1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 59 #include <linux/ctype.h> 60 #include "symbol/kallsyms.h" 61 #include <internal/lib.h> 62 #include "util/sample.h" 63 64 /* 65 * Make a group from 'leader' to 'last', requiring that the events were not 66 * already grouped to a different leader. 67 */ 68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 69 { 70 struct evsel *evsel; 71 bool grp; 72 73 if (!evsel__is_group_leader(leader)) 74 return -EINVAL; 75 76 grp = false; 77 evlist__for_each_entry(evlist, evsel) { 78 if (grp) { 79 if (!(evsel__leader(evsel) == leader || 80 (evsel__leader(evsel) == evsel && 81 evsel->core.nr_members <= 1))) 82 return -EINVAL; 83 } else if (evsel == leader) { 84 grp = true; 85 } 86 if (evsel == last) 87 break; 88 } 89 90 grp = false; 91 evlist__for_each_entry(evlist, evsel) { 92 if (grp) { 93 if (!evsel__has_leader(evsel, leader)) { 94 evsel__set_leader(evsel, leader); 95 if (leader->core.nr_members < 1) 96 leader->core.nr_members = 1; 97 leader->core.nr_members += 1; 98 } 99 } else if (evsel == leader) { 100 grp = true; 101 } 102 if (evsel == last) 103 break; 104 } 105 106 return 0; 107 } 108 109 static bool auxtrace__dont_decode(struct perf_session *session) 110 { 111 return !session->itrace_synth_opts || 112 session->itrace_synth_opts->dont_decode; 113 } 114 115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 116 struct auxtrace_mmap_params *mp, 117 void *userpg, int fd) 118 { 119 struct perf_event_mmap_page *pc = userpg; 120 121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 122 123 mm->userpg = userpg; 124 mm->mask = mp->mask; 125 mm->len = mp->len; 126 mm->prev = 0; 127 mm->idx = mp->idx; 128 mm->tid = mp->tid; 129 mm->cpu = mp->cpu.cpu; 130 131 if (!mp->len || !mp->mmap_needed) { 132 mm->base = NULL; 133 return 0; 134 } 135 136 pc->aux_offset = mp->offset; 137 pc->aux_size = mp->len; 138 139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 140 if (mm->base == MAP_FAILED) { 141 pr_debug2("failed to mmap AUX area\n"); 142 mm->base = NULL; 143 return -1; 144 } 145 146 return 0; 147 } 148 149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 150 { 151 if (mm->base) { 152 munmap(mm->base, mm->len); 153 mm->base = NULL; 154 } 155 } 156 157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 158 off_t auxtrace_offset, 159 unsigned int auxtrace_pages, 160 bool auxtrace_overwrite) 161 { 162 if (auxtrace_pages) { 163 mp->offset = auxtrace_offset; 164 mp->len = auxtrace_pages * (size_t)page_size; 165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 167 pr_debug2("AUX area mmap length %zu\n", mp->len); 168 } else { 169 mp->len = 0; 170 } 171 } 172 173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 174 struct evlist *evlist, 175 struct evsel *evsel, int idx) 176 { 177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 178 179 mp->mmap_needed = evsel->needs_auxtrace_mmap; 180 181 if (!mp->mmap_needed) 182 return; 183 184 mp->idx = idx; 185 186 if (per_cpu) { 187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 188 if (evlist->core.threads) 189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 190 else 191 mp->tid = -1; 192 } else { 193 mp->cpu.cpu = -1; 194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 195 } 196 } 197 198 #define AUXTRACE_INIT_NR_QUEUES 32 199 200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 201 { 202 struct auxtrace_queue *queue_array; 203 unsigned int max_nr_queues, i; 204 205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 206 if (nr_queues > max_nr_queues) 207 return NULL; 208 209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 210 if (!queue_array) 211 return NULL; 212 213 for (i = 0; i < nr_queues; i++) { 214 INIT_LIST_HEAD(&queue_array[i].head); 215 queue_array[i].priv = NULL; 216 } 217 218 return queue_array; 219 } 220 221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues) 222 { 223 queues->nr_queues = nr_queues; 224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 225 if (!queues->queue_array) 226 return -ENOMEM; 227 return 0; 228 } 229 230 int auxtrace_queues__init(struct auxtrace_queues *queues) 231 { 232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES); 233 } 234 235 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 236 unsigned int new_nr_queues) 237 { 238 unsigned int nr_queues = queues->nr_queues; 239 struct auxtrace_queue *queue_array; 240 unsigned int i; 241 242 if (!nr_queues) 243 nr_queues = AUXTRACE_INIT_NR_QUEUES; 244 245 while (nr_queues && nr_queues < new_nr_queues) 246 nr_queues <<= 1; 247 248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 249 return -EINVAL; 250 251 queue_array = auxtrace_alloc_queue_array(nr_queues); 252 if (!queue_array) 253 return -ENOMEM; 254 255 for (i = 0; i < queues->nr_queues; i++) { 256 list_splice_tail(&queues->queue_array[i].head, 257 &queue_array[i].head); 258 queue_array[i].tid = queues->queue_array[i].tid; 259 queue_array[i].cpu = queues->queue_array[i].cpu; 260 queue_array[i].set = queues->queue_array[i].set; 261 queue_array[i].priv = queues->queue_array[i].priv; 262 } 263 264 queues->nr_queues = nr_queues; 265 queues->queue_array = queue_array; 266 267 return 0; 268 } 269 270 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 271 { 272 int fd = perf_data__fd(session->data); 273 void *p; 274 ssize_t ret; 275 276 if (size > SSIZE_MAX) 277 return NULL; 278 279 p = malloc(size); 280 if (!p) 281 return NULL; 282 283 ret = readn(fd, p, size); 284 if (ret != (ssize_t)size) { 285 free(p); 286 return NULL; 287 } 288 289 return p; 290 } 291 292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 293 unsigned int idx, 294 struct auxtrace_buffer *buffer) 295 { 296 struct auxtrace_queue *queue; 297 int err; 298 299 if (idx >= queues->nr_queues) { 300 err = auxtrace_queues__grow(queues, idx + 1); 301 if (err) 302 return err; 303 } 304 305 queue = &queues->queue_array[idx]; 306 307 if (!queue->set) { 308 queue->set = true; 309 queue->tid = buffer->tid; 310 queue->cpu = buffer->cpu.cpu; 311 } 312 313 buffer->buffer_nr = queues->next_buffer_nr++; 314 315 list_add_tail(&buffer->list, &queue->head); 316 317 queues->new_data = true; 318 queues->populated = true; 319 320 return 0; 321 } 322 323 /* Limit buffers to 32MiB on 32-bit */ 324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 325 326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 327 unsigned int idx, 328 struct auxtrace_buffer *buffer) 329 { 330 u64 sz = buffer->size; 331 bool consecutive = false; 332 struct auxtrace_buffer *b; 333 int err; 334 335 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 336 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 337 if (!b) 338 return -ENOMEM; 339 b->size = BUFFER_LIMIT_FOR_32_BIT; 340 b->consecutive = consecutive; 341 err = auxtrace_queues__queue_buffer(queues, idx, b); 342 if (err) { 343 auxtrace_buffer__free(b); 344 return err; 345 } 346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 347 sz -= BUFFER_LIMIT_FOR_32_BIT; 348 consecutive = true; 349 } 350 351 buffer->size = sz; 352 buffer->consecutive = consecutive; 353 354 return 0; 355 } 356 357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 358 { 359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 360 361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 362 } 363 364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 365 struct perf_session *session, 366 unsigned int idx, 367 struct auxtrace_buffer *buffer, 368 struct auxtrace_buffer **buffer_ptr) 369 { 370 int err = -ENOMEM; 371 372 if (filter_cpu(session, buffer->cpu)) 373 return 0; 374 375 buffer = memdup(buffer, sizeof(*buffer)); 376 if (!buffer) 377 return -ENOMEM; 378 379 if (session->one_mmap) { 380 buffer->data = buffer->data_offset - session->one_mmap_offset + 381 session->one_mmap_addr; 382 } else if (perf_data__is_pipe(session->data)) { 383 buffer->data = auxtrace_copy_data(buffer->size, session); 384 if (!buffer->data) 385 goto out_free; 386 buffer->data_needs_freeing = true; 387 } else if (BITS_PER_LONG == 32 && 388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 389 err = auxtrace_queues__split_buffer(queues, idx, buffer); 390 if (err) 391 goto out_free; 392 } 393 394 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 395 if (err) 396 goto out_free; 397 398 /* FIXME: Doesn't work for split buffer */ 399 if (buffer_ptr) 400 *buffer_ptr = buffer; 401 402 return 0; 403 404 out_free: 405 auxtrace_buffer__free(buffer); 406 return err; 407 } 408 409 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 410 struct perf_session *session, 411 union perf_event *event, off_t data_offset, 412 struct auxtrace_buffer **buffer_ptr) 413 { 414 struct auxtrace_buffer buffer = { 415 .pid = -1, 416 .tid = event->auxtrace.tid, 417 .cpu = { event->auxtrace.cpu }, 418 .data_offset = data_offset, 419 .offset = event->auxtrace.offset, 420 .reference = event->auxtrace.reference, 421 .size = event->auxtrace.size, 422 }; 423 unsigned int idx = event->auxtrace.idx; 424 425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 426 buffer_ptr); 427 } 428 429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 430 struct perf_session *session, 431 off_t file_offset, size_t sz) 432 { 433 union perf_event *event; 434 int err; 435 char buf[PERF_SAMPLE_MAX_SIZE]; 436 437 err = perf_session__peek_event(session, file_offset, buf, 438 PERF_SAMPLE_MAX_SIZE, &event, NULL); 439 if (err) 440 return err; 441 442 if (event->header.type == PERF_RECORD_AUXTRACE) { 443 if (event->header.size < sizeof(struct perf_record_auxtrace) || 444 event->header.size != sz) { 445 err = -EINVAL; 446 goto out; 447 } 448 file_offset += event->header.size; 449 err = auxtrace_queues__add_event(queues, session, event, 450 file_offset, NULL); 451 } 452 out: 453 return err; 454 } 455 456 void auxtrace_queues__free(struct auxtrace_queues *queues) 457 { 458 unsigned int i; 459 460 for (i = 0; i < queues->nr_queues; i++) { 461 while (!list_empty(&queues->queue_array[i].head)) { 462 struct auxtrace_buffer *buffer; 463 464 buffer = list_entry(queues->queue_array[i].head.next, 465 struct auxtrace_buffer, list); 466 list_del_init(&buffer->list); 467 auxtrace_buffer__free(buffer); 468 } 469 } 470 471 zfree(&queues->queue_array); 472 queues->nr_queues = 0; 473 } 474 475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 476 unsigned int pos, unsigned int queue_nr, 477 u64 ordinal) 478 { 479 unsigned int parent; 480 481 while (pos) { 482 parent = (pos - 1) >> 1; 483 if (heap_array[parent].ordinal <= ordinal) 484 break; 485 heap_array[pos] = heap_array[parent]; 486 pos = parent; 487 } 488 heap_array[pos].queue_nr = queue_nr; 489 heap_array[pos].ordinal = ordinal; 490 } 491 492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 493 u64 ordinal) 494 { 495 struct auxtrace_heap_item *heap_array; 496 497 if (queue_nr >= heap->heap_sz) { 498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 499 500 while (heap_sz <= queue_nr) 501 heap_sz <<= 1; 502 heap_array = realloc(heap->heap_array, 503 heap_sz * sizeof(struct auxtrace_heap_item)); 504 if (!heap_array) 505 return -ENOMEM; 506 heap->heap_array = heap_array; 507 heap->heap_sz = heap_sz; 508 } 509 510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 511 512 return 0; 513 } 514 515 void auxtrace_heap__free(struct auxtrace_heap *heap) 516 { 517 zfree(&heap->heap_array); 518 heap->heap_cnt = 0; 519 heap->heap_sz = 0; 520 } 521 522 void auxtrace_heap__pop(struct auxtrace_heap *heap) 523 { 524 unsigned int pos, last, heap_cnt = heap->heap_cnt; 525 struct auxtrace_heap_item *heap_array; 526 527 if (!heap_cnt) 528 return; 529 530 heap->heap_cnt -= 1; 531 532 heap_array = heap->heap_array; 533 534 pos = 0; 535 while (1) { 536 unsigned int left, right; 537 538 left = (pos << 1) + 1; 539 if (left >= heap_cnt) 540 break; 541 right = left + 1; 542 if (right >= heap_cnt) { 543 heap_array[pos] = heap_array[left]; 544 return; 545 } 546 if (heap_array[left].ordinal < heap_array[right].ordinal) { 547 heap_array[pos] = heap_array[left]; 548 pos = left; 549 } else { 550 heap_array[pos] = heap_array[right]; 551 pos = right; 552 } 553 } 554 555 last = heap_cnt - 1; 556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 557 heap_array[last].ordinal); 558 } 559 560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 561 struct evlist *evlist) 562 { 563 if (itr) 564 return itr->info_priv_size(itr, evlist); 565 return 0; 566 } 567 568 static int auxtrace_not_supported(void) 569 { 570 pr_err("AUX area tracing is not supported on this architecture\n"); 571 return -EINVAL; 572 } 573 574 int auxtrace_record__info_fill(struct auxtrace_record *itr, 575 struct perf_session *session, 576 struct perf_record_auxtrace_info *auxtrace_info, 577 size_t priv_size) 578 { 579 if (itr) 580 return itr->info_fill(itr, session, auxtrace_info, priv_size); 581 return auxtrace_not_supported(); 582 } 583 584 void auxtrace_record__free(struct auxtrace_record *itr) 585 { 586 if (itr) 587 itr->free(itr); 588 } 589 590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 591 { 592 if (itr && itr->snapshot_start) 593 return itr->snapshot_start(itr); 594 return 0; 595 } 596 597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 598 { 599 if (!on_exit && itr && itr->snapshot_finish) 600 return itr->snapshot_finish(itr); 601 return 0; 602 } 603 604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 605 struct auxtrace_mmap *mm, 606 unsigned char *data, u64 *head, u64 *old) 607 { 608 if (itr && itr->find_snapshot) 609 return itr->find_snapshot(itr, idx, mm, data, head, old); 610 return 0; 611 } 612 613 int auxtrace_record__options(struct auxtrace_record *itr, 614 struct evlist *evlist, 615 struct record_opts *opts) 616 { 617 if (itr) { 618 itr->evlist = evlist; 619 return itr->recording_options(itr, evlist, opts); 620 } 621 return 0; 622 } 623 624 u64 auxtrace_record__reference(struct auxtrace_record *itr) 625 { 626 if (itr) 627 return itr->reference(itr); 628 return 0; 629 } 630 631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 632 struct record_opts *opts, const char *str) 633 { 634 if (!str) 635 return 0; 636 637 /* PMU-agnostic options */ 638 switch (*str) { 639 case 'e': 640 opts->auxtrace_snapshot_on_exit = true; 641 str++; 642 break; 643 default: 644 break; 645 } 646 647 if (itr && itr->parse_snapshot_options) 648 return itr->parse_snapshot_options(itr, opts, str); 649 650 pr_err("No AUX area tracing to snapshot\n"); 651 return -EINVAL; 652 } 653 654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 655 { 656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 657 658 if (per_cpu_mmaps) { 659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 661 662 if (cpu_map_idx == -1) 663 return -EINVAL; 664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 665 } 666 667 return perf_evsel__enable_thread(&evsel->core, idx); 668 } 669 670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 671 { 672 struct evsel *evsel; 673 674 if (!itr->evlist) 675 return -EINVAL; 676 677 evlist__for_each_entry(itr->evlist, evsel) { 678 if (evsel__is_aux_event(evsel)) { 679 if (evsel->disabled) 680 return 0; 681 return evlist__enable_event_idx(itr->evlist, evsel, idx); 682 } 683 } 684 return -EINVAL; 685 } 686 687 /* 688 * Event record size is 16-bit which results in a maximum size of about 64KiB. 689 * Allow about 4KiB for the rest of the sample record, to give a maximum 690 * AUX area sample size of 60KiB. 691 */ 692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 693 694 /* Arbitrary default size if no other default provided */ 695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 696 697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 698 struct record_opts *opts) 699 { 700 struct evsel *evsel; 701 bool has_aux_leader = false; 702 u32 sz; 703 704 evlist__for_each_entry(evlist, evsel) { 705 sz = evsel->core.attr.aux_sample_size; 706 if (evsel__is_group_leader(evsel)) { 707 has_aux_leader = evsel__is_aux_event(evsel); 708 if (sz) { 709 if (has_aux_leader) 710 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 711 else 712 pr_err("Cannot add AUX area sampling to a group leader\n"); 713 return -EINVAL; 714 } 715 } 716 if (sz > MAX_AUX_SAMPLE_SIZE) { 717 pr_err("AUX area sample size %u too big, max. %d\n", 718 sz, MAX_AUX_SAMPLE_SIZE); 719 return -EINVAL; 720 } 721 if (sz) { 722 if (!has_aux_leader) { 723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 724 return -EINVAL; 725 } 726 evsel__set_sample_bit(evsel, AUX); 727 opts->auxtrace_sample_mode = true; 728 } else { 729 evsel__reset_sample_bit(evsel, AUX); 730 } 731 } 732 733 if (!opts->auxtrace_sample_mode) { 734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 735 return -EINVAL; 736 } 737 738 if (!perf_can_aux_sample()) { 739 pr_err("AUX area sampling is not supported by kernel\n"); 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 746 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 747 struct evlist *evlist, 748 struct record_opts *opts, const char *str) 749 { 750 struct evsel_config_term *term; 751 struct evsel *aux_evsel; 752 bool has_aux_sample_size = false; 753 bool has_aux_leader = false; 754 struct evsel *evsel; 755 char *endptr; 756 unsigned long sz; 757 758 if (!str) 759 goto no_opt; 760 761 if (!itr) { 762 pr_err("No AUX area event to sample\n"); 763 return -EINVAL; 764 } 765 766 sz = strtoul(str, &endptr, 0); 767 if (*endptr || sz > UINT_MAX) { 768 pr_err("Bad AUX area sampling option: '%s'\n", str); 769 return -EINVAL; 770 } 771 772 if (!sz) 773 sz = itr->default_aux_sample_size; 774 775 if (!sz) 776 sz = DEFAULT_AUX_SAMPLE_SIZE; 777 778 /* Set aux_sample_size based on --aux-sample option */ 779 evlist__for_each_entry(evlist, evsel) { 780 if (evsel__is_group_leader(evsel)) { 781 has_aux_leader = evsel__is_aux_event(evsel); 782 } else if (has_aux_leader) { 783 evsel->core.attr.aux_sample_size = sz; 784 } 785 } 786 no_opt: 787 aux_evsel = NULL; 788 /* Override with aux_sample_size from config term */ 789 evlist__for_each_entry(evlist, evsel) { 790 if (evsel__is_aux_event(evsel)) 791 aux_evsel = evsel; 792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 793 if (term) { 794 has_aux_sample_size = true; 795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 796 /* If possible, group with the AUX event */ 797 if (aux_evsel && evsel->core.attr.aux_sample_size) 798 evlist__regroup(evlist, aux_evsel, evsel); 799 } 800 } 801 802 if (!str && !has_aux_sample_size) 803 return 0; 804 805 if (!itr) { 806 pr_err("No AUX area event to sample\n"); 807 return -EINVAL; 808 } 809 810 return auxtrace_validate_aux_sample_size(evlist, opts); 811 } 812 813 static struct aux_action_opt { 814 const char *str; 815 u32 aux_action; 816 bool aux_event_opt; 817 } aux_action_opts[] = { 818 {"start-paused", BIT(0), true}, 819 {"pause", BIT(1), false}, 820 {"resume", BIT(2), false}, 821 {.str = NULL}, 822 }; 823 824 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str) 825 { 826 const struct aux_action_opt *opt; 827 828 if (!str) 829 return NULL; 830 831 for (opt = aux_action_opts; opt->str; opt++) 832 if (!strcmp(str, opt->str)) 833 return opt; 834 835 return NULL; 836 } 837 838 int auxtrace_parse_aux_action(struct evlist *evlist) 839 { 840 struct evsel_config_term *term; 841 struct evsel *aux_evsel = NULL; 842 struct evsel *evsel; 843 844 evlist__for_each_entry(evlist, evsel) { 845 bool is_aux_event = evsel__is_aux_event(evsel); 846 const struct aux_action_opt *opt; 847 848 if (is_aux_event) 849 aux_evsel = evsel; 850 term = evsel__get_config_term(evsel, AUX_ACTION); 851 if (!term) { 852 if (evsel__get_config_term(evsel, AUX_OUTPUT)) 853 goto regroup; 854 continue; 855 } 856 opt = auxtrace_parse_aux_action_str(term->val.str); 857 if (!opt) { 858 pr_err("Bad aux-action '%s'\n", term->val.str); 859 return -EINVAL; 860 } 861 if (opt->aux_event_opt && !is_aux_event) { 862 pr_err("aux-action '%s' can only be used with AUX area event\n", 863 term->val.str); 864 return -EINVAL; 865 } 866 if (!opt->aux_event_opt && is_aux_event) { 867 pr_err("aux-action '%s' cannot be used for AUX area event itself\n", 868 term->val.str); 869 return -EINVAL; 870 } 871 evsel->core.attr.aux_action = opt->aux_action; 872 regroup: 873 /* If possible, group with the AUX event */ 874 if (aux_evsel) 875 evlist__regroup(evlist, aux_evsel, evsel); 876 if (!evsel__is_aux_event(evsel__leader(evsel))) { 877 pr_err("Events with aux-action must have AUX area event group leader\n"); 878 return -EINVAL; 879 } 880 } 881 882 return 0; 883 } 884 885 struct auxtrace_record *__weak 886 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 887 { 888 *err = 0; 889 return NULL; 890 } 891 892 static int auxtrace_index__alloc(struct list_head *head) 893 { 894 struct auxtrace_index *auxtrace_index; 895 896 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 897 if (!auxtrace_index) 898 return -ENOMEM; 899 900 auxtrace_index->nr = 0; 901 INIT_LIST_HEAD(&auxtrace_index->list); 902 903 list_add_tail(&auxtrace_index->list, head); 904 905 return 0; 906 } 907 908 void auxtrace_index__free(struct list_head *head) 909 { 910 struct auxtrace_index *auxtrace_index, *n; 911 912 list_for_each_entry_safe(auxtrace_index, n, head, list) { 913 list_del_init(&auxtrace_index->list); 914 free(auxtrace_index); 915 } 916 } 917 918 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 919 { 920 struct auxtrace_index *auxtrace_index; 921 int err; 922 923 if (list_empty(head)) { 924 err = auxtrace_index__alloc(head); 925 if (err) 926 return NULL; 927 } 928 929 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 930 931 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 932 err = auxtrace_index__alloc(head); 933 if (err) 934 return NULL; 935 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 936 list); 937 } 938 939 return auxtrace_index; 940 } 941 942 int auxtrace_index__auxtrace_event(struct list_head *head, 943 union perf_event *event, off_t file_offset) 944 { 945 struct auxtrace_index *auxtrace_index; 946 size_t nr; 947 948 auxtrace_index = auxtrace_index__last(head); 949 if (!auxtrace_index) 950 return -ENOMEM; 951 952 nr = auxtrace_index->nr; 953 auxtrace_index->entries[nr].file_offset = file_offset; 954 auxtrace_index->entries[nr].sz = event->header.size; 955 auxtrace_index->nr += 1; 956 957 return 0; 958 } 959 960 static int auxtrace_index__do_write(int fd, 961 struct auxtrace_index *auxtrace_index) 962 { 963 struct auxtrace_index_entry ent; 964 size_t i; 965 966 for (i = 0; i < auxtrace_index->nr; i++) { 967 ent.file_offset = auxtrace_index->entries[i].file_offset; 968 ent.sz = auxtrace_index->entries[i].sz; 969 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 970 return -errno; 971 } 972 return 0; 973 } 974 975 int auxtrace_index__write(int fd, struct list_head *head) 976 { 977 struct auxtrace_index *auxtrace_index; 978 u64 total = 0; 979 int err; 980 981 list_for_each_entry(auxtrace_index, head, list) 982 total += auxtrace_index->nr; 983 984 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 985 return -errno; 986 987 list_for_each_entry(auxtrace_index, head, list) { 988 err = auxtrace_index__do_write(fd, auxtrace_index); 989 if (err) 990 return err; 991 } 992 993 return 0; 994 } 995 996 static int auxtrace_index__process_entry(int fd, struct list_head *head, 997 bool needs_swap) 998 { 999 struct auxtrace_index *auxtrace_index; 1000 struct auxtrace_index_entry ent; 1001 size_t nr; 1002 1003 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 1004 return -1; 1005 1006 auxtrace_index = auxtrace_index__last(head); 1007 if (!auxtrace_index) 1008 return -1; 1009 1010 nr = auxtrace_index->nr; 1011 if (needs_swap) { 1012 auxtrace_index->entries[nr].file_offset = 1013 bswap_64(ent.file_offset); 1014 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 1015 } else { 1016 auxtrace_index->entries[nr].file_offset = ent.file_offset; 1017 auxtrace_index->entries[nr].sz = ent.sz; 1018 } 1019 1020 auxtrace_index->nr = nr + 1; 1021 1022 return 0; 1023 } 1024 1025 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 1026 bool needs_swap) 1027 { 1028 struct list_head *head = &session->auxtrace_index; 1029 u64 nr; 1030 1031 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 1032 return -1; 1033 1034 if (needs_swap) 1035 nr = bswap_64(nr); 1036 1037 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 1038 return -1; 1039 1040 while (nr--) { 1041 int err; 1042 1043 err = auxtrace_index__process_entry(fd, head, needs_swap); 1044 if (err) 1045 return -1; 1046 } 1047 1048 return 0; 1049 } 1050 1051 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 1052 struct perf_session *session, 1053 struct auxtrace_index_entry *ent) 1054 { 1055 return auxtrace_queues__add_indexed_event(queues, session, 1056 ent->file_offset, ent->sz); 1057 } 1058 1059 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 1060 struct perf_session *session) 1061 { 1062 struct auxtrace_index *auxtrace_index; 1063 struct auxtrace_index_entry *ent; 1064 size_t i; 1065 int err; 1066 1067 if (auxtrace__dont_decode(session)) 1068 return 0; 1069 1070 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1071 for (i = 0; i < auxtrace_index->nr; i++) { 1072 ent = &auxtrace_index->entries[i]; 1073 err = auxtrace_queues__process_index_entry(queues, 1074 session, 1075 ent); 1076 if (err) 1077 return err; 1078 } 1079 } 1080 return 0; 1081 } 1082 1083 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1084 struct auxtrace_buffer *buffer) 1085 { 1086 if (buffer) { 1087 if (list_is_last(&buffer->list, &queue->head)) 1088 return NULL; 1089 return list_entry(buffer->list.next, struct auxtrace_buffer, 1090 list); 1091 } else { 1092 if (list_empty(&queue->head)) 1093 return NULL; 1094 return list_entry(queue->head.next, struct auxtrace_buffer, 1095 list); 1096 } 1097 } 1098 1099 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1100 struct perf_sample *sample, 1101 struct perf_session *session) 1102 { 1103 struct perf_sample_id *sid; 1104 unsigned int idx; 1105 u64 id; 1106 1107 id = sample->id; 1108 if (!id) 1109 return NULL; 1110 1111 sid = evlist__id2sid(session->evlist, id); 1112 if (!sid) 1113 return NULL; 1114 1115 idx = sid->idx; 1116 1117 if (idx >= queues->nr_queues) 1118 return NULL; 1119 1120 return &queues->queue_array[idx]; 1121 } 1122 1123 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1124 struct perf_session *session, 1125 struct perf_sample *sample, u64 data_offset, 1126 u64 reference) 1127 { 1128 struct auxtrace_buffer buffer = { 1129 .pid = -1, 1130 .data_offset = data_offset, 1131 .reference = reference, 1132 .size = sample->aux_sample.size, 1133 }; 1134 struct perf_sample_id *sid; 1135 u64 id = sample->id; 1136 unsigned int idx; 1137 1138 if (!id) 1139 return -EINVAL; 1140 1141 sid = evlist__id2sid(session->evlist, id); 1142 if (!sid) 1143 return -ENOENT; 1144 1145 idx = sid->idx; 1146 buffer.tid = sid->tid; 1147 buffer.cpu = sid->cpu; 1148 1149 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1150 } 1151 1152 struct queue_data { 1153 bool samples; 1154 bool events; 1155 }; 1156 1157 static int auxtrace_queue_data_cb(struct perf_session *session, 1158 union perf_event *event, u64 offset, 1159 void *data) 1160 { 1161 struct queue_data *qd = data; 1162 struct perf_sample sample; 1163 int err; 1164 1165 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1166 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1167 return -EINVAL; 1168 offset += event->header.size; 1169 return session->auxtrace->queue_data(session, NULL, event, 1170 offset); 1171 } 1172 1173 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1174 return 0; 1175 1176 err = evlist__parse_sample(session->evlist, event, &sample); 1177 if (err) 1178 return err; 1179 1180 if (!sample.aux_sample.size) 1181 return 0; 1182 1183 offset += sample.aux_sample.data - (void *)event; 1184 1185 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1186 } 1187 1188 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1189 { 1190 struct queue_data qd = { 1191 .samples = samples, 1192 .events = events, 1193 }; 1194 1195 if (auxtrace__dont_decode(session)) 1196 return 0; 1197 1198 if (perf_data__is_pipe(session->data)) 1199 return 0; 1200 1201 if (!session->auxtrace || !session->auxtrace->queue_data) 1202 return -EINVAL; 1203 1204 return perf_session__peek_events(session, session->header.data_offset, 1205 session->header.data_size, 1206 auxtrace_queue_data_cb, &qd); 1207 } 1208 1209 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1210 { 1211 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1212 size_t adj = buffer->data_offset & (page_size - 1); 1213 size_t size = buffer->size + adj; 1214 off_t file_offset = buffer->data_offset - adj; 1215 void *addr; 1216 1217 if (buffer->data) 1218 return buffer->data; 1219 1220 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1221 if (addr == MAP_FAILED) 1222 return NULL; 1223 1224 buffer->mmap_addr = addr; 1225 buffer->mmap_size = size; 1226 1227 buffer->data = addr + adj; 1228 1229 return buffer->data; 1230 } 1231 1232 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1233 { 1234 if (!buffer->data || !buffer->mmap_addr) 1235 return; 1236 munmap(buffer->mmap_addr, buffer->mmap_size); 1237 buffer->mmap_addr = NULL; 1238 buffer->mmap_size = 0; 1239 buffer->data = NULL; 1240 buffer->use_data = NULL; 1241 } 1242 1243 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1244 { 1245 auxtrace_buffer__put_data(buffer); 1246 if (buffer->data_needs_freeing) { 1247 buffer->data_needs_freeing = false; 1248 zfree(&buffer->data); 1249 buffer->use_data = NULL; 1250 buffer->size = 0; 1251 } 1252 } 1253 1254 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1255 { 1256 auxtrace_buffer__drop_data(buffer); 1257 free(buffer); 1258 } 1259 1260 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1261 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1262 const char *msg, u64 timestamp, 1263 pid_t machine_pid, int vcpu) 1264 { 1265 size_t size; 1266 1267 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1268 1269 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1270 auxtrace_error->type = type; 1271 auxtrace_error->code = code; 1272 auxtrace_error->cpu = cpu; 1273 auxtrace_error->pid = pid; 1274 auxtrace_error->tid = tid; 1275 auxtrace_error->fmt = 1; 1276 auxtrace_error->ip = ip; 1277 auxtrace_error->time = timestamp; 1278 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1279 if (machine_pid) { 1280 auxtrace_error->fmt = 2; 1281 auxtrace_error->machine_pid = machine_pid; 1282 auxtrace_error->vcpu = vcpu; 1283 size = sizeof(*auxtrace_error); 1284 } else { 1285 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1286 strlen(auxtrace_error->msg) + 1; 1287 } 1288 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1289 } 1290 1291 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1292 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1293 const char *msg, u64 timestamp) 1294 { 1295 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1296 ip, msg, timestamp, 0, -1); 1297 } 1298 1299 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1300 const struct perf_tool *tool, 1301 struct perf_session *session, 1302 perf_event__handler_t process) 1303 { 1304 union perf_event *ev; 1305 size_t priv_size; 1306 int err; 1307 1308 pr_debug2("Synthesizing auxtrace information\n"); 1309 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1310 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1311 if (!ev) 1312 return -ENOMEM; 1313 1314 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1315 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1316 priv_size; 1317 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1318 priv_size); 1319 if (err) 1320 goto out_free; 1321 1322 err = process(tool, ev, NULL, NULL); 1323 out_free: 1324 free(ev); 1325 return err; 1326 } 1327 1328 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1329 { 1330 struct evsel *new_leader = NULL; 1331 struct evsel *evsel; 1332 1333 /* Find new leader for the group */ 1334 evlist__for_each_entry(evlist, evsel) { 1335 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1336 continue; 1337 if (!new_leader) 1338 new_leader = evsel; 1339 evsel__set_leader(evsel, new_leader); 1340 } 1341 1342 /* Update group information */ 1343 if (new_leader) { 1344 zfree(&new_leader->group_name); 1345 new_leader->group_name = leader->group_name; 1346 leader->group_name = NULL; 1347 1348 new_leader->core.nr_members = leader->core.nr_members - 1; 1349 leader->core.nr_members = 1; 1350 } 1351 } 1352 1353 static void unleader_auxtrace(struct perf_session *session) 1354 { 1355 struct evsel *evsel; 1356 1357 evlist__for_each_entry(session->evlist, evsel) { 1358 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1359 evsel__is_group_leader(evsel)) { 1360 unleader_evsel(session->evlist, evsel); 1361 } 1362 } 1363 } 1364 1365 int perf_event__process_auxtrace_info(struct perf_session *session, 1366 union perf_event *event) 1367 { 1368 enum auxtrace_type type = event->auxtrace_info.type; 1369 int err; 1370 1371 if (dump_trace) 1372 fprintf(stdout, " type: %u\n", type); 1373 1374 switch (type) { 1375 case PERF_AUXTRACE_INTEL_PT: 1376 err = intel_pt_process_auxtrace_info(event, session); 1377 break; 1378 case PERF_AUXTRACE_INTEL_BTS: 1379 err = intel_bts_process_auxtrace_info(event, session); 1380 break; 1381 case PERF_AUXTRACE_ARM_SPE: 1382 err = arm_spe_process_auxtrace_info(event, session); 1383 break; 1384 case PERF_AUXTRACE_CS_ETM: 1385 err = cs_etm__process_auxtrace_info(event, session); 1386 break; 1387 case PERF_AUXTRACE_S390_CPUMSF: 1388 err = s390_cpumsf_process_auxtrace_info(event, session); 1389 break; 1390 case PERF_AUXTRACE_HISI_PTT: 1391 err = hisi_ptt_process_auxtrace_info(event, session); 1392 break; 1393 case PERF_AUXTRACE_UNKNOWN: 1394 default: 1395 return -EINVAL; 1396 } 1397 1398 if (err) 1399 return err; 1400 1401 unleader_auxtrace(session); 1402 1403 return 0; 1404 } 1405 1406 s64 perf_event__process_auxtrace(struct perf_session *session, 1407 union perf_event *event) 1408 { 1409 s64 err; 1410 1411 if (dump_trace) 1412 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1413 event->auxtrace.size, event->auxtrace.offset, 1414 event->auxtrace.reference, event->auxtrace.idx, 1415 event->auxtrace.tid, event->auxtrace.cpu); 1416 1417 if (auxtrace__dont_decode(session)) 1418 return event->auxtrace.size; 1419 1420 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1421 return -EINVAL; 1422 1423 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1424 if (err < 0) 1425 return err; 1426 1427 return event->auxtrace.size; 1428 } 1429 1430 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1431 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1432 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1433 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1434 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1435 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1436 1437 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1438 bool no_sample) 1439 { 1440 synth_opts->branches = true; 1441 synth_opts->transactions = true; 1442 synth_opts->ptwrites = true; 1443 synth_opts->pwr_events = true; 1444 synth_opts->other_events = true; 1445 synth_opts->intr_events = true; 1446 synth_opts->errors = true; 1447 synth_opts->flc = true; 1448 synth_opts->llc = true; 1449 synth_opts->tlb = true; 1450 synth_opts->mem = true; 1451 synth_opts->remote_access = true; 1452 1453 if (no_sample) { 1454 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1455 synth_opts->period = 1; 1456 synth_opts->calls = true; 1457 } else { 1458 synth_opts->instructions = true; 1459 synth_opts->cycles = true; 1460 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1461 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1462 } 1463 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1464 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1465 synth_opts->initial_skip = 0; 1466 } 1467 1468 static int get_flag(const char **ptr, unsigned int *flags) 1469 { 1470 while (1) { 1471 char c = **ptr; 1472 1473 if (c >= 'a' && c <= 'z') { 1474 *flags |= 1 << (c - 'a'); 1475 ++*ptr; 1476 return 0; 1477 } else if (c == ' ') { 1478 ++*ptr; 1479 continue; 1480 } else { 1481 return -1; 1482 } 1483 } 1484 } 1485 1486 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1487 { 1488 while (1) { 1489 switch (**ptr) { 1490 case '+': 1491 ++*ptr; 1492 if (get_flag(ptr, plus_flags)) 1493 return -1; 1494 break; 1495 case '-': 1496 ++*ptr; 1497 if (get_flag(ptr, minus_flags)) 1498 return -1; 1499 break; 1500 case ' ': 1501 ++*ptr; 1502 break; 1503 default: 1504 return 0; 1505 } 1506 } 1507 } 1508 1509 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1510 1511 static unsigned int itrace_log_on_error_size(void) 1512 { 1513 unsigned int sz = 0; 1514 1515 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1516 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1517 } 1518 1519 /* 1520 * Please check tools/perf/Documentation/perf-script.txt for information 1521 * about the options parsed here, which is introduced after this cset, 1522 * when support in 'perf script' for these options is introduced. 1523 */ 1524 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1525 const char *str, int unset) 1526 { 1527 const char *p; 1528 char *endptr; 1529 bool period_type_set = false; 1530 bool period_set = false; 1531 bool iy = false; 1532 1533 synth_opts->set = true; 1534 1535 if (unset) { 1536 synth_opts->dont_decode = true; 1537 return 0; 1538 } 1539 1540 if (!str) { 1541 itrace_synth_opts__set_default(synth_opts, 1542 synth_opts->default_no_sample); 1543 return 0; 1544 } 1545 1546 for (p = str; *p;) { 1547 switch (*p++) { 1548 case 'i': 1549 case 'y': 1550 iy = true; 1551 if (p[-1] == 'y') 1552 synth_opts->cycles = true; 1553 else 1554 synth_opts->instructions = true; 1555 while (*p == ' ' || *p == ',') 1556 p += 1; 1557 if (isdigit(*p)) { 1558 synth_opts->period = strtoull(p, &endptr, 10); 1559 period_set = true; 1560 p = endptr; 1561 while (*p == ' ' || *p == ',') 1562 p += 1; 1563 switch (*p++) { 1564 case 'i': 1565 synth_opts->period_type = 1566 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1567 period_type_set = true; 1568 break; 1569 case 't': 1570 synth_opts->period_type = 1571 PERF_ITRACE_PERIOD_TICKS; 1572 period_type_set = true; 1573 break; 1574 case 'm': 1575 synth_opts->period *= 1000; 1576 /* Fall through */ 1577 case 'u': 1578 synth_opts->period *= 1000; 1579 /* Fall through */ 1580 case 'n': 1581 if (*p++ != 's') 1582 goto out_err; 1583 synth_opts->period_type = 1584 PERF_ITRACE_PERIOD_NANOSECS; 1585 period_type_set = true; 1586 break; 1587 case '\0': 1588 goto out; 1589 default: 1590 goto out_err; 1591 } 1592 } 1593 break; 1594 case 'b': 1595 synth_opts->branches = true; 1596 break; 1597 case 'x': 1598 synth_opts->transactions = true; 1599 break; 1600 case 'w': 1601 synth_opts->ptwrites = true; 1602 break; 1603 case 'p': 1604 synth_opts->pwr_events = true; 1605 break; 1606 case 'o': 1607 synth_opts->other_events = true; 1608 break; 1609 case 'I': 1610 synth_opts->intr_events = true; 1611 break; 1612 case 'e': 1613 synth_opts->errors = true; 1614 if (get_flags(&p, &synth_opts->error_plus_flags, 1615 &synth_opts->error_minus_flags)) 1616 goto out_err; 1617 break; 1618 case 'd': 1619 synth_opts->log = true; 1620 if (get_flags(&p, &synth_opts->log_plus_flags, 1621 &synth_opts->log_minus_flags)) 1622 goto out_err; 1623 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1624 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1625 break; 1626 case 'c': 1627 synth_opts->branches = true; 1628 synth_opts->calls = true; 1629 break; 1630 case 'r': 1631 synth_opts->branches = true; 1632 synth_opts->returns = true; 1633 break; 1634 case 'G': 1635 case 'g': 1636 if (p[-1] == 'G') 1637 synth_opts->add_callchain = true; 1638 else 1639 synth_opts->callchain = true; 1640 synth_opts->callchain_sz = 1641 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1642 while (*p == ' ' || *p == ',') 1643 p += 1; 1644 if (isdigit(*p)) { 1645 unsigned int val; 1646 1647 val = strtoul(p, &endptr, 10); 1648 p = endptr; 1649 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1650 goto out_err; 1651 synth_opts->callchain_sz = val; 1652 } 1653 break; 1654 case 'L': 1655 case 'l': 1656 if (p[-1] == 'L') 1657 synth_opts->add_last_branch = true; 1658 else 1659 synth_opts->last_branch = true; 1660 synth_opts->last_branch_sz = 1661 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1662 while (*p == ' ' || *p == ',') 1663 p += 1; 1664 if (isdigit(*p)) { 1665 unsigned int val; 1666 1667 val = strtoul(p, &endptr, 10); 1668 p = endptr; 1669 if (!val || 1670 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1671 goto out_err; 1672 synth_opts->last_branch_sz = val; 1673 } 1674 break; 1675 case 's': 1676 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1677 if (p == endptr) 1678 goto out_err; 1679 p = endptr; 1680 break; 1681 case 'f': 1682 synth_opts->flc = true; 1683 break; 1684 case 'm': 1685 synth_opts->llc = true; 1686 break; 1687 case 't': 1688 synth_opts->tlb = true; 1689 break; 1690 case 'a': 1691 synth_opts->remote_access = true; 1692 break; 1693 case 'M': 1694 synth_opts->mem = true; 1695 break; 1696 case 'q': 1697 synth_opts->quick += 1; 1698 break; 1699 case 'A': 1700 synth_opts->approx_ipc = true; 1701 break; 1702 case 'Z': 1703 synth_opts->timeless_decoding = true; 1704 break; 1705 case 'T': 1706 synth_opts->use_timestamp = true; 1707 break; 1708 case ' ': 1709 case ',': 1710 break; 1711 default: 1712 goto out_err; 1713 } 1714 } 1715 out: 1716 if (iy) { 1717 if (!period_type_set) 1718 synth_opts->period_type = 1719 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1720 if (!period_set) 1721 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1722 } 1723 1724 return 0; 1725 1726 out_err: 1727 pr_err("Bad Instruction Tracing options '%s'\n", str); 1728 return -EINVAL; 1729 } 1730 1731 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1732 { 1733 return itrace_do_parse_synth_opts(opt->value, str, unset); 1734 } 1735 1736 static const char * const auxtrace_error_type_name[] = { 1737 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1738 }; 1739 1740 static const char *auxtrace_error_name(int type) 1741 { 1742 const char *error_type_name = NULL; 1743 1744 if (type < PERF_AUXTRACE_ERROR_MAX) 1745 error_type_name = auxtrace_error_type_name[type]; 1746 if (!error_type_name) 1747 error_type_name = "unknown AUX"; 1748 return error_type_name; 1749 } 1750 1751 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1752 { 1753 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1754 unsigned long long nsecs = e->time; 1755 const char *msg = e->msg; 1756 int ret; 1757 1758 ret = fprintf(fp, " %s error type %u", 1759 auxtrace_error_name(e->type), e->type); 1760 1761 if (e->fmt && nsecs) { 1762 unsigned long secs = nsecs / NSEC_PER_SEC; 1763 1764 nsecs -= secs * NSEC_PER_SEC; 1765 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1766 } else { 1767 ret += fprintf(fp, " time 0"); 1768 } 1769 1770 if (!e->fmt) 1771 msg = (const char *)&e->time; 1772 1773 if (e->fmt >= 2 && e->machine_pid) 1774 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1775 1776 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1777 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1778 return ret; 1779 } 1780 1781 void perf_session__auxtrace_error_inc(struct perf_session *session, 1782 union perf_event *event) 1783 { 1784 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1785 1786 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1787 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1788 } 1789 1790 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1791 { 1792 int i; 1793 1794 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1795 if (!stats->nr_auxtrace_errors[i]) 1796 continue; 1797 ui__warning("%u %s errors\n", 1798 stats->nr_auxtrace_errors[i], 1799 auxtrace_error_name(i)); 1800 } 1801 } 1802 1803 int perf_event__process_auxtrace_error(struct perf_session *session, 1804 union perf_event *event) 1805 { 1806 if (auxtrace__dont_decode(session)) 1807 return 0; 1808 1809 perf_event__fprintf_auxtrace_error(event, stdout); 1810 return 0; 1811 } 1812 1813 /* 1814 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1815 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1816 * the issues caused by the below sequence on multiple CPUs: when perf tool 1817 * accesses either the load operation or the store operation for 64-bit value, 1818 * on some architectures the operation is divided into two instructions, one 1819 * is for accessing the low 32-bit value and another is for the high 32-bit; 1820 * thus these two user operations can give the kernel chances to access the 1821 * 64-bit value, and thus leads to the unexpected load values. 1822 * 1823 * kernel (64-bit) user (32-bit) 1824 * 1825 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1826 * STORE $aux_data | ,---> 1827 * FLUSH $aux_data | | LOAD ->aux_head_hi 1828 * STORE ->aux_head --|-------` smp_rmb() 1829 * } | LOAD $data 1830 * | smp_mb() 1831 * | STORE ->aux_tail_lo 1832 * `-----------> 1833 * STORE ->aux_tail_hi 1834 * 1835 * For this reason, it's impossible for the perf tool to work correctly when 1836 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1837 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1838 * the pointers can be increased monotonically, whatever the buffer size it is, 1839 * at the end the head and tail can be bigger than 4GB and carry out to the 1840 * high 32-bit. 1841 * 1842 * To mitigate the issues and improve the user experience, we can allow the 1843 * perf tool working in certain conditions and bail out with error if detect 1844 * any overflow cannot be handled. 1845 * 1846 * For reading the AUX head, it reads out the values for three times, and 1847 * compares the high 4 bytes of the values between the first time and the last 1848 * time, if there has no change for high 4 bytes injected by the kernel during 1849 * the user reading sequence, it's safe for use the second value. 1850 * 1851 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1852 * 32 bits, it means there have two store operations in user space and it cannot 1853 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1854 * the caller an overflow error has happened. 1855 */ 1856 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1857 { 1858 struct perf_event_mmap_page *pc = mm->userpg; 1859 u64 first, second, last; 1860 u64 mask = (u64)(UINT32_MAX) << 32; 1861 1862 do { 1863 first = READ_ONCE(pc->aux_head); 1864 /* Ensure all reads are done after we read the head */ 1865 smp_rmb(); 1866 second = READ_ONCE(pc->aux_head); 1867 /* Ensure all reads are done after we read the head */ 1868 smp_rmb(); 1869 last = READ_ONCE(pc->aux_head); 1870 } while ((first & mask) != (last & mask)); 1871 1872 return second; 1873 } 1874 1875 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1876 { 1877 struct perf_event_mmap_page *pc = mm->userpg; 1878 u64 mask = (u64)(UINT32_MAX) << 32; 1879 1880 if (tail & mask) 1881 return -1; 1882 1883 /* Ensure all reads are done before we write the tail out */ 1884 smp_mb(); 1885 WRITE_ONCE(pc->aux_tail, tail); 1886 return 0; 1887 } 1888 1889 static int __auxtrace_mmap__read(struct mmap *map, 1890 struct auxtrace_record *itr, 1891 const struct perf_tool *tool, process_auxtrace_t fn, 1892 bool snapshot, size_t snapshot_size) 1893 { 1894 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1895 u64 head, old = mm->prev, offset, ref; 1896 unsigned char *data = mm->base; 1897 size_t size, head_off, old_off, len1, len2, padding; 1898 union perf_event ev; 1899 void *data1, *data2; 1900 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1901 1902 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1903 1904 if (snapshot && 1905 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1906 return -1; 1907 1908 if (old == head) 1909 return 0; 1910 1911 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1912 mm->idx, old, head, head - old); 1913 1914 if (mm->mask) { 1915 head_off = head & mm->mask; 1916 old_off = old & mm->mask; 1917 } else { 1918 head_off = head % mm->len; 1919 old_off = old % mm->len; 1920 } 1921 1922 if (head_off > old_off) 1923 size = head_off - old_off; 1924 else 1925 size = mm->len - (old_off - head_off); 1926 1927 if (snapshot && size > snapshot_size) 1928 size = snapshot_size; 1929 1930 ref = auxtrace_record__reference(itr); 1931 1932 if (head > old || size <= head || mm->mask) { 1933 offset = head - size; 1934 } else { 1935 /* 1936 * When the buffer size is not a power of 2, 'head' wraps at the 1937 * highest multiple of the buffer size, so we have to subtract 1938 * the remainder here. 1939 */ 1940 u64 rem = (0ULL - mm->len) % mm->len; 1941 1942 offset = head - size - rem; 1943 } 1944 1945 if (size > head_off) { 1946 len1 = size - head_off; 1947 data1 = &data[mm->len - len1]; 1948 len2 = head_off; 1949 data2 = &data[0]; 1950 } else { 1951 len1 = size; 1952 data1 = &data[head_off - len1]; 1953 len2 = 0; 1954 data2 = NULL; 1955 } 1956 1957 if (itr->alignment) { 1958 unsigned int unwanted = len1 % itr->alignment; 1959 1960 len1 -= unwanted; 1961 size -= unwanted; 1962 } 1963 1964 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1965 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1966 if (padding) 1967 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1968 1969 memset(&ev, 0, sizeof(ev)); 1970 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1971 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1972 ev.auxtrace.size = size + padding; 1973 ev.auxtrace.offset = offset; 1974 ev.auxtrace.reference = ref; 1975 ev.auxtrace.idx = mm->idx; 1976 ev.auxtrace.tid = mm->tid; 1977 ev.auxtrace.cpu = mm->cpu; 1978 1979 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1980 return -1; 1981 1982 mm->prev = head; 1983 1984 if (!snapshot) { 1985 int err; 1986 1987 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1988 if (err < 0) 1989 return err; 1990 1991 if (itr->read_finish) { 1992 err = itr->read_finish(itr, mm->idx); 1993 if (err < 0) 1994 return err; 1995 } 1996 } 1997 1998 return 1; 1999 } 2000 2001 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 2002 const struct perf_tool *tool, process_auxtrace_t fn) 2003 { 2004 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 2005 } 2006 2007 int auxtrace_mmap__read_snapshot(struct mmap *map, 2008 struct auxtrace_record *itr, 2009 const struct perf_tool *tool, process_auxtrace_t fn, 2010 size_t snapshot_size) 2011 { 2012 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 2013 } 2014 2015 /** 2016 * struct auxtrace_cache - hash table to implement a cache 2017 * @hashtable: the hashtable 2018 * @sz: hashtable size (number of hlists) 2019 * @entry_size: size of an entry 2020 * @limit: limit the number of entries to this maximum, when reached the cache 2021 * is dropped and caching begins again with an empty cache 2022 * @cnt: current number of entries 2023 * @bits: hashtable size (@sz = 2^@bits) 2024 */ 2025 struct auxtrace_cache { 2026 struct hlist_head *hashtable; 2027 size_t sz; 2028 size_t entry_size; 2029 size_t limit; 2030 size_t cnt; 2031 unsigned int bits; 2032 }; 2033 2034 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 2035 unsigned int limit_percent) 2036 { 2037 struct auxtrace_cache *c; 2038 struct hlist_head *ht; 2039 size_t sz, i; 2040 2041 c = zalloc(sizeof(struct auxtrace_cache)); 2042 if (!c) 2043 return NULL; 2044 2045 sz = 1UL << bits; 2046 2047 ht = calloc(sz, sizeof(struct hlist_head)); 2048 if (!ht) 2049 goto out_free; 2050 2051 for (i = 0; i < sz; i++) 2052 INIT_HLIST_HEAD(&ht[i]); 2053 2054 c->hashtable = ht; 2055 c->sz = sz; 2056 c->entry_size = entry_size; 2057 c->limit = (c->sz * limit_percent) / 100; 2058 c->bits = bits; 2059 2060 return c; 2061 2062 out_free: 2063 free(c); 2064 return NULL; 2065 } 2066 2067 static void auxtrace_cache__drop(struct auxtrace_cache *c) 2068 { 2069 struct auxtrace_cache_entry *entry; 2070 struct hlist_node *tmp; 2071 size_t i; 2072 2073 if (!c) 2074 return; 2075 2076 for (i = 0; i < c->sz; i++) { 2077 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2078 hlist_del(&entry->hash); 2079 auxtrace_cache__free_entry(c, entry); 2080 } 2081 } 2082 2083 c->cnt = 0; 2084 } 2085 2086 void auxtrace_cache__free(struct auxtrace_cache *c) 2087 { 2088 if (!c) 2089 return; 2090 2091 auxtrace_cache__drop(c); 2092 zfree(&c->hashtable); 2093 free(c); 2094 } 2095 2096 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2097 { 2098 return malloc(c->entry_size); 2099 } 2100 2101 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2102 void *entry) 2103 { 2104 free(entry); 2105 } 2106 2107 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2108 struct auxtrace_cache_entry *entry) 2109 { 2110 if (c->limit && ++c->cnt > c->limit) 2111 auxtrace_cache__drop(c); 2112 2113 entry->key = key; 2114 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2115 2116 return 0; 2117 } 2118 2119 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2120 u32 key) 2121 { 2122 struct auxtrace_cache_entry *entry; 2123 struct hlist_head *hlist; 2124 struct hlist_node *n; 2125 2126 if (!c) 2127 return NULL; 2128 2129 hlist = &c->hashtable[hash_32(key, c->bits)]; 2130 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2131 if (entry->key == key) { 2132 hlist_del(&entry->hash); 2133 return entry; 2134 } 2135 } 2136 2137 return NULL; 2138 } 2139 2140 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2141 { 2142 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2143 2144 auxtrace_cache__free_entry(c, entry); 2145 } 2146 2147 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2148 { 2149 struct auxtrace_cache_entry *entry; 2150 struct hlist_head *hlist; 2151 2152 if (!c) 2153 return NULL; 2154 2155 hlist = &c->hashtable[hash_32(key, c->bits)]; 2156 hlist_for_each_entry(entry, hlist, hash) { 2157 if (entry->key == key) 2158 return entry; 2159 } 2160 2161 return NULL; 2162 } 2163 2164 static void addr_filter__free_str(struct addr_filter *filt) 2165 { 2166 zfree(&filt->str); 2167 filt->action = NULL; 2168 filt->sym_from = NULL; 2169 filt->sym_to = NULL; 2170 filt->filename = NULL; 2171 } 2172 2173 static struct addr_filter *addr_filter__new(void) 2174 { 2175 struct addr_filter *filt = zalloc(sizeof(*filt)); 2176 2177 if (filt) 2178 INIT_LIST_HEAD(&filt->list); 2179 2180 return filt; 2181 } 2182 2183 static void addr_filter__free(struct addr_filter *filt) 2184 { 2185 if (filt) 2186 addr_filter__free_str(filt); 2187 free(filt); 2188 } 2189 2190 static void addr_filters__add(struct addr_filters *filts, 2191 struct addr_filter *filt) 2192 { 2193 list_add_tail(&filt->list, &filts->head); 2194 filts->cnt += 1; 2195 } 2196 2197 static void addr_filters__del(struct addr_filters *filts, 2198 struct addr_filter *filt) 2199 { 2200 list_del_init(&filt->list); 2201 filts->cnt -= 1; 2202 } 2203 2204 void addr_filters__init(struct addr_filters *filts) 2205 { 2206 INIT_LIST_HEAD(&filts->head); 2207 filts->cnt = 0; 2208 } 2209 2210 void addr_filters__exit(struct addr_filters *filts) 2211 { 2212 struct addr_filter *filt, *n; 2213 2214 list_for_each_entry_safe(filt, n, &filts->head, list) { 2215 addr_filters__del(filts, filt); 2216 addr_filter__free(filt); 2217 } 2218 } 2219 2220 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2221 const char *str_delim) 2222 { 2223 *inp += strspn(*inp, " "); 2224 2225 if (isdigit(**inp)) { 2226 char *endptr; 2227 2228 if (!num) 2229 return -EINVAL; 2230 errno = 0; 2231 *num = strtoull(*inp, &endptr, 0); 2232 if (errno) 2233 return -errno; 2234 if (endptr == *inp) 2235 return -EINVAL; 2236 *inp = endptr; 2237 } else { 2238 size_t n; 2239 2240 if (!str) 2241 return -EINVAL; 2242 *inp += strspn(*inp, " "); 2243 *str = *inp; 2244 n = strcspn(*inp, str_delim); 2245 if (!n) 2246 return -EINVAL; 2247 *inp += n; 2248 if (**inp) { 2249 **inp = '\0'; 2250 *inp += 1; 2251 } 2252 } 2253 return 0; 2254 } 2255 2256 static int parse_action(struct addr_filter *filt) 2257 { 2258 if (!strcmp(filt->action, "filter")) { 2259 filt->start = true; 2260 filt->range = true; 2261 } else if (!strcmp(filt->action, "start")) { 2262 filt->start = true; 2263 } else if (!strcmp(filt->action, "stop")) { 2264 filt->start = false; 2265 } else if (!strcmp(filt->action, "tracestop")) { 2266 filt->start = false; 2267 filt->range = true; 2268 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2269 } else { 2270 return -EINVAL; 2271 } 2272 return 0; 2273 } 2274 2275 static int parse_sym_idx(char **inp, int *idx) 2276 { 2277 *idx = -1; 2278 2279 *inp += strspn(*inp, " "); 2280 2281 if (**inp != '#') 2282 return 0; 2283 2284 *inp += 1; 2285 2286 if (**inp == 'g' || **inp == 'G') { 2287 *inp += 1; 2288 *idx = 0; 2289 } else { 2290 unsigned long num; 2291 char *endptr; 2292 2293 errno = 0; 2294 num = strtoul(*inp, &endptr, 0); 2295 if (errno) 2296 return -errno; 2297 if (endptr == *inp || num > INT_MAX) 2298 return -EINVAL; 2299 *inp = endptr; 2300 *idx = num; 2301 } 2302 2303 return 0; 2304 } 2305 2306 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2307 { 2308 int err = parse_num_or_str(inp, num, str, " "); 2309 2310 if (!err && *str) 2311 err = parse_sym_idx(inp, idx); 2312 2313 return err; 2314 } 2315 2316 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2317 { 2318 char *fstr; 2319 int err; 2320 2321 filt->str = fstr = strdup(*filter_inp); 2322 if (!fstr) 2323 return -ENOMEM; 2324 2325 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2326 if (err) 2327 goto out_err; 2328 2329 err = parse_action(filt); 2330 if (err) 2331 goto out_err; 2332 2333 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2334 &filt->sym_from_idx); 2335 if (err) 2336 goto out_err; 2337 2338 fstr += strspn(fstr, " "); 2339 2340 if (*fstr == '/') { 2341 fstr += 1; 2342 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2343 &filt->sym_to_idx); 2344 if (err) 2345 goto out_err; 2346 filt->range = true; 2347 } 2348 2349 fstr += strspn(fstr, " "); 2350 2351 if (*fstr == '@') { 2352 fstr += 1; 2353 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2354 if (err) 2355 goto out_err; 2356 } 2357 2358 fstr += strspn(fstr, " ,"); 2359 2360 *filter_inp += fstr - filt->str; 2361 2362 return 0; 2363 2364 out_err: 2365 addr_filter__free_str(filt); 2366 2367 return err; 2368 } 2369 2370 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2371 const char *filter) 2372 { 2373 struct addr_filter *filt; 2374 const char *fstr = filter; 2375 int err; 2376 2377 while (*fstr) { 2378 filt = addr_filter__new(); 2379 err = parse_one_filter(filt, &fstr); 2380 if (err) { 2381 addr_filter__free(filt); 2382 addr_filters__exit(filts); 2383 return err; 2384 } 2385 addr_filters__add(filts, filt); 2386 } 2387 2388 return 0; 2389 } 2390 2391 struct sym_args { 2392 const char *name; 2393 u64 start; 2394 u64 size; 2395 int idx; 2396 int cnt; 2397 bool started; 2398 bool global; 2399 bool selected; 2400 bool duplicate; 2401 bool near; 2402 }; 2403 2404 static bool kern_sym_name_match(const char *kname, const char *name) 2405 { 2406 size_t n = strlen(name); 2407 2408 return !strcmp(kname, name) || 2409 (!strncmp(kname, name, n) && kname[n] == '\t'); 2410 } 2411 2412 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2413 { 2414 /* A function with the same name, and global or the n'th found or any */ 2415 return kallsyms__is_function(type) && 2416 kern_sym_name_match(name, args->name) && 2417 ((args->global && isupper(type)) || 2418 (args->selected && ++(args->cnt) == args->idx) || 2419 (!args->global && !args->selected)); 2420 } 2421 2422 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2423 { 2424 struct sym_args *args = arg; 2425 2426 if (args->started) { 2427 if (!args->size) 2428 args->size = start - args->start; 2429 if (args->selected) { 2430 if (args->size) 2431 return 1; 2432 } else if (kern_sym_match(args, name, type)) { 2433 args->duplicate = true; 2434 return 1; 2435 } 2436 } else if (kern_sym_match(args, name, type)) { 2437 args->started = true; 2438 args->start = start; 2439 } 2440 2441 return 0; 2442 } 2443 2444 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2445 { 2446 struct sym_args *args = arg; 2447 2448 if (kern_sym_match(args, name, type)) { 2449 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2450 ++args->cnt, start, type, name); 2451 args->near = true; 2452 } else if (args->near) { 2453 args->near = false; 2454 pr_err("\t\twhich is near\t\t%s\n", name); 2455 } 2456 2457 return 0; 2458 } 2459 2460 static int sym_not_found_error(const char *sym_name, int idx) 2461 { 2462 if (idx > 0) { 2463 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2464 idx, sym_name); 2465 } else if (!idx) { 2466 pr_err("Global symbol '%s' not found.\n", sym_name); 2467 } else { 2468 pr_err("Symbol '%s' not found.\n", sym_name); 2469 } 2470 pr_err("Note that symbols must be functions.\n"); 2471 2472 return -EINVAL; 2473 } 2474 2475 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2476 { 2477 struct sym_args args = { 2478 .name = sym_name, 2479 .idx = idx, 2480 .global = !idx, 2481 .selected = idx > 0, 2482 }; 2483 int err; 2484 2485 *start = 0; 2486 *size = 0; 2487 2488 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2489 if (err < 0) { 2490 pr_err("Failed to parse /proc/kallsyms\n"); 2491 return err; 2492 } 2493 2494 if (args.duplicate) { 2495 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2496 args.cnt = 0; 2497 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2498 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2499 sym_name); 2500 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2501 return -EINVAL; 2502 } 2503 2504 if (!args.started) { 2505 pr_err("Kernel symbol lookup: "); 2506 return sym_not_found_error(sym_name, idx); 2507 } 2508 2509 *start = args.start; 2510 *size = args.size; 2511 2512 return 0; 2513 } 2514 2515 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2516 char type, u64 start) 2517 { 2518 struct sym_args *args = arg; 2519 u64 size; 2520 2521 if (!kallsyms__is_function(type)) 2522 return 0; 2523 2524 if (!args->started) { 2525 args->started = true; 2526 args->start = start; 2527 } 2528 /* Don't know exactly where the kernel ends, so we add a page */ 2529 size = round_up(start, page_size) + page_size - args->start; 2530 if (size > args->size) 2531 args->size = size; 2532 2533 return 0; 2534 } 2535 2536 static int addr_filter__entire_kernel(struct addr_filter *filt) 2537 { 2538 struct sym_args args = { .started = false }; 2539 int err; 2540 2541 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2542 if (err < 0 || !args.started) { 2543 pr_err("Failed to parse /proc/kallsyms\n"); 2544 return err; 2545 } 2546 2547 filt->addr = args.start; 2548 filt->size = args.size; 2549 2550 return 0; 2551 } 2552 2553 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2554 { 2555 if (start + size >= filt->addr) 2556 return 0; 2557 2558 if (filt->sym_from) { 2559 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2560 filt->sym_to, start, filt->sym_from, filt->addr); 2561 } else { 2562 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2563 filt->sym_to, start, filt->addr); 2564 } 2565 2566 return -EINVAL; 2567 } 2568 2569 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2570 { 2571 bool no_size = false; 2572 u64 start, size; 2573 int err; 2574 2575 if (symbol_conf.kptr_restrict) { 2576 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2577 return -EINVAL; 2578 } 2579 2580 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2581 return addr_filter__entire_kernel(filt); 2582 2583 if (filt->sym_from) { 2584 err = find_kern_sym(filt->sym_from, &start, &size, 2585 filt->sym_from_idx); 2586 if (err) 2587 return err; 2588 filt->addr = start; 2589 if (filt->range && !filt->size && !filt->sym_to) { 2590 filt->size = size; 2591 no_size = !size; 2592 } 2593 } 2594 2595 if (filt->sym_to) { 2596 err = find_kern_sym(filt->sym_to, &start, &size, 2597 filt->sym_to_idx); 2598 if (err) 2599 return err; 2600 2601 err = check_end_after_start(filt, start, size); 2602 if (err) 2603 return err; 2604 filt->size = start + size - filt->addr; 2605 no_size = !size; 2606 } 2607 2608 /* The very last symbol in kallsyms does not imply a particular size */ 2609 if (no_size) { 2610 pr_err("Cannot determine size of symbol '%s'\n", 2611 filt->sym_to ? filt->sym_to : filt->sym_from); 2612 return -EINVAL; 2613 } 2614 2615 return 0; 2616 } 2617 2618 static struct dso *load_dso(const char *name) 2619 { 2620 struct map *map; 2621 struct dso *dso; 2622 2623 map = dso__new_map(name); 2624 if (!map) 2625 return NULL; 2626 2627 if (map__load(map) < 0) 2628 pr_err("File '%s' not found or has no symbols.\n", name); 2629 2630 dso = dso__get(map__dso(map)); 2631 2632 map__put(map); 2633 2634 return dso; 2635 } 2636 2637 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2638 int idx) 2639 { 2640 /* Same name, and global or the n'th found or any */ 2641 return !arch__compare_symbol_names(name, sym->name) && 2642 ((!idx && sym->binding == STB_GLOBAL) || 2643 (idx > 0 && ++*cnt == idx) || 2644 idx < 0); 2645 } 2646 2647 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2648 { 2649 struct symbol *sym; 2650 bool near = false; 2651 int cnt = 0; 2652 2653 pr_err("Multiple symbols with name '%s'\n", sym_name); 2654 2655 sym = dso__first_symbol(dso); 2656 while (sym) { 2657 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2658 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2659 ++cnt, sym->start, 2660 sym->binding == STB_GLOBAL ? 'g' : 2661 sym->binding == STB_LOCAL ? 'l' : 'w', 2662 sym->name); 2663 near = true; 2664 } else if (near) { 2665 near = false; 2666 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2667 } 2668 sym = dso__next_symbol(sym); 2669 } 2670 2671 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2672 sym_name); 2673 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2674 } 2675 2676 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2677 u64 *size, int idx) 2678 { 2679 struct symbol *sym; 2680 int cnt = 0; 2681 2682 *start = 0; 2683 *size = 0; 2684 2685 sym = dso__first_symbol(dso); 2686 while (sym) { 2687 if (*start) { 2688 if (!*size) 2689 *size = sym->start - *start; 2690 if (idx > 0) { 2691 if (*size) 2692 return 0; 2693 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2694 print_duplicate_syms(dso, sym_name); 2695 return -EINVAL; 2696 } 2697 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2698 *start = sym->start; 2699 *size = sym->end - sym->start; 2700 } 2701 sym = dso__next_symbol(sym); 2702 } 2703 2704 if (!*start) 2705 return sym_not_found_error(sym_name, idx); 2706 2707 return 0; 2708 } 2709 2710 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2711 { 2712 if (dso__data_file_size(dso, NULL)) { 2713 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2714 filt->filename); 2715 return -EINVAL; 2716 } 2717 2718 filt->addr = 0; 2719 filt->size = dso__data(dso)->file_size; 2720 2721 return 0; 2722 } 2723 2724 static int addr_filter__resolve_syms(struct addr_filter *filt) 2725 { 2726 u64 start, size; 2727 struct dso *dso; 2728 int err = 0; 2729 2730 if (!filt->sym_from && !filt->sym_to) 2731 return 0; 2732 2733 if (!filt->filename) 2734 return addr_filter__resolve_kernel_syms(filt); 2735 2736 dso = load_dso(filt->filename); 2737 if (!dso) { 2738 pr_err("Failed to load symbols from: %s\n", filt->filename); 2739 return -EINVAL; 2740 } 2741 2742 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2743 err = addr_filter__entire_dso(filt, dso); 2744 goto put_dso; 2745 } 2746 2747 if (filt->sym_from) { 2748 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2749 filt->sym_from_idx); 2750 if (err) 2751 goto put_dso; 2752 filt->addr = start; 2753 if (filt->range && !filt->size && !filt->sym_to) 2754 filt->size = size; 2755 } 2756 2757 if (filt->sym_to) { 2758 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2759 filt->sym_to_idx); 2760 if (err) 2761 goto put_dso; 2762 2763 err = check_end_after_start(filt, start, size); 2764 if (err) 2765 return err; 2766 2767 filt->size = start + size - filt->addr; 2768 } 2769 2770 put_dso: 2771 dso__put(dso); 2772 2773 return err; 2774 } 2775 2776 static char *addr_filter__to_str(struct addr_filter *filt) 2777 { 2778 char filename_buf[PATH_MAX]; 2779 const char *at = ""; 2780 const char *fn = ""; 2781 char *filter; 2782 int err; 2783 2784 if (filt->filename) { 2785 at = "@"; 2786 fn = realpath(filt->filename, filename_buf); 2787 if (!fn) 2788 return NULL; 2789 } 2790 2791 if (filt->range) { 2792 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2793 filt->action, filt->addr, filt->size, at, fn); 2794 } else { 2795 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2796 filt->action, filt->addr, at, fn); 2797 } 2798 2799 return err < 0 ? NULL : filter; 2800 } 2801 2802 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2803 int max_nr) 2804 { 2805 struct addr_filters filts; 2806 struct addr_filter *filt; 2807 int err; 2808 2809 addr_filters__init(&filts); 2810 2811 err = addr_filters__parse_bare_filter(&filts, filter); 2812 if (err) 2813 goto out_exit; 2814 2815 if (filts.cnt > max_nr) { 2816 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2817 filts.cnt, max_nr); 2818 err = -EINVAL; 2819 goto out_exit; 2820 } 2821 2822 list_for_each_entry(filt, &filts.head, list) { 2823 char *new_filter; 2824 2825 err = addr_filter__resolve_syms(filt); 2826 if (err) 2827 goto out_exit; 2828 2829 new_filter = addr_filter__to_str(filt); 2830 if (!new_filter) { 2831 err = -ENOMEM; 2832 goto out_exit; 2833 } 2834 2835 if (evsel__append_addr_filter(evsel, new_filter)) { 2836 err = -ENOMEM; 2837 goto out_exit; 2838 } 2839 } 2840 2841 out_exit: 2842 addr_filters__exit(&filts); 2843 2844 if (err) { 2845 pr_err("Failed to parse address filter: '%s'\n", filter); 2846 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2847 pr_err("Where multiple filters are separated by space or comma.\n"); 2848 } 2849 2850 return err; 2851 } 2852 2853 static int evsel__nr_addr_filter(struct evsel *evsel) 2854 { 2855 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2856 int nr_addr_filters = 0; 2857 2858 if (!pmu) 2859 return 0; 2860 2861 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2862 2863 return nr_addr_filters; 2864 } 2865 2866 int auxtrace_parse_filters(struct evlist *evlist) 2867 { 2868 struct evsel *evsel; 2869 char *filter; 2870 int err, max_nr; 2871 2872 evlist__for_each_entry(evlist, evsel) { 2873 filter = evsel->filter; 2874 max_nr = evsel__nr_addr_filter(evsel); 2875 if (!filter || !max_nr) 2876 continue; 2877 evsel->filter = NULL; 2878 err = parse_addr_filter(evsel, filter, max_nr); 2879 free(filter); 2880 if (err) 2881 return err; 2882 pr_debug("Address filter: %s\n", evsel->filter); 2883 } 2884 2885 return 0; 2886 } 2887 2888 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2889 struct perf_sample *sample, const struct perf_tool *tool) 2890 { 2891 if (!session->auxtrace) 2892 return 0; 2893 2894 return session->auxtrace->process_event(session, event, sample, tool); 2895 } 2896 2897 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2898 struct perf_sample *sample) 2899 { 2900 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2901 auxtrace__dont_decode(session)) 2902 return; 2903 2904 session->auxtrace->dump_auxtrace_sample(session, sample); 2905 } 2906 2907 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool) 2908 { 2909 if (!session->auxtrace) 2910 return 0; 2911 2912 return session->auxtrace->flush_events(session, tool); 2913 } 2914 2915 void auxtrace__free_events(struct perf_session *session) 2916 { 2917 if (!session->auxtrace) 2918 return; 2919 2920 return session->auxtrace->free_events(session); 2921 } 2922 2923 void auxtrace__free(struct perf_session *session) 2924 { 2925 if (!session->auxtrace) 2926 return; 2927 2928 return session->auxtrace->free(session); 2929 } 2930 2931 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2932 struct evsel *evsel) 2933 { 2934 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2935 return false; 2936 2937 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2938 } 2939