xref: /linux/tools/perf/util/auxtrace.c (revision 7685b334d1e4927cc73b62c65293ba65748d9c52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63 
64 /*
65  * Make a group from 'leader' to 'last', requiring that the events were not
66  * already grouped to a different leader.
67  */
68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 	struct evsel *evsel;
71 	bool grp;
72 
73 	if (!evsel__is_group_leader(leader))
74 		return -EINVAL;
75 
76 	grp = false;
77 	evlist__for_each_entry(evlist, evsel) {
78 		if (grp) {
79 			if (!(evsel__leader(evsel) == leader ||
80 			     (evsel__leader(evsel) == evsel &&
81 			      evsel->core.nr_members <= 1)))
82 				return -EINVAL;
83 		} else if (evsel == leader) {
84 			grp = true;
85 		}
86 		if (evsel == last)
87 			break;
88 	}
89 
90 	grp = false;
91 	evlist__for_each_entry(evlist, evsel) {
92 		if (grp) {
93 			if (!evsel__has_leader(evsel, leader)) {
94 				evsel__set_leader(evsel, leader);
95 				if (leader->core.nr_members < 1)
96 					leader->core.nr_members = 1;
97 				leader->core.nr_members += 1;
98 			}
99 		} else if (evsel == leader) {
100 			grp = true;
101 		}
102 		if (evsel == last)
103 			break;
104 	}
105 
106 	return 0;
107 }
108 
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 	return !session->itrace_synth_opts ||
112 	       session->itrace_synth_opts->dont_decode;
113 }
114 
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 			struct auxtrace_mmap_params *mp,
117 			void *userpg, int fd)
118 {
119 	struct perf_event_mmap_page *pc = userpg;
120 
121 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122 
123 	mm->userpg = userpg;
124 	mm->mask = mp->mask;
125 	mm->len = mp->len;
126 	mm->prev = 0;
127 	mm->idx = mp->idx;
128 	mm->tid = mp->tid;
129 	mm->cpu = mp->cpu.cpu;
130 
131 	if (!mp->len || !mp->mmap_needed) {
132 		mm->base = NULL;
133 		return 0;
134 	}
135 
136 	pc->aux_offset = mp->offset;
137 	pc->aux_size = mp->len;
138 
139 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 	if (mm->base == MAP_FAILED) {
141 		pr_debug2("failed to mmap AUX area\n");
142 		mm->base = NULL;
143 		return -1;
144 	}
145 
146 	return 0;
147 }
148 
149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 	if (mm->base) {
152 		munmap(mm->base, mm->len);
153 		mm->base = NULL;
154 	}
155 }
156 
157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 				off_t auxtrace_offset,
159 				unsigned int auxtrace_pages,
160 				bool auxtrace_overwrite)
161 {
162 	if (auxtrace_pages) {
163 		mp->offset = auxtrace_offset;
164 		mp->len = auxtrace_pages * (size_t)page_size;
165 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 		pr_debug2("AUX area mmap length %zu\n", mp->len);
168 	} else {
169 		mp->len = 0;
170 	}
171 }
172 
173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 				   struct evlist *evlist,
175 				   struct evsel *evsel, int idx)
176 {
177 	bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178 
179 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
180 
181 	if (!mp->mmap_needed)
182 		return;
183 
184 	mp->idx = idx;
185 
186 	if (per_cpu) {
187 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 		if (evlist->core.threads)
189 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 		else
191 			mp->tid = -1;
192 	} else {
193 		mp->cpu.cpu = -1;
194 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 	}
196 }
197 
198 #define AUXTRACE_INIT_NR_QUEUES	32
199 
200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 	struct auxtrace_queue *queue_array;
203 	unsigned int max_nr_queues, i;
204 
205 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 	if (nr_queues > max_nr_queues)
207 		return NULL;
208 
209 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 	if (!queue_array)
211 		return NULL;
212 
213 	for (i = 0; i < nr_queues; i++) {
214 		INIT_LIST_HEAD(&queue_array[i].head);
215 		queue_array[i].priv = NULL;
216 	}
217 
218 	return queue_array;
219 }
220 
221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
222 {
223 	queues->nr_queues = nr_queues;
224 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 	if (!queues->queue_array)
226 		return -ENOMEM;
227 	return 0;
228 }
229 
230 int auxtrace_queues__init(struct auxtrace_queues *queues)
231 {
232 	return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
233 }
234 
235 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
236 				 unsigned int new_nr_queues)
237 {
238 	unsigned int nr_queues = queues->nr_queues;
239 	struct auxtrace_queue *queue_array;
240 	unsigned int i;
241 
242 	if (!nr_queues)
243 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
244 
245 	while (nr_queues && nr_queues < new_nr_queues)
246 		nr_queues <<= 1;
247 
248 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
249 		return -EINVAL;
250 
251 	queue_array = auxtrace_alloc_queue_array(nr_queues);
252 	if (!queue_array)
253 		return -ENOMEM;
254 
255 	for (i = 0; i < queues->nr_queues; i++) {
256 		list_splice_tail(&queues->queue_array[i].head,
257 				 &queue_array[i].head);
258 		queue_array[i].tid = queues->queue_array[i].tid;
259 		queue_array[i].cpu = queues->queue_array[i].cpu;
260 		queue_array[i].set = queues->queue_array[i].set;
261 		queue_array[i].priv = queues->queue_array[i].priv;
262 	}
263 
264 	queues->nr_queues = nr_queues;
265 	queues->queue_array = queue_array;
266 
267 	return 0;
268 }
269 
270 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
271 {
272 	int fd = perf_data__fd(session->data);
273 	void *p;
274 	ssize_t ret;
275 
276 	if (size > SSIZE_MAX)
277 		return NULL;
278 
279 	p = malloc(size);
280 	if (!p)
281 		return NULL;
282 
283 	ret = readn(fd, p, size);
284 	if (ret != (ssize_t)size) {
285 		free(p);
286 		return NULL;
287 	}
288 
289 	return p;
290 }
291 
292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
293 					 unsigned int idx,
294 					 struct auxtrace_buffer *buffer)
295 {
296 	struct auxtrace_queue *queue;
297 	int err;
298 
299 	if (idx >= queues->nr_queues) {
300 		err = auxtrace_queues__grow(queues, idx + 1);
301 		if (err)
302 			return err;
303 	}
304 
305 	queue = &queues->queue_array[idx];
306 
307 	if (!queue->set) {
308 		queue->set = true;
309 		queue->tid = buffer->tid;
310 		queue->cpu = buffer->cpu.cpu;
311 	}
312 
313 	buffer->buffer_nr = queues->next_buffer_nr++;
314 
315 	list_add_tail(&buffer->list, &queue->head);
316 
317 	queues->new_data = true;
318 	queues->populated = true;
319 
320 	return 0;
321 }
322 
323 /* Limit buffers to 32MiB on 32-bit */
324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
325 
326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
327 					 unsigned int idx,
328 					 struct auxtrace_buffer *buffer)
329 {
330 	u64 sz = buffer->size;
331 	bool consecutive = false;
332 	struct auxtrace_buffer *b;
333 	int err;
334 
335 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
336 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
337 		if (!b)
338 			return -ENOMEM;
339 		b->size = BUFFER_LIMIT_FOR_32_BIT;
340 		b->consecutive = consecutive;
341 		err = auxtrace_queues__queue_buffer(queues, idx, b);
342 		if (err) {
343 			auxtrace_buffer__free(b);
344 			return err;
345 		}
346 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
347 		sz -= BUFFER_LIMIT_FOR_32_BIT;
348 		consecutive = true;
349 	}
350 
351 	buffer->size = sz;
352 	buffer->consecutive = consecutive;
353 
354 	return 0;
355 }
356 
357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
358 {
359 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
360 
361 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
362 }
363 
364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
365 				       struct perf_session *session,
366 				       unsigned int idx,
367 				       struct auxtrace_buffer *buffer,
368 				       struct auxtrace_buffer **buffer_ptr)
369 {
370 	int err = -ENOMEM;
371 
372 	if (filter_cpu(session, buffer->cpu))
373 		return 0;
374 
375 	buffer = memdup(buffer, sizeof(*buffer));
376 	if (!buffer)
377 		return -ENOMEM;
378 
379 	if (session->one_mmap) {
380 		buffer->data = buffer->data_offset - session->one_mmap_offset +
381 			       session->one_mmap_addr;
382 	} else if (perf_data__is_pipe(session->data)) {
383 		buffer->data = auxtrace_copy_data(buffer->size, session);
384 		if (!buffer->data)
385 			goto out_free;
386 		buffer->data_needs_freeing = true;
387 	} else if (BITS_PER_LONG == 32 &&
388 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
389 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
390 		if (err)
391 			goto out_free;
392 	}
393 
394 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
395 	if (err)
396 		goto out_free;
397 
398 	/* FIXME: Doesn't work for split buffer */
399 	if (buffer_ptr)
400 		*buffer_ptr = buffer;
401 
402 	return 0;
403 
404 out_free:
405 	auxtrace_buffer__free(buffer);
406 	return err;
407 }
408 
409 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
410 			       struct perf_session *session,
411 			       union perf_event *event, off_t data_offset,
412 			       struct auxtrace_buffer **buffer_ptr)
413 {
414 	struct auxtrace_buffer buffer = {
415 		.pid = -1,
416 		.tid = event->auxtrace.tid,
417 		.cpu = { event->auxtrace.cpu },
418 		.data_offset = data_offset,
419 		.offset = event->auxtrace.offset,
420 		.reference = event->auxtrace.reference,
421 		.size = event->auxtrace.size,
422 	};
423 	unsigned int idx = event->auxtrace.idx;
424 
425 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
426 					   buffer_ptr);
427 }
428 
429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
430 					      struct perf_session *session,
431 					      off_t file_offset, size_t sz)
432 {
433 	union perf_event *event;
434 	int err;
435 	char buf[PERF_SAMPLE_MAX_SIZE];
436 
437 	err = perf_session__peek_event(session, file_offset, buf,
438 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
439 	if (err)
440 		return err;
441 
442 	if (event->header.type == PERF_RECORD_AUXTRACE) {
443 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
444 		    event->header.size != sz) {
445 			err = -EINVAL;
446 			goto out;
447 		}
448 		file_offset += event->header.size;
449 		err = auxtrace_queues__add_event(queues, session, event,
450 						 file_offset, NULL);
451 	}
452 out:
453 	return err;
454 }
455 
456 void auxtrace_queues__free(struct auxtrace_queues *queues)
457 {
458 	unsigned int i;
459 
460 	for (i = 0; i < queues->nr_queues; i++) {
461 		while (!list_empty(&queues->queue_array[i].head)) {
462 			struct auxtrace_buffer *buffer;
463 
464 			buffer = list_entry(queues->queue_array[i].head.next,
465 					    struct auxtrace_buffer, list);
466 			list_del_init(&buffer->list);
467 			auxtrace_buffer__free(buffer);
468 		}
469 	}
470 
471 	zfree(&queues->queue_array);
472 	queues->nr_queues = 0;
473 }
474 
475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
476 			     unsigned int pos, unsigned int queue_nr,
477 			     u64 ordinal)
478 {
479 	unsigned int parent;
480 
481 	while (pos) {
482 		parent = (pos - 1) >> 1;
483 		if (heap_array[parent].ordinal <= ordinal)
484 			break;
485 		heap_array[pos] = heap_array[parent];
486 		pos = parent;
487 	}
488 	heap_array[pos].queue_nr = queue_nr;
489 	heap_array[pos].ordinal = ordinal;
490 }
491 
492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
493 		       u64 ordinal)
494 {
495 	struct auxtrace_heap_item *heap_array;
496 
497 	if (queue_nr >= heap->heap_sz) {
498 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
499 
500 		while (heap_sz <= queue_nr)
501 			heap_sz <<= 1;
502 		heap_array = realloc(heap->heap_array,
503 				     heap_sz * sizeof(struct auxtrace_heap_item));
504 		if (!heap_array)
505 			return -ENOMEM;
506 		heap->heap_array = heap_array;
507 		heap->heap_sz = heap_sz;
508 	}
509 
510 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
511 
512 	return 0;
513 }
514 
515 void auxtrace_heap__free(struct auxtrace_heap *heap)
516 {
517 	zfree(&heap->heap_array);
518 	heap->heap_cnt = 0;
519 	heap->heap_sz = 0;
520 }
521 
522 void auxtrace_heap__pop(struct auxtrace_heap *heap)
523 {
524 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
525 	struct auxtrace_heap_item *heap_array;
526 
527 	if (!heap_cnt)
528 		return;
529 
530 	heap->heap_cnt -= 1;
531 
532 	heap_array = heap->heap_array;
533 
534 	pos = 0;
535 	while (1) {
536 		unsigned int left, right;
537 
538 		left = (pos << 1) + 1;
539 		if (left >= heap_cnt)
540 			break;
541 		right = left + 1;
542 		if (right >= heap_cnt) {
543 			heap_array[pos] = heap_array[left];
544 			return;
545 		}
546 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
547 			heap_array[pos] = heap_array[left];
548 			pos = left;
549 		} else {
550 			heap_array[pos] = heap_array[right];
551 			pos = right;
552 		}
553 	}
554 
555 	last = heap_cnt - 1;
556 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
557 			 heap_array[last].ordinal);
558 }
559 
560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
561 				       struct evlist *evlist)
562 {
563 	if (itr)
564 		return itr->info_priv_size(itr, evlist);
565 	return 0;
566 }
567 
568 static int auxtrace_not_supported(void)
569 {
570 	pr_err("AUX area tracing is not supported on this architecture\n");
571 	return -EINVAL;
572 }
573 
574 int auxtrace_record__info_fill(struct auxtrace_record *itr,
575 			       struct perf_session *session,
576 			       struct perf_record_auxtrace_info *auxtrace_info,
577 			       size_t priv_size)
578 {
579 	if (itr)
580 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
581 	return auxtrace_not_supported();
582 }
583 
584 void auxtrace_record__free(struct auxtrace_record *itr)
585 {
586 	if (itr)
587 		itr->free(itr);
588 }
589 
590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
591 {
592 	if (itr && itr->snapshot_start)
593 		return itr->snapshot_start(itr);
594 	return 0;
595 }
596 
597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
598 {
599 	if (!on_exit && itr && itr->snapshot_finish)
600 		return itr->snapshot_finish(itr);
601 	return 0;
602 }
603 
604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
605 				   struct auxtrace_mmap *mm,
606 				   unsigned char *data, u64 *head, u64 *old)
607 {
608 	if (itr && itr->find_snapshot)
609 		return itr->find_snapshot(itr, idx, mm, data, head, old);
610 	return 0;
611 }
612 
613 int auxtrace_record__options(struct auxtrace_record *itr,
614 			     struct evlist *evlist,
615 			     struct record_opts *opts)
616 {
617 	if (itr) {
618 		itr->evlist = evlist;
619 		return itr->recording_options(itr, evlist, opts);
620 	}
621 	return 0;
622 }
623 
624 u64 auxtrace_record__reference(struct auxtrace_record *itr)
625 {
626 	if (itr)
627 		return itr->reference(itr);
628 	return 0;
629 }
630 
631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
632 				    struct record_opts *opts, const char *str)
633 {
634 	if (!str)
635 		return 0;
636 
637 	/* PMU-agnostic options */
638 	switch (*str) {
639 	case 'e':
640 		opts->auxtrace_snapshot_on_exit = true;
641 		str++;
642 		break;
643 	default:
644 		break;
645 	}
646 
647 	if (itr && itr->parse_snapshot_options)
648 		return itr->parse_snapshot_options(itr, opts, str);
649 
650 	pr_err("No AUX area tracing to snapshot\n");
651 	return -EINVAL;
652 }
653 
654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
655 {
656 	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
657 
658 	if (per_cpu_mmaps) {
659 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
660 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
661 
662 		if (cpu_map_idx == -1)
663 			return -EINVAL;
664 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
665 	}
666 
667 	return perf_evsel__enable_thread(&evsel->core, idx);
668 }
669 
670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
671 {
672 	struct evsel *evsel;
673 
674 	if (!itr->evlist)
675 		return -EINVAL;
676 
677 	evlist__for_each_entry(itr->evlist, evsel) {
678 		if (evsel__is_aux_event(evsel)) {
679 			if (evsel->disabled)
680 				return 0;
681 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
682 		}
683 	}
684 	return -EINVAL;
685 }
686 
687 /*
688  * Event record size is 16-bit which results in a maximum size of about 64KiB.
689  * Allow about 4KiB for the rest of the sample record, to give a maximum
690  * AUX area sample size of 60KiB.
691  */
692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693 
694 /* Arbitrary default size if no other default provided */
695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696 
697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698 					     struct record_opts *opts)
699 {
700 	struct evsel *evsel;
701 	bool has_aux_leader = false;
702 	u32 sz;
703 
704 	evlist__for_each_entry(evlist, evsel) {
705 		sz = evsel->core.attr.aux_sample_size;
706 		if (evsel__is_group_leader(evsel)) {
707 			has_aux_leader = evsel__is_aux_event(evsel);
708 			if (sz) {
709 				if (has_aux_leader)
710 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
711 				else
712 					pr_err("Cannot add AUX area sampling to a group leader\n");
713 				return -EINVAL;
714 			}
715 		}
716 		if (sz > MAX_AUX_SAMPLE_SIZE) {
717 			pr_err("AUX area sample size %u too big, max. %d\n",
718 			       sz, MAX_AUX_SAMPLE_SIZE);
719 			return -EINVAL;
720 		}
721 		if (sz) {
722 			if (!has_aux_leader) {
723 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724 				return -EINVAL;
725 			}
726 			evsel__set_sample_bit(evsel, AUX);
727 			opts->auxtrace_sample_mode = true;
728 		} else {
729 			evsel__reset_sample_bit(evsel, AUX);
730 		}
731 	}
732 
733 	if (!opts->auxtrace_sample_mode) {
734 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735 		return -EINVAL;
736 	}
737 
738 	if (!perf_can_aux_sample()) {
739 		pr_err("AUX area sampling is not supported by kernel\n");
740 		return -EINVAL;
741 	}
742 
743 	return 0;
744 }
745 
746 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747 				  struct evlist *evlist,
748 				  struct record_opts *opts, const char *str)
749 {
750 	struct evsel_config_term *term;
751 	struct evsel *aux_evsel;
752 	bool has_aux_sample_size = false;
753 	bool has_aux_leader = false;
754 	struct evsel *evsel;
755 	char *endptr;
756 	unsigned long sz;
757 
758 	if (!str)
759 		goto no_opt;
760 
761 	if (!itr) {
762 		pr_err("No AUX area event to sample\n");
763 		return -EINVAL;
764 	}
765 
766 	sz = strtoul(str, &endptr, 0);
767 	if (*endptr || sz > UINT_MAX) {
768 		pr_err("Bad AUX area sampling option: '%s'\n", str);
769 		return -EINVAL;
770 	}
771 
772 	if (!sz)
773 		sz = itr->default_aux_sample_size;
774 
775 	if (!sz)
776 		sz = DEFAULT_AUX_SAMPLE_SIZE;
777 
778 	/* Set aux_sample_size based on --aux-sample option */
779 	evlist__for_each_entry(evlist, evsel) {
780 		if (evsel__is_group_leader(evsel)) {
781 			has_aux_leader = evsel__is_aux_event(evsel);
782 		} else if (has_aux_leader) {
783 			evsel->core.attr.aux_sample_size = sz;
784 		}
785 	}
786 no_opt:
787 	aux_evsel = NULL;
788 	/* Override with aux_sample_size from config term */
789 	evlist__for_each_entry(evlist, evsel) {
790 		if (evsel__is_aux_event(evsel))
791 			aux_evsel = evsel;
792 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793 		if (term) {
794 			has_aux_sample_size = true;
795 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796 			/* If possible, group with the AUX event */
797 			if (aux_evsel && evsel->core.attr.aux_sample_size)
798 				evlist__regroup(evlist, aux_evsel, evsel);
799 		}
800 	}
801 
802 	if (!str && !has_aux_sample_size)
803 		return 0;
804 
805 	if (!itr) {
806 		pr_err("No AUX area event to sample\n");
807 		return -EINVAL;
808 	}
809 
810 	return auxtrace_validate_aux_sample_size(evlist, opts);
811 }
812 
813 static struct aux_action_opt {
814 	const char *str;
815 	u32 aux_action;
816 	bool aux_event_opt;
817 } aux_action_opts[] = {
818 	{"start-paused", BIT(0), true},
819 	{"pause",        BIT(1), false},
820 	{"resume",       BIT(2), false},
821 	{.str = NULL},
822 };
823 
824 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str)
825 {
826 	const struct aux_action_opt *opt;
827 
828 	if (!str)
829 		return NULL;
830 
831 	for (opt = aux_action_opts; opt->str; opt++)
832 		if (!strcmp(str, opt->str))
833 			return opt;
834 
835 	return NULL;
836 }
837 
838 int auxtrace_parse_aux_action(struct evlist *evlist)
839 {
840 	struct evsel_config_term *term;
841 	struct evsel *aux_evsel = NULL;
842 	struct evsel *evsel;
843 
844 	evlist__for_each_entry(evlist, evsel) {
845 		bool is_aux_event = evsel__is_aux_event(evsel);
846 		const struct aux_action_opt *opt;
847 
848 		if (is_aux_event)
849 			aux_evsel = evsel;
850 		term = evsel__get_config_term(evsel, AUX_ACTION);
851 		if (!term) {
852 			if (evsel__get_config_term(evsel, AUX_OUTPUT))
853 				goto regroup;
854 			continue;
855 		}
856 		opt = auxtrace_parse_aux_action_str(term->val.str);
857 		if (!opt) {
858 			pr_err("Bad aux-action '%s'\n", term->val.str);
859 			return -EINVAL;
860 		}
861 		if (opt->aux_event_opt && !is_aux_event) {
862 			pr_err("aux-action '%s' can only be used with AUX area event\n",
863 			       term->val.str);
864 			return -EINVAL;
865 		}
866 		if (!opt->aux_event_opt && is_aux_event) {
867 			pr_err("aux-action '%s' cannot be used for AUX area event itself\n",
868 			       term->val.str);
869 			return -EINVAL;
870 		}
871 		evsel->core.attr.aux_action = opt->aux_action;
872 regroup:
873 		/* If possible, group with the AUX event */
874 		if (aux_evsel)
875 			evlist__regroup(evlist, aux_evsel, evsel);
876 		if (!evsel__is_aux_event(evsel__leader(evsel))) {
877 			pr_err("Events with aux-action must have AUX area event group leader\n");
878 			return -EINVAL;
879 		}
880 	}
881 
882 	return 0;
883 }
884 
885 struct auxtrace_record *__weak
886 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
887 {
888 	*err = 0;
889 	return NULL;
890 }
891 
892 static int auxtrace_index__alloc(struct list_head *head)
893 {
894 	struct auxtrace_index *auxtrace_index;
895 
896 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
897 	if (!auxtrace_index)
898 		return -ENOMEM;
899 
900 	auxtrace_index->nr = 0;
901 	INIT_LIST_HEAD(&auxtrace_index->list);
902 
903 	list_add_tail(&auxtrace_index->list, head);
904 
905 	return 0;
906 }
907 
908 void auxtrace_index__free(struct list_head *head)
909 {
910 	struct auxtrace_index *auxtrace_index, *n;
911 
912 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
913 		list_del_init(&auxtrace_index->list);
914 		free(auxtrace_index);
915 	}
916 }
917 
918 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
919 {
920 	struct auxtrace_index *auxtrace_index;
921 	int err;
922 
923 	if (list_empty(head)) {
924 		err = auxtrace_index__alloc(head);
925 		if (err)
926 			return NULL;
927 	}
928 
929 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
930 
931 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
932 		err = auxtrace_index__alloc(head);
933 		if (err)
934 			return NULL;
935 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
936 					    list);
937 	}
938 
939 	return auxtrace_index;
940 }
941 
942 int auxtrace_index__auxtrace_event(struct list_head *head,
943 				   union perf_event *event, off_t file_offset)
944 {
945 	struct auxtrace_index *auxtrace_index;
946 	size_t nr;
947 
948 	auxtrace_index = auxtrace_index__last(head);
949 	if (!auxtrace_index)
950 		return -ENOMEM;
951 
952 	nr = auxtrace_index->nr;
953 	auxtrace_index->entries[nr].file_offset = file_offset;
954 	auxtrace_index->entries[nr].sz = event->header.size;
955 	auxtrace_index->nr += 1;
956 
957 	return 0;
958 }
959 
960 static int auxtrace_index__do_write(int fd,
961 				    struct auxtrace_index *auxtrace_index)
962 {
963 	struct auxtrace_index_entry ent;
964 	size_t i;
965 
966 	for (i = 0; i < auxtrace_index->nr; i++) {
967 		ent.file_offset = auxtrace_index->entries[i].file_offset;
968 		ent.sz = auxtrace_index->entries[i].sz;
969 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
970 			return -errno;
971 	}
972 	return 0;
973 }
974 
975 int auxtrace_index__write(int fd, struct list_head *head)
976 {
977 	struct auxtrace_index *auxtrace_index;
978 	u64 total = 0;
979 	int err;
980 
981 	list_for_each_entry(auxtrace_index, head, list)
982 		total += auxtrace_index->nr;
983 
984 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
985 		return -errno;
986 
987 	list_for_each_entry(auxtrace_index, head, list) {
988 		err = auxtrace_index__do_write(fd, auxtrace_index);
989 		if (err)
990 			return err;
991 	}
992 
993 	return 0;
994 }
995 
996 static int auxtrace_index__process_entry(int fd, struct list_head *head,
997 					 bool needs_swap)
998 {
999 	struct auxtrace_index *auxtrace_index;
1000 	struct auxtrace_index_entry ent;
1001 	size_t nr;
1002 
1003 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
1004 		return -1;
1005 
1006 	auxtrace_index = auxtrace_index__last(head);
1007 	if (!auxtrace_index)
1008 		return -1;
1009 
1010 	nr = auxtrace_index->nr;
1011 	if (needs_swap) {
1012 		auxtrace_index->entries[nr].file_offset =
1013 						bswap_64(ent.file_offset);
1014 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
1015 	} else {
1016 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
1017 		auxtrace_index->entries[nr].sz = ent.sz;
1018 	}
1019 
1020 	auxtrace_index->nr = nr + 1;
1021 
1022 	return 0;
1023 }
1024 
1025 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
1026 			    bool needs_swap)
1027 {
1028 	struct list_head *head = &session->auxtrace_index;
1029 	u64 nr;
1030 
1031 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
1032 		return -1;
1033 
1034 	if (needs_swap)
1035 		nr = bswap_64(nr);
1036 
1037 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
1038 		return -1;
1039 
1040 	while (nr--) {
1041 		int err;
1042 
1043 		err = auxtrace_index__process_entry(fd, head, needs_swap);
1044 		if (err)
1045 			return -1;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
1052 						struct perf_session *session,
1053 						struct auxtrace_index_entry *ent)
1054 {
1055 	return auxtrace_queues__add_indexed_event(queues, session,
1056 						  ent->file_offset, ent->sz);
1057 }
1058 
1059 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1060 				   struct perf_session *session)
1061 {
1062 	struct auxtrace_index *auxtrace_index;
1063 	struct auxtrace_index_entry *ent;
1064 	size_t i;
1065 	int err;
1066 
1067 	if (auxtrace__dont_decode(session))
1068 		return 0;
1069 
1070 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1071 		for (i = 0; i < auxtrace_index->nr; i++) {
1072 			ent = &auxtrace_index->entries[i];
1073 			err = auxtrace_queues__process_index_entry(queues,
1074 								   session,
1075 								   ent);
1076 			if (err)
1077 				return err;
1078 		}
1079 	}
1080 	return 0;
1081 }
1082 
1083 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1084 					      struct auxtrace_buffer *buffer)
1085 {
1086 	if (buffer) {
1087 		if (list_is_last(&buffer->list, &queue->head))
1088 			return NULL;
1089 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1090 				  list);
1091 	} else {
1092 		if (list_empty(&queue->head))
1093 			return NULL;
1094 		return list_entry(queue->head.next, struct auxtrace_buffer,
1095 				  list);
1096 	}
1097 }
1098 
1099 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1100 						     struct perf_sample *sample,
1101 						     struct perf_session *session)
1102 {
1103 	struct perf_sample_id *sid;
1104 	unsigned int idx;
1105 	u64 id;
1106 
1107 	id = sample->id;
1108 	if (!id)
1109 		return NULL;
1110 
1111 	sid = evlist__id2sid(session->evlist, id);
1112 	if (!sid)
1113 		return NULL;
1114 
1115 	idx = sid->idx;
1116 
1117 	if (idx >= queues->nr_queues)
1118 		return NULL;
1119 
1120 	return &queues->queue_array[idx];
1121 }
1122 
1123 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1124 				struct perf_session *session,
1125 				struct perf_sample *sample, u64 data_offset,
1126 				u64 reference)
1127 {
1128 	struct auxtrace_buffer buffer = {
1129 		.pid = -1,
1130 		.data_offset = data_offset,
1131 		.reference = reference,
1132 		.size = sample->aux_sample.size,
1133 	};
1134 	struct perf_sample_id *sid;
1135 	u64 id = sample->id;
1136 	unsigned int idx;
1137 
1138 	if (!id)
1139 		return -EINVAL;
1140 
1141 	sid = evlist__id2sid(session->evlist, id);
1142 	if (!sid)
1143 		return -ENOENT;
1144 
1145 	idx = sid->idx;
1146 	buffer.tid = sid->tid;
1147 	buffer.cpu = sid->cpu;
1148 
1149 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1150 }
1151 
1152 struct queue_data {
1153 	bool samples;
1154 	bool events;
1155 };
1156 
1157 static int auxtrace_queue_data_cb(struct perf_session *session,
1158 				  union perf_event *event, u64 offset,
1159 				  void *data)
1160 {
1161 	struct queue_data *qd = data;
1162 	struct perf_sample sample;
1163 	int err;
1164 
1165 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1166 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1167 			return -EINVAL;
1168 		offset += event->header.size;
1169 		return session->auxtrace->queue_data(session, NULL, event,
1170 						     offset);
1171 	}
1172 
1173 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1174 		return 0;
1175 
1176 	err = evlist__parse_sample(session->evlist, event, &sample);
1177 	if (err)
1178 		return err;
1179 
1180 	if (!sample.aux_sample.size)
1181 		return 0;
1182 
1183 	offset += sample.aux_sample.data - (void *)event;
1184 
1185 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1186 }
1187 
1188 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1189 {
1190 	struct queue_data qd = {
1191 		.samples = samples,
1192 		.events = events,
1193 	};
1194 
1195 	if (auxtrace__dont_decode(session))
1196 		return 0;
1197 
1198 	if (perf_data__is_pipe(session->data))
1199 		return 0;
1200 
1201 	if (!session->auxtrace || !session->auxtrace->queue_data)
1202 		return -EINVAL;
1203 
1204 	return perf_session__peek_events(session, session->header.data_offset,
1205 					 session->header.data_size,
1206 					 auxtrace_queue_data_cb, &qd);
1207 }
1208 
1209 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1210 {
1211 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1212 	size_t adj = buffer->data_offset & (page_size - 1);
1213 	size_t size = buffer->size + adj;
1214 	off_t file_offset = buffer->data_offset - adj;
1215 	void *addr;
1216 
1217 	if (buffer->data)
1218 		return buffer->data;
1219 
1220 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1221 	if (addr == MAP_FAILED)
1222 		return NULL;
1223 
1224 	buffer->mmap_addr = addr;
1225 	buffer->mmap_size = size;
1226 
1227 	buffer->data = addr + adj;
1228 
1229 	return buffer->data;
1230 }
1231 
1232 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1233 {
1234 	if (!buffer->data || !buffer->mmap_addr)
1235 		return;
1236 	munmap(buffer->mmap_addr, buffer->mmap_size);
1237 	buffer->mmap_addr = NULL;
1238 	buffer->mmap_size = 0;
1239 	buffer->data = NULL;
1240 	buffer->use_data = NULL;
1241 }
1242 
1243 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1244 {
1245 	auxtrace_buffer__put_data(buffer);
1246 	if (buffer->data_needs_freeing) {
1247 		buffer->data_needs_freeing = false;
1248 		zfree(&buffer->data);
1249 		buffer->use_data = NULL;
1250 		buffer->size = 0;
1251 	}
1252 }
1253 
1254 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1255 {
1256 	auxtrace_buffer__drop_data(buffer);
1257 	free(buffer);
1258 }
1259 
1260 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1261 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1262 				const char *msg, u64 timestamp,
1263 				pid_t machine_pid, int vcpu)
1264 {
1265 	size_t size;
1266 
1267 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1268 
1269 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1270 	auxtrace_error->type = type;
1271 	auxtrace_error->code = code;
1272 	auxtrace_error->cpu = cpu;
1273 	auxtrace_error->pid = pid;
1274 	auxtrace_error->tid = tid;
1275 	auxtrace_error->fmt = 1;
1276 	auxtrace_error->ip = ip;
1277 	auxtrace_error->time = timestamp;
1278 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1279 	if (machine_pid) {
1280 		auxtrace_error->fmt = 2;
1281 		auxtrace_error->machine_pid = machine_pid;
1282 		auxtrace_error->vcpu = vcpu;
1283 		size = sizeof(*auxtrace_error);
1284 	} else {
1285 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1286 		       strlen(auxtrace_error->msg) + 1;
1287 	}
1288 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1289 }
1290 
1291 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1292 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1293 			  const char *msg, u64 timestamp)
1294 {
1295 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1296 				   ip, msg, timestamp, 0, -1);
1297 }
1298 
1299 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1300 					 const struct perf_tool *tool,
1301 					 struct perf_session *session,
1302 					 perf_event__handler_t process)
1303 {
1304 	union perf_event *ev;
1305 	size_t priv_size;
1306 	int err;
1307 
1308 	pr_debug2("Synthesizing auxtrace information\n");
1309 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1310 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1311 	if (!ev)
1312 		return -ENOMEM;
1313 
1314 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1315 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1316 					priv_size;
1317 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1318 					 priv_size);
1319 	if (err)
1320 		goto out_free;
1321 
1322 	err = process(tool, ev, NULL, NULL);
1323 out_free:
1324 	free(ev);
1325 	return err;
1326 }
1327 
1328 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1329 {
1330 	struct evsel *new_leader = NULL;
1331 	struct evsel *evsel;
1332 
1333 	/* Find new leader for the group */
1334 	evlist__for_each_entry(evlist, evsel) {
1335 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1336 			continue;
1337 		if (!new_leader)
1338 			new_leader = evsel;
1339 		evsel__set_leader(evsel, new_leader);
1340 	}
1341 
1342 	/* Update group information */
1343 	if (new_leader) {
1344 		zfree(&new_leader->group_name);
1345 		new_leader->group_name = leader->group_name;
1346 		leader->group_name = NULL;
1347 
1348 		new_leader->core.nr_members = leader->core.nr_members - 1;
1349 		leader->core.nr_members = 1;
1350 	}
1351 }
1352 
1353 static void unleader_auxtrace(struct perf_session *session)
1354 {
1355 	struct evsel *evsel;
1356 
1357 	evlist__for_each_entry(session->evlist, evsel) {
1358 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1359 		    evsel__is_group_leader(evsel)) {
1360 			unleader_evsel(session->evlist, evsel);
1361 		}
1362 	}
1363 }
1364 
1365 int perf_event__process_auxtrace_info(struct perf_session *session,
1366 				      union perf_event *event)
1367 {
1368 	enum auxtrace_type type = event->auxtrace_info.type;
1369 	int err;
1370 
1371 	if (dump_trace)
1372 		fprintf(stdout, " type: %u\n", type);
1373 
1374 	switch (type) {
1375 	case PERF_AUXTRACE_INTEL_PT:
1376 		err = intel_pt_process_auxtrace_info(event, session);
1377 		break;
1378 	case PERF_AUXTRACE_INTEL_BTS:
1379 		err = intel_bts_process_auxtrace_info(event, session);
1380 		break;
1381 	case PERF_AUXTRACE_ARM_SPE:
1382 		err = arm_spe_process_auxtrace_info(event, session);
1383 		break;
1384 	case PERF_AUXTRACE_CS_ETM:
1385 		err = cs_etm__process_auxtrace_info(event, session);
1386 		break;
1387 	case PERF_AUXTRACE_S390_CPUMSF:
1388 		err = s390_cpumsf_process_auxtrace_info(event, session);
1389 		break;
1390 	case PERF_AUXTRACE_HISI_PTT:
1391 		err = hisi_ptt_process_auxtrace_info(event, session);
1392 		break;
1393 	case PERF_AUXTRACE_UNKNOWN:
1394 	default:
1395 		return -EINVAL;
1396 	}
1397 
1398 	if (err)
1399 		return err;
1400 
1401 	unleader_auxtrace(session);
1402 
1403 	return 0;
1404 }
1405 
1406 s64 perf_event__process_auxtrace(struct perf_session *session,
1407 				 union perf_event *event)
1408 {
1409 	s64 err;
1410 
1411 	if (dump_trace)
1412 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1413 			event->auxtrace.size, event->auxtrace.offset,
1414 			event->auxtrace.reference, event->auxtrace.idx,
1415 			event->auxtrace.tid, event->auxtrace.cpu);
1416 
1417 	if (auxtrace__dont_decode(session))
1418 		return event->auxtrace.size;
1419 
1420 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1421 		return -EINVAL;
1422 
1423 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1424 	if (err < 0)
1425 		return err;
1426 
1427 	return event->auxtrace.size;
1428 }
1429 
1430 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1431 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1432 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1433 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1434 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1435 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1436 
1437 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1438 				    bool no_sample)
1439 {
1440 	synth_opts->branches = true;
1441 	synth_opts->transactions = true;
1442 	synth_opts->ptwrites = true;
1443 	synth_opts->pwr_events = true;
1444 	synth_opts->other_events = true;
1445 	synth_opts->intr_events = true;
1446 	synth_opts->errors = true;
1447 	synth_opts->flc = true;
1448 	synth_opts->llc = true;
1449 	synth_opts->tlb = true;
1450 	synth_opts->mem = true;
1451 	synth_opts->remote_access = true;
1452 
1453 	if (no_sample) {
1454 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1455 		synth_opts->period = 1;
1456 		synth_opts->calls = true;
1457 	} else {
1458 		synth_opts->instructions = true;
1459 		synth_opts->cycles = true;
1460 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1461 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1462 	}
1463 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1464 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1465 	synth_opts->initial_skip = 0;
1466 }
1467 
1468 static int get_flag(const char **ptr, unsigned int *flags)
1469 {
1470 	while (1) {
1471 		char c = **ptr;
1472 
1473 		if (c >= 'a' && c <= 'z') {
1474 			*flags |= 1 << (c - 'a');
1475 			++*ptr;
1476 			return 0;
1477 		} else if (c == ' ') {
1478 			++*ptr;
1479 			continue;
1480 		} else {
1481 			return -1;
1482 		}
1483 	}
1484 }
1485 
1486 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1487 {
1488 	while (1) {
1489 		switch (**ptr) {
1490 		case '+':
1491 			++*ptr;
1492 			if (get_flag(ptr, plus_flags))
1493 				return -1;
1494 			break;
1495 		case '-':
1496 			++*ptr;
1497 			if (get_flag(ptr, minus_flags))
1498 				return -1;
1499 			break;
1500 		case ' ':
1501 			++*ptr;
1502 			break;
1503 		default:
1504 			return 0;
1505 		}
1506 	}
1507 }
1508 
1509 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1510 
1511 static unsigned int itrace_log_on_error_size(void)
1512 {
1513 	unsigned int sz = 0;
1514 
1515 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1516 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1517 }
1518 
1519 /*
1520  * Please check tools/perf/Documentation/perf-script.txt for information
1521  * about the options parsed here, which is introduced after this cset,
1522  * when support in 'perf script' for these options is introduced.
1523  */
1524 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1525 			       const char *str, int unset)
1526 {
1527 	const char *p;
1528 	char *endptr;
1529 	bool period_type_set = false;
1530 	bool period_set = false;
1531 	bool iy = false;
1532 
1533 	synth_opts->set = true;
1534 
1535 	if (unset) {
1536 		synth_opts->dont_decode = true;
1537 		return 0;
1538 	}
1539 
1540 	if (!str) {
1541 		itrace_synth_opts__set_default(synth_opts,
1542 					       synth_opts->default_no_sample);
1543 		return 0;
1544 	}
1545 
1546 	for (p = str; *p;) {
1547 		switch (*p++) {
1548 		case 'i':
1549 		case 'y':
1550 			iy = true;
1551 			if (p[-1] == 'y')
1552 				synth_opts->cycles = true;
1553 			else
1554 				synth_opts->instructions = true;
1555 			while (*p == ' ' || *p == ',')
1556 				p += 1;
1557 			if (isdigit(*p)) {
1558 				synth_opts->period = strtoull(p, &endptr, 10);
1559 				period_set = true;
1560 				p = endptr;
1561 				while (*p == ' ' || *p == ',')
1562 					p += 1;
1563 				switch (*p++) {
1564 				case 'i':
1565 					synth_opts->period_type =
1566 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1567 					period_type_set = true;
1568 					break;
1569 				case 't':
1570 					synth_opts->period_type =
1571 						PERF_ITRACE_PERIOD_TICKS;
1572 					period_type_set = true;
1573 					break;
1574 				case 'm':
1575 					synth_opts->period *= 1000;
1576 					/* Fall through */
1577 				case 'u':
1578 					synth_opts->period *= 1000;
1579 					/* Fall through */
1580 				case 'n':
1581 					if (*p++ != 's')
1582 						goto out_err;
1583 					synth_opts->period_type =
1584 						PERF_ITRACE_PERIOD_NANOSECS;
1585 					period_type_set = true;
1586 					break;
1587 				case '\0':
1588 					goto out;
1589 				default:
1590 					goto out_err;
1591 				}
1592 			}
1593 			break;
1594 		case 'b':
1595 			synth_opts->branches = true;
1596 			break;
1597 		case 'x':
1598 			synth_opts->transactions = true;
1599 			break;
1600 		case 'w':
1601 			synth_opts->ptwrites = true;
1602 			break;
1603 		case 'p':
1604 			synth_opts->pwr_events = true;
1605 			break;
1606 		case 'o':
1607 			synth_opts->other_events = true;
1608 			break;
1609 		case 'I':
1610 			synth_opts->intr_events = true;
1611 			break;
1612 		case 'e':
1613 			synth_opts->errors = true;
1614 			if (get_flags(&p, &synth_opts->error_plus_flags,
1615 				      &synth_opts->error_minus_flags))
1616 				goto out_err;
1617 			break;
1618 		case 'd':
1619 			synth_opts->log = true;
1620 			if (get_flags(&p, &synth_opts->log_plus_flags,
1621 				      &synth_opts->log_minus_flags))
1622 				goto out_err;
1623 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1624 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1625 			break;
1626 		case 'c':
1627 			synth_opts->branches = true;
1628 			synth_opts->calls = true;
1629 			break;
1630 		case 'r':
1631 			synth_opts->branches = true;
1632 			synth_opts->returns = true;
1633 			break;
1634 		case 'G':
1635 		case 'g':
1636 			if (p[-1] == 'G')
1637 				synth_opts->add_callchain = true;
1638 			else
1639 				synth_opts->callchain = true;
1640 			synth_opts->callchain_sz =
1641 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1642 			while (*p == ' ' || *p == ',')
1643 				p += 1;
1644 			if (isdigit(*p)) {
1645 				unsigned int val;
1646 
1647 				val = strtoul(p, &endptr, 10);
1648 				p = endptr;
1649 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1650 					goto out_err;
1651 				synth_opts->callchain_sz = val;
1652 			}
1653 			break;
1654 		case 'L':
1655 		case 'l':
1656 			if (p[-1] == 'L')
1657 				synth_opts->add_last_branch = true;
1658 			else
1659 				synth_opts->last_branch = true;
1660 			synth_opts->last_branch_sz =
1661 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1662 			while (*p == ' ' || *p == ',')
1663 				p += 1;
1664 			if (isdigit(*p)) {
1665 				unsigned int val;
1666 
1667 				val = strtoul(p, &endptr, 10);
1668 				p = endptr;
1669 				if (!val ||
1670 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1671 					goto out_err;
1672 				synth_opts->last_branch_sz = val;
1673 			}
1674 			break;
1675 		case 's':
1676 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1677 			if (p == endptr)
1678 				goto out_err;
1679 			p = endptr;
1680 			break;
1681 		case 'f':
1682 			synth_opts->flc = true;
1683 			break;
1684 		case 'm':
1685 			synth_opts->llc = true;
1686 			break;
1687 		case 't':
1688 			synth_opts->tlb = true;
1689 			break;
1690 		case 'a':
1691 			synth_opts->remote_access = true;
1692 			break;
1693 		case 'M':
1694 			synth_opts->mem = true;
1695 			break;
1696 		case 'q':
1697 			synth_opts->quick += 1;
1698 			break;
1699 		case 'A':
1700 			synth_opts->approx_ipc = true;
1701 			break;
1702 		case 'Z':
1703 			synth_opts->timeless_decoding = true;
1704 			break;
1705 		case 'T':
1706 			synth_opts->use_timestamp = true;
1707 			break;
1708 		case ' ':
1709 		case ',':
1710 			break;
1711 		default:
1712 			goto out_err;
1713 		}
1714 	}
1715 out:
1716 	if (iy) {
1717 		if (!period_type_set)
1718 			synth_opts->period_type =
1719 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1720 		if (!period_set)
1721 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1722 	}
1723 
1724 	return 0;
1725 
1726 out_err:
1727 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1728 	return -EINVAL;
1729 }
1730 
1731 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1732 {
1733 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1734 }
1735 
1736 static const char * const auxtrace_error_type_name[] = {
1737 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1738 };
1739 
1740 static const char *auxtrace_error_name(int type)
1741 {
1742 	const char *error_type_name = NULL;
1743 
1744 	if (type < PERF_AUXTRACE_ERROR_MAX)
1745 		error_type_name = auxtrace_error_type_name[type];
1746 	if (!error_type_name)
1747 		error_type_name = "unknown AUX";
1748 	return error_type_name;
1749 }
1750 
1751 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1752 {
1753 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1754 	unsigned long long nsecs = e->time;
1755 	const char *msg = e->msg;
1756 	int ret;
1757 
1758 	ret = fprintf(fp, " %s error type %u",
1759 		      auxtrace_error_name(e->type), e->type);
1760 
1761 	if (e->fmt && nsecs) {
1762 		unsigned long secs = nsecs / NSEC_PER_SEC;
1763 
1764 		nsecs -= secs * NSEC_PER_SEC;
1765 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1766 	} else {
1767 		ret += fprintf(fp, " time 0");
1768 	}
1769 
1770 	if (!e->fmt)
1771 		msg = (const char *)&e->time;
1772 
1773 	if (e->fmt >= 2 && e->machine_pid)
1774 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1775 
1776 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1777 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1778 	return ret;
1779 }
1780 
1781 void perf_session__auxtrace_error_inc(struct perf_session *session,
1782 				      union perf_event *event)
1783 {
1784 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1785 
1786 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1787 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1788 }
1789 
1790 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1791 {
1792 	int i;
1793 
1794 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1795 		if (!stats->nr_auxtrace_errors[i])
1796 			continue;
1797 		ui__warning("%u %s errors\n",
1798 			    stats->nr_auxtrace_errors[i],
1799 			    auxtrace_error_name(i));
1800 	}
1801 }
1802 
1803 int perf_event__process_auxtrace_error(struct perf_session *session,
1804 				       union perf_event *event)
1805 {
1806 	if (auxtrace__dont_decode(session))
1807 		return 0;
1808 
1809 	perf_event__fprintf_auxtrace_error(event, stdout);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1815  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1816  * the issues caused by the below sequence on multiple CPUs: when perf tool
1817  * accesses either the load operation or the store operation for 64-bit value,
1818  * on some architectures the operation is divided into two instructions, one
1819  * is for accessing the low 32-bit value and another is for the high 32-bit;
1820  * thus these two user operations can give the kernel chances to access the
1821  * 64-bit value, and thus leads to the unexpected load values.
1822  *
1823  *   kernel (64-bit)                        user (32-bit)
1824  *
1825  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1826  *       STORE $aux_data      |       ,--->
1827  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1828  *       STORE ->aux_head   --|-------`     smp_rmb()
1829  *   }                        |             LOAD $data
1830  *                            |             smp_mb()
1831  *                            |             STORE ->aux_tail_lo
1832  *                            `----------->
1833  *                                          STORE ->aux_tail_hi
1834  *
1835  * For this reason, it's impossible for the perf tool to work correctly when
1836  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1837  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1838  * the pointers can be increased monotonically, whatever the buffer size it is,
1839  * at the end the head and tail can be bigger than 4GB and carry out to the
1840  * high 32-bit.
1841  *
1842  * To mitigate the issues and improve the user experience, we can allow the
1843  * perf tool working in certain conditions and bail out with error if detect
1844  * any overflow cannot be handled.
1845  *
1846  * For reading the AUX head, it reads out the values for three times, and
1847  * compares the high 4 bytes of the values between the first time and the last
1848  * time, if there has no change for high 4 bytes injected by the kernel during
1849  * the user reading sequence, it's safe for use the second value.
1850  *
1851  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1852  * 32 bits, it means there have two store operations in user space and it cannot
1853  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1854  * the caller an overflow error has happened.
1855  */
1856 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1857 {
1858 	struct perf_event_mmap_page *pc = mm->userpg;
1859 	u64 first, second, last;
1860 	u64 mask = (u64)(UINT32_MAX) << 32;
1861 
1862 	do {
1863 		first = READ_ONCE(pc->aux_head);
1864 		/* Ensure all reads are done after we read the head */
1865 		smp_rmb();
1866 		second = READ_ONCE(pc->aux_head);
1867 		/* Ensure all reads are done after we read the head */
1868 		smp_rmb();
1869 		last = READ_ONCE(pc->aux_head);
1870 	} while ((first & mask) != (last & mask));
1871 
1872 	return second;
1873 }
1874 
1875 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1876 {
1877 	struct perf_event_mmap_page *pc = mm->userpg;
1878 	u64 mask = (u64)(UINT32_MAX) << 32;
1879 
1880 	if (tail & mask)
1881 		return -1;
1882 
1883 	/* Ensure all reads are done before we write the tail out */
1884 	smp_mb();
1885 	WRITE_ONCE(pc->aux_tail, tail);
1886 	return 0;
1887 }
1888 
1889 static int __auxtrace_mmap__read(struct mmap *map,
1890 				 struct auxtrace_record *itr,
1891 				 const struct perf_tool *tool, process_auxtrace_t fn,
1892 				 bool snapshot, size_t snapshot_size)
1893 {
1894 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1895 	u64 head, old = mm->prev, offset, ref;
1896 	unsigned char *data = mm->base;
1897 	size_t size, head_off, old_off, len1, len2, padding;
1898 	union perf_event ev;
1899 	void *data1, *data2;
1900 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1901 
1902 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1903 
1904 	if (snapshot &&
1905 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1906 		return -1;
1907 
1908 	if (old == head)
1909 		return 0;
1910 
1911 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1912 		  mm->idx, old, head, head - old);
1913 
1914 	if (mm->mask) {
1915 		head_off = head & mm->mask;
1916 		old_off = old & mm->mask;
1917 	} else {
1918 		head_off = head % mm->len;
1919 		old_off = old % mm->len;
1920 	}
1921 
1922 	if (head_off > old_off)
1923 		size = head_off - old_off;
1924 	else
1925 		size = mm->len - (old_off - head_off);
1926 
1927 	if (snapshot && size > snapshot_size)
1928 		size = snapshot_size;
1929 
1930 	ref = auxtrace_record__reference(itr);
1931 
1932 	if (head > old || size <= head || mm->mask) {
1933 		offset = head - size;
1934 	} else {
1935 		/*
1936 		 * When the buffer size is not a power of 2, 'head' wraps at the
1937 		 * highest multiple of the buffer size, so we have to subtract
1938 		 * the remainder here.
1939 		 */
1940 		u64 rem = (0ULL - mm->len) % mm->len;
1941 
1942 		offset = head - size - rem;
1943 	}
1944 
1945 	if (size > head_off) {
1946 		len1 = size - head_off;
1947 		data1 = &data[mm->len - len1];
1948 		len2 = head_off;
1949 		data2 = &data[0];
1950 	} else {
1951 		len1 = size;
1952 		data1 = &data[head_off - len1];
1953 		len2 = 0;
1954 		data2 = NULL;
1955 	}
1956 
1957 	if (itr->alignment) {
1958 		unsigned int unwanted = len1 % itr->alignment;
1959 
1960 		len1 -= unwanted;
1961 		size -= unwanted;
1962 	}
1963 
1964 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1965 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1966 	if (padding)
1967 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1968 
1969 	memset(&ev, 0, sizeof(ev));
1970 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1971 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1972 	ev.auxtrace.size = size + padding;
1973 	ev.auxtrace.offset = offset;
1974 	ev.auxtrace.reference = ref;
1975 	ev.auxtrace.idx = mm->idx;
1976 	ev.auxtrace.tid = mm->tid;
1977 	ev.auxtrace.cpu = mm->cpu;
1978 
1979 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1980 		return -1;
1981 
1982 	mm->prev = head;
1983 
1984 	if (!snapshot) {
1985 		int err;
1986 
1987 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1988 		if (err < 0)
1989 			return err;
1990 
1991 		if (itr->read_finish) {
1992 			err = itr->read_finish(itr, mm->idx);
1993 			if (err < 0)
1994 				return err;
1995 		}
1996 	}
1997 
1998 	return 1;
1999 }
2000 
2001 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
2002 			const struct perf_tool *tool, process_auxtrace_t fn)
2003 {
2004 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
2005 }
2006 
2007 int auxtrace_mmap__read_snapshot(struct mmap *map,
2008 				 struct auxtrace_record *itr,
2009 				 const struct perf_tool *tool, process_auxtrace_t fn,
2010 				 size_t snapshot_size)
2011 {
2012 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
2013 }
2014 
2015 /**
2016  * struct auxtrace_cache - hash table to implement a cache
2017  * @hashtable: the hashtable
2018  * @sz: hashtable size (number of hlists)
2019  * @entry_size: size of an entry
2020  * @limit: limit the number of entries to this maximum, when reached the cache
2021  *         is dropped and caching begins again with an empty cache
2022  * @cnt: current number of entries
2023  * @bits: hashtable size (@sz = 2^@bits)
2024  */
2025 struct auxtrace_cache {
2026 	struct hlist_head *hashtable;
2027 	size_t sz;
2028 	size_t entry_size;
2029 	size_t limit;
2030 	size_t cnt;
2031 	unsigned int bits;
2032 };
2033 
2034 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
2035 					   unsigned int limit_percent)
2036 {
2037 	struct auxtrace_cache *c;
2038 	struct hlist_head *ht;
2039 	size_t sz, i;
2040 
2041 	c = zalloc(sizeof(struct auxtrace_cache));
2042 	if (!c)
2043 		return NULL;
2044 
2045 	sz = 1UL << bits;
2046 
2047 	ht = calloc(sz, sizeof(struct hlist_head));
2048 	if (!ht)
2049 		goto out_free;
2050 
2051 	for (i = 0; i < sz; i++)
2052 		INIT_HLIST_HEAD(&ht[i]);
2053 
2054 	c->hashtable = ht;
2055 	c->sz = sz;
2056 	c->entry_size = entry_size;
2057 	c->limit = (c->sz * limit_percent) / 100;
2058 	c->bits = bits;
2059 
2060 	return c;
2061 
2062 out_free:
2063 	free(c);
2064 	return NULL;
2065 }
2066 
2067 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2068 {
2069 	struct auxtrace_cache_entry *entry;
2070 	struct hlist_node *tmp;
2071 	size_t i;
2072 
2073 	if (!c)
2074 		return;
2075 
2076 	for (i = 0; i < c->sz; i++) {
2077 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2078 			hlist_del(&entry->hash);
2079 			auxtrace_cache__free_entry(c, entry);
2080 		}
2081 	}
2082 
2083 	c->cnt = 0;
2084 }
2085 
2086 void auxtrace_cache__free(struct auxtrace_cache *c)
2087 {
2088 	if (!c)
2089 		return;
2090 
2091 	auxtrace_cache__drop(c);
2092 	zfree(&c->hashtable);
2093 	free(c);
2094 }
2095 
2096 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2097 {
2098 	return malloc(c->entry_size);
2099 }
2100 
2101 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2102 				void *entry)
2103 {
2104 	free(entry);
2105 }
2106 
2107 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2108 			struct auxtrace_cache_entry *entry)
2109 {
2110 	if (c->limit && ++c->cnt > c->limit)
2111 		auxtrace_cache__drop(c);
2112 
2113 	entry->key = key;
2114 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2115 
2116 	return 0;
2117 }
2118 
2119 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2120 						       u32 key)
2121 {
2122 	struct auxtrace_cache_entry *entry;
2123 	struct hlist_head *hlist;
2124 	struct hlist_node *n;
2125 
2126 	if (!c)
2127 		return NULL;
2128 
2129 	hlist = &c->hashtable[hash_32(key, c->bits)];
2130 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2131 		if (entry->key == key) {
2132 			hlist_del(&entry->hash);
2133 			return entry;
2134 		}
2135 	}
2136 
2137 	return NULL;
2138 }
2139 
2140 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2141 {
2142 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2143 
2144 	auxtrace_cache__free_entry(c, entry);
2145 }
2146 
2147 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2148 {
2149 	struct auxtrace_cache_entry *entry;
2150 	struct hlist_head *hlist;
2151 
2152 	if (!c)
2153 		return NULL;
2154 
2155 	hlist = &c->hashtable[hash_32(key, c->bits)];
2156 	hlist_for_each_entry(entry, hlist, hash) {
2157 		if (entry->key == key)
2158 			return entry;
2159 	}
2160 
2161 	return NULL;
2162 }
2163 
2164 static void addr_filter__free_str(struct addr_filter *filt)
2165 {
2166 	zfree(&filt->str);
2167 	filt->action   = NULL;
2168 	filt->sym_from = NULL;
2169 	filt->sym_to   = NULL;
2170 	filt->filename = NULL;
2171 }
2172 
2173 static struct addr_filter *addr_filter__new(void)
2174 {
2175 	struct addr_filter *filt = zalloc(sizeof(*filt));
2176 
2177 	if (filt)
2178 		INIT_LIST_HEAD(&filt->list);
2179 
2180 	return filt;
2181 }
2182 
2183 static void addr_filter__free(struct addr_filter *filt)
2184 {
2185 	if (filt)
2186 		addr_filter__free_str(filt);
2187 	free(filt);
2188 }
2189 
2190 static void addr_filters__add(struct addr_filters *filts,
2191 			      struct addr_filter *filt)
2192 {
2193 	list_add_tail(&filt->list, &filts->head);
2194 	filts->cnt += 1;
2195 }
2196 
2197 static void addr_filters__del(struct addr_filters *filts,
2198 			      struct addr_filter *filt)
2199 {
2200 	list_del_init(&filt->list);
2201 	filts->cnt -= 1;
2202 }
2203 
2204 void addr_filters__init(struct addr_filters *filts)
2205 {
2206 	INIT_LIST_HEAD(&filts->head);
2207 	filts->cnt = 0;
2208 }
2209 
2210 void addr_filters__exit(struct addr_filters *filts)
2211 {
2212 	struct addr_filter *filt, *n;
2213 
2214 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2215 		addr_filters__del(filts, filt);
2216 		addr_filter__free(filt);
2217 	}
2218 }
2219 
2220 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2221 			    const char *str_delim)
2222 {
2223 	*inp += strspn(*inp, " ");
2224 
2225 	if (isdigit(**inp)) {
2226 		char *endptr;
2227 
2228 		if (!num)
2229 			return -EINVAL;
2230 		errno = 0;
2231 		*num = strtoull(*inp, &endptr, 0);
2232 		if (errno)
2233 			return -errno;
2234 		if (endptr == *inp)
2235 			return -EINVAL;
2236 		*inp = endptr;
2237 	} else {
2238 		size_t n;
2239 
2240 		if (!str)
2241 			return -EINVAL;
2242 		*inp += strspn(*inp, " ");
2243 		*str = *inp;
2244 		n = strcspn(*inp, str_delim);
2245 		if (!n)
2246 			return -EINVAL;
2247 		*inp += n;
2248 		if (**inp) {
2249 			**inp = '\0';
2250 			*inp += 1;
2251 		}
2252 	}
2253 	return 0;
2254 }
2255 
2256 static int parse_action(struct addr_filter *filt)
2257 {
2258 	if (!strcmp(filt->action, "filter")) {
2259 		filt->start = true;
2260 		filt->range = true;
2261 	} else if (!strcmp(filt->action, "start")) {
2262 		filt->start = true;
2263 	} else if (!strcmp(filt->action, "stop")) {
2264 		filt->start = false;
2265 	} else if (!strcmp(filt->action, "tracestop")) {
2266 		filt->start = false;
2267 		filt->range = true;
2268 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2269 	} else {
2270 		return -EINVAL;
2271 	}
2272 	return 0;
2273 }
2274 
2275 static int parse_sym_idx(char **inp, int *idx)
2276 {
2277 	*idx = -1;
2278 
2279 	*inp += strspn(*inp, " ");
2280 
2281 	if (**inp != '#')
2282 		return 0;
2283 
2284 	*inp += 1;
2285 
2286 	if (**inp == 'g' || **inp == 'G') {
2287 		*inp += 1;
2288 		*idx = 0;
2289 	} else {
2290 		unsigned long num;
2291 		char *endptr;
2292 
2293 		errno = 0;
2294 		num = strtoul(*inp, &endptr, 0);
2295 		if (errno)
2296 			return -errno;
2297 		if (endptr == *inp || num > INT_MAX)
2298 			return -EINVAL;
2299 		*inp = endptr;
2300 		*idx = num;
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2307 {
2308 	int err = parse_num_or_str(inp, num, str, " ");
2309 
2310 	if (!err && *str)
2311 		err = parse_sym_idx(inp, idx);
2312 
2313 	return err;
2314 }
2315 
2316 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2317 {
2318 	char *fstr;
2319 	int err;
2320 
2321 	filt->str = fstr = strdup(*filter_inp);
2322 	if (!fstr)
2323 		return -ENOMEM;
2324 
2325 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2326 	if (err)
2327 		goto out_err;
2328 
2329 	err = parse_action(filt);
2330 	if (err)
2331 		goto out_err;
2332 
2333 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2334 			      &filt->sym_from_idx);
2335 	if (err)
2336 		goto out_err;
2337 
2338 	fstr += strspn(fstr, " ");
2339 
2340 	if (*fstr == '/') {
2341 		fstr += 1;
2342 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2343 				      &filt->sym_to_idx);
2344 		if (err)
2345 			goto out_err;
2346 		filt->range = true;
2347 	}
2348 
2349 	fstr += strspn(fstr, " ");
2350 
2351 	if (*fstr == '@') {
2352 		fstr += 1;
2353 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2354 		if (err)
2355 			goto out_err;
2356 	}
2357 
2358 	fstr += strspn(fstr, " ,");
2359 
2360 	*filter_inp += fstr - filt->str;
2361 
2362 	return 0;
2363 
2364 out_err:
2365 	addr_filter__free_str(filt);
2366 
2367 	return err;
2368 }
2369 
2370 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2371 				    const char *filter)
2372 {
2373 	struct addr_filter *filt;
2374 	const char *fstr = filter;
2375 	int err;
2376 
2377 	while (*fstr) {
2378 		filt = addr_filter__new();
2379 		err = parse_one_filter(filt, &fstr);
2380 		if (err) {
2381 			addr_filter__free(filt);
2382 			addr_filters__exit(filts);
2383 			return err;
2384 		}
2385 		addr_filters__add(filts, filt);
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 struct sym_args {
2392 	const char	*name;
2393 	u64		start;
2394 	u64		size;
2395 	int		idx;
2396 	int		cnt;
2397 	bool		started;
2398 	bool		global;
2399 	bool		selected;
2400 	bool		duplicate;
2401 	bool		near;
2402 };
2403 
2404 static bool kern_sym_name_match(const char *kname, const char *name)
2405 {
2406 	size_t n = strlen(name);
2407 
2408 	return !strcmp(kname, name) ||
2409 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2410 }
2411 
2412 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2413 {
2414 	/* A function with the same name, and global or the n'th found or any */
2415 	return kallsyms__is_function(type) &&
2416 	       kern_sym_name_match(name, args->name) &&
2417 	       ((args->global && isupper(type)) ||
2418 		(args->selected && ++(args->cnt) == args->idx) ||
2419 		(!args->global && !args->selected));
2420 }
2421 
2422 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2423 {
2424 	struct sym_args *args = arg;
2425 
2426 	if (args->started) {
2427 		if (!args->size)
2428 			args->size = start - args->start;
2429 		if (args->selected) {
2430 			if (args->size)
2431 				return 1;
2432 		} else if (kern_sym_match(args, name, type)) {
2433 			args->duplicate = true;
2434 			return 1;
2435 		}
2436 	} else if (kern_sym_match(args, name, type)) {
2437 		args->started = true;
2438 		args->start = start;
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2445 {
2446 	struct sym_args *args = arg;
2447 
2448 	if (kern_sym_match(args, name, type)) {
2449 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2450 		       ++args->cnt, start, type, name);
2451 		args->near = true;
2452 	} else if (args->near) {
2453 		args->near = false;
2454 		pr_err("\t\twhich is near\t\t%s\n", name);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int sym_not_found_error(const char *sym_name, int idx)
2461 {
2462 	if (idx > 0) {
2463 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2464 		       idx, sym_name);
2465 	} else if (!idx) {
2466 		pr_err("Global symbol '%s' not found.\n", sym_name);
2467 	} else {
2468 		pr_err("Symbol '%s' not found.\n", sym_name);
2469 	}
2470 	pr_err("Note that symbols must be functions.\n");
2471 
2472 	return -EINVAL;
2473 }
2474 
2475 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2476 {
2477 	struct sym_args args = {
2478 		.name = sym_name,
2479 		.idx = idx,
2480 		.global = !idx,
2481 		.selected = idx > 0,
2482 	};
2483 	int err;
2484 
2485 	*start = 0;
2486 	*size = 0;
2487 
2488 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2489 	if (err < 0) {
2490 		pr_err("Failed to parse /proc/kallsyms\n");
2491 		return err;
2492 	}
2493 
2494 	if (args.duplicate) {
2495 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2496 		args.cnt = 0;
2497 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2498 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2499 		       sym_name);
2500 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2501 		return -EINVAL;
2502 	}
2503 
2504 	if (!args.started) {
2505 		pr_err("Kernel symbol lookup: ");
2506 		return sym_not_found_error(sym_name, idx);
2507 	}
2508 
2509 	*start = args.start;
2510 	*size = args.size;
2511 
2512 	return 0;
2513 }
2514 
2515 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2516 			       char type, u64 start)
2517 {
2518 	struct sym_args *args = arg;
2519 	u64 size;
2520 
2521 	if (!kallsyms__is_function(type))
2522 		return 0;
2523 
2524 	if (!args->started) {
2525 		args->started = true;
2526 		args->start = start;
2527 	}
2528 	/* Don't know exactly where the kernel ends, so we add a page */
2529 	size = round_up(start, page_size) + page_size - args->start;
2530 	if (size > args->size)
2531 		args->size = size;
2532 
2533 	return 0;
2534 }
2535 
2536 static int addr_filter__entire_kernel(struct addr_filter *filt)
2537 {
2538 	struct sym_args args = { .started = false };
2539 	int err;
2540 
2541 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2542 	if (err < 0 || !args.started) {
2543 		pr_err("Failed to parse /proc/kallsyms\n");
2544 		return err;
2545 	}
2546 
2547 	filt->addr = args.start;
2548 	filt->size = args.size;
2549 
2550 	return 0;
2551 }
2552 
2553 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2554 {
2555 	if (start + size >= filt->addr)
2556 		return 0;
2557 
2558 	if (filt->sym_from) {
2559 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2560 		       filt->sym_to, start, filt->sym_from, filt->addr);
2561 	} else {
2562 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2563 		       filt->sym_to, start, filt->addr);
2564 	}
2565 
2566 	return -EINVAL;
2567 }
2568 
2569 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2570 {
2571 	bool no_size = false;
2572 	u64 start, size;
2573 	int err;
2574 
2575 	if (symbol_conf.kptr_restrict) {
2576 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2577 		return -EINVAL;
2578 	}
2579 
2580 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2581 		return addr_filter__entire_kernel(filt);
2582 
2583 	if (filt->sym_from) {
2584 		err = find_kern_sym(filt->sym_from, &start, &size,
2585 				    filt->sym_from_idx);
2586 		if (err)
2587 			return err;
2588 		filt->addr = start;
2589 		if (filt->range && !filt->size && !filt->sym_to) {
2590 			filt->size = size;
2591 			no_size = !size;
2592 		}
2593 	}
2594 
2595 	if (filt->sym_to) {
2596 		err = find_kern_sym(filt->sym_to, &start, &size,
2597 				    filt->sym_to_idx);
2598 		if (err)
2599 			return err;
2600 
2601 		err = check_end_after_start(filt, start, size);
2602 		if (err)
2603 			return err;
2604 		filt->size = start + size - filt->addr;
2605 		no_size = !size;
2606 	}
2607 
2608 	/* The very last symbol in kallsyms does not imply a particular size */
2609 	if (no_size) {
2610 		pr_err("Cannot determine size of symbol '%s'\n",
2611 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2612 		return -EINVAL;
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 static struct dso *load_dso(const char *name)
2619 {
2620 	struct map *map;
2621 	struct dso *dso;
2622 
2623 	map = dso__new_map(name);
2624 	if (!map)
2625 		return NULL;
2626 
2627 	if (map__load(map) < 0)
2628 		pr_err("File '%s' not found or has no symbols.\n", name);
2629 
2630 	dso = dso__get(map__dso(map));
2631 
2632 	map__put(map);
2633 
2634 	return dso;
2635 }
2636 
2637 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2638 			  int idx)
2639 {
2640 	/* Same name, and global or the n'th found or any */
2641 	return !arch__compare_symbol_names(name, sym->name) &&
2642 	       ((!idx && sym->binding == STB_GLOBAL) ||
2643 		(idx > 0 && ++*cnt == idx) ||
2644 		idx < 0);
2645 }
2646 
2647 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2648 {
2649 	struct symbol *sym;
2650 	bool near = false;
2651 	int cnt = 0;
2652 
2653 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2654 
2655 	sym = dso__first_symbol(dso);
2656 	while (sym) {
2657 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2658 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2659 			       ++cnt, sym->start,
2660 			       sym->binding == STB_GLOBAL ? 'g' :
2661 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2662 			       sym->name);
2663 			near = true;
2664 		} else if (near) {
2665 			near = false;
2666 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2667 		}
2668 		sym = dso__next_symbol(sym);
2669 	}
2670 
2671 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2672 	       sym_name);
2673 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2674 }
2675 
2676 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2677 			u64 *size, int idx)
2678 {
2679 	struct symbol *sym;
2680 	int cnt = 0;
2681 
2682 	*start = 0;
2683 	*size = 0;
2684 
2685 	sym = dso__first_symbol(dso);
2686 	while (sym) {
2687 		if (*start) {
2688 			if (!*size)
2689 				*size = sym->start - *start;
2690 			if (idx > 0) {
2691 				if (*size)
2692 					return 0;
2693 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2694 				print_duplicate_syms(dso, sym_name);
2695 				return -EINVAL;
2696 			}
2697 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2698 			*start = sym->start;
2699 			*size = sym->end - sym->start;
2700 		}
2701 		sym = dso__next_symbol(sym);
2702 	}
2703 
2704 	if (!*start)
2705 		return sym_not_found_error(sym_name, idx);
2706 
2707 	return 0;
2708 }
2709 
2710 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2711 {
2712 	if (dso__data_file_size(dso, NULL)) {
2713 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2714 		       filt->filename);
2715 		return -EINVAL;
2716 	}
2717 
2718 	filt->addr = 0;
2719 	filt->size = dso__data(dso)->file_size;
2720 
2721 	return 0;
2722 }
2723 
2724 static int addr_filter__resolve_syms(struct addr_filter *filt)
2725 {
2726 	u64 start, size;
2727 	struct dso *dso;
2728 	int err = 0;
2729 
2730 	if (!filt->sym_from && !filt->sym_to)
2731 		return 0;
2732 
2733 	if (!filt->filename)
2734 		return addr_filter__resolve_kernel_syms(filt);
2735 
2736 	dso = load_dso(filt->filename);
2737 	if (!dso) {
2738 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2739 		return -EINVAL;
2740 	}
2741 
2742 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2743 		err = addr_filter__entire_dso(filt, dso);
2744 		goto put_dso;
2745 	}
2746 
2747 	if (filt->sym_from) {
2748 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2749 				   filt->sym_from_idx);
2750 		if (err)
2751 			goto put_dso;
2752 		filt->addr = start;
2753 		if (filt->range && !filt->size && !filt->sym_to)
2754 			filt->size = size;
2755 	}
2756 
2757 	if (filt->sym_to) {
2758 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2759 				   filt->sym_to_idx);
2760 		if (err)
2761 			goto put_dso;
2762 
2763 		err = check_end_after_start(filt, start, size);
2764 		if (err)
2765 			return err;
2766 
2767 		filt->size = start + size - filt->addr;
2768 	}
2769 
2770 put_dso:
2771 	dso__put(dso);
2772 
2773 	return err;
2774 }
2775 
2776 static char *addr_filter__to_str(struct addr_filter *filt)
2777 {
2778 	char filename_buf[PATH_MAX];
2779 	const char *at = "";
2780 	const char *fn = "";
2781 	char *filter;
2782 	int err;
2783 
2784 	if (filt->filename) {
2785 		at = "@";
2786 		fn = realpath(filt->filename, filename_buf);
2787 		if (!fn)
2788 			return NULL;
2789 	}
2790 
2791 	if (filt->range) {
2792 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2793 			       filt->action, filt->addr, filt->size, at, fn);
2794 	} else {
2795 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2796 			       filt->action, filt->addr, at, fn);
2797 	}
2798 
2799 	return err < 0 ? NULL : filter;
2800 }
2801 
2802 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2803 			     int max_nr)
2804 {
2805 	struct addr_filters filts;
2806 	struct addr_filter *filt;
2807 	int err;
2808 
2809 	addr_filters__init(&filts);
2810 
2811 	err = addr_filters__parse_bare_filter(&filts, filter);
2812 	if (err)
2813 		goto out_exit;
2814 
2815 	if (filts.cnt > max_nr) {
2816 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2817 		       filts.cnt, max_nr);
2818 		err = -EINVAL;
2819 		goto out_exit;
2820 	}
2821 
2822 	list_for_each_entry(filt, &filts.head, list) {
2823 		char *new_filter;
2824 
2825 		err = addr_filter__resolve_syms(filt);
2826 		if (err)
2827 			goto out_exit;
2828 
2829 		new_filter = addr_filter__to_str(filt);
2830 		if (!new_filter) {
2831 			err = -ENOMEM;
2832 			goto out_exit;
2833 		}
2834 
2835 		if (evsel__append_addr_filter(evsel, new_filter)) {
2836 			err = -ENOMEM;
2837 			goto out_exit;
2838 		}
2839 	}
2840 
2841 out_exit:
2842 	addr_filters__exit(&filts);
2843 
2844 	if (err) {
2845 		pr_err("Failed to parse address filter: '%s'\n", filter);
2846 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2847 		pr_err("Where multiple filters are separated by space or comma.\n");
2848 	}
2849 
2850 	return err;
2851 }
2852 
2853 static int evsel__nr_addr_filter(struct evsel *evsel)
2854 {
2855 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2856 	int nr_addr_filters = 0;
2857 
2858 	if (!pmu)
2859 		return 0;
2860 
2861 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2862 
2863 	return nr_addr_filters;
2864 }
2865 
2866 int auxtrace_parse_filters(struct evlist *evlist)
2867 {
2868 	struct evsel *evsel;
2869 	char *filter;
2870 	int err, max_nr;
2871 
2872 	evlist__for_each_entry(evlist, evsel) {
2873 		filter = evsel->filter;
2874 		max_nr = evsel__nr_addr_filter(evsel);
2875 		if (!filter || !max_nr)
2876 			continue;
2877 		evsel->filter = NULL;
2878 		err = parse_addr_filter(evsel, filter, max_nr);
2879 		free(filter);
2880 		if (err)
2881 			return err;
2882 		pr_debug("Address filter: %s\n", evsel->filter);
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2889 			    struct perf_sample *sample, const struct perf_tool *tool)
2890 {
2891 	if (!session->auxtrace)
2892 		return 0;
2893 
2894 	return session->auxtrace->process_event(session, event, sample, tool);
2895 }
2896 
2897 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2898 				    struct perf_sample *sample)
2899 {
2900 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2901 	    auxtrace__dont_decode(session))
2902 		return;
2903 
2904 	session->auxtrace->dump_auxtrace_sample(session, sample);
2905 }
2906 
2907 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2908 {
2909 	if (!session->auxtrace)
2910 		return 0;
2911 
2912 	return session->auxtrace->flush_events(session, tool);
2913 }
2914 
2915 void auxtrace__free_events(struct perf_session *session)
2916 {
2917 	if (!session->auxtrace)
2918 		return;
2919 
2920 	return session->auxtrace->free_events(session);
2921 }
2922 
2923 void auxtrace__free(struct perf_session *session)
2924 {
2925 	if (!session->auxtrace)
2926 		return;
2927 
2928 	return session->auxtrace->free(session);
2929 }
2930 
2931 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2932 				 struct evsel *evsel)
2933 {
2934 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2935 		return false;
2936 
2937 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2938 }
2939