1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21
22 bool __read_mostly enable_mmio_caching = true;
23 static bool __ro_after_init allow_mmio_caching;
24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25 EXPORT_SYMBOL_GPL(enable_mmio_caching);
26
27 bool __read_mostly kvm_ad_enabled;
28
29 u64 __read_mostly shadow_host_writable_mask;
30 u64 __read_mostly shadow_mmu_writable_mask;
31 u64 __read_mostly shadow_nx_mask;
32 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
33 u64 __read_mostly shadow_user_mask;
34 u64 __read_mostly shadow_accessed_mask;
35 u64 __read_mostly shadow_dirty_mask;
36 u64 __read_mostly shadow_mmio_value;
37 u64 __read_mostly shadow_mmio_mask;
38 u64 __read_mostly shadow_mmio_access_mask;
39 u64 __read_mostly shadow_present_mask;
40 u64 __read_mostly shadow_me_value;
41 u64 __read_mostly shadow_me_mask;
42 u64 __read_mostly shadow_acc_track_mask;
43
44 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
45 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
46
kvm_get_host_maxphyaddr(void)47 static u8 __init kvm_get_host_maxphyaddr(void)
48 {
49 /*
50 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
51 * in CPU detection code, but the processor treats those reduced bits as
52 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
53 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
54 * when reasoning about CPU behavior with respect to MAXPHYADDR.
55 */
56 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
57 return cpuid_eax(0x80000008) & 0xff;
58
59 /*
60 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
61 * custom CPUID. Proceed with whatever the kernel found since these features
62 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
63 */
64 return boot_cpu_data.x86_phys_bits;
65 }
66
kvm_mmu_spte_module_init(void)67 void __init kvm_mmu_spte_module_init(void)
68 {
69 /*
70 * Snapshot userspace's desire to allow MMIO caching. Whether or not
71 * KVM can actually enable MMIO caching depends on vendor-specific
72 * hardware capabilities and other module params that can't be resolved
73 * until the vendor module is loaded, i.e. enable_mmio_caching can and
74 * will change when the vendor module is (re)loaded.
75 */
76 allow_mmio_caching = enable_mmio_caching;
77
78 kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
79 }
80
generation_mmio_spte_mask(u64 gen)81 static u64 generation_mmio_spte_mask(u64 gen)
82 {
83 u64 mask;
84
85 WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
86
87 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
88 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
89 return mask;
90 }
91
make_mmio_spte(struct kvm_vcpu * vcpu,u64 gfn,unsigned int access)92 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
93 {
94 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
95 u64 spte = generation_mmio_spte_mask(gen);
96 u64 gpa = gfn << PAGE_SHIFT;
97
98 access &= shadow_mmio_access_mask;
99 spte |= vcpu->kvm->arch.shadow_mmio_value | access;
100 spte |= gpa | shadow_nonpresent_or_rsvd_mask;
101 spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
102 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
103
104 return spte;
105 }
106
__kvm_is_mmio_pfn(kvm_pfn_t pfn)107 static bool __kvm_is_mmio_pfn(kvm_pfn_t pfn)
108 {
109 if (pfn_valid(pfn))
110 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
111 /*
112 * Some reserved pages, such as those from NVDIMM
113 * DAX devices, are not for MMIO, and can be mapped
114 * with cached memory type for better performance.
115 * However, the above check misconceives those pages
116 * as MMIO, and results in KVM mapping them with UC
117 * memory type, which would hurt the performance.
118 * Therefore, we check the host memory type in addition
119 * and only treat UC/UC-/WC pages as MMIO.
120 */
121 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
122
123 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
124 pfn_to_hpa(pfn + 1) - 1,
125 E820_TYPE_RAM);
126 }
127
kvm_is_mmio_pfn(kvm_pfn_t pfn,int * is_host_mmio)128 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn, int *is_host_mmio)
129 {
130 /*
131 * Determining if a PFN is host MMIO is relative expensive. Cache the
132 * result locally (in the sole caller) to avoid doing the full query
133 * multiple times when creating a single SPTE.
134 */
135 if (*is_host_mmio < 0)
136 *is_host_mmio = __kvm_is_mmio_pfn(pfn);
137
138 return *is_host_mmio;
139 }
140
kvm_track_host_mmio_mapping(struct kvm_vcpu * vcpu)141 static void kvm_track_host_mmio_mapping(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa);
144
145 if (root)
146 WRITE_ONCE(root->has_mapped_host_mmio, true);
147 else
148 WRITE_ONCE(vcpu->kvm->arch.has_mapped_host_mmio, true);
149
150 /*
151 * Force vCPUs to exit and flush CPU buffers if the vCPU is using the
152 * affected root(s).
153 */
154 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
155 }
156
157 /*
158 * Returns true if the SPTE needs to be updated atomically due to having bits
159 * that may be changed without holding mmu_lock, and for which KVM must not
160 * lose information. E.g. KVM must not drop Dirty bit information. The caller
161 * is responsible for checking if the SPTE is shadow-present, and for
162 * determining whether or not the caller cares about non-leaf SPTEs.
163 */
spte_needs_atomic_update(u64 spte)164 bool spte_needs_atomic_update(u64 spte)
165 {
166 /* SPTEs can be made Writable bit by KVM's fast page fault handler. */
167 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
168 return true;
169
170 /*
171 * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked
172 * SPTEs can be restored by KVM's fast page fault handler.
173 */
174 if (!spte_ad_enabled(spte))
175 return true;
176
177 /*
178 * Dirty and Accessed bits can be set by the CPU. Ignore the Accessed
179 * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't
180 * invalidate TLBs when aging SPTEs, and so it's safe to clobber the
181 * Accessed bit (and rare in practice).
182 */
183 return is_writable_pte(spte) && !(spte & shadow_dirty_mask);
184 }
185
make_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,const struct kvm_memory_slot * slot,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,u64 old_spte,bool prefetch,bool synchronizing,bool host_writable,u64 * new_spte)186 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
187 const struct kvm_memory_slot *slot,
188 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
189 u64 old_spte, bool prefetch, bool synchronizing,
190 bool host_writable, u64 *new_spte)
191 {
192 int level = sp->role.level;
193 u64 spte = SPTE_MMU_PRESENT_MASK;
194 int is_host_mmio = -1;
195 bool wrprot = false;
196
197 /*
198 * For the EPT case, shadow_present_mask has no RWX bits set if
199 * exec-only page table entries are supported. In that case,
200 * ACC_USER_MASK and shadow_user_mask are used to represent
201 * read access. See FNAME(gpte_access) in paging_tmpl.h.
202 */
203 WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
204
205 if (sp->role.ad_disabled)
206 spte |= SPTE_TDP_AD_DISABLED;
207 else if (kvm_mmu_page_ad_need_write_protect(vcpu->kvm, sp))
208 spte |= SPTE_TDP_AD_WRPROT_ONLY;
209
210 spte |= shadow_present_mask;
211 if (!prefetch || synchronizing)
212 spte |= shadow_accessed_mask;
213
214 /*
215 * For simplicity, enforce the NX huge page mitigation even if not
216 * strictly necessary. KVM could ignore the mitigation if paging is
217 * disabled in the guest, as the guest doesn't have any page tables to
218 * abuse. But to safely ignore the mitigation, KVM would have to
219 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
220 * is toggled on, and that's a net negative for performance when TDP is
221 * enabled. When TDP is disabled, KVM will always switch to a new MMU
222 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
223 * would tie make_spte() further to vCPU/MMU state, and add complexity
224 * just to optimize a mode that is anything but performance critical.
225 */
226 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
227 is_nx_huge_page_enabled(vcpu->kvm)) {
228 pte_access &= ~ACC_EXEC_MASK;
229 }
230
231 if (pte_access & ACC_EXEC_MASK)
232 spte |= shadow_x_mask;
233 else
234 spte |= shadow_nx_mask;
235
236 if (pte_access & ACC_USER_MASK)
237 spte |= shadow_user_mask;
238
239 if (level > PG_LEVEL_4K)
240 spte |= PT_PAGE_SIZE_MASK;
241
242 if (kvm_x86_ops.get_mt_mask)
243 spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
244 kvm_is_mmio_pfn(pfn, &is_host_mmio));
245 if (host_writable)
246 spte |= shadow_host_writable_mask;
247 else
248 pte_access &= ~ACC_WRITE_MASK;
249
250 if (shadow_me_value && !kvm_is_mmio_pfn(pfn, &is_host_mmio))
251 spte |= shadow_me_value;
252
253 spte |= (u64)pfn << PAGE_SHIFT;
254
255 if (pte_access & ACC_WRITE_MASK) {
256 /*
257 * Unsync shadow pages that are reachable by the new, writable
258 * SPTE. Write-protect the SPTE if the page can't be unsync'd,
259 * e.g. it's write-tracked (upper-level SPs) or has one or more
260 * shadow pages and unsync'ing pages is not allowed.
261 *
262 * When overwriting an existing leaf SPTE, and the old SPTE was
263 * writable, skip trying to unsync shadow pages as any relevant
264 * shadow pages must already be unsync, i.e. the hash lookup is
265 * unnecessary (and expensive). Note, this relies on KVM not
266 * changing PFNs without first zapping the old SPTE, which is
267 * guaranteed by both the shadow MMU and the TDP MMU.
268 */
269 if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
270 mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
271 wrprot = true;
272 else
273 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
274 shadow_dirty_mask;
275 }
276
277 if (prefetch && !synchronizing)
278 spte = mark_spte_for_access_track(spte);
279
280 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
281 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
282 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
283
284 /*
285 * Mark the memslot dirty *after* modifying it for access tracking.
286 * Unlike folios, memslots can be safely marked dirty out of mmu_lock,
287 * i.e. in the fast page fault handler.
288 */
289 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
290 /* Enforced by kvm_mmu_hugepage_adjust. */
291 WARN_ON_ONCE(level > PG_LEVEL_4K);
292 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
293 }
294
295 if (static_branch_unlikely(&cpu_buf_vm_clear) &&
296 !kvm_vcpu_can_access_host_mmio(vcpu) &&
297 kvm_is_mmio_pfn(pfn, &is_host_mmio))
298 kvm_track_host_mmio_mapping(vcpu);
299
300 *new_spte = spte;
301 return wrprot;
302 }
303
modify_spte_protections(u64 spte,u64 set,u64 clear)304 static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
305 {
306 bool is_access_track = is_access_track_spte(spte);
307
308 if (is_access_track)
309 spte = restore_acc_track_spte(spte);
310
311 KVM_MMU_WARN_ON(set & clear);
312 spte = (spte | set) & ~clear;
313
314 if (is_access_track)
315 spte = mark_spte_for_access_track(spte);
316
317 return spte;
318 }
319
make_spte_executable(u64 spte)320 static u64 make_spte_executable(u64 spte)
321 {
322 return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
323 }
324
make_spte_nonexecutable(u64 spte)325 static u64 make_spte_nonexecutable(u64 spte)
326 {
327 return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
328 }
329
330 /*
331 * Construct an SPTE that maps a sub-page of the given huge page SPTE where
332 * `index` identifies which sub-page.
333 *
334 * This is used during huge page splitting to build the SPTEs that make up the
335 * new page table.
336 */
make_small_spte(struct kvm * kvm,u64 huge_spte,union kvm_mmu_page_role role,int index)337 u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
338 union kvm_mmu_page_role role, int index)
339 {
340 u64 child_spte = huge_spte;
341
342 KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
343
344 /*
345 * The child_spte already has the base address of the huge page being
346 * split. So we just have to OR in the offset to the page at the next
347 * lower level for the given index.
348 */
349 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
350
351 if (role.level == PG_LEVEL_4K) {
352 child_spte &= ~PT_PAGE_SIZE_MASK;
353
354 /*
355 * When splitting to a 4K page where execution is allowed, mark
356 * the page executable as the NX hugepage mitigation no longer
357 * applies.
358 */
359 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
360 child_spte = make_spte_executable(child_spte);
361 }
362
363 return child_spte;
364 }
365
make_huge_spte(struct kvm * kvm,u64 small_spte,int level)366 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
367 {
368 u64 huge_spte;
369
370 KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
371
372 huge_spte = small_spte | PT_PAGE_SIZE_MASK;
373
374 /*
375 * huge_spte already has the address of the sub-page being collapsed
376 * from small_spte, so just clear the lower address bits to create the
377 * huge page address.
378 */
379 huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
380
381 if (is_nx_huge_page_enabled(kvm))
382 huge_spte = make_spte_nonexecutable(huge_spte);
383
384 return huge_spte;
385 }
386
make_nonleaf_spte(u64 * child_pt,bool ad_disabled)387 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
388 {
389 u64 spte = SPTE_MMU_PRESENT_MASK;
390
391 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
392 shadow_user_mask | shadow_x_mask | shadow_me_value;
393
394 if (ad_disabled)
395 spte |= SPTE_TDP_AD_DISABLED;
396 else
397 spte |= shadow_accessed_mask;
398
399 return spte;
400 }
401
mark_spte_for_access_track(u64 spte)402 u64 mark_spte_for_access_track(u64 spte)
403 {
404 if (spte_ad_enabled(spte))
405 return spte & ~shadow_accessed_mask;
406
407 if (is_access_track_spte(spte))
408 return spte;
409
410 check_spte_writable_invariants(spte);
411
412 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
413 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
414 "Access Tracking saved bit locations are not zero\n");
415
416 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
417 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
418 spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
419
420 return spte;
421 }
422
kvm_mmu_set_mmio_spte_mask(u64 mmio_value,u64 mmio_mask,u64 access_mask)423 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
424 {
425 BUG_ON((u64)(unsigned)access_mask != access_mask);
426 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
427
428 /*
429 * Reset to the original module param value to honor userspace's desire
430 * to (dis)allow MMIO caching. Update the param itself so that
431 * userspace can see whether or not KVM is actually using MMIO caching.
432 */
433 enable_mmio_caching = allow_mmio_caching;
434 if (!enable_mmio_caching)
435 mmio_value = 0;
436
437 /*
438 * The mask must contain only bits that are carved out specifically for
439 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
440 * generation.
441 */
442 if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
443 mmio_value = 0;
444
445 /*
446 * Disable MMIO caching if the MMIO value collides with the bits that
447 * are used to hold the relocated GFN when the L1TF mitigation is
448 * enabled. This should never fire as there is no known hardware that
449 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
450 * MMIO value are not susceptible to L1TF.
451 */
452 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
453 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
454 mmio_value = 0;
455
456 /*
457 * The masked MMIO value must obviously match itself and a frozen SPTE
458 * must not get a false positive. Frozen SPTEs and MMIO SPTEs should
459 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
460 * not set any RWX bits.
461 */
462 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
463 WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
464 mmio_value = 0;
465
466 if (!mmio_value)
467 enable_mmio_caching = false;
468
469 shadow_mmio_value = mmio_value;
470 shadow_mmio_mask = mmio_mask;
471 shadow_mmio_access_mask = access_mask;
472 }
473 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
474
kvm_mmu_set_mmio_spte_value(struct kvm * kvm,u64 mmio_value)475 void kvm_mmu_set_mmio_spte_value(struct kvm *kvm, u64 mmio_value)
476 {
477 kvm->arch.shadow_mmio_value = mmio_value;
478 }
479 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_value);
480
kvm_mmu_set_me_spte_mask(u64 me_value,u64 me_mask)481 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
482 {
483 /* shadow_me_value must be a subset of shadow_me_mask */
484 if (WARN_ON(me_value & ~me_mask))
485 me_value = me_mask = 0;
486
487 shadow_me_value = me_value;
488 shadow_me_mask = me_mask;
489 }
490 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
491
kvm_mmu_set_ept_masks(bool has_ad_bits,bool has_exec_only)492 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
493 {
494 kvm_ad_enabled = has_ad_bits;
495
496 shadow_user_mask = VMX_EPT_READABLE_MASK;
497 shadow_accessed_mask = VMX_EPT_ACCESS_BIT;
498 shadow_dirty_mask = VMX_EPT_DIRTY_BIT;
499 shadow_nx_mask = 0ull;
500 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
501 /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
502 shadow_present_mask =
503 (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
504
505 shadow_acc_track_mask = VMX_EPT_RWX_MASK;
506 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
507 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
508
509 /*
510 * EPT Misconfigurations are generated if the value of bits 2:0
511 * of an EPT paging-structure entry is 110b (write/execute).
512 */
513 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
514 VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
517
kvm_mmu_reset_all_pte_masks(void)518 void kvm_mmu_reset_all_pte_masks(void)
519 {
520 u8 low_phys_bits;
521 u64 mask;
522
523 kvm_ad_enabled = true;
524
525 /*
526 * If the CPU has 46 or less physical address bits, then set an
527 * appropriate mask to guard against L1TF attacks. Otherwise, it is
528 * assumed that the CPU is not vulnerable to L1TF.
529 *
530 * Some Intel CPUs address the L1 cache using more PA bits than are
531 * reported by CPUID. Use the PA width of the L1 cache when possible
532 * to achieve more effective mitigation, e.g. if system RAM overlaps
533 * the most significant bits of legal physical address space.
534 */
535 shadow_nonpresent_or_rsvd_mask = 0;
536 low_phys_bits = boot_cpu_data.x86_phys_bits;
537 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
538 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
539 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
540 low_phys_bits = boot_cpu_data.x86_cache_bits
541 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
542 shadow_nonpresent_or_rsvd_mask =
543 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
544 }
545
546 shadow_nonpresent_or_rsvd_lower_gfn_mask =
547 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
548
549 shadow_user_mask = PT_USER_MASK;
550 shadow_accessed_mask = PT_ACCESSED_MASK;
551 shadow_dirty_mask = PT_DIRTY_MASK;
552 shadow_nx_mask = PT64_NX_MASK;
553 shadow_x_mask = 0;
554 shadow_present_mask = PT_PRESENT_MASK;
555
556 shadow_acc_track_mask = 0;
557 shadow_me_mask = 0;
558 shadow_me_value = 0;
559
560 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
561 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
562
563 /*
564 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
565 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
566 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
567 * 52-bit physical addresses then there are no reserved PA bits in the
568 * PTEs and so the reserved PA approach must be disabled.
569 */
570 if (kvm_host.maxphyaddr < 52)
571 mask = BIT_ULL(51) | PT_PRESENT_MASK;
572 else
573 mask = 0;
574
575 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
576 }
577