1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/gro.h>
20 #include <net/ip6_checksum.h>
21 #include <net/page_pool/helpers.h>
22 #include <net/pkt_cls.h>
23 #include <net/pkt_sched.h>
24 #include <net/tcp.h>
25 #include <net/vxlan.h>
26 #include <net/geneve.h>
27
28 #include "hnae3.h"
29 #include "hns3_enet.h"
30 /* All hns3 tracepoints are defined by the include below, which
31 * must be included exactly once across the whole kernel with
32 * CREATE_TRACE_POINTS defined
33 */
34 #define CREATE_TRACE_POINTS
35 #include "hns3_trace.h"
36
37 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift))
38 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
39
40 #define hns3_rl_err(fmt, ...) \
41 do { \
42 if (net_ratelimit()) \
43 netdev_err(fmt, ##__VA_ARGS__); \
44 } while (0)
45
46 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
47
48 static const char hns3_driver_name[] = "hns3";
49 static const char hns3_driver_string[] =
50 "Hisilicon Ethernet Network Driver for Hip08 Family";
51 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
52 static struct hnae3_client client;
53
54 static int debug = -1;
55 module_param(debug, int, 0);
56 MODULE_PARM_DESC(debug, " Network interface message level setting");
57
58 static unsigned int tx_sgl = 1;
59 module_param(tx_sgl, uint, 0600);
60 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
61
62 static bool page_pool_enabled = true;
63 module_param(page_pool_enabled, bool, 0400);
64
65 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \
66 sizeof(struct sg_table))
67 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
68 dma_get_cache_alignment())
69
70 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
71 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
72
73 #define HNS3_INNER_VLAN_TAG 1
74 #define HNS3_OUTER_VLAN_TAG 2
75
76 #define HNS3_MIN_TX_LEN 33U
77 #define HNS3_MIN_TUN_PKT_LEN 65U
78
79 /* hns3_pci_tbl - PCI Device ID Table
80 *
81 * Last entry must be all 0s
82 *
83 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
84 * Class, Class Mask, private data (not used) }
85 */
86 static const struct pci_device_id hns3_pci_tbl[] = {
87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
89 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
90 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
91 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
92 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
94 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
96 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
98 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
100 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
102 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
103 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
104 /* required last entry */
105 {0,}
106 };
107 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
108
109 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
110 { ptype, \
111 l, \
112 CHECKSUM_##s, \
113 HNS3_L3_TYPE_##t, \
114 1, \
115 h}
116
117 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
118 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
119 PKT_HASH_TYPE_NONE }
120
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122 HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
124 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
125 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
126 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
127 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
130 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
131 HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132 HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133 HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134 HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135 HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136 HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137 HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
139 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
140 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
142 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
144 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
145 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
146 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
148 HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149 HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150 HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
152 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
154 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
156 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
159 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160 HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
162 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
164 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
167 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168 HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169 HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170 HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171 HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172 HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173 HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174 HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175 HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176 HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177 HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178 HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179 HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180 HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181 HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182 HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183 HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184 HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185 HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186 HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187 HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188 HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189 HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190 HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191 HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192 HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193 HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194 HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195 HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196 HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197 HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198 HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199 HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200 HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201 HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202 HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203 HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204 HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205 HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206 HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207 HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208 HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209 HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210 HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211 HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212 HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213 HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214 HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215 HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216 HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217 HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218 HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219 HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220 HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221 HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222 HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223 HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224 HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225 HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226 HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227 HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228 HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229 HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230 HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231 HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232 HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
234 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
236 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
238 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
239 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
240 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
242 HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243 HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244 HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
246 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
248 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
250 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
253 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254 HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
256 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
258 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
261 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262 HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263 HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264 HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265 HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266 HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267 HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268 HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269 HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270 HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271 HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272 HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273 HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274 HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275 HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276 HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277 HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278 HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279 HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280 HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281 HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282 HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283 HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284 HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285 HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286 HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287 HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288 HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289 HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290 HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291 HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292 HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293 HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294 HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295 HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296 HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297 HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298 HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299 HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300 HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301 HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302 HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303 HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304 HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305 HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306 HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307 HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308 HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309 HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310 HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311 HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312 HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313 HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314 HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315 HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316 HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317 HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318 HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319 HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320 HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321 HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322 HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323 HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324 HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325 HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326 HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327 HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328 HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329 HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330 HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331 HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332 HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333 HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334 HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335 HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336 HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337 HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338 HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339 HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340 HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341 HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342 HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343 HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344 HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345 HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346 HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347 HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348 HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349 HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350 HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351 HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352 HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353 HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354 HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355 HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356 HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357 HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358 HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359 HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360 HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361 HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362 HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363 HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364 HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365 HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366 HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367 HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368 HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369 HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370 HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371 HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372 HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373 HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374 HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375 HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376 HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377 HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379
380 #define HNS3_INVALID_PTYPE \
381 ARRAY_SIZE(hns3_rx_ptype_tbl)
382
hns3_irq_handle(int irq,void * vector)383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385 struct hns3_enet_tqp_vector *tqp_vector = vector;
386
387 napi_schedule_irqoff(&tqp_vector->napi);
388 tqp_vector->event_cnt++;
389
390 return IRQ_HANDLED;
391 }
392
hns3_nic_uninit_irq(struct hns3_nic_priv * priv)393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395 struct hns3_enet_tqp_vector *tqp_vectors;
396 unsigned int i;
397
398 for (i = 0; i < priv->vector_num; i++) {
399 tqp_vectors = &priv->tqp_vector[i];
400
401 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402 continue;
403
404 /* clear the affinity mask */
405 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406
407 /* release the irq resource */
408 free_irq(tqp_vectors->vector_irq, tqp_vectors);
409 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410 }
411 }
412
hns3_nic_init_irq(struct hns3_nic_priv * priv)413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415 struct hns3_enet_tqp_vector *tqp_vectors;
416 int txrx_int_idx = 0;
417 int rx_int_idx = 0;
418 int tx_int_idx = 0;
419 unsigned int i;
420 int ret;
421
422 for (i = 0; i < priv->vector_num; i++) {
423 tqp_vectors = &priv->tqp_vector[i];
424
425 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426 continue;
427
428 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430 "%s-%s-%s-%d", hns3_driver_name,
431 pci_name(priv->ae_handle->pdev),
432 "TxRx", txrx_int_idx++);
433 txrx_int_idx++;
434 } else if (tqp_vectors->rx_group.ring) {
435 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436 "%s-%s-%s-%d", hns3_driver_name,
437 pci_name(priv->ae_handle->pdev),
438 "Rx", rx_int_idx++);
439 } else if (tqp_vectors->tx_group.ring) {
440 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441 "%s-%s-%s-%d", hns3_driver_name,
442 pci_name(priv->ae_handle->pdev),
443 "Tx", tx_int_idx++);
444 } else {
445 /* Skip this unused q_vector */
446 continue;
447 }
448
449 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450
451 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453 tqp_vectors->name, tqp_vectors);
454 if (ret) {
455 netdev_err(priv->netdev, "request irq(%d) fail\n",
456 tqp_vectors->vector_irq);
457 hns3_nic_uninit_irq(priv);
458 return ret;
459 }
460
461 irq_set_affinity_hint(tqp_vectors->vector_irq,
462 &tqp_vectors->affinity_mask);
463
464 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465 }
466
467 return 0;
468 }
469
hns3_mask_vector_irq(struct hns3_enet_tqp_vector * tqp_vector,u32 mask_en)470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471 u32 mask_en)
472 {
473 writel(mask_en, tqp_vector->mask_addr);
474 }
475
hns3_vector_enable(struct hns3_enet_tqp_vector * tqp_vector)476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478 napi_enable(&tqp_vector->napi);
479 enable_irq(tqp_vector->vector_irq);
480
481 /* enable vector */
482 hns3_mask_vector_irq(tqp_vector, 1);
483 }
484
hns3_vector_disable(struct hns3_enet_tqp_vector * tqp_vector)485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487 /* disable vector */
488 hns3_mask_vector_irq(tqp_vector, 0);
489
490 disable_irq(tqp_vector->vector_irq);
491 napi_disable(&tqp_vector->napi);
492 cancel_work_sync(&tqp_vector->rx_group.dim.work);
493 cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495
hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector * tqp_vector,u32 rl_value)496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497 u32 rl_value)
498 {
499 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500
501 /* this defines the configuration for RL (Interrupt Rate Limiter).
502 * Rl defines rate of interrupts i.e. number of interrupts-per-second
503 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504 */
505 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506 !tqp_vector->rx_group.coal.adapt_enable)
507 /* According to the hardware, the range of rl_reg is
508 * 0-59 and the unit is 4.
509 */
510 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
511
512 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514
hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516 u32 gl_value)
517 {
518 u32 new_val;
519
520 if (tqp_vector->rx_group.coal.unit_1us)
521 new_val = gl_value | HNS3_INT_GL_1US;
522 else
523 new_val = hns3_gl_usec_to_reg(gl_value);
524
525 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527
hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529 u32 gl_value)
530 {
531 u32 new_val;
532
533 if (tqp_vector->tx_group.coal.unit_1us)
534 new_val = gl_value | HNS3_INT_GL_1US;
535 else
536 new_val = hns3_gl_usec_to_reg(gl_value);
537
538 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540
hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector * tqp_vector,u32 ql_value)541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542 u32 ql_value)
543 {
544 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546
hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector * tqp_vector,u32 ql_value)547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548 u32 ql_value)
549 {
550 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552
hns3_vector_coalesce_init(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554 struct hns3_nic_priv *priv)
555 {
556 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561
562 tx_coal->adapt_enable = ptx_coal->adapt_enable;
563 rx_coal->adapt_enable = prx_coal->adapt_enable;
564
565 tx_coal->int_gl = ptx_coal->int_gl;
566 rx_coal->int_gl = prx_coal->int_gl;
567
568 rx_coal->flow_level = prx_coal->flow_level;
569 tx_coal->flow_level = ptx_coal->flow_level;
570
571 /* device version above V3(include V3), GL can configure 1us
572 * unit, so uses 1us unit.
573 */
574 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575 tx_coal->unit_1us = 1;
576 rx_coal->unit_1us = 1;
577 }
578
579 if (ae_dev->dev_specs.int_ql_max) {
580 tx_coal->ql_enable = 1;
581 rx_coal->ql_enable = 1;
582 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584 tx_coal->int_ql = ptx_coal->int_ql;
585 rx_coal->int_ql = prx_coal->int_ql;
586 }
587 }
588
589 static void
hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591 struct hns3_nic_priv *priv)
592 {
593 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595 struct hnae3_handle *h = priv->ae_handle;
596
597 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600
601 if (tx_coal->ql_enable)
602 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603
604 if (rx_coal->ql_enable)
605 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607
hns3_nic_set_real_num_queue(struct net_device * netdev)608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610 struct hnae3_handle *h = hns3_get_handle(netdev);
611 struct hnae3_knic_private_info *kinfo = &h->kinfo;
612 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613 unsigned int queue_size = kinfo->num_tqps;
614 int i, ret;
615
616 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617 netdev_reset_tc(netdev);
618 } else {
619 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620 if (ret) {
621 netdev_err(netdev,
622 "netdev_set_num_tc fail, ret=%d!\n", ret);
623 return ret;
624 }
625
626 for (i = 0; i < tc_info->num_tc; i++)
627 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628 tc_info->tqp_offset[i]);
629 }
630
631 ret = netif_set_real_num_tx_queues(netdev, queue_size);
632 if (ret) {
633 netdev_err(netdev,
634 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635 return ret;
636 }
637
638 ret = netif_set_real_num_rx_queues(netdev, queue_size);
639 if (ret) {
640 netdev_err(netdev,
641 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642 return ret;
643 }
644
645 return 0;
646 }
647
hns3_get_max_available_channels(struct hnae3_handle * h)648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650 u16 alloc_tqps, max_rss_size, rss_size;
651
652 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654
655 return min_t(u16, rss_size, max_rss_size);
656 }
657
hns3_tqp_enable(struct hnae3_queue * tqp)658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660 u32 rcb_reg;
661
662 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663 rcb_reg |= BIT(HNS3_RING_EN_B);
664 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666
hns3_tqp_disable(struct hnae3_queue * tqp)667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669 u32 rcb_reg;
670
671 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672 rcb_reg &= ~BIT(HNS3_RING_EN_B);
673 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675
hns3_free_rx_cpu_rmap(struct net_device * netdev)676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680 netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683
hns3_set_rx_cpu_rmap(struct net_device * netdev)684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687 struct hns3_nic_priv *priv = netdev_priv(netdev);
688 struct hns3_enet_tqp_vector *tqp_vector;
689 int i, ret;
690
691 if (!netdev->rx_cpu_rmap) {
692 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693 if (!netdev->rx_cpu_rmap)
694 return -ENOMEM;
695 }
696
697 for (i = 0; i < priv->vector_num; i++) {
698 tqp_vector = &priv->tqp_vector[i];
699 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700 tqp_vector->vector_irq);
701 if (ret) {
702 hns3_free_rx_cpu_rmap(netdev);
703 return ret;
704 }
705 }
706 #endif
707 return 0;
708 }
709
hns3_nic_net_up(struct net_device * netdev)710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712 struct hns3_nic_priv *priv = netdev_priv(netdev);
713 struct hnae3_handle *h = priv->ae_handle;
714 int i, j;
715 int ret;
716
717 ret = hns3_nic_reset_all_ring(h);
718 if (ret)
719 return ret;
720
721 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722
723 /* enable the vectors */
724 for (i = 0; i < priv->vector_num; i++)
725 hns3_vector_enable(&priv->tqp_vector[i]);
726
727 /* enable rcb */
728 for (j = 0; j < h->kinfo.num_tqps; j++)
729 hns3_tqp_enable(h->kinfo.tqp[j]);
730
731 /* start the ae_dev */
732 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733 if (ret) {
734 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735 while (j--)
736 hns3_tqp_disable(h->kinfo.tqp[j]);
737
738 for (j = i - 1; j >= 0; j--)
739 hns3_vector_disable(&priv->tqp_vector[j]);
740 }
741
742 return ret;
743 }
744
hns3_config_xps(struct hns3_nic_priv * priv)745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747 int i;
748
749 for (i = 0; i < priv->vector_num; i++) {
750 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752
753 while (ring) {
754 int ret;
755
756 ret = netif_set_xps_queue(priv->netdev,
757 &tqp_vector->affinity_mask,
758 ring->tqp->tqp_index);
759 if (ret)
760 netdev_warn(priv->netdev,
761 "set xps queue failed: %d", ret);
762
763 ring = ring->next;
764 }
765 }
766 }
767
hns3_nic_net_open(struct net_device * netdev)768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770 struct hns3_nic_priv *priv = netdev_priv(netdev);
771 struct hnae3_handle *h = hns3_get_handle(netdev);
772 struct hnae3_knic_private_info *kinfo;
773 int i, ret;
774
775 if (hns3_nic_resetting(netdev))
776 return -EBUSY;
777
778 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779 netdev_warn(netdev, "net open repeatedly!\n");
780 return 0;
781 }
782
783 netif_carrier_off(netdev);
784
785 ret = hns3_nic_set_real_num_queue(netdev);
786 if (ret)
787 return ret;
788
789 ret = hns3_nic_net_up(netdev);
790 if (ret) {
791 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792 return ret;
793 }
794
795 kinfo = &h->kinfo;
796 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798
799 if (h->ae_algo->ops->set_timer_task)
800 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801
802 hns3_config_xps(priv);
803
804 netif_dbg(h, drv, netdev, "net open\n");
805
806 return 0;
807 }
808
hns3_reset_tx_queue(struct hnae3_handle * h)809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811 struct net_device *ndev = h->kinfo.netdev;
812 struct hns3_nic_priv *priv = netdev_priv(ndev);
813 struct netdev_queue *dev_queue;
814 u32 i;
815
816 for (i = 0; i < h->kinfo.num_tqps; i++) {
817 dev_queue = netdev_get_tx_queue(ndev,
818 priv->ring[i].queue_index);
819 netdev_tx_reset_queue(dev_queue);
820 }
821 }
822
hns3_nic_net_down(struct net_device * netdev)823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825 struct hns3_nic_priv *priv = netdev_priv(netdev);
826 struct hnae3_handle *h = hns3_get_handle(netdev);
827 const struct hnae3_ae_ops *ops;
828 int i;
829
830 /* disable vectors */
831 for (i = 0; i < priv->vector_num; i++)
832 hns3_vector_disable(&priv->tqp_vector[i]);
833
834 /* disable rcb */
835 for (i = 0; i < h->kinfo.num_tqps; i++)
836 hns3_tqp_disable(h->kinfo.tqp[i]);
837
838 /* stop ae_dev */
839 ops = priv->ae_handle->ae_algo->ops;
840 if (ops->stop)
841 ops->stop(priv->ae_handle);
842
843 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844 * during reset process, because driver may not be able
845 * to disable the ring through firmware when downing the netdev.
846 */
847 if (!hns3_nic_resetting(netdev))
848 hns3_clear_all_ring(priv->ae_handle, false);
849
850 hns3_reset_tx_queue(priv->ae_handle);
851 }
852
hns3_nic_net_stop(struct net_device * netdev)853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855 struct hns3_nic_priv *priv = netdev_priv(netdev);
856 struct hnae3_handle *h = hns3_get_handle(netdev);
857
858 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859 return 0;
860
861 netif_dbg(h, drv, netdev, "net stop\n");
862
863 if (h->ae_algo->ops->set_timer_task)
864 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865
866 netif_carrier_off(netdev);
867 netif_tx_disable(netdev);
868
869 hns3_nic_net_down(netdev);
870
871 return 0;
872 }
873
hns3_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)874 static int hns3_nic_uc_sync(struct net_device *netdev,
875 const unsigned char *addr)
876 {
877 struct hnae3_handle *h = hns3_get_handle(netdev);
878
879 if (h->ae_algo->ops->add_uc_addr)
880 return h->ae_algo->ops->add_uc_addr(h, addr);
881
882 return 0;
883 }
884
hns3_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886 const unsigned char *addr)
887 {
888 struct hnae3_handle *h = hns3_get_handle(netdev);
889
890 /* need ignore the request of removing device address, because
891 * we store the device address and other addresses of uc list
892 * in the function's mac filter list.
893 */
894 if (ether_addr_equal(addr, netdev->dev_addr))
895 return 0;
896
897 if (h->ae_algo->ops->rm_uc_addr)
898 return h->ae_algo->ops->rm_uc_addr(h, addr);
899
900 return 0;
901 }
902
hns3_nic_mc_sync(struct net_device * netdev,const unsigned char * addr)903 static int hns3_nic_mc_sync(struct net_device *netdev,
904 const unsigned char *addr)
905 {
906 struct hnae3_handle *h = hns3_get_handle(netdev);
907
908 if (h->ae_algo->ops->add_mc_addr)
909 return h->ae_algo->ops->add_mc_addr(h, addr);
910
911 return 0;
912 }
913
hns3_nic_mc_unsync(struct net_device * netdev,const unsigned char * addr)914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915 const unsigned char *addr)
916 {
917 struct hnae3_handle *h = hns3_get_handle(netdev);
918
919 if (h->ae_algo->ops->rm_mc_addr)
920 return h->ae_algo->ops->rm_mc_addr(h, addr);
921
922 return 0;
923 }
924
hns3_get_netdev_flags(struct net_device * netdev)925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927 u8 flags = 0;
928
929 if (netdev->flags & IFF_PROMISC)
930 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931 else if (netdev->flags & IFF_ALLMULTI)
932 flags = HNAE3_USER_MPE;
933
934 return flags;
935 }
936
hns3_nic_set_rx_mode(struct net_device * netdev)937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939 struct hnae3_handle *h = hns3_get_handle(netdev);
940 u8 new_flags;
941
942 new_flags = hns3_get_netdev_flags(netdev);
943
944 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946
947 /* User mode Promisc mode enable and vlan filtering is disabled to
948 * let all packets in.
949 */
950 h->netdev_flags = new_flags;
951 hns3_request_update_promisc_mode(h);
952 }
953
hns3_request_update_promisc_mode(struct hnae3_handle * handle)954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956 const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957
958 if (ops->request_update_promisc_mode)
959 ops->request_update_promisc_mode(handle);
960 }
961
hns3_tx_spare_space(struct hns3_enet_ring * ring)962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964 struct hns3_tx_spare *tx_spare = ring->tx_spare;
965 u32 ntc, ntu;
966
967 /* This smp_load_acquire() pairs with smp_store_release() in
968 * hns3_tx_spare_update() called in tx desc cleaning process.
969 */
970 ntc = smp_load_acquire(&tx_spare->last_to_clean);
971 ntu = tx_spare->next_to_use;
972
973 if (ntc > ntu)
974 return ntc - ntu - 1;
975
976 /* The free tx buffer is divided into two part, so pick the
977 * larger one.
978 */
979 return max(ntc, tx_spare->len - ntu) - 1;
980 }
981
hns3_tx_spare_update(struct hns3_enet_ring * ring)982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984 struct hns3_tx_spare *tx_spare = ring->tx_spare;
985
986 if (!tx_spare ||
987 tx_spare->last_to_clean == tx_spare->next_to_clean)
988 return;
989
990 /* This smp_store_release() pairs with smp_load_acquire() in
991 * hns3_tx_spare_space() called in xmit process.
992 */
993 smp_store_release(&tx_spare->last_to_clean,
994 tx_spare->next_to_clean);
995 }
996
hns3_can_use_tx_bounce(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 space)997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998 struct sk_buff *skb,
999 u32 space)
1000 {
1001 u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002 skb_headlen(skb);
1003
1004 if (len > ring->tx_copybreak)
1005 return false;
1006
1007 if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008 hns3_ring_stats_update(ring, tx_spare_full);
1009 return false;
1010 }
1011
1012 return true;
1013 }
1014
hns3_can_use_tx_sgl(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 space)1015 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1016 struct sk_buff *skb,
1017 u32 space)
1018 {
1019 if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1020 (!skb_has_frag_list(skb) &&
1021 skb_shinfo(skb)->nr_frags < tx_sgl))
1022 return false;
1023
1024 if (space < HNS3_MAX_SGL_SIZE) {
1025 hns3_ring_stats_update(ring, tx_spare_full);
1026 return false;
1027 }
1028
1029 return true;
1030 }
1031
hns3_init_tx_spare_buffer(struct hns3_enet_ring * ring)1032 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1033 {
1034 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1035 struct hns3_tx_spare *tx_spare;
1036 struct page *page;
1037 dma_addr_t dma;
1038 int order;
1039
1040 if (!alloc_size)
1041 return;
1042
1043 order = get_order(alloc_size);
1044 if (order > MAX_PAGE_ORDER) {
1045 if (net_ratelimit())
1046 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1047 return;
1048 }
1049
1050 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051 GFP_KERNEL);
1052 if (!tx_spare) {
1053 /* The driver still work without the tx spare buffer */
1054 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055 goto devm_kzalloc_error;
1056 }
1057
1058 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059 GFP_KERNEL, order);
1060 if (!page) {
1061 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062 goto alloc_pages_error;
1063 }
1064
1065 dma = dma_map_page(ring_to_dev(ring), page, 0,
1066 PAGE_SIZE << order, DMA_TO_DEVICE);
1067 if (dma_mapping_error(ring_to_dev(ring), dma)) {
1068 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1069 goto dma_mapping_error;
1070 }
1071
1072 tx_spare->dma = dma;
1073 tx_spare->buf = page_address(page);
1074 tx_spare->len = PAGE_SIZE << order;
1075 ring->tx_spare = tx_spare;
1076 return;
1077
1078 dma_mapping_error:
1079 put_page(page);
1080 alloc_pages_error:
1081 devm_kfree(ring_to_dev(ring), tx_spare);
1082 devm_kzalloc_error:
1083 ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1084 }
1085
1086 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1087 * before calling below function to allocate tx buffer.
1088 */
hns3_tx_spare_alloc(struct hns3_enet_ring * ring,unsigned int size,dma_addr_t * dma,u32 * cb_len)1089 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1090 unsigned int size, dma_addr_t *dma,
1091 u32 *cb_len)
1092 {
1093 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1094 u32 ntu = tx_spare->next_to_use;
1095
1096 size = ALIGN(size, dma_get_cache_alignment());
1097 *cb_len = size;
1098
1099 /* Tx spare buffer wraps back here because the end of
1100 * freed tx buffer is not enough.
1101 */
1102 if (ntu + size > tx_spare->len) {
1103 *cb_len += (tx_spare->len - ntu);
1104 ntu = 0;
1105 }
1106
1107 tx_spare->next_to_use = ntu + size;
1108 if (tx_spare->next_to_use == tx_spare->len)
1109 tx_spare->next_to_use = 0;
1110
1111 *dma = tx_spare->dma + ntu;
1112
1113 return tx_spare->buf + ntu;
1114 }
1115
hns3_tx_spare_rollback(struct hns3_enet_ring * ring,u32 len)1116 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1117 {
1118 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1119
1120 if (len > tx_spare->next_to_use) {
1121 len -= tx_spare->next_to_use;
1122 tx_spare->next_to_use = tx_spare->len - len;
1123 } else {
1124 tx_spare->next_to_use -= len;
1125 }
1126 }
1127
hns3_tx_spare_reclaim_cb(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)1128 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1129 struct hns3_desc_cb *cb)
1130 {
1131 struct hns3_tx_spare *tx_spare = ring->tx_spare;
1132 u32 ntc = tx_spare->next_to_clean;
1133 u32 len = cb->length;
1134
1135 tx_spare->next_to_clean += len;
1136
1137 if (tx_spare->next_to_clean >= tx_spare->len) {
1138 tx_spare->next_to_clean -= tx_spare->len;
1139
1140 if (tx_spare->next_to_clean) {
1141 ntc = 0;
1142 len = tx_spare->next_to_clean;
1143 }
1144 }
1145
1146 /* This tx spare buffer is only really reclaimed after calling
1147 * hns3_tx_spare_update(), so it is still safe to use the info in
1148 * the tx buffer to do the dma sync or sg unmapping after
1149 * tx_spare->next_to_clean is moved forword.
1150 */
1151 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1152 dma_addr_t dma = tx_spare->dma + ntc;
1153
1154 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1155 DMA_TO_DEVICE);
1156 } else {
1157 struct sg_table *sgt = tx_spare->buf + ntc;
1158
1159 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1160 DMA_TO_DEVICE);
1161 }
1162 }
1163
hns3_set_tso(struct sk_buff * skb,u32 * paylen_fdop_ol4cs,u16 * mss,u32 * type_cs_vlan_tso,u32 * send_bytes)1164 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1165 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1166 {
1167 u32 l4_offset, hdr_len;
1168 union l3_hdr_info l3;
1169 union l4_hdr_info l4;
1170 u32 l4_paylen;
1171 int ret;
1172
1173 if (!skb_is_gso(skb))
1174 return 0;
1175
1176 ret = skb_cow_head(skb, 0);
1177 if (unlikely(ret < 0))
1178 return ret;
1179
1180 l3.hdr = skb_network_header(skb);
1181 l4.hdr = skb_transport_header(skb);
1182
1183 /* Software should clear the IPv4's checksum field when tso is
1184 * needed.
1185 */
1186 if (l3.v4->version == 4)
1187 l3.v4->check = 0;
1188
1189 /* tunnel packet */
1190 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1191 SKB_GSO_GRE_CSUM |
1192 SKB_GSO_UDP_TUNNEL |
1193 SKB_GSO_UDP_TUNNEL_CSUM)) {
1194 /* reset l3&l4 pointers from outer to inner headers */
1195 l3.hdr = skb_inner_network_header(skb);
1196 l4.hdr = skb_inner_transport_header(skb);
1197
1198 /* Software should clear the IPv4's checksum field when
1199 * tso is needed.
1200 */
1201 if (l3.v4->version == 4)
1202 l3.v4->check = 0;
1203 }
1204
1205 /* normal or tunnel packet */
1206 l4_offset = l4.hdr - skb->data;
1207
1208 /* remove payload length from inner pseudo checksum when tso */
1209 l4_paylen = skb->len - l4_offset;
1210
1211 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1212 hdr_len = sizeof(*l4.udp) + l4_offset;
1213 csum_replace_by_diff(&l4.udp->check,
1214 (__force __wsum)htonl(l4_paylen));
1215 } else {
1216 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1217 csum_replace_by_diff(&l4.tcp->check,
1218 (__force __wsum)htonl(l4_paylen));
1219 }
1220
1221 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1222
1223 /* find the txbd field values */
1224 *paylen_fdop_ol4cs = skb->len - hdr_len;
1225 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1226
1227 /* offload outer UDP header checksum */
1228 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1229 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1230
1231 /* get MSS for TSO */
1232 *mss = skb_shinfo(skb)->gso_size;
1233
1234 trace_hns3_tso(skb);
1235
1236 return 0;
1237 }
1238
hns3_get_l4_protocol(struct sk_buff * skb,u8 * ol4_proto,u8 * il4_proto)1239 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1240 u8 *il4_proto)
1241 {
1242 union l3_hdr_info l3;
1243 unsigned char *l4_hdr;
1244 unsigned char *exthdr;
1245 u8 l4_proto_tmp;
1246 __be16 frag_off;
1247
1248 /* find outer header point */
1249 l3.hdr = skb_network_header(skb);
1250 l4_hdr = skb_transport_header(skb);
1251
1252 if (skb->protocol == htons(ETH_P_IPV6)) {
1253 exthdr = l3.hdr + sizeof(*l3.v6);
1254 l4_proto_tmp = l3.v6->nexthdr;
1255 if (l4_hdr != exthdr)
1256 ipv6_skip_exthdr(skb, exthdr - skb->data,
1257 &l4_proto_tmp, &frag_off);
1258 } else if (skb->protocol == htons(ETH_P_IP)) {
1259 l4_proto_tmp = l3.v4->protocol;
1260 } else {
1261 return -EINVAL;
1262 }
1263
1264 *ol4_proto = l4_proto_tmp;
1265
1266 /* tunnel packet */
1267 if (!skb->encapsulation) {
1268 *il4_proto = 0;
1269 return 0;
1270 }
1271
1272 /* find inner header point */
1273 l3.hdr = skb_inner_network_header(skb);
1274 l4_hdr = skb_inner_transport_header(skb);
1275
1276 if (l3.v6->version == 6) {
1277 exthdr = l3.hdr + sizeof(*l3.v6);
1278 l4_proto_tmp = l3.v6->nexthdr;
1279 if (l4_hdr != exthdr)
1280 ipv6_skip_exthdr(skb, exthdr - skb->data,
1281 &l4_proto_tmp, &frag_off);
1282 } else if (l3.v4->version == 4) {
1283 l4_proto_tmp = l3.v4->protocol;
1284 }
1285
1286 *il4_proto = l4_proto_tmp;
1287
1288 return 0;
1289 }
1290
1291 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1292 * and it is udp packet, which has a dest port as the IANA assigned.
1293 * the hardware is expected to do the checksum offload, but the
1294 * hardware will not do the checksum offload when udp dest port is
1295 * 4789, 4790 or 6081.
1296 */
hns3_tunnel_csum_bug(struct sk_buff * skb)1297 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1298 {
1299 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1300 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1301 union l4_hdr_info l4;
1302
1303 /* device version above V3(include V3), the hardware can
1304 * do this checksum offload.
1305 */
1306 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1307 return false;
1308
1309 l4.hdr = skb_transport_header(skb);
1310
1311 if (!(!skb->encapsulation &&
1312 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1313 l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1314 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1315 return false;
1316
1317 return true;
1318 }
1319
hns3_set_outer_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u32 * ol_type_vlan_len_msec)1320 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1321 u32 *ol_type_vlan_len_msec)
1322 {
1323 u32 l2_len, l3_len, l4_len;
1324 unsigned char *il2_hdr;
1325 union l3_hdr_info l3;
1326 union l4_hdr_info l4;
1327
1328 l3.hdr = skb_network_header(skb);
1329 l4.hdr = skb_transport_header(skb);
1330
1331 /* compute OL2 header size, defined in 2 Bytes */
1332 l2_len = l3.hdr - skb->data;
1333 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1334
1335 /* compute OL3 header size, defined in 4 Bytes */
1336 l3_len = l4.hdr - l3.hdr;
1337 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1338
1339 il2_hdr = skb_inner_mac_header(skb);
1340 /* compute OL4 header size, defined in 4 Bytes */
1341 l4_len = il2_hdr - l4.hdr;
1342 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1343
1344 /* define outer network header type */
1345 if (skb->protocol == htons(ETH_P_IP)) {
1346 if (skb_is_gso(skb))
1347 hns3_set_field(*ol_type_vlan_len_msec,
1348 HNS3_TXD_OL3T_S,
1349 HNS3_OL3T_IPV4_CSUM);
1350 else
1351 hns3_set_field(*ol_type_vlan_len_msec,
1352 HNS3_TXD_OL3T_S,
1353 HNS3_OL3T_IPV4_NO_CSUM);
1354 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1355 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1356 HNS3_OL3T_IPV6);
1357 }
1358
1359 if (ol4_proto == IPPROTO_UDP)
1360 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1361 HNS3_TUN_MAC_IN_UDP);
1362 else if (ol4_proto == IPPROTO_GRE)
1363 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1364 HNS3_TUN_NVGRE);
1365 }
1366
hns3_set_l3_type(struct sk_buff * skb,union l3_hdr_info l3,u32 * type_cs_vlan_tso)1367 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1368 u32 *type_cs_vlan_tso)
1369 {
1370 if (l3.v4->version == 4) {
1371 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1372 HNS3_L3T_IPV4);
1373
1374 /* the stack computes the IP header already, the only time we
1375 * need the hardware to recompute it is in the case of TSO.
1376 */
1377 if (skb_is_gso(skb))
1378 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1379 } else if (l3.v6->version == 6) {
1380 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1381 HNS3_L3T_IPV6);
1382 }
1383 }
1384
hns3_set_l4_csum_length(struct sk_buff * skb,union l4_hdr_info l4,u32 l4_proto,u32 * type_cs_vlan_tso)1385 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1386 u32 l4_proto, u32 *type_cs_vlan_tso)
1387 {
1388 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1389 switch (l4_proto) {
1390 case IPPROTO_TCP:
1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1392 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1393 HNS3_L4T_TCP);
1394 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1395 l4.tcp->doff);
1396 break;
1397 case IPPROTO_UDP:
1398 if (hns3_tunnel_csum_bug(skb)) {
1399 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1400
1401 return ret ? ret : skb_checksum_help(skb);
1402 }
1403
1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1405 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1406 HNS3_L4T_UDP);
1407 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1408 (sizeof(struct udphdr) >> 2));
1409 break;
1410 case IPPROTO_SCTP:
1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1412 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1413 HNS3_L4T_SCTP);
1414 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1415 (sizeof(struct sctphdr) >> 2));
1416 break;
1417 default:
1418 /* drop the skb tunnel packet if hardware don't support,
1419 * because hardware can't calculate csum when TSO.
1420 */
1421 if (skb_is_gso(skb))
1422 return -EDOM;
1423
1424 /* the stack computes the IP header already,
1425 * driver calculate l4 checksum when not TSO.
1426 */
1427 return skb_checksum_help(skb);
1428 }
1429
1430 return 0;
1431 }
1432
hns3_set_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u8 il4_proto,u32 * type_cs_vlan_tso,u32 * ol_type_vlan_len_msec)1433 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1434 u8 il4_proto, u32 *type_cs_vlan_tso,
1435 u32 *ol_type_vlan_len_msec)
1436 {
1437 unsigned char *l2_hdr = skb->data;
1438 u32 l4_proto = ol4_proto;
1439 union l4_hdr_info l4;
1440 union l3_hdr_info l3;
1441 u32 l2_len, l3_len;
1442
1443 l4.hdr = skb_transport_header(skb);
1444 l3.hdr = skb_network_header(skb);
1445
1446 /* handle encapsulation skb */
1447 if (skb->encapsulation) {
1448 /* If this is a not UDP/GRE encapsulation skb */
1449 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1450 /* drop the skb tunnel packet if hardware don't support,
1451 * because hardware can't calculate csum when TSO.
1452 */
1453 if (skb_is_gso(skb))
1454 return -EDOM;
1455
1456 /* the stack computes the IP header already,
1457 * driver calculate l4 checksum when not TSO.
1458 */
1459 return skb_checksum_help(skb);
1460 }
1461
1462 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1463
1464 /* switch to inner header */
1465 l2_hdr = skb_inner_mac_header(skb);
1466 l3.hdr = skb_inner_network_header(skb);
1467 l4.hdr = skb_inner_transport_header(skb);
1468 l4_proto = il4_proto;
1469 }
1470
1471 hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1472
1473 /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1474 l2_len = l3.hdr - l2_hdr;
1475 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1476
1477 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1478 l3_len = l4.hdr - l3.hdr;
1479 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1480
1481 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1482 }
1483
hns3_handle_vtags(struct hns3_enet_ring * tx_ring,struct sk_buff * skb)1484 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1485 struct sk_buff *skb)
1486 {
1487 struct hnae3_handle *handle = tx_ring->tqp->handle;
1488 struct hnae3_ae_dev *ae_dev;
1489 struct vlan_ethhdr *vhdr;
1490 int rc;
1491
1492 if (!(skb->protocol == htons(ETH_P_8021Q) ||
1493 skb_vlan_tag_present(skb)))
1494 return 0;
1495
1496 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1497 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1498 * will cause RAS error.
1499 */
1500 ae_dev = pci_get_drvdata(handle->pdev);
1501 if (unlikely(skb_vlan_tagged_multi(skb) &&
1502 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1503 handle->port_base_vlan_state ==
1504 HNAE3_PORT_BASE_VLAN_ENABLE))
1505 return -EINVAL;
1506
1507 if (skb->protocol == htons(ETH_P_8021Q) &&
1508 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1509 /* When HW VLAN acceleration is turned off, and the stack
1510 * sets the protocol to 802.1q, the driver just need to
1511 * set the protocol to the encapsulated ethertype.
1512 */
1513 skb->protocol = vlan_get_protocol(skb);
1514 return 0;
1515 }
1516
1517 if (skb_vlan_tag_present(skb)) {
1518 /* Based on hw strategy, use out_vtag in two layer tag case,
1519 * and use inner_vtag in one tag case.
1520 */
1521 if (skb->protocol == htons(ETH_P_8021Q) &&
1522 handle->port_base_vlan_state ==
1523 HNAE3_PORT_BASE_VLAN_DISABLE)
1524 rc = HNS3_OUTER_VLAN_TAG;
1525 else
1526 rc = HNS3_INNER_VLAN_TAG;
1527
1528 skb->protocol = vlan_get_protocol(skb);
1529 return rc;
1530 }
1531
1532 rc = skb_cow_head(skb, 0);
1533 if (unlikely(rc < 0))
1534 return rc;
1535
1536 vhdr = skb_vlan_eth_hdr(skb);
1537 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1538 & VLAN_PRIO_MASK);
1539
1540 skb->protocol = vlan_get_protocol(skb);
1541 return 0;
1542 }
1543
1544 /* check if the hardware is capable of checksum offloading */
hns3_check_hw_tx_csum(struct sk_buff * skb)1545 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1546 {
1547 struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1548
1549 /* Kindly note, due to backward compatibility of the TX descriptor,
1550 * HW checksum of the non-IP packets and GSO packets is handled at
1551 * different place in the following code
1552 */
1553 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1554 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1555 return false;
1556
1557 return true;
1558 }
1559
1560 struct hns3_desc_param {
1561 u32 paylen_ol4cs;
1562 u32 ol_type_vlan_len_msec;
1563 u32 type_cs_vlan_tso;
1564 u16 mss_hw_csum;
1565 u16 inner_vtag;
1566 u16 out_vtag;
1567 };
1568
hns3_init_desc_data(struct sk_buff * skb,struct hns3_desc_param * pa)1569 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1570 {
1571 pa->paylen_ol4cs = skb->len;
1572 pa->ol_type_vlan_len_msec = 0;
1573 pa->type_cs_vlan_tso = 0;
1574 pa->mss_hw_csum = 0;
1575 pa->inner_vtag = 0;
1576 pa->out_vtag = 0;
1577 }
1578
hns3_handle_vlan_info(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_param * param)1579 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1580 struct sk_buff *skb,
1581 struct hns3_desc_param *param)
1582 {
1583 int ret;
1584
1585 ret = hns3_handle_vtags(ring, skb);
1586 if (unlikely(ret < 0)) {
1587 hns3_ring_stats_update(ring, tx_vlan_err);
1588 return ret;
1589 } else if (ret == HNS3_INNER_VLAN_TAG) {
1590 param->inner_vtag = skb_vlan_tag_get(skb);
1591 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1592 VLAN_PRIO_MASK;
1593 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1594 } else if (ret == HNS3_OUTER_VLAN_TAG) {
1595 param->out_vtag = skb_vlan_tag_get(skb);
1596 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1597 VLAN_PRIO_MASK;
1598 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1599 1);
1600 }
1601 return 0;
1602 }
1603
hns3_handle_csum_partial(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_cb * desc_cb,struct hns3_desc_param * param)1604 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1605 struct sk_buff *skb,
1606 struct hns3_desc_cb *desc_cb,
1607 struct hns3_desc_param *param)
1608 {
1609 u8 ol4_proto, il4_proto;
1610 int ret;
1611
1612 if (hns3_check_hw_tx_csum(skb)) {
1613 /* set checksum start and offset, defined in 2 Bytes */
1614 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1615 skb_checksum_start_offset(skb) >> 1);
1616 hns3_set_field(param->ol_type_vlan_len_msec,
1617 HNS3_TXD_CSUM_OFFSET_S,
1618 skb->csum_offset >> 1);
1619 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1620 return 0;
1621 }
1622
1623 skb_reset_mac_len(skb);
1624
1625 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1626 if (unlikely(ret < 0)) {
1627 hns3_ring_stats_update(ring, tx_l4_proto_err);
1628 return ret;
1629 }
1630
1631 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1632 ¶m->type_cs_vlan_tso,
1633 ¶m->ol_type_vlan_len_msec);
1634 if (unlikely(ret < 0)) {
1635 hns3_ring_stats_update(ring, tx_l2l3l4_err);
1636 return ret;
1637 }
1638
1639 ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum,
1640 ¶m->type_cs_vlan_tso, &desc_cb->send_bytes);
1641 if (unlikely(ret < 0)) {
1642 hns3_ring_stats_update(ring, tx_tso_err);
1643 return ret;
1644 }
1645 return 0;
1646 }
1647
hns3_fill_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc * desc,struct hns3_desc_cb * desc_cb)1648 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1649 struct sk_buff *skb, struct hns3_desc *desc,
1650 struct hns3_desc_cb *desc_cb)
1651 {
1652 struct hns3_desc_param param;
1653 int ret;
1654
1655 hns3_init_desc_data(skb, ¶m);
1656 ret = hns3_handle_vlan_info(ring, skb, ¶m);
1657 if (unlikely(ret < 0))
1658 return ret;
1659
1660 desc_cb->send_bytes = skb->len;
1661
1662 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1663 ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m);
1664 if (ret)
1665 return ret;
1666 }
1667
1668 /* Set txbd */
1669 desc->tx.ol_type_vlan_len_msec =
1670 cpu_to_le32(param.ol_type_vlan_len_msec);
1671 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1672 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1673 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1674 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1675 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1676
1677 return 0;
1678 }
1679
hns3_fill_desc(struct hns3_enet_ring * ring,dma_addr_t dma,unsigned int size)1680 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1681 unsigned int size)
1682 {
1683 #define HNS3_LIKELY_BD_NUM 1
1684
1685 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1686 unsigned int frag_buf_num;
1687 int k, sizeoflast;
1688
1689 if (likely(size <= HNS3_MAX_BD_SIZE)) {
1690 desc->addr = cpu_to_le64(dma);
1691 desc->tx.send_size = cpu_to_le16(size);
1692 desc->tx.bdtp_fe_sc_vld_ra_ri =
1693 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1694
1695 trace_hns3_tx_desc(ring, ring->next_to_use);
1696 ring_ptr_move_fw(ring, next_to_use);
1697 return HNS3_LIKELY_BD_NUM;
1698 }
1699
1700 frag_buf_num = hns3_tx_bd_count(size);
1701 sizeoflast = size % HNS3_MAX_BD_SIZE;
1702 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1703
1704 /* When frag size is bigger than hardware limit, split this frag */
1705 for (k = 0; k < frag_buf_num; k++) {
1706 /* now, fill the descriptor */
1707 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1708 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1709 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1710 desc->tx.bdtp_fe_sc_vld_ra_ri =
1711 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1712
1713 trace_hns3_tx_desc(ring, ring->next_to_use);
1714 /* move ring pointer to next */
1715 ring_ptr_move_fw(ring, next_to_use);
1716
1717 desc = &ring->desc[ring->next_to_use];
1718 }
1719
1720 return frag_buf_num;
1721 }
1722
hns3_map_and_fill_desc(struct hns3_enet_ring * ring,void * priv,unsigned int type)1723 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1724 unsigned int type)
1725 {
1726 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1727 struct device *dev = ring_to_dev(ring);
1728 unsigned int size;
1729 dma_addr_t dma;
1730
1731 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1732 struct sk_buff *skb = (struct sk_buff *)priv;
1733
1734 size = skb_headlen(skb);
1735 if (!size)
1736 return 0;
1737
1738 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1739 } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1740 /* Head data has been filled in hns3_handle_tx_bounce(),
1741 * just return 0 here.
1742 */
1743 return 0;
1744 } else {
1745 skb_frag_t *frag = (skb_frag_t *)priv;
1746
1747 size = skb_frag_size(frag);
1748 if (!size)
1749 return 0;
1750
1751 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1752 }
1753
1754 if (unlikely(dma_mapping_error(dev, dma))) {
1755 hns3_ring_stats_update(ring, sw_err_cnt);
1756 return -ENOMEM;
1757 }
1758
1759 desc_cb->priv = priv;
1760 desc_cb->length = size;
1761 desc_cb->dma = dma;
1762 desc_cb->type = type;
1763
1764 return hns3_fill_desc(ring, dma, size);
1765 }
1766
hns3_skb_bd_num(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num)1767 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1768 unsigned int bd_num)
1769 {
1770 unsigned int size;
1771 int i;
1772
1773 size = skb_headlen(skb);
1774 while (size > HNS3_MAX_BD_SIZE) {
1775 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1776 size -= HNS3_MAX_BD_SIZE;
1777
1778 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1779 return bd_num;
1780 }
1781
1782 if (size) {
1783 bd_size[bd_num++] = size;
1784 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1785 return bd_num;
1786 }
1787
1788 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1789 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1790 size = skb_frag_size(frag);
1791 if (!size)
1792 continue;
1793
1794 while (size > HNS3_MAX_BD_SIZE) {
1795 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1796 size -= HNS3_MAX_BD_SIZE;
1797
1798 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1799 return bd_num;
1800 }
1801
1802 bd_size[bd_num++] = size;
1803 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1804 return bd_num;
1805 }
1806
1807 return bd_num;
1808 }
1809
hns3_tx_bd_num(struct sk_buff * skb,unsigned int * bd_size,u8 max_non_tso_bd_num,unsigned int bd_num,unsigned int recursion_level)1810 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1811 u8 max_non_tso_bd_num, unsigned int bd_num,
1812 unsigned int recursion_level)
1813 {
1814 #define HNS3_MAX_RECURSION_LEVEL 24
1815
1816 struct sk_buff *frag_skb;
1817
1818 /* If the total len is within the max bd limit */
1819 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1820 !skb_has_frag_list(skb) &&
1821 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1822 return skb_shinfo(skb)->nr_frags + 1U;
1823
1824 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1825 return UINT_MAX;
1826
1827 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1828 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1829 return bd_num;
1830
1831 skb_walk_frags(skb, frag_skb) {
1832 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1833 bd_num, recursion_level + 1);
1834 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1835 return bd_num;
1836 }
1837
1838 return bd_num;
1839 }
1840
hns3_gso_hdr_len(struct sk_buff * skb)1841 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1842 {
1843 if (!skb->encapsulation)
1844 return skb_tcp_all_headers(skb);
1845
1846 return skb_inner_tcp_all_headers(skb);
1847 }
1848
1849 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1850 * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1851 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1852 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1853 * than MSS except the last max_non_tso_bd_num - 1 frags.
1854 */
hns3_skb_need_linearized(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num,u8 max_non_tso_bd_num)1855 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1856 unsigned int bd_num, u8 max_non_tso_bd_num)
1857 {
1858 unsigned int tot_len = 0;
1859 int i;
1860
1861 for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1862 tot_len += bd_size[i];
1863
1864 /* ensure the first max_non_tso_bd_num frags is greater than
1865 * mss + header
1866 */
1867 if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1868 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1869 return true;
1870
1871 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1872 * than mss except the last one.
1873 */
1874 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1875 tot_len -= bd_size[i];
1876 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1877
1878 if (tot_len < skb_shinfo(skb)->gso_size)
1879 return true;
1880 }
1881
1882 return false;
1883 }
1884
hns3_shinfo_pack(struct skb_shared_info * shinfo,__u32 * size)1885 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1886 {
1887 int i;
1888
1889 for (i = 0; i < MAX_SKB_FRAGS; i++)
1890 size[i] = skb_frag_size(&shinfo->frags[i]);
1891 }
1892
hns3_skb_linearize(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int bd_num)1893 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1894 struct sk_buff *skb,
1895 unsigned int bd_num)
1896 {
1897 /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1898 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1899 */
1900 if (bd_num == UINT_MAX) {
1901 hns3_ring_stats_update(ring, over_max_recursion);
1902 return -ENOMEM;
1903 }
1904
1905 /* The skb->len has exceeded the hw limitation, linearization
1906 * will not help.
1907 */
1908 if (skb->len > HNS3_MAX_TSO_SIZE ||
1909 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1910 hns3_ring_stats_update(ring, hw_limitation);
1911 return -ENOMEM;
1912 }
1913
1914 if (__skb_linearize(skb)) {
1915 hns3_ring_stats_update(ring, sw_err_cnt);
1916 return -ENOMEM;
1917 }
1918
1919 return 0;
1920 }
1921
hns3_nic_maybe_stop_tx(struct hns3_enet_ring * ring,struct net_device * netdev,struct sk_buff * skb)1922 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1923 struct net_device *netdev,
1924 struct sk_buff *skb)
1925 {
1926 struct hns3_nic_priv *priv = netdev_priv(netdev);
1927 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1928 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1929 unsigned int bd_num;
1930
1931 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1932 if (unlikely(bd_num > max_non_tso_bd_num)) {
1933 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1934 !hns3_skb_need_linearized(skb, bd_size, bd_num,
1935 max_non_tso_bd_num)) {
1936 trace_hns3_over_max_bd(skb);
1937 goto out;
1938 }
1939
1940 if (hns3_skb_linearize(ring, skb, bd_num))
1941 return -ENOMEM;
1942
1943 bd_num = hns3_tx_bd_count(skb->len);
1944
1945 hns3_ring_stats_update(ring, tx_copy);
1946 }
1947
1948 out:
1949 if (likely(ring_space(ring) >= bd_num))
1950 return bd_num;
1951
1952 netif_stop_subqueue(netdev, ring->queue_index);
1953 smp_mb(); /* Memory barrier before checking ring_space */
1954
1955 /* Start queue in case hns3_clean_tx_ring has just made room
1956 * available and has not seen the queue stopped state performed
1957 * by netif_stop_subqueue above.
1958 */
1959 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1960 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1961 netif_start_subqueue(netdev, ring->queue_index);
1962 return bd_num;
1963 }
1964
1965 hns3_ring_stats_update(ring, tx_busy);
1966
1967 return -EBUSY;
1968 }
1969
hns3_clear_desc(struct hns3_enet_ring * ring,int next_to_use_orig)1970 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1971 {
1972 struct device *dev = ring_to_dev(ring);
1973 unsigned int i;
1974
1975 for (i = 0; i < ring->desc_num; i++) {
1976 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1977 struct hns3_desc_cb *desc_cb;
1978
1979 memset(desc, 0, sizeof(*desc));
1980
1981 /* check if this is where we started */
1982 if (ring->next_to_use == next_to_use_orig)
1983 break;
1984
1985 /* rollback one */
1986 ring_ptr_move_bw(ring, next_to_use);
1987
1988 desc_cb = &ring->desc_cb[ring->next_to_use];
1989
1990 if (!desc_cb->dma)
1991 continue;
1992
1993 /* unmap the descriptor dma address */
1994 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1995 dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1996 DMA_TO_DEVICE);
1997 else if (desc_cb->type &
1998 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1999 hns3_tx_spare_rollback(ring, desc_cb->length);
2000 else if (desc_cb->length)
2001 dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2002 DMA_TO_DEVICE);
2003
2004 desc_cb->length = 0;
2005 desc_cb->dma = 0;
2006 desc_cb->type = DESC_TYPE_UNKNOWN;
2007 }
2008 }
2009
hns3_fill_skb_to_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int type)2010 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2011 struct sk_buff *skb, unsigned int type)
2012 {
2013 struct sk_buff *frag_skb;
2014 int i, ret, bd_num = 0;
2015
2016 ret = hns3_map_and_fill_desc(ring, skb, type);
2017 if (unlikely(ret < 0))
2018 return ret;
2019
2020 bd_num += ret;
2021
2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2024
2025 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2026 if (unlikely(ret < 0))
2027 return ret;
2028
2029 bd_num += ret;
2030 }
2031
2032 skb_walk_frags(skb, frag_skb) {
2033 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2034 DESC_TYPE_FRAGLIST_SKB);
2035 if (unlikely(ret < 0))
2036 return ret;
2037
2038 bd_num += ret;
2039 }
2040
2041 return bd_num;
2042 }
2043
hns3_tx_push_bd(struct hns3_enet_ring * ring,int num)2044 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2045 {
2046 #define HNS3_BYTES_PER_64BIT 8
2047
2048 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2049 int offset = 0;
2050
2051 /* make sure everything is visible to device before
2052 * excuting tx push or updating doorbell
2053 */
2054 dma_wmb();
2055
2056 do {
2057 int idx = (ring->next_to_use - num + ring->desc_num) %
2058 ring->desc_num;
2059
2060 u64_stats_update_begin(&ring->syncp);
2061 ring->stats.tx_push++;
2062 u64_stats_update_end(&ring->syncp);
2063 memcpy(&desc[offset], &ring->desc[idx],
2064 sizeof(struct hns3_desc));
2065 offset++;
2066 } while (--num);
2067
2068 __iowrite64_copy(ring->tqp->mem_base, desc,
2069 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2070 HNS3_BYTES_PER_64BIT);
2071 }
2072
hns3_tx_mem_doorbell(struct hns3_enet_ring * ring)2073 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2074 {
2075 #define HNS3_MEM_DOORBELL_OFFSET 64
2076
2077 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2078
2079 /* make sure everything is visible to device before
2080 * excuting tx push or updating doorbell
2081 */
2082 dma_wmb();
2083
2084 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2085 &bd_num, 1);
2086 u64_stats_update_begin(&ring->syncp);
2087 ring->stats.tx_mem_doorbell += ring->pending_buf;
2088 u64_stats_update_end(&ring->syncp);
2089 }
2090
hns3_tx_doorbell(struct hns3_enet_ring * ring,int num,bool doorbell)2091 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2092 bool doorbell)
2093 {
2094 struct net_device *netdev = ring_to_netdev(ring);
2095 struct hns3_nic_priv *priv = netdev_priv(netdev);
2096
2097 /* when tx push is enabled, the packet whose number of BD below
2098 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2099 */
2100 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2101 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2102 /* This smp_store_release() pairs with smp_load_aquire() in
2103 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2104 * is updated.
2105 */
2106 smp_store_release(&ring->last_to_use, ring->next_to_use);
2107 hns3_tx_push_bd(ring, num);
2108 return;
2109 }
2110
2111 ring->pending_buf += num;
2112
2113 if (!doorbell) {
2114 hns3_ring_stats_update(ring, tx_more);
2115 return;
2116 }
2117
2118 /* This smp_store_release() pairs with smp_load_aquire() in
2119 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2120 */
2121 smp_store_release(&ring->last_to_use, ring->next_to_use);
2122
2123 if (ring->tqp->mem_base)
2124 hns3_tx_mem_doorbell(ring);
2125 else
2126 writel(ring->pending_buf,
2127 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2128
2129 ring->pending_buf = 0;
2130 }
2131
hns3_tsyn(struct net_device * netdev,struct sk_buff * skb,struct hns3_desc * desc)2132 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2133 struct hns3_desc *desc)
2134 {
2135 struct hnae3_handle *h = hns3_get_handle(netdev);
2136
2137 if (!(h->ae_algo->ops->set_tx_hwts_info &&
2138 h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2139 return;
2140
2141 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2142 }
2143
hns3_handle_tx_bounce(struct hns3_enet_ring * ring,struct sk_buff * skb)2144 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2145 struct sk_buff *skb)
2146 {
2147 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2148 unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2149 unsigned int size = skb_headlen(skb);
2150 dma_addr_t dma;
2151 int bd_num = 0;
2152 u32 cb_len;
2153 void *buf;
2154 int ret;
2155
2156 if (skb->len <= ring->tx_copybreak) {
2157 size = skb->len;
2158 type = DESC_TYPE_BOUNCE_ALL;
2159 }
2160
2161 /* hns3_can_use_tx_bounce() is called to ensure the below
2162 * function can always return the tx buffer.
2163 */
2164 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2165
2166 ret = skb_copy_bits(skb, 0, buf, size);
2167 if (unlikely(ret < 0)) {
2168 hns3_tx_spare_rollback(ring, cb_len);
2169 hns3_ring_stats_update(ring, copy_bits_err);
2170 return ret;
2171 }
2172
2173 desc_cb->priv = skb;
2174 desc_cb->length = cb_len;
2175 desc_cb->dma = dma;
2176 desc_cb->type = type;
2177
2178 bd_num += hns3_fill_desc(ring, dma, size);
2179
2180 if (type == DESC_TYPE_BOUNCE_HEAD) {
2181 ret = hns3_fill_skb_to_desc(ring, skb,
2182 DESC_TYPE_BOUNCE_HEAD);
2183 if (unlikely(ret < 0))
2184 return ret;
2185
2186 bd_num += ret;
2187 }
2188
2189 dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2190 DMA_TO_DEVICE);
2191
2192 hns3_ring_stats_update(ring, tx_bounce);
2193
2194 return bd_num;
2195 }
2196
hns3_handle_tx_sgl(struct hns3_enet_ring * ring,struct sk_buff * skb)2197 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2198 struct sk_buff *skb)
2199 {
2200 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2201 u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2202 struct sg_table *sgt;
2203 int i, bd_num = 0;
2204 dma_addr_t dma;
2205 u32 cb_len;
2206 int nents;
2207
2208 if (skb_has_frag_list(skb))
2209 nfrag = HNS3_MAX_TSO_BD_NUM;
2210
2211 /* hns3_can_use_tx_sgl() is called to ensure the below
2212 * function can always return the tx buffer.
2213 */
2214 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2215 &dma, &cb_len);
2216
2217 /* scatterlist follows by the sg table */
2218 sgt->sgl = (struct scatterlist *)(sgt + 1);
2219 sg_init_table(sgt->sgl, nfrag);
2220 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2221 if (unlikely(nents < 0)) {
2222 hns3_tx_spare_rollback(ring, cb_len);
2223 hns3_ring_stats_update(ring, skb2sgl_err);
2224 return -ENOMEM;
2225 }
2226
2227 sgt->orig_nents = nents;
2228 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2229 DMA_TO_DEVICE);
2230 if (unlikely(!sgt->nents)) {
2231 hns3_tx_spare_rollback(ring, cb_len);
2232 hns3_ring_stats_update(ring, map_sg_err);
2233 return -ENOMEM;
2234 }
2235
2236 desc_cb->priv = skb;
2237 desc_cb->length = cb_len;
2238 desc_cb->dma = dma;
2239 desc_cb->type = DESC_TYPE_SGL_SKB;
2240
2241 for (i = 0; i < sgt->nents; i++)
2242 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2243 sg_dma_len(sgt->sgl + i));
2244 hns3_ring_stats_update(ring, tx_sgl);
2245
2246 return bd_num;
2247 }
2248
hns3_handle_desc_filling(struct hns3_enet_ring * ring,struct sk_buff * skb)2249 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2250 struct sk_buff *skb)
2251 {
2252 u32 space;
2253
2254 if (!ring->tx_spare)
2255 goto out;
2256
2257 space = hns3_tx_spare_space(ring);
2258
2259 if (hns3_can_use_tx_sgl(ring, skb, space))
2260 return hns3_handle_tx_sgl(ring, skb);
2261
2262 if (hns3_can_use_tx_bounce(ring, skb, space))
2263 return hns3_handle_tx_bounce(ring, skb);
2264
2265 out:
2266 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2267 }
2268
hns3_handle_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_cb * desc_cb,int next_to_use_head)2269 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2270 struct sk_buff *skb,
2271 struct hns3_desc_cb *desc_cb,
2272 int next_to_use_head)
2273 {
2274 int ret;
2275
2276 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2277 desc_cb);
2278 if (unlikely(ret < 0))
2279 goto fill_err;
2280
2281 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2282 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2283 * need to be notified to the hw.
2284 */
2285 ret = hns3_handle_desc_filling(ring, skb);
2286 if (likely(ret > 0))
2287 return ret;
2288
2289 fill_err:
2290 hns3_clear_desc(ring, next_to_use_head);
2291 return ret;
2292 }
2293
hns3_nic_net_xmit(struct sk_buff * skb,struct net_device * netdev)2294 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2295 {
2296 struct hns3_nic_priv *priv = netdev_priv(netdev);
2297 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2298 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2299 struct netdev_queue *dev_queue;
2300 int pre_ntu, ret;
2301 bool doorbell;
2302
2303 /* Hardware can only handle short frames above 32 bytes */
2304 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2305 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2306
2307 hns3_ring_stats_update(ring, sw_err_cnt);
2308
2309 return NETDEV_TX_OK;
2310 }
2311
2312 /* Prefetch the data used later */
2313 prefetch(skb->data);
2314
2315 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2316 if (unlikely(ret <= 0)) {
2317 if (ret == -EBUSY) {
2318 hns3_tx_doorbell(ring, 0, true);
2319 return NETDEV_TX_BUSY;
2320 }
2321
2322 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2323 goto out_err_tx_ok;
2324 }
2325
2326 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2327 if (unlikely(ret <= 0))
2328 goto out_err_tx_ok;
2329
2330 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2331 (ring->desc_num - 1);
2332
2333 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2334 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2335
2336 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2337 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2338 trace_hns3_tx_desc(ring, pre_ntu);
2339
2340 skb_tx_timestamp(skb);
2341
2342 /* Complete translate all packets */
2343 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2344 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2345 netdev_xmit_more());
2346 hns3_tx_doorbell(ring, ret, doorbell);
2347
2348 return NETDEV_TX_OK;
2349
2350 out_err_tx_ok:
2351 dev_kfree_skb_any(skb);
2352 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2353 return NETDEV_TX_OK;
2354 }
2355
hns3_nic_net_set_mac_address(struct net_device * netdev,void * p)2356 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2357 {
2358 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2359 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2360 struct hnae3_handle *h = hns3_get_handle(netdev);
2361 struct sockaddr *mac_addr = p;
2362 int ret;
2363
2364 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2365 return -EADDRNOTAVAIL;
2366
2367 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2368 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2369 netdev_info(netdev, "already using mac address %s\n",
2370 format_mac_addr_sa);
2371 return 0;
2372 }
2373
2374 /* For VF device, if there is a perm_addr, then the user will not
2375 * be allowed to change the address.
2376 */
2377 if (!hns3_is_phys_func(h->pdev) &&
2378 !is_zero_ether_addr(netdev->perm_addr)) {
2379 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2380 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2381 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2382 format_mac_addr_perm, format_mac_addr_sa);
2383 return -EPERM;
2384 }
2385
2386 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2387 if (ret) {
2388 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2389 return ret;
2390 }
2391
2392 eth_hw_addr_set(netdev, mac_addr->sa_data);
2393
2394 return 0;
2395 }
2396
hns3_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2397 static int hns3_nic_do_ioctl(struct net_device *netdev,
2398 struct ifreq *ifr, int cmd)
2399 {
2400 struct hnae3_handle *h = hns3_get_handle(netdev);
2401
2402 if (!netif_running(netdev))
2403 return -EINVAL;
2404
2405 if (!h->ae_algo->ops->do_ioctl)
2406 return -EOPNOTSUPP;
2407
2408 return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2409 }
2410
hns3_nic_set_features(struct net_device * netdev,netdev_features_t features)2411 static int hns3_nic_set_features(struct net_device *netdev,
2412 netdev_features_t features)
2413 {
2414 netdev_features_t changed = netdev->features ^ features;
2415 struct hns3_nic_priv *priv = netdev_priv(netdev);
2416 struct hnae3_handle *h = priv->ae_handle;
2417 bool enable;
2418 int ret;
2419
2420 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2421 enable = !!(features & NETIF_F_GRO_HW);
2422 ret = h->ae_algo->ops->set_gro_en(h, enable);
2423 if (ret)
2424 return ret;
2425 }
2426
2427 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2428 h->ae_algo->ops->enable_hw_strip_rxvtag) {
2429 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2430 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2431 if (ret)
2432 return ret;
2433 }
2434
2435 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2436 enable = !!(features & NETIF_F_NTUPLE);
2437 h->ae_algo->ops->enable_fd(h, enable);
2438 }
2439
2440 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2441 h->ae_algo->ops->cls_flower_active(h)) {
2442 netdev_err(netdev,
2443 "there are offloaded TC filters active, cannot disable HW TC offload");
2444 return -EINVAL;
2445 }
2446
2447 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2448 h->ae_algo->ops->enable_vlan_filter) {
2449 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2450 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2451 if (ret)
2452 return ret;
2453 }
2454
2455 return 0;
2456 }
2457
hns3_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2458 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2459 struct net_device *dev,
2460 netdev_features_t features)
2461 {
2462 #define HNS3_MAX_HDR_LEN 480U
2463 #define HNS3_MAX_L4_HDR_LEN 60U
2464
2465 size_t len;
2466
2467 if (skb->ip_summed != CHECKSUM_PARTIAL)
2468 return features;
2469
2470 if (skb->encapsulation)
2471 len = skb_inner_transport_offset(skb);
2472 else
2473 len = skb_transport_offset(skb);
2474
2475 /* Assume L4 is 60 byte as TCP is the only protocol with a
2476 * a flexible value, and it's max len is 60 bytes.
2477 */
2478 len += HNS3_MAX_L4_HDR_LEN;
2479
2480 /* Hardware only supports checksum on the skb with a max header
2481 * len of 480 bytes.
2482 */
2483 if (len > HNS3_MAX_HDR_LEN)
2484 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2485
2486 return features;
2487 }
2488
hns3_fetch_stats(struct rtnl_link_stats64 * stats,struct hns3_enet_ring * ring,bool is_tx)2489 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2490 struct hns3_enet_ring *ring, bool is_tx)
2491 {
2492 unsigned int start;
2493
2494 do {
2495 start = u64_stats_fetch_begin(&ring->syncp);
2496 if (is_tx) {
2497 stats->tx_bytes += ring->stats.tx_bytes;
2498 stats->tx_packets += ring->stats.tx_pkts;
2499 stats->tx_dropped += ring->stats.sw_err_cnt;
2500 stats->tx_dropped += ring->stats.tx_vlan_err;
2501 stats->tx_dropped += ring->stats.tx_l4_proto_err;
2502 stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2503 stats->tx_dropped += ring->stats.tx_tso_err;
2504 stats->tx_dropped += ring->stats.over_max_recursion;
2505 stats->tx_dropped += ring->stats.hw_limitation;
2506 stats->tx_dropped += ring->stats.copy_bits_err;
2507 stats->tx_dropped += ring->stats.skb2sgl_err;
2508 stats->tx_dropped += ring->stats.map_sg_err;
2509 stats->tx_errors += ring->stats.sw_err_cnt;
2510 stats->tx_errors += ring->stats.tx_vlan_err;
2511 stats->tx_errors += ring->stats.tx_l4_proto_err;
2512 stats->tx_errors += ring->stats.tx_l2l3l4_err;
2513 stats->tx_errors += ring->stats.tx_tso_err;
2514 stats->tx_errors += ring->stats.over_max_recursion;
2515 stats->tx_errors += ring->stats.hw_limitation;
2516 stats->tx_errors += ring->stats.copy_bits_err;
2517 stats->tx_errors += ring->stats.skb2sgl_err;
2518 stats->tx_errors += ring->stats.map_sg_err;
2519 } else {
2520 stats->rx_bytes += ring->stats.rx_bytes;
2521 stats->rx_packets += ring->stats.rx_pkts;
2522 stats->rx_dropped += ring->stats.l2_err;
2523 stats->rx_errors += ring->stats.l2_err;
2524 stats->rx_errors += ring->stats.l3l4_csum_err;
2525 stats->rx_crc_errors += ring->stats.l2_err;
2526 stats->multicast += ring->stats.rx_multicast;
2527 stats->rx_length_errors += ring->stats.err_pkt_len;
2528 }
2529 } while (u64_stats_fetch_retry(&ring->syncp, start));
2530 }
2531
hns3_nic_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2532 static void hns3_nic_get_stats64(struct net_device *netdev,
2533 struct rtnl_link_stats64 *stats)
2534 {
2535 struct hns3_nic_priv *priv = netdev_priv(netdev);
2536 int queue_num = priv->ae_handle->kinfo.num_tqps;
2537 struct hnae3_handle *handle = priv->ae_handle;
2538 struct rtnl_link_stats64 ring_total_stats;
2539 struct hns3_enet_ring *ring;
2540 unsigned int idx;
2541
2542 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2543 return;
2544
2545 handle->ae_algo->ops->update_stats(handle);
2546
2547 memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2548 for (idx = 0; idx < queue_num; idx++) {
2549 /* fetch the tx stats */
2550 ring = &priv->ring[idx];
2551 hns3_fetch_stats(&ring_total_stats, ring, true);
2552
2553 /* fetch the rx stats */
2554 ring = &priv->ring[idx + queue_num];
2555 hns3_fetch_stats(&ring_total_stats, ring, false);
2556 }
2557
2558 stats->tx_bytes = ring_total_stats.tx_bytes;
2559 stats->tx_packets = ring_total_stats.tx_packets;
2560 stats->rx_bytes = ring_total_stats.rx_bytes;
2561 stats->rx_packets = ring_total_stats.rx_packets;
2562
2563 stats->rx_errors = ring_total_stats.rx_errors;
2564 stats->multicast = ring_total_stats.multicast;
2565 stats->rx_length_errors = ring_total_stats.rx_length_errors;
2566 stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2567 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2568
2569 stats->tx_errors = ring_total_stats.tx_errors;
2570 stats->rx_dropped = ring_total_stats.rx_dropped;
2571 stats->tx_dropped = ring_total_stats.tx_dropped;
2572 stats->collisions = netdev->stats.collisions;
2573 stats->rx_over_errors = netdev->stats.rx_over_errors;
2574 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2575 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2576 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2577 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2578 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2579 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2580 stats->tx_window_errors = netdev->stats.tx_window_errors;
2581 stats->rx_compressed = netdev->stats.rx_compressed;
2582 stats->tx_compressed = netdev->stats.tx_compressed;
2583 }
2584
hns3_setup_tc(struct net_device * netdev,void * type_data)2585 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2586 {
2587 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588 struct hnae3_knic_private_info *kinfo;
2589 u8 tc = mqprio_qopt->qopt.num_tc;
2590 u16 mode = mqprio_qopt->mode;
2591 u8 hw = mqprio_qopt->qopt.hw;
2592 struct hnae3_handle *h;
2593
2594 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2595 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2596 return -EOPNOTSUPP;
2597
2598 if (tc > HNAE3_MAX_TC)
2599 return -EINVAL;
2600
2601 if (!netdev)
2602 return -EINVAL;
2603
2604 h = hns3_get_handle(netdev);
2605 kinfo = &h->kinfo;
2606
2607 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2608
2609 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2610 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2611 }
2612
hns3_setup_tc_cls_flower(struct hns3_nic_priv * priv,struct flow_cls_offload * flow)2613 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2614 struct flow_cls_offload *flow)
2615 {
2616 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2617 struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2618
2619 switch (flow->command) {
2620 case FLOW_CLS_REPLACE:
2621 if (h->ae_algo->ops->add_cls_flower)
2622 return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2623 break;
2624 case FLOW_CLS_DESTROY:
2625 if (h->ae_algo->ops->del_cls_flower)
2626 return h->ae_algo->ops->del_cls_flower(h, flow);
2627 break;
2628 default:
2629 break;
2630 }
2631
2632 return -EOPNOTSUPP;
2633 }
2634
hns3_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2635 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2636 void *cb_priv)
2637 {
2638 struct hns3_nic_priv *priv = cb_priv;
2639
2640 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2641 return -EOPNOTSUPP;
2642
2643 switch (type) {
2644 case TC_SETUP_CLSFLOWER:
2645 return hns3_setup_tc_cls_flower(priv, type_data);
2646 default:
2647 return -EOPNOTSUPP;
2648 }
2649 }
2650
2651 static LIST_HEAD(hns3_block_cb_list);
2652
hns3_nic_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2653 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2654 void *type_data)
2655 {
2656 struct hns3_nic_priv *priv = netdev_priv(dev);
2657 int ret;
2658
2659 switch (type) {
2660 case TC_SETUP_QDISC_MQPRIO:
2661 ret = hns3_setup_tc(dev, type_data);
2662 break;
2663 case TC_SETUP_BLOCK:
2664 ret = flow_block_cb_setup_simple(type_data,
2665 &hns3_block_cb_list,
2666 hns3_setup_tc_block_cb,
2667 priv, priv, true);
2668 break;
2669 default:
2670 return -EOPNOTSUPP;
2671 }
2672
2673 return ret;
2674 }
2675
hns3_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2676 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2677 __be16 proto, u16 vid)
2678 {
2679 struct hnae3_handle *h = hns3_get_handle(netdev);
2680 int ret = -EIO;
2681
2682 if (h->ae_algo->ops->set_vlan_filter)
2683 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2684
2685 return ret;
2686 }
2687
hns3_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2688 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2689 __be16 proto, u16 vid)
2690 {
2691 struct hnae3_handle *h = hns3_get_handle(netdev);
2692 int ret = -EIO;
2693
2694 if (h->ae_algo->ops->set_vlan_filter)
2695 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2696
2697 return ret;
2698 }
2699
hns3_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)2700 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2701 u8 qos, __be16 vlan_proto)
2702 {
2703 struct hnae3_handle *h = hns3_get_handle(netdev);
2704 int ret = -EIO;
2705
2706 netif_dbg(h, drv, netdev,
2707 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2708 vf, vlan, qos, ntohs(vlan_proto));
2709
2710 if (h->ae_algo->ops->set_vf_vlan_filter)
2711 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2712 qos, vlan_proto);
2713
2714 return ret;
2715 }
2716
hns3_set_vf_spoofchk(struct net_device * netdev,int vf,bool enable)2717 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2718 {
2719 struct hnae3_handle *handle = hns3_get_handle(netdev);
2720
2721 if (hns3_nic_resetting(netdev))
2722 return -EBUSY;
2723
2724 if (!handle->ae_algo->ops->set_vf_spoofchk)
2725 return -EOPNOTSUPP;
2726
2727 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2728 }
2729
hns3_set_vf_trust(struct net_device * netdev,int vf,bool enable)2730 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2731 {
2732 struct hnae3_handle *handle = hns3_get_handle(netdev);
2733
2734 if (!handle->ae_algo->ops->set_vf_trust)
2735 return -EOPNOTSUPP;
2736
2737 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2738 }
2739
hns3_nic_change_mtu(struct net_device * netdev,int new_mtu)2740 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2741 {
2742 struct hnae3_handle *h = hns3_get_handle(netdev);
2743 int ret;
2744
2745 if (hns3_nic_resetting(netdev))
2746 return -EBUSY;
2747
2748 if (!h->ae_algo->ops->set_mtu)
2749 return -EOPNOTSUPP;
2750
2751 netif_dbg(h, drv, netdev,
2752 "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2753
2754 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2755 if (ret)
2756 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2757 ret);
2758 else
2759 WRITE_ONCE(netdev->mtu, new_mtu);
2760
2761 return ret;
2762 }
2763
hns3_get_timeout_queue(struct net_device * ndev)2764 static int hns3_get_timeout_queue(struct net_device *ndev)
2765 {
2766 int i;
2767
2768 /* Find the stopped queue the same way the stack does */
2769 for (i = 0; i < ndev->num_tx_queues; i++) {
2770 struct netdev_queue *q;
2771 unsigned long trans_start;
2772
2773 q = netdev_get_tx_queue(ndev, i);
2774 trans_start = READ_ONCE(q->trans_start);
2775 if (netif_xmit_stopped(q) &&
2776 time_after(jiffies,
2777 (trans_start + ndev->watchdog_timeo))) {
2778 #ifdef CONFIG_BQL
2779 struct dql *dql = &q->dql;
2780
2781 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2782 dql->last_obj_cnt, dql->num_queued,
2783 dql->adj_limit, dql->num_completed);
2784 #endif
2785 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2786 q->state,
2787 jiffies_to_msecs(jiffies - trans_start));
2788 break;
2789 }
2790 }
2791
2792 return i;
2793 }
2794
hns3_dump_queue_stats(struct net_device * ndev,struct hns3_enet_ring * tx_ring,int timeout_queue)2795 static void hns3_dump_queue_stats(struct net_device *ndev,
2796 struct hns3_enet_ring *tx_ring,
2797 int timeout_queue)
2798 {
2799 struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2800 struct hns3_nic_priv *priv = netdev_priv(ndev);
2801
2802 netdev_info(ndev,
2803 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2804 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2805 tx_ring->next_to_clean, napi->state);
2806
2807 netdev_info(ndev,
2808 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2809 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2810 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2811
2812 netdev_info(ndev,
2813 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2814 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2815 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2816
2817 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2818 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2819 }
2820
hns3_dump_queue_reg(struct net_device * ndev,struct hns3_enet_ring * tx_ring)2821 static void hns3_dump_queue_reg(struct net_device *ndev,
2822 struct hns3_enet_ring *tx_ring)
2823 {
2824 netdev_info(ndev,
2825 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2826 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2827 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2828 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2829 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2830 readl(tx_ring->tqp_vector->mask_addr));
2831 netdev_info(ndev,
2832 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2833 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2834 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2835 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2836 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2837 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2838 hns3_tqp_read_reg(tx_ring,
2839 HNS3_RING_TX_RING_EBD_OFFSET_REG));
2840 }
2841
hns3_get_tx_timeo_queue_info(struct net_device * ndev)2842 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2843 {
2844 struct hns3_nic_priv *priv = netdev_priv(ndev);
2845 struct hnae3_handle *h = hns3_get_handle(ndev);
2846 struct hns3_enet_ring *tx_ring;
2847 int timeout_queue;
2848
2849 timeout_queue = hns3_get_timeout_queue(ndev);
2850 if (timeout_queue >= ndev->num_tx_queues) {
2851 netdev_info(ndev,
2852 "no netdev TX timeout queue found, timeout count: %llu\n",
2853 priv->tx_timeout_count);
2854 return false;
2855 }
2856
2857 priv->tx_timeout_count++;
2858
2859 tx_ring = &priv->ring[timeout_queue];
2860 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2861
2862 /* When mac received many pause frames continuous, it's unable to send
2863 * packets, which may cause tx timeout
2864 */
2865 if (h->ae_algo->ops->get_mac_stats) {
2866 struct hns3_mac_stats mac_stats;
2867
2868 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2869 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2870 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2871 }
2872
2873 hns3_dump_queue_reg(ndev, tx_ring);
2874
2875 return true;
2876 }
2877
hns3_nic_net_timeout(struct net_device * ndev,unsigned int txqueue)2878 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2879 {
2880 struct hns3_nic_priv *priv = netdev_priv(ndev);
2881 struct hnae3_handle *h = priv->ae_handle;
2882
2883 if (!hns3_get_tx_timeo_queue_info(ndev))
2884 return;
2885
2886 /* request the reset, and let the hclge to determine
2887 * which reset level should be done
2888 */
2889 if (h->ae_algo->ops->reset_event)
2890 h->ae_algo->ops->reset_event(h->pdev, h);
2891 }
2892
2893 #ifdef CONFIG_RFS_ACCEL
hns3_rx_flow_steer(struct net_device * dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)2894 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2895 u16 rxq_index, u32 flow_id)
2896 {
2897 struct hnae3_handle *h = hns3_get_handle(dev);
2898 struct flow_keys fkeys;
2899
2900 if (!h->ae_algo->ops->add_arfs_entry)
2901 return -EOPNOTSUPP;
2902
2903 if (skb->encapsulation)
2904 return -EPROTONOSUPPORT;
2905
2906 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2907 return -EPROTONOSUPPORT;
2908
2909 if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2910 fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2911 (fkeys.basic.ip_proto != IPPROTO_TCP &&
2912 fkeys.basic.ip_proto != IPPROTO_UDP))
2913 return -EPROTONOSUPPORT;
2914
2915 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2916 }
2917 #endif
2918
hns3_nic_get_vf_config(struct net_device * ndev,int vf,struct ifla_vf_info * ivf)2919 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2920 struct ifla_vf_info *ivf)
2921 {
2922 struct hnae3_handle *h = hns3_get_handle(ndev);
2923
2924 if (!h->ae_algo->ops->get_vf_config)
2925 return -EOPNOTSUPP;
2926
2927 return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2928 }
2929
hns3_nic_set_vf_link_state(struct net_device * ndev,int vf,int link_state)2930 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2931 int link_state)
2932 {
2933 struct hnae3_handle *h = hns3_get_handle(ndev);
2934
2935 if (!h->ae_algo->ops->set_vf_link_state)
2936 return -EOPNOTSUPP;
2937
2938 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2939 }
2940
hns3_nic_set_vf_rate(struct net_device * ndev,int vf,int min_tx_rate,int max_tx_rate)2941 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2942 int min_tx_rate, int max_tx_rate)
2943 {
2944 struct hnae3_handle *h = hns3_get_handle(ndev);
2945
2946 if (!h->ae_algo->ops->set_vf_rate)
2947 return -EOPNOTSUPP;
2948
2949 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2950 false);
2951 }
2952
hns3_nic_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)2953 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2954 {
2955 struct hnae3_handle *h = hns3_get_handle(netdev);
2956 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2957
2958 if (!h->ae_algo->ops->set_vf_mac)
2959 return -EOPNOTSUPP;
2960
2961 if (is_multicast_ether_addr(mac)) {
2962 hnae3_format_mac_addr(format_mac_addr, mac);
2963 netdev_err(netdev,
2964 "Invalid MAC:%s specified. Could not set MAC\n",
2965 format_mac_addr);
2966 return -EINVAL;
2967 }
2968
2969 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2970 }
2971
2972 #define HNS3_INVALID_DSCP 0xff
2973 #define HNS3_DSCP_SHIFT 2
2974
hns3_get_skb_dscp(struct sk_buff * skb)2975 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2976 {
2977 __be16 protocol = skb->protocol;
2978 u8 dscp = HNS3_INVALID_DSCP;
2979
2980 if (protocol == htons(ETH_P_8021Q))
2981 protocol = vlan_get_protocol(skb);
2982
2983 if (protocol == htons(ETH_P_IP))
2984 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2985 else if (protocol == htons(ETH_P_IPV6))
2986 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2987
2988 return dscp;
2989 }
2990
hns3_nic_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)2991 static u16 hns3_nic_select_queue(struct net_device *netdev,
2992 struct sk_buff *skb,
2993 struct net_device *sb_dev)
2994 {
2995 struct hnae3_handle *h = hns3_get_handle(netdev);
2996 u8 dscp;
2997
2998 if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
2999 !h->ae_algo->ops->get_dscp_prio)
3000 goto out;
3001
3002 dscp = hns3_get_skb_dscp(skb);
3003 if (unlikely(dscp >= HNAE3_MAX_DSCP))
3004 goto out;
3005
3006 skb->priority = h->kinfo.dscp_prio[dscp];
3007 if (skb->priority == HNAE3_PRIO_ID_INVALID)
3008 skb->priority = 0;
3009
3010 out:
3011 return netdev_pick_tx(netdev, skb, sb_dev);
3012 }
3013
3014 static const struct net_device_ops hns3_nic_netdev_ops = {
3015 .ndo_open = hns3_nic_net_open,
3016 .ndo_stop = hns3_nic_net_stop,
3017 .ndo_start_xmit = hns3_nic_net_xmit,
3018 .ndo_tx_timeout = hns3_nic_net_timeout,
3019 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
3020 .ndo_eth_ioctl = hns3_nic_do_ioctl,
3021 .ndo_change_mtu = hns3_nic_change_mtu,
3022 .ndo_set_features = hns3_nic_set_features,
3023 .ndo_features_check = hns3_features_check,
3024 .ndo_get_stats64 = hns3_nic_get_stats64,
3025 .ndo_setup_tc = hns3_nic_setup_tc,
3026 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
3027 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
3028 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
3029 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
3030 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk,
3031 .ndo_set_vf_trust = hns3_set_vf_trust,
3032 #ifdef CONFIG_RFS_ACCEL
3033 .ndo_rx_flow_steer = hns3_rx_flow_steer,
3034 #endif
3035 .ndo_get_vf_config = hns3_nic_get_vf_config,
3036 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state,
3037 .ndo_set_vf_rate = hns3_nic_set_vf_rate,
3038 .ndo_set_vf_mac = hns3_nic_set_vf_mac,
3039 .ndo_select_queue = hns3_nic_select_queue,
3040 };
3041
hns3_is_phys_func(struct pci_dev * pdev)3042 bool hns3_is_phys_func(struct pci_dev *pdev)
3043 {
3044 u32 dev_id = pdev->device;
3045
3046 switch (dev_id) {
3047 case HNAE3_DEV_ID_GE:
3048 case HNAE3_DEV_ID_25GE:
3049 case HNAE3_DEV_ID_25GE_RDMA:
3050 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3051 case HNAE3_DEV_ID_50GE_RDMA:
3052 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3053 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3054 case HNAE3_DEV_ID_200G_RDMA:
3055 return true;
3056 case HNAE3_DEV_ID_VF:
3057 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3058 return false;
3059 default:
3060 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3061 dev_id);
3062 }
3063
3064 return false;
3065 }
3066
hns3_disable_sriov(struct pci_dev * pdev)3067 static void hns3_disable_sriov(struct pci_dev *pdev)
3068 {
3069 /* If our VFs are assigned we cannot shut down SR-IOV
3070 * without causing issues, so just leave the hardware
3071 * available but disabled
3072 */
3073 if (pci_vfs_assigned(pdev)) {
3074 dev_warn(&pdev->dev,
3075 "disabling driver while VFs are assigned\n");
3076 return;
3077 }
3078
3079 pci_disable_sriov(pdev);
3080 }
3081
3082 /* hns3_probe - Device initialization routine
3083 * @pdev: PCI device information struct
3084 * @ent: entry in hns3_pci_tbl
3085 *
3086 * hns3_probe initializes a PF identified by a pci_dev structure.
3087 * The OS initialization, configuring of the PF private structure,
3088 * and a hardware reset occur.
3089 *
3090 * Returns 0 on success, negative on failure
3091 */
hns3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3092 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3093 {
3094 struct hnae3_ae_dev *ae_dev;
3095 int ret;
3096
3097 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3098 if (!ae_dev)
3099 return -ENOMEM;
3100
3101 ae_dev->pdev = pdev;
3102 ae_dev->flag = ent->driver_data;
3103 pci_set_drvdata(pdev, ae_dev);
3104
3105 ret = hnae3_register_ae_dev(ae_dev);
3106 if (ret)
3107 pci_set_drvdata(pdev, NULL);
3108
3109 return ret;
3110 }
3111
3112 /**
3113 * hns3_clean_vf_config
3114 * @pdev: pointer to a pci_dev structure
3115 * @num_vfs: number of VFs allocated
3116 *
3117 * Clean residual vf config after disable sriov
3118 **/
hns3_clean_vf_config(struct pci_dev * pdev,int num_vfs)3119 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3120 {
3121 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3122
3123 if (ae_dev->ops->clean_vf_config)
3124 ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3125 }
3126
3127 /* hns3_remove - Device removal routine
3128 * @pdev: PCI device information struct
3129 */
hns3_remove(struct pci_dev * pdev)3130 static void hns3_remove(struct pci_dev *pdev)
3131 {
3132 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3133
3134 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3135 hns3_disable_sriov(pdev);
3136
3137 hnae3_unregister_ae_dev(ae_dev);
3138 pci_set_drvdata(pdev, NULL);
3139 }
3140
3141 /**
3142 * hns3_pci_sriov_configure
3143 * @pdev: pointer to a pci_dev structure
3144 * @num_vfs: number of VFs to allocate
3145 *
3146 * Enable or change the number of VFs. Called when the user updates the number
3147 * of VFs in sysfs.
3148 **/
hns3_pci_sriov_configure(struct pci_dev * pdev,int num_vfs)3149 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3150 {
3151 int ret;
3152
3153 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3154 dev_warn(&pdev->dev, "Can not config SRIOV\n");
3155 return -EINVAL;
3156 }
3157
3158 if (num_vfs) {
3159 ret = pci_enable_sriov(pdev, num_vfs);
3160 if (ret)
3161 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3162 else
3163 return num_vfs;
3164 } else if (!pci_vfs_assigned(pdev)) {
3165 int num_vfs_pre = pci_num_vf(pdev);
3166
3167 pci_disable_sriov(pdev);
3168 hns3_clean_vf_config(pdev, num_vfs_pre);
3169 } else {
3170 dev_warn(&pdev->dev,
3171 "Unable to free VFs because some are assigned to VMs.\n");
3172 }
3173
3174 return 0;
3175 }
3176
hns3_shutdown(struct pci_dev * pdev)3177 static void hns3_shutdown(struct pci_dev *pdev)
3178 {
3179 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3180
3181 hnae3_unregister_ae_dev(ae_dev);
3182 pci_set_drvdata(pdev, NULL);
3183
3184 if (system_state == SYSTEM_POWER_OFF)
3185 pci_set_power_state(pdev, PCI_D3hot);
3186 }
3187
hns3_suspend(struct device * dev)3188 static int __maybe_unused hns3_suspend(struct device *dev)
3189 {
3190 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3191
3192 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3193 dev_info(dev, "Begin to suspend.\n");
3194 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3195 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3196 }
3197
3198 return 0;
3199 }
3200
hns3_resume(struct device * dev)3201 static int __maybe_unused hns3_resume(struct device *dev)
3202 {
3203 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3204
3205 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3206 dev_info(dev, "Begin to resume.\n");
3207 if (ae_dev->ops && ae_dev->ops->reset_done)
3208 ae_dev->ops->reset_done(ae_dev);
3209 }
3210
3211 return 0;
3212 }
3213
hns3_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3214 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3215 pci_channel_state_t state)
3216 {
3217 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3218 pci_ers_result_t ret;
3219
3220 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3221
3222 if (state == pci_channel_io_perm_failure)
3223 return PCI_ERS_RESULT_DISCONNECT;
3224
3225 if (!ae_dev || !ae_dev->ops) {
3226 dev_err(&pdev->dev,
3227 "Can't recover - error happened before device initialized\n");
3228 return PCI_ERS_RESULT_NONE;
3229 }
3230
3231 if (ae_dev->ops->handle_hw_ras_error)
3232 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3233 else
3234 return PCI_ERS_RESULT_NONE;
3235
3236 return ret;
3237 }
3238
hns3_slot_reset(struct pci_dev * pdev)3239 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3240 {
3241 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3242 const struct hnae3_ae_ops *ops;
3243 enum hnae3_reset_type reset_type;
3244 struct device *dev = &pdev->dev;
3245
3246 if (!ae_dev || !ae_dev->ops)
3247 return PCI_ERS_RESULT_NONE;
3248
3249 ops = ae_dev->ops;
3250 /* request the reset */
3251 if (ops->reset_event && ops->get_reset_level &&
3252 ops->set_default_reset_request) {
3253 if (ae_dev->hw_err_reset_req) {
3254 reset_type = ops->get_reset_level(ae_dev,
3255 &ae_dev->hw_err_reset_req);
3256 ops->set_default_reset_request(ae_dev, reset_type);
3257 dev_info(dev, "requesting reset due to PCI error\n");
3258 ops->reset_event(pdev, NULL);
3259 }
3260
3261 return PCI_ERS_RESULT_RECOVERED;
3262 }
3263
3264 return PCI_ERS_RESULT_DISCONNECT;
3265 }
3266
hns3_reset_prepare(struct pci_dev * pdev)3267 static void hns3_reset_prepare(struct pci_dev *pdev)
3268 {
3269 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3270
3271 dev_info(&pdev->dev, "FLR prepare\n");
3272 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3273 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3274 }
3275
hns3_reset_done(struct pci_dev * pdev)3276 static void hns3_reset_done(struct pci_dev *pdev)
3277 {
3278 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3279
3280 dev_info(&pdev->dev, "FLR done\n");
3281 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3282 ae_dev->ops->reset_done(ae_dev);
3283 }
3284
3285 static const struct pci_error_handlers hns3_err_handler = {
3286 .error_detected = hns3_error_detected,
3287 .slot_reset = hns3_slot_reset,
3288 .reset_prepare = hns3_reset_prepare,
3289 .reset_done = hns3_reset_done,
3290 };
3291
3292 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3293
3294 static struct pci_driver hns3_driver = {
3295 .name = hns3_driver_name,
3296 .id_table = hns3_pci_tbl,
3297 .probe = hns3_probe,
3298 .remove = hns3_remove,
3299 .shutdown = hns3_shutdown,
3300 .driver.pm = &hns3_pm_ops,
3301 .sriov_configure = hns3_pci_sriov_configure,
3302 .err_handler = &hns3_err_handler,
3303 };
3304
3305 /* set default feature to hns3 */
hns3_set_default_feature(struct net_device * netdev)3306 static void hns3_set_default_feature(struct net_device *netdev)
3307 {
3308 struct hnae3_handle *h = hns3_get_handle(netdev);
3309 struct pci_dev *pdev = h->pdev;
3310 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3311
3312 netdev->priv_flags |= IFF_UNICAST_FLT;
3313
3314 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3315 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3316 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3317 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3318 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3319 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3320
3321 if (hnae3_ae_dev_gro_supported(ae_dev))
3322 netdev->features |= NETIF_F_GRO_HW;
3323
3324 if (hnae3_ae_dev_fd_supported(ae_dev))
3325 netdev->features |= NETIF_F_NTUPLE;
3326
3327 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3328 netdev->features |= NETIF_F_GSO_UDP_L4;
3329
3330 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3331 netdev->features |= NETIF_F_HW_CSUM;
3332 else
3333 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3334
3335 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3336 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3337
3338 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3339 netdev->features |= NETIF_F_HW_TC;
3340
3341 netdev->hw_features |= netdev->features;
3342 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3343 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3344
3345 netdev->vlan_features |= netdev->features &
3346 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3347 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3348 NETIF_F_HW_TC);
3349
3350 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3351
3352 /* The device_version V3 hardware can't offload the checksum for IP in
3353 * GRE packets, but can do it for NvGRE. So default to disable the
3354 * checksum and GSO offload for GRE.
3355 */
3356 if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
3357 netdev->features &= ~NETIF_F_GSO_GRE;
3358 netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
3359 }
3360 }
3361
hns3_alloc_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3362 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3363 struct hns3_desc_cb *cb)
3364 {
3365 unsigned int order = hns3_page_order(ring);
3366 struct page *p;
3367
3368 if (ring->page_pool) {
3369 p = page_pool_dev_alloc_frag(ring->page_pool,
3370 &cb->page_offset,
3371 hns3_buf_size(ring));
3372 if (unlikely(!p))
3373 return -ENOMEM;
3374
3375 cb->priv = p;
3376 cb->buf = page_address(p);
3377 cb->dma = page_pool_get_dma_addr(p);
3378 cb->type = DESC_TYPE_PP_FRAG;
3379 cb->reuse_flag = 0;
3380 return 0;
3381 }
3382
3383 p = dev_alloc_pages(order);
3384 if (!p)
3385 return -ENOMEM;
3386
3387 cb->priv = p;
3388 cb->page_offset = 0;
3389 cb->reuse_flag = 0;
3390 cb->buf = page_address(p);
3391 cb->length = hns3_page_size(ring);
3392 cb->type = DESC_TYPE_PAGE;
3393 page_ref_add(p, USHRT_MAX - 1);
3394 cb->pagecnt_bias = USHRT_MAX;
3395
3396 return 0;
3397 }
3398
hns3_free_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb,int budget)3399 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3400 struct hns3_desc_cb *cb, int budget)
3401 {
3402 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3403 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3404 napi_consume_skb(cb->priv, budget);
3405 else if (!HNAE3_IS_TX_RING(ring)) {
3406 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3407 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3408 else if (cb->type & DESC_TYPE_PP_FRAG)
3409 page_pool_put_full_page(ring->page_pool, cb->priv,
3410 false);
3411 }
3412 memset(cb, 0, sizeof(*cb));
3413 }
3414
hns3_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3415 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3416 {
3417 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3418 cb->length, ring_to_dma_dir(ring));
3419
3420 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3421 return -EIO;
3422
3423 return 0;
3424 }
3425
hns3_unmap_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3426 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3427 struct hns3_desc_cb *cb)
3428 {
3429 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3430 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3431 ring_to_dma_dir(ring));
3432 else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3433 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3434 ring_to_dma_dir(ring));
3435 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3436 DESC_TYPE_SGL_SKB))
3437 hns3_tx_spare_reclaim_cb(ring, cb);
3438 }
3439
hns3_buffer_detach(struct hns3_enet_ring * ring,int i)3440 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3441 {
3442 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3443 ring->desc[i].addr = 0;
3444 ring->desc_cb[i].refill = 0;
3445 }
3446
hns3_free_buffer_detach(struct hns3_enet_ring * ring,int i,int budget)3447 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3448 int budget)
3449 {
3450 struct hns3_desc_cb *cb = &ring->desc_cb[i];
3451
3452 if (!ring->desc_cb[i].dma)
3453 return;
3454
3455 hns3_buffer_detach(ring, i);
3456 hns3_free_buffer(ring, cb, budget);
3457 }
3458
hns3_free_buffers(struct hns3_enet_ring * ring)3459 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3460 {
3461 int i;
3462
3463 for (i = 0; i < ring->desc_num; i++)
3464 hns3_free_buffer_detach(ring, i, 0);
3465 }
3466
3467 /* free desc along with its attached buffer */
hns3_free_desc(struct hns3_enet_ring * ring)3468 static void hns3_free_desc(struct hns3_enet_ring *ring)
3469 {
3470 int size = ring->desc_num * sizeof(ring->desc[0]);
3471
3472 hns3_free_buffers(ring);
3473
3474 if (ring->desc) {
3475 dma_free_coherent(ring_to_dev(ring), size,
3476 ring->desc, ring->desc_dma_addr);
3477 ring->desc = NULL;
3478 }
3479 }
3480
hns3_alloc_desc(struct hns3_enet_ring * ring)3481 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3482 {
3483 int size = ring->desc_num * sizeof(ring->desc[0]);
3484
3485 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3486 &ring->desc_dma_addr, GFP_KERNEL);
3487 if (!ring->desc)
3488 return -ENOMEM;
3489
3490 return 0;
3491 }
3492
hns3_alloc_and_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3493 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3494 struct hns3_desc_cb *cb)
3495 {
3496 int ret;
3497
3498 ret = hns3_alloc_buffer(ring, cb);
3499 if (ret || ring->page_pool)
3500 goto out;
3501
3502 ret = hns3_map_buffer(ring, cb);
3503 if (ret)
3504 goto out_with_buf;
3505
3506 return 0;
3507
3508 out_with_buf:
3509 hns3_free_buffer(ring, cb, 0);
3510 out:
3511 return ret;
3512 }
3513
hns3_alloc_and_attach_buffer(struct hns3_enet_ring * ring,int i)3514 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3515 {
3516 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3517
3518 if (ret)
3519 return ret;
3520
3521 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3522 ring->desc_cb[i].page_offset);
3523 ring->desc_cb[i].refill = 1;
3524
3525 return 0;
3526 }
3527
3528 /* Allocate memory for raw pkg, and map with dma */
hns3_alloc_ring_buffers(struct hns3_enet_ring * ring)3529 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3530 {
3531 int i, j, ret;
3532
3533 for (i = 0; i < ring->desc_num; i++) {
3534 ret = hns3_alloc_and_attach_buffer(ring, i);
3535 if (ret)
3536 goto out_buffer_fail;
3537
3538 if (!(i % HNS3_RESCHED_BD_NUM))
3539 cond_resched();
3540 }
3541
3542 return 0;
3543
3544 out_buffer_fail:
3545 for (j = i - 1; j >= 0; j--)
3546 hns3_free_buffer_detach(ring, j, 0);
3547 return ret;
3548 }
3549
3550 /* detach a in-used buffer and replace with a reserved one */
hns3_replace_buffer(struct hns3_enet_ring * ring,int i,struct hns3_desc_cb * res_cb)3551 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3552 struct hns3_desc_cb *res_cb)
3553 {
3554 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3555 ring->desc_cb[i] = *res_cb;
3556 ring->desc_cb[i].refill = 1;
3557 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3558 ring->desc_cb[i].page_offset);
3559 ring->desc[i].rx.bd_base_info = 0;
3560 }
3561
hns3_reuse_buffer(struct hns3_enet_ring * ring,int i)3562 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3563 {
3564 ring->desc_cb[i].reuse_flag = 0;
3565 ring->desc_cb[i].refill = 1;
3566 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3567 ring->desc_cb[i].page_offset);
3568 ring->desc[i].rx.bd_base_info = 0;
3569
3570 dma_sync_single_for_device(ring_to_dev(ring),
3571 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3572 hns3_buf_size(ring),
3573 DMA_FROM_DEVICE);
3574 }
3575
hns3_nic_reclaim_desc(struct hns3_enet_ring * ring,int * bytes,int * pkts,int budget)3576 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3577 int *bytes, int *pkts, int budget)
3578 {
3579 /* This smp_load_acquire() pairs with smp_store_release() in
3580 * hns3_tx_doorbell().
3581 */
3582 int ltu = smp_load_acquire(&ring->last_to_use);
3583 int ntc = ring->next_to_clean;
3584 struct hns3_desc_cb *desc_cb;
3585 bool reclaimed = false;
3586 struct hns3_desc *desc;
3587
3588 while (ltu != ntc) {
3589 desc = &ring->desc[ntc];
3590
3591 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3592 BIT(HNS3_TXD_VLD_B))
3593 break;
3594
3595 desc_cb = &ring->desc_cb[ntc];
3596
3597 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3598 DESC_TYPE_BOUNCE_HEAD |
3599 DESC_TYPE_SGL_SKB)) {
3600 (*pkts)++;
3601 (*bytes) += desc_cb->send_bytes;
3602 }
3603
3604 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3605 hns3_free_buffer_detach(ring, ntc, budget);
3606
3607 if (++ntc == ring->desc_num)
3608 ntc = 0;
3609
3610 /* Issue prefetch for next Tx descriptor */
3611 prefetch(&ring->desc_cb[ntc]);
3612 reclaimed = true;
3613 }
3614
3615 if (unlikely(!reclaimed))
3616 return false;
3617
3618 /* This smp_store_release() pairs with smp_load_acquire() in
3619 * ring_space called by hns3_nic_net_xmit.
3620 */
3621 smp_store_release(&ring->next_to_clean, ntc);
3622
3623 hns3_tx_spare_update(ring);
3624
3625 return true;
3626 }
3627
hns3_clean_tx_ring(struct hns3_enet_ring * ring,int budget)3628 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3629 {
3630 struct net_device *netdev = ring_to_netdev(ring);
3631 struct hns3_nic_priv *priv = netdev_priv(netdev);
3632 struct netdev_queue *dev_queue;
3633 int bytes, pkts;
3634
3635 bytes = 0;
3636 pkts = 0;
3637
3638 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3639 return;
3640
3641 ring->tqp_vector->tx_group.total_bytes += bytes;
3642 ring->tqp_vector->tx_group.total_packets += pkts;
3643
3644 u64_stats_update_begin(&ring->syncp);
3645 ring->stats.tx_bytes += bytes;
3646 ring->stats.tx_pkts += pkts;
3647 u64_stats_update_end(&ring->syncp);
3648
3649 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3650 netdev_tx_completed_queue(dev_queue, pkts, bytes);
3651
3652 if (unlikely(netif_carrier_ok(netdev) &&
3653 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3654 /* Make sure that anybody stopping the queue after this
3655 * sees the new next_to_clean.
3656 */
3657 smp_mb();
3658 if (netif_tx_queue_stopped(dev_queue) &&
3659 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3660 netif_tx_wake_queue(dev_queue);
3661 ring->stats.restart_queue++;
3662 }
3663 }
3664 }
3665
hns3_desc_unused(struct hns3_enet_ring * ring)3666 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3667 {
3668 int ntc = ring->next_to_clean;
3669 int ntu = ring->next_to_use;
3670
3671 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3672 return ring->desc_num;
3673
3674 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3675 }
3676
3677 /* Return true if there is any allocation failure */
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring * ring,int cleand_count)3678 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3679 int cleand_count)
3680 {
3681 struct hns3_desc_cb *desc_cb;
3682 struct hns3_desc_cb res_cbs;
3683 int i, ret;
3684
3685 for (i = 0; i < cleand_count; i++) {
3686 desc_cb = &ring->desc_cb[ring->next_to_use];
3687 if (desc_cb->reuse_flag) {
3688 hns3_ring_stats_update(ring, reuse_pg_cnt);
3689
3690 hns3_reuse_buffer(ring, ring->next_to_use);
3691 } else {
3692 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3693 if (ret) {
3694 hns3_ring_stats_update(ring, sw_err_cnt);
3695
3696 hns3_rl_err(ring_to_netdev(ring),
3697 "alloc rx buffer failed: %d\n",
3698 ret);
3699
3700 writel(i, ring->tqp->io_base +
3701 HNS3_RING_RX_RING_HEAD_REG);
3702 return true;
3703 }
3704 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3705
3706 hns3_ring_stats_update(ring, non_reuse_pg);
3707 }
3708
3709 ring_ptr_move_fw(ring, next_to_use);
3710 }
3711
3712 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3713 return false;
3714 }
3715
hns3_can_reuse_page(struct hns3_desc_cb * cb)3716 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3717 {
3718 return page_count(cb->priv) == cb->pagecnt_bias;
3719 }
3720
hns3_handle_rx_copybreak(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)3721 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3722 struct hns3_enet_ring *ring,
3723 int pull_len,
3724 struct hns3_desc_cb *desc_cb)
3725 {
3726 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3727 u32 frag_offset = desc_cb->page_offset + pull_len;
3728 int size = le16_to_cpu(desc->rx.size);
3729 u32 frag_size = size - pull_len;
3730 void *frag = napi_alloc_frag(frag_size);
3731
3732 if (unlikely(!frag)) {
3733 hns3_ring_stats_update(ring, frag_alloc_err);
3734
3735 hns3_rl_err(ring_to_netdev(ring),
3736 "failed to allocate rx frag\n");
3737 return -ENOMEM;
3738 }
3739
3740 desc_cb->reuse_flag = 1;
3741 memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3742 skb_add_rx_frag(skb, i, virt_to_page(frag),
3743 offset_in_page(frag), frag_size, frag_size);
3744
3745 hns3_ring_stats_update(ring, frag_alloc);
3746 return 0;
3747 }
3748
hns3_nic_reuse_page(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)3749 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3750 struct hns3_enet_ring *ring, int pull_len,
3751 struct hns3_desc_cb *desc_cb)
3752 {
3753 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3754 u32 frag_offset = desc_cb->page_offset + pull_len;
3755 int size = le16_to_cpu(desc->rx.size);
3756 u32 truesize = hns3_buf_size(ring);
3757 u32 frag_size = size - pull_len;
3758 int ret = 0;
3759 bool reused;
3760
3761 if (ring->page_pool) {
3762 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3763 frag_size, truesize);
3764 return;
3765 }
3766
3767 /* Avoid re-using remote or pfmem page */
3768 if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3769 goto out;
3770
3771 reused = hns3_can_reuse_page(desc_cb);
3772
3773 /* Rx page can be reused when:
3774 * 1. Rx page is only owned by the driver when page_offset
3775 * is zero, which means 0 @ truesize will be used by
3776 * stack after skb_add_rx_frag() is called, and the rest
3777 * of rx page can be reused by driver.
3778 * Or
3779 * 2. Rx page is only owned by the driver when page_offset
3780 * is non-zero, which means page_offset @ truesize will
3781 * be used by stack after skb_add_rx_frag() is called,
3782 * and 0 @ truesize can be reused by driver.
3783 */
3784 if ((!desc_cb->page_offset && reused) ||
3785 ((desc_cb->page_offset + truesize + truesize) <=
3786 hns3_page_size(ring) && desc_cb->page_offset)) {
3787 desc_cb->page_offset += truesize;
3788 desc_cb->reuse_flag = 1;
3789 } else if (desc_cb->page_offset && reused) {
3790 desc_cb->page_offset = 0;
3791 desc_cb->reuse_flag = 1;
3792 } else if (frag_size <= ring->rx_copybreak) {
3793 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3794 if (!ret)
3795 return;
3796 }
3797
3798 out:
3799 desc_cb->pagecnt_bias--;
3800
3801 if (unlikely(!desc_cb->pagecnt_bias)) {
3802 page_ref_add(desc_cb->priv, USHRT_MAX);
3803 desc_cb->pagecnt_bias = USHRT_MAX;
3804 }
3805
3806 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3807 frag_size, truesize);
3808
3809 if (unlikely(!desc_cb->reuse_flag))
3810 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3811 }
3812
hns3_gro_complete(struct sk_buff * skb,u32 l234info)3813 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3814 {
3815 __be16 type = skb->protocol;
3816 struct tcphdr *th;
3817 int depth = 0;
3818
3819 while (eth_type_vlan(type)) {
3820 struct vlan_hdr *vh;
3821
3822 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3823 return -EFAULT;
3824
3825 vh = (struct vlan_hdr *)(skb->data + depth);
3826 type = vh->h_vlan_encapsulated_proto;
3827 depth += VLAN_HLEN;
3828 }
3829
3830 skb_set_network_header(skb, depth);
3831
3832 if (type == htons(ETH_P_IP)) {
3833 const struct iphdr *iph = ip_hdr(skb);
3834
3835 depth += sizeof(struct iphdr);
3836 skb_set_transport_header(skb, depth);
3837 th = tcp_hdr(skb);
3838 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3839 iph->daddr, 0);
3840 } else if (type == htons(ETH_P_IPV6)) {
3841 const struct ipv6hdr *iph = ipv6_hdr(skb);
3842
3843 depth += sizeof(struct ipv6hdr);
3844 skb_set_transport_header(skb, depth);
3845 th = tcp_hdr(skb);
3846 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3847 &iph->daddr, 0);
3848 } else {
3849 hns3_rl_err(skb->dev,
3850 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3851 be16_to_cpu(type), depth);
3852 return -EFAULT;
3853 }
3854
3855 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3856 if (th->cwr)
3857 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3858
3859 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3860 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3861
3862 skb->csum_start = (unsigned char *)th - skb->head;
3863 skb->csum_offset = offsetof(struct tcphdr, check);
3864 skb->ip_summed = CHECKSUM_PARTIAL;
3865
3866 trace_hns3_gro(skb);
3867
3868 return 0;
3869 }
3870
hns3_checksum_complete(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 ptype,u16 csum)3871 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3872 struct sk_buff *skb, u32 ptype, u16 csum)
3873 {
3874 if (ptype == HNS3_INVALID_PTYPE ||
3875 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3876 return;
3877
3878 hns3_ring_stats_update(ring, csum_complete);
3879 skb->ip_summed = CHECKSUM_COMPLETE;
3880 skb->csum = csum_unfold((__force __sum16)csum);
3881 }
3882
hns3_rx_handle_csum(struct sk_buff * skb,u32 l234info,u32 ol_info,u32 ptype)3883 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3884 u32 ol_info, u32 ptype)
3885 {
3886 int l3_type, l4_type;
3887 int ol4_type;
3888
3889 if (ptype != HNS3_INVALID_PTYPE) {
3890 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3891 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3892
3893 return;
3894 }
3895
3896 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3897 HNS3_RXD_OL4ID_S);
3898 switch (ol4_type) {
3899 case HNS3_OL4_TYPE_MAC_IN_UDP:
3900 case HNS3_OL4_TYPE_NVGRE:
3901 skb->csum_level = 1;
3902 fallthrough;
3903 case HNS3_OL4_TYPE_NO_TUN:
3904 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3905 HNS3_RXD_L3ID_S);
3906 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3907 HNS3_RXD_L4ID_S);
3908 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3909 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3910 l3_type == HNS3_L3_TYPE_IPV6) &&
3911 (l4_type == HNS3_L4_TYPE_UDP ||
3912 l4_type == HNS3_L4_TYPE_TCP ||
3913 l4_type == HNS3_L4_TYPE_SCTP))
3914 skb->ip_summed = CHECKSUM_UNNECESSARY;
3915 break;
3916 default:
3917 break;
3918 }
3919 }
3920
hns3_rx_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info,u16 csum)3921 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3922 u32 l234info, u32 bd_base_info, u32 ol_info,
3923 u16 csum)
3924 {
3925 struct net_device *netdev = ring_to_netdev(ring);
3926 struct hns3_nic_priv *priv = netdev_priv(netdev);
3927 u32 ptype = HNS3_INVALID_PTYPE;
3928
3929 skb->ip_summed = CHECKSUM_NONE;
3930
3931 skb_checksum_none_assert(skb);
3932
3933 if (!(netdev->features & NETIF_F_RXCSUM))
3934 return;
3935
3936 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3937 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3938 HNS3_RXD_PTYPE_S);
3939
3940 hns3_checksum_complete(ring, skb, ptype, csum);
3941
3942 /* check if hardware has done checksum */
3943 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3944 return;
3945
3946 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3947 BIT(HNS3_RXD_OL3E_B) |
3948 BIT(HNS3_RXD_OL4E_B)))) {
3949 skb->ip_summed = CHECKSUM_NONE;
3950 hns3_ring_stats_update(ring, l3l4_csum_err);
3951
3952 return;
3953 }
3954
3955 hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3956 }
3957
hns3_rx_skb(struct hns3_enet_ring * ring,struct sk_buff * skb)3958 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3959 {
3960 if (skb_has_frag_list(skb))
3961 napi_gro_flush(&ring->tqp_vector->napi, false);
3962
3963 napi_gro_receive(&ring->tqp_vector->napi, skb);
3964 }
3965
hns3_parse_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,u32 l234info,u16 * vlan_tag)3966 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3967 struct hns3_desc *desc, u32 l234info,
3968 u16 *vlan_tag)
3969 {
3970 struct hnae3_handle *handle = ring->tqp->handle;
3971 struct pci_dev *pdev = ring->tqp->handle->pdev;
3972 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3973
3974 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3975 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3976 if (!(*vlan_tag & VLAN_VID_MASK))
3977 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3978
3979 return (*vlan_tag != 0);
3980 }
3981
3982 #define HNS3_STRP_OUTER_VLAN 0x1
3983 #define HNS3_STRP_INNER_VLAN 0x2
3984 #define HNS3_STRP_BOTH 0x3
3985
3986 /* Hardware always insert VLAN tag into RX descriptor when
3987 * remove the tag from packet, driver needs to determine
3988 * reporting which tag to stack.
3989 */
3990 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3991 HNS3_RXD_STRP_TAGP_S)) {
3992 case HNS3_STRP_OUTER_VLAN:
3993 if (handle->port_base_vlan_state !=
3994 HNAE3_PORT_BASE_VLAN_DISABLE)
3995 return false;
3996
3997 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3998 return true;
3999 case HNS3_STRP_INNER_VLAN:
4000 if (handle->port_base_vlan_state !=
4001 HNAE3_PORT_BASE_VLAN_DISABLE)
4002 return false;
4003
4004 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4005 return true;
4006 case HNS3_STRP_BOTH:
4007 if (handle->port_base_vlan_state ==
4008 HNAE3_PORT_BASE_VLAN_DISABLE)
4009 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4010 else
4011 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4012
4013 return true;
4014 default:
4015 return false;
4016 }
4017 }
4018
hns3_rx_ring_move_fw(struct hns3_enet_ring * ring)4019 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4020 {
4021 ring->desc[ring->next_to_clean].rx.bd_base_info &=
4022 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4023 ring->desc_cb[ring->next_to_clean].refill = 0;
4024 ring->next_to_clean += 1;
4025
4026 if (unlikely(ring->next_to_clean == ring->desc_num))
4027 ring->next_to_clean = 0;
4028 }
4029
hns3_alloc_skb(struct hns3_enet_ring * ring,unsigned int length,unsigned char * va)4030 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4031 unsigned char *va)
4032 {
4033 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4034 struct net_device *netdev = ring_to_netdev(ring);
4035 struct sk_buff *skb;
4036
4037 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4038 skb = ring->skb;
4039 if (unlikely(!skb)) {
4040 hns3_rl_err(netdev, "alloc rx skb fail\n");
4041 hns3_ring_stats_update(ring, sw_err_cnt);
4042
4043 return -ENOMEM;
4044 }
4045
4046 trace_hns3_rx_desc(ring);
4047 prefetchw(skb->data);
4048
4049 ring->pending_buf = 1;
4050 ring->frag_num = 0;
4051 ring->tail_skb = NULL;
4052 if (length <= HNS3_RX_HEAD_SIZE) {
4053 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4054
4055 /* We can reuse buffer as-is, just make sure it is reusable */
4056 if (dev_page_is_reusable(desc_cb->priv))
4057 desc_cb->reuse_flag = 1;
4058 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4059 page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4060 false);
4061 else /* This page cannot be reused so discard it */
4062 __page_frag_cache_drain(desc_cb->priv,
4063 desc_cb->pagecnt_bias);
4064
4065 hns3_rx_ring_move_fw(ring);
4066 return 0;
4067 }
4068
4069 if (ring->page_pool)
4070 skb_mark_for_recycle(skb);
4071
4072 hns3_ring_stats_update(ring, seg_pkt_cnt);
4073
4074 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4075 __skb_put(skb, ring->pull_len);
4076 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4077 desc_cb);
4078 hns3_rx_ring_move_fw(ring);
4079
4080 return 0;
4081 }
4082
hns3_add_frag(struct hns3_enet_ring * ring)4083 static int hns3_add_frag(struct hns3_enet_ring *ring)
4084 {
4085 struct sk_buff *skb = ring->skb;
4086 struct sk_buff *head_skb = skb;
4087 struct sk_buff *new_skb;
4088 struct hns3_desc_cb *desc_cb;
4089 struct hns3_desc *desc;
4090 u32 bd_base_info;
4091
4092 do {
4093 desc = &ring->desc[ring->next_to_clean];
4094 desc_cb = &ring->desc_cb[ring->next_to_clean];
4095 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4096 /* make sure HW write desc complete */
4097 dma_rmb();
4098 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4099 return -ENXIO;
4100
4101 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4102 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4103 if (unlikely(!new_skb)) {
4104 hns3_rl_err(ring_to_netdev(ring),
4105 "alloc rx fraglist skb fail\n");
4106 return -ENXIO;
4107 }
4108
4109 if (ring->page_pool)
4110 skb_mark_for_recycle(new_skb);
4111
4112 ring->frag_num = 0;
4113
4114 if (ring->tail_skb) {
4115 ring->tail_skb->next = new_skb;
4116 ring->tail_skb = new_skb;
4117 } else {
4118 skb_shinfo(skb)->frag_list = new_skb;
4119 ring->tail_skb = new_skb;
4120 }
4121 }
4122
4123 if (ring->tail_skb) {
4124 head_skb->truesize += hns3_buf_size(ring);
4125 head_skb->data_len += le16_to_cpu(desc->rx.size);
4126 head_skb->len += le16_to_cpu(desc->rx.size);
4127 skb = ring->tail_skb;
4128 }
4129
4130 dma_sync_single_for_cpu(ring_to_dev(ring),
4131 desc_cb->dma + desc_cb->page_offset,
4132 hns3_buf_size(ring),
4133 DMA_FROM_DEVICE);
4134
4135 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4136 trace_hns3_rx_desc(ring);
4137 hns3_rx_ring_move_fw(ring);
4138 ring->pending_buf++;
4139 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4140
4141 return 0;
4142 }
4143
hns3_set_gro_and_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info,u16 csum)4144 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4145 struct sk_buff *skb, u32 l234info,
4146 u32 bd_base_info, u32 ol_info, u16 csum)
4147 {
4148 struct net_device *netdev = ring_to_netdev(ring);
4149 struct hns3_nic_priv *priv = netdev_priv(netdev);
4150 u32 l3_type;
4151
4152 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4153 HNS3_RXD_GRO_SIZE_M,
4154 HNS3_RXD_GRO_SIZE_S);
4155 /* if there is no HW GRO, do not set gro params */
4156 if (!skb_shinfo(skb)->gso_size) {
4157 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4158 csum);
4159 return 0;
4160 }
4161
4162 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4163 HNS3_RXD_GRO_COUNT_M,
4164 HNS3_RXD_GRO_COUNT_S);
4165
4166 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4167 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4168 HNS3_RXD_PTYPE_S);
4169
4170 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4171 } else {
4172 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4173 HNS3_RXD_L3ID_S);
4174 }
4175
4176 if (l3_type == HNS3_L3_TYPE_IPV4)
4177 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4178 else if (l3_type == HNS3_L3_TYPE_IPV6)
4179 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4180 else
4181 return -EFAULT;
4182
4183 return hns3_gro_complete(skb, l234info);
4184 }
4185
hns3_set_rx_skb_rss_type(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 rss_hash,u32 l234info,u32 ol_info)4186 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4187 struct sk_buff *skb, u32 rss_hash,
4188 u32 l234info, u32 ol_info)
4189 {
4190 enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4191 struct net_device *netdev = ring_to_netdev(ring);
4192 struct hns3_nic_priv *priv = netdev_priv(netdev);
4193
4194 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4195 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4196 HNS3_RXD_PTYPE_S);
4197
4198 rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4199 } else {
4200 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4201 HNS3_RXD_L3ID_S);
4202 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4203 HNS3_RXD_L4ID_S);
4204
4205 if (l3_type == HNS3_L3_TYPE_IPV4 ||
4206 l3_type == HNS3_L3_TYPE_IPV6) {
4207 if (l4_type == HNS3_L4_TYPE_UDP ||
4208 l4_type == HNS3_L4_TYPE_TCP ||
4209 l4_type == HNS3_L4_TYPE_SCTP)
4210 rss_type = PKT_HASH_TYPE_L4;
4211 else if (l4_type == HNS3_L4_TYPE_IGMP ||
4212 l4_type == HNS3_L4_TYPE_ICMP)
4213 rss_type = PKT_HASH_TYPE_L3;
4214 }
4215 }
4216
4217 skb_set_hash(skb, rss_hash, rss_type);
4218 }
4219
hns3_handle_rx_ts_info(struct net_device * netdev,struct hns3_desc * desc,struct sk_buff * skb,u32 bd_base_info)4220 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4221 struct hns3_desc *desc, struct sk_buff *skb,
4222 u32 bd_base_info)
4223 {
4224 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4225 struct hnae3_handle *h = hns3_get_handle(netdev);
4226 u32 nsec = le32_to_cpu(desc->ts_nsec);
4227 u32 sec = le32_to_cpu(desc->ts_sec);
4228
4229 if (h->ae_algo->ops->get_rx_hwts)
4230 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4231 }
4232 }
4233
hns3_handle_rx_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,struct sk_buff * skb,u32 l234info)4234 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4235 struct hns3_desc *desc, struct sk_buff *skb,
4236 u32 l234info)
4237 {
4238 struct net_device *netdev = ring_to_netdev(ring);
4239
4240 /* Based on hw strategy, the tag offloaded will be stored at
4241 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4242 * in one layer tag case.
4243 */
4244 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4245 u16 vlan_tag;
4246
4247 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4248 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4249 vlan_tag);
4250 }
4251 }
4252
hns3_handle_bdinfo(struct hns3_enet_ring * ring,struct sk_buff * skb)4253 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4254 {
4255 struct net_device *netdev = ring_to_netdev(ring);
4256 enum hns3_pkt_l2t_type l2_frame_type;
4257 u32 bd_base_info, l234info, ol_info;
4258 struct hns3_desc *desc;
4259 unsigned int len;
4260 int pre_ntc, ret;
4261 u16 csum;
4262
4263 /* bdinfo handled below is only valid on the last BD of the
4264 * current packet, and ring->next_to_clean indicates the first
4265 * descriptor of next packet, so need - 1 below.
4266 */
4267 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4268 (ring->desc_num - 1);
4269 desc = &ring->desc[pre_ntc];
4270 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4271 l234info = le32_to_cpu(desc->rx.l234_info);
4272 ol_info = le32_to_cpu(desc->rx.ol_info);
4273 csum = le16_to_cpu(desc->csum);
4274
4275 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4276
4277 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4278
4279 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4280 BIT(HNS3_RXD_L2E_B))))) {
4281 u64_stats_update_begin(&ring->syncp);
4282 if (l234info & BIT(HNS3_RXD_L2E_B))
4283 ring->stats.l2_err++;
4284 else
4285 ring->stats.err_pkt_len++;
4286 u64_stats_update_end(&ring->syncp);
4287
4288 return -EFAULT;
4289 }
4290
4291 len = skb->len;
4292
4293 /* Do update ip stack process */
4294 skb->protocol = eth_type_trans(skb, netdev);
4295
4296 /* This is needed in order to enable forwarding support */
4297 ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4298 bd_base_info, ol_info, csum);
4299 if (unlikely(ret)) {
4300 hns3_ring_stats_update(ring, rx_err_cnt);
4301 return ret;
4302 }
4303
4304 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4305 HNS3_RXD_DMAC_S);
4306
4307 u64_stats_update_begin(&ring->syncp);
4308 ring->stats.rx_pkts++;
4309 ring->stats.rx_bytes += len;
4310
4311 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4312 ring->stats.rx_multicast++;
4313
4314 u64_stats_update_end(&ring->syncp);
4315
4316 ring->tqp_vector->rx_group.total_bytes += len;
4317
4318 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4319 l234info, ol_info);
4320 return 0;
4321 }
4322
hns3_handle_rx_bd(struct hns3_enet_ring * ring)4323 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4324 {
4325 struct sk_buff *skb = ring->skb;
4326 struct hns3_desc_cb *desc_cb;
4327 struct hns3_desc *desc;
4328 unsigned int length;
4329 u32 bd_base_info;
4330 int ret;
4331
4332 desc = &ring->desc[ring->next_to_clean];
4333 desc_cb = &ring->desc_cb[ring->next_to_clean];
4334
4335 prefetch(desc);
4336
4337 if (!skb) {
4338 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4339 /* Check valid BD */
4340 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4341 return -ENXIO;
4342
4343 dma_rmb();
4344 length = le16_to_cpu(desc->rx.size);
4345
4346 ring->va = desc_cb->buf + desc_cb->page_offset;
4347
4348 dma_sync_single_for_cpu(ring_to_dev(ring),
4349 desc_cb->dma + desc_cb->page_offset,
4350 hns3_buf_size(ring),
4351 DMA_FROM_DEVICE);
4352
4353 /* Prefetch first cache line of first page.
4354 * Idea is to cache few bytes of the header of the packet.
4355 * Our L1 Cache line size is 64B so need to prefetch twice to make
4356 * it 128B. But in actual we can have greater size of caches with
4357 * 128B Level 1 cache lines. In such a case, single fetch would
4358 * suffice to cache in the relevant part of the header.
4359 */
4360 net_prefetch(ring->va);
4361
4362 ret = hns3_alloc_skb(ring, length, ring->va);
4363 skb = ring->skb;
4364
4365 if (ret < 0) /* alloc buffer fail */
4366 return ret;
4367 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4368 ret = hns3_add_frag(ring);
4369 if (ret)
4370 return ret;
4371 }
4372 } else {
4373 ret = hns3_add_frag(ring);
4374 if (ret)
4375 return ret;
4376 }
4377
4378 /* As the head data may be changed when GRO enable, copy
4379 * the head data in after other data rx completed
4380 */
4381 if (skb->len > HNS3_RX_HEAD_SIZE)
4382 memcpy(skb->data, ring->va,
4383 ALIGN(ring->pull_len, sizeof(long)));
4384
4385 ret = hns3_handle_bdinfo(ring, skb);
4386 if (unlikely(ret)) {
4387 dev_kfree_skb_any(skb);
4388 return ret;
4389 }
4390
4391 skb_record_rx_queue(skb, ring->tqp->tqp_index);
4392 return 0;
4393 }
4394
hns3_clean_rx_ring(struct hns3_enet_ring * ring,int budget,void (* rx_fn)(struct hns3_enet_ring *,struct sk_buff *))4395 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4396 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4397 {
4398 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4399 int unused_count = hns3_desc_unused(ring);
4400 bool failure = false;
4401 int recv_pkts = 0;
4402 int err;
4403
4404 unused_count -= ring->pending_buf;
4405
4406 while (recv_pkts < budget) {
4407 /* Reuse or realloc buffers */
4408 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4409 failure = failure ||
4410 hns3_nic_alloc_rx_buffers(ring, unused_count);
4411 unused_count = 0;
4412 }
4413
4414 /* Poll one pkt */
4415 err = hns3_handle_rx_bd(ring);
4416 /* Do not get FE for the packet or failed to alloc skb */
4417 if (unlikely(!ring->skb || err == -ENXIO)) {
4418 goto out;
4419 } else if (likely(!err)) {
4420 rx_fn(ring, ring->skb);
4421 recv_pkts++;
4422 }
4423
4424 unused_count += ring->pending_buf;
4425 ring->skb = NULL;
4426 ring->pending_buf = 0;
4427 }
4428
4429 out:
4430 /* sync head pointer before exiting, since hardware will calculate
4431 * FBD number with head pointer
4432 */
4433 if (unused_count > 0)
4434 failure = failure ||
4435 hns3_nic_alloc_rx_buffers(ring, unused_count);
4436
4437 return failure ? budget : recv_pkts;
4438 }
4439
hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector * tqp_vector)4440 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4441 {
4442 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4443 struct dim_sample sample = {};
4444
4445 if (!rx_group->coal.adapt_enable)
4446 return;
4447
4448 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4449 rx_group->total_bytes, &sample);
4450 net_dim(&rx_group->dim, &sample);
4451 }
4452
hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector * tqp_vector)4453 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4454 {
4455 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4456 struct dim_sample sample = {};
4457
4458 if (!tx_group->coal.adapt_enable)
4459 return;
4460
4461 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4462 tx_group->total_bytes, &sample);
4463 net_dim(&tx_group->dim, &sample);
4464 }
4465
hns3_nic_common_poll(struct napi_struct * napi,int budget)4466 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4467 {
4468 struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4469 struct hns3_enet_ring *ring;
4470 int rx_pkt_total = 0;
4471
4472 struct hns3_enet_tqp_vector *tqp_vector =
4473 container_of(napi, struct hns3_enet_tqp_vector, napi);
4474 bool clean_complete = true;
4475 int rx_budget = budget;
4476
4477 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4478 napi_complete(napi);
4479 return 0;
4480 }
4481
4482 /* Since the actual Tx work is minimal, we can give the Tx a larger
4483 * budget and be more aggressive about cleaning up the Tx descriptors.
4484 */
4485 hns3_for_each_ring(ring, tqp_vector->tx_group)
4486 hns3_clean_tx_ring(ring, budget);
4487
4488 /* make sure rx ring budget not smaller than 1 */
4489 if (tqp_vector->num_tqps > 1)
4490 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4491
4492 hns3_for_each_ring(ring, tqp_vector->rx_group) {
4493 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4494 hns3_rx_skb);
4495 if (rx_cleaned >= rx_budget)
4496 clean_complete = false;
4497
4498 rx_pkt_total += rx_cleaned;
4499 }
4500
4501 tqp_vector->rx_group.total_packets += rx_pkt_total;
4502
4503 if (!clean_complete)
4504 return budget;
4505
4506 if (napi_complete(napi) &&
4507 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4508 hns3_update_rx_int_coalesce(tqp_vector);
4509 hns3_update_tx_int_coalesce(tqp_vector);
4510
4511 hns3_mask_vector_irq(tqp_vector, 1);
4512 }
4513
4514 return rx_pkt_total;
4515 }
4516
hns3_create_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node ** head,bool is_tx)4517 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4518 struct hnae3_ring_chain_node **head,
4519 bool is_tx)
4520 {
4521 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4522 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4523 struct hnae3_ring_chain_node *cur_chain = *head;
4524 struct pci_dev *pdev = tqp_vector->handle->pdev;
4525 struct hnae3_ring_chain_node *chain;
4526 struct hns3_enet_ring *ring;
4527
4528 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4529
4530 if (cur_chain) {
4531 while (cur_chain->next)
4532 cur_chain = cur_chain->next;
4533 }
4534
4535 while (ring) {
4536 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4537 if (!chain)
4538 return -ENOMEM;
4539 if (cur_chain)
4540 cur_chain->next = chain;
4541 else
4542 *head = chain;
4543 chain->tqp_index = ring->tqp->tqp_index;
4544 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4545 bit_value);
4546 hnae3_set_field(chain->int_gl_idx,
4547 HNAE3_RING_GL_IDX_M,
4548 HNAE3_RING_GL_IDX_S, field_value);
4549
4550 cur_chain = chain;
4551
4552 ring = ring->next;
4553 }
4554
4555 return 0;
4556 }
4557
4558 static struct hnae3_ring_chain_node *
hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector)4559 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4560 {
4561 struct pci_dev *pdev = tqp_vector->handle->pdev;
4562 struct hnae3_ring_chain_node *cur_chain = NULL;
4563 struct hnae3_ring_chain_node *chain;
4564
4565 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4566 goto err_free_chain;
4567
4568 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4569 goto err_free_chain;
4570
4571 return cur_chain;
4572
4573 err_free_chain:
4574 while (cur_chain) {
4575 chain = cur_chain->next;
4576 devm_kfree(&pdev->dev, cur_chain);
4577 cur_chain = chain;
4578 }
4579
4580 return NULL;
4581 }
4582
hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)4583 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4584 struct hnae3_ring_chain_node *head)
4585 {
4586 struct pci_dev *pdev = tqp_vector->handle->pdev;
4587 struct hnae3_ring_chain_node *chain_tmp, *chain;
4588
4589 chain = head;
4590
4591 while (chain) {
4592 chain_tmp = chain->next;
4593 devm_kfree(&pdev->dev, chain);
4594 chain = chain_tmp;
4595 }
4596 }
4597
hns3_add_ring_to_group(struct hns3_enet_ring_group * group,struct hns3_enet_ring * ring)4598 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4599 struct hns3_enet_ring *ring)
4600 {
4601 ring->next = group->ring;
4602 group->ring = ring;
4603
4604 group->count++;
4605 }
4606
hns3_nic_set_cpumask(struct hns3_nic_priv * priv)4607 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4608 {
4609 struct pci_dev *pdev = priv->ae_handle->pdev;
4610 struct hns3_enet_tqp_vector *tqp_vector;
4611 int num_vectors = priv->vector_num;
4612 int numa_node;
4613 int vector_i;
4614
4615 numa_node = dev_to_node(&pdev->dev);
4616
4617 for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4618 tqp_vector = &priv->tqp_vector[vector_i];
4619 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4620 &tqp_vector->affinity_mask);
4621 }
4622 }
4623
hns3_rx_dim_work(struct work_struct * work)4624 static void hns3_rx_dim_work(struct work_struct *work)
4625 {
4626 struct dim *dim = container_of(work, struct dim, work);
4627 struct hns3_enet_ring_group *group = container_of(dim,
4628 struct hns3_enet_ring_group, dim);
4629 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4630 struct dim_cq_moder cur_moder =
4631 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4632
4633 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4634 tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4635
4636 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4637 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4638 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4639 }
4640
4641 dim->state = DIM_START_MEASURE;
4642 }
4643
hns3_tx_dim_work(struct work_struct * work)4644 static void hns3_tx_dim_work(struct work_struct *work)
4645 {
4646 struct dim *dim = container_of(work, struct dim, work);
4647 struct hns3_enet_ring_group *group = container_of(dim,
4648 struct hns3_enet_ring_group, dim);
4649 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4650 struct dim_cq_moder cur_moder =
4651 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4652
4653 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4654 tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4655
4656 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4657 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4658 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4659 }
4660
4661 dim->state = DIM_START_MEASURE;
4662 }
4663
hns3_nic_init_dim(struct hns3_enet_tqp_vector * tqp_vector)4664 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4665 {
4666 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4667 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4668 }
4669
hns3_nic_init_vector_data(struct hns3_nic_priv * priv)4670 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4671 {
4672 struct hnae3_handle *h = priv->ae_handle;
4673 struct hns3_enet_tqp_vector *tqp_vector;
4674 int ret;
4675 int i;
4676
4677 hns3_nic_set_cpumask(priv);
4678
4679 for (i = 0; i < priv->vector_num; i++) {
4680 tqp_vector = &priv->tqp_vector[i];
4681 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4682 tqp_vector->num_tqps = 0;
4683 hns3_nic_init_dim(tqp_vector);
4684 }
4685
4686 for (i = 0; i < h->kinfo.num_tqps; i++) {
4687 u16 vector_i = i % priv->vector_num;
4688 u16 tqp_num = h->kinfo.num_tqps;
4689
4690 tqp_vector = &priv->tqp_vector[vector_i];
4691
4692 hns3_add_ring_to_group(&tqp_vector->tx_group,
4693 &priv->ring[i]);
4694
4695 hns3_add_ring_to_group(&tqp_vector->rx_group,
4696 &priv->ring[i + tqp_num]);
4697
4698 priv->ring[i].tqp_vector = tqp_vector;
4699 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4700 tqp_vector->num_tqps++;
4701 }
4702
4703 for (i = 0; i < priv->vector_num; i++) {
4704 struct hnae3_ring_chain_node *vector_ring_chain;
4705
4706 tqp_vector = &priv->tqp_vector[i];
4707
4708 tqp_vector->rx_group.total_bytes = 0;
4709 tqp_vector->rx_group.total_packets = 0;
4710 tqp_vector->tx_group.total_bytes = 0;
4711 tqp_vector->tx_group.total_packets = 0;
4712 tqp_vector->handle = h;
4713
4714 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4715 if (!vector_ring_chain) {
4716 ret = -ENOMEM;
4717 goto map_ring_fail;
4718 }
4719
4720 ret = h->ae_algo->ops->map_ring_to_vector(h,
4721 tqp_vector->vector_irq, vector_ring_chain);
4722
4723 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4724
4725 if (ret)
4726 goto map_ring_fail;
4727
4728 netif_napi_add(priv->netdev, &tqp_vector->napi,
4729 hns3_nic_common_poll);
4730 }
4731
4732 return 0;
4733
4734 map_ring_fail:
4735 while (i--)
4736 netif_napi_del(&priv->tqp_vector[i].napi);
4737
4738 return ret;
4739 }
4740
hns3_nic_init_coal_cfg(struct hns3_nic_priv * priv)4741 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4742 {
4743 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4744 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4745 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4746
4747 /* initialize the configuration for interrupt coalescing.
4748 * 1. GL (Interrupt Gap Limiter)
4749 * 2. RL (Interrupt Rate Limiter)
4750 * 3. QL (Interrupt Quantity Limiter)
4751 *
4752 * Default: enable interrupt coalescing self-adaptive and GL
4753 */
4754 tx_coal->adapt_enable = 1;
4755 rx_coal->adapt_enable = 1;
4756
4757 tx_coal->int_gl = HNS3_INT_GL_50K;
4758 rx_coal->int_gl = HNS3_INT_GL_50K;
4759
4760 rx_coal->flow_level = HNS3_FLOW_LOW;
4761 tx_coal->flow_level = HNS3_FLOW_LOW;
4762
4763 if (ae_dev->dev_specs.int_ql_max) {
4764 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4765 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4766 }
4767 }
4768
hns3_nic_alloc_vector_data(struct hns3_nic_priv * priv)4769 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4770 {
4771 struct hnae3_handle *h = priv->ae_handle;
4772 struct hns3_enet_tqp_vector *tqp_vector;
4773 struct hnae3_vector_info *vector;
4774 struct pci_dev *pdev = h->pdev;
4775 u16 tqp_num = h->kinfo.num_tqps;
4776 u16 vector_num;
4777 int ret = 0;
4778 u16 i;
4779
4780 /* RSS size, cpu online and vector_num should be the same */
4781 /* Should consider 2p/4p later */
4782 vector_num = min_t(u16, num_online_cpus(), tqp_num);
4783
4784 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4785 GFP_KERNEL);
4786 if (!vector)
4787 return -ENOMEM;
4788
4789 /* save the actual available vector number */
4790 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4791
4792 priv->vector_num = vector_num;
4793 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4794 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4795 GFP_KERNEL);
4796 if (!priv->tqp_vector) {
4797 ret = -ENOMEM;
4798 goto out;
4799 }
4800
4801 for (i = 0; i < priv->vector_num; i++) {
4802 tqp_vector = &priv->tqp_vector[i];
4803 tqp_vector->idx = i;
4804 tqp_vector->mask_addr = vector[i].io_addr;
4805 tqp_vector->vector_irq = vector[i].vector;
4806 hns3_vector_coalesce_init(tqp_vector, priv);
4807 }
4808
4809 out:
4810 devm_kfree(&pdev->dev, vector);
4811 return ret;
4812 }
4813
hns3_clear_ring_group(struct hns3_enet_ring_group * group)4814 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4815 {
4816 group->ring = NULL;
4817 group->count = 0;
4818 }
4819
hns3_nic_uninit_vector_data(struct hns3_nic_priv * priv)4820 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4821 {
4822 struct hnae3_ring_chain_node *vector_ring_chain;
4823 struct hnae3_handle *h = priv->ae_handle;
4824 struct hns3_enet_tqp_vector *tqp_vector;
4825 int i;
4826
4827 for (i = 0; i < priv->vector_num; i++) {
4828 tqp_vector = &priv->tqp_vector[i];
4829
4830 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4831 continue;
4832
4833 /* Since the mapping can be overwritten, when fail to get the
4834 * chain between vector and ring, we should go on to deal with
4835 * the remaining options.
4836 */
4837 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4838 if (!vector_ring_chain)
4839 dev_warn(priv->dev, "failed to get ring chain\n");
4840
4841 h->ae_algo->ops->unmap_ring_from_vector(h,
4842 tqp_vector->vector_irq, vector_ring_chain);
4843
4844 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4845
4846 hns3_clear_ring_group(&tqp_vector->rx_group);
4847 hns3_clear_ring_group(&tqp_vector->tx_group);
4848 netif_napi_del(&priv->tqp_vector[i].napi);
4849 }
4850 }
4851
hns3_nic_dealloc_vector_data(struct hns3_nic_priv * priv)4852 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4853 {
4854 struct hnae3_handle *h = priv->ae_handle;
4855 struct pci_dev *pdev = h->pdev;
4856 int i, ret;
4857
4858 for (i = 0; i < priv->vector_num; i++) {
4859 struct hns3_enet_tqp_vector *tqp_vector;
4860
4861 tqp_vector = &priv->tqp_vector[i];
4862 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4863 if (ret)
4864 return;
4865 }
4866
4867 devm_kfree(&pdev->dev, priv->tqp_vector);
4868 }
4869
hns3_ring_get_cfg(struct hnae3_queue * q,struct hns3_nic_priv * priv,unsigned int ring_type)4870 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4871 unsigned int ring_type)
4872 {
4873 int queue_num = priv->ae_handle->kinfo.num_tqps;
4874 struct hns3_enet_ring *ring;
4875 int desc_num;
4876
4877 if (ring_type == HNAE3_RING_TYPE_TX) {
4878 ring = &priv->ring[q->tqp_index];
4879 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4880 ring->queue_index = q->tqp_index;
4881 ring->tx_copybreak = priv->tx_copybreak;
4882 ring->last_to_use = 0;
4883 } else {
4884 ring = &priv->ring[q->tqp_index + queue_num];
4885 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4886 ring->queue_index = q->tqp_index;
4887 ring->rx_copybreak = priv->rx_copybreak;
4888 }
4889
4890 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4891
4892 ring->tqp = q;
4893 ring->desc = NULL;
4894 ring->desc_cb = NULL;
4895 ring->dev = priv->dev;
4896 ring->desc_dma_addr = 0;
4897 ring->buf_size = q->buf_size;
4898 ring->desc_num = desc_num;
4899 ring->next_to_use = 0;
4900 ring->next_to_clean = 0;
4901 }
4902
hns3_queue_to_ring(struct hnae3_queue * tqp,struct hns3_nic_priv * priv)4903 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4904 struct hns3_nic_priv *priv)
4905 {
4906 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4907 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4908 }
4909
hns3_get_ring_config(struct hns3_nic_priv * priv)4910 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4911 {
4912 struct hnae3_handle *h = priv->ae_handle;
4913 struct pci_dev *pdev = h->pdev;
4914 int i;
4915
4916 priv->ring = devm_kzalloc(&pdev->dev,
4917 array3_size(h->kinfo.num_tqps,
4918 sizeof(*priv->ring), 2),
4919 GFP_KERNEL);
4920 if (!priv->ring)
4921 return -ENOMEM;
4922
4923 for (i = 0; i < h->kinfo.num_tqps; i++)
4924 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4925
4926 return 0;
4927 }
4928
hns3_put_ring_config(struct hns3_nic_priv * priv)4929 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4930 {
4931 if (!priv->ring)
4932 return;
4933
4934 devm_kfree(priv->dev, priv->ring);
4935 priv->ring = NULL;
4936 }
4937
hns3_alloc_page_pool(struct hns3_enet_ring * ring)4938 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4939 {
4940 struct page_pool_params pp_params = {
4941 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
4942 .order = hns3_page_order(ring),
4943 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4944 (PAGE_SIZE << hns3_page_order(ring)),
4945 .nid = dev_to_node(ring_to_dev(ring)),
4946 .dev = ring_to_dev(ring),
4947 .dma_dir = DMA_FROM_DEVICE,
4948 .offset = 0,
4949 .max_len = PAGE_SIZE << hns3_page_order(ring),
4950 };
4951
4952 ring->page_pool = page_pool_create(&pp_params);
4953 if (IS_ERR(ring->page_pool)) {
4954 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4955 PTR_ERR(ring->page_pool));
4956 ring->page_pool = NULL;
4957 }
4958 }
4959
hns3_alloc_ring_memory(struct hns3_enet_ring * ring)4960 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4961 {
4962 int ret;
4963
4964 if (ring->desc_num <= 0 || ring->buf_size <= 0)
4965 return -EINVAL;
4966
4967 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4968 sizeof(ring->desc_cb[0]), GFP_KERNEL);
4969 if (!ring->desc_cb) {
4970 ret = -ENOMEM;
4971 goto out;
4972 }
4973
4974 ret = hns3_alloc_desc(ring);
4975 if (ret)
4976 goto out_with_desc_cb;
4977
4978 if (!HNAE3_IS_TX_RING(ring)) {
4979 if (page_pool_enabled)
4980 hns3_alloc_page_pool(ring);
4981
4982 ret = hns3_alloc_ring_buffers(ring);
4983 if (ret)
4984 goto out_with_desc;
4985 } else {
4986 hns3_init_tx_spare_buffer(ring);
4987 }
4988
4989 return 0;
4990
4991 out_with_desc:
4992 hns3_free_desc(ring);
4993 out_with_desc_cb:
4994 devm_kfree(ring_to_dev(ring), ring->desc_cb);
4995 ring->desc_cb = NULL;
4996 out:
4997 return ret;
4998 }
4999
hns3_fini_ring(struct hns3_enet_ring * ring)5000 void hns3_fini_ring(struct hns3_enet_ring *ring)
5001 {
5002 hns3_free_desc(ring);
5003 devm_kfree(ring_to_dev(ring), ring->desc_cb);
5004 ring->desc_cb = NULL;
5005 ring->next_to_clean = 0;
5006 ring->next_to_use = 0;
5007 ring->last_to_use = 0;
5008 ring->pending_buf = 0;
5009 if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5010 dev_kfree_skb_any(ring->skb);
5011 ring->skb = NULL;
5012 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5013 struct hns3_tx_spare *tx_spare = ring->tx_spare;
5014
5015 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5016 DMA_TO_DEVICE);
5017 free_pages((unsigned long)tx_spare->buf,
5018 get_order(tx_spare->len));
5019 devm_kfree(ring_to_dev(ring), tx_spare);
5020 ring->tx_spare = NULL;
5021 }
5022
5023 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5024 page_pool_destroy(ring->page_pool);
5025 ring->page_pool = NULL;
5026 }
5027 }
5028
hns3_buf_size2type(u32 buf_size)5029 static int hns3_buf_size2type(u32 buf_size)
5030 {
5031 int bd_size_type;
5032
5033 switch (buf_size) {
5034 case 512:
5035 bd_size_type = HNS3_BD_SIZE_512_TYPE;
5036 break;
5037 case 1024:
5038 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5039 break;
5040 case 2048:
5041 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5042 break;
5043 case 4096:
5044 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5045 break;
5046 default:
5047 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5048 }
5049
5050 return bd_size_type;
5051 }
5052
hns3_init_ring_hw(struct hns3_enet_ring * ring)5053 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5054 {
5055 dma_addr_t dma = ring->desc_dma_addr;
5056 struct hnae3_queue *q = ring->tqp;
5057
5058 if (!HNAE3_IS_TX_RING(ring)) {
5059 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5060 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5061 (u32)((dma >> 31) >> 1));
5062
5063 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5064 hns3_buf_size2type(ring->buf_size));
5065 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5066 ring->desc_num / 8 - 1);
5067 } else {
5068 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5069 (u32)dma);
5070 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5071 (u32)((dma >> 31) >> 1));
5072
5073 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5074 ring->desc_num / 8 - 1);
5075 }
5076 }
5077
hns3_init_tx_ring_tc(struct hns3_nic_priv * priv)5078 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5079 {
5080 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5081 struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5082 int i;
5083
5084 for (i = 0; i < tc_info->num_tc; i++) {
5085 int j;
5086
5087 for (j = 0; j < tc_info->tqp_count[i]; j++) {
5088 struct hnae3_queue *q;
5089
5090 q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5091 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5092 }
5093 }
5094 }
5095
hns3_init_all_ring(struct hns3_nic_priv * priv)5096 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5097 {
5098 struct hnae3_handle *h = priv->ae_handle;
5099 int ring_num = h->kinfo.num_tqps * 2;
5100 int i, j;
5101 int ret;
5102
5103 for (i = 0; i < ring_num; i++) {
5104 ret = hns3_alloc_ring_memory(&priv->ring[i]);
5105 if (ret) {
5106 dev_err(priv->dev,
5107 "Alloc ring memory fail! ret=%d\n", ret);
5108 goto out_when_alloc_ring_memory;
5109 }
5110
5111 u64_stats_init(&priv->ring[i].syncp);
5112 cond_resched();
5113 }
5114
5115 return 0;
5116
5117 out_when_alloc_ring_memory:
5118 for (j = i - 1; j >= 0; j--)
5119 hns3_fini_ring(&priv->ring[j]);
5120
5121 return -ENOMEM;
5122 }
5123
hns3_uninit_all_ring(struct hns3_nic_priv * priv)5124 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5125 {
5126 struct hnae3_handle *h = priv->ae_handle;
5127 int i;
5128
5129 for (i = 0; i < h->kinfo.num_tqps; i++) {
5130 hns3_fini_ring(&priv->ring[i]);
5131 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5132 }
5133 }
5134
5135 /* Set mac addr if it is configured. or leave it to the AE driver */
hns3_init_mac_addr(struct net_device * netdev)5136 static int hns3_init_mac_addr(struct net_device *netdev)
5137 {
5138 struct hns3_nic_priv *priv = netdev_priv(netdev);
5139 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5140 struct hnae3_handle *h = priv->ae_handle;
5141 u8 mac_addr_temp[ETH_ALEN] = {0};
5142 int ret = 0;
5143
5144 if (h->ae_algo->ops->get_mac_addr)
5145 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5146
5147 /* Check if the MAC address is valid, if not get a random one */
5148 if (!is_valid_ether_addr(mac_addr_temp)) {
5149 eth_hw_addr_random(netdev);
5150 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5151 dev_warn(priv->dev, "using random MAC address %s\n",
5152 format_mac_addr);
5153 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5154 eth_hw_addr_set(netdev, mac_addr_temp);
5155 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5156 } else {
5157 return 0;
5158 }
5159
5160 if (h->ae_algo->ops->set_mac_addr)
5161 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5162
5163 return ret;
5164 }
5165
hns3_init_phy(struct net_device * netdev)5166 static int hns3_init_phy(struct net_device *netdev)
5167 {
5168 struct hnae3_handle *h = hns3_get_handle(netdev);
5169 int ret = 0;
5170
5171 if (h->ae_algo->ops->mac_connect_phy)
5172 ret = h->ae_algo->ops->mac_connect_phy(h);
5173
5174 return ret;
5175 }
5176
hns3_uninit_phy(struct net_device * netdev)5177 static void hns3_uninit_phy(struct net_device *netdev)
5178 {
5179 struct hnae3_handle *h = hns3_get_handle(netdev);
5180
5181 if (h->ae_algo->ops->mac_disconnect_phy)
5182 h->ae_algo->ops->mac_disconnect_phy(h);
5183 }
5184
hns3_client_start(struct hnae3_handle * handle)5185 static int hns3_client_start(struct hnae3_handle *handle)
5186 {
5187 if (!handle->ae_algo->ops->client_start)
5188 return 0;
5189
5190 return handle->ae_algo->ops->client_start(handle);
5191 }
5192
hns3_client_stop(struct hnae3_handle * handle)5193 static void hns3_client_stop(struct hnae3_handle *handle)
5194 {
5195 if (!handle->ae_algo->ops->client_stop)
5196 return;
5197
5198 handle->ae_algo->ops->client_stop(handle);
5199 }
5200
hns3_info_show(struct hns3_nic_priv * priv)5201 static void hns3_info_show(struct hns3_nic_priv *priv)
5202 {
5203 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5204 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5205
5206 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5207 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5208 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5209 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5210 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5211 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5212 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5213 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5214 dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5215 kinfo->tc_info.num_tc);
5216 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5217 }
5218
hns3_set_cq_period_mode(struct hns3_nic_priv * priv,enum dim_cq_period_mode mode,bool is_tx)5219 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5220 enum dim_cq_period_mode mode, bool is_tx)
5221 {
5222 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5223 struct hnae3_handle *handle = priv->ae_handle;
5224 int i;
5225
5226 if (is_tx) {
5227 priv->tx_cqe_mode = mode;
5228
5229 for (i = 0; i < priv->vector_num; i++)
5230 priv->tqp_vector[i].tx_group.dim.mode = mode;
5231 } else {
5232 priv->rx_cqe_mode = mode;
5233
5234 for (i = 0; i < priv->vector_num; i++)
5235 priv->tqp_vector[i].rx_group.dim.mode = mode;
5236 }
5237
5238 if (hnae3_ae_dev_cq_supported(ae_dev)) {
5239 u32 new_mode;
5240 u64 reg;
5241
5242 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5243 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5244 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5245
5246 writel(new_mode, handle->kinfo.io_base + reg);
5247 }
5248 }
5249
hns3_cq_period_mode_init(struct hns3_nic_priv * priv,enum dim_cq_period_mode tx_mode,enum dim_cq_period_mode rx_mode)5250 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5251 enum dim_cq_period_mode tx_mode,
5252 enum dim_cq_period_mode rx_mode)
5253 {
5254 hns3_set_cq_period_mode(priv, tx_mode, true);
5255 hns3_set_cq_period_mode(priv, rx_mode, false);
5256 }
5257
hns3_state_init(struct hnae3_handle * handle)5258 static void hns3_state_init(struct hnae3_handle *handle)
5259 {
5260 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5261 struct net_device *netdev = handle->kinfo.netdev;
5262 struct hns3_nic_priv *priv = netdev_priv(netdev);
5263
5264 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5265
5266 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5267 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5268
5269 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5270 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5271
5272 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5273 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5274
5275 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5276 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5277 }
5278
hns3_state_uninit(struct hnae3_handle * handle)5279 static void hns3_state_uninit(struct hnae3_handle *handle)
5280 {
5281 struct hns3_nic_priv *priv = handle->priv;
5282
5283 clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5284 }
5285
hns3_client_init(struct hnae3_handle * handle)5286 static int hns3_client_init(struct hnae3_handle *handle)
5287 {
5288 struct pci_dev *pdev = handle->pdev;
5289 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5290 u16 alloc_tqps, max_rss_size;
5291 struct hns3_nic_priv *priv;
5292 struct net_device *netdev;
5293 int ret;
5294
5295 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5296 &max_rss_size);
5297 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5298 if (!netdev)
5299 return -ENOMEM;
5300
5301 priv = netdev_priv(netdev);
5302 priv->dev = &pdev->dev;
5303 priv->netdev = netdev;
5304 priv->ae_handle = handle;
5305 priv->tx_timeout_count = 0;
5306 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5307 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5308
5309 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5310
5311 handle->kinfo.netdev = netdev;
5312 handle->priv = (void *)priv;
5313
5314 hns3_init_mac_addr(netdev);
5315
5316 hns3_set_default_feature(netdev);
5317
5318 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5319 netdev->priv_flags |= IFF_UNICAST_FLT;
5320 netdev->netdev_ops = &hns3_nic_netdev_ops;
5321 SET_NETDEV_DEV(netdev, &pdev->dev);
5322 hns3_ethtool_set_ops(netdev);
5323
5324 /* Carrier off reporting is important to ethtool even BEFORE open */
5325 netif_carrier_off(netdev);
5326
5327 ret = hns3_get_ring_config(priv);
5328 if (ret) {
5329 ret = -ENOMEM;
5330 goto out_get_ring_cfg;
5331 }
5332
5333 hns3_nic_init_coal_cfg(priv);
5334
5335 ret = hns3_nic_alloc_vector_data(priv);
5336 if (ret) {
5337 ret = -ENOMEM;
5338 goto out_alloc_vector_data;
5339 }
5340
5341 ret = hns3_nic_init_vector_data(priv);
5342 if (ret) {
5343 ret = -ENOMEM;
5344 goto out_init_vector_data;
5345 }
5346
5347 ret = hns3_init_all_ring(priv);
5348 if (ret) {
5349 ret = -ENOMEM;
5350 goto out_init_ring;
5351 }
5352
5353 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5354 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5355
5356 ret = hns3_init_phy(netdev);
5357 if (ret)
5358 goto out_init_phy;
5359
5360 /* the device can work without cpu rmap, only aRFS needs it */
5361 ret = hns3_set_rx_cpu_rmap(netdev);
5362 if (ret)
5363 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5364
5365 ret = hns3_nic_init_irq(priv);
5366 if (ret) {
5367 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5368 hns3_free_rx_cpu_rmap(netdev);
5369 goto out_init_irq_fail;
5370 }
5371
5372 ret = hns3_client_start(handle);
5373 if (ret) {
5374 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5375 goto out_client_start;
5376 }
5377
5378 hns3_dcbnl_setup(handle);
5379
5380 ret = hns3_dbg_init(handle);
5381 if (ret) {
5382 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5383 ret);
5384 goto out_client_start;
5385 }
5386
5387 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5388
5389 hns3_state_init(handle);
5390
5391 ret = register_netdev(netdev);
5392 if (ret) {
5393 dev_err(priv->dev, "probe register netdev fail!\n");
5394 goto out_reg_netdev_fail;
5395 }
5396
5397 if (netif_msg_drv(handle))
5398 hns3_info_show(priv);
5399
5400 return ret;
5401
5402 out_reg_netdev_fail:
5403 hns3_state_uninit(handle);
5404 hns3_dbg_uninit(handle);
5405 hns3_client_stop(handle);
5406 out_client_start:
5407 hns3_free_rx_cpu_rmap(netdev);
5408 hns3_nic_uninit_irq(priv);
5409 out_init_irq_fail:
5410 hns3_uninit_phy(netdev);
5411 out_init_phy:
5412 hns3_uninit_all_ring(priv);
5413 out_init_ring:
5414 hns3_nic_uninit_vector_data(priv);
5415 out_init_vector_data:
5416 hns3_nic_dealloc_vector_data(priv);
5417 out_alloc_vector_data:
5418 priv->ring = NULL;
5419 out_get_ring_cfg:
5420 priv->ae_handle = NULL;
5421 free_netdev(netdev);
5422 return ret;
5423 }
5424
hns3_client_uninit(struct hnae3_handle * handle,bool reset)5425 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5426 {
5427 struct net_device *netdev = handle->kinfo.netdev;
5428 struct hns3_nic_priv *priv = netdev_priv(netdev);
5429
5430 if (netdev->reg_state != NETREG_UNINITIALIZED)
5431 unregister_netdev(netdev);
5432
5433 hns3_client_stop(handle);
5434
5435 hns3_uninit_phy(netdev);
5436
5437 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5438 netdev_warn(netdev, "already uninitialized\n");
5439 goto out_netdev_free;
5440 }
5441
5442 hns3_free_rx_cpu_rmap(netdev);
5443
5444 hns3_nic_uninit_irq(priv);
5445
5446 hns3_clear_all_ring(handle, true);
5447
5448 hns3_nic_uninit_vector_data(priv);
5449
5450 hns3_nic_dealloc_vector_data(priv);
5451
5452 hns3_uninit_all_ring(priv);
5453
5454 hns3_put_ring_config(priv);
5455
5456 out_netdev_free:
5457 hns3_dbg_uninit(handle);
5458 free_netdev(netdev);
5459 }
5460
hns3_link_status_change(struct hnae3_handle * handle,bool linkup)5461 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5462 {
5463 struct net_device *netdev = handle->kinfo.netdev;
5464
5465 if (!netdev)
5466 return;
5467
5468 if (linkup) {
5469 netif_tx_wake_all_queues(netdev);
5470 netif_carrier_on(netdev);
5471 if (netif_msg_link(handle))
5472 netdev_info(netdev, "link up\n");
5473 } else {
5474 netif_carrier_off(netdev);
5475 netif_tx_stop_all_queues(netdev);
5476 if (netif_msg_link(handle))
5477 netdev_info(netdev, "link down\n");
5478 }
5479 }
5480
hns3_clear_tx_ring(struct hns3_enet_ring * ring)5481 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5482 {
5483 while (ring->next_to_clean != ring->next_to_use) {
5484 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5485 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5486 ring_ptr_move_fw(ring, next_to_clean);
5487 }
5488
5489 ring->pending_buf = 0;
5490 }
5491
hns3_clear_rx_ring(struct hns3_enet_ring * ring)5492 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5493 {
5494 struct hns3_desc_cb res_cbs;
5495 int ret;
5496
5497 while (ring->next_to_use != ring->next_to_clean) {
5498 /* When a buffer is not reused, it's memory has been
5499 * freed in hns3_handle_rx_bd or will be freed by
5500 * stack, so we need to replace the buffer here.
5501 */
5502 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5503 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5504 if (ret) {
5505 hns3_ring_stats_update(ring, sw_err_cnt);
5506 /* if alloc new buffer fail, exit directly
5507 * and reclear in up flow.
5508 */
5509 netdev_warn(ring_to_netdev(ring),
5510 "reserve buffer map failed, ret = %d\n",
5511 ret);
5512 return ret;
5513 }
5514 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5515 }
5516 ring_ptr_move_fw(ring, next_to_use);
5517 }
5518
5519 /* Free the pending skb in rx ring */
5520 if (ring->skb) {
5521 dev_kfree_skb_any(ring->skb);
5522 ring->skb = NULL;
5523 ring->pending_buf = 0;
5524 }
5525
5526 return 0;
5527 }
5528
hns3_force_clear_rx_ring(struct hns3_enet_ring * ring)5529 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5530 {
5531 while (ring->next_to_use != ring->next_to_clean) {
5532 /* When a buffer is not reused, it's memory has been
5533 * freed in hns3_handle_rx_bd or will be freed by
5534 * stack, so only need to unmap the buffer here.
5535 */
5536 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5537 hns3_unmap_buffer(ring,
5538 &ring->desc_cb[ring->next_to_use]);
5539 ring->desc_cb[ring->next_to_use].dma = 0;
5540 }
5541
5542 ring_ptr_move_fw(ring, next_to_use);
5543 }
5544 }
5545
hns3_clear_all_ring(struct hnae3_handle * h,bool force)5546 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5547 {
5548 struct net_device *ndev = h->kinfo.netdev;
5549 struct hns3_nic_priv *priv = netdev_priv(ndev);
5550 u32 i;
5551
5552 for (i = 0; i < h->kinfo.num_tqps; i++) {
5553 struct hns3_enet_ring *ring;
5554
5555 ring = &priv->ring[i];
5556 hns3_clear_tx_ring(ring);
5557
5558 ring = &priv->ring[i + h->kinfo.num_tqps];
5559 /* Continue to clear other rings even if clearing some
5560 * rings failed.
5561 */
5562 if (force)
5563 hns3_force_clear_rx_ring(ring);
5564 else
5565 hns3_clear_rx_ring(ring);
5566 }
5567 }
5568
hns3_nic_reset_all_ring(struct hnae3_handle * h)5569 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5570 {
5571 struct net_device *ndev = h->kinfo.netdev;
5572 struct hns3_nic_priv *priv = netdev_priv(ndev);
5573 struct hns3_enet_ring *rx_ring;
5574 int i, j;
5575 int ret;
5576
5577 ret = h->ae_algo->ops->reset_queue(h);
5578 if (ret)
5579 return ret;
5580
5581 for (i = 0; i < h->kinfo.num_tqps; i++) {
5582 hns3_init_ring_hw(&priv->ring[i]);
5583
5584 /* We need to clear tx ring here because self test will
5585 * use the ring and will not run down before up
5586 */
5587 hns3_clear_tx_ring(&priv->ring[i]);
5588 priv->ring[i].next_to_clean = 0;
5589 priv->ring[i].next_to_use = 0;
5590 priv->ring[i].last_to_use = 0;
5591
5592 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5593 hns3_init_ring_hw(rx_ring);
5594 ret = hns3_clear_rx_ring(rx_ring);
5595 if (ret)
5596 return ret;
5597
5598 /* We can not know the hardware head and tail when this
5599 * function is called in reset flow, so we reuse all desc.
5600 */
5601 for (j = 0; j < rx_ring->desc_num; j++)
5602 hns3_reuse_buffer(rx_ring, j);
5603
5604 rx_ring->next_to_clean = 0;
5605 rx_ring->next_to_use = 0;
5606 }
5607
5608 hns3_init_tx_ring_tc(priv);
5609
5610 return 0;
5611 }
5612
hns3_reset_notify_down_enet(struct hnae3_handle * handle)5613 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5614 {
5615 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5616 struct net_device *ndev = kinfo->netdev;
5617 struct hns3_nic_priv *priv = netdev_priv(ndev);
5618
5619 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5620 return 0;
5621
5622 if (!netif_running(ndev))
5623 return 0;
5624
5625 return hns3_nic_net_stop(ndev);
5626 }
5627
hns3_reset_notify_up_enet(struct hnae3_handle * handle)5628 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5629 {
5630 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5631 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5632 int ret = 0;
5633
5634 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5635 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5636 return -EFAULT;
5637 }
5638
5639 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5640
5641 if (netif_running(kinfo->netdev)) {
5642 ret = hns3_nic_net_open(kinfo->netdev);
5643 if (ret) {
5644 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5645 netdev_err(kinfo->netdev,
5646 "net up fail, ret=%d!\n", ret);
5647 return ret;
5648 }
5649 }
5650
5651 return ret;
5652 }
5653
hns3_reset_notify_init_enet(struct hnae3_handle * handle)5654 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5655 {
5656 struct net_device *netdev = handle->kinfo.netdev;
5657 struct hns3_nic_priv *priv = netdev_priv(netdev);
5658 int ret;
5659
5660 /* Carrier off reporting is important to ethtool even BEFORE open */
5661 netif_carrier_off(netdev);
5662
5663 ret = hns3_get_ring_config(priv);
5664 if (ret)
5665 return ret;
5666
5667 ret = hns3_nic_alloc_vector_data(priv);
5668 if (ret)
5669 goto err_put_ring;
5670
5671 ret = hns3_nic_init_vector_data(priv);
5672 if (ret)
5673 goto err_dealloc_vector;
5674
5675 ret = hns3_init_all_ring(priv);
5676 if (ret)
5677 goto err_uninit_vector;
5678
5679 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5680
5681 /* the device can work without cpu rmap, only aRFS needs it */
5682 ret = hns3_set_rx_cpu_rmap(netdev);
5683 if (ret)
5684 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5685
5686 ret = hns3_nic_init_irq(priv);
5687 if (ret) {
5688 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5689 hns3_free_rx_cpu_rmap(netdev);
5690 goto err_init_irq_fail;
5691 }
5692
5693 if (!hns3_is_phys_func(handle->pdev))
5694 hns3_init_mac_addr(netdev);
5695
5696 ret = hns3_client_start(handle);
5697 if (ret) {
5698 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5699 goto err_client_start_fail;
5700 }
5701
5702 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5703
5704 return ret;
5705
5706 err_client_start_fail:
5707 hns3_free_rx_cpu_rmap(netdev);
5708 hns3_nic_uninit_irq(priv);
5709 err_init_irq_fail:
5710 hns3_uninit_all_ring(priv);
5711 err_uninit_vector:
5712 hns3_nic_uninit_vector_data(priv);
5713 err_dealloc_vector:
5714 hns3_nic_dealloc_vector_data(priv);
5715 err_put_ring:
5716 hns3_put_ring_config(priv);
5717
5718 return ret;
5719 }
5720
hns3_reset_notify_uninit_enet(struct hnae3_handle * handle)5721 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5722 {
5723 struct net_device *netdev = handle->kinfo.netdev;
5724 struct hns3_nic_priv *priv = netdev_priv(netdev);
5725
5726 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5727 hns3_nic_net_stop(netdev);
5728
5729 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5730 netdev_warn(netdev, "already uninitialized\n");
5731 return 0;
5732 }
5733
5734 hns3_free_rx_cpu_rmap(netdev);
5735 hns3_nic_uninit_irq(priv);
5736 hns3_clear_all_ring(handle, true);
5737 hns3_reset_tx_queue(priv->ae_handle);
5738
5739 hns3_nic_uninit_vector_data(priv);
5740
5741 hns3_nic_dealloc_vector_data(priv);
5742
5743 hns3_uninit_all_ring(priv);
5744
5745 hns3_put_ring_config(priv);
5746
5747 return 0;
5748 }
5749
hns3_reset_notify(struct hnae3_handle * handle,enum hnae3_reset_notify_type type)5750 int hns3_reset_notify(struct hnae3_handle *handle,
5751 enum hnae3_reset_notify_type type)
5752 {
5753 int ret = 0;
5754
5755 switch (type) {
5756 case HNAE3_UP_CLIENT:
5757 ret = hns3_reset_notify_up_enet(handle);
5758 break;
5759 case HNAE3_DOWN_CLIENT:
5760 ret = hns3_reset_notify_down_enet(handle);
5761 break;
5762 case HNAE3_INIT_CLIENT:
5763 ret = hns3_reset_notify_init_enet(handle);
5764 break;
5765 case HNAE3_UNINIT_CLIENT:
5766 ret = hns3_reset_notify_uninit_enet(handle);
5767 break;
5768 default:
5769 break;
5770 }
5771
5772 return ret;
5773 }
5774
hns3_change_channels(struct hnae3_handle * handle,u32 new_tqp_num,bool rxfh_configured)5775 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5776 bool rxfh_configured)
5777 {
5778 int ret;
5779
5780 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5781 rxfh_configured);
5782 if (ret) {
5783 dev_err(&handle->pdev->dev,
5784 "Change tqp num(%u) fail.\n", new_tqp_num);
5785 return ret;
5786 }
5787
5788 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5789 if (ret)
5790 return ret;
5791
5792 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5793 if (ret)
5794 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5795
5796 return ret;
5797 }
5798
hns3_set_channels(struct net_device * netdev,struct ethtool_channels * ch)5799 int hns3_set_channels(struct net_device *netdev,
5800 struct ethtool_channels *ch)
5801 {
5802 struct hnae3_handle *h = hns3_get_handle(netdev);
5803 struct hnae3_knic_private_info *kinfo = &h->kinfo;
5804 bool rxfh_configured = netif_is_rxfh_configured(netdev);
5805 u32 new_tqp_num = ch->combined_count;
5806 u16 org_tqp_num;
5807 int ret;
5808
5809 if (hns3_nic_resetting(netdev))
5810 return -EBUSY;
5811
5812 if (ch->rx_count || ch->tx_count)
5813 return -EINVAL;
5814
5815 if (kinfo->tc_info.mqprio_active) {
5816 dev_err(&netdev->dev,
5817 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5818 return -EINVAL;
5819 }
5820
5821 if (new_tqp_num > hns3_get_max_available_channels(h) ||
5822 new_tqp_num < 1) {
5823 dev_err(&netdev->dev,
5824 "Change tqps fail, the tqp range is from 1 to %u",
5825 hns3_get_max_available_channels(h));
5826 return -EINVAL;
5827 }
5828
5829 if (kinfo->rss_size == new_tqp_num)
5830 return 0;
5831
5832 netif_dbg(h, drv, netdev,
5833 "set channels: tqp_num=%u, rxfh=%d\n",
5834 new_tqp_num, rxfh_configured);
5835
5836 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5837 if (ret)
5838 return ret;
5839
5840 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5841 if (ret)
5842 return ret;
5843
5844 org_tqp_num = h->kinfo.num_tqps;
5845 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5846 if (ret) {
5847 int ret1;
5848
5849 netdev_warn(netdev,
5850 "Change channels fail, revert to old value\n");
5851 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5852 if (ret1) {
5853 netdev_err(netdev,
5854 "revert to old channel fail\n");
5855 return ret1;
5856 }
5857
5858 return ret;
5859 }
5860
5861 return 0;
5862 }
5863
hns3_external_lb_prepare(struct net_device * ndev,bool if_running)5864 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5865 {
5866 struct hns3_nic_priv *priv = netdev_priv(ndev);
5867 struct hnae3_handle *h = priv->ae_handle;
5868 int i;
5869
5870 if (!if_running)
5871 return;
5872
5873 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5874 return;
5875
5876 netif_carrier_off(ndev);
5877 netif_tx_disable(ndev);
5878
5879 for (i = 0; i < priv->vector_num; i++)
5880 hns3_vector_disable(&priv->tqp_vector[i]);
5881
5882 for (i = 0; i < h->kinfo.num_tqps; i++)
5883 hns3_tqp_disable(h->kinfo.tqp[i]);
5884
5885 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5886 * during reset process, because driver may not be able
5887 * to disable the ring through firmware when downing the netdev.
5888 */
5889 if (!hns3_nic_resetting(ndev))
5890 hns3_nic_reset_all_ring(priv->ae_handle);
5891
5892 hns3_reset_tx_queue(priv->ae_handle);
5893 }
5894
hns3_external_lb_restore(struct net_device * ndev,bool if_running)5895 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5896 {
5897 struct hns3_nic_priv *priv = netdev_priv(ndev);
5898 struct hnae3_handle *h = priv->ae_handle;
5899 int i;
5900
5901 if (!if_running)
5902 return;
5903
5904 if (hns3_nic_resetting(ndev))
5905 return;
5906
5907 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5908 return;
5909
5910 if (hns3_nic_reset_all_ring(priv->ae_handle))
5911 return;
5912
5913 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5914
5915 for (i = 0; i < priv->vector_num; i++)
5916 hns3_vector_enable(&priv->tqp_vector[i]);
5917
5918 for (i = 0; i < h->kinfo.num_tqps; i++)
5919 hns3_tqp_enable(h->kinfo.tqp[i]);
5920
5921 netif_tx_wake_all_queues(ndev);
5922
5923 if (h->ae_algo->ops->get_status(h))
5924 netif_carrier_on(ndev);
5925 }
5926
5927 static const struct hns3_hw_error_info hns3_hw_err[] = {
5928 { .type = HNAE3_PPU_POISON_ERROR,
5929 .msg = "PPU poison" },
5930 { .type = HNAE3_CMDQ_ECC_ERROR,
5931 .msg = "IMP CMDQ error" },
5932 { .type = HNAE3_IMP_RD_POISON_ERROR,
5933 .msg = "IMP RD poison" },
5934 { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5935 .msg = "ROCEE AXI RESP error" },
5936 };
5937
hns3_process_hw_error(struct hnae3_handle * handle,enum hnae3_hw_error_type type)5938 static void hns3_process_hw_error(struct hnae3_handle *handle,
5939 enum hnae3_hw_error_type type)
5940 {
5941 int i;
5942
5943 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5944 if (hns3_hw_err[i].type == type) {
5945 dev_err(&handle->pdev->dev, "Detected %s!\n",
5946 hns3_hw_err[i].msg);
5947 break;
5948 }
5949 }
5950 }
5951
5952 static const struct hnae3_client_ops client_ops = {
5953 .init_instance = hns3_client_init,
5954 .uninit_instance = hns3_client_uninit,
5955 .link_status_change = hns3_link_status_change,
5956 .reset_notify = hns3_reset_notify,
5957 .process_hw_error = hns3_process_hw_error,
5958 };
5959
5960 /* hns3_init_module - Driver registration routine
5961 * hns3_init_module is the first routine called when the driver is
5962 * loaded. All it does is register with the PCI subsystem.
5963 */
hns3_init_module(void)5964 static int __init hns3_init_module(void)
5965 {
5966 int ret;
5967
5968 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5969 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5970
5971 client.type = HNAE3_CLIENT_KNIC;
5972 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5973 hns3_driver_name);
5974
5975 client.ops = &client_ops;
5976
5977 INIT_LIST_HEAD(&client.node);
5978
5979 hns3_dbg_register_debugfs(hns3_driver_name);
5980
5981 ret = hnae3_register_client(&client);
5982 if (ret)
5983 goto err_reg_client;
5984
5985 ret = pci_register_driver(&hns3_driver);
5986 if (ret)
5987 goto err_reg_driver;
5988
5989 return ret;
5990
5991 err_reg_driver:
5992 hnae3_unregister_client(&client);
5993 err_reg_client:
5994 hns3_dbg_unregister_debugfs();
5995 return ret;
5996 }
5997 module_init(hns3_init_module);
5998
5999 /* hns3_exit_module - Driver exit cleanup routine
6000 * hns3_exit_module is called just before the driver is removed
6001 * from memory.
6002 */
hns3_exit_module(void)6003 static void __exit hns3_exit_module(void)
6004 {
6005 hnae3_acquire_unload_lock();
6006 pci_unregister_driver(&hns3_driver);
6007 hnae3_unregister_client(&client);
6008 hns3_dbg_unregister_debugfs();
6009 hnae3_release_unload_lock();
6010 }
6011 module_exit(hns3_exit_module);
6012
6013 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6014 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6015 MODULE_LICENSE("GPL");
6016 MODULE_ALIAS("pci:hns-nic");
6017