF
2924 * @adapter: board private structure
2925 *
2926 * Set communication failed flag and free all resources.
2927 * NOTE: This function is expected to be called with crit_lock being held.
2928 **/
iavf_disable_vf(struct iavf_adapter * adapter)2929 static void iavf_disable_vf(struct iavf_adapter *adapter)
2930 {
2931 struct iavf_mac_filter *f, *ftmp;
2932 struct iavf_vlan_filter *fv, *fvtmp;
2933 struct iavf_cloud_filter *cf, *cftmp;
2934
2935 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2936
2937 /* We don't use netif_running() because it may be true prior to
2938 * ndo_open() returning, so we can't assume it means all our open
2939 * tasks have finished, since we're not holding the rtnl_lock here.
2940 */
2941 if (adapter->state == __IAVF_RUNNING) {
2942 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2943 netif_carrier_off(adapter->netdev);
2944 netif_tx_disable(adapter->netdev);
2945 adapter->link_up = false;
2946 iavf_napi_disable_all(adapter);
2947 iavf_irq_disable(adapter);
2948 iavf_free_traffic_irqs(adapter);
2949 iavf_free_all_tx_resources(adapter);
2950 iavf_free_all_rx_resources(adapter);
2951 }
2952
2953 spin_lock_bh(&adapter->mac_vlan_list_lock);
2954
2955 /* Delete all of the filters */
2956 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2957 list_del(&f->list);
2958 kfree(f);
2959 }
2960
2961 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2962 list_del(&fv->list);
2963 kfree(fv);
2964 }
2965 adapter->num_vlan_filters = 0;
2966
2967 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2968
2969 spin_lock_bh(&adapter->cloud_filter_list_lock);
2970 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2971 list_del(&cf->list);
2972 kfree(cf);
2973 adapter->num_cloud_filters--;
2974 }
2975 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2976
2977 iavf_free_misc_irq(adapter);
2978 iavf_free_interrupt_scheme(adapter);
2979 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2980 iavf_shutdown_adminq(&adapter->hw);
2981 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2982 iavf_change_state(adapter, __IAVF_DOWN);
2983 wake_up(&adapter->down_waitqueue);
2984 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2985 }
2986
2987 /**
2988 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2989 * @adapter: board private structure
2990 *
2991 * After a reset, the shaper parameters of queues need to be replayed again.
2992 * Since the net_shaper object inside TX rings persists across reset,
2993 * set the update flag for all queues so that the virtchnl message is triggered
2994 * for all queues.
2995 **/
iavf_reconfig_qs_bw(struct iavf_adapter * adapter)2996 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2997 {
2998 int i, num = 0;
2999
3000 for (i = 0; i < adapter->num_active_queues; i++)
3001 if (adapter->tx_rings[i].q_shaper.bw_min ||
3002 adapter->tx_rings[i].q_shaper.bw_max) {
3003 adapter->tx_rings[i].q_shaper_update = true;
3004 num++;
3005 }
3006
3007 if (num)
3008 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
3009 }
3010
3011 /**
3012 * iavf_reset_task - Call-back task to handle hardware reset
3013 * @work: pointer to work_struct
3014 *
3015 * During reset we need to shut down and reinitialize the admin queue
3016 * before we can use it to communicate with the PF again. We also clear
3017 * and reinit the rings because that context is lost as well.
3018 **/
iavf_reset_task(struct work_struct * work)3019 static void iavf_reset_task(struct work_struct *work)
3020 {
3021 struct iavf_adapter *adapter = container_of(work,
3022 struct iavf_adapter,
3023 reset_task);
3024 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3025 struct net_device *netdev = adapter->netdev;
3026 struct iavf_hw *hw = &adapter->hw;
3027 struct iavf_mac_filter *f, *ftmp;
3028 struct iavf_cloud_filter *cf;
3029 enum iavf_status status;
3030 u32 reg_val;
3031 int i = 0, err;
3032 bool running;
3033
3034 /* When device is being removed it doesn't make sense to run the reset
3035 * task, just return in such a case.
3036 */
3037 netdev_lock(netdev);
3038 if (!mutex_trylock(&adapter->crit_lock)) {
3039 if (adapter->state != __IAVF_REMOVE)
3040 queue_work(adapter->wq, &adapter->reset_task);
3041
3042 netdev_unlock(netdev);
3043 return;
3044 }
3045
3046 iavf_misc_irq_disable(adapter);
3047 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3048 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3049 /* Restart the AQ here. If we have been reset but didn't
3050 * detect it, or if the PF had to reinit, our AQ will be hosed.
3051 */
3052 iavf_shutdown_adminq(hw);
3053 iavf_init_adminq(hw);
3054 iavf_request_reset(adapter);
3055 }
3056 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3057
3058 /* poll until we see the reset actually happen */
3059 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3060 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3061 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3062 if (!reg_val)
3063 break;
3064 usleep_range(5000, 10000);
3065 }
3066 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3067 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3068 goto continue_reset; /* act like the reset happened */
3069 }
3070
3071 /* wait until the reset is complete and the PF is responding to us */
3072 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3073 /* sleep first to make sure a minimum wait time is met */
3074 msleep(IAVF_RESET_WAIT_MS);
3075
3076 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3077 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3078 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3079 break;
3080 }
3081
3082 pci_set_master(adapter->pdev);
3083 pci_restore_msi_state(adapter->pdev);
3084
3085 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3086 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3087 reg_val);
3088 iavf_disable_vf(adapter);
3089 mutex_unlock(&adapter->crit_lock);
3090 netdev_unlock(netdev);
3091 return; /* Do not attempt to reinit. It's dead, Jim. */
3092 }
3093
3094 continue_reset:
3095 /* We don't use netif_running() because it may be true prior to
3096 * ndo_open() returning, so we can't assume it means all our open
3097 * tasks have finished, since we're not holding the rtnl_lock here.
3098 */
3099 running = adapter->state == __IAVF_RUNNING;
3100
3101 if (running) {
3102 netif_carrier_off(netdev);
3103 netif_tx_stop_all_queues(netdev);
3104 adapter->link_up = false;
3105 iavf_napi_disable_all(adapter);
3106 }
3107 iavf_irq_disable(adapter);
3108
3109 iavf_change_state(adapter, __IAVF_RESETTING);
3110 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3111
3112 /* free the Tx/Rx rings and descriptors, might be better to just
3113 * re-use them sometime in the future
3114 */
3115 iavf_free_all_rx_resources(adapter);
3116 iavf_free_all_tx_resources(adapter);
3117
3118 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3119 /* kill and reinit the admin queue */
3120 iavf_shutdown_adminq(hw);
3121 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3122 status = iavf_init_adminq(hw);
3123 if (status) {
3124 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3125 status);
3126 goto reset_err;
3127 }
3128 adapter->aq_required = 0;
3129
3130 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3131 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3132 err = iavf_reinit_interrupt_scheme(adapter, running);
3133 if (err)
3134 goto reset_err;
3135 }
3136
3137 if (RSS_AQ(adapter)) {
3138 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3139 } else {
3140 err = iavf_init_rss(adapter);
3141 if (err)
3142 goto reset_err;
3143 }
3144
3145 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3146 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3147 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3148 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3149 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3150 * been successfully sent and negotiated
3151 */
3152 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3153 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3154
3155 spin_lock_bh(&adapter->mac_vlan_list_lock);
3156
3157 /* Delete filter for the current MAC address, it could have
3158 * been changed by the PF via administratively set MAC.
3159 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3160 */
3161 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3162 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3163 list_del(&f->list);
3164 kfree(f);
3165 }
3166 }
3167 /* re-add all MAC filters */
3168 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3169 f->add = true;
3170 }
3171 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3172
3173 /* check if TCs are running and re-add all cloud filters */
3174 spin_lock_bh(&adapter->cloud_filter_list_lock);
3175 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3176 adapter->num_tc) {
3177 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3178 cf->add = true;
3179 }
3180 }
3181 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3182
3183 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3184 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3185 iavf_misc_irq_enable(adapter);
3186
3187 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3188
3189 /* We were running when the reset started, so we need to restore some
3190 * state here.
3191 */
3192 if (running) {
3193 /* allocate transmit descriptors */
3194 err = iavf_setup_all_tx_resources(adapter);
3195 if (err)
3196 goto reset_err;
3197
3198 /* allocate receive descriptors */
3199 err = iavf_setup_all_rx_resources(adapter);
3200 if (err)
3201 goto reset_err;
3202
3203 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3204 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3205 err = iavf_request_traffic_irqs(adapter, netdev->name);
3206 if (err)
3207 goto reset_err;
3208
3209 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3210 }
3211
3212 iavf_configure(adapter);
3213
3214 /* iavf_up_complete() will switch device back
3215 * to __IAVF_RUNNING
3216 */
3217 iavf_up_complete(adapter);
3218
3219 iavf_irq_enable(adapter, true);
3220
3221 iavf_reconfig_qs_bw(adapter);
3222 } else {
3223 iavf_change_state(adapter, __IAVF_DOWN);
3224 wake_up(&adapter->down_waitqueue);
3225 }
3226
3227 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3228
3229 wake_up(&adapter->reset_waitqueue);
3230 mutex_unlock(&adapter->crit_lock);
3231 netdev_unlock(netdev);
3232
3233 return;
3234 reset_err:
3235 if (running) {
3236 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3237 iavf_free_traffic_irqs(adapter);
3238 }
3239 iavf_disable_vf(adapter);
3240
3241 mutex_unlock(&adapter->crit_lock);
3242 netdev_unlock(netdev);
3243 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3244 }
3245
3246 /**
3247 * iavf_adminq_task - worker thread to clean the admin queue
3248 * @work: pointer to work_struct containing our data
3249 **/
iavf_adminq_task(struct work_struct * work)3250 static void iavf_adminq_task(struct work_struct *work)
3251 {
3252 struct iavf_adapter *adapter =
3253 container_of(work, struct iavf_adapter, adminq_task);
3254 struct iavf_hw *hw = &adapter->hw;
3255 struct iavf_arq_event_info event;
3256 enum virtchnl_ops v_op;
3257 enum iavf_status ret, v_ret;
3258 u32 val, oldval;
3259 u16 pending;
3260
3261 if (!mutex_trylock(&adapter->crit_lock)) {
3262 if (adapter->state == __IAVF_REMOVE)
3263 return;
3264
3265 queue_work(adapter->wq, &adapter->adminq_task);
3266 goto out;
3267 }
3268
3269 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3270 goto unlock;
3271
3272 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3274 if (!event.msg_buf)
3275 goto unlock;
3276
3277 do {
3278 ret = iavf_clean_arq_element(hw, &event, &pending);
3279 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3280 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3281
3282 if (ret || !v_op)
3283 break; /* No event to process or error cleaning ARQ */
3284
3285 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3286 event.msg_len);
3287 if (pending != 0)
3288 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3289 } while (pending);
3290
3291 if (iavf_is_reset_in_progress(adapter))
3292 goto freedom;
3293
3294 /* check for error indications */
3295 val = rd32(hw, IAVF_VF_ARQLEN1);
3296 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3297 goto freedom;
3298 oldval = val;
3299 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3300 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3301 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3302 }
3303 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3304 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3305 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3306 }
3307 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3308 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3309 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3310 }
3311 if (oldval != val)
3312 wr32(hw, IAVF_VF_ARQLEN1, val);
3313
3314 val = rd32(hw, IAVF_VF_ATQLEN1);
3315 oldval = val;
3316 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3317 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3318 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3319 }
3320 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3321 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3322 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3323 }
3324 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3325 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3326 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3327 }
3328 if (oldval != val)
3329 wr32(hw, IAVF_VF_ATQLEN1, val);
3330
3331 freedom:
3332 kfree(event.msg_buf);
3333 unlock:
3334 mutex_unlock(&adapter->crit_lock);
3335 out:
3336 /* re-enable Admin queue interrupt cause */
3337 iavf_misc_irq_enable(adapter);
3338 }
3339
3340 /**
3341 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3342 * @adapter: board private structure
3343 *
3344 * Free all transmit software resources
3345 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3346 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3347 {
3348 int i;
3349
3350 if (!adapter->tx_rings)
3351 return;
3352
3353 for (i = 0; i < adapter->num_active_queues; i++)
3354 if (adapter->tx_rings[i].desc)
3355 iavf_free_tx_resources(&adapter->tx_rings[i]);
3356 }
3357
3358 /**
3359 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3360 * @adapter: board private structure
3361 *
3362 * If this function returns with an error, then it's possible one or
3363 * more of the rings is populated (while the rest are not). It is the
3364 * callers duty to clean those orphaned rings.
3365 *
3366 * Return 0 on success, negative on failure
3367 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3368 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3369 {
3370 int i, err = 0;
3371
3372 for (i = 0; i < adapter->num_active_queues; i++) {
3373 adapter->tx_rings[i].count = adapter->tx_desc_count;
3374 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3375 if (!err)
3376 continue;
3377 dev_err(&adapter->pdev->dev,
3378 "Allocation for Tx Queue %u failed\n", i);
3379 break;
3380 }
3381
3382 return err;
3383 }
3384
3385 /**
3386 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3387 * @adapter: board private structure
3388 *
3389 * If this function returns with an error, then it's possible one or
3390 * more of the rings is populated (while the rest are not). It is the
3391 * callers duty to clean those orphaned rings.
3392 *
3393 * Return 0 on success, negative on failure
3394 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3395 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3396 {
3397 int i, err = 0;
3398
3399 for (i = 0; i < adapter->num_active_queues; i++) {
3400 adapter->rx_rings[i].count = adapter->rx_desc_count;
3401 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3402 if (!err)
3403 continue;
3404 dev_err(&adapter->pdev->dev,
3405 "Allocation for Rx Queue %u failed\n", i);
3406 break;
3407 }
3408 return err;
3409 }
3410
3411 /**
3412 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3413 * @adapter: board private structure
3414 *
3415 * Free all receive software resources
3416 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3417 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3418 {
3419 int i;
3420
3421 if (!adapter->rx_rings)
3422 return;
3423
3424 for (i = 0; i < adapter->num_active_queues; i++)
3425 if (adapter->rx_rings[i].desc)
3426 iavf_free_rx_resources(&adapter->rx_rings[i]);
3427 }
3428
3429 /**
3430 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3431 * @adapter: board private structure
3432 * @max_tx_rate: max Tx bw for a tc
3433 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3434 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3435 u64 max_tx_rate)
3436 {
3437 int speed = 0, ret = 0;
3438
3439 if (ADV_LINK_SUPPORT(adapter)) {
3440 if (adapter->link_speed_mbps < U32_MAX) {
3441 speed = adapter->link_speed_mbps;
3442 goto validate_bw;
3443 } else {
3444 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3445 return -EINVAL;
3446 }
3447 }
3448
3449 switch (adapter->link_speed) {
3450 case VIRTCHNL_LINK_SPEED_40GB:
3451 speed = SPEED_40000;
3452 break;
3453 case VIRTCHNL_LINK_SPEED_25GB:
3454 speed = SPEED_25000;
3455 break;
3456 case VIRTCHNL_LINK_SPEED_20GB:
3457 speed = SPEED_20000;
3458 break;
3459 case VIRTCHNL_LINK_SPEED_10GB:
3460 speed = SPEED_10000;
3461 break;
3462 case VIRTCHNL_LINK_SPEED_5GB:
3463 speed = SPEED_5000;
3464 break;
3465 case VIRTCHNL_LINK_SPEED_2_5GB:
3466 speed = SPEED_2500;
3467 break;
3468 case VIRTCHNL_LINK_SPEED_1GB:
3469 speed = SPEED_1000;
3470 break;
3471 case VIRTCHNL_LINK_SPEED_100MB:
3472 speed = SPEED_100;
3473 break;
3474 default:
3475 break;
3476 }
3477
3478 validate_bw:
3479 if (max_tx_rate > speed) {
3480 dev_err(&adapter->pdev->dev,
3481 "Invalid tx rate specified\n");
3482 ret = -EINVAL;
3483 }
3484
3485 return ret;
3486 }
3487
3488 /**
3489 * iavf_validate_ch_config - validate queue mapping info
3490 * @adapter: board private structure
3491 * @mqprio_qopt: queue parameters
3492 *
3493 * This function validates if the config provided by the user to
3494 * configure queue channels is valid or not. Returns 0 on a valid
3495 * config.
3496 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3497 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3498 struct tc_mqprio_qopt_offload *mqprio_qopt)
3499 {
3500 u64 total_max_rate = 0;
3501 u32 tx_rate_rem = 0;
3502 int i, num_qps = 0;
3503 u64 tx_rate = 0;
3504 int ret = 0;
3505
3506 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3507 mqprio_qopt->qopt.num_tc < 1)
3508 return -EINVAL;
3509
3510 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3511 if (!mqprio_qopt->qopt.count[i] ||
3512 mqprio_qopt->qopt.offset[i] != num_qps)
3513 return -EINVAL;
3514 if (mqprio_qopt->min_rate[i]) {
3515 dev_err(&adapter->pdev->dev,
3516 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3517 i);
3518 return -EINVAL;
3519 }
3520
3521 /* convert to Mbps */
3522 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3523 IAVF_MBPS_DIVISOR);
3524
3525 if (mqprio_qopt->max_rate[i] &&
3526 tx_rate < IAVF_MBPS_QUANTA) {
3527 dev_err(&adapter->pdev->dev,
3528 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3529 i, IAVF_MBPS_QUANTA);
3530 return -EINVAL;
3531 }
3532
3533 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3534
3535 if (tx_rate_rem != 0) {
3536 dev_err(&adapter->pdev->dev,
3537 "Invalid max tx rate for TC%d, not divisible by %d\n",
3538 i, IAVF_MBPS_QUANTA);
3539 return -EINVAL;
3540 }
3541
3542 total_max_rate += tx_rate;
3543 num_qps += mqprio_qopt->qopt.count[i];
3544 }
3545 if (num_qps > adapter->num_active_queues) {
3546 dev_err(&adapter->pdev->dev,
3547 "Cannot support requested number of queues\n");
3548 return -EINVAL;
3549 }
3550
3551 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3552 return ret;
3553 }
3554
3555 /**
3556 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3557 * @adapter: board private structure
3558 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3559 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3560 {
3561 struct iavf_cloud_filter *cf, *cftmp;
3562
3563 spin_lock_bh(&adapter->cloud_filter_list_lock);
3564 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3565 list) {
3566 list_del(&cf->list);
3567 kfree(cf);
3568 adapter->num_cloud_filters--;
3569 }
3570 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3571 }
3572
3573 /**
3574 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3575 * TC config already configured on this adapter.
3576 * @adapter: board private structure
3577 * @mqprio_qopt: TC config received from kernel.
3578 *
3579 * This function compares the TC config received from the kernel
3580 * with the config already configured on the adapter.
3581 *
3582 * Return: True if configuration is same, false otherwise.
3583 **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3584 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3585 struct tc_mqprio_qopt *mqprio_qopt)
3586 {
3587 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3588 int i;
3589
3590 if (adapter->num_tc != mqprio_qopt->num_tc)
3591 return false;
3592
3593 for (i = 0; i < adapter->num_tc; i++) {
3594 if (ch[i].count != mqprio_qopt->count[i] ||
3595 ch[i].offset != mqprio_qopt->offset[i])
3596 return false;
3597 }
3598 return true;
3599 }
3600
3601 /**
3602 * __iavf_setup_tc - configure multiple traffic classes
3603 * @netdev: network interface device structure
3604 * @type_data: tc offload data
3605 *
3606 * This function processes the config information provided by the
3607 * user to configure traffic classes/queue channels and packages the
3608 * information to request the PF to setup traffic classes.
3609 *
3610 * Returns 0 on success.
3611 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3612 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3613 {
3614 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3615 struct iavf_adapter *adapter = netdev_priv(netdev);
3616 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3617 u8 num_tc = 0, total_qps = 0;
3618 int ret = 0, netdev_tc = 0;
3619 u64 max_tx_rate;
3620 u16 mode;
3621 int i;
3622
3623 num_tc = mqprio_qopt->qopt.num_tc;
3624 mode = mqprio_qopt->mode;
3625
3626 /* delete queue_channel */
3627 if (!mqprio_qopt->qopt.hw) {
3628 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3629 /* reset the tc configuration */
3630 netdev_reset_tc(netdev);
3631 adapter->num_tc = 0;
3632 netif_tx_stop_all_queues(netdev);
3633 netif_tx_disable(netdev);
3634 iavf_del_all_cloud_filters(adapter);
3635 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3636 total_qps = adapter->orig_num_active_queues;
3637 goto exit;
3638 } else {
3639 return -EINVAL;
3640 }
3641 }
3642
3643 /* add queue channel */
3644 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3645 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3646 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3647 return -EOPNOTSUPP;
3648 }
3649 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3650 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3651 return -EINVAL;
3652 }
3653
3654 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3655 if (ret)
3656 return ret;
3657 /* Return if same TC config is requested */
3658 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3659 return 0;
3660 adapter->num_tc = num_tc;
3661
3662 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3663 if (i < num_tc) {
3664 adapter->ch_config.ch_info[i].count =
3665 mqprio_qopt->qopt.count[i];
3666 adapter->ch_config.ch_info[i].offset =
3667 mqprio_qopt->qopt.offset[i];
3668 total_qps += mqprio_qopt->qopt.count[i];
3669 max_tx_rate = mqprio_qopt->max_rate[i];
3670 /* convert to Mbps */
3671 max_tx_rate = div_u64(max_tx_rate,
3672 IAVF_MBPS_DIVISOR);
3673 adapter->ch_config.ch_info[i].max_tx_rate =
3674 max_tx_rate;
3675 } else {
3676 adapter->ch_config.ch_info[i].count = 1;
3677 adapter->ch_config.ch_info[i].offset = 0;
3678 }
3679 }
3680
3681 /* Take snapshot of original config such as "num_active_queues"
3682 * It is used later when delete ADQ flow is exercised, so that
3683 * once delete ADQ flow completes, VF shall go back to its
3684 * original queue configuration
3685 */
3686
3687 adapter->orig_num_active_queues = adapter->num_active_queues;
3688
3689 /* Store queue info based on TC so that VF gets configured
3690 * with correct number of queues when VF completes ADQ config
3691 * flow
3692 */
3693 adapter->ch_config.total_qps = total_qps;
3694
3695 netif_tx_stop_all_queues(netdev);
3696 netif_tx_disable(netdev);
3697 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3698 netdev_reset_tc(netdev);
3699 /* Report the tc mapping up the stack */
3700 netdev_set_num_tc(adapter->netdev, num_tc);
3701 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3702 u16 qcount = mqprio_qopt->qopt.count[i];
3703 u16 qoffset = mqprio_qopt->qopt.offset[i];
3704
3705 if (i < num_tc)
3706 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3707 qoffset);
3708 }
3709 }
3710 exit:
3711 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3712 return 0;
3713
3714 netdev_lock(netdev);
3715 netif_set_real_num_rx_queues(netdev, total_qps);
3716 netif_set_real_num_tx_queues(netdev, total_qps);
3717 netdev_unlock(netdev);
3718
3719 return ret;
3720 }
3721
3722 /**
3723 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3724 * @adapter: board private structure
3725 * @f: pointer to struct flow_cls_offload
3726 * @filter: pointer to cloud filter structure
3727 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3728 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3729 struct flow_cls_offload *f,
3730 struct iavf_cloud_filter *filter)
3731 {
3732 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3733 struct flow_dissector *dissector = rule->match.dissector;
3734 u16 n_proto_mask = 0;
3735 u16 n_proto_key = 0;
3736 u8 field_flags = 0;
3737 u16 addr_type = 0;
3738 u16 n_proto = 0;
3739 int i = 0;
3740 struct virtchnl_filter *vf = &filter->f;
3741
3742 if (dissector->used_keys &
3743 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3744 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3745 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3746 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3747 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3748 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3749 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3750 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3751 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3752 dissector->used_keys);
3753 return -EOPNOTSUPP;
3754 }
3755
3756 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3757 struct flow_match_enc_keyid match;
3758
3759 flow_rule_match_enc_keyid(rule, &match);
3760 if (match.mask->keyid != 0)
3761 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3762 }
3763
3764 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3765 struct flow_match_basic match;
3766
3767 flow_rule_match_basic(rule, &match);
3768 n_proto_key = ntohs(match.key->n_proto);
3769 n_proto_mask = ntohs(match.mask->n_proto);
3770
3771 if (n_proto_key == ETH_P_ALL) {
3772 n_proto_key = 0;
3773 n_proto_mask = 0;
3774 }
3775 n_proto = n_proto_key & n_proto_mask;
3776 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3777 return -EINVAL;
3778 if (n_proto == ETH_P_IPV6) {
3779 /* specify flow type as TCP IPv6 */
3780 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3781 }
3782
3783 if (match.key->ip_proto != IPPROTO_TCP) {
3784 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3785 return -EINVAL;
3786 }
3787 }
3788
3789 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3790 struct flow_match_eth_addrs match;
3791
3792 flow_rule_match_eth_addrs(rule, &match);
3793
3794 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3795 if (!is_zero_ether_addr(match.mask->dst)) {
3796 if (is_broadcast_ether_addr(match.mask->dst)) {
3797 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3798 } else {
3799 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3800 match.mask->dst);
3801 return -EINVAL;
3802 }
3803 }
3804
3805 if (!is_zero_ether_addr(match.mask->src)) {
3806 if (is_broadcast_ether_addr(match.mask->src)) {
3807 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3808 } else {
3809 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3810 match.mask->src);
3811 return -EINVAL;
3812 }
3813 }
3814
3815 if (!is_zero_ether_addr(match.key->dst))
3816 if (is_valid_ether_addr(match.key->dst) ||
3817 is_multicast_ether_addr(match.key->dst)) {
3818 /* set the mask if a valid dst_mac address */
3819 for (i = 0; i < ETH_ALEN; i++)
3820 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3821 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3822 match.key->dst);
3823 }
3824
3825 if (!is_zero_ether_addr(match.key->src))
3826 if (is_valid_ether_addr(match.key->src) ||
3827 is_multicast_ether_addr(match.key->src)) {
3828 /* set the mask if a valid dst_mac address */
3829 for (i = 0; i < ETH_ALEN; i++)
3830 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3831 ether_addr_copy(vf->data.tcp_spec.src_mac,
3832 match.key->src);
3833 }
3834 }
3835
3836 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3837 struct flow_match_vlan match;
3838
3839 flow_rule_match_vlan(rule, &match);
3840 if (match.mask->vlan_id) {
3841 if (match.mask->vlan_id == VLAN_VID_MASK) {
3842 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3843 } else {
3844 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3845 match.mask->vlan_id);
3846 return -EINVAL;
3847 }
3848 }
3849 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3850 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3851 }
3852
3853 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3854 struct flow_match_control match;
3855
3856 flow_rule_match_control(rule, &match);
3857 addr_type = match.key->addr_type;
3858
3859 if (flow_rule_has_control_flags(match.mask->flags,
3860 f->common.extack))
3861 return -EOPNOTSUPP;
3862 }
3863
3864 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3865 struct flow_match_ipv4_addrs match;
3866
3867 flow_rule_match_ipv4_addrs(rule, &match);
3868 if (match.mask->dst) {
3869 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3870 field_flags |= IAVF_CLOUD_FIELD_IIP;
3871 } else {
3872 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3873 be32_to_cpu(match.mask->dst));
3874 return -EINVAL;
3875 }
3876 }
3877
3878 if (match.mask->src) {
3879 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3880 field_flags |= IAVF_CLOUD_FIELD_IIP;
3881 } else {
3882 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3883 be32_to_cpu(match.mask->src));
3884 return -EINVAL;
3885 }
3886 }
3887
3888 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3889 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3890 return -EINVAL;
3891 }
3892 if (match.key->dst) {
3893 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3894 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3895 }
3896 if (match.key->src) {
3897 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3898 vf->data.tcp_spec.src_ip[0] = match.key->src;
3899 }
3900 }
3901
3902 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3903 struct flow_match_ipv6_addrs match;
3904
3905 flow_rule_match_ipv6_addrs(rule, &match);
3906
3907 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3908 if (ipv6_addr_any(&match.mask->dst)) {
3909 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3910 IPV6_ADDR_ANY);
3911 return -EINVAL;
3912 }
3913
3914 /* src and dest IPv6 address should not be LOOPBACK
3915 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3916 */
3917 if (ipv6_addr_loopback(&match.key->dst) ||
3918 ipv6_addr_loopback(&match.key->src)) {
3919 dev_err(&adapter->pdev->dev,
3920 "ipv6 addr should not be loopback\n");
3921 return -EINVAL;
3922 }
3923 if (!ipv6_addr_any(&match.mask->dst) ||
3924 !ipv6_addr_any(&match.mask->src))
3925 field_flags |= IAVF_CLOUD_FIELD_IIP;
3926
3927 for (i = 0; i < 4; i++)
3928 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3929 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3930 sizeof(vf->data.tcp_spec.dst_ip));
3931 for (i = 0; i < 4; i++)
3932 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3933 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3934 sizeof(vf->data.tcp_spec.src_ip));
3935 }
3936 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3937 struct flow_match_ports match;
3938
3939 flow_rule_match_ports(rule, &match);
3940 if (match.mask->src) {
3941 if (match.mask->src == cpu_to_be16(0xffff)) {
3942 field_flags |= IAVF_CLOUD_FIELD_IIP;
3943 } else {
3944 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3945 be16_to_cpu(match.mask->src));
3946 return -EINVAL;
3947 }
3948 }
3949
3950 if (match.mask->dst) {
3951 if (match.mask->dst == cpu_to_be16(0xffff)) {
3952 field_flags |= IAVF_CLOUD_FIELD_IIP;
3953 } else {
3954 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3955 be16_to_cpu(match.mask->dst));
3956 return -EINVAL;
3957 }
3958 }
3959 if (match.key->dst) {
3960 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3961 vf->data.tcp_spec.dst_port = match.key->dst;
3962 }
3963
3964 if (match.key->src) {
3965 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3966 vf->data.tcp_spec.src_port = match.key->src;
3967 }
3968 }
3969 vf->field_flags = field_flags;
3970
3971 return 0;
3972 }
3973
3974 /**
3975 * iavf_handle_tclass - Forward to a traffic class on the device
3976 * @adapter: board private structure
3977 * @tc: traffic class index on the device
3978 * @filter: pointer to cloud filter structure
3979 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3980 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3981 struct iavf_cloud_filter *filter)
3982 {
3983 if (tc == 0)
3984 return 0;
3985 if (tc < adapter->num_tc) {
3986 if (!filter->f.data.tcp_spec.dst_port) {
3987 dev_err(&adapter->pdev->dev,
3988 "Specify destination port to redirect to traffic class other than TC0\n");
3989 return -EINVAL;
3990 }
3991 }
3992 /* redirect to a traffic class on the same device */
3993 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3994 filter->f.action_meta = tc;
3995 return 0;
3996 }
3997
3998 /**
3999 * iavf_find_cf - Find the cloud filter in the list
4000 * @adapter: Board private structure
4001 * @cookie: filter specific cookie
4002 *
4003 * Returns ptr to the filter object or NULL. Must be called while holding the
4004 * cloud_filter_list_lock.
4005 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)4006 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
4007 unsigned long *cookie)
4008 {
4009 struct iavf_cloud_filter *filter = NULL;
4010
4011 if (!cookie)
4012 return NULL;
4013
4014 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
4015 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
4016 return filter;
4017 }
4018 return NULL;
4019 }
4020
4021 /**
4022 * iavf_configure_clsflower - Add tc flower filters
4023 * @adapter: board private structure
4024 * @cls_flower: Pointer to struct flow_cls_offload
4025 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4026 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
4027 struct flow_cls_offload *cls_flower)
4028 {
4029 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4030 struct iavf_cloud_filter *filter = NULL;
4031 int err = -EINVAL, count = 50;
4032
4033 if (tc < 0) {
4034 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4035 return -EINVAL;
4036 }
4037
4038 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4039 if (!filter)
4040 return -ENOMEM;
4041
4042 while (!mutex_trylock(&adapter->crit_lock)) {
4043 if (--count == 0) {
4044 kfree(filter);
4045 return err;
4046 }
4047 udelay(1);
4048 }
4049
4050 filter->cookie = cls_flower->cookie;
4051
4052 /* bail out here if filter already exists */
4053 spin_lock_bh(&adapter->cloud_filter_list_lock);
4054 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4055 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4056 err = -EEXIST;
4057 goto spin_unlock;
4058 }
4059 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4060
4061 /* set the mask to all zeroes to begin with */
4062 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4063 /* start out with flow type and eth type IPv4 to begin with */
4064 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4065 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4066 if (err)
4067 goto err;
4068
4069 err = iavf_handle_tclass(adapter, tc, filter);
4070 if (err)
4071 goto err;
4072
4073 /* add filter to the list */
4074 spin_lock_bh(&adapter->cloud_filter_list_lock);
4075 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4076 adapter->num_cloud_filters++;
4077 filter->add = true;
4078 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4079 spin_unlock:
4080 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4081 err:
4082 if (err)
4083 kfree(filter);
4084
4085 mutex_unlock(&adapter->crit_lock);
4086 return err;
4087 }
4088
4089 /**
4090 * iavf_delete_clsflower - Remove tc flower filters
4091 * @adapter: board private structure
4092 * @cls_flower: Pointer to struct flow_cls_offload
4093 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4094 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4095 struct flow_cls_offload *cls_flower)
4096 {
4097 struct iavf_cloud_filter *filter = NULL;
4098 int err = 0;
4099
4100 spin_lock_bh(&adapter->cloud_filter_list_lock);
4101 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4102 if (filter) {
4103 filter->del = true;
4104 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4105 } else {
4106 err = -EINVAL;
4107 }
4108 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4109
4110 return err;
4111 }
4112
4113 /**
4114 * iavf_setup_tc_cls_flower - flower classifier offloads
4115 * @adapter: pointer to iavf adapter structure
4116 * @cls_flower: pointer to flow_cls_offload struct with flow info
4117 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4118 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4119 struct flow_cls_offload *cls_flower)
4120 {
4121 switch (cls_flower->command) {
4122 case FLOW_CLS_REPLACE:
4123 return iavf_configure_clsflower(adapter, cls_flower);
4124 case FLOW_CLS_DESTROY:
4125 return iavf_delete_clsflower(adapter, cls_flower);
4126 case FLOW_CLS_STATS:
4127 return -EOPNOTSUPP;
4128 default:
4129 return -EOPNOTSUPP;
4130 }
4131 }
4132
4133 /**
4134 * iavf_add_cls_u32 - Add U32 classifier offloads
4135 * @adapter: pointer to iavf adapter structure
4136 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4137 *
4138 * Return: 0 on success or negative errno on failure.
4139 */
iavf_add_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4140 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4141 struct tc_cls_u32_offload *cls_u32)
4142 {
4143 struct netlink_ext_ack *extack = cls_u32->common.extack;
4144 struct virtchnl_fdir_rule *rule_cfg;
4145 struct virtchnl_filter_action *vact;
4146 struct virtchnl_proto_hdrs *hdrs;
4147 struct ethhdr *spec_h, *mask_h;
4148 const struct tc_action *act;
4149 struct iavf_fdir_fltr *fltr;
4150 struct tcf_exts *exts;
4151 unsigned int q_index;
4152 int i, status = 0;
4153 int off_base = 0;
4154
4155 if (cls_u32->knode.link_handle) {
4156 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4157 return -EOPNOTSUPP;
4158 }
4159
4160 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4161 if (!fltr)
4162 return -ENOMEM;
4163
4164 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4165 hdrs = &rule_cfg->proto_hdrs;
4166 hdrs->count = 0;
4167
4168 /* The parser lib at the PF expects the packet starting with MAC hdr */
4169 switch (ntohs(cls_u32->common.protocol)) {
4170 case ETH_P_802_3:
4171 break;
4172 case ETH_P_IP:
4173 spec_h = (struct ethhdr *)hdrs->raw.spec;
4174 mask_h = (struct ethhdr *)hdrs->raw.mask;
4175 spec_h->h_proto = htons(ETH_P_IP);
4176 mask_h->h_proto = htons(0xFFFF);
4177 off_base += ETH_HLEN;
4178 break;
4179 default:
4180 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4181 status = -EOPNOTSUPP;
4182 goto free_alloc;
4183 }
4184
4185 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4186 __be32 val, mask;
4187 int off;
4188
4189 off = off_base + cls_u32->knode.sel->keys[i].off;
4190 val = cls_u32->knode.sel->keys[i].val;
4191 mask = cls_u32->knode.sel->keys[i].mask;
4192
4193 if (off >= sizeof(hdrs->raw.spec)) {
4194 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4195 status = -EINVAL;
4196 goto free_alloc;
4197 }
4198
4199 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4200 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4201 hdrs->raw.pkt_len = off + sizeof(val);
4202 }
4203
4204 /* Only one action is allowed */
4205 rule_cfg->action_set.count = 1;
4206 vact = &rule_cfg->action_set.actions[0];
4207 exts = cls_u32->knode.exts;
4208
4209 tcf_exts_for_each_action(i, act, exts) {
4210 /* FDIR queue */
4211 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4212 q_index = tcf_skbedit_rx_queue_mapping(act);
4213 if (q_index >= adapter->num_active_queues) {
4214 status = -EINVAL;
4215 goto free_alloc;
4216 }
4217
4218 vact->type = VIRTCHNL_ACTION_QUEUE;
4219 vact->act_conf.queue.index = q_index;
4220 break;
4221 }
4222
4223 /* Drop */
4224 if (is_tcf_gact_shot(act)) {
4225 vact->type = VIRTCHNL_ACTION_DROP;
4226 break;
4227 }
4228
4229 /* Unsupported action */
4230 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4231 status = -EOPNOTSUPP;
4232 goto free_alloc;
4233 }
4234
4235 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4236 fltr->cls_u32_handle = cls_u32->knode.handle;
4237 return iavf_fdir_add_fltr(adapter, fltr);
4238
4239 free_alloc:
4240 kfree(fltr);
4241 return status;
4242 }
4243
4244 /**
4245 * iavf_del_cls_u32 - Delete U32 classifier offloads
4246 * @adapter: pointer to iavf adapter structure
4247 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4248 *
4249 * Return: 0 on success or negative errno on failure.
4250 */
iavf_del_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4251 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4252 struct tc_cls_u32_offload *cls_u32)
4253 {
4254 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4255 }
4256
4257 /**
4258 * iavf_setup_tc_cls_u32 - U32 filter offloads
4259 * @adapter: pointer to iavf adapter structure
4260 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4261 *
4262 * Return: 0 on success or negative errno on failure.
4263 */
iavf_setup_tc_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4264 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4265 struct tc_cls_u32_offload *cls_u32)
4266 {
4267 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4268 return -EOPNOTSUPP;
4269
4270 switch (cls_u32->command) {
4271 case TC_CLSU32_NEW_KNODE:
4272 case TC_CLSU32_REPLACE_KNODE:
4273 return iavf_add_cls_u32(adapter, cls_u32);
4274 case TC_CLSU32_DELETE_KNODE:
4275 return iavf_del_cls_u32(adapter, cls_u32);
4276 default:
4277 return -EOPNOTSUPP;
4278 }
4279 }
4280
4281 /**
4282 * iavf_setup_tc_block_cb - block callback for tc
4283 * @type: type of offload
4284 * @type_data: offload data
4285 * @cb_priv:
4286 *
4287 * This function is the block callback for traffic classes
4288 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4289 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4290 void *cb_priv)
4291 {
4292 struct iavf_adapter *adapter = cb_priv;
4293
4294 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4295 return -EOPNOTSUPP;
4296
4297 switch (type) {
4298 case TC_SETUP_CLSFLOWER:
4299 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4300 case TC_SETUP_CLSU32:
4301 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4302 default:
4303 return -EOPNOTSUPP;
4304 }
4305 }
4306
4307 static LIST_HEAD(iavf_block_cb_list);
4308
4309 /**
4310 * iavf_setup_tc - configure multiple traffic classes
4311 * @netdev: network interface device structure
4312 * @type: type of offload
4313 * @type_data: tc offload data
4314 *
4315 * This function is the callback to ndo_setup_tc in the
4316 * netdev_ops.
4317 *
4318 * Returns 0 on success
4319 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4320 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4321 void *type_data)
4322 {
4323 struct iavf_adapter *adapter = netdev_priv(netdev);
4324
4325 switch (type) {
4326 case TC_SETUP_QDISC_MQPRIO:
4327 return __iavf_setup_tc(netdev, type_data);
4328 case TC_SETUP_BLOCK:
4329 return flow_block_cb_setup_simple(type_data,
4330 &iavf_block_cb_list,
4331 iavf_setup_tc_block_cb,
4332 adapter, adapter, true);
4333 default:
4334 return -EOPNOTSUPP;
4335 }
4336 }
4337
4338 /**
4339 * iavf_restore_fdir_filters
4340 * @adapter: board private structure
4341 *
4342 * Restore existing FDIR filters when VF netdev comes back up.
4343 **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4344 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4345 {
4346 struct iavf_fdir_fltr *f;
4347
4348 spin_lock_bh(&adapter->fdir_fltr_lock);
4349 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4350 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4351 /* Cancel a request, keep filter as active */
4352 f->state = IAVF_FDIR_FLTR_ACTIVE;
4353 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4354 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4355 /* Add filters which are inactive or have a pending
4356 * request to PF to be deleted
4357 */
4358 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4359 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4360 }
4361 }
4362 spin_unlock_bh(&adapter->fdir_fltr_lock);
4363 }
4364
4365 /**
4366 * iavf_open - Called when a network interface is made active
4367 * @netdev: network interface device structure
4368 *
4369 * Returns 0 on success, negative value on failure
4370 *
4371 * The open entry point is called when a network interface is made
4372 * active by the system (IFF_UP). At this point all resources needed
4373 * for transmit and receive operations are allocated, the interrupt
4374 * handler is registered with the OS, the watchdog is started,
4375 * and the stack is notified that the interface is ready.
4376 **/
iavf_open(struct net_device * netdev)4377 static int iavf_open(struct net_device *netdev)
4378 {
4379 struct iavf_adapter *adapter = netdev_priv(netdev);
4380 int err;
4381
4382 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4383 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4384 return -EIO;
4385 }
4386
4387 netdev_lock(netdev);
4388 while (!mutex_trylock(&adapter->crit_lock)) {
4389 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4390 * is already taken and iavf_open is called from an upper
4391 * device's notifier reacting on NETDEV_REGISTER event.
4392 * We have to leave here to avoid dead lock.
4393 */
4394 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) {
4395 netdev_unlock(netdev);
4396 return -EBUSY;
4397 }
4398
4399 usleep_range(500, 1000);
4400 }
4401
4402 if (adapter->state != __IAVF_DOWN) {
4403 err = -EBUSY;
4404 goto err_unlock;
4405 }
4406
4407 if (adapter->state == __IAVF_RUNNING &&
4408 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4409 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4410 err = 0;
4411 goto err_unlock;
4412 }
4413
4414 /* allocate transmit descriptors */
4415 err = iavf_setup_all_tx_resources(adapter);
4416 if (err)
4417 goto err_setup_tx;
4418
4419 /* allocate receive descriptors */
4420 err = iavf_setup_all_rx_resources(adapter);
4421 if (err)
4422 goto err_setup_rx;
4423
4424 /* clear any pending interrupts, may auto mask */
4425 err = iavf_request_traffic_irqs(adapter, netdev->name);
4426 if (err)
4427 goto err_req_irq;
4428
4429 spin_lock_bh(&adapter->mac_vlan_list_lock);
4430
4431 iavf_add_filter(adapter, adapter->hw.mac.addr);
4432
4433 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4434
4435 /* Restore filters that were removed with IFF_DOWN */
4436 iavf_restore_filters(adapter);
4437 iavf_restore_fdir_filters(adapter);
4438
4439 iavf_configure(adapter);
4440
4441 iavf_up_complete(adapter);
4442
4443 iavf_irq_enable(adapter, true);
4444
4445 mutex_unlock(&adapter->crit_lock);
4446 netdev_unlock(netdev);
4447
4448 return 0;
4449
4450 err_req_irq:
4451 iavf_down(adapter);
4452 iavf_free_traffic_irqs(adapter);
4453 err_setup_rx:
4454 iavf_free_all_rx_resources(adapter);
4455 err_setup_tx:
4456 iavf_free_all_tx_resources(adapter);
4457 err_unlock:
4458 mutex_unlock(&adapter->crit_lock);
4459 netdev_unlock(netdev);
4460
4461 return err;
4462 }
4463
4464 /**
4465 * iavf_close - Disables a network interface
4466 * @netdev: network interface device structure
4467 *
4468 * Returns 0, this is not allowed to fail
4469 *
4470 * The close entry point is called when an interface is de-activated
4471 * by the OS. The hardware is still under the drivers control, but
4472 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4473 * are freed, along with all transmit and receive resources.
4474 **/
iavf_close(struct net_device * netdev)4475 static int iavf_close(struct net_device *netdev)
4476 {
4477 struct iavf_adapter *adapter = netdev_priv(netdev);
4478 u64 aq_to_restore;
4479 int status;
4480
4481 netdev_lock(netdev);
4482 mutex_lock(&adapter->crit_lock);
4483
4484 if (adapter->state <= __IAVF_DOWN_PENDING) {
4485 mutex_unlock(&adapter->crit_lock);
4486 netdev_unlock(netdev);
4487 return 0;
4488 }
4489
4490 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4491 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4492 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4493 * deadlock with adminq_task() until iavf_close timeouts. We must send
4494 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4495 * disable queues possible for vf. Give only necessary flags to
4496 * iavf_down and save other to set them right before iavf_close()
4497 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4498 * iavf will be in DOWN state.
4499 */
4500 aq_to_restore = adapter->aq_required;
4501 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4502
4503 /* Remove flags which we do not want to send after close or we want to
4504 * send before disable queues.
4505 */
4506 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4507 IAVF_FLAG_AQ_ENABLE_QUEUES |
4508 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4509 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4510 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4511 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4512 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4513 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4514
4515 iavf_down(adapter);
4516 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4517 iavf_free_traffic_irqs(adapter);
4518
4519 mutex_unlock(&adapter->crit_lock);
4520 netdev_unlock(netdev);
4521
4522 /* We explicitly don't free resources here because the hardware is
4523 * still active and can DMA into memory. Resources are cleared in
4524 * iavf_virtchnl_completion() after we get confirmation from the PF
4525 * driver that the rings have been stopped.
4526 *
4527 * Also, we wait for state to transition to __IAVF_DOWN before
4528 * returning. State change occurs in iavf_virtchnl_completion() after
4529 * VF resources are released (which occurs after PF driver processes and
4530 * responds to admin queue commands).
4531 */
4532
4533 status = wait_event_timeout(adapter->down_waitqueue,
4534 adapter->state == __IAVF_DOWN,
4535 msecs_to_jiffies(500));
4536 if (!status)
4537 netdev_warn(netdev, "Device resources not yet released\n");
4538
4539 mutex_lock(&adapter->crit_lock);
4540 adapter->aq_required |= aq_to_restore;
4541 mutex_unlock(&adapter->crit_lock);
4542 return 0;
4543 }
4544
4545 /**
4546 * iavf_change_mtu - Change the Maximum Transfer Unit
4547 * @netdev: network interface device structure
4548 * @new_mtu: new value for maximum frame size
4549 *
4550 * Returns 0 on success, negative on failure
4551 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4552 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4553 {
4554 struct iavf_adapter *adapter = netdev_priv(netdev);
4555 int ret = 0;
4556
4557 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4558 netdev->mtu, new_mtu);
4559 WRITE_ONCE(netdev->mtu, new_mtu);
4560
4561 if (netif_running(netdev)) {
4562 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4563 ret = iavf_wait_for_reset(adapter);
4564 if (ret < 0)
4565 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4566 else if (ret)
4567 netdev_warn(netdev, "MTU change timed out waiting for reset");
4568 }
4569
4570 return ret;
4571 }
4572
4573 /**
4574 * iavf_disable_fdir - disable Flow Director and clear existing filters
4575 * @adapter: board private structure
4576 **/
iavf_disable_fdir(struct iavf_adapter * adapter)4577 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4578 {
4579 struct iavf_fdir_fltr *fdir, *fdirtmp;
4580 bool del_filters = false;
4581
4582 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4583
4584 /* remove all Flow Director filters */
4585 spin_lock_bh(&adapter->fdir_fltr_lock);
4586 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4587 list) {
4588 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4589 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4590 /* Delete filters not registered in PF */
4591 list_del(&fdir->list);
4592 iavf_dec_fdir_active_fltr(adapter, fdir);
4593 kfree(fdir);
4594 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4595 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4596 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4597 /* Filters registered in PF, schedule their deletion */
4598 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4599 del_filters = true;
4600 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4601 /* Request to delete filter already sent to PF, change
4602 * state to DEL_PENDING to delete filter after PF's
4603 * response, not set as INACTIVE
4604 */
4605 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4606 }
4607 }
4608 spin_unlock_bh(&adapter->fdir_fltr_lock);
4609
4610 if (del_filters) {
4611 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4612 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4613 }
4614 }
4615
4616 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4617 NETIF_F_HW_VLAN_CTAG_TX | \
4618 NETIF_F_HW_VLAN_STAG_RX | \
4619 NETIF_F_HW_VLAN_STAG_TX)
4620
4621 /**
4622 * iavf_set_features - set the netdev feature flags
4623 * @netdev: ptr to the netdev being adjusted
4624 * @features: the feature set that the stack is suggesting
4625 * Note: expects to be called while under rtnl_lock()
4626 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4627 static int iavf_set_features(struct net_device *netdev,
4628 netdev_features_t features)
4629 {
4630 struct iavf_adapter *adapter = netdev_priv(netdev);
4631
4632 /* trigger update on any VLAN feature change */
4633 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4634 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4635 iavf_set_vlan_offload_features(adapter, netdev->features,
4636 features);
4637 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4638 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4639 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4640
4641 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4642 if (features & NETIF_F_NTUPLE)
4643 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4644 else
4645 iavf_disable_fdir(adapter);
4646 }
4647
4648 return 0;
4649 }
4650
4651 /**
4652 * iavf_features_check - Validate encapsulated packet conforms to limits
4653 * @skb: skb buff
4654 * @dev: This physical port's netdev
4655 * @features: Offload features that the stack believes apply
4656 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4657 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4658 struct net_device *dev,
4659 netdev_features_t features)
4660 {
4661 size_t len;
4662
4663 /* No point in doing any of this if neither checksum nor GSO are
4664 * being requested for this frame. We can rule out both by just
4665 * checking for CHECKSUM_PARTIAL
4666 */
4667 if (skb->ip_summed != CHECKSUM_PARTIAL)
4668 return features;
4669
4670 /* We cannot support GSO if the MSS is going to be less than
4671 * 64 bytes. If it is then we need to drop support for GSO.
4672 */
4673 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4674 features &= ~NETIF_F_GSO_MASK;
4675
4676 /* MACLEN can support at most 63 words */
4677 len = skb_network_offset(skb);
4678 if (len & ~(63 * 2))
4679 goto out_err;
4680
4681 /* IPLEN and EIPLEN can support at most 127 dwords */
4682 len = skb_network_header_len(skb);
4683 if (len & ~(127 * 4))
4684 goto out_err;
4685
4686 if (skb->encapsulation) {
4687 /* L4TUNLEN can support 127 words */
4688 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4689 if (len & ~(127 * 2))
4690 goto out_err;
4691
4692 /* IPLEN can support at most 127 dwords */
4693 len = skb_inner_transport_header(skb) -
4694 skb_inner_network_header(skb);
4695 if (len & ~(127 * 4))
4696 goto out_err;
4697 }
4698
4699 /* No need to validate L4LEN as TCP is the only protocol with a
4700 * flexible value and we support all possible values supported
4701 * by TCP, which is at most 15 dwords
4702 */
4703
4704 return features;
4705 out_err:
4706 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4707 }
4708
4709 /**
4710 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4711 * @adapter: board private structure
4712 *
4713 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4714 * were negotiated determine the VLAN features that can be toggled on and off.
4715 **/
4716 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4717 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4718 {
4719 netdev_features_t hw_features = 0;
4720
4721 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4722 return hw_features;
4723
4724 /* Enable VLAN features if supported */
4725 if (VLAN_ALLOWED(adapter)) {
4726 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4727 NETIF_F_HW_VLAN_CTAG_RX);
4728 } else if (VLAN_V2_ALLOWED(adapter)) {
4729 struct virtchnl_vlan_caps *vlan_v2_caps =
4730 &adapter->vlan_v2_caps;
4731 struct virtchnl_vlan_supported_caps *stripping_support =
4732 &vlan_v2_caps->offloads.stripping_support;
4733 struct virtchnl_vlan_supported_caps *insertion_support =
4734 &vlan_v2_caps->offloads.insertion_support;
4735
4736 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4737 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4738 if (stripping_support->outer &
4739 VIRTCHNL_VLAN_ETHERTYPE_8100)
4740 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4741 if (stripping_support->outer &
4742 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4743 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4744 } else if (stripping_support->inner !=
4745 VIRTCHNL_VLAN_UNSUPPORTED &&
4746 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4747 if (stripping_support->inner &
4748 VIRTCHNL_VLAN_ETHERTYPE_8100)
4749 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4750 }
4751
4752 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4753 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4754 if (insertion_support->outer &
4755 VIRTCHNL_VLAN_ETHERTYPE_8100)
4756 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4757 if (insertion_support->outer &
4758 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4759 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4760 } else if (insertion_support->inner &&
4761 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4762 if (insertion_support->inner &
4763 VIRTCHNL_VLAN_ETHERTYPE_8100)
4764 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4765 }
4766 }
4767
4768 if (CRC_OFFLOAD_ALLOWED(adapter))
4769 hw_features |= NETIF_F_RXFCS;
4770
4771 return hw_features;
4772 }
4773
4774 /**
4775 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4776 * @adapter: board private structure
4777 *
4778 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4779 * were negotiated determine the VLAN features that are enabled by default.
4780 **/
4781 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4782 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4783 {
4784 netdev_features_t features = 0;
4785
4786 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4787 return features;
4788
4789 if (VLAN_ALLOWED(adapter)) {
4790 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4791 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4792 } else if (VLAN_V2_ALLOWED(adapter)) {
4793 struct virtchnl_vlan_caps *vlan_v2_caps =
4794 &adapter->vlan_v2_caps;
4795 struct virtchnl_vlan_supported_caps *filtering_support =
4796 &vlan_v2_caps->filtering.filtering_support;
4797 struct virtchnl_vlan_supported_caps *stripping_support =
4798 &vlan_v2_caps->offloads.stripping_support;
4799 struct virtchnl_vlan_supported_caps *insertion_support =
4800 &vlan_v2_caps->offloads.insertion_support;
4801 u32 ethertype_init;
4802
4803 /* give priority to outer stripping and don't support both outer
4804 * and inner stripping
4805 */
4806 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4807 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4808 if (stripping_support->outer &
4809 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4810 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4811 features |= NETIF_F_HW_VLAN_CTAG_RX;
4812 else if (stripping_support->outer &
4813 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4815 features |= NETIF_F_HW_VLAN_STAG_RX;
4816 } else if (stripping_support->inner !=
4817 VIRTCHNL_VLAN_UNSUPPORTED) {
4818 if (stripping_support->inner &
4819 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4820 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4821 features |= NETIF_F_HW_VLAN_CTAG_RX;
4822 }
4823
4824 /* give priority to outer insertion and don't support both outer
4825 * and inner insertion
4826 */
4827 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4828 if (insertion_support->outer &
4829 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4830 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4831 features |= NETIF_F_HW_VLAN_CTAG_TX;
4832 else if (insertion_support->outer &
4833 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4834 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4835 features |= NETIF_F_HW_VLAN_STAG_TX;
4836 } else if (insertion_support->inner !=
4837 VIRTCHNL_VLAN_UNSUPPORTED) {
4838 if (insertion_support->inner &
4839 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4840 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4841 features |= NETIF_F_HW_VLAN_CTAG_TX;
4842 }
4843
4844 /* give priority to outer filtering and don't bother if both
4845 * outer and inner filtering are enabled
4846 */
4847 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4848 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4849 if (filtering_support->outer &
4850 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4851 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4852 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4853 if (filtering_support->outer &
4854 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4855 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4856 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4857 } else if (filtering_support->inner !=
4858 VIRTCHNL_VLAN_UNSUPPORTED) {
4859 if (filtering_support->inner &
4860 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4861 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4862 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4863 if (filtering_support->inner &
4864 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4865 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4866 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4867 }
4868 }
4869
4870 return features;
4871 }
4872
4873 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4874 (!(((requested) & (feature_bit)) && \
4875 !((allowed) & (feature_bit))))
4876
4877 /**
4878 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4879 * @adapter: board private structure
4880 * @requested_features: stack requested NETDEV features
4881 **/
4882 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4883 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4884 netdev_features_t requested_features)
4885 {
4886 netdev_features_t allowed_features;
4887
4888 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4889 iavf_get_netdev_vlan_features(adapter);
4890
4891 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4892 allowed_features,
4893 NETIF_F_HW_VLAN_CTAG_TX))
4894 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4895
4896 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4897 allowed_features,
4898 NETIF_F_HW_VLAN_CTAG_RX))
4899 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4900
4901 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4902 allowed_features,
4903 NETIF_F_HW_VLAN_STAG_TX))
4904 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4905 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4906 allowed_features,
4907 NETIF_F_HW_VLAN_STAG_RX))
4908 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4909
4910 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4911 allowed_features,
4912 NETIF_F_HW_VLAN_CTAG_FILTER))
4913 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4914
4915 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4916 allowed_features,
4917 NETIF_F_HW_VLAN_STAG_FILTER))
4918 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4919
4920 if ((requested_features &
4921 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4922 (requested_features &
4923 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4924 adapter->vlan_v2_caps.offloads.ethertype_match ==
4925 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4926 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4927 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4928 NETIF_F_HW_VLAN_STAG_TX);
4929 }
4930
4931 return requested_features;
4932 }
4933
4934 /**
4935 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4936 * @adapter: board private structure
4937 * @requested_features: stack requested NETDEV features
4938 *
4939 * Returns fixed-up features bits
4940 **/
4941 static netdev_features_t
iavf_fix_strip_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4942 iavf_fix_strip_features(struct iavf_adapter *adapter,
4943 netdev_features_t requested_features)
4944 {
4945 struct net_device *netdev = adapter->netdev;
4946 bool crc_offload_req, is_vlan_strip;
4947 netdev_features_t vlan_strip;
4948 int num_non_zero_vlan;
4949
4950 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4951 (requested_features & NETIF_F_RXFCS);
4952 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4953 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4954 is_vlan_strip = requested_features & vlan_strip;
4955
4956 if (!crc_offload_req)
4957 return requested_features;
4958
4959 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4960 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4961 requested_features &= ~vlan_strip;
4962 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4963 return requested_features;
4964 }
4965
4966 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4967 requested_features &= ~vlan_strip;
4968 if (!(netdev->features & vlan_strip))
4969 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4970
4971 return requested_features;
4972 }
4973
4974 if (num_non_zero_vlan && is_vlan_strip &&
4975 !(netdev->features & NETIF_F_RXFCS)) {
4976 requested_features &= ~NETIF_F_RXFCS;
4977 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4978 }
4979
4980 return requested_features;
4981 }
4982
4983 /**
4984 * iavf_fix_features - fix up the netdev feature bits
4985 * @netdev: our net device
4986 * @features: desired feature bits
4987 *
4988 * Returns fixed-up features bits
4989 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4990 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4991 netdev_features_t features)
4992 {
4993 struct iavf_adapter *adapter = netdev_priv(netdev);
4994
4995 features = iavf_fix_netdev_vlan_features(adapter, features);
4996
4997 if (!FDIR_FLTR_SUPPORT(adapter))
4998 features &= ~NETIF_F_NTUPLE;
4999
5000 return iavf_fix_strip_features(adapter, features);
5001 }
5002
5003 static int
iavf_verify_shaper(struct net_shaper_binding * binding,const struct net_shaper * shaper,struct netlink_ext_ack * extack)5004 iavf_verify_shaper(struct net_shaper_binding *binding,
5005 const struct net_shaper *shaper,
5006 struct netlink_ext_ack *extack)
5007 {
5008 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5009 u64 vf_max;
5010
5011 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
5012 vf_max = adapter->qos_caps->cap[0].shaper.peak;
5013 if (vf_max && shaper->bw_max > vf_max) {
5014 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
5015 shaper->bw_max, shaper->handle.id,
5016 vf_max);
5017 return -EINVAL;
5018 }
5019 }
5020 return 0;
5021 }
5022
5023 static int
iavf_shaper_set(struct net_shaper_binding * binding,const struct net_shaper * shaper,struct netlink_ext_ack * extack)5024 iavf_shaper_set(struct net_shaper_binding *binding,
5025 const struct net_shaper *shaper,
5026 struct netlink_ext_ack *extack)
5027 {
5028 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5029 const struct net_shaper_handle *handle = &shaper->handle;
5030 struct iavf_ring *tx_ring;
5031 int ret = 0;
5032
5033 mutex_lock(&adapter->crit_lock);
5034 if (handle->id >= adapter->num_active_queues)
5035 goto unlock;
5036
5037 ret = iavf_verify_shaper(binding, shaper, extack);
5038 if (ret)
5039 goto unlock;
5040
5041 tx_ring = &adapter->tx_rings[handle->id];
5042
5043 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5044 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5045 tx_ring->q_shaper_update = true;
5046
5047 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5048
5049 unlock:
5050 mutex_unlock(&adapter->crit_lock);
5051 return ret;
5052 }
5053
iavf_shaper_del(struct net_shaper_binding * binding,const struct net_shaper_handle * handle,struct netlink_ext_ack * extack)5054 static int iavf_shaper_del(struct net_shaper_binding *binding,
5055 const struct net_shaper_handle *handle,
5056 struct netlink_ext_ack *extack)
5057 {
5058 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5059 struct iavf_ring *tx_ring;
5060
5061 mutex_lock(&adapter->crit_lock);
5062 if (handle->id >= adapter->num_active_queues)
5063 goto unlock;
5064
5065 tx_ring = &adapter->tx_rings[handle->id];
5066 tx_ring->q_shaper.bw_min = 0;
5067 tx_ring->q_shaper.bw_max = 0;
5068 tx_ring->q_shaper_update = true;
5069
5070 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5071
5072 unlock:
5073 mutex_unlock(&adapter->crit_lock);
5074 return 0;
5075 }
5076
iavf_shaper_cap(struct net_shaper_binding * binding,enum net_shaper_scope scope,unsigned long * flags)5077 static void iavf_shaper_cap(struct net_shaper_binding *binding,
5078 enum net_shaper_scope scope,
5079 unsigned long *flags)
5080 {
5081 if (scope != NET_SHAPER_SCOPE_QUEUE)
5082 return;
5083
5084 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5085 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5086 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5087 }
5088
5089 static const struct net_shaper_ops iavf_shaper_ops = {
5090 .set = iavf_shaper_set,
5091 .delete = iavf_shaper_del,
5092 .capabilities = iavf_shaper_cap,
5093 };
5094
5095 static const struct net_device_ops iavf_netdev_ops = {
5096 .ndo_open = iavf_open,
5097 .ndo_stop = iavf_close,
5098 .ndo_start_xmit = iavf_xmit_frame,
5099 .ndo_set_rx_mode = iavf_set_rx_mode,
5100 .ndo_validate_addr = eth_validate_addr,
5101 .ndo_set_mac_address = iavf_set_mac,
5102 .ndo_change_mtu = iavf_change_mtu,
5103 .ndo_tx_timeout = iavf_tx_timeout,
5104 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5105 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5106 .ndo_features_check = iavf_features_check,
5107 .ndo_fix_features = iavf_fix_features,
5108 .ndo_set_features = iavf_set_features,
5109 .ndo_setup_tc = iavf_setup_tc,
5110 .net_shaper_ops = &iavf_shaper_ops,
5111 };
5112
5113 /**
5114 * iavf_check_reset_complete - check that VF reset is complete
5115 * @hw: pointer to hw struct
5116 *
5117 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5118 **/
iavf_check_reset_complete(struct iavf_hw * hw)5119 static int iavf_check_reset_complete(struct iavf_hw *hw)
5120 {
5121 u32 rstat;
5122 int i;
5123
5124 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5125 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5126 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5127 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5128 (rstat == VIRTCHNL_VFR_COMPLETED))
5129 return 0;
5130 msleep(IAVF_RESET_WAIT_MS);
5131 }
5132 return -EBUSY;
5133 }
5134
5135 /**
5136 * iavf_process_config - Process the config information we got from the PF
5137 * @adapter: board private structure
5138 *
5139 * Verify that we have a valid config struct, and set up our netdev features
5140 * and our VSI struct.
5141 **/
iavf_process_config(struct iavf_adapter * adapter)5142 int iavf_process_config(struct iavf_adapter *adapter)
5143 {
5144 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5145 netdev_features_t hw_vlan_features, vlan_features;
5146 struct net_device *netdev = adapter->netdev;
5147 netdev_features_t hw_enc_features;
5148 netdev_features_t hw_features;
5149
5150 hw_enc_features = NETIF_F_SG |
5151 NETIF_F_IP_CSUM |
5152 NETIF_F_IPV6_CSUM |
5153 NETIF_F_HIGHDMA |
5154 NETIF_F_SOFT_FEATURES |
5155 NETIF_F_TSO |
5156 NETIF_F_TSO_ECN |
5157 NETIF_F_TSO6 |
5158 NETIF_F_SCTP_CRC |
5159 NETIF_F_RXHASH |
5160 NETIF_F_RXCSUM |
5161 0;
5162
5163 /* advertise to stack only if offloads for encapsulated packets is
5164 * supported
5165 */
5166 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5167 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5168 NETIF_F_GSO_GRE |
5169 NETIF_F_GSO_GRE_CSUM |
5170 NETIF_F_GSO_IPXIP4 |
5171 NETIF_F_GSO_IPXIP6 |
5172 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5173 NETIF_F_GSO_PARTIAL |
5174 0;
5175
5176 if (!(vfres->vf_cap_flags &
5177 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5178 netdev->gso_partial_features |=
5179 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5180
5181 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5182 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5183 netdev->hw_enc_features |= hw_enc_features;
5184 }
5185 /* record features VLANs can make use of */
5186 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5187
5188 /* Write features and hw_features separately to avoid polluting
5189 * with, or dropping, features that are set when we registered.
5190 */
5191 hw_features = hw_enc_features;
5192
5193 /* get HW VLAN features that can be toggled */
5194 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5195
5196 /* Enable HW TC offload if ADQ or tc U32 is supported */
5197 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5198 TC_U32_SUPPORT(adapter))
5199 hw_features |= NETIF_F_HW_TC;
5200
5201 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5202 hw_features |= NETIF_F_GSO_UDP_L4;
5203
5204 netdev->hw_features |= hw_features | hw_vlan_features;
5205 vlan_features = iavf_get_netdev_vlan_features(adapter);
5206
5207 netdev->features |= hw_features | vlan_features;
5208
5209 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5210 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5211
5212 if (FDIR_FLTR_SUPPORT(adapter)) {
5213 netdev->hw_features |= NETIF_F_NTUPLE;
5214 netdev->features |= NETIF_F_NTUPLE;
5215 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5216 }
5217
5218 netdev->priv_flags |= IFF_UNICAST_FLT;
5219
5220 /* Do not turn on offloads when they are requested to be turned off.
5221 * TSO needs minimum 576 bytes to work correctly.
5222 */
5223 if (netdev->wanted_features) {
5224 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5225 netdev->mtu < 576)
5226 netdev->features &= ~NETIF_F_TSO;
5227 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5228 netdev->mtu < 576)
5229 netdev->features &= ~NETIF_F_TSO6;
5230 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5231 netdev->features &= ~NETIF_F_TSO_ECN;
5232 if (!(netdev->wanted_features & NETIF_F_GRO))
5233 netdev->features &= ~NETIF_F_GRO;
5234 if (!(netdev->wanted_features & NETIF_F_GSO))
5235 netdev->features &= ~NETIF_F_GSO;
5236 }
5237
5238 return 0;
5239 }
5240
5241 /**
5242 * iavf_probe - Device Initialization Routine
5243 * @pdev: PCI device information struct
5244 * @ent: entry in iavf_pci_tbl
5245 *
5246 * Returns 0 on success, negative on failure
5247 *
5248 * iavf_probe initializes an adapter identified by a pci_dev structure.
5249 * The OS initialization, configuring of the adapter private structure,
5250 * and a hardware reset occur.
5251 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5252 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5253 {
5254 struct net_device *netdev;
5255 struct iavf_adapter *adapter = NULL;
5256 struct iavf_hw *hw = NULL;
5257 int err, len;
5258
5259 err = pci_enable_device(pdev);
5260 if (err)
5261 return err;
5262
5263 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5264 if (err) {
5265 dev_err(&pdev->dev,
5266 "DMA configuration failed: 0x%x\n", err);
5267 goto err_dma;
5268 }
5269
5270 err = pci_request_regions(pdev, iavf_driver_name);
5271 if (err) {
5272 dev_err(&pdev->dev,
5273 "pci_request_regions failed 0x%x\n", err);
5274 goto err_pci_reg;
5275 }
5276
5277 pci_set_master(pdev);
5278
5279 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5280 IAVF_MAX_REQ_QUEUES);
5281 if (!netdev) {
5282 err = -ENOMEM;
5283 goto err_alloc_etherdev;
5284 }
5285
5286 SET_NETDEV_DEV(netdev, &pdev->dev);
5287
5288 pci_set_drvdata(pdev, netdev);
5289 adapter = netdev_priv(netdev);
5290
5291 adapter->netdev = netdev;
5292 adapter->pdev = pdev;
5293
5294 hw = &adapter->hw;
5295 hw->back = adapter;
5296
5297 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5298 iavf_driver_name);
5299 if (!adapter->wq) {
5300 err = -ENOMEM;
5301 goto err_alloc_wq;
5302 }
5303
5304 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5305 iavf_change_state(adapter, __IAVF_STARTUP);
5306
5307 /* Call save state here because it relies on the adapter struct. */
5308 pci_save_state(pdev);
5309
5310 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5311 pci_resource_len(pdev, 0));
5312 if (!hw->hw_addr) {
5313 err = -EIO;
5314 goto err_ioremap;
5315 }
5316 hw->vendor_id = pdev->vendor;
5317 hw->device_id = pdev->device;
5318 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5319 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5320 hw->subsystem_device_id = pdev->subsystem_device;
5321 hw->bus.device = PCI_SLOT(pdev->devfn);
5322 hw->bus.func = PCI_FUNC(pdev->devfn);
5323 hw->bus.bus_id = pdev->bus->number;
5324
5325 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5326 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5327 if (!adapter->qos_caps) {
5328 err = -ENOMEM;
5329 goto err_alloc_qos_cap;
5330 }
5331
5332 /* set up the locks for the AQ, do this only once in probe
5333 * and destroy them only once in remove
5334 */
5335 mutex_init(&adapter->crit_lock);
5336 mutex_init(&hw->aq.asq_mutex);
5337 mutex_init(&hw->aq.arq_mutex);
5338
5339 spin_lock_init(&adapter->mac_vlan_list_lock);
5340 spin_lock_init(&adapter->cloud_filter_list_lock);
5341 spin_lock_init(&adapter->fdir_fltr_lock);
5342 spin_lock_init(&adapter->adv_rss_lock);
5343 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5344
5345 INIT_LIST_HEAD(&adapter->mac_filter_list);
5346 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5347 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5348 INIT_LIST_HEAD(&adapter->fdir_list_head);
5349 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5350
5351 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5352 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5353 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5354 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5355
5356 /* Setup the wait queue for indicating transition to down status */
5357 init_waitqueue_head(&adapter->down_waitqueue);
5358
5359 /* Setup the wait queue for indicating transition to running state */
5360 init_waitqueue_head(&adapter->reset_waitqueue);
5361
5362 /* Setup the wait queue for indicating virtchannel events */
5363 init_waitqueue_head(&adapter->vc_waitqueue);
5364
5365 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5366 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5367 /* Initialization goes on in the work. Do not add more of it below. */
5368 return 0;
5369
5370 err_alloc_qos_cap:
5371 iounmap(hw->hw_addr);
5372 err_ioremap:
5373 destroy_workqueue(adapter->wq);
5374 err_alloc_wq:
5375 free_netdev(netdev);
5376 err_alloc_etherdev:
5377 pci_release_regions(pdev);
5378 err_pci_reg:
5379 err_dma:
5380 pci_disable_device(pdev);
5381 return err;
5382 }
5383
5384 /**
5385 * iavf_suspend - Power management suspend routine
5386 * @dev_d: device info pointer
5387 *
5388 * Called when the system (VM) is entering sleep/suspend.
5389 **/
iavf_suspend(struct device * dev_d)5390 static int iavf_suspend(struct device *dev_d)
5391 {
5392 struct net_device *netdev = dev_get_drvdata(dev_d);
5393 struct iavf_adapter *adapter = netdev_priv(netdev);
5394
5395 netif_device_detach(netdev);
5396
5397 netdev_lock(netdev);
5398 mutex_lock(&adapter->crit_lock);
5399
5400 if (netif_running(netdev)) {
5401 rtnl_lock();
5402 iavf_down(adapter);
5403 rtnl_unlock();
5404 }
5405 iavf_free_misc_irq(adapter);
5406 iavf_reset_interrupt_capability(adapter);
5407
5408 mutex_unlock(&adapter->crit_lock);
5409 netdev_unlock(netdev);
5410
5411 return 0;
5412 }
5413
5414 /**
5415 * iavf_resume - Power management resume routine
5416 * @dev_d: device info pointer
5417 *
5418 * Called when the system (VM) is resumed from sleep/suspend.
5419 **/
iavf_resume(struct device * dev_d)5420 static int iavf_resume(struct device *dev_d)
5421 {
5422 struct pci_dev *pdev = to_pci_dev(dev_d);
5423 struct iavf_adapter *adapter;
5424 u32 err;
5425
5426 adapter = iavf_pdev_to_adapter(pdev);
5427
5428 pci_set_master(pdev);
5429
5430 rtnl_lock();
5431 err = iavf_set_interrupt_capability(adapter);
5432 if (err) {
5433 rtnl_unlock();
5434 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5435 return err;
5436 }
5437 err = iavf_request_misc_irq(adapter);
5438 rtnl_unlock();
5439 if (err) {
5440 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5441 return err;
5442 }
5443
5444 queue_work(adapter->wq, &adapter->reset_task);
5445
5446 netif_device_attach(adapter->netdev);
5447
5448 return err;
5449 }
5450
5451 /**
5452 * iavf_remove - Device Removal Routine
5453 * @pdev: PCI device information struct
5454 *
5455 * iavf_remove is called by the PCI subsystem to alert the driver
5456 * that it should release a PCI device. The could be caused by a
5457 * Hot-Plug event, or because the driver is going to be removed from
5458 * memory.
5459 **/
iavf_remove(struct pci_dev * pdev)5460 static void iavf_remove(struct pci_dev *pdev)
5461 {
5462 struct iavf_fdir_fltr *fdir, *fdirtmp;
5463 struct iavf_vlan_filter *vlf, *vlftmp;
5464 struct iavf_cloud_filter *cf, *cftmp;
5465 struct iavf_adv_rss *rss, *rsstmp;
5466 struct iavf_mac_filter *f, *ftmp;
5467 struct iavf_adapter *adapter;
5468 struct net_device *netdev;
5469 struct iavf_hw *hw;
5470
5471 /* Don't proceed with remove if netdev is already freed */
5472 netdev = pci_get_drvdata(pdev);
5473 if (!netdev)
5474 return;
5475
5476 adapter = iavf_pdev_to_adapter(pdev);
5477 hw = &adapter->hw;
5478
5479 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5480 return;
5481
5482 /* Wait until port initialization is complete.
5483 * There are flows where register/unregister netdev may race.
5484 */
5485 while (1) {
5486 mutex_lock(&adapter->crit_lock);
5487 if (adapter->state == __IAVF_RUNNING ||
5488 adapter->state == __IAVF_DOWN ||
5489 adapter->state == __IAVF_INIT_FAILED) {
5490 mutex_unlock(&adapter->crit_lock);
5491 break;
5492 }
5493 /* Simply return if we already went through iavf_shutdown */
5494 if (adapter->state == __IAVF_REMOVE) {
5495 mutex_unlock(&adapter->crit_lock);
5496 return;
5497 }
5498
5499 mutex_unlock(&adapter->crit_lock);
5500 usleep_range(500, 1000);
5501 }
5502 cancel_delayed_work_sync(&adapter->watchdog_task);
5503 cancel_work_sync(&adapter->finish_config);
5504
5505 if (netdev->reg_state == NETREG_REGISTERED)
5506 unregister_netdev(netdev);
5507
5508 netdev_lock(netdev);
5509 mutex_lock(&adapter->crit_lock);
5510 dev_info(&adapter->pdev->dev, "Removing device\n");
5511 iavf_change_state(adapter, __IAVF_REMOVE);
5512
5513 iavf_request_reset(adapter);
5514 msleep(50);
5515 /* If the FW isn't responding, kick it once, but only once. */
5516 if (!iavf_asq_done(hw)) {
5517 iavf_request_reset(adapter);
5518 msleep(50);
5519 }
5520
5521 iavf_misc_irq_disable(adapter);
5522 /* Shut down all the garbage mashers on the detention level */
5523 cancel_work_sync(&adapter->reset_task);
5524 cancel_delayed_work_sync(&adapter->watchdog_task);
5525 cancel_work_sync(&adapter->adminq_task);
5526
5527 adapter->aq_required = 0;
5528 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5529
5530 iavf_free_all_tx_resources(adapter);
5531 iavf_free_all_rx_resources(adapter);
5532 iavf_free_misc_irq(adapter);
5533 iavf_free_interrupt_scheme(adapter);
5534
5535 iavf_free_rss(adapter);
5536
5537 if (hw->aq.asq.count)
5538 iavf_shutdown_adminq(hw);
5539
5540 /* destroy the locks only once, here */
5541 mutex_destroy(&hw->aq.arq_mutex);
5542 mutex_destroy(&hw->aq.asq_mutex);
5543 mutex_unlock(&adapter->crit_lock);
5544 mutex_destroy(&adapter->crit_lock);
5545 netdev_unlock(netdev);
5546
5547 iounmap(hw->hw_addr);
5548 pci_release_regions(pdev);
5549 kfree(adapter->vf_res);
5550 spin_lock_bh(&adapter->mac_vlan_list_lock);
5551 /* If we got removed before an up/down sequence, we've got a filter
5552 * hanging out there that we need to get rid of.
5553 */
5554 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5555 list_del(&f->list);
5556 kfree(f);
5557 }
5558 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5559 list) {
5560 list_del(&vlf->list);
5561 kfree(vlf);
5562 }
5563
5564 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5565
5566 spin_lock_bh(&adapter->cloud_filter_list_lock);
5567 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5568 list_del(&cf->list);
5569 kfree(cf);
5570 }
5571 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5572
5573 spin_lock_bh(&adapter->fdir_fltr_lock);
5574 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5575 list_del(&fdir->list);
5576 kfree(fdir);
5577 }
5578 spin_unlock_bh(&adapter->fdir_fltr_lock);
5579
5580 spin_lock_bh(&adapter->adv_rss_lock);
5581 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5582 list) {
5583 list_del(&rss->list);
5584 kfree(rss);
5585 }
5586 spin_unlock_bh(&adapter->adv_rss_lock);
5587
5588 destroy_workqueue(adapter->wq);
5589
5590 pci_set_drvdata(pdev, NULL);
5591
5592 free_netdev(netdev);
5593
5594 pci_disable_device(pdev);
5595 }
5596
5597 /**
5598 * iavf_shutdown - Shutdown the device in preparation for a reboot
5599 * @pdev: pci device structure
5600 **/
iavf_shutdown(struct pci_dev * pdev)5601 static void iavf_shutdown(struct pci_dev *pdev)
5602 {
5603 iavf_remove(pdev);
5604
5605 if (system_state == SYSTEM_POWER_OFF)
5606 pci_set_power_state(pdev, PCI_D3hot);
5607 }
5608
5609 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5610
5611 static struct pci_driver iavf_driver = {
5612 .name = iavf_driver_name,
5613 .id_table = iavf_pci_tbl,
5614 .probe = iavf_probe,
5615 .remove = iavf_remove,
5616 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5617 .shutdown = iavf_shutdown,
5618 };
5619
5620 /**
5621 * iavf_init_module - Driver Registration Routine
5622 *
5623 * iavf_init_module is the first routine called when the driver is
5624 * loaded. All it does is register with the PCI subsystem.
5625 **/
iavf_init_module(void)5626 static int __init iavf_init_module(void)
5627 {
5628 pr_info("iavf: %s\n", iavf_driver_string);
5629
5630 pr_info("%s\n", iavf_copyright);
5631
5632 return pci_register_driver(&iavf_driver);
5633 }
5634
5635 module_init(iavf_init_module);
5636
5637 /**
5638 * iavf_exit_module - Driver Exit Cleanup Routine
5639 *
5640 * iavf_exit_module is called just before the driver is removed
5641 * from memory.
5642 **/
iavf_exit_module(void)5643 static void __exit iavf_exit_module(void)
5644 {
5645 pci_unregister_driver(&iavf_driver);
5646 }
5647
5648 module_exit(iavf_exit_module);
5649
5650 /* iavf_main.c */
5651